Merge tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 #define spi_pcpu_stats_totalize(ret, in, field)                         \
121 do {                                                                    \
122         int i;                                                          \
123         ret = 0;                                                        \
124         for_each_possible_cpu(i) {                                      \
125                 const struct spi_statistics *pcpu_stats;                \
126                 u64 inc;                                                \
127                 unsigned int start;                                     \
128                 pcpu_stats = per_cpu_ptr(in, i);                        \
129                 do {                                                    \
130                         start = u64_stats_fetch_begin_irq(              \
131                                         &pcpu_stats->syncp);            \
132                         inc = u64_stats_read(&pcpu_stats->field);       \
133                 } while (u64_stats_fetch_retry_irq(                     \
134                                         &pcpu_stats->syncp, start));    \
135                 ret += inc;                                             \
136         }                                                               \
137 } while (0)
138
139 #define SPI_STATISTICS_ATTRS(field, file)                               \
140 static ssize_t spi_controller_##field##_show(struct device *dev,        \
141                                              struct device_attribute *attr, \
142                                              char *buf)                 \
143 {                                                                       \
144         struct spi_controller *ctlr = container_of(dev,                 \
145                                          struct spi_controller, dev);   \
146         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }                                                                       \
148 static struct device_attribute dev_attr_spi_controller_##field = {      \
149         .attr = { .name = file, .mode = 0444 },                         \
150         .show = spi_controller_##field##_show,                          \
151 };                                                                      \
152 static ssize_t spi_device_##field##_show(struct device *dev,            \
153                                          struct device_attribute *attr, \
154                                         char *buf)                      \
155 {                                                                       \
156         struct spi_device *spi = to_spi_device(dev);                    \
157         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }                                                                       \
159 static struct device_attribute dev_attr_spi_device_##field = {          \
160         .attr = { .name = file, .mode = 0444 },                         \
161         .show = spi_device_##field##_show,                              \
162 }
163
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
166                                             char *buf)                  \
167 {                                                                       \
168         ssize_t len;                                                    \
169         u64 val;                                                        \
170         spi_pcpu_stats_totalize(val, stat, field);                      \
171         len = sysfs_emit(buf, "%llu\n", val);                           \
172         return len;                                                     \
173 }                                                                       \
174 SPI_STATISTICS_ATTRS(name, file)
175
176 #define SPI_STATISTICS_SHOW(field)                                      \
177         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
178                                  field)
179
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
194         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
195                                  "transfer_bytes_histo_" number,        \
196                                  transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216
217 static struct attribute *spi_dev_attrs[] = {
218         &dev_attr_modalias.attr,
219         &dev_attr_driver_override.attr,
220         NULL,
221 };
222
223 static const struct attribute_group spi_dev_group = {
224         .attrs  = spi_dev_attrs,
225 };
226
227 static struct attribute *spi_device_statistics_attrs[] = {
228         &dev_attr_spi_device_messages.attr,
229         &dev_attr_spi_device_transfers.attr,
230         &dev_attr_spi_device_errors.attr,
231         &dev_attr_spi_device_timedout.attr,
232         &dev_attr_spi_device_spi_sync.attr,
233         &dev_attr_spi_device_spi_sync_immediate.attr,
234         &dev_attr_spi_device_spi_async.attr,
235         &dev_attr_spi_device_bytes.attr,
236         &dev_attr_spi_device_bytes_rx.attr,
237         &dev_attr_spi_device_bytes_tx.attr,
238         &dev_attr_spi_device_transfer_bytes_histo0.attr,
239         &dev_attr_spi_device_transfer_bytes_histo1.attr,
240         &dev_attr_spi_device_transfer_bytes_histo2.attr,
241         &dev_attr_spi_device_transfer_bytes_histo3.attr,
242         &dev_attr_spi_device_transfer_bytes_histo4.attr,
243         &dev_attr_spi_device_transfer_bytes_histo5.attr,
244         &dev_attr_spi_device_transfer_bytes_histo6.attr,
245         &dev_attr_spi_device_transfer_bytes_histo7.attr,
246         &dev_attr_spi_device_transfer_bytes_histo8.attr,
247         &dev_attr_spi_device_transfer_bytes_histo9.attr,
248         &dev_attr_spi_device_transfer_bytes_histo10.attr,
249         &dev_attr_spi_device_transfer_bytes_histo11.attr,
250         &dev_attr_spi_device_transfer_bytes_histo12.attr,
251         &dev_attr_spi_device_transfer_bytes_histo13.attr,
252         &dev_attr_spi_device_transfer_bytes_histo14.attr,
253         &dev_attr_spi_device_transfer_bytes_histo15.attr,
254         &dev_attr_spi_device_transfer_bytes_histo16.attr,
255         &dev_attr_spi_device_transfers_split_maxsize.attr,
256         NULL,
257 };
258
259 static const struct attribute_group spi_device_statistics_group = {
260         .name  = "statistics",
261         .attrs  = spi_device_statistics_attrs,
262 };
263
264 static const struct attribute_group *spi_dev_groups[] = {
265         &spi_dev_group,
266         &spi_device_statistics_group,
267         NULL,
268 };
269
270 static struct attribute *spi_controller_statistics_attrs[] = {
271         &dev_attr_spi_controller_messages.attr,
272         &dev_attr_spi_controller_transfers.attr,
273         &dev_attr_spi_controller_errors.attr,
274         &dev_attr_spi_controller_timedout.attr,
275         &dev_attr_spi_controller_spi_sync.attr,
276         &dev_attr_spi_controller_spi_sync_immediate.attr,
277         &dev_attr_spi_controller_spi_async.attr,
278         &dev_attr_spi_controller_bytes.attr,
279         &dev_attr_spi_controller_bytes_rx.attr,
280         &dev_attr_spi_controller_bytes_tx.attr,
281         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298         &dev_attr_spi_controller_transfers_split_maxsize.attr,
299         NULL,
300 };
301
302 static const struct attribute_group spi_controller_statistics_group = {
303         .name  = "statistics",
304         .attrs  = spi_controller_statistics_attrs,
305 };
306
307 static const struct attribute_group *spi_master_groups[] = {
308         &spi_controller_statistics_group,
309         NULL,
310 };
311
312 static void spi_statistics_add_transfer_stats(struct spi_statistics *pcpu_stats,
313                                               struct spi_transfer *xfer,
314                                               struct spi_controller *ctlr)
315 {
316         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317         struct spi_statistics *stats;
318
319         if (l2len < 0)
320                 l2len = 0;
321
322         get_cpu();
323         stats = this_cpu_ptr(pcpu_stats);
324         u64_stats_update_begin(&stats->syncp);
325
326         u64_stats_inc(&stats->transfers);
327         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328
329         u64_stats_add(&stats->bytes, xfer->len);
330         if ((xfer->tx_buf) &&
331             (xfer->tx_buf != ctlr->dummy_tx))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if ((xfer->rx_buf) &&
334             (xfer->rx_buf != ctlr->dummy_rx))
335                 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337         u64_stats_update_end(&stats->syncp);
338         put_cpu();
339 }
340
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347         while (id->name[0]) {
348                 if (!strcmp(name, id->name))
349                         return id;
350                 id++;
351         }
352         return NULL;
353 }
354
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359         return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
363 static int spi_match_device(struct device *dev, struct device_driver *drv)
364 {
365         const struct spi_device *spi = to_spi_device(dev);
366         const struct spi_driver *sdrv = to_spi_driver(drv);
367
368         /* Check override first, and if set, only use the named driver */
369         if (spi->driver_override)
370                 return strcmp(spi->driver_override, drv->name) == 0;
371
372         /* Attempt an OF style match */
373         if (of_driver_match_device(dev, drv))
374                 return 1;
375
376         /* Then try ACPI */
377         if (acpi_driver_match_device(dev, drv))
378                 return 1;
379
380         if (sdrv->id_table)
381                 return !!spi_match_id(sdrv->id_table, spi->modalias);
382
383         return strcmp(spi->modalias, drv->name) == 0;
384 }
385
386 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
387 {
388         const struct spi_device         *spi = to_spi_device(dev);
389         int rc;
390
391         rc = acpi_device_uevent_modalias(dev, env);
392         if (rc != -ENODEV)
393                 return rc;
394
395         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
396 }
397
398 static int spi_probe(struct device *dev)
399 {
400         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
401         struct spi_device               *spi = to_spi_device(dev);
402         int ret;
403
404         ret = of_clk_set_defaults(dev->of_node, false);
405         if (ret)
406                 return ret;
407
408         if (dev->of_node) {
409                 spi->irq = of_irq_get(dev->of_node, 0);
410                 if (spi->irq == -EPROBE_DEFER)
411                         return -EPROBE_DEFER;
412                 if (spi->irq < 0)
413                         spi->irq = 0;
414         }
415
416         ret = dev_pm_domain_attach(dev, true);
417         if (ret)
418                 return ret;
419
420         if (sdrv->probe) {
421                 ret = sdrv->probe(spi);
422                 if (ret)
423                         dev_pm_domain_detach(dev, true);
424         }
425
426         return ret;
427 }
428
429 static void spi_remove(struct device *dev)
430 {
431         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
432
433         if (sdrv->remove)
434                 sdrv->remove(to_spi_device(dev));
435
436         dev_pm_domain_detach(dev, true);
437 }
438
439 static void spi_shutdown(struct device *dev)
440 {
441         if (dev->driver) {
442                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
443
444                 if (sdrv->shutdown)
445                         sdrv->shutdown(to_spi_device(dev));
446         }
447 }
448
449 struct bus_type spi_bus_type = {
450         .name           = "spi",
451         .dev_groups     = spi_dev_groups,
452         .match          = spi_match_device,
453         .uevent         = spi_uevent,
454         .probe          = spi_probe,
455         .remove         = spi_remove,
456         .shutdown       = spi_shutdown,
457 };
458 EXPORT_SYMBOL_GPL(spi_bus_type);
459
460 /**
461  * __spi_register_driver - register a SPI driver
462  * @owner: owner module of the driver to register
463  * @sdrv: the driver to register
464  * Context: can sleep
465  *
466  * Return: zero on success, else a negative error code.
467  */
468 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
469 {
470         sdrv->driver.owner = owner;
471         sdrv->driver.bus = &spi_bus_type;
472
473         /*
474          * For Really Good Reasons we use spi: modaliases not of:
475          * modaliases for DT so module autoloading won't work if we
476          * don't have a spi_device_id as well as a compatible string.
477          */
478         if (sdrv->driver.of_match_table) {
479                 const struct of_device_id *of_id;
480
481                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
482                      of_id++) {
483                         const char *of_name;
484
485                         /* Strip off any vendor prefix */
486                         of_name = strnchr(of_id->compatible,
487                                           sizeof(of_id->compatible), ',');
488                         if (of_name)
489                                 of_name++;
490                         else
491                                 of_name = of_id->compatible;
492
493                         if (sdrv->id_table) {
494                                 const struct spi_device_id *spi_id;
495
496                                 spi_id = spi_match_id(sdrv->id_table, of_name);
497                                 if (spi_id)
498                                         continue;
499                         } else {
500                                 if (strcmp(sdrv->driver.name, of_name) == 0)
501                                         continue;
502                         }
503
504                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
505                                 sdrv->driver.name, of_id->compatible);
506                 }
507         }
508
509         return driver_register(&sdrv->driver);
510 }
511 EXPORT_SYMBOL_GPL(__spi_register_driver);
512
513 /*-------------------------------------------------------------------------*/
514
515 /*
516  * SPI devices should normally not be created by SPI device drivers; that
517  * would make them board-specific.  Similarly with SPI controller drivers.
518  * Device registration normally goes into like arch/.../mach.../board-YYY.c
519  * with other readonly (flashable) information about mainboard devices.
520  */
521
522 struct boardinfo {
523         struct list_head        list;
524         struct spi_board_info   board_info;
525 };
526
527 static LIST_HEAD(board_list);
528 static LIST_HEAD(spi_controller_list);
529
530 /*
531  * Used to protect add/del operation for board_info list and
532  * spi_controller list, and their matching process also used
533  * to protect object of type struct idr.
534  */
535 static DEFINE_MUTEX(board_lock);
536
537 /**
538  * spi_alloc_device - Allocate a new SPI device
539  * @ctlr: Controller to which device is connected
540  * Context: can sleep
541  *
542  * Allows a driver to allocate and initialize a spi_device without
543  * registering it immediately.  This allows a driver to directly
544  * fill the spi_device with device parameters before calling
545  * spi_add_device() on it.
546  *
547  * Caller is responsible to call spi_add_device() on the returned
548  * spi_device structure to add it to the SPI controller.  If the caller
549  * needs to discard the spi_device without adding it, then it should
550  * call spi_dev_put() on it.
551  *
552  * Return: a pointer to the new device, or NULL.
553  */
554 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
555 {
556         struct spi_device       *spi;
557
558         if (!spi_controller_get(ctlr))
559                 return NULL;
560
561         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
562         if (!spi) {
563                 spi_controller_put(ctlr);
564                 return NULL;
565         }
566
567         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
568         if (!spi->pcpu_statistics) {
569                 kfree(spi);
570                 spi_controller_put(ctlr);
571                 return NULL;
572         }
573
574         spi->master = spi->controller = ctlr;
575         spi->dev.parent = &ctlr->dev;
576         spi->dev.bus = &spi_bus_type;
577         spi->dev.release = spidev_release;
578         spi->mode = ctlr->buswidth_override_bits;
579
580         device_initialize(&spi->dev);
581         return spi;
582 }
583 EXPORT_SYMBOL_GPL(spi_alloc_device);
584
585 static void spi_dev_set_name(struct spi_device *spi)
586 {
587         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
588
589         if (adev) {
590                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
591                 return;
592         }
593
594         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
595                      spi->chip_select);
596 }
597
598 static int spi_dev_check(struct device *dev, void *data)
599 {
600         struct spi_device *spi = to_spi_device(dev);
601         struct spi_device *new_spi = data;
602
603         if (spi->controller == new_spi->controller &&
604             spi->chip_select == new_spi->chip_select)
605                 return -EBUSY;
606         return 0;
607 }
608
609 static void spi_cleanup(struct spi_device *spi)
610 {
611         if (spi->controller->cleanup)
612                 spi->controller->cleanup(spi);
613 }
614
615 static int __spi_add_device(struct spi_device *spi)
616 {
617         struct spi_controller *ctlr = spi->controller;
618         struct device *dev = ctlr->dev.parent;
619         int status;
620
621         /*
622          * We need to make sure there's no other device with this
623          * chipselect **BEFORE** we call setup(), else we'll trash
624          * its configuration.
625          */
626         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
627         if (status) {
628                 dev_err(dev, "chipselect %d already in use\n",
629                                 spi->chip_select);
630                 return status;
631         }
632
633         /* Controller may unregister concurrently */
634         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
635             !device_is_registered(&ctlr->dev)) {
636                 return -ENODEV;
637         }
638
639         if (ctlr->cs_gpiods)
640                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
641
642         /*
643          * Drivers may modify this initial i/o setup, but will
644          * normally rely on the device being setup.  Devices
645          * using SPI_CS_HIGH can't coexist well otherwise...
646          */
647         status = spi_setup(spi);
648         if (status < 0) {
649                 dev_err(dev, "can't setup %s, status %d\n",
650                                 dev_name(&spi->dev), status);
651                 return status;
652         }
653
654         /* Device may be bound to an active driver when this returns */
655         status = device_add(&spi->dev);
656         if (status < 0) {
657                 dev_err(dev, "can't add %s, status %d\n",
658                                 dev_name(&spi->dev), status);
659                 spi_cleanup(spi);
660         } else {
661                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
662         }
663
664         return status;
665 }
666
667 /**
668  * spi_add_device - Add spi_device allocated with spi_alloc_device
669  * @spi: spi_device to register
670  *
671  * Companion function to spi_alloc_device.  Devices allocated with
672  * spi_alloc_device can be added onto the spi bus with this function.
673  *
674  * Return: 0 on success; negative errno on failure
675  */
676 int spi_add_device(struct spi_device *spi)
677 {
678         struct spi_controller *ctlr = spi->controller;
679         struct device *dev = ctlr->dev.parent;
680         int status;
681
682         /* Chipselects are numbered 0..max; validate. */
683         if (spi->chip_select >= ctlr->num_chipselect) {
684                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
685                         ctlr->num_chipselect);
686                 return -EINVAL;
687         }
688
689         /* Set the bus ID string */
690         spi_dev_set_name(spi);
691
692         mutex_lock(&ctlr->add_lock);
693         status = __spi_add_device(spi);
694         mutex_unlock(&ctlr->add_lock);
695         return status;
696 }
697 EXPORT_SYMBOL_GPL(spi_add_device);
698
699 static int spi_add_device_locked(struct spi_device *spi)
700 {
701         struct spi_controller *ctlr = spi->controller;
702         struct device *dev = ctlr->dev.parent;
703
704         /* Chipselects are numbered 0..max; validate. */
705         if (spi->chip_select >= ctlr->num_chipselect) {
706                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
707                         ctlr->num_chipselect);
708                 return -EINVAL;
709         }
710
711         /* Set the bus ID string */
712         spi_dev_set_name(spi);
713
714         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
715         return __spi_add_device(spi);
716 }
717
718 /**
719  * spi_new_device - instantiate one new SPI device
720  * @ctlr: Controller to which device is connected
721  * @chip: Describes the SPI device
722  * Context: can sleep
723  *
724  * On typical mainboards, this is purely internal; and it's not needed
725  * after board init creates the hard-wired devices.  Some development
726  * platforms may not be able to use spi_register_board_info though, and
727  * this is exported so that for example a USB or parport based adapter
728  * driver could add devices (which it would learn about out-of-band).
729  *
730  * Return: the new device, or NULL.
731  */
732 struct spi_device *spi_new_device(struct spi_controller *ctlr,
733                                   struct spi_board_info *chip)
734 {
735         struct spi_device       *proxy;
736         int                     status;
737
738         /*
739          * NOTE:  caller did any chip->bus_num checks necessary.
740          *
741          * Also, unless we change the return value convention to use
742          * error-or-pointer (not NULL-or-pointer), troubleshootability
743          * suggests syslogged diagnostics are best here (ugh).
744          */
745
746         proxy = spi_alloc_device(ctlr);
747         if (!proxy)
748                 return NULL;
749
750         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
751
752         proxy->chip_select = chip->chip_select;
753         proxy->max_speed_hz = chip->max_speed_hz;
754         proxy->mode = chip->mode;
755         proxy->irq = chip->irq;
756         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
757         proxy->dev.platform_data = (void *) chip->platform_data;
758         proxy->controller_data = chip->controller_data;
759         proxy->controller_state = NULL;
760
761         if (chip->swnode) {
762                 status = device_add_software_node(&proxy->dev, chip->swnode);
763                 if (status) {
764                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
765                                 chip->modalias, status);
766                         goto err_dev_put;
767                 }
768         }
769
770         status = spi_add_device(proxy);
771         if (status < 0)
772                 goto err_dev_put;
773
774         return proxy;
775
776 err_dev_put:
777         device_remove_software_node(&proxy->dev);
778         spi_dev_put(proxy);
779         return NULL;
780 }
781 EXPORT_SYMBOL_GPL(spi_new_device);
782
783 /**
784  * spi_unregister_device - unregister a single SPI device
785  * @spi: spi_device to unregister
786  *
787  * Start making the passed SPI device vanish. Normally this would be handled
788  * by spi_unregister_controller().
789  */
790 void spi_unregister_device(struct spi_device *spi)
791 {
792         if (!spi)
793                 return;
794
795         if (spi->dev.of_node) {
796                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
797                 of_node_put(spi->dev.of_node);
798         }
799         if (ACPI_COMPANION(&spi->dev))
800                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
801         device_remove_software_node(&spi->dev);
802         device_del(&spi->dev);
803         spi_cleanup(spi);
804         put_device(&spi->dev);
805 }
806 EXPORT_SYMBOL_GPL(spi_unregister_device);
807
808 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
809                                               struct spi_board_info *bi)
810 {
811         struct spi_device *dev;
812
813         if (ctlr->bus_num != bi->bus_num)
814                 return;
815
816         dev = spi_new_device(ctlr, bi);
817         if (!dev)
818                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
819                         bi->modalias);
820 }
821
822 /**
823  * spi_register_board_info - register SPI devices for a given board
824  * @info: array of chip descriptors
825  * @n: how many descriptors are provided
826  * Context: can sleep
827  *
828  * Board-specific early init code calls this (probably during arch_initcall)
829  * with segments of the SPI device table.  Any device nodes are created later,
830  * after the relevant parent SPI controller (bus_num) is defined.  We keep
831  * this table of devices forever, so that reloading a controller driver will
832  * not make Linux forget about these hard-wired devices.
833  *
834  * Other code can also call this, e.g. a particular add-on board might provide
835  * SPI devices through its expansion connector, so code initializing that board
836  * would naturally declare its SPI devices.
837  *
838  * The board info passed can safely be __initdata ... but be careful of
839  * any embedded pointers (platform_data, etc), they're copied as-is.
840  *
841  * Return: zero on success, else a negative error code.
842  */
843 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
844 {
845         struct boardinfo *bi;
846         int i;
847
848         if (!n)
849                 return 0;
850
851         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
852         if (!bi)
853                 return -ENOMEM;
854
855         for (i = 0; i < n; i++, bi++, info++) {
856                 struct spi_controller *ctlr;
857
858                 memcpy(&bi->board_info, info, sizeof(*info));
859
860                 mutex_lock(&board_lock);
861                 list_add_tail(&bi->list, &board_list);
862                 list_for_each_entry(ctlr, &spi_controller_list, list)
863                         spi_match_controller_to_boardinfo(ctlr,
864                                                           &bi->board_info);
865                 mutex_unlock(&board_lock);
866         }
867
868         return 0;
869 }
870
871 /*-------------------------------------------------------------------------*/
872
873 /* Core methods for SPI resource management */
874
875 /**
876  * spi_res_alloc - allocate a spi resource that is life-cycle managed
877  *                 during the processing of a spi_message while using
878  *                 spi_transfer_one
879  * @spi:     the spi device for which we allocate memory
880  * @release: the release code to execute for this resource
881  * @size:    size to alloc and return
882  * @gfp:     GFP allocation flags
883  *
884  * Return: the pointer to the allocated data
885  *
886  * This may get enhanced in the future to allocate from a memory pool
887  * of the @spi_device or @spi_controller to avoid repeated allocations.
888  */
889 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
890                            size_t size, gfp_t gfp)
891 {
892         struct spi_res *sres;
893
894         sres = kzalloc(sizeof(*sres) + size, gfp);
895         if (!sres)
896                 return NULL;
897
898         INIT_LIST_HEAD(&sres->entry);
899         sres->release = release;
900
901         return sres->data;
902 }
903
904 /**
905  * spi_res_free - free an spi resource
906  * @res: pointer to the custom data of a resource
907  */
908 static void spi_res_free(void *res)
909 {
910         struct spi_res *sres = container_of(res, struct spi_res, data);
911
912         if (!res)
913                 return;
914
915         WARN_ON(!list_empty(&sres->entry));
916         kfree(sres);
917 }
918
919 /**
920  * spi_res_add - add a spi_res to the spi_message
921  * @message: the spi message
922  * @res:     the spi_resource
923  */
924 static void spi_res_add(struct spi_message *message, void *res)
925 {
926         struct spi_res *sres = container_of(res, struct spi_res, data);
927
928         WARN_ON(!list_empty(&sres->entry));
929         list_add_tail(&sres->entry, &message->resources);
930 }
931
932 /**
933  * spi_res_release - release all spi resources for this message
934  * @ctlr:  the @spi_controller
935  * @message: the @spi_message
936  */
937 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
938 {
939         struct spi_res *res, *tmp;
940
941         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
942                 if (res->release)
943                         res->release(ctlr, message, res->data);
944
945                 list_del(&res->entry);
946
947                 kfree(res);
948         }
949 }
950
951 /*-------------------------------------------------------------------------*/
952
953 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
954 {
955         bool activate = enable;
956
957         /*
958          * Avoid calling into the driver (or doing delays) if the chip select
959          * isn't actually changing from the last time this was called.
960          */
961         if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
962                                 (!enable && spi->controller->last_cs != spi->chip_select)) &&
963             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
964                 return;
965
966         trace_spi_set_cs(spi, activate);
967
968         spi->controller->last_cs = enable ? spi->chip_select : -1;
969         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
970
971         if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
972                 spi_delay_exec(&spi->cs_hold, NULL);
973         }
974
975         if (spi->mode & SPI_CS_HIGH)
976                 enable = !enable;
977
978         if (spi->cs_gpiod) {
979                 if (!(spi->mode & SPI_NO_CS)) {
980                         /*
981                          * Historically ACPI has no means of the GPIO polarity and
982                          * thus the SPISerialBus() resource defines it on the per-chip
983                          * basis. In order to avoid a chain of negations, the GPIO
984                          * polarity is considered being Active High. Even for the cases
985                          * when _DSD() is involved (in the updated versions of ACPI)
986                          * the GPIO CS polarity must be defined Active High to avoid
987                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
988                          * into account.
989                          */
990                         if (has_acpi_companion(&spi->dev))
991                                 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
992                         else
993                                 /* Polarity handled by GPIO library */
994                                 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
995                 }
996                 /* Some SPI masters need both GPIO CS & slave_select */
997                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
998                     spi->controller->set_cs)
999                         spi->controller->set_cs(spi, !enable);
1000         } else if (spi->controller->set_cs) {
1001                 spi->controller->set_cs(spi, !enable);
1002         }
1003
1004         if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1005                 if (activate)
1006                         spi_delay_exec(&spi->cs_setup, NULL);
1007                 else
1008                         spi_delay_exec(&spi->cs_inactive, NULL);
1009         }
1010 }
1011
1012 #ifdef CONFIG_HAS_DMA
1013 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1014                 struct sg_table *sgt, void *buf, size_t len,
1015                 enum dma_data_direction dir)
1016 {
1017         const bool vmalloced_buf = is_vmalloc_addr(buf);
1018         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1019 #ifdef CONFIG_HIGHMEM
1020         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1021                                 (unsigned long)buf < (PKMAP_BASE +
1022                                         (LAST_PKMAP * PAGE_SIZE)));
1023 #else
1024         const bool kmap_buf = false;
1025 #endif
1026         int desc_len;
1027         int sgs;
1028         struct page *vm_page;
1029         struct scatterlist *sg;
1030         void *sg_buf;
1031         size_t min;
1032         int i, ret;
1033
1034         if (vmalloced_buf || kmap_buf) {
1035                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1036                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1037         } else if (virt_addr_valid(buf)) {
1038                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1039                 sgs = DIV_ROUND_UP(len, desc_len);
1040         } else {
1041                 return -EINVAL;
1042         }
1043
1044         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1045         if (ret != 0)
1046                 return ret;
1047
1048         sg = &sgt->sgl[0];
1049         for (i = 0; i < sgs; i++) {
1050
1051                 if (vmalloced_buf || kmap_buf) {
1052                         /*
1053                          * Next scatterlist entry size is the minimum between
1054                          * the desc_len and the remaining buffer length that
1055                          * fits in a page.
1056                          */
1057                         min = min_t(size_t, desc_len,
1058                                     min_t(size_t, len,
1059                                           PAGE_SIZE - offset_in_page(buf)));
1060                         if (vmalloced_buf)
1061                                 vm_page = vmalloc_to_page(buf);
1062                         else
1063                                 vm_page = kmap_to_page(buf);
1064                         if (!vm_page) {
1065                                 sg_free_table(sgt);
1066                                 return -ENOMEM;
1067                         }
1068                         sg_set_page(sg, vm_page,
1069                                     min, offset_in_page(buf));
1070                 } else {
1071                         min = min_t(size_t, len, desc_len);
1072                         sg_buf = buf;
1073                         sg_set_buf(sg, sg_buf, min);
1074                 }
1075
1076                 buf += min;
1077                 len -= min;
1078                 sg = sg_next(sg);
1079         }
1080
1081         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1082         if (!ret)
1083                 ret = -ENOMEM;
1084         if (ret < 0) {
1085                 sg_free_table(sgt);
1086                 return ret;
1087         }
1088
1089         sgt->nents = ret;
1090
1091         return 0;
1092 }
1093
1094 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1095                    struct sg_table *sgt, enum dma_data_direction dir)
1096 {
1097         if (sgt->orig_nents) {
1098                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1099                 sg_free_table(sgt);
1100         }
1101 }
1102
1103 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1104 {
1105         struct device *tx_dev, *rx_dev;
1106         struct spi_transfer *xfer;
1107         int ret;
1108
1109         if (!ctlr->can_dma)
1110                 return 0;
1111
1112         if (ctlr->dma_tx)
1113                 tx_dev = ctlr->dma_tx->device->dev;
1114         else if (ctlr->dma_map_dev)
1115                 tx_dev = ctlr->dma_map_dev;
1116         else
1117                 tx_dev = ctlr->dev.parent;
1118
1119         if (ctlr->dma_rx)
1120                 rx_dev = ctlr->dma_rx->device->dev;
1121         else if (ctlr->dma_map_dev)
1122                 rx_dev = ctlr->dma_map_dev;
1123         else
1124                 rx_dev = ctlr->dev.parent;
1125
1126         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1127                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1128                         continue;
1129
1130                 if (xfer->tx_buf != NULL) {
1131                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1132                                           (void *)xfer->tx_buf, xfer->len,
1133                                           DMA_TO_DEVICE);
1134                         if (ret != 0)
1135                                 return ret;
1136                 }
1137
1138                 if (xfer->rx_buf != NULL) {
1139                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1140                                           xfer->rx_buf, xfer->len,
1141                                           DMA_FROM_DEVICE);
1142                         if (ret != 0) {
1143                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1144                                               DMA_TO_DEVICE);
1145                                 return ret;
1146                         }
1147                 }
1148         }
1149
1150         ctlr->cur_msg_mapped = true;
1151
1152         return 0;
1153 }
1154
1155 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1156 {
1157         struct spi_transfer *xfer;
1158         struct device *tx_dev, *rx_dev;
1159
1160         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1161                 return 0;
1162
1163         if (ctlr->dma_tx)
1164                 tx_dev = ctlr->dma_tx->device->dev;
1165         else if (ctlr->dma_map_dev)
1166                 tx_dev = ctlr->dma_map_dev;
1167         else
1168                 tx_dev = ctlr->dev.parent;
1169
1170         if (ctlr->dma_rx)
1171                 rx_dev = ctlr->dma_rx->device->dev;
1172         else if (ctlr->dma_map_dev)
1173                 rx_dev = ctlr->dma_map_dev;
1174         else
1175                 rx_dev = ctlr->dev.parent;
1176
1177         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1179                         continue;
1180
1181                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1182                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1183         }
1184
1185         ctlr->cur_msg_mapped = false;
1186
1187         return 0;
1188 }
1189 #else /* !CONFIG_HAS_DMA */
1190 static inline int __spi_map_msg(struct spi_controller *ctlr,
1191                                 struct spi_message *msg)
1192 {
1193         return 0;
1194 }
1195
1196 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1197                                   struct spi_message *msg)
1198 {
1199         return 0;
1200 }
1201 #endif /* !CONFIG_HAS_DMA */
1202
1203 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1204                                 struct spi_message *msg)
1205 {
1206         struct spi_transfer *xfer;
1207
1208         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1209                 /*
1210                  * Restore the original value of tx_buf or rx_buf if they are
1211                  * NULL.
1212                  */
1213                 if (xfer->tx_buf == ctlr->dummy_tx)
1214                         xfer->tx_buf = NULL;
1215                 if (xfer->rx_buf == ctlr->dummy_rx)
1216                         xfer->rx_buf = NULL;
1217         }
1218
1219         return __spi_unmap_msg(ctlr, msg);
1220 }
1221
1222 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224         struct spi_transfer *xfer;
1225         void *tmp;
1226         unsigned int max_tx, max_rx;
1227
1228         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1229                 && !(msg->spi->mode & SPI_3WIRE)) {
1230                 max_tx = 0;
1231                 max_rx = 0;
1232
1233                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1234                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1235                             !xfer->tx_buf)
1236                                 max_tx = max(xfer->len, max_tx);
1237                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1238                             !xfer->rx_buf)
1239                                 max_rx = max(xfer->len, max_rx);
1240                 }
1241
1242                 if (max_tx) {
1243                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1244                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1245                         if (!tmp)
1246                                 return -ENOMEM;
1247                         ctlr->dummy_tx = tmp;
1248                 }
1249
1250                 if (max_rx) {
1251                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1252                                        GFP_KERNEL | GFP_DMA);
1253                         if (!tmp)
1254                                 return -ENOMEM;
1255                         ctlr->dummy_rx = tmp;
1256                 }
1257
1258                 if (max_tx || max_rx) {
1259                         list_for_each_entry(xfer, &msg->transfers,
1260                                             transfer_list) {
1261                                 if (!xfer->len)
1262                                         continue;
1263                                 if (!xfer->tx_buf)
1264                                         xfer->tx_buf = ctlr->dummy_tx;
1265                                 if (!xfer->rx_buf)
1266                                         xfer->rx_buf = ctlr->dummy_rx;
1267                         }
1268                 }
1269         }
1270
1271         return __spi_map_msg(ctlr, msg);
1272 }
1273
1274 static int spi_transfer_wait(struct spi_controller *ctlr,
1275                              struct spi_message *msg,
1276                              struct spi_transfer *xfer)
1277 {
1278         struct spi_statistics *statm = ctlr->pcpu_statistics;
1279         struct spi_statistics *stats = msg->spi->pcpu_statistics;
1280         u32 speed_hz = xfer->speed_hz;
1281         unsigned long long ms;
1282
1283         if (spi_controller_is_slave(ctlr)) {
1284                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1285                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1286                         return -EINTR;
1287                 }
1288         } else {
1289                 if (!speed_hz)
1290                         speed_hz = 100000;
1291
1292                 /*
1293                  * For each byte we wait for 8 cycles of the SPI clock.
1294                  * Since speed is defined in Hz and we want milliseconds,
1295                  * use respective multiplier, but before the division,
1296                  * otherwise we may get 0 for short transfers.
1297                  */
1298                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1299                 do_div(ms, speed_hz);
1300
1301                 /*
1302                  * Increase it twice and add 200 ms tolerance, use
1303                  * predefined maximum in case of overflow.
1304                  */
1305                 ms += ms + 200;
1306                 if (ms > UINT_MAX)
1307                         ms = UINT_MAX;
1308
1309                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1310                                                  msecs_to_jiffies(ms));
1311
1312                 if (ms == 0) {
1313                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1314                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1315                         dev_err(&msg->spi->dev,
1316                                 "SPI transfer timed out\n");
1317                         return -ETIMEDOUT;
1318                 }
1319         }
1320
1321         return 0;
1322 }
1323
1324 static void _spi_transfer_delay_ns(u32 ns)
1325 {
1326         if (!ns)
1327                 return;
1328         if (ns <= NSEC_PER_USEC) {
1329                 ndelay(ns);
1330         } else {
1331                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1332
1333                 if (us <= 10)
1334                         udelay(us);
1335                 else
1336                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1337         }
1338 }
1339
1340 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1341 {
1342         u32 delay = _delay->value;
1343         u32 unit = _delay->unit;
1344         u32 hz;
1345
1346         if (!delay)
1347                 return 0;
1348
1349         switch (unit) {
1350         case SPI_DELAY_UNIT_USECS:
1351                 delay *= NSEC_PER_USEC;
1352                 break;
1353         case SPI_DELAY_UNIT_NSECS:
1354                 /* Nothing to do here */
1355                 break;
1356         case SPI_DELAY_UNIT_SCK:
1357                 /* Clock cycles need to be obtained from spi_transfer */
1358                 if (!xfer)
1359                         return -EINVAL;
1360                 /*
1361                  * If there is unknown effective speed, approximate it
1362                  * by underestimating with half of the requested hz.
1363                  */
1364                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1365                 if (!hz)
1366                         return -EINVAL;
1367
1368                 /* Convert delay to nanoseconds */
1369                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1370                 break;
1371         default:
1372                 return -EINVAL;
1373         }
1374
1375         return delay;
1376 }
1377 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1378
1379 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1380 {
1381         int delay;
1382
1383         might_sleep();
1384
1385         if (!_delay)
1386                 return -EINVAL;
1387
1388         delay = spi_delay_to_ns(_delay, xfer);
1389         if (delay < 0)
1390                 return delay;
1391
1392         _spi_transfer_delay_ns(delay);
1393
1394         return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(spi_delay_exec);
1397
1398 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1399                                           struct spi_transfer *xfer)
1400 {
1401         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1402         u32 delay = xfer->cs_change_delay.value;
1403         u32 unit = xfer->cs_change_delay.unit;
1404         int ret;
1405
1406         /* Return early on "fast" mode - for everything but USECS */
1407         if (!delay) {
1408                 if (unit == SPI_DELAY_UNIT_USECS)
1409                         _spi_transfer_delay_ns(default_delay_ns);
1410                 return;
1411         }
1412
1413         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1414         if (ret) {
1415                 dev_err_once(&msg->spi->dev,
1416                              "Use of unsupported delay unit %i, using default of %luus\n",
1417                              unit, default_delay_ns / NSEC_PER_USEC);
1418                 _spi_transfer_delay_ns(default_delay_ns);
1419         }
1420 }
1421
1422 /*
1423  * spi_transfer_one_message - Default implementation of transfer_one_message()
1424  *
1425  * This is a standard implementation of transfer_one_message() for
1426  * drivers which implement a transfer_one() operation.  It provides
1427  * standard handling of delays and chip select management.
1428  */
1429 static int spi_transfer_one_message(struct spi_controller *ctlr,
1430                                     struct spi_message *msg)
1431 {
1432         struct spi_transfer *xfer;
1433         bool keep_cs = false;
1434         int ret = 0;
1435         struct spi_statistics *statm = ctlr->pcpu_statistics;
1436         struct spi_statistics *stats = msg->spi->pcpu_statistics;
1437
1438         spi_set_cs(msg->spi, true, false);
1439
1440         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1441         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1442
1443         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1444                 trace_spi_transfer_start(msg, xfer);
1445
1446                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1447                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1448
1449                 if (!ctlr->ptp_sts_supported) {
1450                         xfer->ptp_sts_word_pre = 0;
1451                         ptp_read_system_prets(xfer->ptp_sts);
1452                 }
1453
1454                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1455                         reinit_completion(&ctlr->xfer_completion);
1456
1457 fallback_pio:
1458                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1459                         if (ret < 0) {
1460                                 if (ctlr->cur_msg_mapped &&
1461                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1462                                         __spi_unmap_msg(ctlr, msg);
1463                                         ctlr->fallback = true;
1464                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1465                                         goto fallback_pio;
1466                                 }
1467
1468                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1469                                                                errors);
1470                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1471                                                                errors);
1472                                 dev_err(&msg->spi->dev,
1473                                         "SPI transfer failed: %d\n", ret);
1474                                 goto out;
1475                         }
1476
1477                         if (ret > 0) {
1478                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1479                                 if (ret < 0)
1480                                         msg->status = ret;
1481                         }
1482                 } else {
1483                         if (xfer->len)
1484                                 dev_err(&msg->spi->dev,
1485                                         "Bufferless transfer has length %u\n",
1486                                         xfer->len);
1487                 }
1488
1489                 if (!ctlr->ptp_sts_supported) {
1490                         ptp_read_system_postts(xfer->ptp_sts);
1491                         xfer->ptp_sts_word_post = xfer->len;
1492                 }
1493
1494                 trace_spi_transfer_stop(msg, xfer);
1495
1496                 if (msg->status != -EINPROGRESS)
1497                         goto out;
1498
1499                 spi_transfer_delay_exec(xfer);
1500
1501                 if (xfer->cs_change) {
1502                         if (list_is_last(&xfer->transfer_list,
1503                                          &msg->transfers)) {
1504                                 keep_cs = true;
1505                         } else {
1506                                 spi_set_cs(msg->spi, false, false);
1507                                 _spi_transfer_cs_change_delay(msg, xfer);
1508                                 spi_set_cs(msg->spi, true, false);
1509                         }
1510                 }
1511
1512                 msg->actual_length += xfer->len;
1513         }
1514
1515 out:
1516         if (ret != 0 || !keep_cs)
1517                 spi_set_cs(msg->spi, false, false);
1518
1519         if (msg->status == -EINPROGRESS)
1520                 msg->status = ret;
1521
1522         if (msg->status && ctlr->handle_err)
1523                 ctlr->handle_err(ctlr, msg);
1524
1525         spi_finalize_current_message(ctlr);
1526
1527         return ret;
1528 }
1529
1530 /**
1531  * spi_finalize_current_transfer - report completion of a transfer
1532  * @ctlr: the controller reporting completion
1533  *
1534  * Called by SPI drivers using the core transfer_one_message()
1535  * implementation to notify it that the current interrupt driven
1536  * transfer has finished and the next one may be scheduled.
1537  */
1538 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1539 {
1540         complete(&ctlr->xfer_completion);
1541 }
1542 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1543
1544 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1545 {
1546         if (ctlr->auto_runtime_pm) {
1547                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1548                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1549         }
1550 }
1551
1552 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1553                 struct spi_message *msg, bool was_busy)
1554 {
1555         struct spi_transfer *xfer;
1556         int ret;
1557
1558         if (!was_busy && ctlr->auto_runtime_pm) {
1559                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1560                 if (ret < 0) {
1561                         pm_runtime_put_noidle(ctlr->dev.parent);
1562                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1563                                 ret);
1564                         return ret;
1565                 }
1566         }
1567
1568         if (!was_busy)
1569                 trace_spi_controller_busy(ctlr);
1570
1571         if (!was_busy && ctlr->prepare_transfer_hardware) {
1572                 ret = ctlr->prepare_transfer_hardware(ctlr);
1573                 if (ret) {
1574                         dev_err(&ctlr->dev,
1575                                 "failed to prepare transfer hardware: %d\n",
1576                                 ret);
1577
1578                         if (ctlr->auto_runtime_pm)
1579                                 pm_runtime_put(ctlr->dev.parent);
1580
1581                         msg->status = ret;
1582                         spi_finalize_current_message(ctlr);
1583
1584                         return ret;
1585                 }
1586         }
1587
1588         trace_spi_message_start(msg);
1589
1590         if (ctlr->prepare_message) {
1591                 ret = ctlr->prepare_message(ctlr, msg);
1592                 if (ret) {
1593                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1594                                 ret);
1595                         msg->status = ret;
1596                         spi_finalize_current_message(ctlr);
1597                         return ret;
1598                 }
1599                 msg->prepared = true;
1600         }
1601
1602         ret = spi_map_msg(ctlr, msg);
1603         if (ret) {
1604                 msg->status = ret;
1605                 spi_finalize_current_message(ctlr);
1606                 return ret;
1607         }
1608
1609         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1610                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611                         xfer->ptp_sts_word_pre = 0;
1612                         ptp_read_system_prets(xfer->ptp_sts);
1613                 }
1614         }
1615
1616         /*
1617          * Drivers implementation of transfer_one_message() must arrange for
1618          * spi_finalize_current_message() to get called. Most drivers will do
1619          * this in the calling context, but some don't. For those cases, a
1620          * completion is used to guarantee that this function does not return
1621          * until spi_finalize_current_message() is done accessing
1622          * ctlr->cur_msg.
1623          * Use of the following two flags enable to opportunistically skip the
1624          * use of the completion since its use involves expensive spin locks.
1625          * In case of a race with the context that calls
1626          * spi_finalize_current_message() the completion will always be used,
1627          * due to strict ordering of these flags using barriers.
1628          */
1629         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1630         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1631         reinit_completion(&ctlr->cur_msg_completion);
1632         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1633
1634         ret = ctlr->transfer_one_message(ctlr, msg);
1635         if (ret) {
1636                 dev_err(&ctlr->dev,
1637                         "failed to transfer one message from queue\n");
1638                 return ret;
1639         }
1640
1641         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1642         smp_mb(); /* See spi_finalize_current_message()... */
1643         if (READ_ONCE(ctlr->cur_msg_incomplete))
1644                 wait_for_completion(&ctlr->cur_msg_completion);
1645
1646         return 0;
1647 }
1648
1649 /**
1650  * __spi_pump_messages - function which processes spi message queue
1651  * @ctlr: controller to process queue for
1652  * @in_kthread: true if we are in the context of the message pump thread
1653  *
1654  * This function checks if there is any spi message in the queue that
1655  * needs processing and if so call out to the driver to initialize hardware
1656  * and transfer each message.
1657  *
1658  * Note that it is called both from the kthread itself and also from
1659  * inside spi_sync(); the queue extraction handling at the top of the
1660  * function should deal with this safely.
1661  */
1662 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1663 {
1664         struct spi_message *msg;
1665         bool was_busy = false;
1666         unsigned long flags;
1667         int ret;
1668
1669         /* Take the IO mutex */
1670         mutex_lock(&ctlr->io_mutex);
1671
1672         /* Lock queue */
1673         spin_lock_irqsave(&ctlr->queue_lock, flags);
1674
1675         /* Make sure we are not already running a message */
1676         if (ctlr->cur_msg)
1677                 goto out_unlock;
1678
1679         /* Check if the queue is idle */
1680         if (list_empty(&ctlr->queue) || !ctlr->running) {
1681                 if (!ctlr->busy)
1682                         goto out_unlock;
1683
1684                 /* Defer any non-atomic teardown to the thread */
1685                 if (!in_kthread) {
1686                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1687                             !ctlr->unprepare_transfer_hardware) {
1688                                 spi_idle_runtime_pm(ctlr);
1689                                 ctlr->busy = false;
1690                                 ctlr->queue_empty = true;
1691                                 trace_spi_controller_idle(ctlr);
1692                         } else {
1693                                 kthread_queue_work(ctlr->kworker,
1694                                                    &ctlr->pump_messages);
1695                         }
1696                         goto out_unlock;
1697                 }
1698
1699                 ctlr->busy = false;
1700                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1701
1702                 kfree(ctlr->dummy_rx);
1703                 ctlr->dummy_rx = NULL;
1704                 kfree(ctlr->dummy_tx);
1705                 ctlr->dummy_tx = NULL;
1706                 if (ctlr->unprepare_transfer_hardware &&
1707                     ctlr->unprepare_transfer_hardware(ctlr))
1708                         dev_err(&ctlr->dev,
1709                                 "failed to unprepare transfer hardware\n");
1710                 spi_idle_runtime_pm(ctlr);
1711                 trace_spi_controller_idle(ctlr);
1712
1713                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1714                 ctlr->queue_empty = true;
1715                 goto out_unlock;
1716         }
1717
1718         /* Extract head of queue */
1719         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1720         ctlr->cur_msg = msg;
1721
1722         list_del_init(&msg->queue);
1723         if (ctlr->busy)
1724                 was_busy = true;
1725         else
1726                 ctlr->busy = true;
1727         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1728
1729         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1730         if (!ret)
1731                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1732
1733         ctlr->cur_msg = NULL;
1734         ctlr->fallback = false;
1735
1736         mutex_unlock(&ctlr->io_mutex);
1737
1738         /* Prod the scheduler in case transfer_one() was busy waiting */
1739         if (!ret)
1740                 cond_resched();
1741         return;
1742
1743 out_unlock:
1744         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1745         mutex_unlock(&ctlr->io_mutex);
1746 }
1747
1748 /**
1749  * spi_pump_messages - kthread work function which processes spi message queue
1750  * @work: pointer to kthread work struct contained in the controller struct
1751  */
1752 static void spi_pump_messages(struct kthread_work *work)
1753 {
1754         struct spi_controller *ctlr =
1755                 container_of(work, struct spi_controller, pump_messages);
1756
1757         __spi_pump_messages(ctlr, true);
1758 }
1759
1760 /**
1761  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1762  * @ctlr: Pointer to the spi_controller structure of the driver
1763  * @xfer: Pointer to the transfer being timestamped
1764  * @progress: How many words (not bytes) have been transferred so far
1765  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1766  *            transfer, for less jitter in time measurement. Only compatible
1767  *            with PIO drivers. If true, must follow up with
1768  *            spi_take_timestamp_post or otherwise system will crash.
1769  *            WARNING: for fully predictable results, the CPU frequency must
1770  *            also be under control (governor).
1771  *
1772  * This is a helper for drivers to collect the beginning of the TX timestamp
1773  * for the requested byte from the SPI transfer. The frequency with which this
1774  * function must be called (once per word, once for the whole transfer, once
1775  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1776  * greater than or equal to the requested byte at the time of the call. The
1777  * timestamp is only taken once, at the first such call. It is assumed that
1778  * the driver advances its @tx buffer pointer monotonically.
1779  */
1780 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1781                             struct spi_transfer *xfer,
1782                             size_t progress, bool irqs_off)
1783 {
1784         if (!xfer->ptp_sts)
1785                 return;
1786
1787         if (xfer->timestamped)
1788                 return;
1789
1790         if (progress > xfer->ptp_sts_word_pre)
1791                 return;
1792
1793         /* Capture the resolution of the timestamp */
1794         xfer->ptp_sts_word_pre = progress;
1795
1796         if (irqs_off) {
1797                 local_irq_save(ctlr->irq_flags);
1798                 preempt_disable();
1799         }
1800
1801         ptp_read_system_prets(xfer->ptp_sts);
1802 }
1803 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1804
1805 /**
1806  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1807  * @ctlr: Pointer to the spi_controller structure of the driver
1808  * @xfer: Pointer to the transfer being timestamped
1809  * @progress: How many words (not bytes) have been transferred so far
1810  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1811  *
1812  * This is a helper for drivers to collect the end of the TX timestamp for
1813  * the requested byte from the SPI transfer. Can be called with an arbitrary
1814  * frequency: only the first call where @tx exceeds or is equal to the
1815  * requested word will be timestamped.
1816  */
1817 void spi_take_timestamp_post(struct spi_controller *ctlr,
1818                              struct spi_transfer *xfer,
1819                              size_t progress, bool irqs_off)
1820 {
1821         if (!xfer->ptp_sts)
1822                 return;
1823
1824         if (xfer->timestamped)
1825                 return;
1826
1827         if (progress < xfer->ptp_sts_word_post)
1828                 return;
1829
1830         ptp_read_system_postts(xfer->ptp_sts);
1831
1832         if (irqs_off) {
1833                 local_irq_restore(ctlr->irq_flags);
1834                 preempt_enable();
1835         }
1836
1837         /* Capture the resolution of the timestamp */
1838         xfer->ptp_sts_word_post = progress;
1839
1840         xfer->timestamped = true;
1841 }
1842 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1843
1844 /**
1845  * spi_set_thread_rt - set the controller to pump at realtime priority
1846  * @ctlr: controller to boost priority of
1847  *
1848  * This can be called because the controller requested realtime priority
1849  * (by setting the ->rt value before calling spi_register_controller()) or
1850  * because a device on the bus said that its transfers needed realtime
1851  * priority.
1852  *
1853  * NOTE: at the moment if any device on a bus says it needs realtime then
1854  * the thread will be at realtime priority for all transfers on that
1855  * controller.  If this eventually becomes a problem we may see if we can
1856  * find a way to boost the priority only temporarily during relevant
1857  * transfers.
1858  */
1859 static void spi_set_thread_rt(struct spi_controller *ctlr)
1860 {
1861         dev_info(&ctlr->dev,
1862                 "will run message pump with realtime priority\n");
1863         sched_set_fifo(ctlr->kworker->task);
1864 }
1865
1866 static int spi_init_queue(struct spi_controller *ctlr)
1867 {
1868         ctlr->running = false;
1869         ctlr->busy = false;
1870         ctlr->queue_empty = true;
1871
1872         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1873         if (IS_ERR(ctlr->kworker)) {
1874                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1875                 return PTR_ERR(ctlr->kworker);
1876         }
1877
1878         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1879
1880         /*
1881          * Controller config will indicate if this controller should run the
1882          * message pump with high (realtime) priority to reduce the transfer
1883          * latency on the bus by minimising the delay between a transfer
1884          * request and the scheduling of the message pump thread. Without this
1885          * setting the message pump thread will remain at default priority.
1886          */
1887         if (ctlr->rt)
1888                 spi_set_thread_rt(ctlr);
1889
1890         return 0;
1891 }
1892
1893 /**
1894  * spi_get_next_queued_message() - called by driver to check for queued
1895  * messages
1896  * @ctlr: the controller to check for queued messages
1897  *
1898  * If there are more messages in the queue, the next message is returned from
1899  * this call.
1900  *
1901  * Return: the next message in the queue, else NULL if the queue is empty.
1902  */
1903 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1904 {
1905         struct spi_message *next;
1906         unsigned long flags;
1907
1908         /* Get a pointer to the next message, if any */
1909         spin_lock_irqsave(&ctlr->queue_lock, flags);
1910         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1911                                         queue);
1912         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913
1914         return next;
1915 }
1916 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1917
1918 /**
1919  * spi_finalize_current_message() - the current message is complete
1920  * @ctlr: the controller to return the message to
1921  *
1922  * Called by the driver to notify the core that the message in the front of the
1923  * queue is complete and can be removed from the queue.
1924  */
1925 void spi_finalize_current_message(struct spi_controller *ctlr)
1926 {
1927         struct spi_transfer *xfer;
1928         struct spi_message *mesg;
1929         int ret;
1930
1931         mesg = ctlr->cur_msg;
1932
1933         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1934                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1935                         ptp_read_system_postts(xfer->ptp_sts);
1936                         xfer->ptp_sts_word_post = xfer->len;
1937                 }
1938         }
1939
1940         if (unlikely(ctlr->ptp_sts_supported))
1941                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1942                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1943
1944         spi_unmap_msg(ctlr, mesg);
1945
1946         /*
1947          * In the prepare_messages callback the SPI bus has the opportunity
1948          * to split a transfer to smaller chunks.
1949          *
1950          * Release the split transfers here since spi_map_msg() is done on
1951          * the split transfers.
1952          */
1953         spi_res_release(ctlr, mesg);
1954
1955         if (mesg->prepared && ctlr->unprepare_message) {
1956                 ret = ctlr->unprepare_message(ctlr, mesg);
1957                 if (ret) {
1958                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1959                                 ret);
1960                 }
1961         }
1962
1963         mesg->prepared = false;
1964
1965         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
1966         smp_mb(); /* See __spi_pump_transfer_message()... */
1967         if (READ_ONCE(ctlr->cur_msg_need_completion))
1968                 complete(&ctlr->cur_msg_completion);
1969
1970         trace_spi_message_done(mesg);
1971
1972         mesg->state = NULL;
1973         if (mesg->complete)
1974                 mesg->complete(mesg->context);
1975 }
1976 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1977
1978 static int spi_start_queue(struct spi_controller *ctlr)
1979 {
1980         unsigned long flags;
1981
1982         spin_lock_irqsave(&ctlr->queue_lock, flags);
1983
1984         if (ctlr->running || ctlr->busy) {
1985                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1986                 return -EBUSY;
1987         }
1988
1989         ctlr->running = true;
1990         ctlr->cur_msg = NULL;
1991         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1992
1993         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1994
1995         return 0;
1996 }
1997
1998 static int spi_stop_queue(struct spi_controller *ctlr)
1999 {
2000         unsigned long flags;
2001         unsigned limit = 500;
2002         int ret = 0;
2003
2004         spin_lock_irqsave(&ctlr->queue_lock, flags);
2005
2006         /*
2007          * This is a bit lame, but is optimized for the common execution path.
2008          * A wait_queue on the ctlr->busy could be used, but then the common
2009          * execution path (pump_messages) would be required to call wake_up or
2010          * friends on every SPI message. Do this instead.
2011          */
2012         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2013                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2014                 usleep_range(10000, 11000);
2015                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2016         }
2017
2018         if (!list_empty(&ctlr->queue) || ctlr->busy)
2019                 ret = -EBUSY;
2020         else
2021                 ctlr->running = false;
2022
2023         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2024
2025         if (ret) {
2026                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2027                 return ret;
2028         }
2029         return ret;
2030 }
2031
2032 static int spi_destroy_queue(struct spi_controller *ctlr)
2033 {
2034         int ret;
2035
2036         ret = spi_stop_queue(ctlr);
2037
2038         /*
2039          * kthread_flush_worker will block until all work is done.
2040          * If the reason that stop_queue timed out is that the work will never
2041          * finish, then it does no good to call flush/stop thread, so
2042          * return anyway.
2043          */
2044         if (ret) {
2045                 dev_err(&ctlr->dev, "problem destroying queue\n");
2046                 return ret;
2047         }
2048
2049         kthread_destroy_worker(ctlr->kworker);
2050
2051         return 0;
2052 }
2053
2054 static int __spi_queued_transfer(struct spi_device *spi,
2055                                  struct spi_message *msg,
2056                                  bool need_pump)
2057 {
2058         struct spi_controller *ctlr = spi->controller;
2059         unsigned long flags;
2060
2061         spin_lock_irqsave(&ctlr->queue_lock, flags);
2062
2063         if (!ctlr->running) {
2064                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2065                 return -ESHUTDOWN;
2066         }
2067         msg->actual_length = 0;
2068         msg->status = -EINPROGRESS;
2069
2070         list_add_tail(&msg->queue, &ctlr->queue);
2071         ctlr->queue_empty = false;
2072         if (!ctlr->busy && need_pump)
2073                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2074
2075         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076         return 0;
2077 }
2078
2079 /**
2080  * spi_queued_transfer - transfer function for queued transfers
2081  * @spi: spi device which is requesting transfer
2082  * @msg: spi message which is to handled is queued to driver queue
2083  *
2084  * Return: zero on success, else a negative error code.
2085  */
2086 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2087 {
2088         return __spi_queued_transfer(spi, msg, true);
2089 }
2090
2091 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2092 {
2093         int ret;
2094
2095         ctlr->transfer = spi_queued_transfer;
2096         if (!ctlr->transfer_one_message)
2097                 ctlr->transfer_one_message = spi_transfer_one_message;
2098
2099         /* Initialize and start queue */
2100         ret = spi_init_queue(ctlr);
2101         if (ret) {
2102                 dev_err(&ctlr->dev, "problem initializing queue\n");
2103                 goto err_init_queue;
2104         }
2105         ctlr->queued = true;
2106         ret = spi_start_queue(ctlr);
2107         if (ret) {
2108                 dev_err(&ctlr->dev, "problem starting queue\n");
2109                 goto err_start_queue;
2110         }
2111
2112         return 0;
2113
2114 err_start_queue:
2115         spi_destroy_queue(ctlr);
2116 err_init_queue:
2117         return ret;
2118 }
2119
2120 /**
2121  * spi_flush_queue - Send all pending messages in the queue from the callers'
2122  *                   context
2123  * @ctlr: controller to process queue for
2124  *
2125  * This should be used when one wants to ensure all pending messages have been
2126  * sent before doing something. Is used by the spi-mem code to make sure SPI
2127  * memory operations do not preempt regular SPI transfers that have been queued
2128  * before the spi-mem operation.
2129  */
2130 void spi_flush_queue(struct spi_controller *ctlr)
2131 {
2132         if (ctlr->transfer == spi_queued_transfer)
2133                 __spi_pump_messages(ctlr, false);
2134 }
2135
2136 /*-------------------------------------------------------------------------*/
2137
2138 #if defined(CONFIG_OF)
2139 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2140                            struct device_node *nc)
2141 {
2142         u32 value;
2143         int rc;
2144
2145         /* Mode (clock phase/polarity/etc.) */
2146         if (of_property_read_bool(nc, "spi-cpha"))
2147                 spi->mode |= SPI_CPHA;
2148         if (of_property_read_bool(nc, "spi-cpol"))
2149                 spi->mode |= SPI_CPOL;
2150         if (of_property_read_bool(nc, "spi-3wire"))
2151                 spi->mode |= SPI_3WIRE;
2152         if (of_property_read_bool(nc, "spi-lsb-first"))
2153                 spi->mode |= SPI_LSB_FIRST;
2154         if (of_property_read_bool(nc, "spi-cs-high"))
2155                 spi->mode |= SPI_CS_HIGH;
2156
2157         /* Device DUAL/QUAD mode */
2158         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2159                 switch (value) {
2160                 case 0:
2161                         spi->mode |= SPI_NO_TX;
2162                         break;
2163                 case 1:
2164                         break;
2165                 case 2:
2166                         spi->mode |= SPI_TX_DUAL;
2167                         break;
2168                 case 4:
2169                         spi->mode |= SPI_TX_QUAD;
2170                         break;
2171                 case 8:
2172                         spi->mode |= SPI_TX_OCTAL;
2173                         break;
2174                 default:
2175                         dev_warn(&ctlr->dev,
2176                                 "spi-tx-bus-width %d not supported\n",
2177                                 value);
2178                         break;
2179                 }
2180         }
2181
2182         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2183                 switch (value) {
2184                 case 0:
2185                         spi->mode |= SPI_NO_RX;
2186                         break;
2187                 case 1:
2188                         break;
2189                 case 2:
2190                         spi->mode |= SPI_RX_DUAL;
2191                         break;
2192                 case 4:
2193                         spi->mode |= SPI_RX_QUAD;
2194                         break;
2195                 case 8:
2196                         spi->mode |= SPI_RX_OCTAL;
2197                         break;
2198                 default:
2199                         dev_warn(&ctlr->dev,
2200                                 "spi-rx-bus-width %d not supported\n",
2201                                 value);
2202                         break;
2203                 }
2204         }
2205
2206         if (spi_controller_is_slave(ctlr)) {
2207                 if (!of_node_name_eq(nc, "slave")) {
2208                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2209                                 nc);
2210                         return -EINVAL;
2211                 }
2212                 return 0;
2213         }
2214
2215         /* Device address */
2216         rc = of_property_read_u32(nc, "reg", &value);
2217         if (rc) {
2218                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2219                         nc, rc);
2220                 return rc;
2221         }
2222         spi->chip_select = value;
2223
2224         /* Device speed */
2225         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2226                 spi->max_speed_hz = value;
2227
2228         return 0;
2229 }
2230
2231 static struct spi_device *
2232 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2233 {
2234         struct spi_device *spi;
2235         int rc;
2236
2237         /* Alloc an spi_device */
2238         spi = spi_alloc_device(ctlr);
2239         if (!spi) {
2240                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2241                 rc = -ENOMEM;
2242                 goto err_out;
2243         }
2244
2245         /* Select device driver */
2246         rc = of_modalias_node(nc, spi->modalias,
2247                                 sizeof(spi->modalias));
2248         if (rc < 0) {
2249                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2250                 goto err_out;
2251         }
2252
2253         rc = of_spi_parse_dt(ctlr, spi, nc);
2254         if (rc)
2255                 goto err_out;
2256
2257         /* Store a pointer to the node in the device structure */
2258         of_node_get(nc);
2259         spi->dev.of_node = nc;
2260         spi->dev.fwnode = of_fwnode_handle(nc);
2261
2262         /* Register the new device */
2263         rc = spi_add_device(spi);
2264         if (rc) {
2265                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2266                 goto err_of_node_put;
2267         }
2268
2269         return spi;
2270
2271 err_of_node_put:
2272         of_node_put(nc);
2273 err_out:
2274         spi_dev_put(spi);
2275         return ERR_PTR(rc);
2276 }
2277
2278 /**
2279  * of_register_spi_devices() - Register child devices onto the SPI bus
2280  * @ctlr:       Pointer to spi_controller device
2281  *
2282  * Registers an spi_device for each child node of controller node which
2283  * represents a valid SPI slave.
2284  */
2285 static void of_register_spi_devices(struct spi_controller *ctlr)
2286 {
2287         struct spi_device *spi;
2288         struct device_node *nc;
2289
2290         if (!ctlr->dev.of_node)
2291                 return;
2292
2293         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2294                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2295                         continue;
2296                 spi = of_register_spi_device(ctlr, nc);
2297                 if (IS_ERR(spi)) {
2298                         dev_warn(&ctlr->dev,
2299                                  "Failed to create SPI device for %pOF\n", nc);
2300                         of_node_clear_flag(nc, OF_POPULATED);
2301                 }
2302         }
2303 }
2304 #else
2305 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2306 #endif
2307
2308 /**
2309  * spi_new_ancillary_device() - Register ancillary SPI device
2310  * @spi:         Pointer to the main SPI device registering the ancillary device
2311  * @chip_select: Chip Select of the ancillary device
2312  *
2313  * Register an ancillary SPI device; for example some chips have a chip-select
2314  * for normal device usage and another one for setup/firmware upload.
2315  *
2316  * This may only be called from main SPI device's probe routine.
2317  *
2318  * Return: 0 on success; negative errno on failure
2319  */
2320 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2321                                              u8 chip_select)
2322 {
2323         struct spi_device *ancillary;
2324         int rc = 0;
2325
2326         /* Alloc an spi_device */
2327         ancillary = spi_alloc_device(spi->controller);
2328         if (!ancillary) {
2329                 rc = -ENOMEM;
2330                 goto err_out;
2331         }
2332
2333         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2334
2335         /* Use provided chip-select for ancillary device */
2336         ancillary->chip_select = chip_select;
2337
2338         /* Take over SPI mode/speed from SPI main device */
2339         ancillary->max_speed_hz = spi->max_speed_hz;
2340         ancillary->mode = spi->mode;
2341
2342         /* Register the new device */
2343         rc = spi_add_device_locked(ancillary);
2344         if (rc) {
2345                 dev_err(&spi->dev, "failed to register ancillary device\n");
2346                 goto err_out;
2347         }
2348
2349         return ancillary;
2350
2351 err_out:
2352         spi_dev_put(ancillary);
2353         return ERR_PTR(rc);
2354 }
2355 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2356
2357 #ifdef CONFIG_ACPI
2358 struct acpi_spi_lookup {
2359         struct spi_controller   *ctlr;
2360         u32                     max_speed_hz;
2361         u32                     mode;
2362         int                     irq;
2363         u8                      bits_per_word;
2364         u8                      chip_select;
2365         int                     n;
2366         int                     index;
2367 };
2368
2369 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2370 {
2371         struct acpi_resource_spi_serialbus *sb;
2372         int *count = data;
2373
2374         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2375                 return 1;
2376
2377         sb = &ares->data.spi_serial_bus;
2378         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2379                 return 1;
2380
2381         *count = *count + 1;
2382
2383         return 1;
2384 }
2385
2386 /**
2387  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2388  * @adev:       ACPI device
2389  *
2390  * Returns the number of SpiSerialBus resources in the ACPI-device's
2391  * resource-list; or a negative error code.
2392  */
2393 int acpi_spi_count_resources(struct acpi_device *adev)
2394 {
2395         LIST_HEAD(r);
2396         int count = 0;
2397         int ret;
2398
2399         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2400         if (ret < 0)
2401                 return ret;
2402
2403         acpi_dev_free_resource_list(&r);
2404
2405         return count;
2406 }
2407 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2408
2409 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2410                                             struct acpi_spi_lookup *lookup)
2411 {
2412         const union acpi_object *obj;
2413
2414         if (!x86_apple_machine)
2415                 return;
2416
2417         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2418             && obj->buffer.length >= 4)
2419                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2420
2421         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2422             && obj->buffer.length == 8)
2423                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2424
2425         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2426             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2427                 lookup->mode |= SPI_LSB_FIRST;
2428
2429         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2430             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2431                 lookup->mode |= SPI_CPOL;
2432
2433         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2434             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2435                 lookup->mode |= SPI_CPHA;
2436 }
2437
2438 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2439
2440 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2441 {
2442         struct acpi_spi_lookup *lookup = data;
2443         struct spi_controller *ctlr = lookup->ctlr;
2444
2445         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2446                 struct acpi_resource_spi_serialbus *sb;
2447                 acpi_handle parent_handle;
2448                 acpi_status status;
2449
2450                 sb = &ares->data.spi_serial_bus;
2451                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2452
2453                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2454                                 return 1;
2455
2456                         status = acpi_get_handle(NULL,
2457                                                  sb->resource_source.string_ptr,
2458                                                  &parent_handle);
2459
2460                         if (ACPI_FAILURE(status))
2461                                 return -ENODEV;
2462
2463                         if (ctlr) {
2464                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2465                                         return -ENODEV;
2466                         } else {
2467                                 struct acpi_device *adev;
2468
2469                                 adev = acpi_fetch_acpi_dev(parent_handle);
2470                                 if (!adev)
2471                                         return -ENODEV;
2472
2473                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2474                                 if (!ctlr)
2475                                         return -EPROBE_DEFER;
2476
2477                                 lookup->ctlr = ctlr;
2478                         }
2479
2480                         /*
2481                          * ACPI DeviceSelection numbering is handled by the
2482                          * host controller driver in Windows and can vary
2483                          * from driver to driver. In Linux we always expect
2484                          * 0 .. max - 1 so we need to ask the driver to
2485                          * translate between the two schemes.
2486                          */
2487                         if (ctlr->fw_translate_cs) {
2488                                 int cs = ctlr->fw_translate_cs(ctlr,
2489                                                 sb->device_selection);
2490                                 if (cs < 0)
2491                                         return cs;
2492                                 lookup->chip_select = cs;
2493                         } else {
2494                                 lookup->chip_select = sb->device_selection;
2495                         }
2496
2497                         lookup->max_speed_hz = sb->connection_speed;
2498                         lookup->bits_per_word = sb->data_bit_length;
2499
2500                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2501                                 lookup->mode |= SPI_CPHA;
2502                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2503                                 lookup->mode |= SPI_CPOL;
2504                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2505                                 lookup->mode |= SPI_CS_HIGH;
2506                 }
2507         } else if (lookup->irq < 0) {
2508                 struct resource r;
2509
2510                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2511                         lookup->irq = r.start;
2512         }
2513
2514         /* Always tell the ACPI core to skip this resource */
2515         return 1;
2516 }
2517
2518 /**
2519  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2520  * @ctlr: controller to which the spi device belongs
2521  * @adev: ACPI Device for the spi device
2522  * @index: Index of the spi resource inside the ACPI Node
2523  *
2524  * This should be used to allocate a new spi device from and ACPI Node.
2525  * The caller is responsible for calling spi_add_device to register the spi device.
2526  *
2527  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2528  * using the resource.
2529  * If index is set to -1, index is not used.
2530  * Note: If index is -1, ctlr must be set.
2531  *
2532  * Return: a pointer to the new device, or ERR_PTR on error.
2533  */
2534 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2535                                          struct acpi_device *adev,
2536                                          int index)
2537 {
2538         acpi_handle parent_handle = NULL;
2539         struct list_head resource_list;
2540         struct acpi_spi_lookup lookup = {};
2541         struct spi_device *spi;
2542         int ret;
2543
2544         if (!ctlr && index == -1)
2545                 return ERR_PTR(-EINVAL);
2546
2547         lookup.ctlr             = ctlr;
2548         lookup.irq              = -1;
2549         lookup.index            = index;
2550         lookup.n                = 0;
2551
2552         INIT_LIST_HEAD(&resource_list);
2553         ret = acpi_dev_get_resources(adev, &resource_list,
2554                                      acpi_spi_add_resource, &lookup);
2555         acpi_dev_free_resource_list(&resource_list);
2556
2557         if (ret < 0)
2558                 /* Found SPI in _CRS but it points to another controller */
2559                 return ERR_PTR(ret);
2560
2561         if (!lookup.max_speed_hz &&
2562             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2563             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2564                 /* Apple does not use _CRS but nested devices for SPI slaves */
2565                 acpi_spi_parse_apple_properties(adev, &lookup);
2566         }
2567
2568         if (!lookup.max_speed_hz)
2569                 return ERR_PTR(-ENODEV);
2570
2571         spi = spi_alloc_device(lookup.ctlr);
2572         if (!spi) {
2573                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2574                         dev_name(&adev->dev));
2575                 return ERR_PTR(-ENOMEM);
2576         }
2577
2578         ACPI_COMPANION_SET(&spi->dev, adev);
2579         spi->max_speed_hz       = lookup.max_speed_hz;
2580         spi->mode               |= lookup.mode;
2581         spi->irq                = lookup.irq;
2582         spi->bits_per_word      = lookup.bits_per_word;
2583         spi->chip_select        = lookup.chip_select;
2584
2585         return spi;
2586 }
2587 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2588
2589 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2590                                             struct acpi_device *adev)
2591 {
2592         struct spi_device *spi;
2593
2594         if (acpi_bus_get_status(adev) || !adev->status.present ||
2595             acpi_device_enumerated(adev))
2596                 return AE_OK;
2597
2598         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2599         if (IS_ERR(spi)) {
2600                 if (PTR_ERR(spi) == -ENOMEM)
2601                         return AE_NO_MEMORY;
2602                 else
2603                         return AE_OK;
2604         }
2605
2606         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2607                           sizeof(spi->modalias));
2608
2609         if (spi->irq < 0)
2610                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2611
2612         acpi_device_set_enumerated(adev);
2613
2614         adev->power.flags.ignore_parent = true;
2615         if (spi_add_device(spi)) {
2616                 adev->power.flags.ignore_parent = false;
2617                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2618                         dev_name(&adev->dev));
2619                 spi_dev_put(spi);
2620         }
2621
2622         return AE_OK;
2623 }
2624
2625 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2626                                        void *data, void **return_value)
2627 {
2628         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2629         struct spi_controller *ctlr = data;
2630
2631         if (!adev)
2632                 return AE_OK;
2633
2634         return acpi_register_spi_device(ctlr, adev);
2635 }
2636
2637 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2638
2639 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2640 {
2641         acpi_status status;
2642         acpi_handle handle;
2643
2644         handle = ACPI_HANDLE(ctlr->dev.parent);
2645         if (!handle)
2646                 return;
2647
2648         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2649                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2650                                      acpi_spi_add_device, NULL, ctlr, NULL);
2651         if (ACPI_FAILURE(status))
2652                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2653 }
2654 #else
2655 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2656 #endif /* CONFIG_ACPI */
2657
2658 static void spi_controller_release(struct device *dev)
2659 {
2660         struct spi_controller *ctlr;
2661
2662         ctlr = container_of(dev, struct spi_controller, dev);
2663         kfree(ctlr);
2664 }
2665
2666 static struct class spi_master_class = {
2667         .name           = "spi_master",
2668         .owner          = THIS_MODULE,
2669         .dev_release    = spi_controller_release,
2670         .dev_groups     = spi_master_groups,
2671 };
2672
2673 #ifdef CONFIG_SPI_SLAVE
2674 /**
2675  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2676  *                   controller
2677  * @spi: device used for the current transfer
2678  */
2679 int spi_slave_abort(struct spi_device *spi)
2680 {
2681         struct spi_controller *ctlr = spi->controller;
2682
2683         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2684                 return ctlr->slave_abort(ctlr);
2685
2686         return -ENOTSUPP;
2687 }
2688 EXPORT_SYMBOL_GPL(spi_slave_abort);
2689
2690 static int match_true(struct device *dev, void *data)
2691 {
2692         return 1;
2693 }
2694
2695 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2696                           char *buf)
2697 {
2698         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2699                                                    dev);
2700         struct device *child;
2701
2702         child = device_find_child(&ctlr->dev, NULL, match_true);
2703         return sprintf(buf, "%s\n",
2704                        child ? to_spi_device(child)->modalias : NULL);
2705 }
2706
2707 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2708                            const char *buf, size_t count)
2709 {
2710         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2711                                                    dev);
2712         struct spi_device *spi;
2713         struct device *child;
2714         char name[32];
2715         int rc;
2716
2717         rc = sscanf(buf, "%31s", name);
2718         if (rc != 1 || !name[0])
2719                 return -EINVAL;
2720
2721         child = device_find_child(&ctlr->dev, NULL, match_true);
2722         if (child) {
2723                 /* Remove registered slave */
2724                 device_unregister(child);
2725                 put_device(child);
2726         }
2727
2728         if (strcmp(name, "(null)")) {
2729                 /* Register new slave */
2730                 spi = spi_alloc_device(ctlr);
2731                 if (!spi)
2732                         return -ENOMEM;
2733
2734                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2735
2736                 rc = spi_add_device(spi);
2737                 if (rc) {
2738                         spi_dev_put(spi);
2739                         return rc;
2740                 }
2741         }
2742
2743         return count;
2744 }
2745
2746 static DEVICE_ATTR_RW(slave);
2747
2748 static struct attribute *spi_slave_attrs[] = {
2749         &dev_attr_slave.attr,
2750         NULL,
2751 };
2752
2753 static const struct attribute_group spi_slave_group = {
2754         .attrs = spi_slave_attrs,
2755 };
2756
2757 static const struct attribute_group *spi_slave_groups[] = {
2758         &spi_controller_statistics_group,
2759         &spi_slave_group,
2760         NULL,
2761 };
2762
2763 static struct class spi_slave_class = {
2764         .name           = "spi_slave",
2765         .owner          = THIS_MODULE,
2766         .dev_release    = spi_controller_release,
2767         .dev_groups     = spi_slave_groups,
2768 };
2769 #else
2770 extern struct class spi_slave_class;    /* dummy */
2771 #endif
2772
2773 /**
2774  * __spi_alloc_controller - allocate an SPI master or slave controller
2775  * @dev: the controller, possibly using the platform_bus
2776  * @size: how much zeroed driver-private data to allocate; the pointer to this
2777  *      memory is in the driver_data field of the returned device, accessible
2778  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2779  *      drivers granting DMA access to portions of their private data need to
2780  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2781  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2782  *      slave (true) controller
2783  * Context: can sleep
2784  *
2785  * This call is used only by SPI controller drivers, which are the
2786  * only ones directly touching chip registers.  It's how they allocate
2787  * an spi_controller structure, prior to calling spi_register_controller().
2788  *
2789  * This must be called from context that can sleep.
2790  *
2791  * The caller is responsible for assigning the bus number and initializing the
2792  * controller's methods before calling spi_register_controller(); and (after
2793  * errors adding the device) calling spi_controller_put() to prevent a memory
2794  * leak.
2795  *
2796  * Return: the SPI controller structure on success, else NULL.
2797  */
2798 struct spi_controller *__spi_alloc_controller(struct device *dev,
2799                                               unsigned int size, bool slave)
2800 {
2801         struct spi_controller   *ctlr;
2802         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2803
2804         if (!dev)
2805                 return NULL;
2806
2807         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2808         if (!ctlr)
2809                 return NULL;
2810
2811         device_initialize(&ctlr->dev);
2812         INIT_LIST_HEAD(&ctlr->queue);
2813         spin_lock_init(&ctlr->queue_lock);
2814         spin_lock_init(&ctlr->bus_lock_spinlock);
2815         mutex_init(&ctlr->bus_lock_mutex);
2816         mutex_init(&ctlr->io_mutex);
2817         mutex_init(&ctlr->add_lock);
2818         ctlr->bus_num = -1;
2819         ctlr->num_chipselect = 1;
2820         ctlr->slave = slave;
2821         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2822                 ctlr->dev.class = &spi_slave_class;
2823         else
2824                 ctlr->dev.class = &spi_master_class;
2825         ctlr->dev.parent = dev;
2826         pm_suspend_ignore_children(&ctlr->dev, true);
2827         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2828
2829         return ctlr;
2830 }
2831 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2832
2833 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2834 {
2835         spi_controller_put(*(struct spi_controller **)ctlr);
2836 }
2837
2838 /**
2839  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2840  * @dev: physical device of SPI controller
2841  * @size: how much zeroed driver-private data to allocate
2842  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2843  * Context: can sleep
2844  *
2845  * Allocate an SPI controller and automatically release a reference on it
2846  * when @dev is unbound from its driver.  Drivers are thus relieved from
2847  * having to call spi_controller_put().
2848  *
2849  * The arguments to this function are identical to __spi_alloc_controller().
2850  *
2851  * Return: the SPI controller structure on success, else NULL.
2852  */
2853 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2854                                                    unsigned int size,
2855                                                    bool slave)
2856 {
2857         struct spi_controller **ptr, *ctlr;
2858
2859         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2860                            GFP_KERNEL);
2861         if (!ptr)
2862                 return NULL;
2863
2864         ctlr = __spi_alloc_controller(dev, size, slave);
2865         if (ctlr) {
2866                 ctlr->devm_allocated = true;
2867                 *ptr = ctlr;
2868                 devres_add(dev, ptr);
2869         } else {
2870                 devres_free(ptr);
2871         }
2872
2873         return ctlr;
2874 }
2875 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2876
2877 /**
2878  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2879  * @ctlr: The SPI master to grab GPIO descriptors for
2880  */
2881 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2882 {
2883         int nb, i;
2884         struct gpio_desc **cs;
2885         struct device *dev = &ctlr->dev;
2886         unsigned long native_cs_mask = 0;
2887         unsigned int num_cs_gpios = 0;
2888
2889         nb = gpiod_count(dev, "cs");
2890         if (nb < 0) {
2891                 /* No GPIOs at all is fine, else return the error */
2892                 if (nb == -ENOENT)
2893                         return 0;
2894                 return nb;
2895         }
2896
2897         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2898
2899         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2900                           GFP_KERNEL);
2901         if (!cs)
2902                 return -ENOMEM;
2903         ctlr->cs_gpiods = cs;
2904
2905         for (i = 0; i < nb; i++) {
2906                 /*
2907                  * Most chipselects are active low, the inverted
2908                  * semantics are handled by special quirks in gpiolib,
2909                  * so initializing them GPIOD_OUT_LOW here means
2910                  * "unasserted", in most cases this will drive the physical
2911                  * line high.
2912                  */
2913                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2914                                                       GPIOD_OUT_LOW);
2915                 if (IS_ERR(cs[i]))
2916                         return PTR_ERR(cs[i]);
2917
2918                 if (cs[i]) {
2919                         /*
2920                          * If we find a CS GPIO, name it after the device and
2921                          * chip select line.
2922                          */
2923                         char *gpioname;
2924
2925                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2926                                                   dev_name(dev), i);
2927                         if (!gpioname)
2928                                 return -ENOMEM;
2929                         gpiod_set_consumer_name(cs[i], gpioname);
2930                         num_cs_gpios++;
2931                         continue;
2932                 }
2933
2934                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2935                         dev_err(dev, "Invalid native chip select %d\n", i);
2936                         return -EINVAL;
2937                 }
2938                 native_cs_mask |= BIT(i);
2939         }
2940
2941         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2942
2943         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2944             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2945                 dev_err(dev, "No unused native chip select available\n");
2946                 return -EINVAL;
2947         }
2948
2949         return 0;
2950 }
2951
2952 static int spi_controller_check_ops(struct spi_controller *ctlr)
2953 {
2954         /*
2955          * The controller may implement only the high-level SPI-memory like
2956          * operations if it does not support regular SPI transfers, and this is
2957          * valid use case.
2958          * If ->mem_ops is NULL, we request that at least one of the
2959          * ->transfer_xxx() method be implemented.
2960          */
2961         if (ctlr->mem_ops) {
2962                 if (!ctlr->mem_ops->exec_op)
2963                         return -EINVAL;
2964         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2965                    !ctlr->transfer_one_message) {
2966                 return -EINVAL;
2967         }
2968
2969         return 0;
2970 }
2971
2972 /**
2973  * spi_register_controller - register SPI master or slave controller
2974  * @ctlr: initialized master, originally from spi_alloc_master() or
2975  *      spi_alloc_slave()
2976  * Context: can sleep
2977  *
2978  * SPI controllers connect to their drivers using some non-SPI bus,
2979  * such as the platform bus.  The final stage of probe() in that code
2980  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2981  *
2982  * SPI controllers use board specific (often SOC specific) bus numbers,
2983  * and board-specific addressing for SPI devices combines those numbers
2984  * with chip select numbers.  Since SPI does not directly support dynamic
2985  * device identification, boards need configuration tables telling which
2986  * chip is at which address.
2987  *
2988  * This must be called from context that can sleep.  It returns zero on
2989  * success, else a negative error code (dropping the controller's refcount).
2990  * After a successful return, the caller is responsible for calling
2991  * spi_unregister_controller().
2992  *
2993  * Return: zero on success, else a negative error code.
2994  */
2995 int spi_register_controller(struct spi_controller *ctlr)
2996 {
2997         struct device           *dev = ctlr->dev.parent;
2998         struct boardinfo        *bi;
2999         int                     status;
3000         int                     id, first_dynamic;
3001
3002         if (!dev)
3003                 return -ENODEV;
3004
3005         /*
3006          * Make sure all necessary hooks are implemented before registering
3007          * the SPI controller.
3008          */
3009         status = spi_controller_check_ops(ctlr);
3010         if (status)
3011                 return status;
3012
3013         if (ctlr->bus_num >= 0) {
3014                 /* Devices with a fixed bus num must check-in with the num */
3015                 mutex_lock(&board_lock);
3016                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3017                         ctlr->bus_num + 1, GFP_KERNEL);
3018                 mutex_unlock(&board_lock);
3019                 if (WARN(id < 0, "couldn't get idr"))
3020                         return id == -ENOSPC ? -EBUSY : id;
3021                 ctlr->bus_num = id;
3022         } else if (ctlr->dev.of_node) {
3023                 /* Allocate dynamic bus number using Linux idr */
3024                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3025                 if (id >= 0) {
3026                         ctlr->bus_num = id;
3027                         mutex_lock(&board_lock);
3028                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3029                                        ctlr->bus_num + 1, GFP_KERNEL);
3030                         mutex_unlock(&board_lock);
3031                         if (WARN(id < 0, "couldn't get idr"))
3032                                 return id == -ENOSPC ? -EBUSY : id;
3033                 }
3034         }
3035         if (ctlr->bus_num < 0) {
3036                 first_dynamic = of_alias_get_highest_id("spi");
3037                 if (first_dynamic < 0)
3038                         first_dynamic = 0;
3039                 else
3040                         first_dynamic++;
3041
3042                 mutex_lock(&board_lock);
3043                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3044                                0, GFP_KERNEL);
3045                 mutex_unlock(&board_lock);
3046                 if (WARN(id < 0, "couldn't get idr"))
3047                         return id;
3048                 ctlr->bus_num = id;
3049         }
3050         ctlr->bus_lock_flag = 0;
3051         init_completion(&ctlr->xfer_completion);
3052         init_completion(&ctlr->cur_msg_completion);
3053         if (!ctlr->max_dma_len)
3054                 ctlr->max_dma_len = INT_MAX;
3055
3056         /*
3057          * Register the device, then userspace will see it.
3058          * Registration fails if the bus ID is in use.
3059          */
3060         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3061
3062         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3063                 status = spi_get_gpio_descs(ctlr);
3064                 if (status)
3065                         goto free_bus_id;
3066                 /*
3067                  * A controller using GPIO descriptors always
3068                  * supports SPI_CS_HIGH if need be.
3069                  */
3070                 ctlr->mode_bits |= SPI_CS_HIGH;
3071         }
3072
3073         /*
3074          * Even if it's just one always-selected device, there must
3075          * be at least one chipselect.
3076          */
3077         if (!ctlr->num_chipselect) {
3078                 status = -EINVAL;
3079                 goto free_bus_id;
3080         }
3081
3082         /* Setting last_cs to -1 means no chip selected */
3083         ctlr->last_cs = -1;
3084
3085         status = device_add(&ctlr->dev);
3086         if (status < 0)
3087                 goto free_bus_id;
3088         dev_dbg(dev, "registered %s %s\n",
3089                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3090                         dev_name(&ctlr->dev));
3091
3092         /*
3093          * If we're using a queued driver, start the queue. Note that we don't
3094          * need the queueing logic if the driver is only supporting high-level
3095          * memory operations.
3096          */
3097         if (ctlr->transfer) {
3098                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3099         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3100                 status = spi_controller_initialize_queue(ctlr);
3101                 if (status) {
3102                         device_del(&ctlr->dev);
3103                         goto free_bus_id;
3104                 }
3105         }
3106         /* Add statistics */
3107         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3108         if (!ctlr->pcpu_statistics) {
3109                 dev_err(dev, "Error allocating per-cpu statistics\n");
3110                 status = -ENOMEM;
3111                 goto destroy_queue;
3112         }
3113
3114         mutex_lock(&board_lock);
3115         list_add_tail(&ctlr->list, &spi_controller_list);
3116         list_for_each_entry(bi, &board_list, list)
3117                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3118         mutex_unlock(&board_lock);
3119
3120         /* Register devices from the device tree and ACPI */
3121         of_register_spi_devices(ctlr);
3122         acpi_register_spi_devices(ctlr);
3123         return status;
3124
3125 destroy_queue:
3126         spi_destroy_queue(ctlr);
3127 free_bus_id:
3128         mutex_lock(&board_lock);
3129         idr_remove(&spi_master_idr, ctlr->bus_num);
3130         mutex_unlock(&board_lock);
3131         return status;
3132 }
3133 EXPORT_SYMBOL_GPL(spi_register_controller);
3134
3135 static void devm_spi_unregister(struct device *dev, void *res)
3136 {
3137         spi_unregister_controller(*(struct spi_controller **)res);
3138 }
3139
3140 /**
3141  * devm_spi_register_controller - register managed SPI master or slave
3142  *      controller
3143  * @dev:    device managing SPI controller
3144  * @ctlr: initialized controller, originally from spi_alloc_master() or
3145  *      spi_alloc_slave()
3146  * Context: can sleep
3147  *
3148  * Register a SPI device as with spi_register_controller() which will
3149  * automatically be unregistered and freed.
3150  *
3151  * Return: zero on success, else a negative error code.
3152  */
3153 int devm_spi_register_controller(struct device *dev,
3154                                  struct spi_controller *ctlr)
3155 {
3156         struct spi_controller **ptr;
3157         int ret;
3158
3159         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3160         if (!ptr)
3161                 return -ENOMEM;
3162
3163         ret = spi_register_controller(ctlr);
3164         if (!ret) {
3165                 *ptr = ctlr;
3166                 devres_add(dev, ptr);
3167         } else {
3168                 devres_free(ptr);
3169         }
3170
3171         return ret;
3172 }
3173 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3174
3175 static int __unregister(struct device *dev, void *null)
3176 {
3177         spi_unregister_device(to_spi_device(dev));
3178         return 0;
3179 }
3180
3181 /**
3182  * spi_unregister_controller - unregister SPI master or slave controller
3183  * @ctlr: the controller being unregistered
3184  * Context: can sleep
3185  *
3186  * This call is used only by SPI controller drivers, which are the
3187  * only ones directly touching chip registers.
3188  *
3189  * This must be called from context that can sleep.
3190  *
3191  * Note that this function also drops a reference to the controller.
3192  */
3193 void spi_unregister_controller(struct spi_controller *ctlr)
3194 {
3195         struct spi_controller *found;
3196         int id = ctlr->bus_num;
3197
3198         /* Prevent addition of new devices, unregister existing ones */
3199         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3200                 mutex_lock(&ctlr->add_lock);
3201
3202         device_for_each_child(&ctlr->dev, NULL, __unregister);
3203
3204         /* First make sure that this controller was ever added */
3205         mutex_lock(&board_lock);
3206         found = idr_find(&spi_master_idr, id);
3207         mutex_unlock(&board_lock);
3208         if (ctlr->queued) {
3209                 if (spi_destroy_queue(ctlr))
3210                         dev_err(&ctlr->dev, "queue remove failed\n");
3211         }
3212         mutex_lock(&board_lock);
3213         list_del(&ctlr->list);
3214         mutex_unlock(&board_lock);
3215
3216         device_del(&ctlr->dev);
3217
3218         /* Free bus id */
3219         mutex_lock(&board_lock);
3220         if (found == ctlr)
3221                 idr_remove(&spi_master_idr, id);
3222         mutex_unlock(&board_lock);
3223
3224         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3225                 mutex_unlock(&ctlr->add_lock);
3226
3227         /* Release the last reference on the controller if its driver
3228          * has not yet been converted to devm_spi_alloc_master/slave().
3229          */
3230         if (!ctlr->devm_allocated)
3231                 put_device(&ctlr->dev);
3232 }
3233 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3234
3235 int spi_controller_suspend(struct spi_controller *ctlr)
3236 {
3237         int ret;
3238
3239         /* Basically no-ops for non-queued controllers */
3240         if (!ctlr->queued)
3241                 return 0;
3242
3243         ret = spi_stop_queue(ctlr);
3244         if (ret)
3245                 dev_err(&ctlr->dev, "queue stop failed\n");
3246
3247         return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3250
3251 int spi_controller_resume(struct spi_controller *ctlr)
3252 {
3253         int ret;
3254
3255         if (!ctlr->queued)
3256                 return 0;
3257
3258         ret = spi_start_queue(ctlr);
3259         if (ret)
3260                 dev_err(&ctlr->dev, "queue restart failed\n");
3261
3262         return ret;
3263 }
3264 EXPORT_SYMBOL_GPL(spi_controller_resume);
3265
3266 /*-------------------------------------------------------------------------*/
3267
3268 /* Core methods for spi_message alterations */
3269
3270 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3271                                             struct spi_message *msg,
3272                                             void *res)
3273 {
3274         struct spi_replaced_transfers *rxfer = res;
3275         size_t i;
3276
3277         /* Call extra callback if requested */
3278         if (rxfer->release)
3279                 rxfer->release(ctlr, msg, res);
3280
3281         /* Insert replaced transfers back into the message */
3282         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3283
3284         /* Remove the formerly inserted entries */
3285         for (i = 0; i < rxfer->inserted; i++)
3286                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3287 }
3288
3289 /**
3290  * spi_replace_transfers - replace transfers with several transfers
3291  *                         and register change with spi_message.resources
3292  * @msg:           the spi_message we work upon
3293  * @xfer_first:    the first spi_transfer we want to replace
3294  * @remove:        number of transfers to remove
3295  * @insert:        the number of transfers we want to insert instead
3296  * @release:       extra release code necessary in some circumstances
3297  * @extradatasize: extra data to allocate (with alignment guarantees
3298  *                 of struct @spi_transfer)
3299  * @gfp:           gfp flags
3300  *
3301  * Returns: pointer to @spi_replaced_transfers,
3302  *          PTR_ERR(...) in case of errors.
3303  */
3304 static struct spi_replaced_transfers *spi_replace_transfers(
3305         struct spi_message *msg,
3306         struct spi_transfer *xfer_first,
3307         size_t remove,
3308         size_t insert,
3309         spi_replaced_release_t release,
3310         size_t extradatasize,
3311         gfp_t gfp)
3312 {
3313         struct spi_replaced_transfers *rxfer;
3314         struct spi_transfer *xfer;
3315         size_t i;
3316
3317         /* Allocate the structure using spi_res */
3318         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3319                               struct_size(rxfer, inserted_transfers, insert)
3320                               + extradatasize,
3321                               gfp);
3322         if (!rxfer)
3323                 return ERR_PTR(-ENOMEM);
3324
3325         /* The release code to invoke before running the generic release */
3326         rxfer->release = release;
3327
3328         /* Assign extradata */
3329         if (extradatasize)
3330                 rxfer->extradata =
3331                         &rxfer->inserted_transfers[insert];
3332
3333         /* Init the replaced_transfers list */
3334         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3335
3336         /*
3337          * Assign the list_entry after which we should reinsert
3338          * the @replaced_transfers - it may be spi_message.messages!
3339          */
3340         rxfer->replaced_after = xfer_first->transfer_list.prev;
3341
3342         /* Remove the requested number of transfers */
3343         for (i = 0; i < remove; i++) {
3344                 /*
3345                  * If the entry after replaced_after it is msg->transfers
3346                  * then we have been requested to remove more transfers
3347                  * than are in the list.
3348                  */
3349                 if (rxfer->replaced_after->next == &msg->transfers) {
3350                         dev_err(&msg->spi->dev,
3351                                 "requested to remove more spi_transfers than are available\n");
3352                         /* Insert replaced transfers back into the message */
3353                         list_splice(&rxfer->replaced_transfers,
3354                                     rxfer->replaced_after);
3355
3356                         /* Free the spi_replace_transfer structure... */
3357                         spi_res_free(rxfer);
3358
3359                         /* ...and return with an error */
3360                         return ERR_PTR(-EINVAL);
3361                 }
3362
3363                 /*
3364                  * Remove the entry after replaced_after from list of
3365                  * transfers and add it to list of replaced_transfers.
3366                  */
3367                 list_move_tail(rxfer->replaced_after->next,
3368                                &rxfer->replaced_transfers);
3369         }
3370
3371         /*
3372          * Create copy of the given xfer with identical settings
3373          * based on the first transfer to get removed.
3374          */
3375         for (i = 0; i < insert; i++) {
3376                 /* We need to run in reverse order */
3377                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3378
3379                 /* Copy all spi_transfer data */
3380                 memcpy(xfer, xfer_first, sizeof(*xfer));
3381
3382                 /* Add to list */
3383                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3384
3385                 /* Clear cs_change and delay for all but the last */
3386                 if (i) {
3387                         xfer->cs_change = false;
3388                         xfer->delay.value = 0;
3389                 }
3390         }
3391
3392         /* Set up inserted... */
3393         rxfer->inserted = insert;
3394
3395         /* ...and register it with spi_res/spi_message */
3396         spi_res_add(msg, rxfer);
3397
3398         return rxfer;
3399 }
3400
3401 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3402                                         struct spi_message *msg,
3403                                         struct spi_transfer **xferp,
3404                                         size_t maxsize,
3405                                         gfp_t gfp)
3406 {
3407         struct spi_transfer *xfer = *xferp, *xfers;
3408         struct spi_replaced_transfers *srt;
3409         size_t offset;
3410         size_t count, i;
3411
3412         /* Calculate how many we have to replace */
3413         count = DIV_ROUND_UP(xfer->len, maxsize);
3414
3415         /* Create replacement */
3416         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3417         if (IS_ERR(srt))
3418                 return PTR_ERR(srt);
3419         xfers = srt->inserted_transfers;
3420
3421         /*
3422          * Now handle each of those newly inserted spi_transfers.
3423          * Note that the replacements spi_transfers all are preset
3424          * to the same values as *xferp, so tx_buf, rx_buf and len
3425          * are all identical (as well as most others)
3426          * so we just have to fix up len and the pointers.
3427          *
3428          * This also includes support for the depreciated
3429          * spi_message.is_dma_mapped interface.
3430          */
3431
3432         /*
3433          * The first transfer just needs the length modified, so we
3434          * run it outside the loop.
3435          */
3436         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3437
3438         /* All the others need rx_buf/tx_buf also set */
3439         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3440                 /* Update rx_buf, tx_buf and dma */
3441                 if (xfers[i].rx_buf)
3442                         xfers[i].rx_buf += offset;
3443                 if (xfers[i].rx_dma)
3444                         xfers[i].rx_dma += offset;
3445                 if (xfers[i].tx_buf)
3446                         xfers[i].tx_buf += offset;
3447                 if (xfers[i].tx_dma)
3448                         xfers[i].tx_dma += offset;
3449
3450                 /* Update length */
3451                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3452         }
3453
3454         /*
3455          * We set up xferp to the last entry we have inserted,
3456          * so that we skip those already split transfers.
3457          */
3458         *xferp = &xfers[count - 1];
3459
3460         /* Increment statistics counters */
3461         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3462                                        transfers_split_maxsize);
3463         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3464                                        transfers_split_maxsize);
3465
3466         return 0;
3467 }
3468
3469 /**
3470  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3471  *                               when an individual transfer exceeds a
3472  *                               certain size
3473  * @ctlr:    the @spi_controller for this transfer
3474  * @msg:   the @spi_message to transform
3475  * @maxsize:  the maximum when to apply this
3476  * @gfp: GFP allocation flags
3477  *
3478  * Return: status of transformation
3479  */
3480 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3481                                 struct spi_message *msg,
3482                                 size_t maxsize,
3483                                 gfp_t gfp)
3484 {
3485         struct spi_transfer *xfer;
3486         int ret;
3487
3488         /*
3489          * Iterate over the transfer_list,
3490          * but note that xfer is advanced to the last transfer inserted
3491          * to avoid checking sizes again unnecessarily (also xfer does
3492          * potentially belong to a different list by the time the
3493          * replacement has happened).
3494          */
3495         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3496                 if (xfer->len > maxsize) {
3497                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3498                                                            maxsize, gfp);
3499                         if (ret)
3500                                 return ret;
3501                 }
3502         }
3503
3504         return 0;
3505 }
3506 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3507
3508 /*-------------------------------------------------------------------------*/
3509
3510 /* Core methods for SPI controller protocol drivers.  Some of the
3511  * other core methods are currently defined as inline functions.
3512  */
3513
3514 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3515                                         u8 bits_per_word)
3516 {
3517         if (ctlr->bits_per_word_mask) {
3518                 /* Only 32 bits fit in the mask */
3519                 if (bits_per_word > 32)
3520                         return -EINVAL;
3521                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3522                         return -EINVAL;
3523         }
3524
3525         return 0;
3526 }
3527
3528 /**
3529  * spi_setup - setup SPI mode and clock rate
3530  * @spi: the device whose settings are being modified
3531  * Context: can sleep, and no requests are queued to the device
3532  *
3533  * SPI protocol drivers may need to update the transfer mode if the
3534  * device doesn't work with its default.  They may likewise need
3535  * to update clock rates or word sizes from initial values.  This function
3536  * changes those settings, and must be called from a context that can sleep.
3537  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3538  * effect the next time the device is selected and data is transferred to
3539  * or from it.  When this function returns, the spi device is deselected.
3540  *
3541  * Note that this call will fail if the protocol driver specifies an option
3542  * that the underlying controller or its driver does not support.  For
3543  * example, not all hardware supports wire transfers using nine bit words,
3544  * LSB-first wire encoding, or active-high chipselects.
3545  *
3546  * Return: zero on success, else a negative error code.
3547  */
3548 int spi_setup(struct spi_device *spi)
3549 {
3550         unsigned        bad_bits, ugly_bits;
3551         int             status = 0;
3552
3553         /*
3554          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3555          * are set at the same time.
3556          */
3557         if ((hweight_long(spi->mode &
3558                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3559             (hweight_long(spi->mode &
3560                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3561                 dev_err(&spi->dev,
3562                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3563                 return -EINVAL;
3564         }
3565         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3566         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3567                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3568                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3569                 return -EINVAL;
3570         /*
3571          * Help drivers fail *cleanly* when they need options
3572          * that aren't supported with their current controller.
3573          * SPI_CS_WORD has a fallback software implementation,
3574          * so it is ignored here.
3575          */
3576         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3577                                  SPI_NO_TX | SPI_NO_RX);
3578         ugly_bits = bad_bits &
3579                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3580                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3581         if (ugly_bits) {
3582                 dev_warn(&spi->dev,
3583                          "setup: ignoring unsupported mode bits %x\n",
3584                          ugly_bits);
3585                 spi->mode &= ~ugly_bits;
3586                 bad_bits &= ~ugly_bits;
3587         }
3588         if (bad_bits) {
3589                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3590                         bad_bits);
3591                 return -EINVAL;
3592         }
3593
3594         if (!spi->bits_per_word) {
3595                 spi->bits_per_word = 8;
3596         } else {
3597                 /*
3598                  * Some controllers may not support the default 8 bits-per-word
3599                  * so only perform the check when this is explicitly provided.
3600                  */
3601                 status = __spi_validate_bits_per_word(spi->controller,
3602                                                       spi->bits_per_word);
3603                 if (status)
3604                         return status;
3605         }
3606
3607         if (spi->controller->max_speed_hz &&
3608             (!spi->max_speed_hz ||
3609              spi->max_speed_hz > spi->controller->max_speed_hz))
3610                 spi->max_speed_hz = spi->controller->max_speed_hz;
3611
3612         mutex_lock(&spi->controller->io_mutex);
3613
3614         if (spi->controller->setup) {
3615                 status = spi->controller->setup(spi);
3616                 if (status) {
3617                         mutex_unlock(&spi->controller->io_mutex);
3618                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3619                                 status);
3620                         return status;
3621                 }
3622         }
3623
3624         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3625                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3626                 if (status < 0) {
3627                         mutex_unlock(&spi->controller->io_mutex);
3628                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3629                                 status);
3630                         return status;
3631                 }
3632
3633                 /*
3634                  * We do not want to return positive value from pm_runtime_get,
3635                  * there are many instances of devices calling spi_setup() and
3636                  * checking for a non-zero return value instead of a negative
3637                  * return value.
3638                  */
3639                 status = 0;
3640
3641                 spi_set_cs(spi, false, true);
3642                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3643                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3644         } else {
3645                 spi_set_cs(spi, false, true);
3646         }
3647
3648         mutex_unlock(&spi->controller->io_mutex);
3649
3650         if (spi->rt && !spi->controller->rt) {
3651                 spi->controller->rt = true;
3652                 spi_set_thread_rt(spi->controller);
3653         }
3654
3655         trace_spi_setup(spi, status);
3656
3657         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3658                         spi->mode & SPI_MODE_X_MASK,
3659                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3660                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3661                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3662                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3663                         spi->bits_per_word, spi->max_speed_hz,
3664                         status);
3665
3666         return status;
3667 }
3668 EXPORT_SYMBOL_GPL(spi_setup);
3669
3670 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3671                                        struct spi_device *spi)
3672 {
3673         int delay1, delay2;
3674
3675         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3676         if (delay1 < 0)
3677                 return delay1;
3678
3679         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3680         if (delay2 < 0)
3681                 return delay2;
3682
3683         if (delay1 < delay2)
3684                 memcpy(&xfer->word_delay, &spi->word_delay,
3685                        sizeof(xfer->word_delay));
3686
3687         return 0;
3688 }
3689
3690 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3691 {
3692         struct spi_controller *ctlr = spi->controller;
3693         struct spi_transfer *xfer;
3694         int w_size;
3695
3696         if (list_empty(&message->transfers))
3697                 return -EINVAL;
3698
3699         /*
3700          * If an SPI controller does not support toggling the CS line on each
3701          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3702          * for the CS line, we can emulate the CS-per-word hardware function by
3703          * splitting transfers into one-word transfers and ensuring that
3704          * cs_change is set for each transfer.
3705          */
3706         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3707                                           spi->cs_gpiod)) {
3708                 size_t maxsize;
3709                 int ret;
3710
3711                 maxsize = (spi->bits_per_word + 7) / 8;
3712
3713                 /* spi_split_transfers_maxsize() requires message->spi */
3714                 message->spi = spi;
3715
3716                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3717                                                   GFP_KERNEL);
3718                 if (ret)
3719                         return ret;
3720
3721                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3722                         /* Don't change cs_change on the last entry in the list */
3723                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3724                                 break;
3725                         xfer->cs_change = 1;
3726                 }
3727         }
3728
3729         /*
3730          * Half-duplex links include original MicroWire, and ones with
3731          * only one data pin like SPI_3WIRE (switches direction) or where
3732          * either MOSI or MISO is missing.  They can also be caused by
3733          * software limitations.
3734          */
3735         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3736             (spi->mode & SPI_3WIRE)) {
3737                 unsigned flags = ctlr->flags;
3738
3739                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3740                         if (xfer->rx_buf && xfer->tx_buf)
3741                                 return -EINVAL;
3742                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3743                                 return -EINVAL;
3744                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3745                                 return -EINVAL;
3746                 }
3747         }
3748
3749         /*
3750          * Set transfer bits_per_word and max speed as spi device default if
3751          * it is not set for this transfer.
3752          * Set transfer tx_nbits and rx_nbits as single transfer default
3753          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3754          * Ensure transfer word_delay is at least as long as that required by
3755          * device itself.
3756          */
3757         message->frame_length = 0;
3758         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3759                 xfer->effective_speed_hz = 0;
3760                 message->frame_length += xfer->len;
3761                 if (!xfer->bits_per_word)
3762                         xfer->bits_per_word = spi->bits_per_word;
3763
3764                 if (!xfer->speed_hz)
3765                         xfer->speed_hz = spi->max_speed_hz;
3766
3767                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3768                         xfer->speed_hz = ctlr->max_speed_hz;
3769
3770                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3771                         return -EINVAL;
3772
3773                 /*
3774                  * SPI transfer length should be multiple of SPI word size
3775                  * where SPI word size should be power-of-two multiple.
3776                  */
3777                 if (xfer->bits_per_word <= 8)
3778                         w_size = 1;
3779                 else if (xfer->bits_per_word <= 16)
3780                         w_size = 2;
3781                 else
3782                         w_size = 4;
3783
3784                 /* No partial transfers accepted */
3785                 if (xfer->len % w_size)
3786                         return -EINVAL;
3787
3788                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3789                     xfer->speed_hz < ctlr->min_speed_hz)
3790                         return -EINVAL;
3791
3792                 if (xfer->tx_buf && !xfer->tx_nbits)
3793                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3794                 if (xfer->rx_buf && !xfer->rx_nbits)
3795                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3796                 /*
3797                  * Check transfer tx/rx_nbits:
3798                  * 1. check the value matches one of single, dual and quad
3799                  * 2. check tx/rx_nbits match the mode in spi_device
3800                  */
3801                 if (xfer->tx_buf) {
3802                         if (spi->mode & SPI_NO_TX)
3803                                 return -EINVAL;
3804                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3805                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3806                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3807                                 return -EINVAL;
3808                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3809                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3810                                 return -EINVAL;
3811                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3812                                 !(spi->mode & SPI_TX_QUAD))
3813                                 return -EINVAL;
3814                 }
3815                 /* Check transfer rx_nbits */
3816                 if (xfer->rx_buf) {
3817                         if (spi->mode & SPI_NO_RX)
3818                                 return -EINVAL;
3819                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3820                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3821                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3822                                 return -EINVAL;
3823                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3824                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3825                                 return -EINVAL;
3826                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3827                                 !(spi->mode & SPI_RX_QUAD))
3828                                 return -EINVAL;
3829                 }
3830
3831                 if (_spi_xfer_word_delay_update(xfer, spi))
3832                         return -EINVAL;
3833         }
3834
3835         message->status = -EINPROGRESS;
3836
3837         return 0;
3838 }
3839
3840 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3841 {
3842         struct spi_controller *ctlr = spi->controller;
3843         struct spi_transfer *xfer;
3844
3845         /*
3846          * Some controllers do not support doing regular SPI transfers. Return
3847          * ENOTSUPP when this is the case.
3848          */
3849         if (!ctlr->transfer)
3850                 return -ENOTSUPP;
3851
3852         message->spi = spi;
3853
3854         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3855         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3856
3857         trace_spi_message_submit(message);
3858
3859         if (!ctlr->ptp_sts_supported) {
3860                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3861                         xfer->ptp_sts_word_pre = 0;
3862                         ptp_read_system_prets(xfer->ptp_sts);
3863                 }
3864         }
3865
3866         return ctlr->transfer(spi, message);
3867 }
3868
3869 /**
3870  * spi_async - asynchronous SPI transfer
3871  * @spi: device with which data will be exchanged
3872  * @message: describes the data transfers, including completion callback
3873  * Context: any (irqs may be blocked, etc)
3874  *
3875  * This call may be used in_irq and other contexts which can't sleep,
3876  * as well as from task contexts which can sleep.
3877  *
3878  * The completion callback is invoked in a context which can't sleep.
3879  * Before that invocation, the value of message->status is undefined.
3880  * When the callback is issued, message->status holds either zero (to
3881  * indicate complete success) or a negative error code.  After that
3882  * callback returns, the driver which issued the transfer request may
3883  * deallocate the associated memory; it's no longer in use by any SPI
3884  * core or controller driver code.
3885  *
3886  * Note that although all messages to a spi_device are handled in
3887  * FIFO order, messages may go to different devices in other orders.
3888  * Some device might be higher priority, or have various "hard" access
3889  * time requirements, for example.
3890  *
3891  * On detection of any fault during the transfer, processing of
3892  * the entire message is aborted, and the device is deselected.
3893  * Until returning from the associated message completion callback,
3894  * no other spi_message queued to that device will be processed.
3895  * (This rule applies equally to all the synchronous transfer calls,
3896  * which are wrappers around this core asynchronous primitive.)
3897  *
3898  * Return: zero on success, else a negative error code.
3899  */
3900 int spi_async(struct spi_device *spi, struct spi_message *message)
3901 {
3902         struct spi_controller *ctlr = spi->controller;
3903         int ret;
3904         unsigned long flags;
3905
3906         ret = __spi_validate(spi, message);
3907         if (ret != 0)
3908                 return ret;
3909
3910         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3911
3912         if (ctlr->bus_lock_flag)
3913                 ret = -EBUSY;
3914         else
3915                 ret = __spi_async(spi, message);
3916
3917         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3918
3919         return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(spi_async);
3922
3923 /**
3924  * spi_async_locked - version of spi_async with exclusive bus usage
3925  * @spi: device with which data will be exchanged
3926  * @message: describes the data transfers, including completion callback
3927  * Context: any (irqs may be blocked, etc)
3928  *
3929  * This call may be used in_irq and other contexts which can't sleep,
3930  * as well as from task contexts which can sleep.
3931  *
3932  * The completion callback is invoked in a context which can't sleep.
3933  * Before that invocation, the value of message->status is undefined.
3934  * When the callback is issued, message->status holds either zero (to
3935  * indicate complete success) or a negative error code.  After that
3936  * callback returns, the driver which issued the transfer request may
3937  * deallocate the associated memory; it's no longer in use by any SPI
3938  * core or controller driver code.
3939  *
3940  * Note that although all messages to a spi_device are handled in
3941  * FIFO order, messages may go to different devices in other orders.
3942  * Some device might be higher priority, or have various "hard" access
3943  * time requirements, for example.
3944  *
3945  * On detection of any fault during the transfer, processing of
3946  * the entire message is aborted, and the device is deselected.
3947  * Until returning from the associated message completion callback,
3948  * no other spi_message queued to that device will be processed.
3949  * (This rule applies equally to all the synchronous transfer calls,
3950  * which are wrappers around this core asynchronous primitive.)
3951  *
3952  * Return: zero on success, else a negative error code.
3953  */
3954 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3955 {
3956         struct spi_controller *ctlr = spi->controller;
3957         int ret;
3958         unsigned long flags;
3959
3960         ret = __spi_validate(spi, message);
3961         if (ret != 0)
3962                 return ret;
3963
3964         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3965
3966         ret = __spi_async(spi, message);
3967
3968         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3969
3970         return ret;
3971
3972 }
3973
3974 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
3975 {
3976         bool was_busy;
3977         int ret;
3978
3979         mutex_lock(&ctlr->io_mutex);
3980
3981         was_busy = ctlr->busy;
3982
3983         ctlr->cur_msg = msg;
3984         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
3985         if (ret)
3986                 goto out;
3987
3988         ctlr->cur_msg = NULL;
3989         ctlr->fallback = false;
3990
3991         if (!was_busy) {
3992                 kfree(ctlr->dummy_rx);
3993                 ctlr->dummy_rx = NULL;
3994                 kfree(ctlr->dummy_tx);
3995                 ctlr->dummy_tx = NULL;
3996                 if (ctlr->unprepare_transfer_hardware &&
3997                     ctlr->unprepare_transfer_hardware(ctlr))
3998                         dev_err(&ctlr->dev,
3999                                 "failed to unprepare transfer hardware\n");
4000                 spi_idle_runtime_pm(ctlr);
4001         }
4002
4003 out:
4004         mutex_unlock(&ctlr->io_mutex);
4005 }
4006
4007 /*-------------------------------------------------------------------------*/
4008
4009 /*
4010  * Utility methods for SPI protocol drivers, layered on
4011  * top of the core.  Some other utility methods are defined as
4012  * inline functions.
4013  */
4014
4015 static void spi_complete(void *arg)
4016 {
4017         complete(arg);
4018 }
4019
4020 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4021 {
4022         DECLARE_COMPLETION_ONSTACK(done);
4023         int status;
4024         struct spi_controller *ctlr = spi->controller;
4025
4026         status = __spi_validate(spi, message);
4027         if (status != 0)
4028                 return status;
4029
4030         message->spi = spi;
4031
4032         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4033         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4034
4035         /*
4036          * Checking queue_empty here only guarantees async/sync message
4037          * ordering when coming from the same context. It does not need to
4038          * guard against reentrancy from a different context. The io_mutex
4039          * will catch those cases.
4040          */
4041         if (READ_ONCE(ctlr->queue_empty)) {
4042                 message->actual_length = 0;
4043                 message->status = -EINPROGRESS;
4044
4045                 trace_spi_message_submit(message);
4046
4047                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4048                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4049
4050                 __spi_transfer_message_noqueue(ctlr, message);
4051
4052                 return message->status;
4053         }
4054
4055         /*
4056          * There are messages in the async queue that could have originated
4057          * from the same context, so we need to preserve ordering.
4058          * Therefor we send the message to the async queue and wait until they
4059          * are completed.
4060          */
4061         message->complete = spi_complete;
4062         message->context = &done;
4063         status = spi_async_locked(spi, message);
4064         if (status == 0) {
4065                 wait_for_completion(&done);
4066                 status = message->status;
4067         }
4068         message->context = NULL;
4069
4070         return status;
4071 }
4072
4073 /**
4074  * spi_sync - blocking/synchronous SPI data transfers
4075  * @spi: device with which data will be exchanged
4076  * @message: describes the data transfers
4077  * Context: can sleep
4078  *
4079  * This call may only be used from a context that may sleep.  The sleep
4080  * is non-interruptible, and has no timeout.  Low-overhead controller
4081  * drivers may DMA directly into and out of the message buffers.
4082  *
4083  * Note that the SPI device's chip select is active during the message,
4084  * and then is normally disabled between messages.  Drivers for some
4085  * frequently-used devices may want to minimize costs of selecting a chip,
4086  * by leaving it selected in anticipation that the next message will go
4087  * to the same chip.  (That may increase power usage.)
4088  *
4089  * Also, the caller is guaranteeing that the memory associated with the
4090  * message will not be freed before this call returns.
4091  *
4092  * Return: zero on success, else a negative error code.
4093  */
4094 int spi_sync(struct spi_device *spi, struct spi_message *message)
4095 {
4096         int ret;
4097
4098         mutex_lock(&spi->controller->bus_lock_mutex);
4099         ret = __spi_sync(spi, message);
4100         mutex_unlock(&spi->controller->bus_lock_mutex);
4101
4102         return ret;
4103 }
4104 EXPORT_SYMBOL_GPL(spi_sync);
4105
4106 /**
4107  * spi_sync_locked - version of spi_sync with exclusive bus usage
4108  * @spi: device with which data will be exchanged
4109  * @message: describes the data transfers
4110  * Context: can sleep
4111  *
4112  * This call may only be used from a context that may sleep.  The sleep
4113  * is non-interruptible, and has no timeout.  Low-overhead controller
4114  * drivers may DMA directly into and out of the message buffers.
4115  *
4116  * This call should be used by drivers that require exclusive access to the
4117  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4118  * be released by a spi_bus_unlock call when the exclusive access is over.
4119  *
4120  * Return: zero on success, else a negative error code.
4121  */
4122 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4123 {
4124         return __spi_sync(spi, message);
4125 }
4126 EXPORT_SYMBOL_GPL(spi_sync_locked);
4127
4128 /**
4129  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4130  * @ctlr: SPI bus master that should be locked for exclusive bus access
4131  * Context: can sleep
4132  *
4133  * This call may only be used from a context that may sleep.  The sleep
4134  * is non-interruptible, and has no timeout.
4135  *
4136  * This call should be used by drivers that require exclusive access to the
4137  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4138  * exclusive access is over. Data transfer must be done by spi_sync_locked
4139  * and spi_async_locked calls when the SPI bus lock is held.
4140  *
4141  * Return: always zero.
4142  */
4143 int spi_bus_lock(struct spi_controller *ctlr)
4144 {
4145         unsigned long flags;
4146
4147         mutex_lock(&ctlr->bus_lock_mutex);
4148
4149         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4150         ctlr->bus_lock_flag = 1;
4151         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4152
4153         /* Mutex remains locked until spi_bus_unlock() is called */
4154
4155         return 0;
4156 }
4157 EXPORT_SYMBOL_GPL(spi_bus_lock);
4158
4159 /**
4160  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4161  * @ctlr: SPI bus master that was locked for exclusive bus access
4162  * Context: can sleep
4163  *
4164  * This call may only be used from a context that may sleep.  The sleep
4165  * is non-interruptible, and has no timeout.
4166  *
4167  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4168  * call.
4169  *
4170  * Return: always zero.
4171  */
4172 int spi_bus_unlock(struct spi_controller *ctlr)
4173 {
4174         ctlr->bus_lock_flag = 0;
4175
4176         mutex_unlock(&ctlr->bus_lock_mutex);
4177
4178         return 0;
4179 }
4180 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4181
4182 /* Portable code must never pass more than 32 bytes */
4183 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4184
4185 static u8       *buf;
4186
4187 /**
4188  * spi_write_then_read - SPI synchronous write followed by read
4189  * @spi: device with which data will be exchanged
4190  * @txbuf: data to be written (need not be dma-safe)
4191  * @n_tx: size of txbuf, in bytes
4192  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4193  * @n_rx: size of rxbuf, in bytes
4194  * Context: can sleep
4195  *
4196  * This performs a half duplex MicroWire style transaction with the
4197  * device, sending txbuf and then reading rxbuf.  The return value
4198  * is zero for success, else a negative errno status code.
4199  * This call may only be used from a context that may sleep.
4200  *
4201  * Parameters to this routine are always copied using a small buffer.
4202  * Performance-sensitive or bulk transfer code should instead use
4203  * spi_{async,sync}() calls with dma-safe buffers.
4204  *
4205  * Return: zero on success, else a negative error code.
4206  */
4207 int spi_write_then_read(struct spi_device *spi,
4208                 const void *txbuf, unsigned n_tx,
4209                 void *rxbuf, unsigned n_rx)
4210 {
4211         static DEFINE_MUTEX(lock);
4212
4213         int                     status;
4214         struct spi_message      message;
4215         struct spi_transfer     x[2];
4216         u8                      *local_buf;
4217
4218         /*
4219          * Use preallocated DMA-safe buffer if we can. We can't avoid
4220          * copying here, (as a pure convenience thing), but we can
4221          * keep heap costs out of the hot path unless someone else is
4222          * using the pre-allocated buffer or the transfer is too large.
4223          */
4224         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4225                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4226                                     GFP_KERNEL | GFP_DMA);
4227                 if (!local_buf)
4228                         return -ENOMEM;
4229         } else {
4230                 local_buf = buf;
4231         }
4232
4233         spi_message_init(&message);
4234         memset(x, 0, sizeof(x));
4235         if (n_tx) {
4236                 x[0].len = n_tx;
4237                 spi_message_add_tail(&x[0], &message);
4238         }
4239         if (n_rx) {
4240                 x[1].len = n_rx;
4241                 spi_message_add_tail(&x[1], &message);
4242         }
4243
4244         memcpy(local_buf, txbuf, n_tx);
4245         x[0].tx_buf = local_buf;
4246         x[1].rx_buf = local_buf + n_tx;
4247
4248         /* Do the i/o */
4249         status = spi_sync(spi, &message);
4250         if (status == 0)
4251                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4252
4253         if (x[0].tx_buf == buf)
4254                 mutex_unlock(&lock);
4255         else
4256                 kfree(local_buf);
4257
4258         return status;
4259 }
4260 EXPORT_SYMBOL_GPL(spi_write_then_read);
4261
4262 /*-------------------------------------------------------------------------*/
4263
4264 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4265 /* Must call put_device() when done with returned spi_device device */
4266 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4267 {
4268         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4269
4270         return dev ? to_spi_device(dev) : NULL;
4271 }
4272
4273 /* The spi controllers are not using spi_bus, so we find it with another way */
4274 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4275 {
4276         struct device *dev;
4277
4278         dev = class_find_device_by_of_node(&spi_master_class, node);
4279         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4280                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4281         if (!dev)
4282                 return NULL;
4283
4284         /* Reference got in class_find_device */
4285         return container_of(dev, struct spi_controller, dev);
4286 }
4287
4288 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4289                          void *arg)
4290 {
4291         struct of_reconfig_data *rd = arg;
4292         struct spi_controller *ctlr;
4293         struct spi_device *spi;
4294
4295         switch (of_reconfig_get_state_change(action, arg)) {
4296         case OF_RECONFIG_CHANGE_ADD:
4297                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4298                 if (ctlr == NULL)
4299                         return NOTIFY_OK;       /* Not for us */
4300
4301                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4302                         put_device(&ctlr->dev);
4303                         return NOTIFY_OK;
4304                 }
4305
4306                 spi = of_register_spi_device(ctlr, rd->dn);
4307                 put_device(&ctlr->dev);
4308
4309                 if (IS_ERR(spi)) {
4310                         pr_err("%s: failed to create for '%pOF'\n",
4311                                         __func__, rd->dn);
4312                         of_node_clear_flag(rd->dn, OF_POPULATED);
4313                         return notifier_from_errno(PTR_ERR(spi));
4314                 }
4315                 break;
4316
4317         case OF_RECONFIG_CHANGE_REMOVE:
4318                 /* Already depopulated? */
4319                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4320                         return NOTIFY_OK;
4321
4322                 /* Find our device by node */
4323                 spi = of_find_spi_device_by_node(rd->dn);
4324                 if (spi == NULL)
4325                         return NOTIFY_OK;       /* No? not meant for us */
4326
4327                 /* Unregister takes one ref away */
4328                 spi_unregister_device(spi);
4329
4330                 /* And put the reference of the find */
4331                 put_device(&spi->dev);
4332                 break;
4333         }
4334
4335         return NOTIFY_OK;
4336 }
4337
4338 static struct notifier_block spi_of_notifier = {
4339         .notifier_call = of_spi_notify,
4340 };
4341 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4342 extern struct notifier_block spi_of_notifier;
4343 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4344
4345 #if IS_ENABLED(CONFIG_ACPI)
4346 static int spi_acpi_controller_match(struct device *dev, const void *data)
4347 {
4348         return ACPI_COMPANION(dev->parent) == data;
4349 }
4350
4351 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4352 {
4353         struct device *dev;
4354
4355         dev = class_find_device(&spi_master_class, NULL, adev,
4356                                 spi_acpi_controller_match);
4357         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4358                 dev = class_find_device(&spi_slave_class, NULL, adev,
4359                                         spi_acpi_controller_match);
4360         if (!dev)
4361                 return NULL;
4362
4363         return container_of(dev, struct spi_controller, dev);
4364 }
4365
4366 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4367 {
4368         struct device *dev;
4369
4370         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4371         return to_spi_device(dev);
4372 }
4373
4374 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4375                            void *arg)
4376 {
4377         struct acpi_device *adev = arg;
4378         struct spi_controller *ctlr;
4379         struct spi_device *spi;
4380
4381         switch (value) {
4382         case ACPI_RECONFIG_DEVICE_ADD:
4383                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4384                 if (!ctlr)
4385                         break;
4386
4387                 acpi_register_spi_device(ctlr, adev);
4388                 put_device(&ctlr->dev);
4389                 break;
4390         case ACPI_RECONFIG_DEVICE_REMOVE:
4391                 if (!acpi_device_enumerated(adev))
4392                         break;
4393
4394                 spi = acpi_spi_find_device_by_adev(adev);
4395                 if (!spi)
4396                         break;
4397
4398                 spi_unregister_device(spi);
4399                 put_device(&spi->dev);
4400                 break;
4401         }
4402
4403         return NOTIFY_OK;
4404 }
4405
4406 static struct notifier_block spi_acpi_notifier = {
4407         .notifier_call = acpi_spi_notify,
4408 };
4409 #else
4410 extern struct notifier_block spi_acpi_notifier;
4411 #endif
4412
4413 static int __init spi_init(void)
4414 {
4415         int     status;
4416
4417         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4418         if (!buf) {
4419                 status = -ENOMEM;
4420                 goto err0;
4421         }
4422
4423         status = bus_register(&spi_bus_type);
4424         if (status < 0)
4425                 goto err1;
4426
4427         status = class_register(&spi_master_class);
4428         if (status < 0)
4429                 goto err2;
4430
4431         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4432                 status = class_register(&spi_slave_class);
4433                 if (status < 0)
4434                         goto err3;
4435         }
4436
4437         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4438                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4439         if (IS_ENABLED(CONFIG_ACPI))
4440                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4441
4442         return 0;
4443
4444 err3:
4445         class_unregister(&spi_master_class);
4446 err2:
4447         bus_unregister(&spi_bus_type);
4448 err1:
4449         kfree(buf);
4450         buf = NULL;
4451 err0:
4452         return status;
4453 }
4454
4455 /*
4456  * A board_info is normally registered in arch_initcall(),
4457  * but even essential drivers wait till later.
4458  *
4459  * REVISIT only boardinfo really needs static linking. The rest (device and
4460  * driver registration) _could_ be dynamically linked (modular) ... Costs
4461  * include needing to have boardinfo data structures be much more public.
4462  */
4463 postcore_initcall(spi_init);