ctdb-daemon: After updating tickles on other nodes, set update flag to false
[kai/samba-autobuild/.git] / ctdb / server / ctdb_takeover.c
1 /* 
2    ctdb ip takeover code
3
4    Copyright (C) Ronnie Sahlberg  2007
5    Copyright (C) Andrew Tridgell  2007
6    Copyright (C) Martin Schwenke  2011
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12    
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17    
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21 #include "includes.h"
22 #include "tdb.h"
23 #include "lib/util/dlinklist.h"
24 #include "system/network.h"
25 #include "system/filesys.h"
26 #include "system/wait.h"
27 #include "../include/ctdb_private.h"
28 #include "../common/rb_tree.h"
29
30
31 #define TAKEOVER_TIMEOUT() timeval_current_ofs(ctdb->tunable.takeover_timeout,0)
32
33 #define CTDB_ARP_INTERVAL 1
34 #define CTDB_ARP_REPEAT   3
35
36 /* Flags used in IP allocation algorithms. */
37 struct ctdb_ipflags {
38         bool noiptakeover;
39         bool noiphost;
40 };
41
42 struct ctdb_iface {
43         struct ctdb_iface *prev, *next;
44         const char *name;
45         bool link_up;
46         uint32_t references;
47 };
48
49 static const char *ctdb_vnn_iface_string(const struct ctdb_vnn *vnn)
50 {
51         if (vnn->iface) {
52                 return vnn->iface->name;
53         }
54
55         return "__none__";
56 }
57
58 static int ctdb_add_local_iface(struct ctdb_context *ctdb, const char *iface)
59 {
60         struct ctdb_iface *i;
61
62         /* Verify that we dont have an entry for this ip yet */
63         for (i=ctdb->ifaces;i;i=i->next) {
64                 if (strcmp(i->name, iface) == 0) {
65                         return 0;
66                 }
67         }
68
69         /* create a new structure for this interface */
70         i = talloc_zero(ctdb, struct ctdb_iface);
71         CTDB_NO_MEMORY_FATAL(ctdb, i);
72         i->name = talloc_strdup(i, iface);
73         CTDB_NO_MEMORY(ctdb, i->name);
74         /*
75          * If link_up defaults to true then IPs can be allocated to a
76          * node during the first recovery.  However, then an interface
77          * could have its link marked down during the startup event,
78          * causing the IP to move almost immediately.  If link_up
79          * defaults to false then, during normal operation, IPs added
80          * to a new interface can't be assigned until a monitor cycle
81          * has occurred and marked the new interfaces up.  This makes
82          * IP allocation unpredictable.  The following is a neat
83          * compromise: early in startup link_up defaults to false, so
84          * IPs can't be assigned, and after startup IPs can be
85          * assigned immediately.
86          */
87         i->link_up = (ctdb->runstate == CTDB_RUNSTATE_RUNNING);
88
89         DLIST_ADD(ctdb->ifaces, i);
90
91         return 0;
92 }
93
94 static bool vnn_has_interface_with_name(struct ctdb_vnn *vnn,
95                                         const char *name)
96 {
97         int n;
98
99         for (n = 0; vnn->ifaces[n] != NULL; n++) {
100                 if (strcmp(name, vnn->ifaces[n]) == 0) {
101                         return true;
102                 }
103         }
104
105         return false;
106 }
107
108 /* If any interfaces now have no possible IPs then delete them.  This
109  * implementation is naive (i.e. simple) rather than clever
110  * (i.e. complex).  Given that this is run on delip and that operation
111  * is rare, this doesn't need to be efficient - it needs to be
112  * foolproof.  One alternative is reference counting, where the logic
113  * is distributed and can, therefore, be broken in multiple places.
114  * Another alternative is to build a red-black tree of interfaces that
115  * can have addresses (by walking ctdb->vnn and ctdb->single_ip_vnn
116  * once) and then walking ctdb->ifaces once and deleting those not in
117  * the tree.  Let's go to one of those if the naive implementation
118  * causes problems...  :-)
119  */
120 static void ctdb_remove_orphaned_ifaces(struct ctdb_context *ctdb,
121                                         struct ctdb_vnn *vnn,
122                                         TALLOC_CTX *mem_ctx)
123 {
124         struct ctdb_iface *i;
125
126         /* For each interface, check if there's an IP using it. */
127         for(i=ctdb->ifaces; i; i=i->next) {
128                 struct ctdb_vnn *tv;
129                 bool found;
130
131                 /* Only consider interfaces named in the given VNN. */
132                 if (!vnn_has_interface_with_name(vnn, i->name)) {
133                         continue;
134                 }
135
136                 /* Is the "single IP" on this interface? */
137                 if ((ctdb->single_ip_vnn != NULL) &&
138                     (ctdb->single_ip_vnn->ifaces[0] != NULL) &&
139                     (strcmp(i->name, ctdb->single_ip_vnn->ifaces[0]) == 0)) {
140                         /* Found, next interface please... */
141                         continue;
142                 }
143                 /* Search for a vnn with this interface. */
144                 found = false;
145                 for (tv=ctdb->vnn; tv; tv=tv->next) {
146                         if (vnn_has_interface_with_name(tv, i->name)) {
147                                 found = true;
148                                 break;
149                         }
150                 }
151
152                 if (!found) {
153                         /* None of the VNNs are using this interface. */
154                         DLIST_REMOVE(ctdb->ifaces, i);
155                         /* Caller will free mem_ctx when convenient. */
156                         talloc_steal(mem_ctx, i);
157                 }
158         }
159 }
160
161
162 static struct ctdb_iface *ctdb_find_iface(struct ctdb_context *ctdb,
163                                           const char *iface)
164 {
165         struct ctdb_iface *i;
166
167         for (i=ctdb->ifaces;i;i=i->next) {
168                 if (strcmp(i->name, iface) == 0) {
169                         return i;
170                 }
171         }
172
173         return NULL;
174 }
175
176 static struct ctdb_iface *ctdb_vnn_best_iface(struct ctdb_context *ctdb,
177                                               struct ctdb_vnn *vnn)
178 {
179         int i;
180         struct ctdb_iface *cur = NULL;
181         struct ctdb_iface *best = NULL;
182
183         for (i=0; vnn->ifaces[i]; i++) {
184
185                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
186                 if (cur == NULL) {
187                         continue;
188                 }
189
190                 if (!cur->link_up) {
191                         continue;
192                 }
193
194                 if (best == NULL) {
195                         best = cur;
196                         continue;
197                 }
198
199                 if (cur->references < best->references) {
200                         best = cur;
201                         continue;
202                 }
203         }
204
205         return best;
206 }
207
208 static int32_t ctdb_vnn_assign_iface(struct ctdb_context *ctdb,
209                                      struct ctdb_vnn *vnn)
210 {
211         struct ctdb_iface *best = NULL;
212
213         if (vnn->iface) {
214                 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
215                                    "still assigned to iface '%s'\n",
216                                    ctdb_addr_to_str(&vnn->public_address),
217                                    ctdb_vnn_iface_string(vnn)));
218                 return 0;
219         }
220
221         best = ctdb_vnn_best_iface(ctdb, vnn);
222         if (best == NULL) {
223                 DEBUG(DEBUG_ERR, (__location__ " public address '%s' "
224                                   "cannot assign to iface any iface\n",
225                                   ctdb_addr_to_str(&vnn->public_address)));
226                 return -1;
227         }
228
229         vnn->iface = best;
230         best->references++;
231         vnn->pnn = ctdb->pnn;
232
233         DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
234                            "now assigned to iface '%s' refs[%d]\n",
235                            ctdb_addr_to_str(&vnn->public_address),
236                            ctdb_vnn_iface_string(vnn),
237                            best->references));
238         return 0;
239 }
240
241 static void ctdb_vnn_unassign_iface(struct ctdb_context *ctdb,
242                                     struct ctdb_vnn *vnn)
243 {
244         DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
245                            "now unassigned (old iface '%s' refs[%d])\n",
246                            ctdb_addr_to_str(&vnn->public_address),
247                            ctdb_vnn_iface_string(vnn),
248                            vnn->iface?vnn->iface->references:0));
249         if (vnn->iface) {
250                 vnn->iface->references--;
251         }
252         vnn->iface = NULL;
253         if (vnn->pnn == ctdb->pnn) {
254                 vnn->pnn = -1;
255         }
256 }
257
258 static bool ctdb_vnn_available(struct ctdb_context *ctdb,
259                                struct ctdb_vnn *vnn)
260 {
261         int i;
262
263         if (vnn->iface && vnn->iface->link_up) {
264                 return true;
265         }
266
267         for (i=0; vnn->ifaces[i]; i++) {
268                 struct ctdb_iface *cur;
269
270                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
271                 if (cur == NULL) {
272                         continue;
273                 }
274
275                 if (cur->link_up) {
276                         return true;
277                 }
278         }
279
280         return false;
281 }
282
283 struct ctdb_takeover_arp {
284         struct ctdb_context *ctdb;
285         uint32_t count;
286         ctdb_sock_addr addr;
287         struct ctdb_tcp_array *tcparray;
288         struct ctdb_vnn *vnn;
289 };
290
291
292 /*
293   lists of tcp endpoints
294  */
295 struct ctdb_tcp_list {
296         struct ctdb_tcp_list *prev, *next;
297         struct ctdb_tcp_connection connection;
298 };
299
300 /*
301   list of clients to kill on IP release
302  */
303 struct ctdb_client_ip {
304         struct ctdb_client_ip *prev, *next;
305         struct ctdb_context *ctdb;
306         ctdb_sock_addr addr;
307         uint32_t client_id;
308 };
309
310
311 /*
312   send a gratuitous arp
313  */
314 static void ctdb_control_send_arp(struct event_context *ev, struct timed_event *te, 
315                                   struct timeval t, void *private_data)
316 {
317         struct ctdb_takeover_arp *arp = talloc_get_type(private_data, 
318                                                         struct ctdb_takeover_arp);
319         int i, ret;
320         struct ctdb_tcp_array *tcparray;
321         const char *iface = ctdb_vnn_iface_string(arp->vnn);
322
323         ret = ctdb_sys_send_arp(&arp->addr, iface);
324         if (ret != 0) {
325                 DEBUG(DEBUG_CRIT,(__location__ " sending of arp failed on iface '%s' (%s)\n",
326                                   iface, strerror(errno)));
327         }
328
329         tcparray = arp->tcparray;
330         if (tcparray) {
331                 for (i=0;i<tcparray->num;i++) {
332                         struct ctdb_tcp_connection *tcon;
333
334                         tcon = &tcparray->connections[i];
335                         DEBUG(DEBUG_INFO,("sending tcp tickle ack for %u->%s:%u\n",
336                                 (unsigned)ntohs(tcon->dst_addr.ip.sin_port), 
337                                 ctdb_addr_to_str(&tcon->src_addr),
338                                 (unsigned)ntohs(tcon->src_addr.ip.sin_port)));
339                         ret = ctdb_sys_send_tcp(
340                                 &tcon->src_addr, 
341                                 &tcon->dst_addr,
342                                 0, 0, 0);
343                         if (ret != 0) {
344                                 DEBUG(DEBUG_CRIT,(__location__ " Failed to send tcp tickle ack for %s\n",
345                                         ctdb_addr_to_str(&tcon->src_addr)));
346                         }
347                 }
348         }
349
350         arp->count++;
351
352         if (arp->count == CTDB_ARP_REPEAT) {
353                 talloc_free(arp);
354                 return;
355         }
356
357         event_add_timed(arp->ctdb->ev, arp->vnn->takeover_ctx, 
358                         timeval_current_ofs(CTDB_ARP_INTERVAL, 100000), 
359                         ctdb_control_send_arp, arp);
360 }
361
362 static int32_t ctdb_announce_vnn_iface(struct ctdb_context *ctdb,
363                                        struct ctdb_vnn *vnn)
364 {
365         struct ctdb_takeover_arp *arp;
366         struct ctdb_tcp_array *tcparray;
367
368         if (!vnn->takeover_ctx) {
369                 vnn->takeover_ctx = talloc_new(vnn);
370                 if (!vnn->takeover_ctx) {
371                         return -1;
372                 }
373         }
374
375         arp = talloc_zero(vnn->takeover_ctx, struct ctdb_takeover_arp);
376         if (!arp) {
377                 return -1;
378         }
379
380         arp->ctdb = ctdb;
381         arp->addr = vnn->public_address;
382         arp->vnn  = vnn;
383
384         tcparray = vnn->tcp_array;
385         if (tcparray) {
386                 /* add all of the known tcp connections for this IP to the
387                    list of tcp connections to send tickle acks for */
388                 arp->tcparray = talloc_steal(arp, tcparray);
389
390                 vnn->tcp_array = NULL;
391                 vnn->tcp_update_needed = true;
392         }
393
394         event_add_timed(arp->ctdb->ev, vnn->takeover_ctx,
395                         timeval_zero(), ctdb_control_send_arp, arp);
396
397         return 0;
398 }
399
400 struct takeover_callback_state {
401         struct ctdb_req_control *c;
402         ctdb_sock_addr *addr;
403         struct ctdb_vnn *vnn;
404 };
405
406 struct ctdb_do_takeip_state {
407         struct ctdb_req_control *c;
408         struct ctdb_vnn *vnn;
409 };
410
411 /*
412   called when takeip event finishes
413  */
414 static void ctdb_do_takeip_callback(struct ctdb_context *ctdb, int status,
415                                     void *private_data)
416 {
417         struct ctdb_do_takeip_state *state =
418                 talloc_get_type(private_data, struct ctdb_do_takeip_state);
419         int32_t ret;
420         TDB_DATA data;
421
422         if (status != 0) {
423                 struct ctdb_node *node = ctdb->nodes[ctdb->pnn];
424         
425                 if (status == -ETIME) {
426                         ctdb_ban_self(ctdb);
427                 }
428                 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
429                                  ctdb_addr_to_str(&state->vnn->public_address),
430                                  ctdb_vnn_iface_string(state->vnn)));
431                 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
432
433                 node->flags |= NODE_FLAGS_UNHEALTHY;
434                 talloc_free(state);
435                 return;
436         }
437
438         if (ctdb->do_checkpublicip) {
439
440         ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
441         if (ret != 0) {
442                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
443                 talloc_free(state);
444                 return;
445         }
446
447         }
448
449         data.dptr  = (uint8_t *)ctdb_addr_to_str(&state->vnn->public_address);
450         data.dsize = strlen((char *)data.dptr) + 1;
451         DEBUG(DEBUG_INFO,(__location__ " sending TAKE_IP for '%s'\n", data.dptr));
452
453         ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_TAKE_IP, data);
454
455
456         /* the control succeeded */
457         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
458         talloc_free(state);
459         return;
460 }
461
462 static int ctdb_takeip_destructor(struct ctdb_do_takeip_state *state)
463 {
464         state->vnn->update_in_flight = false;
465         return 0;
466 }
467
468 /*
469   take over an ip address
470  */
471 static int32_t ctdb_do_takeip(struct ctdb_context *ctdb,
472                               struct ctdb_req_control *c,
473                               struct ctdb_vnn *vnn)
474 {
475         int ret;
476         struct ctdb_do_takeip_state *state;
477
478         if (vnn->update_in_flight) {
479                 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u rejected "
480                                     "update for this IP already in flight\n",
481                                     ctdb_addr_to_str(&vnn->public_address),
482                                     vnn->public_netmask_bits));
483                 return -1;
484         }
485
486         ret = ctdb_vnn_assign_iface(ctdb, vnn);
487         if (ret != 0) {
488                 DEBUG(DEBUG_ERR,("Takeover of IP %s/%u failed to "
489                                  "assign a usable interface\n",
490                                  ctdb_addr_to_str(&vnn->public_address),
491                                  vnn->public_netmask_bits));
492                 return -1;
493         }
494
495         state = talloc(vnn, struct ctdb_do_takeip_state);
496         CTDB_NO_MEMORY(ctdb, state);
497
498         state->c = talloc_steal(ctdb, c);
499         state->vnn   = vnn;
500
501         vnn->update_in_flight = true;
502         talloc_set_destructor(state, ctdb_takeip_destructor);
503
504         DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u on interface %s\n",
505                             ctdb_addr_to_str(&vnn->public_address),
506                             vnn->public_netmask_bits,
507                             ctdb_vnn_iface_string(vnn)));
508
509         ret = ctdb_event_script_callback(ctdb,
510                                          state,
511                                          ctdb_do_takeip_callback,
512                                          state,
513                                          CTDB_EVENT_TAKE_IP,
514                                          "%s %s %u",
515                                          ctdb_vnn_iface_string(vnn),
516                                          ctdb_addr_to_str(&vnn->public_address),
517                                          vnn->public_netmask_bits);
518
519         if (ret != 0) {
520                 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
521                         ctdb_addr_to_str(&vnn->public_address),
522                         ctdb_vnn_iface_string(vnn)));
523                 talloc_free(state);
524                 return -1;
525         }
526
527         return 0;
528 }
529
530 struct ctdb_do_updateip_state {
531         struct ctdb_req_control *c;
532         struct ctdb_iface *old;
533         struct ctdb_vnn *vnn;
534 };
535
536 /*
537   called when updateip event finishes
538  */
539 static void ctdb_do_updateip_callback(struct ctdb_context *ctdb, int status,
540                                       void *private_data)
541 {
542         struct ctdb_do_updateip_state *state =
543                 talloc_get_type(private_data, struct ctdb_do_updateip_state);
544         int32_t ret;
545
546         if (status != 0) {
547                 if (status == -ETIME) {
548                         ctdb_ban_self(ctdb);
549                 }
550                 DEBUG(DEBUG_ERR,(__location__ " Failed to move IP %s from interface %s to %s\n",
551                         ctdb_addr_to_str(&state->vnn->public_address),
552                         state->old->name,
553                         ctdb_vnn_iface_string(state->vnn)));
554
555                 /*
556                  * All we can do is reset the old interface
557                  * and let the next run fix it
558                  */
559                 ctdb_vnn_unassign_iface(ctdb, state->vnn);
560                 state->vnn->iface = state->old;
561                 state->vnn->iface->references++;
562
563                 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
564                 talloc_free(state);
565                 return;
566         }
567
568         if (ctdb->do_checkpublicip) {
569
570         ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
571         if (ret != 0) {
572                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
573                 talloc_free(state);
574                 return;
575         }
576
577         }
578
579         /* the control succeeded */
580         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
581         talloc_free(state);
582         return;
583 }
584
585 static int ctdb_updateip_destructor(struct ctdb_do_updateip_state *state)
586 {
587         state->vnn->update_in_flight = false;
588         return 0;
589 }
590
591 /*
592   update (move) an ip address
593  */
594 static int32_t ctdb_do_updateip(struct ctdb_context *ctdb,
595                                 struct ctdb_req_control *c,
596                                 struct ctdb_vnn *vnn)
597 {
598         int ret;
599         struct ctdb_do_updateip_state *state;
600         struct ctdb_iface *old = vnn->iface;
601         const char *new_name;
602
603         if (vnn->update_in_flight) {
604                 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u rejected "
605                                     "update for this IP already in flight\n",
606                                     ctdb_addr_to_str(&vnn->public_address),
607                                     vnn->public_netmask_bits));
608                 return -1;
609         }
610
611         ctdb_vnn_unassign_iface(ctdb, vnn);
612         ret = ctdb_vnn_assign_iface(ctdb, vnn);
613         if (ret != 0) {
614                 DEBUG(DEBUG_ERR,("update of IP %s/%u failed to "
615                                  "assin a usable interface (old iface '%s')\n",
616                                  ctdb_addr_to_str(&vnn->public_address),
617                                  vnn->public_netmask_bits,
618                                  old->name));
619                 return -1;
620         }
621
622         new_name = ctdb_vnn_iface_string(vnn);
623         if (old->name != NULL && new_name != NULL && !strcmp(old->name, new_name)) {
624                 /* A benign update from one interface onto itself.
625                  * no need to run the eventscripts in this case, just return
626                  * success.
627                  */
628                 ctdb_request_control_reply(ctdb, c, NULL, 0, NULL);
629                 return 0;
630         }
631
632         state = talloc(vnn, struct ctdb_do_updateip_state);
633         CTDB_NO_MEMORY(ctdb, state);
634
635         state->c = talloc_steal(ctdb, c);
636         state->old = old;
637         state->vnn = vnn;
638
639         vnn->update_in_flight = true;
640         talloc_set_destructor(state, ctdb_updateip_destructor);
641
642         DEBUG(DEBUG_NOTICE,("Update of IP %s/%u from "
643                             "interface %s to %s\n",
644                             ctdb_addr_to_str(&vnn->public_address),
645                             vnn->public_netmask_bits,
646                             old->name,
647                             new_name));
648
649         ret = ctdb_event_script_callback(ctdb,
650                                          state,
651                                          ctdb_do_updateip_callback,
652                                          state,
653                                          CTDB_EVENT_UPDATE_IP,
654                                          "%s %s %s %u",
655                                          state->old->name,
656                                          new_name,
657                                          ctdb_addr_to_str(&vnn->public_address),
658                                          vnn->public_netmask_bits);
659         if (ret != 0) {
660                 DEBUG(DEBUG_ERR,(__location__ " Failed update IP %s from interface %s to %s\n",
661                                  ctdb_addr_to_str(&vnn->public_address),
662                                  old->name, new_name));
663                 talloc_free(state);
664                 return -1;
665         }
666
667         return 0;
668 }
669
670 /*
671   Find the vnn of the node that has a public ip address
672   returns -1 if the address is not known as a public address
673  */
674 static struct ctdb_vnn *find_public_ip_vnn(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
675 {
676         struct ctdb_vnn *vnn;
677
678         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
679                 if (ctdb_same_ip(&vnn->public_address, addr)) {
680                         return vnn;
681                 }
682         }
683
684         return NULL;
685 }
686
687 /*
688   take over an ip address
689  */
690 int32_t ctdb_control_takeover_ip(struct ctdb_context *ctdb,
691                                  struct ctdb_req_control *c,
692                                  TDB_DATA indata,
693                                  bool *async_reply)
694 {
695         int ret;
696         struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
697         struct ctdb_vnn *vnn;
698         bool have_ip = false;
699         bool do_updateip = false;
700         bool do_takeip = false;
701         struct ctdb_iface *best_iface = NULL;
702
703         if (pip->pnn != ctdb->pnn) {
704                 DEBUG(DEBUG_ERR,(__location__" takeoverip called for an ip '%s' "
705                                  "with pnn %d, but we're node %d\n",
706                                  ctdb_addr_to_str(&pip->addr),
707                                  pip->pnn, ctdb->pnn));
708                 return -1;
709         }
710
711         /* update out vnn list */
712         vnn = find_public_ip_vnn(ctdb, &pip->addr);
713         if (vnn == NULL) {
714                 DEBUG(DEBUG_INFO,("takeoverip called for an ip '%s' that is not a public address\n",
715                         ctdb_addr_to_str(&pip->addr)));
716                 return 0;
717         }
718
719         if (ctdb->do_checkpublicip) {
720                 have_ip = ctdb_sys_have_ip(&pip->addr);
721         }
722         best_iface = ctdb_vnn_best_iface(ctdb, vnn);
723         if (best_iface == NULL) {
724                 DEBUG(DEBUG_ERR,("takeoverip of IP %s/%u failed to find"
725                                  "a usable interface (old %s, have_ip %d)\n",
726                                  ctdb_addr_to_str(&vnn->public_address),
727                                  vnn->public_netmask_bits,
728                                  ctdb_vnn_iface_string(vnn),
729                                  have_ip));
730                 return -1;
731         }
732
733         if (vnn->iface == NULL && vnn->pnn == -1 && have_ip && best_iface != NULL) {
734                 DEBUG(DEBUG_ERR,("Taking over newly created ip\n"));
735                 have_ip = false;
736         }
737
738
739         if (vnn->iface == NULL && have_ip) {
740                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
741                                   "but we have no interface assigned, has someone manually configured it? Ignore for now.\n",
742                                  ctdb_addr_to_str(&vnn->public_address)));
743                 return 0;
744         }
745
746         if (vnn->pnn != ctdb->pnn && have_ip && vnn->pnn != -1) {
747                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
748                                   "and we have it on iface[%s], but it was assigned to node %d"
749                                   "and we are node %d, banning ourself\n",
750                                  ctdb_addr_to_str(&vnn->public_address),
751                                  ctdb_vnn_iface_string(vnn), vnn->pnn, ctdb->pnn));
752                 ctdb_ban_self(ctdb);
753                 return -1;
754         }
755
756         if (vnn->pnn == -1 && have_ip) {
757                 vnn->pnn = ctdb->pnn;
758                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
759                                   "and we already have it on iface[%s], update local daemon\n",
760                                  ctdb_addr_to_str(&vnn->public_address),
761                                   ctdb_vnn_iface_string(vnn)));
762                 return 0;
763         }
764
765         if (vnn->iface) {
766                 if (vnn->iface != best_iface) {
767                         if (!vnn->iface->link_up) {
768                                 do_updateip = true;
769                         } else if (vnn->iface->references > (best_iface->references + 1)) {
770                                 /* only move when the rebalance gains something */
771                                         do_updateip = true;
772                         }
773                 }
774         }
775
776         if (!have_ip) {
777                 if (do_updateip) {
778                         ctdb_vnn_unassign_iface(ctdb, vnn);
779                         do_updateip = false;
780                 }
781                 do_takeip = true;
782         }
783
784         if (do_takeip) {
785                 ret = ctdb_do_takeip(ctdb, c, vnn);
786                 if (ret != 0) {
787                         return -1;
788                 }
789         } else if (do_updateip) {
790                 ret = ctdb_do_updateip(ctdb, c, vnn);
791                 if (ret != 0) {
792                         return -1;
793                 }
794         } else {
795                 /*
796                  * The interface is up and the kernel known the ip
797                  * => do nothing
798                  */
799                 DEBUG(DEBUG_INFO,("Redundant takeover of IP %s/%u on interface %s (ip already held)\n",
800                         ctdb_addr_to_str(&pip->addr),
801                         vnn->public_netmask_bits,
802                         ctdb_vnn_iface_string(vnn)));
803                 return 0;
804         }
805
806         /* tell ctdb_control.c that we will be replying asynchronously */
807         *async_reply = true;
808
809         return 0;
810 }
811
812 /*
813   takeover an ip address old v4 style
814  */
815 int32_t ctdb_control_takeover_ipv4(struct ctdb_context *ctdb, 
816                                 struct ctdb_req_control *c,
817                                 TDB_DATA indata, 
818                                 bool *async_reply)
819 {
820         TDB_DATA data;
821         
822         data.dsize = sizeof(struct ctdb_public_ip);
823         data.dptr  = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
824         CTDB_NO_MEMORY(ctdb, data.dptr);
825         
826         memcpy(data.dptr, indata.dptr, indata.dsize);
827         return ctdb_control_takeover_ip(ctdb, c, data, async_reply);
828 }
829
830 /*
831   kill any clients that are registered with a IP that is being released
832  */
833 static void release_kill_clients(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
834 {
835         struct ctdb_client_ip *ip;
836
837         DEBUG(DEBUG_INFO,("release_kill_clients for ip %s\n",
838                 ctdb_addr_to_str(addr)));
839
840         for (ip=ctdb->client_ip_list; ip; ip=ip->next) {
841                 ctdb_sock_addr tmp_addr;
842
843                 tmp_addr = ip->addr;
844                 DEBUG(DEBUG_INFO,("checking for client %u with IP %s\n", 
845                         ip->client_id,
846                         ctdb_addr_to_str(&ip->addr)));
847
848                 if (ctdb_same_ip(&tmp_addr, addr)) {
849                         struct ctdb_client *client = ctdb_reqid_find(ctdb, 
850                                                                      ip->client_id, 
851                                                                      struct ctdb_client);
852                         DEBUG(DEBUG_INFO,("matched client %u with IP %s and pid %u\n", 
853                                 ip->client_id,
854                                 ctdb_addr_to_str(&ip->addr),
855                                 client->pid));
856
857                         if (client->pid != 0) {
858                                 DEBUG(DEBUG_INFO,(__location__ " Killing client pid %u for IP %s on client_id %u\n",
859                                         (unsigned)client->pid,
860                                         ctdb_addr_to_str(addr),
861                                         ip->client_id));
862                                 kill(client->pid, SIGKILL);
863                         }
864                 }
865         }
866 }
867
868 /*
869   called when releaseip event finishes
870  */
871 static void release_ip_callback(struct ctdb_context *ctdb, int status, 
872                                 void *private_data)
873 {
874         struct takeover_callback_state *state = 
875                 talloc_get_type(private_data, struct takeover_callback_state);
876         TDB_DATA data;
877
878         if (status == -ETIME) {
879                 ctdb_ban_self(ctdb);
880         }
881
882         if (ctdb->do_checkpublicip && ctdb_sys_have_ip(state->addr)) {
883                 DEBUG(DEBUG_ERR, ("IP %s still hosted during release IP callback, failing\n",
884                                   ctdb_addr_to_str(state->addr)));
885                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
886                 talloc_free(state);
887                 return;
888         }
889
890         /* send a message to all clients of this node telling them
891            that the cluster has been reconfigured and they should
892            release any sockets on this IP */
893         data.dptr = (uint8_t *)talloc_strdup(state, ctdb_addr_to_str(state->addr));
894         CTDB_NO_MEMORY_VOID(ctdb, data.dptr);
895         data.dsize = strlen((char *)data.dptr)+1;
896
897         DEBUG(DEBUG_INFO,(__location__ " sending RELEASE_IP for '%s'\n", data.dptr));
898
899         ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_RELEASE_IP, data);
900
901         /* kill clients that have registered with this IP */
902         release_kill_clients(ctdb, state->addr);
903
904         ctdb_vnn_unassign_iface(ctdb, state->vnn);
905
906         /* the control succeeded */
907         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
908         talloc_free(state);
909 }
910
911 static int ctdb_releaseip_destructor(struct takeover_callback_state *state)
912 {
913         state->vnn->update_in_flight = false;
914         return 0;
915 }
916
917 /*
918   release an ip address
919  */
920 int32_t ctdb_control_release_ip(struct ctdb_context *ctdb, 
921                                 struct ctdb_req_control *c,
922                                 TDB_DATA indata, 
923                                 bool *async_reply)
924 {
925         int ret;
926         struct takeover_callback_state *state;
927         struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
928         struct ctdb_vnn *vnn;
929         char *iface;
930
931         /* update our vnn list */
932         vnn = find_public_ip_vnn(ctdb, &pip->addr);
933         if (vnn == NULL) {
934                 DEBUG(DEBUG_INFO,("releaseip called for an ip '%s' that is not a public address\n",
935                         ctdb_addr_to_str(&pip->addr)));
936                 return 0;
937         }
938         vnn->pnn = pip->pnn;
939
940         /* stop any previous arps */
941         talloc_free(vnn->takeover_ctx);
942         vnn->takeover_ctx = NULL;
943
944         /* Some ctdb tool commands (e.g. moveip, rebalanceip) send
945          * lazy multicast to drop an IP from any node that isn't the
946          * intended new node.  The following causes makes ctdbd ignore
947          * a release for any address it doesn't host.
948          */
949         if (ctdb->do_checkpublicip) {
950                 if (!ctdb_sys_have_ip(&pip->addr)) {
951                         DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u on interface %s (ip not held)\n",
952                                 ctdb_addr_to_str(&pip->addr),
953                                 vnn->public_netmask_bits,
954                                 ctdb_vnn_iface_string(vnn)));
955                         ctdb_vnn_unassign_iface(ctdb, vnn);
956                         return 0;
957                 }
958         } else {
959                 if (vnn->iface == NULL) {
960                         DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u (ip not held)\n",
961                                            ctdb_addr_to_str(&pip->addr),
962                                            vnn->public_netmask_bits));
963                         return 0;
964                 }
965         }
966
967         /* There is a potential race between take_ip and us because we
968          * update the VNN via a callback that run when the
969          * eventscripts have been run.  Avoid the race by allowing one
970          * update to be in flight at a time.
971          */
972         if (vnn->update_in_flight) {
973                 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u rejected "
974                                     "update for this IP already in flight\n",
975                                     ctdb_addr_to_str(&vnn->public_address),
976                                     vnn->public_netmask_bits));
977                 return -1;
978         }
979
980         if (ctdb->do_checkpublicip) {
981                 iface = ctdb_sys_find_ifname(&pip->addr);
982                 if (iface == NULL) {
983                         DEBUG(DEBUG_ERR, ("Could not find which interface the ip address is hosted on. can not release it\n"));
984                         return 0;
985                 }
986                 if (vnn->iface == NULL) {
987                         DEBUG(DEBUG_WARNING,
988                               ("Public IP %s is hosted on interface %s but we have no VNN\n",
989                                ctdb_addr_to_str(&pip->addr),
990                                iface));
991                 } else if (strcmp(iface, ctdb_vnn_iface_string(vnn)) != 0) {
992                         DEBUG(DEBUG_WARNING,
993                               ("Public IP %s is hosted on inteterface %s but VNN says %s\n",
994                                ctdb_addr_to_str(&pip->addr),
995                                iface,
996                                ctdb_vnn_iface_string(vnn)));
997                         /* Should we fix vnn->iface?  If we do, what
998                          * happens to reference counts?
999                          */
1000                 }
1001         } else {
1002                 iface = strdup(ctdb_vnn_iface_string(vnn));
1003         }
1004
1005         DEBUG(DEBUG_NOTICE,("Release of IP %s/%u on interface %s  node:%d\n",
1006                 ctdb_addr_to_str(&pip->addr),
1007                 vnn->public_netmask_bits,
1008                 iface,
1009                 pip->pnn));
1010
1011         state = talloc(ctdb, struct takeover_callback_state);
1012         CTDB_NO_MEMORY(ctdb, state);
1013
1014         state->c = talloc_steal(state, c);
1015         state->addr = talloc(state, ctdb_sock_addr);       
1016         CTDB_NO_MEMORY(ctdb, state->addr);
1017         *state->addr = pip->addr;
1018         state->vnn   = vnn;
1019
1020         vnn->update_in_flight = true;
1021         talloc_set_destructor(state, ctdb_releaseip_destructor);
1022
1023         ret = ctdb_event_script_callback(ctdb, 
1024                                          state, release_ip_callback, state,
1025                                          CTDB_EVENT_RELEASE_IP,
1026                                          "%s %s %u",
1027                                          iface,
1028                                          ctdb_addr_to_str(&pip->addr),
1029                                          vnn->public_netmask_bits);
1030         free(iface);
1031         if (ret != 0) {
1032                 DEBUG(DEBUG_ERR,(__location__ " Failed to release IP %s on interface %s\n",
1033                         ctdb_addr_to_str(&pip->addr),
1034                         ctdb_vnn_iface_string(vnn)));
1035                 talloc_free(state);
1036                 return -1;
1037         }
1038
1039         /* tell the control that we will be reply asynchronously */
1040         *async_reply = true;
1041         return 0;
1042 }
1043
1044 /*
1045   release an ip address old v4 style
1046  */
1047 int32_t ctdb_control_release_ipv4(struct ctdb_context *ctdb, 
1048                                 struct ctdb_req_control *c,
1049                                 TDB_DATA indata, 
1050                                 bool *async_reply)
1051 {
1052         TDB_DATA data;
1053         
1054         data.dsize = sizeof(struct ctdb_public_ip);
1055         data.dptr  = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
1056         CTDB_NO_MEMORY(ctdb, data.dptr);
1057         
1058         memcpy(data.dptr, indata.dptr, indata.dsize);
1059         return ctdb_control_release_ip(ctdb, c, data, async_reply);
1060 }
1061
1062
1063 static int ctdb_add_public_address(struct ctdb_context *ctdb,
1064                                    ctdb_sock_addr *addr,
1065                                    unsigned mask, const char *ifaces,
1066                                    bool check_address)
1067 {
1068         struct ctdb_vnn      *vnn;
1069         uint32_t num = 0;
1070         char *tmp;
1071         const char *iface;
1072         int i;
1073         int ret;
1074
1075         tmp = strdup(ifaces);
1076         for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1077                 if (!ctdb_sys_check_iface_exists(iface)) {
1078                         DEBUG(DEBUG_CRIT,("Interface %s does not exist. Can not add public-address : %s\n", iface, ctdb_addr_to_str(addr)));
1079                         free(tmp);
1080                         return -1;
1081                 }
1082         }
1083         free(tmp);
1084
1085         /* Verify that we dont have an entry for this ip yet */
1086         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1087                 if (ctdb_same_sockaddr(addr, &vnn->public_address)) {
1088                         DEBUG(DEBUG_CRIT,("Same ip '%s' specified multiple times in the public address list \n", 
1089                                 ctdb_addr_to_str(addr)));
1090                         return -1;
1091                 }               
1092         }
1093
1094         /* create a new vnn structure for this ip address */
1095         vnn = talloc_zero(ctdb, struct ctdb_vnn);
1096         CTDB_NO_MEMORY_FATAL(ctdb, vnn);
1097         vnn->ifaces = talloc_array(vnn, const char *, num + 2);
1098         tmp = talloc_strdup(vnn, ifaces);
1099         CTDB_NO_MEMORY_FATAL(ctdb, tmp);
1100         for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1101                 vnn->ifaces = talloc_realloc(vnn, vnn->ifaces, const char *, num + 2);
1102                 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces);
1103                 vnn->ifaces[num] = talloc_strdup(vnn, iface);
1104                 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces[num]);
1105                 num++;
1106         }
1107         talloc_free(tmp);
1108         vnn->ifaces[num] = NULL;
1109         vnn->public_address      = *addr;
1110         vnn->public_netmask_bits = mask;
1111         vnn->pnn                 = -1;
1112         if (check_address) {
1113                 if (ctdb_sys_have_ip(addr)) {
1114                         DEBUG(DEBUG_ERR,("We are already hosting public address '%s'. setting PNN to ourself:%d\n", ctdb_addr_to_str(addr), ctdb->pnn));
1115                         vnn->pnn = ctdb->pnn;
1116                 }
1117         }
1118
1119         for (i=0; vnn->ifaces[i]; i++) {
1120                 ret = ctdb_add_local_iface(ctdb, vnn->ifaces[i]);
1121                 if (ret != 0) {
1122                         DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1123                                            "for public_address[%s]\n",
1124                                            vnn->ifaces[i], ctdb_addr_to_str(addr)));
1125                         talloc_free(vnn);
1126                         return -1;
1127                 }
1128         }
1129
1130         DLIST_ADD(ctdb->vnn, vnn);
1131
1132         return 0;
1133 }
1134
1135 static void ctdb_check_interfaces_event(struct event_context *ev, struct timed_event *te, 
1136                                   struct timeval t, void *private_data)
1137 {
1138         struct ctdb_context *ctdb = talloc_get_type(private_data, 
1139                                                         struct ctdb_context);
1140         struct ctdb_vnn *vnn;
1141
1142         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1143                 int i;
1144
1145                 for (i=0; vnn->ifaces[i] != NULL; i++) {
1146                         if (!ctdb_sys_check_iface_exists(vnn->ifaces[i])) {
1147                                 DEBUG(DEBUG_CRIT,("Interface %s does not exist but is used by public ip %s\n",
1148                                         vnn->ifaces[i],
1149                                         ctdb_addr_to_str(&vnn->public_address)));
1150                         }
1151                 }
1152         }
1153
1154         event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx, 
1155                 timeval_current_ofs(30, 0), 
1156                 ctdb_check_interfaces_event, ctdb);
1157 }
1158
1159
1160 int ctdb_start_monitoring_interfaces(struct ctdb_context *ctdb)
1161 {
1162         if (ctdb->check_public_ifaces_ctx != NULL) {
1163                 talloc_free(ctdb->check_public_ifaces_ctx);
1164                 ctdb->check_public_ifaces_ctx = NULL;
1165         }
1166
1167         ctdb->check_public_ifaces_ctx = talloc_new(ctdb);
1168         if (ctdb->check_public_ifaces_ctx == NULL) {
1169                 ctdb_fatal(ctdb, "failed to allocate context for checking interfaces");
1170         }
1171
1172         event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx, 
1173                 timeval_current_ofs(30, 0), 
1174                 ctdb_check_interfaces_event, ctdb);
1175
1176         return 0;
1177 }
1178
1179
1180 /*
1181   setup the public address lists from a file
1182 */
1183 int ctdb_set_public_addresses(struct ctdb_context *ctdb, bool check_addresses)
1184 {
1185         char **lines;
1186         int nlines;
1187         int i;
1188
1189         lines = file_lines_load(ctdb->public_addresses_file, &nlines, ctdb);
1190         if (lines == NULL) {
1191                 ctdb_set_error(ctdb, "Failed to load public address list '%s'\n", ctdb->public_addresses_file);
1192                 return -1;
1193         }
1194         while (nlines > 0 && strcmp(lines[nlines-1], "") == 0) {
1195                 nlines--;
1196         }
1197
1198         for (i=0;i<nlines;i++) {
1199                 unsigned mask;
1200                 ctdb_sock_addr addr;
1201                 const char *addrstr;
1202                 const char *ifaces;
1203                 char *tok, *line;
1204
1205                 line = lines[i];
1206                 while ((*line == ' ') || (*line == '\t')) {
1207                         line++;
1208                 }
1209                 if (*line == '#') {
1210                         continue;
1211                 }
1212                 if (strcmp(line, "") == 0) {
1213                         continue;
1214                 }
1215                 tok = strtok(line, " \t");
1216                 addrstr = tok;
1217                 tok = strtok(NULL, " \t");
1218                 if (tok == NULL) {
1219                         if (NULL == ctdb->default_public_interface) {
1220                                 DEBUG(DEBUG_CRIT,("No default public interface and no interface specified at line %u of public address list\n",
1221                                          i+1));
1222                                 talloc_free(lines);
1223                                 return -1;
1224                         }
1225                         ifaces = ctdb->default_public_interface;
1226                 } else {
1227                         ifaces = tok;
1228                 }
1229
1230                 if (!addrstr || !parse_ip_mask(addrstr, ifaces, &addr, &mask)) {
1231                         DEBUG(DEBUG_CRIT,("Badly formed line %u in public address list\n", i+1));
1232                         talloc_free(lines);
1233                         return -1;
1234                 }
1235                 if (ctdb_add_public_address(ctdb, &addr, mask, ifaces, check_addresses)) {
1236                         DEBUG(DEBUG_CRIT,("Failed to add line %u to the public address list\n", i+1));
1237                         talloc_free(lines);
1238                         return -1;
1239                 }
1240         }
1241
1242
1243         talloc_free(lines);
1244         return 0;
1245 }
1246
1247 int ctdb_set_single_public_ip(struct ctdb_context *ctdb,
1248                               const char *iface,
1249                               const char *ip)
1250 {
1251         struct ctdb_vnn *svnn;
1252         struct ctdb_iface *cur = NULL;
1253         bool ok;
1254         int ret;
1255
1256         svnn = talloc_zero(ctdb, struct ctdb_vnn);
1257         CTDB_NO_MEMORY(ctdb, svnn);
1258
1259         svnn->ifaces = talloc_array(svnn, const char *, 2);
1260         CTDB_NO_MEMORY(ctdb, svnn->ifaces);
1261         svnn->ifaces[0] = talloc_strdup(svnn->ifaces, iface);
1262         CTDB_NO_MEMORY(ctdb, svnn->ifaces[0]);
1263         svnn->ifaces[1] = NULL;
1264
1265         ok = parse_ip(ip, iface, 0, &svnn->public_address);
1266         if (!ok) {
1267                 talloc_free(svnn);
1268                 return -1;
1269         }
1270
1271         ret = ctdb_add_local_iface(ctdb, svnn->ifaces[0]);
1272         if (ret != 0) {
1273                 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1274                                    "for single_ip[%s]\n",
1275                                    svnn->ifaces[0],
1276                                    ctdb_addr_to_str(&svnn->public_address)));
1277                 talloc_free(svnn);
1278                 return -1;
1279         }
1280
1281         /* assume the single public ip interface is initially "good" */
1282         cur = ctdb_find_iface(ctdb, iface);
1283         if (cur == NULL) {
1284                 DEBUG(DEBUG_CRIT,("Can not find public interface %s used by --single-public-ip", iface));
1285                 return -1;
1286         }
1287         cur->link_up = true;
1288
1289         ret = ctdb_vnn_assign_iface(ctdb, svnn);
1290         if (ret != 0) {
1291                 talloc_free(svnn);
1292                 return -1;
1293         }
1294
1295         ctdb->single_ip_vnn = svnn;
1296         return 0;
1297 }
1298
1299 struct ctdb_public_ip_list {
1300         struct ctdb_public_ip_list *next;
1301         uint32_t pnn;
1302         ctdb_sock_addr addr;
1303 };
1304
1305 /* Given a physical node, return the number of
1306    public addresses that is currently assigned to this node.
1307 */
1308 static int node_ip_coverage(struct ctdb_context *ctdb, 
1309         int32_t pnn,
1310         struct ctdb_public_ip_list *ips)
1311 {
1312         int num=0;
1313
1314         for (;ips;ips=ips->next) {
1315                 if (ips->pnn == pnn) {
1316                         num++;
1317                 }
1318         }
1319         return num;
1320 }
1321
1322
1323 /* Can the given node host the given IP: is the public IP known to the
1324  * node and is NOIPHOST unset?
1325 */
1326 static bool can_node_host_ip(struct ctdb_context *ctdb, int32_t pnn, 
1327                              struct ctdb_ipflags ipflags,
1328                              struct ctdb_public_ip_list *ip)
1329 {
1330         struct ctdb_all_public_ips *public_ips;
1331         int i;
1332
1333         if (ipflags.noiphost) {
1334                 return false;
1335         }
1336
1337         public_ips = ctdb->nodes[pnn]->available_public_ips;
1338
1339         if (public_ips == NULL) {
1340                 return false;
1341         }
1342
1343         for (i=0; i<public_ips->num; i++) {
1344                 if (ctdb_same_ip(&ip->addr, &public_ips->ips[i].addr)) {
1345                         /* yes, this node can serve this public ip */
1346                         return true;
1347                 }
1348         }
1349
1350         return false;
1351 }
1352
1353 static bool can_node_takeover_ip(struct ctdb_context *ctdb, int32_t pnn, 
1354                                  struct ctdb_ipflags ipflags,
1355                                  struct ctdb_public_ip_list *ip)
1356 {
1357         if (ipflags.noiptakeover) {
1358                 return false;
1359         }
1360
1361         return can_node_host_ip(ctdb, pnn, ipflags, ip);
1362 }
1363
1364 /* search the node lists list for a node to takeover this ip.
1365    pick the node that currently are serving the least number of ips
1366    so that the ips get spread out evenly.
1367 */
1368 static int find_takeover_node(struct ctdb_context *ctdb, 
1369                 struct ctdb_ipflags *ipflags,
1370                 struct ctdb_public_ip_list *ip,
1371                 struct ctdb_public_ip_list *all_ips)
1372 {
1373         int pnn, min=0, num;
1374         int i, numnodes;
1375
1376         numnodes = talloc_array_length(ipflags);
1377         pnn    = -1;
1378         for (i=0; i<numnodes; i++) {
1379                 /* verify that this node can serve this ip */
1380                 if (!can_node_takeover_ip(ctdb, i, ipflags[i], ip)) {
1381                         /* no it couldnt   so skip to the next node */
1382                         continue;
1383                 }
1384
1385                 num = node_ip_coverage(ctdb, i, all_ips);
1386                 /* was this the first node we checked ? */
1387                 if (pnn == -1) {
1388                         pnn = i;
1389                         min  = num;
1390                 } else {
1391                         if (num < min) {
1392                                 pnn = i;
1393                                 min  = num;
1394                         }
1395                 }
1396         }       
1397         if (pnn == -1) {
1398                 DEBUG(DEBUG_WARNING,(__location__ " Could not find node to take over public address '%s'\n",
1399                         ctdb_addr_to_str(&ip->addr)));
1400
1401                 return -1;
1402         }
1403
1404         ip->pnn = pnn;
1405         return 0;
1406 }
1407
1408 #define IP_KEYLEN       4
1409 static uint32_t *ip_key(ctdb_sock_addr *ip)
1410 {
1411         static uint32_t key[IP_KEYLEN];
1412
1413         bzero(key, sizeof(key));
1414
1415         switch (ip->sa.sa_family) {
1416         case AF_INET:
1417                 key[3]  = htonl(ip->ip.sin_addr.s_addr);
1418                 break;
1419         case AF_INET6: {
1420                 uint32_t *s6_a32 = (uint32_t *)&(ip->ip6.sin6_addr.s6_addr);
1421                 key[0]  = htonl(s6_a32[0]);
1422                 key[1]  = htonl(s6_a32[1]);
1423                 key[2]  = htonl(s6_a32[2]);
1424                 key[3]  = htonl(s6_a32[3]);
1425                 break;
1426         }
1427         default:
1428                 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", ip->sa.sa_family));
1429                 return key;
1430         }
1431
1432         return key;
1433 }
1434
1435 static void *add_ip_callback(void *parm, void *data)
1436 {
1437         struct ctdb_public_ip_list *this_ip = parm; 
1438         struct ctdb_public_ip_list *prev_ip = data; 
1439
1440         if (prev_ip == NULL) {
1441                 return parm;
1442         }
1443         if (this_ip->pnn == -1) {
1444                 this_ip->pnn = prev_ip->pnn;
1445         }
1446
1447         return parm;
1448 }
1449
1450 static int getips_count_callback(void *param, void *data)
1451 {
1452         struct ctdb_public_ip_list **ip_list = (struct ctdb_public_ip_list **)param;
1453         struct ctdb_public_ip_list *new_ip = (struct ctdb_public_ip_list *)data;
1454
1455         new_ip->next = *ip_list;
1456         *ip_list     = new_ip;
1457         return 0;
1458 }
1459
1460 static struct ctdb_public_ip_list *
1461 create_merged_ip_list(struct ctdb_context *ctdb)
1462 {
1463         int i, j;
1464         struct ctdb_public_ip_list *ip_list;
1465         struct ctdb_all_public_ips *public_ips;
1466
1467         if (ctdb->ip_tree != NULL) {
1468                 talloc_free(ctdb->ip_tree);
1469                 ctdb->ip_tree = NULL;
1470         }
1471         ctdb->ip_tree = trbt_create(ctdb, 0);
1472
1473         for (i=0;i<ctdb->num_nodes;i++) {
1474                 public_ips = ctdb->nodes[i]->known_public_ips;
1475
1476                 if (ctdb->nodes[i]->flags & NODE_FLAGS_DELETED) {
1477                         continue;
1478                 }
1479
1480                 /* there were no public ips for this node */
1481                 if (public_ips == NULL) {
1482                         continue;
1483                 }               
1484
1485                 for (j=0;j<public_ips->num;j++) {
1486                         struct ctdb_public_ip_list *tmp_ip; 
1487
1488                         tmp_ip = talloc_zero(ctdb->ip_tree, struct ctdb_public_ip_list);
1489                         CTDB_NO_MEMORY_NULL(ctdb, tmp_ip);
1490                         /* Do not use information about IP addresses hosted
1491                          * on other nodes, it may not be accurate */
1492                         if (public_ips->ips[j].pnn == ctdb->nodes[i]->pnn) {
1493                                 tmp_ip->pnn = public_ips->ips[j].pnn;
1494                         } else {
1495                                 tmp_ip->pnn = -1;
1496                         }
1497                         tmp_ip->addr = public_ips->ips[j].addr;
1498                         tmp_ip->next = NULL;
1499
1500                         trbt_insertarray32_callback(ctdb->ip_tree,
1501                                 IP_KEYLEN, ip_key(&public_ips->ips[j].addr),
1502                                 add_ip_callback,
1503                                 tmp_ip);
1504                 }
1505         }
1506
1507         ip_list = NULL;
1508         trbt_traversearray32(ctdb->ip_tree, IP_KEYLEN, getips_count_callback, &ip_list);
1509
1510         return ip_list;
1511 }
1512
1513 /* 
1514  * This is the length of the longtest common prefix between the IPs.
1515  * It is calculated by XOR-ing the 2 IPs together and counting the
1516  * number of leading zeroes.  The implementation means that all
1517  * addresses end up being 128 bits long.
1518  *
1519  * FIXME? Should we consider IPv4 and IPv6 separately given that the
1520  * 12 bytes of 0 prefix padding will hurt the algorithm if there are
1521  * lots of nodes and IP addresses?
1522  */
1523 static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
1524 {
1525         uint32_t ip1_k[IP_KEYLEN];
1526         uint32_t *t;
1527         int i;
1528         uint32_t x;
1529
1530         uint32_t distance = 0;
1531
1532         memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
1533         t = ip_key(ip2);
1534         for (i=0; i<IP_KEYLEN; i++) {
1535                 x = ip1_k[i] ^ t[i];
1536                 if (x == 0) {
1537                         distance += 32;
1538                 } else {
1539                         /* Count number of leading zeroes. 
1540                          * FIXME? This could be optimised...
1541                          */
1542                         while ((x & (1 << 31)) == 0) {
1543                                 x <<= 1;
1544                                 distance += 1;
1545                         }
1546                 }
1547         }
1548
1549         return distance;
1550 }
1551
1552 /* Calculate the IP distance for the given IP relative to IPs on the
1553    given node.  The ips argument is generally the all_ips variable
1554    used in the main part of the algorithm.
1555  */
1556 static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
1557                                   struct ctdb_public_ip_list *ips,
1558                                   int pnn)
1559 {
1560         struct ctdb_public_ip_list *t;
1561         uint32_t d;
1562
1563         uint32_t sum = 0;
1564
1565         for (t=ips; t != NULL; t=t->next) {
1566                 if (t->pnn != pnn) {
1567                         continue;
1568                 }
1569
1570                 /* Optimisation: We never calculate the distance
1571                  * between an address and itself.  This allows us to
1572                  * calculate the effect of removing an address from a
1573                  * node by simply calculating the distance between
1574                  * that address and all of the exitsing addresses.
1575                  * Moreover, we assume that we're only ever dealing
1576                  * with addresses from all_ips so we can identify an
1577                  * address via a pointer rather than doing a more
1578                  * expensive address comparison. */
1579                 if (&(t->addr) == ip) {
1580                         continue;
1581                 }
1582
1583                 d = ip_distance(ip, &(t->addr));
1584                 sum += d * d;  /* Cheaper than pulling in math.h :-) */
1585         }
1586
1587         return sum;
1588 }
1589
1590 /* Return the LCP2 imbalance metric for addresses currently assigned
1591    to the given node.
1592  */
1593 static uint32_t lcp2_imbalance(struct ctdb_public_ip_list * all_ips, int pnn)
1594 {
1595         struct ctdb_public_ip_list *t;
1596
1597         uint32_t imbalance = 0;
1598
1599         for (t=all_ips; t!=NULL; t=t->next) {
1600                 if (t->pnn != pnn) {
1601                         continue;
1602                 }
1603                 /* Pass the rest of the IPs rather than the whole
1604                    all_ips input list.
1605                 */
1606                 imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
1607         }
1608
1609         return imbalance;
1610 }
1611
1612 /* Allocate any unassigned IPs just by looping through the IPs and
1613  * finding the best node for each.
1614  */
1615 static void basic_allocate_unassigned(struct ctdb_context *ctdb,
1616                                       struct ctdb_ipflags *ipflags,
1617                                       struct ctdb_public_ip_list *all_ips)
1618 {
1619         struct ctdb_public_ip_list *tmp_ip;
1620
1621         /* loop over all ip's and find a physical node to cover for 
1622            each unassigned ip.
1623         */
1624         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1625                 if (tmp_ip->pnn == -1) {
1626                         if (find_takeover_node(ctdb, ipflags, tmp_ip, all_ips)) {
1627                                 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1628                                         ctdb_addr_to_str(&tmp_ip->addr)));
1629                         }
1630                 }
1631         }
1632 }
1633
1634 /* Basic non-deterministic rebalancing algorithm.
1635  */
1636 static void basic_failback(struct ctdb_context *ctdb,
1637                            struct ctdb_ipflags *ipflags,
1638                            struct ctdb_public_ip_list *all_ips,
1639                            int num_ips)
1640 {
1641         int i, numnodes;
1642         int maxnode, maxnum, minnode, minnum, num, retries;
1643         struct ctdb_public_ip_list *tmp_ip;
1644
1645         numnodes = talloc_array_length(ipflags);
1646         retries = 0;
1647
1648 try_again:
1649         maxnum=0;
1650         minnum=0;
1651
1652         /* for each ip address, loop over all nodes that can serve
1653            this ip and make sure that the difference between the node
1654            serving the most and the node serving the least ip's are
1655            not greater than 1.
1656         */
1657         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1658                 if (tmp_ip->pnn == -1) {
1659                         continue;
1660                 }
1661
1662                 /* Get the highest and lowest number of ips's served by any 
1663                    valid node which can serve this ip.
1664                 */
1665                 maxnode = -1;
1666                 minnode = -1;
1667                 for (i=0; i<numnodes; i++) {
1668                         /* only check nodes that can actually serve this ip */
1669                         if (!can_node_takeover_ip(ctdb, i, ipflags[i], tmp_ip)) {
1670                                 /* no it couldnt   so skip to the next node */
1671                                 continue;
1672                         }
1673
1674                         num = node_ip_coverage(ctdb, i, all_ips);
1675                         if (maxnode == -1) {
1676                                 maxnode = i;
1677                                 maxnum  = num;
1678                         } else {
1679                                 if (num > maxnum) {
1680                                         maxnode = i;
1681                                         maxnum  = num;
1682                                 }
1683                         }
1684                         if (minnode == -1) {
1685                                 minnode = i;
1686                                 minnum  = num;
1687                         } else {
1688                                 if (num < minnum) {
1689                                         minnode = i;
1690                                         minnum  = num;
1691                                 }
1692                         }
1693                 }
1694                 if (maxnode == -1) {
1695                         DEBUG(DEBUG_WARNING,(__location__ " Could not find maxnode. May not be able to serve ip '%s'\n",
1696                                 ctdb_addr_to_str(&tmp_ip->addr)));
1697
1698                         continue;
1699                 }
1700
1701                 /* if the spread between the smallest and largest coverage by
1702                    a node is >=2 we steal one of the ips from the node with
1703                    most coverage to even things out a bit.
1704                    try to do this a limited number of times since we dont
1705                    want to spend too much time balancing the ip coverage.
1706                 */
1707                 if ( (maxnum > minnum+1)
1708                      && (retries < (num_ips + 5)) ){
1709                         struct ctdb_public_ip_list *tmp;
1710
1711                         /* Reassign one of maxnode's VNNs */
1712                         for (tmp=all_ips;tmp;tmp=tmp->next) {
1713                                 if (tmp->pnn == maxnode) {
1714                                         (void)find_takeover_node(ctdb, ipflags, tmp, all_ips);
1715                                         retries++;
1716                                         goto try_again;;
1717                                 }
1718                         }
1719                 }
1720         }
1721 }
1722
1723 static void lcp2_init(struct ctdb_context *tmp_ctx,
1724                       struct ctdb_ipflags *ipflags,
1725                       struct ctdb_public_ip_list *all_ips,
1726                       uint32_t *force_rebalance_nodes,
1727                       uint32_t **lcp2_imbalances,
1728                       bool **rebalance_candidates)
1729 {
1730         int i, numnodes;
1731         struct ctdb_public_ip_list *tmp_ip;
1732
1733         numnodes = talloc_array_length(ipflags);
1734
1735         *rebalance_candidates = talloc_array(tmp_ctx, bool, numnodes);
1736         CTDB_NO_MEMORY_FATAL(tmp_ctx, *rebalance_candidates);
1737         *lcp2_imbalances = talloc_array(tmp_ctx, uint32_t, numnodes);
1738         CTDB_NO_MEMORY_FATAL(tmp_ctx, *lcp2_imbalances);
1739
1740         for (i=0; i<numnodes; i++) {
1741                 (*lcp2_imbalances)[i] = lcp2_imbalance(all_ips, i);
1742                 /* First step: assume all nodes are candidates */
1743                 (*rebalance_candidates)[i] = true;
1744         }
1745
1746         /* 2nd step: if a node has IPs assigned then it must have been
1747          * healthy before, so we remove it from consideration.  This
1748          * is overkill but is all we have because we don't maintain
1749          * state between takeover runs.  An alternative would be to
1750          * keep state and invalidate it every time the recovery master
1751          * changes.
1752          */
1753         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1754                 if (tmp_ip->pnn != -1) {
1755                         (*rebalance_candidates)[tmp_ip->pnn] = false;
1756                 }
1757         }
1758
1759         /* 3rd step: if a node is forced to re-balance then
1760            we allow failback onto the node */
1761         if (force_rebalance_nodes == NULL) {
1762                 return;
1763         }
1764         for (i = 0; i < talloc_array_length(force_rebalance_nodes); i++) {
1765                 uint32_t pnn = force_rebalance_nodes[i];
1766                 if (pnn >= numnodes) {
1767                         DEBUG(DEBUG_ERR,
1768                               (__location__ "unknown node %u\n", pnn));
1769                         continue;
1770                 }
1771
1772                 DEBUG(DEBUG_NOTICE,
1773                       ("Forcing rebalancing of IPs to node %u\n", pnn));
1774                 (*rebalance_candidates)[pnn] = true;
1775         }
1776 }
1777
1778 /* Allocate any unassigned addresses using the LCP2 algorithm to find
1779  * the IP/node combination that will cost the least.
1780  */
1781 static void lcp2_allocate_unassigned(struct ctdb_context *ctdb,
1782                                      struct ctdb_ipflags *ipflags,
1783                                      struct ctdb_public_ip_list *all_ips,
1784                                      uint32_t *lcp2_imbalances)
1785 {
1786         struct ctdb_public_ip_list *tmp_ip;
1787         int dstnode, numnodes;
1788
1789         int minnode;
1790         uint32_t mindsum, dstdsum, dstimbl, minimbl;
1791         struct ctdb_public_ip_list *minip;
1792
1793         bool should_loop = true;
1794         bool have_unassigned = true;
1795
1796         numnodes = talloc_array_length(ipflags);
1797
1798         while (have_unassigned && should_loop) {
1799                 should_loop = false;
1800
1801                 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1802                 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
1803
1804                 minnode = -1;
1805                 mindsum = 0;
1806                 minip = NULL;
1807
1808                 /* loop over each unassigned ip. */
1809                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1810                         if (tmp_ip->pnn != -1) {
1811                                 continue;
1812                         }
1813
1814                         for (dstnode=0; dstnode<numnodes; dstnode++) {
1815                                 /* only check nodes that can actually takeover this ip */
1816                                 if (!can_node_takeover_ip(ctdb, dstnode,
1817                                                           ipflags[dstnode],
1818                                                           tmp_ip)) {
1819                                         /* no it couldnt   so skip to the next node */
1820                                         continue;
1821                                 }
1822
1823                                 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1824                                 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1825                                 DEBUG(DEBUG_DEBUG,(" %s -> %d [+%d]\n",
1826                                                    ctdb_addr_to_str(&(tmp_ip->addr)),
1827                                                    dstnode,
1828                                                    dstimbl - lcp2_imbalances[dstnode]));
1829
1830
1831                                 if ((minnode == -1) || (dstdsum < mindsum)) {
1832                                         minnode = dstnode;
1833                                         minimbl = dstimbl;
1834                                         mindsum = dstdsum;
1835                                         minip = tmp_ip;
1836                                         should_loop = true;
1837                                 }
1838                         }
1839                 }
1840
1841                 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1842
1843                 /* If we found one then assign it to the given node. */
1844                 if (minnode != -1) {
1845                         minip->pnn = minnode;
1846                         lcp2_imbalances[minnode] = minimbl;
1847                         DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
1848                                           ctdb_addr_to_str(&(minip->addr)),
1849                                           minnode,
1850                                           mindsum));
1851                 }
1852
1853                 /* There might be a better way but at least this is clear. */
1854                 have_unassigned = false;
1855                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1856                         if (tmp_ip->pnn == -1) {
1857                                 have_unassigned = true;
1858                         }
1859                 }
1860         }
1861
1862         /* We know if we have an unassigned addresses so we might as
1863          * well optimise.
1864          */
1865         if (have_unassigned) {
1866                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1867                         if (tmp_ip->pnn == -1) {
1868                                 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1869                                                      ctdb_addr_to_str(&tmp_ip->addr)));
1870                         }
1871                 }
1872         }
1873 }
1874
1875 /* LCP2 algorithm for rebalancing the cluster.  Given a candidate node
1876  * to move IPs from, determines the best IP/destination node
1877  * combination to move from the source node.
1878  */
1879 static bool lcp2_failback_candidate(struct ctdb_context *ctdb,
1880                                     struct ctdb_ipflags *ipflags,
1881                                     struct ctdb_public_ip_list *all_ips,
1882                                     int srcnode,
1883                                     uint32_t *lcp2_imbalances,
1884                                     bool *rebalance_candidates)
1885 {
1886         int dstnode, mindstnode, numnodes;
1887         uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
1888         uint32_t minsrcimbl, mindstimbl;
1889         struct ctdb_public_ip_list *minip;
1890         struct ctdb_public_ip_list *tmp_ip;
1891
1892         /* Find an IP and destination node that best reduces imbalance. */
1893         srcimbl = 0;
1894         minip = NULL;
1895         minsrcimbl = 0;
1896         mindstnode = -1;
1897         mindstimbl = 0;
1898
1899         numnodes = talloc_array_length(ipflags);
1900
1901         DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1902         DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n",
1903                            srcnode, lcp2_imbalances[srcnode]));
1904
1905         for (tmp_ip=all_ips; tmp_ip; tmp_ip=tmp_ip->next) {
1906                 /* Only consider addresses on srcnode. */
1907                 if (tmp_ip->pnn != srcnode) {
1908                         continue;
1909                 }
1910
1911                 /* What is this IP address costing the source node? */
1912                 srcdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, srcnode);
1913                 srcimbl = lcp2_imbalances[srcnode] - srcdsum;
1914
1915                 /* Consider this IP address would cost each potential
1916                  * destination node.  Destination nodes are limited to
1917                  * those that are newly healthy, since we don't want
1918                  * to do gratuitous failover of IPs just to make minor
1919                  * balance improvements.
1920                  */
1921                 for (dstnode=0; dstnode<numnodes; dstnode++) {
1922                         if (!rebalance_candidates[dstnode]) {
1923                                 continue;
1924                         }
1925
1926                         /* only check nodes that can actually takeover this ip */
1927                         if (!can_node_takeover_ip(ctdb, dstnode,
1928                                                   ipflags[dstnode], tmp_ip)) {
1929                                 /* no it couldnt   so skip to the next node */
1930                                 continue;
1931                         }
1932
1933                         dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1934                         dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1935                         DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
1936                                            srcnode, -srcdsum,
1937                                            ctdb_addr_to_str(&(tmp_ip->addr)),
1938                                            dstnode, dstdsum));
1939
1940                         if ((dstimbl < lcp2_imbalances[srcnode]) &&
1941                             (dstdsum < srcdsum) &&                      \
1942                             ((mindstnode == -1) ||                              \
1943                              ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
1944
1945                                 minip = tmp_ip;
1946                                 minsrcimbl = srcimbl;
1947                                 mindstnode = dstnode;
1948                                 mindstimbl = dstimbl;
1949                         }
1950                 }
1951         }
1952         DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1953
1954         if (mindstnode != -1) {
1955                 /* We found a move that makes things better... */
1956                 DEBUG(DEBUG_INFO,("%d [%d] -> %s -> %d [+%d]\n",
1957                                   srcnode, minsrcimbl - lcp2_imbalances[srcnode],
1958                                   ctdb_addr_to_str(&(minip->addr)),
1959                                   mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
1960
1961
1962                 lcp2_imbalances[srcnode] = minsrcimbl;
1963                 lcp2_imbalances[mindstnode] = mindstimbl;
1964                 minip->pnn = mindstnode;
1965
1966                 return true;
1967         }
1968
1969         return false;
1970         
1971 }
1972
1973 struct lcp2_imbalance_pnn {
1974         uint32_t imbalance;
1975         int pnn;
1976 };
1977
1978 static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
1979 {
1980         const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
1981         const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
1982
1983         if (lipa->imbalance > lipb->imbalance) {
1984                 return -1;
1985         } else if (lipa->imbalance == lipb->imbalance) {
1986                 return 0;
1987         } else {
1988                 return 1;
1989         }
1990 }
1991
1992 /* LCP2 algorithm for rebalancing the cluster.  This finds the source
1993  * node with the highest LCP2 imbalance, and then determines the best
1994  * IP/destination node combination to move from the source node.
1995  */
1996 static void lcp2_failback(struct ctdb_context *ctdb,
1997                           struct ctdb_ipflags *ipflags,
1998                           struct ctdb_public_ip_list *all_ips,
1999                           uint32_t *lcp2_imbalances,
2000                           bool *rebalance_candidates)
2001 {
2002         int i, numnodes;
2003         struct lcp2_imbalance_pnn * lips;
2004         bool again;
2005
2006         numnodes = talloc_array_length(ipflags);
2007
2008 try_again:
2009         /* Put the imbalances and nodes into an array, sort them and
2010          * iterate through candidates.  Usually the 1st one will be
2011          * used, so this doesn't cost much...
2012          */
2013         DEBUG(DEBUG_DEBUG,("+++++++++++++++++++++++++++++++++++++++++\n"));
2014         DEBUG(DEBUG_DEBUG,("Selecting most imbalanced node from:\n"));
2015         lips = talloc_array(ctdb, struct lcp2_imbalance_pnn, numnodes);
2016         for (i=0; i<numnodes; i++) {
2017                 lips[i].imbalance = lcp2_imbalances[i];
2018                 lips[i].pnn = i;
2019                 DEBUG(DEBUG_DEBUG,(" %d [%d]\n", i, lcp2_imbalances[i]));
2020         }
2021         qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
2022               lcp2_cmp_imbalance_pnn);
2023
2024         again = false;
2025         for (i=0; i<numnodes; i++) {
2026                 /* This means that all nodes had 0 or 1 addresses, so
2027                  * can't be imbalanced.
2028                  */
2029                 if (lips[i].imbalance == 0) {
2030                         break;
2031                 }
2032
2033                 if (lcp2_failback_candidate(ctdb,
2034                                             ipflags,
2035                                             all_ips,
2036                                             lips[i].pnn,
2037                                             lcp2_imbalances,
2038                                             rebalance_candidates)) {
2039                         again = true;
2040                         break;
2041                 }
2042         }
2043
2044         talloc_free(lips);
2045         if (again) {
2046                 goto try_again;
2047         }
2048 }
2049
2050 static void unassign_unsuitable_ips(struct ctdb_context *ctdb,
2051                                     struct ctdb_ipflags *ipflags,
2052                                     struct ctdb_public_ip_list *all_ips)
2053 {
2054         struct ctdb_public_ip_list *tmp_ip;
2055
2056         /* verify that the assigned nodes can serve that public ip
2057            and set it to -1 if not
2058         */
2059         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2060                 if (tmp_ip->pnn == -1) {
2061                         continue;
2062                 }
2063                 if (!can_node_host_ip(ctdb, tmp_ip->pnn,
2064                                       ipflags[tmp_ip->pnn], tmp_ip) != 0) {
2065                         /* this node can not serve this ip. */
2066                         DEBUG(DEBUG_DEBUG,("Unassign IP: %s from %d\n",
2067                                            ctdb_addr_to_str(&(tmp_ip->addr)),
2068                                            tmp_ip->pnn));
2069                         tmp_ip->pnn = -1;
2070                 }
2071         }
2072 }
2073
2074 static void ip_alloc_deterministic_ips(struct ctdb_context *ctdb,
2075                                        struct ctdb_ipflags *ipflags,
2076                                        struct ctdb_public_ip_list *all_ips)
2077 {
2078         struct ctdb_public_ip_list *tmp_ip;
2079         int i, numnodes;
2080
2081         numnodes = talloc_array_length(ipflags);
2082
2083         DEBUG(DEBUG_NOTICE,("Deterministic IPs enabled. Resetting all ip allocations\n"));
2084        /* Allocate IPs to nodes in a modulo fashion so that IPs will
2085         *  always be allocated the same way for a specific set of
2086         *  available/unavailable nodes.
2087         */
2088
2089         for (i=0,tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next,i++) {
2090                 tmp_ip->pnn = i % numnodes;
2091         }
2092
2093         /* IP failback doesn't make sense with deterministic
2094          * IPs, since the modulo step above implicitly fails
2095          * back IPs to their "home" node.
2096          */
2097         if (1 == ctdb->tunable.no_ip_failback) {
2098                 DEBUG(DEBUG_WARNING, ("WARNING: 'NoIPFailback' set but ignored - incompatible with 'DeterministicIPs\n"));
2099         }
2100
2101         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2102
2103         basic_allocate_unassigned(ctdb, ipflags, all_ips);
2104
2105         /* No failback here! */
2106 }
2107
2108 static void ip_alloc_nondeterministic_ips(struct ctdb_context *ctdb,
2109                                           struct ctdb_ipflags *ipflags,
2110                                           struct ctdb_public_ip_list *all_ips)
2111 {
2112         /* This should be pushed down into basic_failback. */
2113         struct ctdb_public_ip_list *tmp_ip;
2114         int num_ips = 0;
2115         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2116                 num_ips++;
2117         }
2118
2119         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2120
2121         basic_allocate_unassigned(ctdb, ipflags, all_ips);
2122
2123         /* If we don't want IPs to fail back then don't rebalance IPs. */
2124         if (1 == ctdb->tunable.no_ip_failback) {
2125                 return;
2126         }
2127
2128         /* Now, try to make sure the ip adresses are evenly distributed
2129            across the nodes.
2130         */
2131         basic_failback(ctdb, ipflags, all_ips, num_ips);
2132 }
2133
2134 static void ip_alloc_lcp2(struct ctdb_context *ctdb,
2135                           struct ctdb_ipflags *ipflags,
2136                           struct ctdb_public_ip_list *all_ips,
2137                           uint32_t *force_rebalance_nodes)
2138 {
2139         uint32_t *lcp2_imbalances;
2140         bool *rebalance_candidates;
2141         int numnodes, num_rebalance_candidates, i;
2142
2143         TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2144
2145         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2146
2147         lcp2_init(tmp_ctx, ipflags, all_ips,force_rebalance_nodes,
2148                   &lcp2_imbalances, &rebalance_candidates);
2149
2150         lcp2_allocate_unassigned(ctdb, ipflags, all_ips, lcp2_imbalances);
2151
2152         /* If we don't want IPs to fail back then don't rebalance IPs. */
2153         if (1 == ctdb->tunable.no_ip_failback) {
2154                 goto finished;
2155         }
2156
2157         /* It is only worth continuing if we have suitable target
2158          * nodes to transfer IPs to.  This check is much cheaper than
2159          * continuing on...
2160          */
2161         numnodes = talloc_array_length(ipflags);
2162         num_rebalance_candidates = 0;
2163         for (i=0; i<numnodes; i++) {
2164                 if (rebalance_candidates[i]) {
2165                         num_rebalance_candidates++;
2166                 }
2167         }
2168         if (num_rebalance_candidates == 0) {
2169                 goto finished;
2170         }
2171
2172         /* Now, try to make sure the ip adresses are evenly distributed
2173            across the nodes.
2174         */
2175         lcp2_failback(ctdb, ipflags, all_ips,
2176                       lcp2_imbalances, rebalance_candidates);
2177
2178 finished:
2179         talloc_free(tmp_ctx);
2180 }
2181
2182 static bool all_nodes_are_disabled(struct ctdb_node_map *nodemap)
2183 {
2184         int i, num_healthy;
2185
2186         /* Count how many completely healthy nodes we have */
2187         num_healthy = 0;
2188         for (i=0;i<nodemap->num;i++) {
2189                 if (!(nodemap->nodes[i].flags & (NODE_FLAGS_INACTIVE|NODE_FLAGS_DISABLED))) {
2190                         num_healthy++;
2191                 }
2192         }
2193
2194         return num_healthy == 0;
2195 }
2196
2197 /* The calculation part of the IP allocation algorithm. */
2198 static void ctdb_takeover_run_core(struct ctdb_context *ctdb,
2199                                    struct ctdb_ipflags *ipflags,
2200                                    struct ctdb_public_ip_list **all_ips_p,
2201                                    uint32_t *force_rebalance_nodes)
2202 {
2203         /* since nodes only know about those public addresses that
2204            can be served by that particular node, no single node has
2205            a full list of all public addresses that exist in the cluster.
2206            Walk over all node structures and create a merged list of
2207            all public addresses that exist in the cluster.
2208
2209            keep the tree of ips around as ctdb->ip_tree
2210         */
2211         *all_ips_p = create_merged_ip_list(ctdb);
2212
2213         if (1 == ctdb->tunable.lcp2_public_ip_assignment) {
2214                 ip_alloc_lcp2(ctdb, ipflags, *all_ips_p, force_rebalance_nodes);
2215         } else if (1 == ctdb->tunable.deterministic_public_ips) {
2216                 ip_alloc_deterministic_ips(ctdb, ipflags, *all_ips_p);
2217         } else {
2218                 ip_alloc_nondeterministic_ips(ctdb, ipflags, *all_ips_p);
2219         }
2220
2221         /* at this point ->pnn is the node which will own each IP
2222            or -1 if there is no node that can cover this ip
2223         */
2224
2225         return;
2226 }
2227
2228 struct get_tunable_callback_data {
2229         const char *tunable;
2230         uint32_t *out;
2231         bool fatal;
2232 };
2233
2234 static void get_tunable_callback(struct ctdb_context *ctdb, uint32_t pnn,
2235                                  int32_t res, TDB_DATA outdata,
2236                                  void *callback)
2237 {
2238         struct get_tunable_callback_data *cd =
2239                 (struct get_tunable_callback_data *)callback;
2240         int size;
2241
2242         if (res != 0) {
2243                 /* Already handled in fail callback */
2244                 return;
2245         }
2246
2247         if (outdata.dsize != sizeof(uint32_t)) {
2248                 DEBUG(DEBUG_ERR,("Wrong size of returned data when reading \"%s\" tunable from node %d. Expected %d bytes but received %d bytes\n",
2249                                  cd->tunable, pnn, (int)sizeof(uint32_t),
2250                                  (int)outdata.dsize));
2251                 cd->fatal = true;
2252                 return;
2253         }
2254
2255         size = talloc_array_length(cd->out);
2256         if (pnn >= size) {
2257                 DEBUG(DEBUG_ERR,("Got %s reply from node %d but nodemap only has %d entries\n",
2258                                  cd->tunable, pnn, size));
2259                 return;
2260         }
2261
2262                 
2263         cd->out[pnn] = *(uint32_t *)outdata.dptr;
2264 }
2265
2266 static void get_tunable_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2267                                        int32_t res, TDB_DATA outdata,
2268                                        void *callback)
2269 {
2270         struct get_tunable_callback_data *cd =
2271                 (struct get_tunable_callback_data *)callback;
2272
2273         switch (res) {
2274         case -ETIME:
2275                 DEBUG(DEBUG_ERR,
2276                       ("Timed out getting tunable \"%s\" from node %d\n",
2277                        cd->tunable, pnn));
2278                 cd->fatal = true;
2279                 break;
2280         case -EINVAL:
2281         case -1:
2282                 DEBUG(DEBUG_WARNING,
2283                       ("Tunable \"%s\" not implemented on node %d\n",
2284                        cd->tunable, pnn));
2285                 break;
2286         default:
2287                 DEBUG(DEBUG_ERR,
2288                       ("Unexpected error getting tunable \"%s\" from node %d\n",
2289                        cd->tunable, pnn));
2290                 cd->fatal = true;
2291         }
2292 }
2293
2294 static uint32_t *get_tunable_from_nodes(struct ctdb_context *ctdb,
2295                                         TALLOC_CTX *tmp_ctx,
2296                                         struct ctdb_node_map *nodemap,
2297                                         const char *tunable,
2298                                         uint32_t default_value)
2299 {
2300         TDB_DATA data;
2301         struct ctdb_control_get_tunable *t;
2302         uint32_t *nodes;
2303         uint32_t *tvals;
2304         struct get_tunable_callback_data callback_data;
2305         int i;
2306
2307         tvals = talloc_array(tmp_ctx, uint32_t, nodemap->num);
2308         CTDB_NO_MEMORY_NULL(ctdb, tvals);
2309         for (i=0; i<nodemap->num; i++) {
2310                 tvals[i] = default_value;
2311         }
2312                 
2313         callback_data.out = tvals;
2314         callback_data.tunable = tunable;
2315         callback_data.fatal = false;
2316
2317         data.dsize = offsetof(struct ctdb_control_get_tunable, name) + strlen(tunable) + 1;
2318         data.dptr  = talloc_size(tmp_ctx, data.dsize);
2319         t = (struct ctdb_control_get_tunable *)data.dptr;
2320         t->length = strlen(tunable)+1;
2321         memcpy(t->name, tunable, t->length);
2322         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2323         if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_TUNABLE,
2324                                       nodes, 0, TAKEOVER_TIMEOUT(),
2325                                       false, data,
2326                                       get_tunable_callback,
2327                                       get_tunable_fail_callback,
2328                                       &callback_data) != 0) {
2329                 if (callback_data.fatal) {
2330                         talloc_free(tvals);
2331                         tvals = NULL;
2332                 }
2333         }
2334         talloc_free(nodes);
2335         talloc_free(data.dptr);
2336
2337         return tvals;
2338 }
2339
2340 struct get_runstate_callback_data {
2341         enum ctdb_runstate *out;
2342         bool fatal;
2343 };
2344
2345 static void get_runstate_callback(struct ctdb_context *ctdb, uint32_t pnn,
2346                                   int32_t res, TDB_DATA outdata,
2347                                   void *callback_data)
2348 {
2349         struct get_runstate_callback_data *cd =
2350                 (struct get_runstate_callback_data *)callback_data;
2351         int size;
2352
2353         if (res != 0) {
2354                 /* Already handled in fail callback */
2355                 return;
2356         }
2357
2358         if (outdata.dsize != sizeof(uint32_t)) {
2359                 DEBUG(DEBUG_ERR,("Wrong size of returned data when getting runstate from node %d. Expected %d bytes but received %d bytes\n",
2360                                  pnn, (int)sizeof(uint32_t),
2361                                  (int)outdata.dsize));
2362                 cd->fatal = true;
2363                 return;
2364         }
2365
2366         size = talloc_array_length(cd->out);
2367         if (pnn >= size) {
2368                 DEBUG(DEBUG_ERR,("Got reply from node %d but nodemap only has %d entries\n",
2369                                  pnn, size));
2370                 return;
2371         }
2372
2373         cd->out[pnn] = (enum ctdb_runstate)*(uint32_t *)outdata.dptr;
2374 }
2375
2376 static void get_runstate_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2377                                        int32_t res, TDB_DATA outdata,
2378                                        void *callback)
2379 {
2380         struct get_runstate_callback_data *cd =
2381                 (struct get_runstate_callback_data *)callback;
2382
2383         switch (res) {
2384         case -ETIME:
2385                 DEBUG(DEBUG_ERR,
2386                       ("Timed out getting runstate from node %d\n", pnn));
2387                 cd->fatal = true;
2388                 break;
2389         default:
2390                 DEBUG(DEBUG_WARNING,
2391                       ("Error getting runstate from node %d - assuming runstates not supported\n",
2392                        pnn));
2393         }
2394 }
2395
2396 static enum ctdb_runstate * get_runstate_from_nodes(struct ctdb_context *ctdb,
2397                                                     TALLOC_CTX *tmp_ctx,
2398                                                     struct ctdb_node_map *nodemap,
2399                                                     enum ctdb_runstate default_value)
2400 {
2401         uint32_t *nodes;
2402         enum ctdb_runstate *rs;
2403         struct get_runstate_callback_data callback_data;
2404         int i;
2405
2406         rs = talloc_array(tmp_ctx, enum ctdb_runstate, nodemap->num);
2407         CTDB_NO_MEMORY_NULL(ctdb, rs);
2408         for (i=0; i<nodemap->num; i++) {
2409                 rs[i] = default_value;
2410         }
2411
2412         callback_data.out = rs;
2413         callback_data.fatal = false;
2414
2415         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2416         if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_RUNSTATE,
2417                                       nodes, 0, TAKEOVER_TIMEOUT(),
2418                                       true, tdb_null,
2419                                       get_runstate_callback,
2420                                       get_runstate_fail_callback,
2421                                       &callback_data) != 0) {
2422                 if (callback_data.fatal) {
2423                         free(rs);
2424                         rs = NULL;
2425                 }
2426         }
2427         talloc_free(nodes);
2428
2429         return rs;
2430 }
2431
2432 /* Set internal flags for IP allocation:
2433  *   Clear ip flags
2434  *   Set NOIPTAKOVER ip flags from per-node NoIPTakeover tunable
2435  *   Set NOIPHOST ip flag for each INACTIVE node
2436  *   if all nodes are disabled:
2437  *     Set NOIPHOST ip flags from per-node NoIPHostOnAllDisabled tunable
2438  *   else
2439  *     Set NOIPHOST ip flags for disabled nodes
2440  */
2441 static struct ctdb_ipflags *
2442 set_ipflags_internal(struct ctdb_context *ctdb,
2443                      TALLOC_CTX *tmp_ctx,
2444                      struct ctdb_node_map *nodemap,
2445                      uint32_t *tval_noiptakeover,
2446                      uint32_t *tval_noiphostonalldisabled,
2447                      enum ctdb_runstate *runstate)
2448 {
2449         int i;
2450         struct ctdb_ipflags *ipflags;
2451
2452         /* Clear IP flags - implicit due to talloc_zero */
2453         ipflags = talloc_zero_array(tmp_ctx, struct ctdb_ipflags, nodemap->num);
2454         CTDB_NO_MEMORY_NULL(ctdb, ipflags);
2455
2456         for (i=0;i<nodemap->num;i++) {
2457                 /* Can not take IPs on node with NoIPTakeover set */
2458                 if (tval_noiptakeover[i] != 0) {
2459                         ipflags[i].noiptakeover = true;
2460                 }
2461
2462                 /* Can not host IPs on node not in RUNNING state */
2463                 if (runstate[i] != CTDB_RUNSTATE_RUNNING) {
2464                         ipflags[i].noiphost = true;
2465                         continue;
2466                 }
2467                 /* Can not host IPs on INACTIVE node */
2468                 if (nodemap->nodes[i].flags & NODE_FLAGS_INACTIVE) {
2469                         ipflags[i].noiphost = true;
2470                 }
2471         }
2472
2473         if (all_nodes_are_disabled(nodemap)) {
2474                 /* If all nodes are disabled, can not host IPs on node
2475                  * with NoIPHostOnAllDisabled set
2476                  */
2477                 for (i=0;i<nodemap->num;i++) {
2478                         if (tval_noiphostonalldisabled[i] != 0) {
2479                                 ipflags[i].noiphost = true;
2480                         }
2481                 }
2482         } else {
2483                 /* If some nodes are not disabled, then can not host
2484                  * IPs on DISABLED node
2485                  */
2486                 for (i=0;i<nodemap->num;i++) {
2487                         if (nodemap->nodes[i].flags & NODE_FLAGS_DISABLED) {
2488                                 ipflags[i].noiphost = true;
2489                         }
2490                 }
2491         }
2492
2493         return ipflags;
2494 }
2495
2496 static struct ctdb_ipflags *set_ipflags(struct ctdb_context *ctdb,
2497                                         TALLOC_CTX *tmp_ctx,
2498                                         struct ctdb_node_map *nodemap)
2499 {
2500         uint32_t *tval_noiptakeover;
2501         uint32_t *tval_noiphostonalldisabled;
2502         struct ctdb_ipflags *ipflags;
2503         enum ctdb_runstate *runstate;
2504
2505
2506         tval_noiptakeover = get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2507                                                    "NoIPTakeover", 0);
2508         if (tval_noiptakeover == NULL) {
2509                 return NULL;
2510         }
2511
2512         tval_noiphostonalldisabled =
2513                 get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2514                                        "NoIPHostOnAllDisabled", 0);
2515         if (tval_noiphostonalldisabled == NULL) {
2516                 /* Caller frees tmp_ctx */
2517                 return NULL;
2518         }
2519
2520         /* Any nodes where CTDB_CONTROL_GET_RUNSTATE is not supported
2521          * will default to CTDB_RUNSTATE_RUNNING.  This ensures
2522          * reasonable behaviour on a mixed cluster during upgrade.
2523          */
2524         runstate = get_runstate_from_nodes(ctdb, tmp_ctx, nodemap,
2525                                            CTDB_RUNSTATE_RUNNING);
2526         if (runstate == NULL) {
2527                 /* Caller frees tmp_ctx */
2528                 return NULL;
2529         }
2530
2531         ipflags = set_ipflags_internal(ctdb, tmp_ctx, nodemap,
2532                                        tval_noiptakeover,
2533                                        tval_noiphostonalldisabled,
2534                                        runstate);
2535
2536         talloc_free(tval_noiptakeover);
2537         talloc_free(tval_noiphostonalldisabled);
2538         talloc_free(runstate);
2539
2540         return ipflags;
2541 }
2542
2543 struct iprealloc_callback_data {
2544         bool *retry_nodes;
2545         int retry_count;
2546         client_async_callback fail_callback;
2547         void *fail_callback_data;
2548         struct ctdb_node_map *nodemap;
2549 };
2550
2551 static void iprealloc_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2552                                         int32_t res, TDB_DATA outdata,
2553                                         void *callback)
2554 {
2555         int numnodes;
2556         struct iprealloc_callback_data *cd =
2557                 (struct iprealloc_callback_data *)callback;
2558
2559         numnodes = talloc_array_length(cd->retry_nodes);
2560         if (pnn > numnodes) {
2561                 DEBUG(DEBUG_ERR,
2562                       ("ipreallocated failure from node %d, "
2563                        "but only %d nodes in nodemap\n",
2564                        pnn, numnodes));
2565                 return;
2566         }
2567
2568         /* Can't run the "ipreallocated" event on a INACTIVE node */
2569         if (cd->nodemap->nodes[pnn].flags & NODE_FLAGS_INACTIVE) {
2570                 DEBUG(DEBUG_WARNING,
2571                       ("ipreallocated failed on inactive node %d, ignoring\n",
2572                        pnn));
2573                 return;
2574         }
2575
2576         switch (res) {
2577         case -ETIME:
2578                 /* If the control timed out then that's a real error,
2579                  * so call the real fail callback
2580                  */
2581                 cd->fail_callback(ctdb, pnn, res, outdata,
2582                                   cd->fail_callback_data);
2583                 break;
2584         default:
2585                 /* If not a timeout then either the ipreallocated
2586                  * eventscript (or some setup) failed.  This might
2587                  * have failed because the IPREALLOCATED control isn't
2588                  * implemented - right now there is no way of knowing
2589                  * because the error codes are all folded down to -1.
2590                  * Consider retrying using EVENTSCRIPT control...
2591                  */
2592                 DEBUG(DEBUG_WARNING,
2593                       ("ipreallocated failure from node %d, flagging retry\n",
2594                        pnn));
2595                 cd->retry_nodes[pnn] = true;
2596                 cd->retry_count++;
2597         }
2598 }
2599
2600 struct takeover_callback_data {
2601         bool *node_failed;
2602         client_async_callback fail_callback;
2603         void *fail_callback_data;
2604         struct ctdb_node_map *nodemap;
2605 };
2606
2607 static void takeover_run_fail_callback(struct ctdb_context *ctdb,
2608                                        uint32_t node_pnn, int32_t res,
2609                                        TDB_DATA outdata, void *callback_data)
2610 {
2611         struct takeover_callback_data *cd =
2612                 talloc_get_type_abort(callback_data,
2613                                       struct takeover_callback_data);
2614         int i;
2615
2616         for (i = 0; i < cd->nodemap->num; i++) {
2617                 if (node_pnn == cd->nodemap->nodes[i].pnn) {
2618                         break;
2619                 }
2620         }
2621
2622         if (i == cd->nodemap->num) {
2623                 DEBUG(DEBUG_ERR, (__location__ " invalid PNN %u\n", node_pnn));
2624                 return;
2625         }
2626
2627         if (!cd->node_failed[i]) {
2628                 cd->node_failed[i] = true;
2629                 cd->fail_callback(ctdb, node_pnn, res, outdata,
2630                                   cd->fail_callback_data);
2631         }
2632 }
2633
2634 /*
2635   make any IP alias changes for public addresses that are necessary 
2636  */
2637 int ctdb_takeover_run(struct ctdb_context *ctdb, struct ctdb_node_map *nodemap,
2638                       uint32_t *force_rebalance_nodes,
2639                       client_async_callback fail_callback, void *callback_data)
2640 {
2641         int i, j, ret;
2642         struct ctdb_public_ip ip;
2643         struct ctdb_public_ipv4 ipv4;
2644         uint32_t *nodes;
2645         struct ctdb_public_ip_list *all_ips, *tmp_ip;
2646         TDB_DATA data;
2647         struct timeval timeout;
2648         struct client_async_data *async_data;
2649         struct ctdb_client_control_state *state;
2650         TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2651         struct ctdb_ipflags *ipflags;
2652         struct takeover_callback_data *takeover_data;
2653         struct iprealloc_callback_data iprealloc_data;
2654         bool *retry_data;
2655
2656         /*
2657          * ip failover is completely disabled, just send out the 
2658          * ipreallocated event.
2659          */
2660         if (ctdb->tunable.disable_ip_failover != 0) {
2661                 goto ipreallocated;
2662         }
2663
2664         ipflags = set_ipflags(ctdb, tmp_ctx, nodemap);
2665         if (ipflags == NULL) {
2666                 DEBUG(DEBUG_ERR,("Failed to set IP flags - aborting takeover run\n"));
2667                 talloc_free(tmp_ctx);
2668                 return -1;
2669         }
2670
2671         ZERO_STRUCT(ip);
2672
2673         /* Do the IP reassignment calculations */
2674         ctdb_takeover_run_core(ctdb, ipflags, &all_ips, force_rebalance_nodes);
2675
2676         /* Now tell all nodes to release any public IPs should not
2677          * host.  This will be a NOOP on nodes that don't currently
2678          * hold the given IP.
2679          */
2680         takeover_data = talloc_zero(tmp_ctx, struct takeover_callback_data);
2681         CTDB_NO_MEMORY_FATAL(ctdb, takeover_data);
2682
2683         takeover_data->node_failed = talloc_zero_array(tmp_ctx,
2684                                                        bool, nodemap->num);
2685         CTDB_NO_MEMORY_FATAL(ctdb, takeover_data->node_failed);
2686         takeover_data->fail_callback = fail_callback;
2687         takeover_data->fail_callback_data = callback_data;
2688         takeover_data->nodemap = nodemap;
2689
2690         async_data = talloc_zero(tmp_ctx, struct client_async_data);
2691         CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2692
2693         async_data->fail_callback = takeover_run_fail_callback;
2694         async_data->callback_data = takeover_data;
2695
2696         for (i=0;i<nodemap->num;i++) {
2697                 /* don't talk to unconnected nodes, but do talk to banned nodes */
2698                 if (nodemap->nodes[i].flags & NODE_FLAGS_DISCONNECTED) {
2699                         continue;
2700                 }
2701
2702                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2703                         if (tmp_ip->pnn == nodemap->nodes[i].pnn) {
2704                                 /* This node should be serving this
2705                                    vnn so dont tell it to release the ip
2706                                 */
2707                                 continue;
2708                         }
2709                         if (tmp_ip->addr.sa.sa_family == AF_INET) {
2710                                 ipv4.pnn = tmp_ip->pnn;
2711                                 ipv4.sin = tmp_ip->addr.ip;
2712
2713                                 timeout = TAKEOVER_TIMEOUT();
2714                                 data.dsize = sizeof(ipv4);
2715                                 data.dptr  = (uint8_t *)&ipv4;
2716                                 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2717                                                 0, CTDB_CONTROL_RELEASE_IPv4, 0,
2718                                                 data, async_data,
2719                                                 &timeout, NULL);
2720                         } else {
2721                                 ip.pnn  = tmp_ip->pnn;
2722                                 ip.addr = tmp_ip->addr;
2723
2724                                 timeout = TAKEOVER_TIMEOUT();
2725                                 data.dsize = sizeof(ip);
2726                                 data.dptr  = (uint8_t *)&ip;
2727                                 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2728                                                 0, CTDB_CONTROL_RELEASE_IP, 0,
2729                                                 data, async_data,
2730                                                 &timeout, NULL);
2731                         }
2732
2733                         if (state == NULL) {
2734                                 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_RELEASE_IP to node %u\n", nodemap->nodes[i].pnn));
2735                                 talloc_free(tmp_ctx);
2736                                 return -1;
2737                         }
2738                 
2739                         ctdb_client_async_add(async_data, state);
2740                 }
2741         }
2742         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2743                 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_RELEASE_IP failed\n"));
2744                 talloc_free(tmp_ctx);
2745                 return -1;
2746         }
2747         talloc_free(async_data);
2748
2749
2750         /* tell all nodes to get their own IPs */
2751         async_data = talloc_zero(tmp_ctx, struct client_async_data);
2752         CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2753
2754         async_data->fail_callback = fail_callback;
2755         async_data->callback_data = callback_data;
2756
2757         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2758                 if (tmp_ip->pnn == -1) {
2759                         /* this IP won't be taken over */
2760                         continue;
2761                 }
2762
2763                 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2764                         ipv4.pnn = tmp_ip->pnn;
2765                         ipv4.sin = tmp_ip->addr.ip;
2766
2767                         timeout = TAKEOVER_TIMEOUT();
2768                         data.dsize = sizeof(ipv4);
2769                         data.dptr  = (uint8_t *)&ipv4;
2770                         state = ctdb_control_send(ctdb, tmp_ip->pnn,
2771                                         0, CTDB_CONTROL_TAKEOVER_IPv4, 0,
2772                                         data, async_data,
2773                                         &timeout, NULL);
2774                 } else {
2775                         ip.pnn  = tmp_ip->pnn;
2776                         ip.addr = tmp_ip->addr;
2777
2778                         timeout = TAKEOVER_TIMEOUT();
2779                         data.dsize = sizeof(ip);
2780                         data.dptr  = (uint8_t *)&ip;
2781                         state = ctdb_control_send(ctdb, tmp_ip->pnn,
2782                                         0, CTDB_CONTROL_TAKEOVER_IP, 0,
2783                                         data, async_data,
2784                                         &timeout, NULL);
2785                 }
2786                 if (state == NULL) {
2787                         DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_TAKEOVER_IP to node %u\n", tmp_ip->pnn));
2788                         talloc_free(tmp_ctx);
2789                         return -1;
2790                 }
2791                 
2792                 ctdb_client_async_add(async_data, state);
2793         }
2794         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2795                 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_TAKEOVER_IP failed\n"));
2796                 talloc_free(tmp_ctx);
2797                 return -1;
2798         }
2799
2800 ipreallocated:
2801         /* 
2802          * Tell all nodes to run eventscripts to process the
2803          * "ipreallocated" event.  This can do a lot of things,
2804          * including restarting services to reconfigure them if public
2805          * IPs have moved.  Once upon a time this event only used to
2806          * update natwg.
2807          */
2808         retry_data = talloc_zero_array(tmp_ctx, bool, nodemap->num);
2809         CTDB_NO_MEMORY_FATAL(ctdb, retry_data);
2810         iprealloc_data.retry_nodes = retry_data;
2811         iprealloc_data.retry_count = 0;
2812         iprealloc_data.fail_callback = fail_callback;
2813         iprealloc_data.fail_callback_data = callback_data;
2814         iprealloc_data.nodemap = nodemap;
2815
2816         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2817         ret = ctdb_client_async_control(ctdb, CTDB_CONTROL_IPREALLOCATED,
2818                                         nodes, 0, TAKEOVER_TIMEOUT(),
2819                                         false, tdb_null,
2820                                         NULL, iprealloc_fail_callback,
2821                                         &iprealloc_data);
2822         if (ret != 0) {
2823                 /* If the control failed then we should retry to any
2824                  * nodes flagged by iprealloc_fail_callback using the
2825                  * EVENTSCRIPT control.  This is a best-effort at
2826                  * backward compatiblity when running a mixed cluster
2827                  * where some nodes have not yet been upgraded to
2828                  * support the IPREALLOCATED control.
2829                  */
2830                 DEBUG(DEBUG_WARNING,
2831                       ("Retry ipreallocated to some nodes using eventscript control\n"));
2832
2833                 nodes = talloc_array(tmp_ctx, uint32_t,
2834                                      iprealloc_data.retry_count);
2835                 CTDB_NO_MEMORY_FATAL(ctdb, nodes);
2836
2837                 j = 0;
2838                 for (i=0; i<nodemap->num; i++) {
2839                         if (iprealloc_data.retry_nodes[i]) {
2840                                 nodes[j] = i;
2841                                 j++;
2842                         }
2843                 }
2844
2845                 data.dptr  = discard_const("ipreallocated");
2846                 data.dsize = strlen((char *)data.dptr) + 1; 
2847                 ret = ctdb_client_async_control(ctdb,
2848                                                 CTDB_CONTROL_RUN_EVENTSCRIPTS,
2849                                                 nodes, 0, TAKEOVER_TIMEOUT(),
2850                                                 false, data,
2851                                                 NULL, fail_callback,
2852                                                 callback_data);
2853                 if (ret != 0) {
2854                         DEBUG(DEBUG_ERR, (__location__ " failed to send control to run eventscripts with \"ipreallocated\"\n"));
2855                 }
2856         }
2857
2858         talloc_free(tmp_ctx);
2859         return ret;
2860 }
2861
2862
2863 /*
2864   destroy a ctdb_client_ip structure
2865  */
2866 static int ctdb_client_ip_destructor(struct ctdb_client_ip *ip)
2867 {
2868         DEBUG(DEBUG_DEBUG,("destroying client tcp for %s:%u (client_id %u)\n",
2869                 ctdb_addr_to_str(&ip->addr),
2870                 ntohs(ip->addr.ip.sin_port),
2871                 ip->client_id));
2872
2873         DLIST_REMOVE(ip->ctdb->client_ip_list, ip);
2874         return 0;
2875 }
2876
2877 /*
2878   called by a client to inform us of a TCP connection that it is managing
2879   that should tickled with an ACK when IP takeover is done
2880   we handle both the old ipv4 style of packets as well as the new ipv4/6
2881   pdus.
2882  */
2883 int32_t ctdb_control_tcp_client(struct ctdb_context *ctdb, uint32_t client_id,
2884                                 TDB_DATA indata)
2885 {
2886         struct ctdb_client *client = ctdb_reqid_find(ctdb, client_id, struct ctdb_client);
2887         struct ctdb_control_tcp *old_addr = NULL;
2888         struct ctdb_control_tcp_addr new_addr;
2889         struct ctdb_control_tcp_addr *tcp_sock = NULL;
2890         struct ctdb_tcp_list *tcp;
2891         struct ctdb_tcp_connection t;
2892         int ret;
2893         TDB_DATA data;
2894         struct ctdb_client_ip *ip;
2895         struct ctdb_vnn *vnn;
2896         ctdb_sock_addr addr;
2897
2898         switch (indata.dsize) {
2899         case sizeof(struct ctdb_control_tcp):
2900                 old_addr = (struct ctdb_control_tcp *)indata.dptr;
2901                 ZERO_STRUCT(new_addr);
2902                 tcp_sock = &new_addr;
2903                 tcp_sock->src.ip  = old_addr->src;
2904                 tcp_sock->dest.ip = old_addr->dest;
2905                 break;
2906         case sizeof(struct ctdb_control_tcp_addr):
2907                 tcp_sock = (struct ctdb_control_tcp_addr *)indata.dptr;
2908                 break;
2909         default:
2910                 DEBUG(DEBUG_ERR,(__location__ " Invalid data structure passed "
2911                                  "to ctdb_control_tcp_client. size was %d but "
2912                                  "only allowed sizes are %lu and %lu\n",
2913                                  (int)indata.dsize,
2914                                  (long unsigned)sizeof(struct ctdb_control_tcp),
2915                                  (long unsigned)sizeof(struct ctdb_control_tcp_addr)));
2916                 return -1;
2917         }
2918
2919         addr = tcp_sock->src;
2920         ctdb_canonicalize_ip(&addr,  &tcp_sock->src);
2921         addr = tcp_sock->dest;
2922         ctdb_canonicalize_ip(&addr, &tcp_sock->dest);
2923
2924         ZERO_STRUCT(addr);
2925         memcpy(&addr, &tcp_sock->dest, sizeof(addr));
2926         vnn = find_public_ip_vnn(ctdb, &addr);
2927         if (vnn == NULL) {
2928                 switch (addr.sa.sa_family) {
2929                 case AF_INET:
2930                         if (ntohl(addr.ip.sin_addr.s_addr) != INADDR_LOOPBACK) {
2931                                 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public address.\n", 
2932                                         ctdb_addr_to_str(&addr)));
2933                         }
2934                         break;
2935                 case AF_INET6:
2936                         DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public ipv6 address.\n", 
2937                                 ctdb_addr_to_str(&addr)));
2938                         break;
2939                 default:
2940                         DEBUG(DEBUG_ERR,(__location__ " Unknown family type %d\n", addr.sa.sa_family));
2941                 }
2942
2943                 return 0;
2944         }
2945
2946         if (vnn->pnn != ctdb->pnn) {
2947                 DEBUG(DEBUG_ERR,("Attempt to register tcp client for IP %s we don't hold - failing (client_id %u pid %u)\n",
2948                         ctdb_addr_to_str(&addr),
2949                         client_id, client->pid));
2950                 /* failing this call will tell smbd to die */
2951                 return -1;
2952         }
2953
2954         ip = talloc(client, struct ctdb_client_ip);
2955         CTDB_NO_MEMORY(ctdb, ip);
2956
2957         ip->ctdb      = ctdb;
2958         ip->addr      = addr;
2959         ip->client_id = client_id;
2960         talloc_set_destructor(ip, ctdb_client_ip_destructor);
2961         DLIST_ADD(ctdb->client_ip_list, ip);
2962
2963         tcp = talloc(client, struct ctdb_tcp_list);
2964         CTDB_NO_MEMORY(ctdb, tcp);
2965
2966         tcp->connection.src_addr = tcp_sock->src;
2967         tcp->connection.dst_addr = tcp_sock->dest;
2968
2969         DLIST_ADD(client->tcp_list, tcp);
2970
2971         t.src_addr = tcp_sock->src;
2972         t.dst_addr = tcp_sock->dest;
2973
2974         data.dptr = (uint8_t *)&t;
2975         data.dsize = sizeof(t);
2976
2977         switch (addr.sa.sa_family) {
2978         case AF_INET:
2979                 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2980                         (unsigned)ntohs(tcp_sock->dest.ip.sin_port), 
2981                         ctdb_addr_to_str(&tcp_sock->src),
2982                         (unsigned)ntohs(tcp_sock->src.ip.sin_port), client_id, client->pid));
2983                 break;
2984         case AF_INET6:
2985                 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2986                         (unsigned)ntohs(tcp_sock->dest.ip6.sin6_port), 
2987                         ctdb_addr_to_str(&tcp_sock->src),
2988                         (unsigned)ntohs(tcp_sock->src.ip6.sin6_port), client_id, client->pid));
2989                 break;
2990         default:
2991                 DEBUG(DEBUG_ERR,(__location__ " Unknown family %d\n", addr.sa.sa_family));
2992         }
2993
2994
2995         /* tell all nodes about this tcp connection */
2996         ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0, 
2997                                        CTDB_CONTROL_TCP_ADD,
2998                                        0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
2999         if (ret != 0) {
3000                 DEBUG(DEBUG_ERR,(__location__ " Failed to send CTDB_CONTROL_TCP_ADD\n"));
3001                 return -1;
3002         }
3003
3004         return 0;
3005 }
3006
3007 /*
3008   find a tcp address on a list
3009  */
3010 static struct ctdb_tcp_connection *ctdb_tcp_find(struct ctdb_tcp_array *array, 
3011                                            struct ctdb_tcp_connection *tcp)
3012 {
3013         int i;
3014
3015         if (array == NULL) {
3016                 return NULL;
3017         }
3018
3019         for (i=0;i<array->num;i++) {
3020                 if (ctdb_same_sockaddr(&array->connections[i].src_addr, &tcp->src_addr) &&
3021                     ctdb_same_sockaddr(&array->connections[i].dst_addr, &tcp->dst_addr)) {
3022                         return &array->connections[i];
3023                 }
3024         }
3025         return NULL;
3026 }
3027
3028
3029
3030 /*
3031   called by a daemon to inform us of a TCP connection that one of its
3032   clients managing that should tickled with an ACK when IP takeover is
3033   done
3034  */
3035 int32_t ctdb_control_tcp_add(struct ctdb_context *ctdb, TDB_DATA indata, bool tcp_update_needed)
3036 {
3037         struct ctdb_tcp_connection *p = (struct ctdb_tcp_connection *)indata.dptr;
3038         struct ctdb_tcp_array *tcparray;
3039         struct ctdb_tcp_connection tcp;
3040         struct ctdb_vnn *vnn;
3041
3042         vnn = find_public_ip_vnn(ctdb, &p->dst_addr);
3043         if (vnn == NULL) {
3044                 DEBUG(DEBUG_INFO,(__location__ " got TCP_ADD control for an address which is not a public address '%s'\n",
3045                         ctdb_addr_to_str(&p->dst_addr)));
3046
3047                 return -1;
3048         }
3049
3050
3051         tcparray = vnn->tcp_array;
3052
3053         /* If this is the first tickle */
3054         if (tcparray == NULL) {
3055                 tcparray = talloc(vnn, struct ctdb_tcp_array);
3056                 CTDB_NO_MEMORY(ctdb, tcparray);
3057                 vnn->tcp_array = tcparray;
3058
3059                 tcparray->num = 0;
3060                 tcparray->connections = talloc_size(tcparray, sizeof(struct ctdb_tcp_connection));
3061                 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3062
3063                 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3064                 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3065                 tcparray->num++;
3066
3067                 if (tcp_update_needed) {
3068                         vnn->tcp_update_needed = true;
3069                 }
3070                 return 0;
3071         }
3072
3073
3074         /* Do we already have this tickle ?*/
3075         tcp.src_addr = p->src_addr;
3076         tcp.dst_addr = p->dst_addr;
3077         if (ctdb_tcp_find(tcparray, &tcp) != NULL) {
3078                 DEBUG(DEBUG_DEBUG,("Already had tickle info for %s:%u for vnn:%u\n",
3079                         ctdb_addr_to_str(&tcp.dst_addr),
3080                         ntohs(tcp.dst_addr.ip.sin_port),
3081                         vnn->pnn));
3082                 return 0;
3083         }
3084
3085         /* A new tickle, we must add it to the array */
3086         tcparray->connections = talloc_realloc(tcparray, tcparray->connections,
3087                                         struct ctdb_tcp_connection,
3088                                         tcparray->num+1);
3089         CTDB_NO_MEMORY(ctdb, tcparray->connections);
3090
3091         tcparray->connections[tcparray->num].src_addr = p->src_addr;
3092         tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3093         tcparray->num++;
3094
3095         DEBUG(DEBUG_INFO,("Added tickle info for %s:%u from vnn %u\n",
3096                 ctdb_addr_to_str(&tcp.dst_addr),
3097                 ntohs(tcp.dst_addr.ip.sin_port),
3098                 vnn->pnn));
3099
3100         if (tcp_update_needed) {
3101                 vnn->tcp_update_needed = true;
3102         }
3103
3104         return 0;
3105 }
3106
3107
3108 /*
3109   called by a daemon to inform us of a TCP connection that one of its
3110   clients managing that should tickled with an ACK when IP takeover is
3111   done
3112  */
3113 static void ctdb_remove_tcp_connection(struct ctdb_context *ctdb, struct ctdb_tcp_connection *conn)
3114 {
3115         struct ctdb_tcp_connection *tcpp;
3116         struct ctdb_vnn *vnn = find_public_ip_vnn(ctdb, &conn->dst_addr);
3117
3118         if (vnn == NULL) {
3119                 DEBUG(DEBUG_ERR,(__location__ " unable to find public address %s\n",
3120                         ctdb_addr_to_str(&conn->dst_addr)));
3121                 return;
3122         }
3123
3124         /* if the array is empty we cant remove it
3125            and we dont need to do anything
3126          */
3127         if (vnn->tcp_array == NULL) {
3128                 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist (array is empty) %s:%u\n",
3129                         ctdb_addr_to_str(&conn->dst_addr),
3130                         ntohs(conn->dst_addr.ip.sin_port)));
3131                 return;
3132         }
3133
3134
3135         /* See if we know this connection
3136            if we dont know this connection  then we dont need to do anything
3137          */
3138         tcpp = ctdb_tcp_find(vnn->tcp_array, conn);
3139         if (tcpp == NULL) {
3140                 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist %s:%u\n",
3141                         ctdb_addr_to_str(&conn->dst_addr),
3142                         ntohs(conn->dst_addr.ip.sin_port)));
3143                 return;
3144         }
3145
3146
3147         /* We need to remove this entry from the array.
3148            Instead of allocating a new array and copying data to it
3149            we cheat and just copy the last entry in the existing array
3150            to the entry that is to be removed and just shring the 
3151            ->num field
3152          */
3153         *tcpp = vnn->tcp_array->connections[vnn->tcp_array->num - 1];
3154         vnn->tcp_array->num--;
3155
3156         /* If we deleted the last entry we also need to remove the entire array
3157          */
3158         if (vnn->tcp_array->num == 0) {
3159                 talloc_free(vnn->tcp_array);
3160                 vnn->tcp_array = NULL;
3161         }               
3162
3163         vnn->tcp_update_needed = true;
3164
3165         DEBUG(DEBUG_INFO,("Removed tickle info for %s:%u\n",
3166                 ctdb_addr_to_str(&conn->src_addr),
3167                 ntohs(conn->src_addr.ip.sin_port)));
3168 }
3169
3170
3171 /*
3172   called by a daemon to inform us of a TCP connection that one of its
3173   clients used are no longer needed in the tickle database
3174  */
3175 int32_t ctdb_control_tcp_remove(struct ctdb_context *ctdb, TDB_DATA indata)
3176 {
3177         struct ctdb_tcp_connection *conn = (struct ctdb_tcp_connection *)indata.dptr;
3178
3179         ctdb_remove_tcp_connection(ctdb, conn);
3180
3181         return 0;
3182 }
3183
3184
3185 /*
3186   Called when another daemon starts - caises all tickles for all
3187   public addresses we are serving to be sent to the new node on the
3188   next check.  This actually causes the next scheduled call to
3189   tdb_update_tcp_tickles() to update all nodes.  This is simple and
3190   doesn't require careful error handling.
3191  */
3192 int32_t ctdb_control_startup(struct ctdb_context *ctdb, uint32_t pnn)
3193 {
3194         struct ctdb_vnn *vnn;
3195
3196         for (vnn = ctdb->vnn; vnn != NULL; vnn = vnn->next) {
3197                 vnn->tcp_update_needed = true;
3198         }
3199
3200         return 0;
3201 }
3202
3203
3204 /*
3205   called when a client structure goes away - hook to remove
3206   elements from the tcp_list in all daemons
3207  */
3208 void ctdb_takeover_client_destructor_hook(struct ctdb_client *client)
3209 {
3210         while (client->tcp_list) {
3211                 struct ctdb_tcp_list *tcp = client->tcp_list;
3212                 DLIST_REMOVE(client->tcp_list, tcp);
3213                 ctdb_remove_tcp_connection(client->ctdb, &tcp->connection);
3214         }
3215 }
3216
3217
3218 /*
3219   release all IPs on shutdown
3220  */
3221 void ctdb_release_all_ips(struct ctdb_context *ctdb)
3222 {
3223         struct ctdb_vnn *vnn;
3224         int count = 0;
3225
3226         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3227                 if (!ctdb_sys_have_ip(&vnn->public_address)) {
3228                         ctdb_vnn_unassign_iface(ctdb, vnn);
3229                         continue;
3230                 }
3231                 if (!vnn->iface) {
3232                         continue;
3233                 }
3234
3235                 DEBUG(DEBUG_INFO,("Release of IP %s/%u on interface %s node:-1\n",
3236                                     ctdb_addr_to_str(&vnn->public_address),
3237                                     vnn->public_netmask_bits,
3238                                     ctdb_vnn_iface_string(vnn)));
3239
3240                 ctdb_event_script_args(ctdb, CTDB_EVENT_RELEASE_IP, "%s %s %u",
3241                                   ctdb_vnn_iface_string(vnn),
3242                                   ctdb_addr_to_str(&vnn->public_address),
3243                                   vnn->public_netmask_bits);
3244                 release_kill_clients(ctdb, &vnn->public_address);
3245                 ctdb_vnn_unassign_iface(ctdb, vnn);
3246                 count++;
3247         }
3248
3249         DEBUG(DEBUG_NOTICE,(__location__ " Released %d public IPs\n", count));
3250 }
3251
3252
3253 /*
3254   get list of public IPs
3255  */
3256 int32_t ctdb_control_get_public_ips(struct ctdb_context *ctdb, 
3257                                     struct ctdb_req_control *c, TDB_DATA *outdata)
3258 {
3259         int i, num, len;
3260         struct ctdb_all_public_ips *ips;
3261         struct ctdb_vnn *vnn;
3262         bool only_available = false;
3263
3264         if (c->flags & CTDB_PUBLIC_IP_FLAGS_ONLY_AVAILABLE) {
3265                 only_available = true;
3266         }
3267
3268         /* count how many public ip structures we have */
3269         num = 0;
3270         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3271                 num++;
3272         }
3273
3274         len = offsetof(struct ctdb_all_public_ips, ips) + 
3275                 num*sizeof(struct ctdb_public_ip);
3276         ips = talloc_zero_size(outdata, len);
3277         CTDB_NO_MEMORY(ctdb, ips);
3278
3279         i = 0;
3280         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3281                 if (only_available && !ctdb_vnn_available(ctdb, vnn)) {
3282                         continue;
3283                 }
3284                 ips->ips[i].pnn  = vnn->pnn;
3285                 ips->ips[i].addr = vnn->public_address;
3286                 i++;
3287         }
3288         ips->num = i;
3289         len = offsetof(struct ctdb_all_public_ips, ips) +
3290                 i*sizeof(struct ctdb_public_ip);
3291
3292         outdata->dsize = len;
3293         outdata->dptr  = (uint8_t *)ips;
3294
3295         return 0;
3296 }
3297
3298
3299 /*
3300   get list of public IPs, old ipv4 style.  only returns ipv4 addresses
3301  */
3302 int32_t ctdb_control_get_public_ipsv4(struct ctdb_context *ctdb, 
3303                                     struct ctdb_req_control *c, TDB_DATA *outdata)
3304 {
3305         int i, num, len;
3306         struct ctdb_all_public_ipsv4 *ips;
3307         struct ctdb_vnn *vnn;
3308
3309         /* count how many public ip structures we have */
3310         num = 0;
3311         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3312                 if (vnn->public_address.sa.sa_family != AF_INET) {
3313                         continue;
3314                 }
3315                 num++;
3316         }
3317
3318         len = offsetof(struct ctdb_all_public_ipsv4, ips) + 
3319                 num*sizeof(struct ctdb_public_ipv4);
3320         ips = talloc_zero_size(outdata, len);
3321         CTDB_NO_MEMORY(ctdb, ips);
3322
3323         outdata->dsize = len;
3324         outdata->dptr  = (uint8_t *)ips;
3325
3326         ips->num = num;
3327         i = 0;
3328         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3329                 if (vnn->public_address.sa.sa_family != AF_INET) {
3330                         continue;
3331                 }
3332                 ips->ips[i].pnn = vnn->pnn;
3333                 ips->ips[i].sin = vnn->public_address.ip;
3334                 i++;
3335         }
3336
3337         return 0;
3338 }
3339
3340 int32_t ctdb_control_get_public_ip_info(struct ctdb_context *ctdb,
3341                                         struct ctdb_req_control *c,
3342                                         TDB_DATA indata,
3343                                         TDB_DATA *outdata)
3344 {
3345         int i, num, len;
3346         ctdb_sock_addr *addr;
3347         struct ctdb_control_public_ip_info *info;
3348         struct ctdb_vnn *vnn;
3349
3350         addr = (ctdb_sock_addr *)indata.dptr;
3351
3352         vnn = find_public_ip_vnn(ctdb, addr);
3353         if (vnn == NULL) {
3354                 /* if it is not a public ip   it could be our 'single ip' */
3355                 if (ctdb->single_ip_vnn) {
3356                         if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, addr)) {
3357                                 vnn = ctdb->single_ip_vnn;
3358                         }
3359                 }
3360         }
3361         if (vnn == NULL) {
3362                 DEBUG(DEBUG_ERR,(__location__ " Could not get public ip info, "
3363                                  "'%s'not a public address\n",
3364                                  ctdb_addr_to_str(addr)));
3365                 return -1;
3366         }
3367
3368         /* count how many public ip structures we have */
3369         num = 0;
3370         for (;vnn->ifaces[num];) {
3371                 num++;
3372         }
3373
3374         len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3375                 num*sizeof(struct ctdb_control_iface_info);
3376         info = talloc_zero_size(outdata, len);
3377         CTDB_NO_MEMORY(ctdb, info);
3378
3379         info->ip.addr = vnn->public_address;
3380         info->ip.pnn = vnn->pnn;
3381         info->active_idx = 0xFFFFFFFF;
3382
3383         for (i=0; vnn->ifaces[i]; i++) {
3384                 struct ctdb_iface *cur;
3385
3386                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
3387                 if (cur == NULL) {
3388                         DEBUG(DEBUG_CRIT, (__location__ " internal error iface[%s] unknown\n",
3389                                            vnn->ifaces[i]));
3390                         return -1;
3391                 }
3392                 if (vnn->iface == cur) {
3393                         info->active_idx = i;
3394                 }
3395                 strncpy(info->ifaces[i].name, cur->name, sizeof(info->ifaces[i].name)-1);
3396                 info->ifaces[i].link_state = cur->link_up;
3397                 info->ifaces[i].references = cur->references;
3398         }
3399         info->num = i;
3400         len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3401                 i*sizeof(struct ctdb_control_iface_info);
3402
3403         outdata->dsize = len;
3404         outdata->dptr  = (uint8_t *)info;
3405
3406         return 0;
3407 }
3408
3409 int32_t ctdb_control_get_ifaces(struct ctdb_context *ctdb,
3410                                 struct ctdb_req_control *c,
3411                                 TDB_DATA *outdata)
3412 {
3413         int i, num, len;
3414         struct ctdb_control_get_ifaces *ifaces;
3415         struct ctdb_iface *cur;
3416
3417         /* count how many public ip structures we have */
3418         num = 0;
3419         for (cur=ctdb->ifaces;cur;cur=cur->next) {
3420                 num++;
3421         }
3422
3423         len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3424                 num*sizeof(struct ctdb_control_iface_info);
3425         ifaces = talloc_zero_size(outdata, len);
3426         CTDB_NO_MEMORY(ctdb, ifaces);
3427
3428         i = 0;
3429         for (cur=ctdb->ifaces;cur;cur=cur->next) {
3430                 strcpy(ifaces->ifaces[i].name, cur->name);
3431                 ifaces->ifaces[i].link_state = cur->link_up;
3432                 ifaces->ifaces[i].references = cur->references;
3433                 i++;
3434         }
3435         ifaces->num = i;
3436         len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3437                 i*sizeof(struct ctdb_control_iface_info);
3438
3439         outdata->dsize = len;
3440         outdata->dptr  = (uint8_t *)ifaces;
3441
3442         return 0;
3443 }
3444
3445 int32_t ctdb_control_set_iface_link(struct ctdb_context *ctdb,
3446                                     struct ctdb_req_control *c,
3447                                     TDB_DATA indata)
3448 {
3449         struct ctdb_control_iface_info *info;
3450         struct ctdb_iface *iface;
3451         bool link_up = false;
3452
3453         info = (struct ctdb_control_iface_info *)indata.dptr;
3454
3455         if (info->name[CTDB_IFACE_SIZE] != '\0') {
3456                 int len = strnlen(info->name, CTDB_IFACE_SIZE);
3457                 DEBUG(DEBUG_ERR, (__location__ " name[%*.*s] not terminated\n",
3458                                   len, len, info->name));
3459                 return -1;
3460         }
3461
3462         switch (info->link_state) {
3463         case 0:
3464                 link_up = false;
3465                 break;
3466         case 1:
3467                 link_up = true;
3468                 break;
3469         default:
3470                 DEBUG(DEBUG_ERR, (__location__ " link_state[%u] invalid\n",
3471                                   (unsigned int)info->link_state));
3472                 return -1;
3473         }
3474
3475         if (info->references != 0) {
3476                 DEBUG(DEBUG_ERR, (__location__ " references[%u] should be 0\n",
3477                                   (unsigned int)info->references));
3478                 return -1;
3479         }
3480
3481         iface = ctdb_find_iface(ctdb, info->name);
3482         if (iface == NULL) {
3483                 return -1;
3484         }
3485
3486         if (link_up == iface->link_up) {
3487                 return 0;
3488         }
3489
3490         DEBUG(iface->link_up?DEBUG_ERR:DEBUG_NOTICE,
3491               ("iface[%s] has changed it's link status %s => %s\n",
3492                iface->name,
3493                iface->link_up?"up":"down",
3494                link_up?"up":"down"));
3495
3496         iface->link_up = link_up;
3497         return 0;
3498 }
3499
3500
3501 /* 
3502    structure containing the listening socket and the list of tcp connections
3503    that the ctdb daemon is to kill
3504 */
3505 struct ctdb_kill_tcp {
3506         struct ctdb_vnn *vnn;
3507         struct ctdb_context *ctdb;
3508         int capture_fd;
3509         struct fd_event *fde;
3510         trbt_tree_t *connections;
3511         void *private_data;
3512 };
3513
3514 /*
3515   a tcp connection that is to be killed
3516  */
3517 struct ctdb_killtcp_con {
3518         ctdb_sock_addr src_addr;
3519         ctdb_sock_addr dst_addr;
3520         int count;
3521         struct ctdb_kill_tcp *killtcp;
3522 };
3523
3524 /* this function is used to create a key to represent this socketpair
3525    in the killtcp tree.
3526    this key is used to insert and lookup matching socketpairs that are
3527    to be tickled and RST
3528 */
3529 #define KILLTCP_KEYLEN  10
3530 static uint32_t *killtcp_key(ctdb_sock_addr *src, ctdb_sock_addr *dst)
3531 {
3532         static uint32_t key[KILLTCP_KEYLEN];
3533
3534         bzero(key, sizeof(key));
3535
3536         if (src->sa.sa_family != dst->sa.sa_family) {
3537                 DEBUG(DEBUG_ERR, (__location__ " ERROR, different families passed :%u vs %u\n", src->sa.sa_family, dst->sa.sa_family));
3538                 return key;
3539         }
3540         
3541         switch (src->sa.sa_family) {
3542         case AF_INET:
3543                 key[0]  = dst->ip.sin_addr.s_addr;
3544                 key[1]  = src->ip.sin_addr.s_addr;
3545                 key[2]  = dst->ip.sin_port;
3546                 key[3]  = src->ip.sin_port;
3547                 break;
3548         case AF_INET6: {
3549                 uint32_t *dst6_addr32 =
3550                         (uint32_t *)&(dst->ip6.sin6_addr.s6_addr);
3551                 uint32_t *src6_addr32 =
3552                         (uint32_t *)&(src->ip6.sin6_addr.s6_addr);
3553                 key[0]  = dst6_addr32[3];
3554                 key[1]  = src6_addr32[3];
3555                 key[2]  = dst6_addr32[2];
3556                 key[3]  = src6_addr32[2];
3557                 key[4]  = dst6_addr32[1];
3558                 key[5]  = src6_addr32[1];
3559                 key[6]  = dst6_addr32[0];
3560                 key[7]  = src6_addr32[0];
3561                 key[8]  = dst->ip6.sin6_port;
3562                 key[9]  = src->ip6.sin6_port;
3563                 break;
3564         }
3565         default:
3566                 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", src->sa.sa_family));
3567                 return key;
3568         }
3569
3570         return key;
3571 }
3572
3573 /*
3574   called when we get a read event on the raw socket
3575  */
3576 static void capture_tcp_handler(struct event_context *ev, struct fd_event *fde, 
3577                                 uint16_t flags, void *private_data)
3578 {
3579         struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3580         struct ctdb_killtcp_con *con;
3581         ctdb_sock_addr src, dst;
3582         uint32_t ack_seq, seq;
3583
3584         if (!(flags & EVENT_FD_READ)) {
3585                 return;
3586         }
3587
3588         if (ctdb_sys_read_tcp_packet(killtcp->capture_fd,
3589                                 killtcp->private_data,
3590                                 &src, &dst,
3591                                 &ack_seq, &seq) != 0) {
3592                 /* probably a non-tcp ACK packet */
3593                 return;
3594         }
3595
3596         /* check if we have this guy in our list of connections
3597            to kill
3598         */
3599         con = trbt_lookuparray32(killtcp->connections, 
3600                         KILLTCP_KEYLEN, killtcp_key(&src, &dst));
3601         if (con == NULL) {
3602                 /* no this was some other packet we can just ignore */
3603                 return;
3604         }
3605
3606         /* This one has been tickled !
3607            now reset him and remove him from the list.
3608          */
3609         DEBUG(DEBUG_INFO, ("sending a tcp reset to kill connection :%d -> %s:%d\n",
3610                 ntohs(con->dst_addr.ip.sin_port),
3611                 ctdb_addr_to_str(&con->src_addr),
3612                 ntohs(con->src_addr.ip.sin_port)));
3613
3614         ctdb_sys_send_tcp(&con->dst_addr, &con->src_addr, ack_seq, seq, 1);
3615         talloc_free(con);
3616 }
3617
3618
3619 /* when traversing the list of all tcp connections to send tickle acks to
3620    (so that we can capture the ack coming back and kill the connection
3621     by a RST)
3622    this callback is called for each connection we are currently trying to kill
3623 */
3624 static int tickle_connection_traverse(void *param, void *data)
3625 {
3626         struct ctdb_killtcp_con *con = talloc_get_type(data, struct ctdb_killtcp_con);
3627
3628         /* have tried too many times, just give up */
3629         if (con->count >= 5) {
3630                 /* can't delete in traverse: reparent to delete_cons */
3631                 talloc_steal(param, con);
3632                 return 0;
3633         }
3634
3635         /* othervise, try tickling it again */
3636         con->count++;
3637         ctdb_sys_send_tcp(
3638                 (ctdb_sock_addr *)&con->dst_addr,
3639                 (ctdb_sock_addr *)&con->src_addr,
3640                 0, 0, 0);
3641         return 0;
3642 }
3643
3644
3645 /* 
3646    called every second until all sentenced connections have been reset
3647  */
3648 static void ctdb_tickle_sentenced_connections(struct event_context *ev, struct timed_event *te, 
3649                                               struct timeval t, void *private_data)
3650 {
3651         struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3652         void *delete_cons = talloc_new(NULL);
3653
3654         /* loop over all connections sending tickle ACKs */
3655         trbt_traversearray32(killtcp->connections, KILLTCP_KEYLEN, tickle_connection_traverse, delete_cons);
3656
3657         /* now we've finished traverse, it's safe to do deletion. */
3658         talloc_free(delete_cons);
3659
3660         /* If there are no more connections to kill we can remove the
3661            entire killtcp structure
3662          */
3663         if ( (killtcp->connections == NULL) || 
3664              (killtcp->connections->root == NULL) ) {
3665                 talloc_free(killtcp);
3666                 return;
3667         }
3668
3669         /* try tickling them again in a seconds time
3670          */
3671         event_add_timed(killtcp->ctdb->ev, killtcp, timeval_current_ofs(1, 0), 
3672                         ctdb_tickle_sentenced_connections, killtcp);
3673 }
3674
3675 /*
3676   destroy the killtcp structure
3677  */
3678 static int ctdb_killtcp_destructor(struct ctdb_kill_tcp *killtcp)
3679 {
3680         struct ctdb_vnn *tmpvnn;
3681
3682         /* verify that this vnn is still active */
3683         for (tmpvnn = killtcp->ctdb->vnn; tmpvnn; tmpvnn = tmpvnn->next) {
3684                 if (tmpvnn == killtcp->vnn) {
3685                         break;
3686                 }
3687         }
3688
3689         if (tmpvnn == NULL) {
3690                 return 0;
3691         }
3692
3693         if (killtcp->vnn->killtcp != killtcp) {
3694                 return 0;
3695         }
3696
3697         killtcp->vnn->killtcp = NULL;
3698
3699         return 0;
3700 }
3701
3702
3703 /* nothing fancy here, just unconditionally replace any existing
3704    connection structure with the new one.
3705
3706    dont even free the old one if it did exist, that one is talloc_stolen
3707    by the same node in the tree anyway and will be deleted when the new data 
3708    is deleted
3709 */
3710 static void *add_killtcp_callback(void *parm, void *data)
3711 {
3712         return parm;
3713 }
3714
3715 /*
3716   add a tcp socket to the list of connections we want to RST
3717  */
3718 static int ctdb_killtcp_add_connection(struct ctdb_context *ctdb, 
3719                                        ctdb_sock_addr *s,
3720                                        ctdb_sock_addr *d)
3721 {
3722         ctdb_sock_addr src, dst;
3723         struct ctdb_kill_tcp *killtcp;
3724         struct ctdb_killtcp_con *con;
3725         struct ctdb_vnn *vnn;
3726
3727         ctdb_canonicalize_ip(s, &src);
3728         ctdb_canonicalize_ip(d, &dst);
3729
3730         vnn = find_public_ip_vnn(ctdb, &dst);
3731         if (vnn == NULL) {
3732                 vnn = find_public_ip_vnn(ctdb, &src);
3733         }
3734         if (vnn == NULL) {
3735                 /* if it is not a public ip   it could be our 'single ip' */
3736                 if (ctdb->single_ip_vnn) {
3737                         if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, &dst)) {
3738                                 vnn = ctdb->single_ip_vnn;
3739                         }
3740                 }
3741         }
3742         if (vnn == NULL) {
3743                 DEBUG(DEBUG_ERR,(__location__ " Could not killtcp, not a public address\n")); 
3744                 return -1;
3745         }
3746
3747         killtcp = vnn->killtcp;
3748         
3749         /* If this is the first connection to kill we must allocate
3750            a new structure
3751          */
3752         if (killtcp == NULL) {
3753                 killtcp = talloc_zero(vnn, struct ctdb_kill_tcp);
3754                 CTDB_NO_MEMORY(ctdb, killtcp);
3755
3756                 killtcp->vnn         = vnn;
3757                 killtcp->ctdb        = ctdb;
3758                 killtcp->capture_fd  = -1;
3759                 killtcp->connections = trbt_create(killtcp, 0);
3760
3761                 vnn->killtcp         = killtcp;
3762                 talloc_set_destructor(killtcp, ctdb_killtcp_destructor);
3763         }
3764
3765
3766
3767         /* create a structure that describes this connection we want to
3768            RST and store it in killtcp->connections
3769         */
3770         con = talloc(killtcp, struct ctdb_killtcp_con);
3771         CTDB_NO_MEMORY(ctdb, con);
3772         con->src_addr = src;
3773         con->dst_addr = dst;
3774         con->count    = 0;
3775         con->killtcp  = killtcp;
3776
3777
3778         trbt_insertarray32_callback(killtcp->connections,
3779                         KILLTCP_KEYLEN, killtcp_key(&con->dst_addr, &con->src_addr),
3780                         add_killtcp_callback, con);
3781
3782         /* 
3783            If we dont have a socket to listen on yet we must create it
3784          */
3785         if (killtcp->capture_fd == -1) {
3786                 const char *iface = ctdb_vnn_iface_string(vnn);
3787                 killtcp->capture_fd = ctdb_sys_open_capture_socket(iface, &killtcp->private_data);
3788                 if (killtcp->capture_fd == -1) {
3789                         DEBUG(DEBUG_CRIT,(__location__ " Failed to open capturing "
3790                                           "socket on iface '%s' for killtcp (%s)\n",
3791                                           iface, strerror(errno)));
3792                         goto failed;
3793                 }
3794         }
3795
3796
3797         if (killtcp->fde == NULL) {
3798                 killtcp->fde = event_add_fd(ctdb->ev, killtcp, killtcp->capture_fd, 
3799                                             EVENT_FD_READ,
3800                                             capture_tcp_handler, killtcp);
3801                 tevent_fd_set_auto_close(killtcp->fde);
3802
3803                 /* We also need to set up some events to tickle all these connections
3804                    until they are all reset
3805                 */
3806                 event_add_timed(ctdb->ev, killtcp, timeval_current_ofs(1, 0), 
3807                                 ctdb_tickle_sentenced_connections, killtcp);
3808         }
3809
3810         /* tickle him once now */
3811         ctdb_sys_send_tcp(
3812                 &con->dst_addr,
3813                 &con->src_addr,
3814                 0, 0, 0);
3815
3816         return 0;
3817
3818 failed:
3819         talloc_free(vnn->killtcp);
3820         vnn->killtcp = NULL;
3821         return -1;
3822 }
3823
3824 /*
3825   kill a TCP connection.
3826  */
3827 int32_t ctdb_control_kill_tcp(struct ctdb_context *ctdb, TDB_DATA indata)
3828 {
3829         struct ctdb_control_killtcp *killtcp = (struct ctdb_control_killtcp *)indata.dptr;
3830
3831         return ctdb_killtcp_add_connection(ctdb, &killtcp->src_addr, &killtcp->dst_addr);
3832 }
3833
3834 /*
3835   called by a daemon to inform us of the entire list of TCP tickles for
3836   a particular public address.
3837   this control should only be sent by the node that is currently serving
3838   that public address.
3839  */
3840 int32_t ctdb_control_set_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata)
3841 {
3842         struct ctdb_control_tcp_tickle_list *list = (struct ctdb_control_tcp_tickle_list *)indata.dptr;
3843         struct ctdb_tcp_array *tcparray;
3844         struct ctdb_vnn *vnn;
3845
3846         /* We must at least have tickles.num or else we cant verify the size
3847            of the received data blob
3848          */
3849         if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list, 
3850                                         tickles.connections)) {
3851                 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list. Not enough data for the tickle.num field\n"));
3852                 return -1;
3853         }
3854
3855         /* verify that the size of data matches what we expect */
3856         if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list, 
3857                                 tickles.connections)
3858                          + sizeof(struct ctdb_tcp_connection)
3859                                  * list->tickles.num) {
3860                 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list\n"));
3861                 return -1;
3862         }
3863
3864         vnn = find_public_ip_vnn(ctdb, &list->addr);
3865         if (vnn == NULL) {
3866                 DEBUG(DEBUG_INFO,(__location__ " Could not set tcp tickle list, '%s' is not a public address\n",
3867                         ctdb_addr_to_str(&list->addr)));
3868
3869                 return 1;
3870         }
3871
3872         /* remove any old ticklelist we might have */
3873         talloc_free(vnn->tcp_array);
3874         vnn->tcp_array = NULL;
3875
3876         tcparray = talloc(vnn, struct ctdb_tcp_array);
3877         CTDB_NO_MEMORY(ctdb, tcparray);
3878
3879         tcparray->num = list->tickles.num;
3880
3881         tcparray->connections = talloc_array(tcparray, struct ctdb_tcp_connection, tcparray->num);
3882         CTDB_NO_MEMORY(ctdb, tcparray->connections);
3883
3884         memcpy(tcparray->connections, &list->tickles.connections[0],
3885                sizeof(struct ctdb_tcp_connection)*tcparray->num);
3886
3887         /* We now have a new fresh tickle list array for this vnn */
3888         vnn->tcp_array = tcparray;
3889
3890         return 0;
3891 }
3892
3893 /*
3894   called to return the full list of tickles for the puclic address associated 
3895   with the provided vnn
3896  */
3897 int32_t ctdb_control_get_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
3898 {
3899         ctdb_sock_addr *addr = (ctdb_sock_addr *)indata.dptr;
3900         struct ctdb_control_tcp_tickle_list *list;
3901         struct ctdb_tcp_array *tcparray;
3902         int num;
3903         struct ctdb_vnn *vnn;
3904
3905         vnn = find_public_ip_vnn(ctdb, addr);
3906         if (vnn == NULL) {
3907                 DEBUG(DEBUG_ERR,(__location__ " Could not get tcp tickle list, '%s' is not a public address\n", 
3908                         ctdb_addr_to_str(addr)));
3909
3910                 return 1;
3911         }
3912
3913         tcparray = vnn->tcp_array;
3914         if (tcparray) {
3915                 num = tcparray->num;
3916         } else {
3917                 num = 0;
3918         }
3919
3920         outdata->dsize = offsetof(struct ctdb_control_tcp_tickle_list, 
3921                                 tickles.connections)
3922                         + sizeof(struct ctdb_tcp_connection) * num;
3923
3924         outdata->dptr  = talloc_size(outdata, outdata->dsize);
3925         CTDB_NO_MEMORY(ctdb, outdata->dptr);
3926         list = (struct ctdb_control_tcp_tickle_list *)outdata->dptr;
3927
3928         list->addr = *addr;
3929         list->tickles.num = num;
3930         if (num) {
3931                 memcpy(&list->tickles.connections[0], tcparray->connections, 
3932                         sizeof(struct ctdb_tcp_connection) * num);
3933         }
3934
3935         return 0;
3936 }
3937
3938
3939 /*
3940   set the list of all tcp tickles for a public address
3941  */
3942 static int ctdb_ctrl_set_tcp_tickles(struct ctdb_context *ctdb, 
3943                               struct timeval timeout, uint32_t destnode, 
3944                               ctdb_sock_addr *addr,
3945                               struct ctdb_tcp_array *tcparray)
3946 {
3947         int ret, num;
3948         TDB_DATA data;
3949         struct ctdb_control_tcp_tickle_list *list;
3950
3951         if (tcparray) {
3952                 num = tcparray->num;
3953         } else {
3954                 num = 0;
3955         }
3956
3957         data.dsize = offsetof(struct ctdb_control_tcp_tickle_list, 
3958                                 tickles.connections) +
3959                         sizeof(struct ctdb_tcp_connection) * num;
3960         data.dptr = talloc_size(ctdb, data.dsize);
3961         CTDB_NO_MEMORY(ctdb, data.dptr);
3962
3963         list = (struct ctdb_control_tcp_tickle_list *)data.dptr;
3964         list->addr = *addr;
3965         list->tickles.num = num;
3966         if (tcparray) {
3967                 memcpy(&list->tickles.connections[0], tcparray->connections, sizeof(struct ctdb_tcp_connection) * num);
3968         }
3969
3970         ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0, 
3971                                        CTDB_CONTROL_SET_TCP_TICKLE_LIST,
3972                                        0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
3973         if (ret != 0) {
3974                 DEBUG(DEBUG_ERR,(__location__ " ctdb_control for set tcp tickles failed\n"));
3975                 return -1;
3976         }
3977
3978         talloc_free(data.dptr);
3979
3980         return ret;
3981 }
3982
3983
3984 /*
3985   perform tickle updates if required
3986  */
3987 static void ctdb_update_tcp_tickles(struct event_context *ev, 
3988                                 struct timed_event *te, 
3989                                 struct timeval t, void *private_data)
3990 {
3991         struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
3992         int ret;
3993         struct ctdb_vnn *vnn;
3994
3995         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3996                 /* we only send out updates for public addresses that 
3997                    we have taken over
3998                  */
3999                 if (ctdb->pnn != vnn->pnn) {
4000                         continue;
4001                 }
4002                 /* We only send out the updates if we need to */
4003                 if (!vnn->tcp_update_needed) {
4004                         continue;
4005                 }
4006                 ret = ctdb_ctrl_set_tcp_tickles(ctdb, 
4007                                 TAKEOVER_TIMEOUT(),
4008                                 CTDB_BROADCAST_CONNECTED,
4009                                 &vnn->public_address,
4010                                 vnn->tcp_array);
4011                 if (ret != 0) {
4012                         DEBUG(DEBUG_ERR,("Failed to send the tickle update for public address %s\n",
4013                                 ctdb_addr_to_str(&vnn->public_address)));
4014                 } else {
4015                         vnn->tcp_update_needed = false;
4016                 }
4017         }
4018
4019         event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4020                              timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0), 
4021                              ctdb_update_tcp_tickles, ctdb);
4022 }               
4023         
4024
4025 /*
4026   start periodic update of tcp tickles
4027  */
4028 void ctdb_start_tcp_tickle_update(struct ctdb_context *ctdb)
4029 {
4030         ctdb->tickle_update_context = talloc_new(ctdb);
4031
4032         event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4033                              timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0), 
4034                              ctdb_update_tcp_tickles, ctdb);
4035 }
4036
4037
4038
4039
4040 struct control_gratious_arp {
4041         struct ctdb_context *ctdb;
4042         ctdb_sock_addr addr;
4043         const char *iface;
4044         int count;
4045 };
4046
4047 /*
4048   send a control_gratuitous arp
4049  */
4050 static void send_gratious_arp(struct event_context *ev, struct timed_event *te, 
4051                                   struct timeval t, void *private_data)
4052 {
4053         int ret;
4054         struct control_gratious_arp *arp = talloc_get_type(private_data, 
4055                                                         struct control_gratious_arp);
4056
4057         ret = ctdb_sys_send_arp(&arp->addr, arp->iface);
4058         if (ret != 0) {
4059                 DEBUG(DEBUG_ERR,(__location__ " sending of gratious arp on iface '%s' failed (%s)\n",
4060                                  arp->iface, strerror(errno)));
4061         }
4062
4063
4064         arp->count++;
4065         if (arp->count == CTDB_ARP_REPEAT) {
4066                 talloc_free(arp);
4067                 return;
4068         }
4069
4070         event_add_timed(arp->ctdb->ev, arp, 
4071                         timeval_current_ofs(CTDB_ARP_INTERVAL, 0), 
4072                         send_gratious_arp, arp);
4073 }
4074
4075
4076 /*
4077   send a gratious arp 
4078  */
4079 int32_t ctdb_control_send_gratious_arp(struct ctdb_context *ctdb, TDB_DATA indata)
4080 {
4081         struct ctdb_control_gratious_arp *gratious_arp = (struct ctdb_control_gratious_arp *)indata.dptr;
4082         struct control_gratious_arp *arp;
4083
4084         /* verify the size of indata */
4085         if (indata.dsize < offsetof(struct ctdb_control_gratious_arp, iface)) {
4086                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_gratious_arp structure. Got %u require %u bytes\n", 
4087                                  (unsigned)indata.dsize, 
4088                                  (unsigned)offsetof(struct ctdb_control_gratious_arp, iface)));
4089                 return -1;
4090         }
4091         if (indata.dsize != 
4092                 ( offsetof(struct ctdb_control_gratious_arp, iface)
4093                 + gratious_arp->len ) ){
4094
4095                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4096                         "but should be %u bytes\n", 
4097                          (unsigned)indata.dsize, 
4098                          (unsigned)(offsetof(struct ctdb_control_gratious_arp, iface)+gratious_arp->len)));
4099                 return -1;
4100         }
4101
4102
4103         arp = talloc(ctdb, struct control_gratious_arp);
4104         CTDB_NO_MEMORY(ctdb, arp);
4105
4106         arp->ctdb  = ctdb;
4107         arp->addr   = gratious_arp->addr;
4108         arp->iface = talloc_strdup(arp, gratious_arp->iface);
4109         CTDB_NO_MEMORY(ctdb, arp->iface);
4110         arp->count = 0;
4111         
4112         event_add_timed(arp->ctdb->ev, arp, 
4113                         timeval_zero(), send_gratious_arp, arp);
4114
4115         return 0;
4116 }
4117
4118 int32_t ctdb_control_add_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4119 {
4120         struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4121         int ret;
4122
4123         /* verify the size of indata */
4124         if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4125                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4126                 return -1;
4127         }
4128         if (indata.dsize != 
4129                 ( offsetof(struct ctdb_control_ip_iface, iface)
4130                 + pub->len ) ){
4131
4132                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4133                         "but should be %u bytes\n", 
4134                          (unsigned)indata.dsize, 
4135                          (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4136                 return -1;
4137         }
4138
4139         DEBUG(DEBUG_NOTICE,("Add IP %s\n", ctdb_addr_to_str(&pub->addr)));
4140
4141         ret = ctdb_add_public_address(ctdb, &pub->addr, pub->mask, &pub->iface[0], true);
4142
4143         if (ret != 0) {
4144                 DEBUG(DEBUG_ERR,(__location__ " Failed to add public address\n"));
4145                 return -1;
4146         }
4147
4148         return 0;
4149 }
4150
4151 /*
4152   called when releaseip event finishes for del_public_address
4153  */
4154 static void delete_ip_callback(struct ctdb_context *ctdb, int status, 
4155                                 void *private_data)
4156 {
4157         talloc_free(private_data);
4158 }
4159
4160 int32_t ctdb_control_del_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4161 {
4162         struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4163         struct ctdb_vnn *vnn;
4164         int ret;
4165
4166         /* verify the size of indata */
4167         if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4168                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4169                 return -1;
4170         }
4171         if (indata.dsize != 
4172                 ( offsetof(struct ctdb_control_ip_iface, iface)
4173                 + pub->len ) ){
4174
4175                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4176                         "but should be %u bytes\n", 
4177                          (unsigned)indata.dsize, 
4178                          (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4179                 return -1;
4180         }
4181
4182         DEBUG(DEBUG_NOTICE,("Delete IP %s\n", ctdb_addr_to_str(&pub->addr)));
4183
4184         /* walk over all public addresses until we find a match */
4185         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
4186                 if (ctdb_same_ip(&vnn->public_address, &pub->addr)) {
4187                         TALLOC_CTX *mem_ctx = talloc_new(ctdb);
4188
4189                         DLIST_REMOVE(ctdb->vnn, vnn);
4190                         talloc_steal(mem_ctx, vnn);
4191                         ctdb_remove_orphaned_ifaces(ctdb, vnn, mem_ctx);
4192                         if (vnn->pnn != ctdb->pnn) {
4193                                 if (vnn->iface != NULL) {
4194                                         ctdb_vnn_unassign_iface(ctdb, vnn);
4195                                 }
4196                                 talloc_free(mem_ctx);
4197                                 return 0;
4198                         }
4199                         vnn->pnn = -1;
4200
4201                         ret = ctdb_event_script_callback(ctdb, 
4202                                          mem_ctx, delete_ip_callback, mem_ctx,
4203                                          CTDB_EVENT_RELEASE_IP,
4204                                          "%s %s %u",
4205                                          ctdb_vnn_iface_string(vnn),
4206                                          ctdb_addr_to_str(&vnn->public_address),
4207                                          vnn->public_netmask_bits);
4208                         if (vnn->iface != NULL) {
4209                                 ctdb_vnn_unassign_iface(ctdb, vnn);
4210                         }
4211                         if (ret != 0) {
4212                                 return -1;
4213                         }
4214                         return 0;
4215                 }
4216         }
4217
4218         return -1;
4219 }
4220
4221
4222 struct ipreallocated_callback_state {
4223         struct ctdb_req_control *c;
4224 };
4225
4226 static void ctdb_ipreallocated_callback(struct ctdb_context *ctdb,
4227                                         int status, void *p)
4228 {
4229         struct ipreallocated_callback_state *state =
4230                 talloc_get_type(p, struct ipreallocated_callback_state);
4231
4232         if (status != 0) {
4233                 DEBUG(DEBUG_ERR,
4234                       (" \"ipreallocated\" event script failed (status %d)\n",
4235                        status));
4236                 if (status == -ETIME) {
4237                         ctdb_ban_self(ctdb);
4238                 }
4239         }
4240
4241         ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
4242         talloc_free(state);
4243 }
4244
4245 /* A control to run the ipreallocated event */
4246 int32_t ctdb_control_ipreallocated(struct ctdb_context *ctdb,
4247                                    struct ctdb_req_control *c,
4248                                    bool *async_reply)
4249 {
4250         int ret;
4251         struct ipreallocated_callback_state *state;
4252
4253         state = talloc(ctdb, struct ipreallocated_callback_state);
4254         CTDB_NO_MEMORY(ctdb, state);
4255
4256         DEBUG(DEBUG_INFO,(__location__ " Running \"ipreallocated\" event\n"));
4257
4258         ret = ctdb_event_script_callback(ctdb, state,
4259                                          ctdb_ipreallocated_callback, state,
4260                                          CTDB_EVENT_IPREALLOCATED,
4261                                          "%s", "");
4262
4263         if (ret != 0) {
4264                 DEBUG(DEBUG_ERR,("Failed to run \"ipreallocated\" event \n"));
4265                 talloc_free(state);
4266                 return -1;
4267         }
4268
4269         /* tell the control that we will be reply asynchronously */
4270         state->c    = talloc_steal(state, c);
4271         *async_reply = true;
4272
4273         return 0;
4274 }
4275
4276
4277 /* This function is called from the recovery daemon to verify that a remote
4278    node has the expected ip allocation.
4279    This is verified against ctdb->ip_tree
4280 */
4281 int verify_remote_ip_allocation(struct ctdb_context *ctdb,
4282                                 struct ctdb_all_public_ips *ips,
4283                                 uint32_t pnn)
4284 {
4285         struct ctdb_public_ip_list *tmp_ip; 
4286         int i;
4287
4288         if (ctdb->ip_tree == NULL) {
4289                 /* dont know the expected allocation yet, assume remote node
4290                    is correct. */
4291                 return 0;
4292         }
4293
4294         if (ips == NULL) {
4295                 return 0;
4296         }
4297
4298         for (i=0; i<ips->num; i++) {
4299                 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ips->ips[i].addr));
4300                 if (tmp_ip == NULL) {
4301                         DEBUG(DEBUG_ERR,("Node %u has new or unknown public IP %s\n", pnn, ctdb_addr_to_str(&ips->ips[i].addr)));
4302                         return -1;
4303                 }
4304
4305                 if (tmp_ip->pnn == -1 || ips->ips[i].pnn == -1) {
4306                         continue;
4307                 }
4308
4309                 if (tmp_ip->pnn != ips->ips[i].pnn) {
4310                         DEBUG(DEBUG_ERR,
4311                               ("Inconsistent IP allocation - node %u thinks %s is held by node %u while it is assigned to node %u\n",
4312                                pnn,
4313                                ctdb_addr_to_str(&ips->ips[i].addr),
4314                                ips->ips[i].pnn, tmp_ip->pnn));
4315                         return -1;
4316                 }
4317         }
4318
4319         return 0;
4320 }
4321
4322 int update_ip_assignment_tree(struct ctdb_context *ctdb, struct ctdb_public_ip *ip)
4323 {
4324         struct ctdb_public_ip_list *tmp_ip; 
4325
4326         if (ctdb->ip_tree == NULL) {
4327                 DEBUG(DEBUG_ERR,("No ctdb->ip_tree yet. Failed to update ip assignment\n"));
4328                 return -1;
4329         }
4330
4331         tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ip->addr));
4332         if (tmp_ip == NULL) {
4333                 DEBUG(DEBUG_ERR,(__location__ " Could not find record for address %s, update ip\n", ctdb_addr_to_str(&ip->addr)));
4334                 return -1;
4335         }
4336
4337         DEBUG(DEBUG_NOTICE,("Updated ip assignment tree for ip : %s from node %u to node %u\n", ctdb_addr_to_str(&ip->addr), tmp_ip->pnn, ip->pnn));
4338         tmp_ip->pnn = ip->pnn;
4339
4340         return 0;
4341 }
4342
4343
4344 struct ctdb_reloadips_handle {
4345         struct ctdb_context *ctdb;
4346         struct ctdb_req_control *c;
4347         int status;
4348         int fd[2];
4349         pid_t child;
4350         struct fd_event *fde;
4351 };
4352
4353 static int ctdb_reloadips_destructor(struct ctdb_reloadips_handle *h)
4354 {
4355         if (h == h->ctdb->reload_ips) {
4356                 h->ctdb->reload_ips = NULL;
4357         }
4358         if (h->c != NULL) {
4359                 ctdb_request_control_reply(h->ctdb, h->c, NULL, h->status, NULL);
4360                 h->c = NULL;
4361         }
4362         ctdb_kill(h->ctdb, h->child, SIGKILL);
4363         return 0;
4364 }
4365
4366 static void ctdb_reloadips_timeout_event(struct event_context *ev,
4367                                 struct timed_event *te,
4368                                 struct timeval t, void *private_data)
4369 {
4370         struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4371
4372         talloc_free(h);
4373 }       
4374
4375 static void ctdb_reloadips_child_handler(struct event_context *ev, struct fd_event *fde, 
4376                              uint16_t flags, void *private_data)
4377 {
4378         struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4379
4380         char res;
4381         int ret;
4382
4383         ret = read(h->fd[0], &res, 1);
4384         if (ret < 1 || res != 0) {
4385                 DEBUG(DEBUG_ERR, (__location__ " Reloadips child process returned error\n"));
4386                 res = 1;
4387         }
4388         h->status = res;
4389
4390         talloc_free(h);
4391 }
4392
4393 static int ctdb_reloadips_child(struct ctdb_context *ctdb)
4394 {
4395         TALLOC_CTX *mem_ctx = talloc_new(NULL);
4396         struct ctdb_all_public_ips *ips;
4397         struct ctdb_vnn *vnn;
4398         struct client_async_data *async_data;
4399         struct timeval timeout;
4400         TDB_DATA data;
4401         struct ctdb_client_control_state *state;
4402         bool first_add;
4403         int i, ret;
4404
4405         CTDB_NO_MEMORY(ctdb, mem_ctx);
4406
4407         /* Read IPs from local node */
4408         ret = ctdb_ctrl_get_public_ips(ctdb, TAKEOVER_TIMEOUT(),
4409                                        CTDB_CURRENT_NODE, mem_ctx, &ips);
4410         if (ret != 0) {
4411                 DEBUG(DEBUG_ERR,
4412                       ("Unable to fetch public IPs from local node\n"));
4413                 talloc_free(mem_ctx);
4414                 return -1;
4415         }
4416
4417         /* Read IPs file - this is safe since this is a child process */
4418         ctdb->vnn = NULL;
4419         if (ctdb_set_public_addresses(ctdb, false) != 0) {
4420                 DEBUG(DEBUG_ERR,("Failed to re-read public addresses file\n"));
4421                 talloc_free(mem_ctx);
4422                 return -1;
4423         }
4424
4425         async_data = talloc_zero(mem_ctx, struct client_async_data);
4426         CTDB_NO_MEMORY(ctdb, async_data);
4427
4428         /* Compare IPs between node and file for IPs to be deleted */
4429         for (i = 0; i < ips->num; i++) {
4430                 /* */
4431                 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4432                         if (ctdb_same_ip(&vnn->public_address,
4433                                          &ips->ips[i].addr)) {
4434                                 /* IP is still in file */
4435                                 break;
4436                         }
4437                 }
4438
4439                 if (vnn == NULL) {
4440                         /* Delete IP ips->ips[i] */
4441                         struct ctdb_control_ip_iface *pub;
4442
4443                         DEBUG(DEBUG_NOTICE,
4444                               ("IP %s no longer configured, deleting it\n",
4445                                ctdb_addr_to_str(&ips->ips[i].addr)));
4446
4447                         pub = talloc_zero(mem_ctx,
4448                                           struct ctdb_control_ip_iface);
4449                         CTDB_NO_MEMORY(ctdb, pub);
4450
4451                         pub->addr  = ips->ips[i].addr;
4452                         pub->mask  = 0;
4453                         pub->len   = 0;
4454
4455                         timeout = TAKEOVER_TIMEOUT();
4456
4457                         data.dsize = offsetof(struct ctdb_control_ip_iface,
4458                                               iface) + pub->len;
4459                         data.dptr = (uint8_t *)pub;
4460
4461                         state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4462                                                   CTDB_CONTROL_DEL_PUBLIC_IP,
4463                                                   0, data, async_data,
4464                                                   &timeout, NULL);
4465                         if (state == NULL) {
4466                                 DEBUG(DEBUG_ERR,
4467                                       (__location__
4468                                        " failed sending CTDB_CONTROL_DEL_PUBLIC_IP\n"));
4469                                 goto failed;
4470                         }
4471
4472                         ctdb_client_async_add(async_data, state);
4473                 }
4474         }
4475
4476         /* Compare IPs between node and file for IPs to be added */
4477         first_add = true;
4478         for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4479                 for (i = 0; i < ips->num; i++) {
4480                         if (ctdb_same_ip(&vnn->public_address,
4481                                          &ips->ips[i].addr)) {
4482                                 /* IP already on node */
4483                                 break;
4484                         }
4485                 }
4486                 if (i == ips->num) {
4487                         /* Add IP ips->ips[i] */
4488                         struct ctdb_control_ip_iface *pub;
4489                         const char *ifaces = NULL;
4490                         uint32_t len;
4491                         int iface = 0;
4492
4493                         DEBUG(DEBUG_NOTICE,
4494                               ("New IP %s configured, adding it\n",
4495                                ctdb_addr_to_str(&vnn->public_address)));
4496                         if (first_add) {
4497                                 uint32_t pnn = ctdb_get_pnn(ctdb);
4498
4499                                 data.dsize = sizeof(pnn);
4500                                 data.dptr  = (uint8_t *)&pnn;
4501
4502                                 ret = ctdb_client_send_message(
4503                                         ctdb,
4504                                         CTDB_BROADCAST_CONNECTED,
4505                                         CTDB_SRVID_REBALANCE_NODE,
4506                                         data);
4507                                 if (ret != 0) {
4508                                         DEBUG(DEBUG_WARNING,
4509                                               ("Failed to send message to force node reallocation - IPs may be unbalanced\n"));
4510                                 }
4511
4512                                 first_add = false;
4513                         }
4514
4515                         ifaces = vnn->ifaces[0];
4516                         iface = 1;
4517                         while (vnn->ifaces[iface] != NULL) {
4518                                 ifaces = talloc_asprintf(vnn, "%s,%s", ifaces,
4519                                                          vnn->ifaces[iface]);
4520                                 iface++;
4521                         }
4522
4523                         len   = strlen(ifaces) + 1;
4524                         pub = talloc_zero_size(mem_ctx,
4525                                                offsetof(struct ctdb_control_ip_iface, iface) + len);
4526                         CTDB_NO_MEMORY(ctdb, pub);
4527
4528                         pub->addr  = vnn->public_address;
4529                         pub->mask  = vnn->public_netmask_bits;
4530                         pub->len   = len;
4531                         memcpy(&pub->iface[0], ifaces, pub->len);
4532
4533                         timeout = TAKEOVER_TIMEOUT();
4534
4535                         data.dsize = offsetof(struct ctdb_control_ip_iface,
4536                                               iface) + pub->len;
4537                         data.dptr = (uint8_t *)pub;
4538
4539                         state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4540                                                   CTDB_CONTROL_ADD_PUBLIC_IP,
4541                                                   0, data, async_data,
4542                                                   &timeout, NULL);
4543                         if (state == NULL) {
4544                                 DEBUG(DEBUG_ERR,
4545                                       (__location__
4546                                        " failed sending CTDB_CONTROL_ADD_PUBLIC_IP\n"));
4547                                 goto failed;
4548                         }
4549
4550                         ctdb_client_async_add(async_data, state);
4551                 }
4552         }
4553
4554         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
4555                 DEBUG(DEBUG_ERR,(__location__ " Add/delete IPs failed\n"));
4556                 goto failed;
4557         }
4558
4559         talloc_free(mem_ctx);
4560         return 0;
4561
4562 failed:
4563         talloc_free(mem_ctx);
4564         return -1;
4565 }
4566
4567 /* This control is sent to force the node to re-read the public addresses file
4568    and drop any addresses we should nnot longer host, and add new addresses
4569    that we are now able to host
4570 */
4571 int32_t ctdb_control_reload_public_ips(struct ctdb_context *ctdb, struct ctdb_req_control *c, bool *async_reply)
4572 {
4573         struct ctdb_reloadips_handle *h;
4574         pid_t parent = getpid();
4575
4576         if (ctdb->reload_ips != NULL) {
4577                 talloc_free(ctdb->reload_ips);
4578                 ctdb->reload_ips = NULL;
4579         }
4580
4581         h = talloc(ctdb, struct ctdb_reloadips_handle);
4582         CTDB_NO_MEMORY(ctdb, h);
4583         h->ctdb     = ctdb;
4584         h->c        = NULL;
4585         h->status   = -1;
4586         
4587         if (pipe(h->fd) == -1) {
4588                 DEBUG(DEBUG_ERR,("Failed to create pipe for ctdb_freeze_lock\n"));
4589                 talloc_free(h);
4590                 return -1;
4591         }
4592
4593         h->child = ctdb_fork(ctdb);
4594         if (h->child == (pid_t)-1) {
4595                 DEBUG(DEBUG_ERR, ("Failed to fork a child for reloadips\n"));
4596                 close(h->fd[0]);
4597                 close(h->fd[1]);
4598                 talloc_free(h);
4599                 return -1;
4600         }
4601
4602         /* child process */
4603         if (h->child == 0) {
4604                 signed char res = 0;
4605
4606                 close(h->fd[0]);
4607                 debug_extra = talloc_asprintf(NULL, "reloadips:");
4608
4609                 ctdb_set_process_name("ctdb_reloadips");
4610                 if (switch_from_server_to_client(ctdb, "reloadips-child") != 0) {
4611                         DEBUG(DEBUG_CRIT,("ERROR: Failed to switch reloadips child into client mode\n"));
4612                         res = -1;
4613                 } else {
4614                         res = ctdb_reloadips_child(ctdb);
4615                         if (res != 0) {
4616                                 DEBUG(DEBUG_ERR,("Failed to reload ips on local node\n"));
4617                         }
4618                 }
4619
4620                 write(h->fd[1], &res, 1);
4621                 /* make sure we die when our parent dies */
4622                 while (ctdb_kill(ctdb, parent, 0) == 0 || errno != ESRCH) {
4623                         sleep(5);
4624                 }
4625                 _exit(0);
4626         }
4627
4628         h->c             = talloc_steal(h, c);
4629
4630         close(h->fd[1]);
4631         set_close_on_exec(h->fd[0]);
4632
4633         talloc_set_destructor(h, ctdb_reloadips_destructor);
4634
4635
4636         h->fde = event_add_fd(ctdb->ev, h, h->fd[0],
4637                         EVENT_FD_READ, ctdb_reloadips_child_handler,
4638                         (void *)h);
4639         tevent_fd_set_auto_close(h->fde);
4640
4641         event_add_timed(ctdb->ev, h,
4642                         timeval_current_ofs(120, 0),
4643                         ctdb_reloadips_timeout_event, h);
4644
4645         /* we reply later */
4646         *async_reply = true;
4647         return 0;
4648 }