Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[jlayton/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88  * struct sample -      Store performance sample
89  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
90  *                      performance during last sample period
91  * @busy_scaled:        Scaled busy value which is used to calculate next
92  *                      P state. This can be different than core_avg_perf
93  *                      to account for cpu idle period
94  * @aperf:              Difference of actual performance frequency clock count
95  *                      read from APERF MSR between last and current sample
96  * @mperf:              Difference of maximum performance frequency clock count
97  *                      read from MPERF MSR between last and current sample
98  * @tsc:                Difference of time stamp counter between last and
99  *                      current sample
100  * @time:               Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106         int32_t core_avg_perf;
107         int32_t busy_scaled;
108         u64 aperf;
109         u64 mperf;
110         u64 tsc;
111         u64 time;
112 };
113
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:     Current requested P state
117  * @min_pstate:         Min P state possible for this platform
118  * @max_pstate:         Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *                      This can be higher than the max_pstate which can
121  *                      be limited by platform thermal design power limits
122  * @scaling:            Scaling factor to  convert frequency to cpufreq
123  *                      frequency units
124  * @turbo_pstate:       Max Turbo P state possible for this platform
125  * @max_freq:           @max_pstate frequency in cpufreq units
126  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131         int     current_pstate;
132         int     min_pstate;
133         int     max_pstate;
134         int     max_pstate_physical;
135         int     scaling;
136         int     turbo_pstate;
137         unsigned int max_freq;
138         unsigned int turbo_freq;
139 };
140
141 /**
142  * struct vid_data -    Stores voltage information data
143  * @min:                VID data for this platform corresponding to
144  *                      the lowest P state
145  * @max:                VID data corresponding to the highest P State.
146  * @turbo:              VID data for turbo P state
147  * @ratio:              Ratio of (vid max - vid min) /
148  *                      (max P state - Min P State)
149  *
150  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
151  * This data is used in Atom platforms, where in addition to target P state,
152  * the voltage data needs to be specified to select next P State.
153  */
154 struct vid_data {
155         int min;
156         int max;
157         int turbo;
158         int32_t ratio;
159 };
160
161 /**
162  * struct _pid -        Stores PID data
163  * @setpoint:           Target set point for busyness or performance
164  * @integral:           Storage for accumulated error values
165  * @p_gain:             PID proportional gain
166  * @i_gain:             PID integral gain
167  * @d_gain:             PID derivative gain
168  * @deadband:           PID deadband
169  * @last_err:           Last error storage for integral part of PID calculation
170  *
171  * Stores PID coefficients and last error for PID controller.
172  */
173 struct _pid {
174         int setpoint;
175         int32_t integral;
176         int32_t p_gain;
177         int32_t i_gain;
178         int32_t d_gain;
179         int deadband;
180         int32_t last_err;
181 };
182
183 /**
184  * struct perf_limits - Store user and policy limits
185  * @no_turbo:           User requested turbo state from intel_pstate sysfs
186  * @turbo_disabled:     Platform turbo status either from msr
187  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
188  *                      matches the maximum turbo pstate
189  * @max_perf_pct:       Effective maximum performance limit in percentage, this
190  *                      is minimum of either limits enforced by cpufreq policy
191  *                      or limits from user set limits via intel_pstate sysfs
192  * @min_perf_pct:       Effective minimum performance limit in percentage, this
193  *                      is maximum of either limits enforced by cpufreq policy
194  *                      or limits from user set limits via intel_pstate sysfs
195  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
196  *                      This value is used to limit max pstate
197  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
198  *                      This value is used to limit min pstate
199  * @max_policy_pct:     The maximum performance in percentage enforced by
200  *                      cpufreq setpolicy interface
201  * @max_sysfs_pct:      The maximum performance in percentage enforced by
202  *                      intel pstate sysfs interface, unused when per cpu
203  *                      controls are enforced
204  * @min_policy_pct:     The minimum performance in percentage enforced by
205  *                      cpufreq setpolicy interface
206  * @min_sysfs_pct:      The minimum performance in percentage enforced by
207  *                      intel pstate sysfs interface, unused when per cpu
208  *                      controls are enforced
209  *
210  * Storage for user and policy defined limits.
211  */
212 struct perf_limits {
213         int no_turbo;
214         int turbo_disabled;
215         int max_perf_pct;
216         int min_perf_pct;
217         int32_t max_perf;
218         int32_t min_perf;
219         int max_policy_pct;
220         int max_sysfs_pct;
221         int min_policy_pct;
222         int min_sysfs_pct;
223 };
224
225 /**
226  * struct cpudata -     Per CPU instance data storage
227  * @cpu:                CPU number for this instance data
228  * @policy:             CPUFreq policy value
229  * @update_util:        CPUFreq utility callback information
230  * @update_util_set:    CPUFreq utility callback is set
231  * @iowait_boost:       iowait-related boost fraction
232  * @last_update:        Time of the last update.
233  * @pstate:             Stores P state limits for this CPU
234  * @vid:                Stores VID limits for this CPU
235  * @pid:                Stores PID parameters for this CPU
236  * @last_sample_time:   Last Sample time
237  * @prev_aperf:         Last APERF value read from APERF MSR
238  * @prev_mperf:         Last MPERF value read from MPERF MSR
239  * @prev_tsc:           Last timestamp counter (TSC) value
240  * @prev_cummulative_iowait: IO Wait time difference from last and
241  *                      current sample
242  * @sample:             Storage for storing last Sample data
243  * @perf_limits:        Pointer to perf_limit unique to this CPU
244  *                      Not all field in the structure are applicable
245  *                      when per cpu controls are enforced
246  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
247  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
248  * @epp_powersave:      Last saved HWP energy performance preference
249  *                      (EPP) or energy performance bias (EPB),
250  *                      when policy switched to performance
251  * @epp_policy:         Last saved policy used to set EPP/EPB
252  * @epp_default:        Power on default HWP energy performance
253  *                      preference/bias
254  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
255  *                      operation
256  *
257  * This structure stores per CPU instance data for all CPUs.
258  */
259 struct cpudata {
260         int cpu;
261
262         unsigned int policy;
263         struct update_util_data update_util;
264         bool   update_util_set;
265
266         struct pstate_data pstate;
267         struct vid_data vid;
268         struct _pid pid;
269
270         u64     last_update;
271         u64     last_sample_time;
272         u64     prev_aperf;
273         u64     prev_mperf;
274         u64     prev_tsc;
275         u64     prev_cummulative_iowait;
276         struct sample sample;
277         struct perf_limits *perf_limits;
278 #ifdef CONFIG_ACPI
279         struct acpi_processor_performance acpi_perf_data;
280         bool valid_pss_table;
281 #endif
282         unsigned int iowait_boost;
283         s16 epp_powersave;
284         s16 epp_policy;
285         s16 epp_default;
286         s16 epp_saved;
287 };
288
289 static struct cpudata **all_cpu_data;
290
291 /**
292  * struct pstate_adjust_policy - Stores static PID configuration data
293  * @sample_rate_ms:     PID calculation sample rate in ms
294  * @sample_rate_ns:     Sample rate calculation in ns
295  * @deadband:           PID deadband
296  * @setpoint:           PID Setpoint
297  * @p_gain_pct:         PID proportional gain
298  * @i_gain_pct:         PID integral gain
299  * @d_gain_pct:         PID derivative gain
300  *
301  * Stores per CPU model static PID configuration data.
302  */
303 struct pstate_adjust_policy {
304         int sample_rate_ms;
305         s64 sample_rate_ns;
306         int deadband;
307         int setpoint;
308         int p_gain_pct;
309         int d_gain_pct;
310         int i_gain_pct;
311 };
312
313 /**
314  * struct pstate_funcs - Per CPU model specific callbacks
315  * @get_max:            Callback to get maximum non turbo effective P state
316  * @get_max_physical:   Callback to get maximum non turbo physical P state
317  * @get_min:            Callback to get minimum P state
318  * @get_turbo:          Callback to get turbo P state
319  * @get_scaling:        Callback to get frequency scaling factor
320  * @get_val:            Callback to convert P state to actual MSR write value
321  * @get_vid:            Callback to get VID data for Atom platforms
322  * @get_target_pstate:  Callback to a function to calculate next P state to use
323  *
324  * Core and Atom CPU models have different way to get P State limits. This
325  * structure is used to store those callbacks.
326  */
327 struct pstate_funcs {
328         int (*get_max)(void);
329         int (*get_max_physical)(void);
330         int (*get_min)(void);
331         int (*get_turbo)(void);
332         int (*get_scaling)(void);
333         u64 (*get_val)(struct cpudata*, int pstate);
334         void (*get_vid)(struct cpudata *);
335         int32_t (*get_target_pstate)(struct cpudata *);
336 };
337
338 /**
339  * struct cpu_defaults- Per CPU model default config data
340  * @pid_policy: PID config data
341  * @funcs:              Callback function data
342  */
343 struct cpu_defaults {
344         struct pstate_adjust_policy pid_policy;
345         struct pstate_funcs funcs;
346 };
347
348 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
349 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
350
351 static struct pstate_adjust_policy pid_params __read_mostly;
352 static struct pstate_funcs pstate_funcs __read_mostly;
353 static int hwp_active __read_mostly;
354 static bool per_cpu_limits __read_mostly;
355
356 static bool driver_registered __read_mostly;
357
358 #ifdef CONFIG_ACPI
359 static bool acpi_ppc;
360 #endif
361
362 static struct perf_limits performance_limits = {
363         .no_turbo = 0,
364         .turbo_disabled = 0,
365         .max_perf_pct = 100,
366         .max_perf = int_ext_tofp(1),
367         .min_perf_pct = 100,
368         .min_perf = int_ext_tofp(1),
369         .max_policy_pct = 100,
370         .max_sysfs_pct = 100,
371         .min_policy_pct = 0,
372         .min_sysfs_pct = 0,
373 };
374
375 static struct perf_limits powersave_limits = {
376         .no_turbo = 0,
377         .turbo_disabled = 0,
378         .max_perf_pct = 100,
379         .max_perf = int_ext_tofp(1),
380         .min_perf_pct = 0,
381         .min_perf = 0,
382         .max_policy_pct = 100,
383         .max_sysfs_pct = 100,
384         .min_policy_pct = 0,
385         .min_sysfs_pct = 0,
386 };
387
388 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
389 static struct perf_limits *limits = &performance_limits;
390 #else
391 static struct perf_limits *limits = &powersave_limits;
392 #endif
393
394 static DEFINE_MUTEX(intel_pstate_driver_lock);
395 static DEFINE_MUTEX(intel_pstate_limits_lock);
396
397 #ifdef CONFIG_ACPI
398
399 static bool intel_pstate_get_ppc_enable_status(void)
400 {
401         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
402             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
403                 return true;
404
405         return acpi_ppc;
406 }
407
408 #ifdef CONFIG_ACPI_CPPC_LIB
409
410 /* The work item is needed to avoid CPU hotplug locking issues */
411 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
412 {
413         sched_set_itmt_support();
414 }
415
416 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
417
418 static void intel_pstate_set_itmt_prio(int cpu)
419 {
420         struct cppc_perf_caps cppc_perf;
421         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
422         int ret;
423
424         ret = cppc_get_perf_caps(cpu, &cppc_perf);
425         if (ret)
426                 return;
427
428         /*
429          * The priorities can be set regardless of whether or not
430          * sched_set_itmt_support(true) has been called and it is valid to
431          * update them at any time after it has been called.
432          */
433         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
434
435         if (max_highest_perf <= min_highest_perf) {
436                 if (cppc_perf.highest_perf > max_highest_perf)
437                         max_highest_perf = cppc_perf.highest_perf;
438
439                 if (cppc_perf.highest_perf < min_highest_perf)
440                         min_highest_perf = cppc_perf.highest_perf;
441
442                 if (max_highest_perf > min_highest_perf) {
443                         /*
444                          * This code can be run during CPU online under the
445                          * CPU hotplug locks, so sched_set_itmt_support()
446                          * cannot be called from here.  Queue up a work item
447                          * to invoke it.
448                          */
449                         schedule_work(&sched_itmt_work);
450                 }
451         }
452 }
453 #else
454 static void intel_pstate_set_itmt_prio(int cpu)
455 {
456 }
457 #endif
458
459 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
460 {
461         struct cpudata *cpu;
462         int ret;
463         int i;
464
465         if (hwp_active) {
466                 intel_pstate_set_itmt_prio(policy->cpu);
467                 return;
468         }
469
470         if (!intel_pstate_get_ppc_enable_status())
471                 return;
472
473         cpu = all_cpu_data[policy->cpu];
474
475         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
476                                                   policy->cpu);
477         if (ret)
478                 return;
479
480         /*
481          * Check if the control value in _PSS is for PERF_CTL MSR, which should
482          * guarantee that the states returned by it map to the states in our
483          * list directly.
484          */
485         if (cpu->acpi_perf_data.control_register.space_id !=
486                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
487                 goto err;
488
489         /*
490          * If there is only one entry _PSS, simply ignore _PSS and continue as
491          * usual without taking _PSS into account
492          */
493         if (cpu->acpi_perf_data.state_count < 2)
494                 goto err;
495
496         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
497         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
498                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
499                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
500                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
501                          (u32) cpu->acpi_perf_data.states[i].power,
502                          (u32) cpu->acpi_perf_data.states[i].control);
503         }
504
505         /*
506          * The _PSS table doesn't contain whole turbo frequency range.
507          * This just contains +1 MHZ above the max non turbo frequency,
508          * with control value corresponding to max turbo ratio. But
509          * when cpufreq set policy is called, it will call with this
510          * max frequency, which will cause a reduced performance as
511          * this driver uses real max turbo frequency as the max
512          * frequency. So correct this frequency in _PSS table to
513          * correct max turbo frequency based on the turbo state.
514          * Also need to convert to MHz as _PSS freq is in MHz.
515          */
516         if (!limits->turbo_disabled)
517                 cpu->acpi_perf_data.states[0].core_frequency =
518                                         policy->cpuinfo.max_freq / 1000;
519         cpu->valid_pss_table = true;
520         pr_debug("_PPC limits will be enforced\n");
521
522         return;
523
524  err:
525         cpu->valid_pss_table = false;
526         acpi_processor_unregister_performance(policy->cpu);
527 }
528
529 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
530 {
531         struct cpudata *cpu;
532
533         cpu = all_cpu_data[policy->cpu];
534         if (!cpu->valid_pss_table)
535                 return;
536
537         acpi_processor_unregister_performance(policy->cpu);
538 }
539 #else
540 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
541 {
542 }
543
544 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
545 {
546 }
547 #endif
548
549 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
550                              int deadband, int integral) {
551         pid->setpoint = int_tofp(setpoint);
552         pid->deadband  = int_tofp(deadband);
553         pid->integral  = int_tofp(integral);
554         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
555 }
556
557 static inline void pid_p_gain_set(struct _pid *pid, int percent)
558 {
559         pid->p_gain = div_fp(percent, 100);
560 }
561
562 static inline void pid_i_gain_set(struct _pid *pid, int percent)
563 {
564         pid->i_gain = div_fp(percent, 100);
565 }
566
567 static inline void pid_d_gain_set(struct _pid *pid, int percent)
568 {
569         pid->d_gain = div_fp(percent, 100);
570 }
571
572 static signed int pid_calc(struct _pid *pid, int32_t busy)
573 {
574         signed int result;
575         int32_t pterm, dterm, fp_error;
576         int32_t integral_limit;
577
578         fp_error = pid->setpoint - busy;
579
580         if (abs(fp_error) <= pid->deadband)
581                 return 0;
582
583         pterm = mul_fp(pid->p_gain, fp_error);
584
585         pid->integral += fp_error;
586
587         /*
588          * We limit the integral here so that it will never
589          * get higher than 30.  This prevents it from becoming
590          * too large an input over long periods of time and allows
591          * it to get factored out sooner.
592          *
593          * The value of 30 was chosen through experimentation.
594          */
595         integral_limit = int_tofp(30);
596         if (pid->integral > integral_limit)
597                 pid->integral = integral_limit;
598         if (pid->integral < -integral_limit)
599                 pid->integral = -integral_limit;
600
601         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
602         pid->last_err = fp_error;
603
604         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
605         result = result + (1 << (FRAC_BITS-1));
606         return (signed int)fp_toint(result);
607 }
608
609 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
610 {
611         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
612         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
613         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
614
615         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
616 }
617
618 static inline void intel_pstate_reset_all_pid(void)
619 {
620         unsigned int cpu;
621
622         for_each_online_cpu(cpu) {
623                 if (all_cpu_data[cpu])
624                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
625         }
626 }
627
628 static inline void update_turbo_state(void)
629 {
630         u64 misc_en;
631         struct cpudata *cpu;
632
633         cpu = all_cpu_data[0];
634         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
635         limits->turbo_disabled =
636                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
637                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
638 }
639
640 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
641 {
642         u64 epb;
643         int ret;
644
645         if (!static_cpu_has(X86_FEATURE_EPB))
646                 return -ENXIO;
647
648         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
649         if (ret)
650                 return (s16)ret;
651
652         return (s16)(epb & 0x0f);
653 }
654
655 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
656 {
657         s16 epp;
658
659         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
660                 /*
661                  * When hwp_req_data is 0, means that caller didn't read
662                  * MSR_HWP_REQUEST, so need to read and get EPP.
663                  */
664                 if (!hwp_req_data) {
665                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
666                                             &hwp_req_data);
667                         if (epp)
668                                 return epp;
669                 }
670                 epp = (hwp_req_data >> 24) & 0xff;
671         } else {
672                 /* When there is no EPP present, HWP uses EPB settings */
673                 epp = intel_pstate_get_epb(cpu_data);
674         }
675
676         return epp;
677 }
678
679 static int intel_pstate_set_epb(int cpu, s16 pref)
680 {
681         u64 epb;
682         int ret;
683
684         if (!static_cpu_has(X86_FEATURE_EPB))
685                 return -ENXIO;
686
687         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
688         if (ret)
689                 return ret;
690
691         epb = (epb & ~0x0f) | pref;
692         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
693
694         return 0;
695 }
696
697 /*
698  * EPP/EPB display strings corresponding to EPP index in the
699  * energy_perf_strings[]
700  *      index           String
701  *-------------------------------------
702  *      0               default
703  *      1               performance
704  *      2               balance_performance
705  *      3               balance_power
706  *      4               power
707  */
708 static const char * const energy_perf_strings[] = {
709         "default",
710         "performance",
711         "balance_performance",
712         "balance_power",
713         "power",
714         NULL
715 };
716
717 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
718 {
719         s16 epp;
720         int index = -EINVAL;
721
722         epp = intel_pstate_get_epp(cpu_data, 0);
723         if (epp < 0)
724                 return epp;
725
726         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
727                 /*
728                  * Range:
729                  *      0x00-0x3F       :       Performance
730                  *      0x40-0x7F       :       Balance performance
731                  *      0x80-0xBF       :       Balance power
732                  *      0xC0-0xFF       :       Power
733                  * The EPP is a 8 bit value, but our ranges restrict the
734                  * value which can be set. Here only using top two bits
735                  * effectively.
736                  */
737                 index = (epp >> 6) + 1;
738         } else if (static_cpu_has(X86_FEATURE_EPB)) {
739                 /*
740                  * Range:
741                  *      0x00-0x03       :       Performance
742                  *      0x04-0x07       :       Balance performance
743                  *      0x08-0x0B       :       Balance power
744                  *      0x0C-0x0F       :       Power
745                  * The EPB is a 4 bit value, but our ranges restrict the
746                  * value which can be set. Here only using top two bits
747                  * effectively.
748                  */
749                 index = (epp >> 2) + 1;
750         }
751
752         return index;
753 }
754
755 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
756                                               int pref_index)
757 {
758         int epp = -EINVAL;
759         int ret;
760
761         if (!pref_index)
762                 epp = cpu_data->epp_default;
763
764         mutex_lock(&intel_pstate_limits_lock);
765
766         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
767                 u64 value;
768
769                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
770                 if (ret)
771                         goto return_pref;
772
773                 value &= ~GENMASK_ULL(31, 24);
774
775                 /*
776                  * If epp is not default, convert from index into
777                  * energy_perf_strings to epp value, by shifting 6
778                  * bits left to use only top two bits in epp.
779                  * The resultant epp need to shifted by 24 bits to
780                  * epp position in MSR_HWP_REQUEST.
781                  */
782                 if (epp == -EINVAL)
783                         epp = (pref_index - 1) << 6;
784
785                 value |= (u64)epp << 24;
786                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
787         } else {
788                 if (epp == -EINVAL)
789                         epp = (pref_index - 1) << 2;
790                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
791         }
792 return_pref:
793         mutex_unlock(&intel_pstate_limits_lock);
794
795         return ret;
796 }
797
798 static ssize_t show_energy_performance_available_preferences(
799                                 struct cpufreq_policy *policy, char *buf)
800 {
801         int i = 0;
802         int ret = 0;
803
804         while (energy_perf_strings[i] != NULL)
805                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
806
807         ret += sprintf(&buf[ret], "\n");
808
809         return ret;
810 }
811
812 cpufreq_freq_attr_ro(energy_performance_available_preferences);
813
814 static ssize_t store_energy_performance_preference(
815                 struct cpufreq_policy *policy, const char *buf, size_t count)
816 {
817         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
818         char str_preference[21];
819         int ret, i = 0;
820
821         ret = sscanf(buf, "%20s", str_preference);
822         if (ret != 1)
823                 return -EINVAL;
824
825         while (energy_perf_strings[i] != NULL) {
826                 if (!strcmp(str_preference, energy_perf_strings[i])) {
827                         intel_pstate_set_energy_pref_index(cpu_data, i);
828                         return count;
829                 }
830                 ++i;
831         }
832
833         return -EINVAL;
834 }
835
836 static ssize_t show_energy_performance_preference(
837                                 struct cpufreq_policy *policy, char *buf)
838 {
839         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
840         int preference;
841
842         preference = intel_pstate_get_energy_pref_index(cpu_data);
843         if (preference < 0)
844                 return preference;
845
846         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
847 }
848
849 cpufreq_freq_attr_rw(energy_performance_preference);
850
851 static struct freq_attr *hwp_cpufreq_attrs[] = {
852         &energy_performance_preference,
853         &energy_performance_available_preferences,
854         NULL,
855 };
856
857 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
858 {
859         int min, hw_min, max, hw_max, cpu, range, adj_range;
860         struct perf_limits *perf_limits = limits;
861         u64 value, cap;
862
863         for_each_cpu(cpu, policy->cpus) {
864                 int max_perf_pct, min_perf_pct;
865                 struct cpudata *cpu_data = all_cpu_data[cpu];
866                 s16 epp;
867
868                 if (per_cpu_limits)
869                         perf_limits = all_cpu_data[cpu]->perf_limits;
870
871                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
872                 hw_min = HWP_LOWEST_PERF(cap);
873                 if (limits->no_turbo)
874                         hw_max = HWP_GUARANTEED_PERF(cap);
875                 else
876                         hw_max = HWP_HIGHEST_PERF(cap);
877                 range = hw_max - hw_min;
878
879                 max_perf_pct = perf_limits->max_perf_pct;
880                 min_perf_pct = perf_limits->min_perf_pct;
881
882                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883                 adj_range = min_perf_pct * range / 100;
884                 min = hw_min + adj_range;
885                 value &= ~HWP_MIN_PERF(~0L);
886                 value |= HWP_MIN_PERF(min);
887
888                 adj_range = max_perf_pct * range / 100;
889                 max = hw_min + adj_range;
890
891                 value &= ~HWP_MAX_PERF(~0L);
892                 value |= HWP_MAX_PERF(max);
893
894                 if (cpu_data->epp_policy == cpu_data->policy)
895                         goto skip_epp;
896
897                 cpu_data->epp_policy = cpu_data->policy;
898
899                 if (cpu_data->epp_saved >= 0) {
900                         epp = cpu_data->epp_saved;
901                         cpu_data->epp_saved = -EINVAL;
902                         goto update_epp;
903                 }
904
905                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
906                         epp = intel_pstate_get_epp(cpu_data, value);
907                         cpu_data->epp_powersave = epp;
908                         /* If EPP read was failed, then don't try to write */
909                         if (epp < 0)
910                                 goto skip_epp;
911
912
913                         epp = 0;
914                 } else {
915                         /* skip setting EPP, when saved value is invalid */
916                         if (cpu_data->epp_powersave < 0)
917                                 goto skip_epp;
918
919                         /*
920                          * No need to restore EPP when it is not zero. This
921                          * means:
922                          *  - Policy is not changed
923                          *  - user has manually changed
924                          *  - Error reading EPB
925                          */
926                         epp = intel_pstate_get_epp(cpu_data, value);
927                         if (epp)
928                                 goto skip_epp;
929
930                         epp = cpu_data->epp_powersave;
931                 }
932 update_epp:
933                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
934                         value &= ~GENMASK_ULL(31, 24);
935                         value |= (u64)epp << 24;
936                 } else {
937                         intel_pstate_set_epb(cpu, epp);
938                 }
939 skip_epp:
940                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
941         }
942 }
943
944 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
945 {
946         if (hwp_active)
947                 intel_pstate_hwp_set(policy);
948
949         return 0;
950 }
951
952 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
953 {
954         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
955
956         if (!hwp_active)
957                 return 0;
958
959         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
960
961         return 0;
962 }
963
964 static int intel_pstate_resume(struct cpufreq_policy *policy)
965 {
966         int ret;
967
968         if (!hwp_active)
969                 return 0;
970
971         mutex_lock(&intel_pstate_limits_lock);
972
973         all_cpu_data[policy->cpu]->epp_policy = 0;
974
975         ret = intel_pstate_hwp_set_policy(policy);
976
977         mutex_unlock(&intel_pstate_limits_lock);
978
979         return ret;
980 }
981
982 static void intel_pstate_update_policies(void)
983 {
984         int cpu;
985
986         for_each_possible_cpu(cpu)
987                 cpufreq_update_policy(cpu);
988 }
989
990 /************************** debugfs begin ************************/
991 static int pid_param_set(void *data, u64 val)
992 {
993         *(u32 *)data = val;
994         intel_pstate_reset_all_pid();
995         return 0;
996 }
997
998 static int pid_param_get(void *data, u64 *val)
999 {
1000         *val = *(u32 *)data;
1001         return 0;
1002 }
1003 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1004
1005 static struct dentry *debugfs_parent;
1006
1007 struct pid_param {
1008         char *name;
1009         void *value;
1010         struct dentry *dentry;
1011 };
1012
1013 static struct pid_param pid_files[] = {
1014         {"sample_rate_ms", &pid_params.sample_rate_ms, },
1015         {"d_gain_pct", &pid_params.d_gain_pct, },
1016         {"i_gain_pct", &pid_params.i_gain_pct, },
1017         {"deadband", &pid_params.deadband, },
1018         {"setpoint", &pid_params.setpoint, },
1019         {"p_gain_pct", &pid_params.p_gain_pct, },
1020         {NULL, NULL, }
1021 };
1022
1023 static void intel_pstate_debug_expose_params(void)
1024 {
1025         int i;
1026
1027         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1028         if (IS_ERR_OR_NULL(debugfs_parent))
1029                 return;
1030
1031         for (i = 0; pid_files[i].name; i++) {
1032                 struct dentry *dentry;
1033
1034                 dentry = debugfs_create_file(pid_files[i].name, 0660,
1035                                              debugfs_parent, pid_files[i].value,
1036                                              &fops_pid_param);
1037                 if (!IS_ERR(dentry))
1038                         pid_files[i].dentry = dentry;
1039         }
1040 }
1041
1042 static void intel_pstate_debug_hide_params(void)
1043 {
1044         int i;
1045
1046         if (IS_ERR_OR_NULL(debugfs_parent))
1047                 return;
1048
1049         for (i = 0; pid_files[i].name; i++) {
1050                 debugfs_remove(pid_files[i].dentry);
1051                 pid_files[i].dentry = NULL;
1052         }
1053
1054         debugfs_remove(debugfs_parent);
1055         debugfs_parent = NULL;
1056 }
1057
1058 /************************** debugfs end ************************/
1059
1060 /************************** sysfs begin ************************/
1061 #define show_one(file_name, object)                                     \
1062         static ssize_t show_##file_name                                 \
1063         (struct kobject *kobj, struct attribute *attr, char *buf)       \
1064         {                                                               \
1065                 return sprintf(buf, "%u\n", limits->object);            \
1066         }
1067
1068 static ssize_t intel_pstate_show_status(char *buf);
1069 static int intel_pstate_update_status(const char *buf, size_t size);
1070
1071 static ssize_t show_status(struct kobject *kobj,
1072                            struct attribute *attr, char *buf)
1073 {
1074         ssize_t ret;
1075
1076         mutex_lock(&intel_pstate_driver_lock);
1077         ret = intel_pstate_show_status(buf);
1078         mutex_unlock(&intel_pstate_driver_lock);
1079
1080         return ret;
1081 }
1082
1083 static ssize_t store_status(struct kobject *a, struct attribute *b,
1084                             const char *buf, size_t count)
1085 {
1086         char *p = memchr(buf, '\n', count);
1087         int ret;
1088
1089         mutex_lock(&intel_pstate_driver_lock);
1090         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1091         mutex_unlock(&intel_pstate_driver_lock);
1092
1093         return ret < 0 ? ret : count;
1094 }
1095
1096 static ssize_t show_turbo_pct(struct kobject *kobj,
1097                                 struct attribute *attr, char *buf)
1098 {
1099         struct cpudata *cpu;
1100         int total, no_turbo, turbo_pct;
1101         uint32_t turbo_fp;
1102
1103         mutex_lock(&intel_pstate_driver_lock);
1104
1105         if (!driver_registered) {
1106                 mutex_unlock(&intel_pstate_driver_lock);
1107                 return -EAGAIN;
1108         }
1109
1110         cpu = all_cpu_data[0];
1111
1112         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1113         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1114         turbo_fp = div_fp(no_turbo, total);
1115         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1116
1117         mutex_unlock(&intel_pstate_driver_lock);
1118
1119         return sprintf(buf, "%u\n", turbo_pct);
1120 }
1121
1122 static ssize_t show_num_pstates(struct kobject *kobj,
1123                                 struct attribute *attr, char *buf)
1124 {
1125         struct cpudata *cpu;
1126         int total;
1127
1128         mutex_lock(&intel_pstate_driver_lock);
1129
1130         if (!driver_registered) {
1131                 mutex_unlock(&intel_pstate_driver_lock);
1132                 return -EAGAIN;
1133         }
1134
1135         cpu = all_cpu_data[0];
1136         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1137
1138         mutex_unlock(&intel_pstate_driver_lock);
1139
1140         return sprintf(buf, "%u\n", total);
1141 }
1142
1143 static ssize_t show_no_turbo(struct kobject *kobj,
1144                              struct attribute *attr, char *buf)
1145 {
1146         ssize_t ret;
1147
1148         mutex_lock(&intel_pstate_driver_lock);
1149
1150         if (!driver_registered) {
1151                 mutex_unlock(&intel_pstate_driver_lock);
1152                 return -EAGAIN;
1153         }
1154
1155         update_turbo_state();
1156         if (limits->turbo_disabled)
1157                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1158         else
1159                 ret = sprintf(buf, "%u\n", limits->no_turbo);
1160
1161         mutex_unlock(&intel_pstate_driver_lock);
1162
1163         return ret;
1164 }
1165
1166 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1167                               const char *buf, size_t count)
1168 {
1169         unsigned int input;
1170         int ret;
1171
1172         ret = sscanf(buf, "%u", &input);
1173         if (ret != 1)
1174                 return -EINVAL;
1175
1176         mutex_lock(&intel_pstate_driver_lock);
1177
1178         if (!driver_registered) {
1179                 mutex_unlock(&intel_pstate_driver_lock);
1180                 return -EAGAIN;
1181         }
1182
1183         mutex_lock(&intel_pstate_limits_lock);
1184
1185         update_turbo_state();
1186         if (limits->turbo_disabled) {
1187                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1188                 mutex_unlock(&intel_pstate_limits_lock);
1189                 mutex_unlock(&intel_pstate_driver_lock);
1190                 return -EPERM;
1191         }
1192
1193         limits->no_turbo = clamp_t(int, input, 0, 1);
1194
1195         mutex_unlock(&intel_pstate_limits_lock);
1196
1197         intel_pstate_update_policies();
1198
1199         mutex_unlock(&intel_pstate_driver_lock);
1200
1201         return count;
1202 }
1203
1204 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1205                                   const char *buf, size_t count)
1206 {
1207         unsigned int input;
1208         int ret;
1209
1210         ret = sscanf(buf, "%u", &input);
1211         if (ret != 1)
1212                 return -EINVAL;
1213
1214         mutex_lock(&intel_pstate_driver_lock);
1215
1216         if (!driver_registered) {
1217                 mutex_unlock(&intel_pstate_driver_lock);
1218                 return -EAGAIN;
1219         }
1220
1221         mutex_lock(&intel_pstate_limits_lock);
1222
1223         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1224         limits->max_perf_pct = min(limits->max_policy_pct,
1225                                    limits->max_sysfs_pct);
1226         limits->max_perf_pct = max(limits->min_policy_pct,
1227                                    limits->max_perf_pct);
1228         limits->max_perf_pct = max(limits->min_perf_pct,
1229                                    limits->max_perf_pct);
1230         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1231
1232         mutex_unlock(&intel_pstate_limits_lock);
1233
1234         intel_pstate_update_policies();
1235
1236         mutex_unlock(&intel_pstate_driver_lock);
1237
1238         return count;
1239 }
1240
1241 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1242                                   const char *buf, size_t count)
1243 {
1244         unsigned int input;
1245         int ret;
1246
1247         ret = sscanf(buf, "%u", &input);
1248         if (ret != 1)
1249                 return -EINVAL;
1250
1251         mutex_lock(&intel_pstate_driver_lock);
1252
1253         if (!driver_registered) {
1254                 mutex_unlock(&intel_pstate_driver_lock);
1255                 return -EAGAIN;
1256         }
1257
1258         mutex_lock(&intel_pstate_limits_lock);
1259
1260         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1261         limits->min_perf_pct = max(limits->min_policy_pct,
1262                                    limits->min_sysfs_pct);
1263         limits->min_perf_pct = min(limits->max_policy_pct,
1264                                    limits->min_perf_pct);
1265         limits->min_perf_pct = min(limits->max_perf_pct,
1266                                    limits->min_perf_pct);
1267         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1268
1269         mutex_unlock(&intel_pstate_limits_lock);
1270
1271         intel_pstate_update_policies();
1272
1273         mutex_unlock(&intel_pstate_driver_lock);
1274
1275         return count;
1276 }
1277
1278 show_one(max_perf_pct, max_perf_pct);
1279 show_one(min_perf_pct, min_perf_pct);
1280
1281 define_one_global_rw(status);
1282 define_one_global_rw(no_turbo);
1283 define_one_global_rw(max_perf_pct);
1284 define_one_global_rw(min_perf_pct);
1285 define_one_global_ro(turbo_pct);
1286 define_one_global_ro(num_pstates);
1287
1288 static struct attribute *intel_pstate_attributes[] = {
1289         &status.attr,
1290         &no_turbo.attr,
1291         &turbo_pct.attr,
1292         &num_pstates.attr,
1293         NULL
1294 };
1295
1296 static struct attribute_group intel_pstate_attr_group = {
1297         .attrs = intel_pstate_attributes,
1298 };
1299
1300 static void __init intel_pstate_sysfs_expose_params(void)
1301 {
1302         struct kobject *intel_pstate_kobject;
1303         int rc;
1304
1305         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1306                                                 &cpu_subsys.dev_root->kobj);
1307         if (WARN_ON(!intel_pstate_kobject))
1308                 return;
1309
1310         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1311         if (WARN_ON(rc))
1312                 return;
1313
1314         /*
1315          * If per cpu limits are enforced there are no global limits, so
1316          * return without creating max/min_perf_pct attributes
1317          */
1318         if (per_cpu_limits)
1319                 return;
1320
1321         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1322         WARN_ON(rc);
1323
1324         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1325         WARN_ON(rc);
1326
1327 }
1328 /************************** sysfs end ************************/
1329
1330 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1331 {
1332         /* First disable HWP notification interrupt as we don't process them */
1333         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1334                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1335
1336         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1337         cpudata->epp_policy = 0;
1338         if (cpudata->epp_default == -EINVAL)
1339                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1340 }
1341
1342 #define MSR_IA32_POWER_CTL_BIT_EE       19
1343
1344 /* Disable energy efficiency optimization */
1345 static void intel_pstate_disable_ee(int cpu)
1346 {
1347         u64 power_ctl;
1348         int ret;
1349
1350         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1351         if (ret)
1352                 return;
1353
1354         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1355                 pr_info("Disabling energy efficiency optimization\n");
1356                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1357                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1358         }
1359 }
1360
1361 static int atom_get_min_pstate(void)
1362 {
1363         u64 value;
1364
1365         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1366         return (value >> 8) & 0x7F;
1367 }
1368
1369 static int atom_get_max_pstate(void)
1370 {
1371         u64 value;
1372
1373         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1374         return (value >> 16) & 0x7F;
1375 }
1376
1377 static int atom_get_turbo_pstate(void)
1378 {
1379         u64 value;
1380
1381         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1382         return value & 0x7F;
1383 }
1384
1385 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1386 {
1387         u64 val;
1388         int32_t vid_fp;
1389         u32 vid;
1390
1391         val = (u64)pstate << 8;
1392         if (limits->no_turbo && !limits->turbo_disabled)
1393                 val |= (u64)1 << 32;
1394
1395         vid_fp = cpudata->vid.min + mul_fp(
1396                 int_tofp(pstate - cpudata->pstate.min_pstate),
1397                 cpudata->vid.ratio);
1398
1399         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1400         vid = ceiling_fp(vid_fp);
1401
1402         if (pstate > cpudata->pstate.max_pstate)
1403                 vid = cpudata->vid.turbo;
1404
1405         return val | vid;
1406 }
1407
1408 static int silvermont_get_scaling(void)
1409 {
1410         u64 value;
1411         int i;
1412         /* Defined in Table 35-6 from SDM (Sept 2015) */
1413         static int silvermont_freq_table[] = {
1414                 83300, 100000, 133300, 116700, 80000};
1415
1416         rdmsrl(MSR_FSB_FREQ, value);
1417         i = value & 0x7;
1418         WARN_ON(i > 4);
1419
1420         return silvermont_freq_table[i];
1421 }
1422
1423 static int airmont_get_scaling(void)
1424 {
1425         u64 value;
1426         int i;
1427         /* Defined in Table 35-10 from SDM (Sept 2015) */
1428         static int airmont_freq_table[] = {
1429                 83300, 100000, 133300, 116700, 80000,
1430                 93300, 90000, 88900, 87500};
1431
1432         rdmsrl(MSR_FSB_FREQ, value);
1433         i = value & 0xF;
1434         WARN_ON(i > 8);
1435
1436         return airmont_freq_table[i];
1437 }
1438
1439 static void atom_get_vid(struct cpudata *cpudata)
1440 {
1441         u64 value;
1442
1443         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1444         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1445         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1446         cpudata->vid.ratio = div_fp(
1447                 cpudata->vid.max - cpudata->vid.min,
1448                 int_tofp(cpudata->pstate.max_pstate -
1449                         cpudata->pstate.min_pstate));
1450
1451         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1452         cpudata->vid.turbo = value & 0x7f;
1453 }
1454
1455 static int core_get_min_pstate(void)
1456 {
1457         u64 value;
1458
1459         rdmsrl(MSR_PLATFORM_INFO, value);
1460         return (value >> 40) & 0xFF;
1461 }
1462
1463 static int core_get_max_pstate_physical(void)
1464 {
1465         u64 value;
1466
1467         rdmsrl(MSR_PLATFORM_INFO, value);
1468         return (value >> 8) & 0xFF;
1469 }
1470
1471 static int core_get_tdp_ratio(u64 plat_info)
1472 {
1473         /* Check how many TDP levels present */
1474         if (plat_info & 0x600000000) {
1475                 u64 tdp_ctrl;
1476                 u64 tdp_ratio;
1477                 int tdp_msr;
1478                 int err;
1479
1480                 /* Get the TDP level (0, 1, 2) to get ratios */
1481                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1482                 if (err)
1483                         return err;
1484
1485                 /* TDP MSR are continuous starting at 0x648 */
1486                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1487                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1488                 if (err)
1489                         return err;
1490
1491                 /* For level 1 and 2, bits[23:16] contain the ratio */
1492                 if (tdp_ctrl & 0x03)
1493                         tdp_ratio >>= 16;
1494
1495                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1496                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1497
1498                 return (int)tdp_ratio;
1499         }
1500
1501         return -ENXIO;
1502 }
1503
1504 static int core_get_max_pstate(void)
1505 {
1506         u64 tar;
1507         u64 plat_info;
1508         int max_pstate;
1509         int tdp_ratio;
1510         int err;
1511
1512         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1513         max_pstate = (plat_info >> 8) & 0xFF;
1514
1515         tdp_ratio = core_get_tdp_ratio(plat_info);
1516         if (tdp_ratio <= 0)
1517                 return max_pstate;
1518
1519         if (hwp_active) {
1520                 /* Turbo activation ratio is not used on HWP platforms */
1521                 return tdp_ratio;
1522         }
1523
1524         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1525         if (!err) {
1526                 int tar_levels;
1527
1528                 /* Do some sanity checking for safety */
1529                 tar_levels = tar & 0xff;
1530                 if (tdp_ratio - 1 == tar_levels) {
1531                         max_pstate = tar_levels;
1532                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1533                 }
1534         }
1535
1536         return max_pstate;
1537 }
1538
1539 static int core_get_turbo_pstate(void)
1540 {
1541         u64 value;
1542         int nont, ret;
1543
1544         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1545         nont = core_get_max_pstate();
1546         ret = (value) & 255;
1547         if (ret <= nont)
1548                 ret = nont;
1549         return ret;
1550 }
1551
1552 static inline int core_get_scaling(void)
1553 {
1554         return 100000;
1555 }
1556
1557 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1558 {
1559         u64 val;
1560
1561         val = (u64)pstate << 8;
1562         if (limits->no_turbo && !limits->turbo_disabled)
1563                 val |= (u64)1 << 32;
1564
1565         return val;
1566 }
1567
1568 static int knl_get_turbo_pstate(void)
1569 {
1570         u64 value;
1571         int nont, ret;
1572
1573         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1574         nont = core_get_max_pstate();
1575         ret = (((value) >> 8) & 0xFF);
1576         if (ret <= nont)
1577                 ret = nont;
1578         return ret;
1579 }
1580
1581 static struct cpu_defaults core_params = {
1582         .pid_policy = {
1583                 .sample_rate_ms = 10,
1584                 .deadband = 0,
1585                 .setpoint = 97,
1586                 .p_gain_pct = 20,
1587                 .d_gain_pct = 0,
1588                 .i_gain_pct = 0,
1589         },
1590         .funcs = {
1591                 .get_max = core_get_max_pstate,
1592                 .get_max_physical = core_get_max_pstate_physical,
1593                 .get_min = core_get_min_pstate,
1594                 .get_turbo = core_get_turbo_pstate,
1595                 .get_scaling = core_get_scaling,
1596                 .get_val = core_get_val,
1597                 .get_target_pstate = get_target_pstate_use_performance,
1598         },
1599 };
1600
1601 static const struct cpu_defaults silvermont_params = {
1602         .pid_policy = {
1603                 .sample_rate_ms = 10,
1604                 .deadband = 0,
1605                 .setpoint = 60,
1606                 .p_gain_pct = 14,
1607                 .d_gain_pct = 0,
1608                 .i_gain_pct = 4,
1609         },
1610         .funcs = {
1611                 .get_max = atom_get_max_pstate,
1612                 .get_max_physical = atom_get_max_pstate,
1613                 .get_min = atom_get_min_pstate,
1614                 .get_turbo = atom_get_turbo_pstate,
1615                 .get_val = atom_get_val,
1616                 .get_scaling = silvermont_get_scaling,
1617                 .get_vid = atom_get_vid,
1618                 .get_target_pstate = get_target_pstate_use_cpu_load,
1619         },
1620 };
1621
1622 static const struct cpu_defaults airmont_params = {
1623         .pid_policy = {
1624                 .sample_rate_ms = 10,
1625                 .deadband = 0,
1626                 .setpoint = 60,
1627                 .p_gain_pct = 14,
1628                 .d_gain_pct = 0,
1629                 .i_gain_pct = 4,
1630         },
1631         .funcs = {
1632                 .get_max = atom_get_max_pstate,
1633                 .get_max_physical = atom_get_max_pstate,
1634                 .get_min = atom_get_min_pstate,
1635                 .get_turbo = atom_get_turbo_pstate,
1636                 .get_val = atom_get_val,
1637                 .get_scaling = airmont_get_scaling,
1638                 .get_vid = atom_get_vid,
1639                 .get_target_pstate = get_target_pstate_use_cpu_load,
1640         },
1641 };
1642
1643 static const struct cpu_defaults knl_params = {
1644         .pid_policy = {
1645                 .sample_rate_ms = 10,
1646                 .deadband = 0,
1647                 .setpoint = 97,
1648                 .p_gain_pct = 20,
1649                 .d_gain_pct = 0,
1650                 .i_gain_pct = 0,
1651         },
1652         .funcs = {
1653                 .get_max = core_get_max_pstate,
1654                 .get_max_physical = core_get_max_pstate_physical,
1655                 .get_min = core_get_min_pstate,
1656                 .get_turbo = knl_get_turbo_pstate,
1657                 .get_scaling = core_get_scaling,
1658                 .get_val = core_get_val,
1659                 .get_target_pstate = get_target_pstate_use_performance,
1660         },
1661 };
1662
1663 static const struct cpu_defaults bxt_params = {
1664         .pid_policy = {
1665                 .sample_rate_ms = 10,
1666                 .deadband = 0,
1667                 .setpoint = 60,
1668                 .p_gain_pct = 14,
1669                 .d_gain_pct = 0,
1670                 .i_gain_pct = 4,
1671         },
1672         .funcs = {
1673                 .get_max = core_get_max_pstate,
1674                 .get_max_physical = core_get_max_pstate_physical,
1675                 .get_min = core_get_min_pstate,
1676                 .get_turbo = core_get_turbo_pstate,
1677                 .get_scaling = core_get_scaling,
1678                 .get_val = core_get_val,
1679                 .get_target_pstate = get_target_pstate_use_cpu_load,
1680         },
1681 };
1682
1683 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1684 {
1685         int max_perf = cpu->pstate.turbo_pstate;
1686         int max_perf_adj;
1687         int min_perf;
1688         struct perf_limits *perf_limits = limits;
1689
1690         if (limits->no_turbo || limits->turbo_disabled)
1691                 max_perf = cpu->pstate.max_pstate;
1692
1693         if (per_cpu_limits)
1694                 perf_limits = cpu->perf_limits;
1695
1696         /*
1697          * performance can be limited by user through sysfs, by cpufreq
1698          * policy, or by cpu specific default values determined through
1699          * experimentation.
1700          */
1701         max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1702         *max = clamp_t(int, max_perf_adj,
1703                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1704
1705         min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1706         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1707 }
1708
1709 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1710 {
1711         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1712         cpu->pstate.current_pstate = pstate;
1713         /*
1714          * Generally, there is no guarantee that this code will always run on
1715          * the CPU being updated, so force the register update to run on the
1716          * right CPU.
1717          */
1718         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1719                       pstate_funcs.get_val(cpu, pstate));
1720 }
1721
1722 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1723 {
1724         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1725 }
1726
1727 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1728 {
1729         int min_pstate, max_pstate;
1730
1731         update_turbo_state();
1732         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1733         intel_pstate_set_pstate(cpu, max_pstate);
1734 }
1735
1736 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1737 {
1738         cpu->pstate.min_pstate = pstate_funcs.get_min();
1739         cpu->pstate.max_pstate = pstate_funcs.get_max();
1740         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1741         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1742         cpu->pstate.scaling = pstate_funcs.get_scaling();
1743         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1744         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1745
1746         if (pstate_funcs.get_vid)
1747                 pstate_funcs.get_vid(cpu);
1748
1749         intel_pstate_set_min_pstate(cpu);
1750 }
1751
1752 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1753 {
1754         struct sample *sample = &cpu->sample;
1755
1756         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1757 }
1758
1759 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1760 {
1761         u64 aperf, mperf;
1762         unsigned long flags;
1763         u64 tsc;
1764
1765         local_irq_save(flags);
1766         rdmsrl(MSR_IA32_APERF, aperf);
1767         rdmsrl(MSR_IA32_MPERF, mperf);
1768         tsc = rdtsc();
1769         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1770                 local_irq_restore(flags);
1771                 return false;
1772         }
1773         local_irq_restore(flags);
1774
1775         cpu->last_sample_time = cpu->sample.time;
1776         cpu->sample.time = time;
1777         cpu->sample.aperf = aperf;
1778         cpu->sample.mperf = mperf;
1779         cpu->sample.tsc =  tsc;
1780         cpu->sample.aperf -= cpu->prev_aperf;
1781         cpu->sample.mperf -= cpu->prev_mperf;
1782         cpu->sample.tsc -= cpu->prev_tsc;
1783
1784         cpu->prev_aperf = aperf;
1785         cpu->prev_mperf = mperf;
1786         cpu->prev_tsc = tsc;
1787         /*
1788          * First time this function is invoked in a given cycle, all of the
1789          * previous sample data fields are equal to zero or stale and they must
1790          * be populated with meaningful numbers for things to work, so assume
1791          * that sample.time will always be reset before setting the utilization
1792          * update hook and make the caller skip the sample then.
1793          */
1794         return !!cpu->last_sample_time;
1795 }
1796
1797 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1798 {
1799         return mul_ext_fp(cpu->sample.core_avg_perf,
1800                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1801 }
1802
1803 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1804 {
1805         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1806                           cpu->sample.core_avg_perf);
1807 }
1808
1809 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1810 {
1811         struct sample *sample = &cpu->sample;
1812         int32_t busy_frac, boost;
1813         int target, avg_pstate;
1814
1815         busy_frac = div_fp(sample->mperf, sample->tsc);
1816
1817         boost = cpu->iowait_boost;
1818         cpu->iowait_boost >>= 1;
1819
1820         if (busy_frac < boost)
1821                 busy_frac = boost;
1822
1823         sample->busy_scaled = busy_frac * 100;
1824
1825         target = limits->no_turbo || limits->turbo_disabled ?
1826                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1827         target += target >> 2;
1828         target = mul_fp(target, busy_frac);
1829         if (target < cpu->pstate.min_pstate)
1830                 target = cpu->pstate.min_pstate;
1831
1832         /*
1833          * If the average P-state during the previous cycle was higher than the
1834          * current target, add 50% of the difference to the target to reduce
1835          * possible performance oscillations and offset possible performance
1836          * loss related to moving the workload from one CPU to another within
1837          * a package/module.
1838          */
1839         avg_pstate = get_avg_pstate(cpu);
1840         if (avg_pstate > target)
1841                 target += (avg_pstate - target) >> 1;
1842
1843         return target;
1844 }
1845
1846 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1847 {
1848         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1849         u64 duration_ns;
1850
1851         /*
1852          * perf_scaled is the ratio of the average P-state during the last
1853          * sampling period to the P-state requested last time (in percent).
1854          *
1855          * That measures the system's response to the previous P-state
1856          * selection.
1857          */
1858         max_pstate = cpu->pstate.max_pstate_physical;
1859         current_pstate = cpu->pstate.current_pstate;
1860         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1861                                div_fp(100 * max_pstate, current_pstate));
1862
1863         /*
1864          * Since our utilization update callback will not run unless we are
1865          * in C0, check if the actual elapsed time is significantly greater (3x)
1866          * than our sample interval.  If it is, then we were idle for a long
1867          * enough period of time to adjust our performance metric.
1868          */
1869         duration_ns = cpu->sample.time - cpu->last_sample_time;
1870         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1871                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1872                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1873         } else {
1874                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1875                 if (sample_ratio < int_tofp(1))
1876                         perf_scaled = 0;
1877         }
1878
1879         cpu->sample.busy_scaled = perf_scaled;
1880         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1881 }
1882
1883 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1884 {
1885         int max_perf, min_perf;
1886
1887         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1888         pstate = clamp_t(int, pstate, min_perf, max_perf);
1889         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1890         return pstate;
1891 }
1892
1893 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1894 {
1895         pstate = intel_pstate_prepare_request(cpu, pstate);
1896         if (pstate == cpu->pstate.current_pstate)
1897                 return;
1898
1899         cpu->pstate.current_pstate = pstate;
1900         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1901 }
1902
1903 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1904 {
1905         int from, target_pstate;
1906         struct sample *sample;
1907
1908         from = cpu->pstate.current_pstate;
1909
1910         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1911                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1912
1913         update_turbo_state();
1914
1915         intel_pstate_update_pstate(cpu, target_pstate);
1916
1917         sample = &cpu->sample;
1918         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1919                 fp_toint(sample->busy_scaled),
1920                 from,
1921                 cpu->pstate.current_pstate,
1922                 sample->mperf,
1923                 sample->aperf,
1924                 sample->tsc,
1925                 get_avg_frequency(cpu),
1926                 fp_toint(cpu->iowait_boost * 100));
1927 }
1928
1929 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1930                                      unsigned int flags)
1931 {
1932         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1933         u64 delta_ns;
1934
1935         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1936                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1937                         cpu->iowait_boost = int_tofp(1);
1938                 } else if (cpu->iowait_boost) {
1939                         /* Clear iowait_boost if the CPU may have been idle. */
1940                         delta_ns = time - cpu->last_update;
1941                         if (delta_ns > TICK_NSEC)
1942                                 cpu->iowait_boost = 0;
1943                 }
1944                 cpu->last_update = time;
1945         }
1946
1947         delta_ns = time - cpu->sample.time;
1948         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1949                 bool sample_taken = intel_pstate_sample(cpu, time);
1950
1951                 if (sample_taken) {
1952                         intel_pstate_calc_avg_perf(cpu);
1953                         if (!hwp_active)
1954                                 intel_pstate_adjust_busy_pstate(cpu);
1955                 }
1956         }
1957 }
1958
1959 #define ICPU(model, policy) \
1960         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1961                         (unsigned long)&policy }
1962
1963 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1964         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1965         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1966         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1967         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1968         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1969         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1970         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1971         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1972         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1973         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1974         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1975         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1976         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1977         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1978         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1979         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1980         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1981         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1982         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1983         {}
1984 };
1985 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1986
1987 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1988         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1989         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1990         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1991         {}
1992 };
1993
1994 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1995         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1996         {}
1997 };
1998
1999 static int intel_pstate_init_cpu(unsigned int cpunum)
2000 {
2001         struct cpudata *cpu;
2002
2003         cpu = all_cpu_data[cpunum];
2004
2005         if (!cpu) {
2006                 unsigned int size = sizeof(struct cpudata);
2007
2008                 if (per_cpu_limits)
2009                         size += sizeof(struct perf_limits);
2010
2011                 cpu = kzalloc(size, GFP_KERNEL);
2012                 if (!cpu)
2013                         return -ENOMEM;
2014
2015                 all_cpu_data[cpunum] = cpu;
2016                 if (per_cpu_limits)
2017                         cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2018
2019                 cpu->epp_default = -EINVAL;
2020                 cpu->epp_powersave = -EINVAL;
2021                 cpu->epp_saved = -EINVAL;
2022         }
2023
2024         cpu = all_cpu_data[cpunum];
2025
2026         cpu->cpu = cpunum;
2027
2028         if (hwp_active) {
2029                 const struct x86_cpu_id *id;
2030
2031                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2032                 if (id)
2033                         intel_pstate_disable_ee(cpunum);
2034
2035                 intel_pstate_hwp_enable(cpu);
2036                 pid_params.sample_rate_ms = 50;
2037                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2038         }
2039
2040         intel_pstate_get_cpu_pstates(cpu);
2041
2042         intel_pstate_busy_pid_reset(cpu);
2043
2044         pr_debug("controlling: cpu %d\n", cpunum);
2045
2046         return 0;
2047 }
2048
2049 static unsigned int intel_pstate_get(unsigned int cpu_num)
2050 {
2051         struct cpudata *cpu = all_cpu_data[cpu_num];
2052
2053         return cpu ? get_avg_frequency(cpu) : 0;
2054 }
2055
2056 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2057 {
2058         struct cpudata *cpu = all_cpu_data[cpu_num];
2059
2060         if (cpu->update_util_set)
2061                 return;
2062
2063         /* Prevent intel_pstate_update_util() from using stale data. */
2064         cpu->sample.time = 0;
2065         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2066                                      intel_pstate_update_util);
2067         cpu->update_util_set = true;
2068 }
2069
2070 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2071 {
2072         struct cpudata *cpu_data = all_cpu_data[cpu];
2073
2074         if (!cpu_data->update_util_set)
2075                 return;
2076
2077         cpufreq_remove_update_util_hook(cpu);
2078         cpu_data->update_util_set = false;
2079         synchronize_sched();
2080 }
2081
2082 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
2083 {
2084         limits->no_turbo = 0;
2085         limits->turbo_disabled = 0;
2086         limits->max_perf_pct = 100;
2087         limits->max_perf = int_ext_tofp(1);
2088         limits->min_perf_pct = 100;
2089         limits->min_perf = int_ext_tofp(1);
2090         limits->max_policy_pct = 100;
2091         limits->max_sysfs_pct = 100;
2092         limits->min_policy_pct = 0;
2093         limits->min_sysfs_pct = 0;
2094 }
2095
2096 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2097                                             struct perf_limits *limits)
2098 {
2099
2100         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2101                                               policy->cpuinfo.max_freq);
2102         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2103         if (policy->max == policy->min) {
2104                 limits->min_policy_pct = limits->max_policy_pct;
2105         } else {
2106                 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2107                                                       policy->cpuinfo.max_freq);
2108                 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2109                                                  0, 100);
2110         }
2111
2112         /* Normalize user input to [min_policy_pct, max_policy_pct] */
2113         limits->min_perf_pct = max(limits->min_policy_pct,
2114                                    limits->min_sysfs_pct);
2115         limits->min_perf_pct = min(limits->max_policy_pct,
2116                                    limits->min_perf_pct);
2117         limits->max_perf_pct = min(limits->max_policy_pct,
2118                                    limits->max_sysfs_pct);
2119         limits->max_perf_pct = max(limits->min_policy_pct,
2120                                    limits->max_perf_pct);
2121
2122         /* Make sure min_perf_pct <= max_perf_pct */
2123         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2124
2125         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2126         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2127         limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2128         limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2129
2130         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2131                  limits->max_perf_pct, limits->min_perf_pct);
2132 }
2133
2134 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2135 {
2136         struct cpudata *cpu;
2137         struct perf_limits *perf_limits = NULL;
2138
2139         if (!policy->cpuinfo.max_freq)
2140                 return -ENODEV;
2141
2142         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2143                  policy->cpuinfo.max_freq, policy->max);
2144
2145         cpu = all_cpu_data[policy->cpu];
2146         cpu->policy = policy->policy;
2147
2148         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2149             policy->max < policy->cpuinfo.max_freq &&
2150             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2151                 pr_debug("policy->max > max non turbo frequency\n");
2152                 policy->max = policy->cpuinfo.max_freq;
2153         }
2154
2155         if (per_cpu_limits)
2156                 perf_limits = cpu->perf_limits;
2157
2158         mutex_lock(&intel_pstate_limits_lock);
2159
2160         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2161                 if (!perf_limits) {
2162                         limits = &performance_limits;
2163                         perf_limits = limits;
2164                 }
2165                 if (policy->max >= policy->cpuinfo.max_freq &&
2166                     !limits->no_turbo) {
2167                         pr_debug("set performance\n");
2168                         intel_pstate_set_performance_limits(perf_limits);
2169                         goto out;
2170                 }
2171         } else {
2172                 pr_debug("set powersave\n");
2173                 if (!perf_limits) {
2174                         limits = &powersave_limits;
2175                         perf_limits = limits;
2176                 }
2177
2178         }
2179
2180         intel_pstate_update_perf_limits(policy, perf_limits);
2181  out:
2182         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2183                 /*
2184                  * NOHZ_FULL CPUs need this as the governor callback may not
2185                  * be invoked on them.
2186                  */
2187                 intel_pstate_clear_update_util_hook(policy->cpu);
2188                 intel_pstate_max_within_limits(cpu);
2189         }
2190
2191         intel_pstate_set_update_util_hook(policy->cpu);
2192
2193         intel_pstate_hwp_set_policy(policy);
2194
2195         mutex_unlock(&intel_pstate_limits_lock);
2196
2197         return 0;
2198 }
2199
2200 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2201 {
2202         struct cpudata *cpu = all_cpu_data[policy->cpu];
2203         struct perf_limits *perf_limits;
2204
2205         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2206                 perf_limits = &performance_limits;
2207         else
2208                 perf_limits = &powersave_limits;
2209
2210         update_turbo_state();
2211         policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2212                                         perf_limits->no_turbo ?
2213                                         cpu->pstate.max_freq :
2214                                         cpu->pstate.turbo_freq;
2215
2216         cpufreq_verify_within_cpu_limits(policy);
2217
2218         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2219             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2220                 return -EINVAL;
2221
2222         /* When per-CPU limits are used, sysfs limits are not used */
2223         if (!per_cpu_limits) {
2224                 unsigned int max_freq, min_freq;
2225
2226                 max_freq = policy->cpuinfo.max_freq *
2227                                                 limits->max_sysfs_pct / 100;
2228                 min_freq = policy->cpuinfo.max_freq *
2229                                                 limits->min_sysfs_pct / 100;
2230                 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2231         }
2232
2233         return 0;
2234 }
2235
2236 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2237 {
2238         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2239 }
2240
2241 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2242 {
2243         pr_debug("CPU %d exiting\n", policy->cpu);
2244
2245         intel_pstate_clear_update_util_hook(policy->cpu);
2246         if (hwp_active)
2247                 intel_pstate_hwp_save_state(policy);
2248         else
2249                 intel_cpufreq_stop_cpu(policy);
2250 }
2251
2252 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2253 {
2254         intel_pstate_exit_perf_limits(policy);
2255
2256         policy->fast_switch_possible = false;
2257
2258         return 0;
2259 }
2260
2261 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2262 {
2263         struct cpudata *cpu;
2264         int rc;
2265
2266         rc = intel_pstate_init_cpu(policy->cpu);
2267         if (rc)
2268                 return rc;
2269
2270         cpu = all_cpu_data[policy->cpu];
2271
2272         /*
2273          * We need sane value in the cpu->perf_limits, so inherit from global
2274          * perf_limits limits, which are seeded with values based on the
2275          * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2276          */
2277         if (per_cpu_limits)
2278                 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2279
2280         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2281         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2282
2283         /* cpuinfo and default policy values */
2284         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2285         update_turbo_state();
2286         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2287                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2288         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2289
2290         intel_pstate_init_acpi_perf_limits(policy);
2291         cpumask_set_cpu(policy->cpu, policy->cpus);
2292
2293         policy->fast_switch_possible = true;
2294
2295         return 0;
2296 }
2297
2298 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2299 {
2300         int ret = __intel_pstate_cpu_init(policy);
2301
2302         if (ret)
2303                 return ret;
2304
2305         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2306         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2307                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2308         else
2309                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2310
2311         return 0;
2312 }
2313
2314 static struct cpufreq_driver intel_pstate = {
2315         .flags          = CPUFREQ_CONST_LOOPS,
2316         .verify         = intel_pstate_verify_policy,
2317         .setpolicy      = intel_pstate_set_policy,
2318         .suspend        = intel_pstate_hwp_save_state,
2319         .resume         = intel_pstate_resume,
2320         .get            = intel_pstate_get,
2321         .init           = intel_pstate_cpu_init,
2322         .exit           = intel_pstate_cpu_exit,
2323         .stop_cpu       = intel_pstate_stop_cpu,
2324         .name           = "intel_pstate",
2325 };
2326
2327 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2328 {
2329         struct cpudata *cpu = all_cpu_data[policy->cpu];
2330         struct perf_limits *perf_limits = limits;
2331
2332         update_turbo_state();
2333         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2334                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2335
2336         cpufreq_verify_within_cpu_limits(policy);
2337
2338         if (per_cpu_limits)
2339                 perf_limits = cpu->perf_limits;
2340
2341         mutex_lock(&intel_pstate_limits_lock);
2342
2343         intel_pstate_update_perf_limits(policy, perf_limits);
2344
2345         mutex_unlock(&intel_pstate_limits_lock);
2346
2347         return 0;
2348 }
2349
2350 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2351                                                struct cpufreq_policy *policy,
2352                                                unsigned int target_freq)
2353 {
2354         unsigned int max_freq;
2355
2356         update_turbo_state();
2357
2358         max_freq = limits->no_turbo || limits->turbo_disabled ?
2359                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2360         policy->cpuinfo.max_freq = max_freq;
2361         if (policy->max > max_freq)
2362                 policy->max = max_freq;
2363
2364         if (target_freq > max_freq)
2365                 target_freq = max_freq;
2366
2367         return target_freq;
2368 }
2369
2370 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2371                                 unsigned int target_freq,
2372                                 unsigned int relation)
2373 {
2374         struct cpudata *cpu = all_cpu_data[policy->cpu];
2375         struct cpufreq_freqs freqs;
2376         int target_pstate;
2377
2378         freqs.old = policy->cur;
2379         freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2380
2381         cpufreq_freq_transition_begin(policy, &freqs);
2382         switch (relation) {
2383         case CPUFREQ_RELATION_L:
2384                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2385                 break;
2386         case CPUFREQ_RELATION_H:
2387                 target_pstate = freqs.new / cpu->pstate.scaling;
2388                 break;
2389         default:
2390                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2391                 break;
2392         }
2393         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2394         if (target_pstate != cpu->pstate.current_pstate) {
2395                 cpu->pstate.current_pstate = target_pstate;
2396                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2397                               pstate_funcs.get_val(cpu, target_pstate));
2398         }
2399         cpufreq_freq_transition_end(policy, &freqs, false);
2400
2401         return 0;
2402 }
2403
2404 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2405                                               unsigned int target_freq)
2406 {
2407         struct cpudata *cpu = all_cpu_data[policy->cpu];
2408         int target_pstate;
2409
2410         target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2411         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2412         intel_pstate_update_pstate(cpu, target_pstate);
2413         return target_freq;
2414 }
2415
2416 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2417 {
2418         int ret = __intel_pstate_cpu_init(policy);
2419
2420         if (ret)
2421                 return ret;
2422
2423         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2424         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2425         policy->cur = policy->cpuinfo.min_freq;
2426
2427         return 0;
2428 }
2429
2430 static struct cpufreq_driver intel_cpufreq = {
2431         .flags          = CPUFREQ_CONST_LOOPS,
2432         .verify         = intel_cpufreq_verify_policy,
2433         .target         = intel_cpufreq_target,
2434         .fast_switch    = intel_cpufreq_fast_switch,
2435         .init           = intel_cpufreq_cpu_init,
2436         .exit           = intel_pstate_cpu_exit,
2437         .stop_cpu       = intel_cpufreq_stop_cpu,
2438         .name           = "intel_cpufreq",
2439 };
2440
2441 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2442
2443 static void intel_pstate_driver_cleanup(void)
2444 {
2445         unsigned int cpu;
2446
2447         get_online_cpus();
2448         for_each_online_cpu(cpu) {
2449                 if (all_cpu_data[cpu]) {
2450                         if (intel_pstate_driver == &intel_pstate)
2451                                 intel_pstate_clear_update_util_hook(cpu);
2452
2453                         kfree(all_cpu_data[cpu]);
2454                         all_cpu_data[cpu] = NULL;
2455                 }
2456         }
2457         put_online_cpus();
2458 }
2459
2460 static int intel_pstate_register_driver(void)
2461 {
2462         int ret;
2463
2464         ret = cpufreq_register_driver(intel_pstate_driver);
2465         if (ret) {
2466                 intel_pstate_driver_cleanup();
2467                 return ret;
2468         }
2469
2470         mutex_lock(&intel_pstate_limits_lock);
2471         driver_registered = true;
2472         mutex_unlock(&intel_pstate_limits_lock);
2473
2474         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2475             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2476                 intel_pstate_debug_expose_params();
2477
2478         return 0;
2479 }
2480
2481 static int intel_pstate_unregister_driver(void)
2482 {
2483         if (hwp_active)
2484                 return -EBUSY;
2485
2486         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2487             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2488                 intel_pstate_debug_hide_params();
2489
2490         mutex_lock(&intel_pstate_limits_lock);
2491         driver_registered = false;
2492         mutex_unlock(&intel_pstate_limits_lock);
2493
2494         cpufreq_unregister_driver(intel_pstate_driver);
2495         intel_pstate_driver_cleanup();
2496
2497         return 0;
2498 }
2499
2500 static ssize_t intel_pstate_show_status(char *buf)
2501 {
2502         if (!driver_registered)
2503                 return sprintf(buf, "off\n");
2504
2505         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2506                                         "active" : "passive");
2507 }
2508
2509 static int intel_pstate_update_status(const char *buf, size_t size)
2510 {
2511         int ret;
2512
2513         if (size == 3 && !strncmp(buf, "off", size))
2514                 return driver_registered ?
2515                         intel_pstate_unregister_driver() : -EINVAL;
2516
2517         if (size == 6 && !strncmp(buf, "active", size)) {
2518                 if (driver_registered) {
2519                         if (intel_pstate_driver == &intel_pstate)
2520                                 return 0;
2521
2522                         ret = intel_pstate_unregister_driver();
2523                         if (ret)
2524                                 return ret;
2525                 }
2526
2527                 intel_pstate_driver = &intel_pstate;
2528                 return intel_pstate_register_driver();
2529         }
2530
2531         if (size == 7 && !strncmp(buf, "passive", size)) {
2532                 if (driver_registered) {
2533                         if (intel_pstate_driver != &intel_pstate)
2534                                 return 0;
2535
2536                         ret = intel_pstate_unregister_driver();
2537                         if (ret)
2538                                 return ret;
2539                 }
2540
2541                 intel_pstate_driver = &intel_cpufreq;
2542                 return intel_pstate_register_driver();
2543         }
2544
2545         return -EINVAL;
2546 }
2547
2548 static int no_load __initdata;
2549 static int no_hwp __initdata;
2550 static int hwp_only __initdata;
2551 static unsigned int force_load __initdata;
2552
2553 static int __init intel_pstate_msrs_not_valid(void)
2554 {
2555         if (!pstate_funcs.get_max() ||
2556             !pstate_funcs.get_min() ||
2557             !pstate_funcs.get_turbo())
2558                 return -ENODEV;
2559
2560         return 0;
2561 }
2562
2563 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2564 {
2565         pid_params.sample_rate_ms = policy->sample_rate_ms;
2566         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2567         pid_params.p_gain_pct = policy->p_gain_pct;
2568         pid_params.i_gain_pct = policy->i_gain_pct;
2569         pid_params.d_gain_pct = policy->d_gain_pct;
2570         pid_params.deadband = policy->deadband;
2571         pid_params.setpoint = policy->setpoint;
2572 }
2573
2574 #ifdef CONFIG_ACPI
2575 static void intel_pstate_use_acpi_profile(void)
2576 {
2577         if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2578                 pstate_funcs.get_target_pstate =
2579                                 get_target_pstate_use_cpu_load;
2580 }
2581 #else
2582 static void intel_pstate_use_acpi_profile(void)
2583 {
2584 }
2585 #endif
2586
2587 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2588 {
2589         pstate_funcs.get_max   = funcs->get_max;
2590         pstate_funcs.get_max_physical = funcs->get_max_physical;
2591         pstate_funcs.get_min   = funcs->get_min;
2592         pstate_funcs.get_turbo = funcs->get_turbo;
2593         pstate_funcs.get_scaling = funcs->get_scaling;
2594         pstate_funcs.get_val   = funcs->get_val;
2595         pstate_funcs.get_vid   = funcs->get_vid;
2596         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2597
2598         intel_pstate_use_acpi_profile();
2599 }
2600
2601 #ifdef CONFIG_ACPI
2602
2603 static bool __init intel_pstate_no_acpi_pss(void)
2604 {
2605         int i;
2606
2607         for_each_possible_cpu(i) {
2608                 acpi_status status;
2609                 union acpi_object *pss;
2610                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2611                 struct acpi_processor *pr = per_cpu(processors, i);
2612
2613                 if (!pr)
2614                         continue;
2615
2616                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2617                 if (ACPI_FAILURE(status))
2618                         continue;
2619
2620                 pss = buffer.pointer;
2621                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2622                         kfree(pss);
2623                         return false;
2624                 }
2625
2626                 kfree(pss);
2627         }
2628
2629         return true;
2630 }
2631
2632 static bool __init intel_pstate_has_acpi_ppc(void)
2633 {
2634         int i;
2635
2636         for_each_possible_cpu(i) {
2637                 struct acpi_processor *pr = per_cpu(processors, i);
2638
2639                 if (!pr)
2640                         continue;
2641                 if (acpi_has_method(pr->handle, "_PPC"))
2642                         return true;
2643         }
2644         return false;
2645 }
2646
2647 enum {
2648         PSS,
2649         PPC,
2650 };
2651
2652 struct hw_vendor_info {
2653         u16  valid;
2654         char oem_id[ACPI_OEM_ID_SIZE];
2655         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2656         int  oem_pwr_table;
2657 };
2658
2659 /* Hardware vendor-specific info that has its own power management modes */
2660 static struct hw_vendor_info vendor_info[] __initdata = {
2661         {1, "HP    ", "ProLiant", PSS},
2662         {1, "ORACLE", "X4-2    ", PPC},
2663         {1, "ORACLE", "X4-2L   ", PPC},
2664         {1, "ORACLE", "X4-2B   ", PPC},
2665         {1, "ORACLE", "X3-2    ", PPC},
2666         {1, "ORACLE", "X3-2L   ", PPC},
2667         {1, "ORACLE", "X3-2B   ", PPC},
2668         {1, "ORACLE", "X4470M2 ", PPC},
2669         {1, "ORACLE", "X4270M3 ", PPC},
2670         {1, "ORACLE", "X4270M2 ", PPC},
2671         {1, "ORACLE", "X4170M2 ", PPC},
2672         {1, "ORACLE", "X4170 M3", PPC},
2673         {1, "ORACLE", "X4275 M3", PPC},
2674         {1, "ORACLE", "X6-2    ", PPC},
2675         {1, "ORACLE", "Sudbury ", PPC},
2676         {0, "", ""},
2677 };
2678
2679 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2680 {
2681         struct acpi_table_header hdr;
2682         struct hw_vendor_info *v_info;
2683         const struct x86_cpu_id *id;
2684         u64 misc_pwr;
2685
2686         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2687         if (id) {
2688                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2689                 if ( misc_pwr & (1 << 8))
2690                         return true;
2691         }
2692
2693         if (acpi_disabled ||
2694             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2695                 return false;
2696
2697         for (v_info = vendor_info; v_info->valid; v_info++) {
2698                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2699                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2700                                                 ACPI_OEM_TABLE_ID_SIZE))
2701                         switch (v_info->oem_pwr_table) {
2702                         case PSS:
2703                                 return intel_pstate_no_acpi_pss();
2704                         case PPC:
2705                                 return intel_pstate_has_acpi_ppc() &&
2706                                         (!force_load);
2707                         }
2708         }
2709
2710         return false;
2711 }
2712
2713 static void intel_pstate_request_control_from_smm(void)
2714 {
2715         /*
2716          * It may be unsafe to request P-states control from SMM if _PPC support
2717          * has not been enabled.
2718          */
2719         if (acpi_ppc)
2720                 acpi_processor_pstate_control();
2721 }
2722 #else /* CONFIG_ACPI not enabled */
2723 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2724 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2725 static inline void intel_pstate_request_control_from_smm(void) {}
2726 #endif /* CONFIG_ACPI */
2727
2728 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2729         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2730         {}
2731 };
2732
2733 static int __init intel_pstate_init(void)
2734 {
2735         const struct x86_cpu_id *id;
2736         struct cpu_defaults *cpu_def;
2737         int rc = 0;
2738
2739         if (no_load)
2740                 return -ENODEV;
2741
2742         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2743                 copy_cpu_funcs(&core_params.funcs);
2744                 hwp_active++;
2745                 intel_pstate.attr = hwp_cpufreq_attrs;
2746                 goto hwp_cpu_matched;
2747         }
2748
2749         id = x86_match_cpu(intel_pstate_cpu_ids);
2750         if (!id)
2751                 return -ENODEV;
2752
2753         cpu_def = (struct cpu_defaults *)id->driver_data;
2754
2755         copy_pid_params(&cpu_def->pid_policy);
2756         copy_cpu_funcs(&cpu_def->funcs);
2757
2758         if (intel_pstate_msrs_not_valid())
2759                 return -ENODEV;
2760
2761 hwp_cpu_matched:
2762         /*
2763          * The Intel pstate driver will be ignored if the platform
2764          * firmware has its own power management modes.
2765          */
2766         if (intel_pstate_platform_pwr_mgmt_exists())
2767                 return -ENODEV;
2768
2769         if (!hwp_active && hwp_only)
2770                 return -ENOTSUPP;
2771
2772         pr_info("Intel P-state driver initializing\n");
2773
2774         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2775         if (!all_cpu_data)
2776                 return -ENOMEM;
2777
2778         intel_pstate_request_control_from_smm();
2779
2780         intel_pstate_sysfs_expose_params();
2781
2782         mutex_lock(&intel_pstate_driver_lock);
2783         rc = intel_pstate_register_driver();
2784         mutex_unlock(&intel_pstate_driver_lock);
2785         if (rc)
2786                 return rc;
2787
2788         if (hwp_active)
2789                 pr_info("HWP enabled\n");
2790
2791         return 0;
2792 }
2793 device_initcall(intel_pstate_init);
2794
2795 static int __init intel_pstate_setup(char *str)
2796 {
2797         if (!str)
2798                 return -EINVAL;
2799
2800         if (!strcmp(str, "disable")) {
2801                 no_load = 1;
2802         } else if (!strcmp(str, "passive")) {
2803                 pr_info("Passive mode enabled\n");
2804                 intel_pstate_driver = &intel_cpufreq;
2805                 no_hwp = 1;
2806         }
2807         if (!strcmp(str, "no_hwp")) {
2808                 pr_info("HWP disabled\n");
2809                 no_hwp = 1;
2810         }
2811         if (!strcmp(str, "force"))
2812                 force_load = 1;
2813         if (!strcmp(str, "hwp_only"))
2814                 hwp_only = 1;
2815         if (!strcmp(str, "per_cpu_perf_limits"))
2816                 per_cpu_limits = true;
2817
2818 #ifdef CONFIG_ACPI
2819         if (!strcmp(str, "support_acpi_ppc"))
2820                 acpi_ppc = true;
2821 #endif
2822
2823         return 0;
2824 }
2825 early_param("intel_pstate", intel_pstate_setup);
2826
2827 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2828 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2829 MODULE_LICENSE("GPL");