Linux 6.9-rc5
[sfrench/cifs-2.6.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 const struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 /*
612  * Zero(0) is a valid physical CS value and can be located at any
613  * logical CS in the spi->chip_select[]. If all the physical CS
614  * are initialized to 0 then It would be difficult to differentiate
615  * between a valid physical CS 0 & an unused logical CS whose physical
616  * CS can be 0. As a solution to this issue initialize all the CS to -1.
617  * Now all the unused logical CS will have -1 physical CS value & can be
618  * ignored while performing physical CS validity checks.
619  */
620 #define SPI_INVALID_CS          ((s8)-1)
621
622 static inline bool is_valid_cs(s8 chip_select)
623 {
624         return chip_select != SPI_INVALID_CS;
625 }
626
627 static inline int spi_dev_check_cs(struct device *dev,
628                                    struct spi_device *spi, u8 idx,
629                                    struct spi_device *new_spi, u8 new_idx)
630 {
631         u8 cs, cs_new;
632         u8 idx_new;
633
634         cs = spi_get_chipselect(spi, idx);
635         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
636                 cs_new = spi_get_chipselect(new_spi, idx_new);
637                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
638                         dev_err(dev, "chipselect %u already in use\n", cs_new);
639                         return -EBUSY;
640                 }
641         }
642         return 0;
643 }
644
645 static int spi_dev_check(struct device *dev, void *data)
646 {
647         struct spi_device *spi = to_spi_device(dev);
648         struct spi_device *new_spi = data;
649         int status, idx;
650
651         if (spi->controller == new_spi->controller) {
652                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
653                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
654                         if (status)
655                                 return status;
656                 }
657         }
658         return 0;
659 }
660
661 static void spi_cleanup(struct spi_device *spi)
662 {
663         if (spi->controller->cleanup)
664                 spi->controller->cleanup(spi);
665 }
666
667 static int __spi_add_device(struct spi_device *spi)
668 {
669         struct spi_controller *ctlr = spi->controller;
670         struct device *dev = ctlr->dev.parent;
671         int status, idx;
672         u8 cs;
673
674         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
675                 /* Chipselects are numbered 0..max; validate. */
676                 cs = spi_get_chipselect(spi, idx);
677                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
678                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
679                                 ctlr->num_chipselect);
680                         return -EINVAL;
681                 }
682         }
683
684         /*
685          * Make sure that multiple logical CS doesn't map to the same physical CS.
686          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
687          */
688         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689                 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
690                 if (status)
691                         return status;
692         }
693
694         /* Set the bus ID string */
695         spi_dev_set_name(spi);
696
697         /*
698          * We need to make sure there's no other device with this
699          * chipselect **BEFORE** we call setup(), else we'll trash
700          * its configuration.
701          */
702         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
703         if (status)
704                 return status;
705
706         /* Controller may unregister concurrently */
707         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
708             !device_is_registered(&ctlr->dev)) {
709                 return -ENODEV;
710         }
711
712         if (ctlr->cs_gpiods) {
713                 u8 cs;
714
715                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
716                         cs = spi_get_chipselect(spi, idx);
717                         if (is_valid_cs(cs))
718                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
719                 }
720         }
721
722         /*
723          * Drivers may modify this initial i/o setup, but will
724          * normally rely on the device being setup.  Devices
725          * using SPI_CS_HIGH can't coexist well otherwise...
726          */
727         status = spi_setup(spi);
728         if (status < 0) {
729                 dev_err(dev, "can't setup %s, status %d\n",
730                                 dev_name(&spi->dev), status);
731                 return status;
732         }
733
734         /* Device may be bound to an active driver when this returns */
735         status = device_add(&spi->dev);
736         if (status < 0) {
737                 dev_err(dev, "can't add %s, status %d\n",
738                                 dev_name(&spi->dev), status);
739                 spi_cleanup(spi);
740         } else {
741                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
742         }
743
744         return status;
745 }
746
747 /**
748  * spi_add_device - Add spi_device allocated with spi_alloc_device
749  * @spi: spi_device to register
750  *
751  * Companion function to spi_alloc_device.  Devices allocated with
752  * spi_alloc_device can be added onto the SPI bus with this function.
753  *
754  * Return: 0 on success; negative errno on failure
755  */
756 int spi_add_device(struct spi_device *spi)
757 {
758         struct spi_controller *ctlr = spi->controller;
759         int status;
760
761         /* Set the bus ID string */
762         spi_dev_set_name(spi);
763
764         mutex_lock(&ctlr->add_lock);
765         status = __spi_add_device(spi);
766         mutex_unlock(&ctlr->add_lock);
767         return status;
768 }
769 EXPORT_SYMBOL_GPL(spi_add_device);
770
771 static void spi_set_all_cs_unused(struct spi_device *spi)
772 {
773         u8 idx;
774
775         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
776                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
777 }
778
779 /**
780  * spi_new_device - instantiate one new SPI device
781  * @ctlr: Controller to which device is connected
782  * @chip: Describes the SPI device
783  * Context: can sleep
784  *
785  * On typical mainboards, this is purely internal; and it's not needed
786  * after board init creates the hard-wired devices.  Some development
787  * platforms may not be able to use spi_register_board_info though, and
788  * this is exported so that for example a USB or parport based adapter
789  * driver could add devices (which it would learn about out-of-band).
790  *
791  * Return: the new device, or NULL.
792  */
793 struct spi_device *spi_new_device(struct spi_controller *ctlr,
794                                   struct spi_board_info *chip)
795 {
796         struct spi_device       *proxy;
797         int                     status;
798
799         /*
800          * NOTE:  caller did any chip->bus_num checks necessary.
801          *
802          * Also, unless we change the return value convention to use
803          * error-or-pointer (not NULL-or-pointer), troubleshootability
804          * suggests syslogged diagnostics are best here (ugh).
805          */
806
807         proxy = spi_alloc_device(ctlr);
808         if (!proxy)
809                 return NULL;
810
811         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
812
813         /* Use provided chip-select for proxy device */
814         spi_set_all_cs_unused(proxy);
815         spi_set_chipselect(proxy, 0, chip->chip_select);
816
817         proxy->max_speed_hz = chip->max_speed_hz;
818         proxy->mode = chip->mode;
819         proxy->irq = chip->irq;
820         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
821         proxy->dev.platform_data = (void *) chip->platform_data;
822         proxy->controller_data = chip->controller_data;
823         proxy->controller_state = NULL;
824         /*
825          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
826          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
827          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
828          * spi->chip_select[0] will give the physical CS.
829          * By default spi->chip_select[0] will hold the physical CS number so, set
830          * spi->cs_index_mask as 0x01.
831          */
832         proxy->cs_index_mask = 0x01;
833
834         if (chip->swnode) {
835                 status = device_add_software_node(&proxy->dev, chip->swnode);
836                 if (status) {
837                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838                                 chip->modalias, status);
839                         goto err_dev_put;
840                 }
841         }
842
843         status = spi_add_device(proxy);
844         if (status < 0)
845                 goto err_dev_put;
846
847         return proxy;
848
849 err_dev_put:
850         device_remove_software_node(&proxy->dev);
851         spi_dev_put(proxy);
852         return NULL;
853 }
854 EXPORT_SYMBOL_GPL(spi_new_device);
855
856 /**
857  * spi_unregister_device - unregister a single SPI device
858  * @spi: spi_device to unregister
859  *
860  * Start making the passed SPI device vanish. Normally this would be handled
861  * by spi_unregister_controller().
862  */
863 void spi_unregister_device(struct spi_device *spi)
864 {
865         if (!spi)
866                 return;
867
868         if (spi->dev.of_node) {
869                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
870                 of_node_put(spi->dev.of_node);
871         }
872         if (ACPI_COMPANION(&spi->dev))
873                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874         device_remove_software_node(&spi->dev);
875         device_del(&spi->dev);
876         spi_cleanup(spi);
877         put_device(&spi->dev);
878 }
879 EXPORT_SYMBOL_GPL(spi_unregister_device);
880
881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882                                               struct spi_board_info *bi)
883 {
884         struct spi_device *dev;
885
886         if (ctlr->bus_num != bi->bus_num)
887                 return;
888
889         dev = spi_new_device(ctlr, bi);
890         if (!dev)
891                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
892                         bi->modalias);
893 }
894
895 /**
896  * spi_register_board_info - register SPI devices for a given board
897  * @info: array of chip descriptors
898  * @n: how many descriptors are provided
899  * Context: can sleep
900  *
901  * Board-specific early init code calls this (probably during arch_initcall)
902  * with segments of the SPI device table.  Any device nodes are created later,
903  * after the relevant parent SPI controller (bus_num) is defined.  We keep
904  * this table of devices forever, so that reloading a controller driver will
905  * not make Linux forget about these hard-wired devices.
906  *
907  * Other code can also call this, e.g. a particular add-on board might provide
908  * SPI devices through its expansion connector, so code initializing that board
909  * would naturally declare its SPI devices.
910  *
911  * The board info passed can safely be __initdata ... but be careful of
912  * any embedded pointers (platform_data, etc), they're copied as-is.
913  *
914  * Return: zero on success, else a negative error code.
915  */
916 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
917 {
918         struct boardinfo *bi;
919         int i;
920
921         if (!n)
922                 return 0;
923
924         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
925         if (!bi)
926                 return -ENOMEM;
927
928         for (i = 0; i < n; i++, bi++, info++) {
929                 struct spi_controller *ctlr;
930
931                 memcpy(&bi->board_info, info, sizeof(*info));
932
933                 mutex_lock(&board_lock);
934                 list_add_tail(&bi->list, &board_list);
935                 list_for_each_entry(ctlr, &spi_controller_list, list)
936                         spi_match_controller_to_boardinfo(ctlr,
937                                                           &bi->board_info);
938                 mutex_unlock(&board_lock);
939         }
940
941         return 0;
942 }
943
944 /*-------------------------------------------------------------------------*/
945
946 /* Core methods for SPI resource management */
947
948 /**
949  * spi_res_alloc - allocate a spi resource that is life-cycle managed
950  *                 during the processing of a spi_message while using
951  *                 spi_transfer_one
952  * @spi:     the SPI device for which we allocate memory
953  * @release: the release code to execute for this resource
954  * @size:    size to alloc and return
955  * @gfp:     GFP allocation flags
956  *
957  * Return: the pointer to the allocated data
958  *
959  * This may get enhanced in the future to allocate from a memory pool
960  * of the @spi_device or @spi_controller to avoid repeated allocations.
961  */
962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963                            size_t size, gfp_t gfp)
964 {
965         struct spi_res *sres;
966
967         sres = kzalloc(sizeof(*sres) + size, gfp);
968         if (!sres)
969                 return NULL;
970
971         INIT_LIST_HEAD(&sres->entry);
972         sres->release = release;
973
974         return sres->data;
975 }
976
977 /**
978  * spi_res_free - free an SPI resource
979  * @res: pointer to the custom data of a resource
980  */
981 static void spi_res_free(void *res)
982 {
983         struct spi_res *sres = container_of(res, struct spi_res, data);
984
985         if (!res)
986                 return;
987
988         WARN_ON(!list_empty(&sres->entry));
989         kfree(sres);
990 }
991
992 /**
993  * spi_res_add - add a spi_res to the spi_message
994  * @message: the SPI message
995  * @res:     the spi_resource
996  */
997 static void spi_res_add(struct spi_message *message, void *res)
998 {
999         struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001         WARN_ON(!list_empty(&sres->entry));
1002         list_add_tail(&sres->entry, &message->resources);
1003 }
1004
1005 /**
1006  * spi_res_release - release all SPI resources for this message
1007  * @ctlr:  the @spi_controller
1008  * @message: the @spi_message
1009  */
1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011 {
1012         struct spi_res *res, *tmp;
1013
1014         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015                 if (res->release)
1016                         res->release(ctlr, message, res->data);
1017
1018                 list_del(&res->entry);
1019
1020                 kfree(res);
1021         }
1022 }
1023
1024 /*-------------------------------------------------------------------------*/
1025 static inline bool spi_is_last_cs(struct spi_device *spi)
1026 {
1027         u8 idx;
1028         bool last = false;
1029
1030         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031                 if (spi->cs_index_mask & BIT(idx)) {
1032                         if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033                                 last = true;
1034                 }
1035         }
1036         return last;
1037 }
1038
1039
1040 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041 {
1042         bool activate = enable;
1043         u8 idx;
1044
1045         /*
1046          * Avoid calling into the driver (or doing delays) if the chip select
1047          * isn't actually changing from the last time this was called.
1048          */
1049         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050                         spi_is_last_cs(spi)) ||
1051                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052                         !spi_is_last_cs(spi))) &&
1053             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054                 return;
1055
1056         trace_spi_set_cs(spi, activate);
1057
1058         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062
1063         if (spi->mode & SPI_CS_HIGH)
1064                 enable = !enable;
1065
1066         /*
1067          * Handle chip select delays for GPIO based CS or controllers without
1068          * programmable chip select timing.
1069          */
1070         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1071                 spi_delay_exec(&spi->cs_hold, NULL);
1072
1073         if (spi_is_csgpiod(spi)) {
1074                 if (!(spi->mode & SPI_NO_CS)) {
1075                         /*
1076                          * Historically ACPI has no means of the GPIO polarity and
1077                          * thus the SPISerialBus() resource defines it on the per-chip
1078                          * basis. In order to avoid a chain of negations, the GPIO
1079                          * polarity is considered being Active High. Even for the cases
1080                          * when _DSD() is involved (in the updated versions of ACPI)
1081                          * the GPIO CS polarity must be defined Active High to avoid
1082                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1083                          * into account.
1084                          */
1085                         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1086                                 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1087                                         if (has_acpi_companion(&spi->dev))
1088                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089                                                                          !enable);
1090                                         else
1091                                                 /* Polarity handled by GPIO library */
1092                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1093                                                                          activate);
1094
1095                                         if (activate)
1096                                                 spi_delay_exec(&spi->cs_setup, NULL);
1097                                         else
1098                                                 spi_delay_exec(&spi->cs_inactive, NULL);
1099                                 }
1100                         }
1101                 }
1102                 /* Some SPI masters need both GPIO CS & slave_select */
1103                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1104                     spi->controller->set_cs)
1105                         spi->controller->set_cs(spi, !enable);
1106         } else if (spi->controller->set_cs) {
1107                 spi->controller->set_cs(spi, !enable);
1108         }
1109
1110         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1111                 if (activate)
1112                         spi_delay_exec(&spi->cs_setup, NULL);
1113                 else
1114                         spi_delay_exec(&spi->cs_inactive, NULL);
1115         }
1116 }
1117
1118 #ifdef CONFIG_HAS_DMA
1119 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1120                              struct sg_table *sgt, void *buf, size_t len,
1121                              enum dma_data_direction dir, unsigned long attrs)
1122 {
1123         const bool vmalloced_buf = is_vmalloc_addr(buf);
1124         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1125 #ifdef CONFIG_HIGHMEM
1126         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1127                                 (unsigned long)buf < (PKMAP_BASE +
1128                                         (LAST_PKMAP * PAGE_SIZE)));
1129 #else
1130         const bool kmap_buf = false;
1131 #endif
1132         int desc_len;
1133         int sgs;
1134         struct page *vm_page;
1135         struct scatterlist *sg;
1136         void *sg_buf;
1137         size_t min;
1138         int i, ret;
1139
1140         if (vmalloced_buf || kmap_buf) {
1141                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1142                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1143         } else if (virt_addr_valid(buf)) {
1144                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1145                 sgs = DIV_ROUND_UP(len, desc_len);
1146         } else {
1147                 return -EINVAL;
1148         }
1149
1150         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151         if (ret != 0)
1152                 return ret;
1153
1154         sg = &sgt->sgl[0];
1155         for (i = 0; i < sgs; i++) {
1156
1157                 if (vmalloced_buf || kmap_buf) {
1158                         /*
1159                          * Next scatterlist entry size is the minimum between
1160                          * the desc_len and the remaining buffer length that
1161                          * fits in a page.
1162                          */
1163                         min = min_t(size_t, desc_len,
1164                                     min_t(size_t, len,
1165                                           PAGE_SIZE - offset_in_page(buf)));
1166                         if (vmalloced_buf)
1167                                 vm_page = vmalloc_to_page(buf);
1168                         else
1169                                 vm_page = kmap_to_page(buf);
1170                         if (!vm_page) {
1171                                 sg_free_table(sgt);
1172                                 return -ENOMEM;
1173                         }
1174                         sg_set_page(sg, vm_page,
1175                                     min, offset_in_page(buf));
1176                 } else {
1177                         min = min_t(size_t, len, desc_len);
1178                         sg_buf = buf;
1179                         sg_set_buf(sg, sg_buf, min);
1180                 }
1181
1182                 buf += min;
1183                 len -= min;
1184                 sg = sg_next(sg);
1185         }
1186
1187         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1188         if (ret < 0) {
1189                 sg_free_table(sgt);
1190                 return ret;
1191         }
1192
1193         return 0;
1194 }
1195
1196 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1197                 struct sg_table *sgt, void *buf, size_t len,
1198                 enum dma_data_direction dir)
1199 {
1200         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1201 }
1202
1203 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1204                                 struct device *dev, struct sg_table *sgt,
1205                                 enum dma_data_direction dir,
1206                                 unsigned long attrs)
1207 {
1208         if (sgt->orig_nents) {
1209                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1210                 sg_free_table(sgt);
1211                 sgt->orig_nents = 0;
1212                 sgt->nents = 0;
1213         }
1214 }
1215
1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217                    struct sg_table *sgt, enum dma_data_direction dir)
1218 {
1219         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1220 }
1221
1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224         struct device *tx_dev, *rx_dev;
1225         struct spi_transfer *xfer;
1226         int ret;
1227
1228         if (!ctlr->can_dma)
1229                 return 0;
1230
1231         if (ctlr->dma_tx)
1232                 tx_dev = ctlr->dma_tx->device->dev;
1233         else if (ctlr->dma_map_dev)
1234                 tx_dev = ctlr->dma_map_dev;
1235         else
1236                 tx_dev = ctlr->dev.parent;
1237
1238         if (ctlr->dma_rx)
1239                 rx_dev = ctlr->dma_rx->device->dev;
1240         else if (ctlr->dma_map_dev)
1241                 rx_dev = ctlr->dma_map_dev;
1242         else
1243                 rx_dev = ctlr->dev.parent;
1244
1245         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1246                 /* The sync is done before each transfer. */
1247                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1248
1249                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1250                         continue;
1251
1252                 if (xfer->tx_buf != NULL) {
1253                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1254                                                 (void *)xfer->tx_buf,
1255                                                 xfer->len, DMA_TO_DEVICE,
1256                                                 attrs);
1257                         if (ret != 0)
1258                                 return ret;
1259                 }
1260
1261                 if (xfer->rx_buf != NULL) {
1262                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1263                                                 xfer->rx_buf, xfer->len,
1264                                                 DMA_FROM_DEVICE, attrs);
1265                         if (ret != 0) {
1266                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1267                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1268                                                 attrs);
1269
1270                                 return ret;
1271                         }
1272                 }
1273         }
1274
1275         ctlr->cur_rx_dma_dev = rx_dev;
1276         ctlr->cur_tx_dma_dev = tx_dev;
1277         ctlr->cur_msg_mapped = true;
1278
1279         return 0;
1280 }
1281
1282 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1283 {
1284         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1285         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1286         struct spi_transfer *xfer;
1287
1288         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1289                 return 0;
1290
1291         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1292                 /* The sync has already been done after each transfer. */
1293                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1294
1295                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1296                         continue;
1297
1298                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1299                                     DMA_FROM_DEVICE, attrs);
1300                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1301                                     DMA_TO_DEVICE, attrs);
1302         }
1303
1304         ctlr->cur_msg_mapped = false;
1305
1306         return 0;
1307 }
1308
1309 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1310                                     struct spi_transfer *xfer)
1311 {
1312         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1313         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1314
1315         if (!ctlr->cur_msg_mapped)
1316                 return;
1317
1318         if (xfer->tx_sg.orig_nents)
1319                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1320         if (xfer->rx_sg.orig_nents)
1321                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1322 }
1323
1324 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1325                                  struct spi_transfer *xfer)
1326 {
1327         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1328         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1329
1330         if (!ctlr->cur_msg_mapped)
1331                 return;
1332
1333         if (xfer->rx_sg.orig_nents)
1334                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1335         if (xfer->tx_sg.orig_nents)
1336                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1337 }
1338 #else /* !CONFIG_HAS_DMA */
1339 static inline int __spi_map_msg(struct spi_controller *ctlr,
1340                                 struct spi_message *msg)
1341 {
1342         return 0;
1343 }
1344
1345 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1346                                   struct spi_message *msg)
1347 {
1348         return 0;
1349 }
1350
1351 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1352                                     struct spi_transfer *xfer)
1353 {
1354 }
1355
1356 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1357                                  struct spi_transfer *xfer)
1358 {
1359 }
1360 #endif /* !CONFIG_HAS_DMA */
1361
1362 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1363                                 struct spi_message *msg)
1364 {
1365         struct spi_transfer *xfer;
1366
1367         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1368                 /*
1369                  * Restore the original value of tx_buf or rx_buf if they are
1370                  * NULL.
1371                  */
1372                 if (xfer->tx_buf == ctlr->dummy_tx)
1373                         xfer->tx_buf = NULL;
1374                 if (xfer->rx_buf == ctlr->dummy_rx)
1375                         xfer->rx_buf = NULL;
1376         }
1377
1378         return __spi_unmap_msg(ctlr, msg);
1379 }
1380
1381 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1382 {
1383         struct spi_transfer *xfer;
1384         void *tmp;
1385         unsigned int max_tx, max_rx;
1386
1387         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1388                 && !(msg->spi->mode & SPI_3WIRE)) {
1389                 max_tx = 0;
1390                 max_rx = 0;
1391
1392                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1393                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1394                             !xfer->tx_buf)
1395                                 max_tx = max(xfer->len, max_tx);
1396                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1397                             !xfer->rx_buf)
1398                                 max_rx = max(xfer->len, max_rx);
1399                 }
1400
1401                 if (max_tx) {
1402                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1403                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1404                         if (!tmp)
1405                                 return -ENOMEM;
1406                         ctlr->dummy_tx = tmp;
1407                 }
1408
1409                 if (max_rx) {
1410                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1411                                        GFP_KERNEL | GFP_DMA);
1412                         if (!tmp)
1413                                 return -ENOMEM;
1414                         ctlr->dummy_rx = tmp;
1415                 }
1416
1417                 if (max_tx || max_rx) {
1418                         list_for_each_entry(xfer, &msg->transfers,
1419                                             transfer_list) {
1420                                 if (!xfer->len)
1421                                         continue;
1422                                 if (!xfer->tx_buf)
1423                                         xfer->tx_buf = ctlr->dummy_tx;
1424                                 if (!xfer->rx_buf)
1425                                         xfer->rx_buf = ctlr->dummy_rx;
1426                         }
1427                 }
1428         }
1429
1430         return __spi_map_msg(ctlr, msg);
1431 }
1432
1433 static int spi_transfer_wait(struct spi_controller *ctlr,
1434                              struct spi_message *msg,
1435                              struct spi_transfer *xfer)
1436 {
1437         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1438         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1439         u32 speed_hz = xfer->speed_hz;
1440         unsigned long long ms;
1441
1442         if (spi_controller_is_slave(ctlr)) {
1443                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1444                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1445                         return -EINTR;
1446                 }
1447         } else {
1448                 if (!speed_hz)
1449                         speed_hz = 100000;
1450
1451                 /*
1452                  * For each byte we wait for 8 cycles of the SPI clock.
1453                  * Since speed is defined in Hz and we want milliseconds,
1454                  * use respective multiplier, but before the division,
1455                  * otherwise we may get 0 for short transfers.
1456                  */
1457                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1458                 do_div(ms, speed_hz);
1459
1460                 /*
1461                  * Increase it twice and add 200 ms tolerance, use
1462                  * predefined maximum in case of overflow.
1463                  */
1464                 ms += ms + 200;
1465                 if (ms > UINT_MAX)
1466                         ms = UINT_MAX;
1467
1468                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1469                                                  msecs_to_jiffies(ms));
1470
1471                 if (ms == 0) {
1472                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1473                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1474                         dev_err(&msg->spi->dev,
1475                                 "SPI transfer timed out\n");
1476                         return -ETIMEDOUT;
1477                 }
1478
1479                 if (xfer->error & SPI_TRANS_FAIL_IO)
1480                         return -EIO;
1481         }
1482
1483         return 0;
1484 }
1485
1486 static void _spi_transfer_delay_ns(u32 ns)
1487 {
1488         if (!ns)
1489                 return;
1490         if (ns <= NSEC_PER_USEC) {
1491                 ndelay(ns);
1492         } else {
1493                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1494
1495                 if (us <= 10)
1496                         udelay(us);
1497                 else
1498                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1499         }
1500 }
1501
1502 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1503 {
1504         u32 delay = _delay->value;
1505         u32 unit = _delay->unit;
1506         u32 hz;
1507
1508         if (!delay)
1509                 return 0;
1510
1511         switch (unit) {
1512         case SPI_DELAY_UNIT_USECS:
1513                 delay *= NSEC_PER_USEC;
1514                 break;
1515         case SPI_DELAY_UNIT_NSECS:
1516                 /* Nothing to do here */
1517                 break;
1518         case SPI_DELAY_UNIT_SCK:
1519                 /* Clock cycles need to be obtained from spi_transfer */
1520                 if (!xfer)
1521                         return -EINVAL;
1522                 /*
1523                  * If there is unknown effective speed, approximate it
1524                  * by underestimating with half of the requested Hz.
1525                  */
1526                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1527                 if (!hz)
1528                         return -EINVAL;
1529
1530                 /* Convert delay to nanoseconds */
1531                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1532                 break;
1533         default:
1534                 return -EINVAL;
1535         }
1536
1537         return delay;
1538 }
1539 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1540
1541 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1542 {
1543         int delay;
1544
1545         might_sleep();
1546
1547         if (!_delay)
1548                 return -EINVAL;
1549
1550         delay = spi_delay_to_ns(_delay, xfer);
1551         if (delay < 0)
1552                 return delay;
1553
1554         _spi_transfer_delay_ns(delay);
1555
1556         return 0;
1557 }
1558 EXPORT_SYMBOL_GPL(spi_delay_exec);
1559
1560 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1561                                           struct spi_transfer *xfer)
1562 {
1563         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1564         u32 delay = xfer->cs_change_delay.value;
1565         u32 unit = xfer->cs_change_delay.unit;
1566         int ret;
1567
1568         /* Return early on "fast" mode - for everything but USECS */
1569         if (!delay) {
1570                 if (unit == SPI_DELAY_UNIT_USECS)
1571                         _spi_transfer_delay_ns(default_delay_ns);
1572                 return;
1573         }
1574
1575         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1576         if (ret) {
1577                 dev_err_once(&msg->spi->dev,
1578                              "Use of unsupported delay unit %i, using default of %luus\n",
1579                              unit, default_delay_ns / NSEC_PER_USEC);
1580                 _spi_transfer_delay_ns(default_delay_ns);
1581         }
1582 }
1583
1584 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1585                                                   struct spi_transfer *xfer)
1586 {
1587         _spi_transfer_cs_change_delay(msg, xfer);
1588 }
1589 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1590
1591 /*
1592  * spi_transfer_one_message - Default implementation of transfer_one_message()
1593  *
1594  * This is a standard implementation of transfer_one_message() for
1595  * drivers which implement a transfer_one() operation.  It provides
1596  * standard handling of delays and chip select management.
1597  */
1598 static int spi_transfer_one_message(struct spi_controller *ctlr,
1599                                     struct spi_message *msg)
1600 {
1601         struct spi_transfer *xfer;
1602         bool keep_cs = false;
1603         int ret = 0;
1604         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1605         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1606
1607         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1608         spi_set_cs(msg->spi, !xfer->cs_off, false);
1609
1610         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1611         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1612
1613         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1614                 trace_spi_transfer_start(msg, xfer);
1615
1616                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1617                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1618
1619                 if (!ctlr->ptp_sts_supported) {
1620                         xfer->ptp_sts_word_pre = 0;
1621                         ptp_read_system_prets(xfer->ptp_sts);
1622                 }
1623
1624                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1625                         reinit_completion(&ctlr->xfer_completion);
1626
1627 fallback_pio:
1628                         spi_dma_sync_for_device(ctlr, xfer);
1629                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1630                         if (ret < 0) {
1631                                 spi_dma_sync_for_cpu(ctlr, xfer);
1632
1633                                 if (ctlr->cur_msg_mapped &&
1634                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1635                                         __spi_unmap_msg(ctlr, msg);
1636                                         ctlr->fallback = true;
1637                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1638                                         goto fallback_pio;
1639                                 }
1640
1641                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1642                                                                errors);
1643                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1644                                                                errors);
1645                                 dev_err(&msg->spi->dev,
1646                                         "SPI transfer failed: %d\n", ret);
1647                                 goto out;
1648                         }
1649
1650                         if (ret > 0) {
1651                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1652                                 if (ret < 0)
1653                                         msg->status = ret;
1654                         }
1655
1656                         spi_dma_sync_for_cpu(ctlr, xfer);
1657                 } else {
1658                         if (xfer->len)
1659                                 dev_err(&msg->spi->dev,
1660                                         "Bufferless transfer has length %u\n",
1661                                         xfer->len);
1662                 }
1663
1664                 if (!ctlr->ptp_sts_supported) {
1665                         ptp_read_system_postts(xfer->ptp_sts);
1666                         xfer->ptp_sts_word_post = xfer->len;
1667                 }
1668
1669                 trace_spi_transfer_stop(msg, xfer);
1670
1671                 if (msg->status != -EINPROGRESS)
1672                         goto out;
1673
1674                 spi_transfer_delay_exec(xfer);
1675
1676                 if (xfer->cs_change) {
1677                         if (list_is_last(&xfer->transfer_list,
1678                                          &msg->transfers)) {
1679                                 keep_cs = true;
1680                         } else {
1681                                 if (!xfer->cs_off)
1682                                         spi_set_cs(msg->spi, false, false);
1683                                 _spi_transfer_cs_change_delay(msg, xfer);
1684                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1685                                         spi_set_cs(msg->spi, true, false);
1686                         }
1687                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1688                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1689                         spi_set_cs(msg->spi, xfer->cs_off, false);
1690                 }
1691
1692                 msg->actual_length += xfer->len;
1693         }
1694
1695 out:
1696         if (ret != 0 || !keep_cs)
1697                 spi_set_cs(msg->spi, false, false);
1698
1699         if (msg->status == -EINPROGRESS)
1700                 msg->status = ret;
1701
1702         if (msg->status && ctlr->handle_err)
1703                 ctlr->handle_err(ctlr, msg);
1704
1705         spi_finalize_current_message(ctlr);
1706
1707         return ret;
1708 }
1709
1710 /**
1711  * spi_finalize_current_transfer - report completion of a transfer
1712  * @ctlr: the controller reporting completion
1713  *
1714  * Called by SPI drivers using the core transfer_one_message()
1715  * implementation to notify it that the current interrupt driven
1716  * transfer has finished and the next one may be scheduled.
1717  */
1718 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1719 {
1720         complete(&ctlr->xfer_completion);
1721 }
1722 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1723
1724 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1725 {
1726         if (ctlr->auto_runtime_pm) {
1727                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1728                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1729         }
1730 }
1731
1732 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1733                 struct spi_message *msg, bool was_busy)
1734 {
1735         struct spi_transfer *xfer;
1736         int ret;
1737
1738         if (!was_busy && ctlr->auto_runtime_pm) {
1739                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1740                 if (ret < 0) {
1741                         pm_runtime_put_noidle(ctlr->dev.parent);
1742                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1743                                 ret);
1744
1745                         msg->status = ret;
1746                         spi_finalize_current_message(ctlr);
1747
1748                         return ret;
1749                 }
1750         }
1751
1752         if (!was_busy)
1753                 trace_spi_controller_busy(ctlr);
1754
1755         if (!was_busy && ctlr->prepare_transfer_hardware) {
1756                 ret = ctlr->prepare_transfer_hardware(ctlr);
1757                 if (ret) {
1758                         dev_err(&ctlr->dev,
1759                                 "failed to prepare transfer hardware: %d\n",
1760                                 ret);
1761
1762                         if (ctlr->auto_runtime_pm)
1763                                 pm_runtime_put(ctlr->dev.parent);
1764
1765                         msg->status = ret;
1766                         spi_finalize_current_message(ctlr);
1767
1768                         return ret;
1769                 }
1770         }
1771
1772         trace_spi_message_start(msg);
1773
1774         if (ctlr->prepare_message) {
1775                 ret = ctlr->prepare_message(ctlr, msg);
1776                 if (ret) {
1777                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1778                                 ret);
1779                         msg->status = ret;
1780                         spi_finalize_current_message(ctlr);
1781                         return ret;
1782                 }
1783                 msg->prepared = true;
1784         }
1785
1786         ret = spi_map_msg(ctlr, msg);
1787         if (ret) {
1788                 msg->status = ret;
1789                 spi_finalize_current_message(ctlr);
1790                 return ret;
1791         }
1792
1793         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1794                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1795                         xfer->ptp_sts_word_pre = 0;
1796                         ptp_read_system_prets(xfer->ptp_sts);
1797                 }
1798         }
1799
1800         /*
1801          * Drivers implementation of transfer_one_message() must arrange for
1802          * spi_finalize_current_message() to get called. Most drivers will do
1803          * this in the calling context, but some don't. For those cases, a
1804          * completion is used to guarantee that this function does not return
1805          * until spi_finalize_current_message() is done accessing
1806          * ctlr->cur_msg.
1807          * Use of the following two flags enable to opportunistically skip the
1808          * use of the completion since its use involves expensive spin locks.
1809          * In case of a race with the context that calls
1810          * spi_finalize_current_message() the completion will always be used,
1811          * due to strict ordering of these flags using barriers.
1812          */
1813         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1814         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1815         reinit_completion(&ctlr->cur_msg_completion);
1816         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1817
1818         ret = ctlr->transfer_one_message(ctlr, msg);
1819         if (ret) {
1820                 dev_err(&ctlr->dev,
1821                         "failed to transfer one message from queue\n");
1822                 return ret;
1823         }
1824
1825         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1826         smp_mb(); /* See spi_finalize_current_message()... */
1827         if (READ_ONCE(ctlr->cur_msg_incomplete))
1828                 wait_for_completion(&ctlr->cur_msg_completion);
1829
1830         return 0;
1831 }
1832
1833 /**
1834  * __spi_pump_messages - function which processes SPI message queue
1835  * @ctlr: controller to process queue for
1836  * @in_kthread: true if we are in the context of the message pump thread
1837  *
1838  * This function checks if there is any SPI message in the queue that
1839  * needs processing and if so call out to the driver to initialize hardware
1840  * and transfer each message.
1841  *
1842  * Note that it is called both from the kthread itself and also from
1843  * inside spi_sync(); the queue extraction handling at the top of the
1844  * function should deal with this safely.
1845  */
1846 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1847 {
1848         struct spi_message *msg;
1849         bool was_busy = false;
1850         unsigned long flags;
1851         int ret;
1852
1853         /* Take the I/O mutex */
1854         mutex_lock(&ctlr->io_mutex);
1855
1856         /* Lock queue */
1857         spin_lock_irqsave(&ctlr->queue_lock, flags);
1858
1859         /* Make sure we are not already running a message */
1860         if (ctlr->cur_msg)
1861                 goto out_unlock;
1862
1863         /* Check if the queue is idle */
1864         if (list_empty(&ctlr->queue) || !ctlr->running) {
1865                 if (!ctlr->busy)
1866                         goto out_unlock;
1867
1868                 /* Defer any non-atomic teardown to the thread */
1869                 if (!in_kthread) {
1870                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1871                             !ctlr->unprepare_transfer_hardware) {
1872                                 spi_idle_runtime_pm(ctlr);
1873                                 ctlr->busy = false;
1874                                 ctlr->queue_empty = true;
1875                                 trace_spi_controller_idle(ctlr);
1876                         } else {
1877                                 kthread_queue_work(ctlr->kworker,
1878                                                    &ctlr->pump_messages);
1879                         }
1880                         goto out_unlock;
1881                 }
1882
1883                 ctlr->busy = false;
1884                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1885
1886                 kfree(ctlr->dummy_rx);
1887                 ctlr->dummy_rx = NULL;
1888                 kfree(ctlr->dummy_tx);
1889                 ctlr->dummy_tx = NULL;
1890                 if (ctlr->unprepare_transfer_hardware &&
1891                     ctlr->unprepare_transfer_hardware(ctlr))
1892                         dev_err(&ctlr->dev,
1893                                 "failed to unprepare transfer hardware\n");
1894                 spi_idle_runtime_pm(ctlr);
1895                 trace_spi_controller_idle(ctlr);
1896
1897                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1898                 ctlr->queue_empty = true;
1899                 goto out_unlock;
1900         }
1901
1902         /* Extract head of queue */
1903         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1904         ctlr->cur_msg = msg;
1905
1906         list_del_init(&msg->queue);
1907         if (ctlr->busy)
1908                 was_busy = true;
1909         else
1910                 ctlr->busy = true;
1911         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1912
1913         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1914         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1915
1916         ctlr->cur_msg = NULL;
1917         ctlr->fallback = false;
1918
1919         mutex_unlock(&ctlr->io_mutex);
1920
1921         /* Prod the scheduler in case transfer_one() was busy waiting */
1922         if (!ret)
1923                 cond_resched();
1924         return;
1925
1926 out_unlock:
1927         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1928         mutex_unlock(&ctlr->io_mutex);
1929 }
1930
1931 /**
1932  * spi_pump_messages - kthread work function which processes spi message queue
1933  * @work: pointer to kthread work struct contained in the controller struct
1934  */
1935 static void spi_pump_messages(struct kthread_work *work)
1936 {
1937         struct spi_controller *ctlr =
1938                 container_of(work, struct spi_controller, pump_messages);
1939
1940         __spi_pump_messages(ctlr, true);
1941 }
1942
1943 /**
1944  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1945  * @ctlr: Pointer to the spi_controller structure of the driver
1946  * @xfer: Pointer to the transfer being timestamped
1947  * @progress: How many words (not bytes) have been transferred so far
1948  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1949  *            transfer, for less jitter in time measurement. Only compatible
1950  *            with PIO drivers. If true, must follow up with
1951  *            spi_take_timestamp_post or otherwise system will crash.
1952  *            WARNING: for fully predictable results, the CPU frequency must
1953  *            also be under control (governor).
1954  *
1955  * This is a helper for drivers to collect the beginning of the TX timestamp
1956  * for the requested byte from the SPI transfer. The frequency with which this
1957  * function must be called (once per word, once for the whole transfer, once
1958  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1959  * greater than or equal to the requested byte at the time of the call. The
1960  * timestamp is only taken once, at the first such call. It is assumed that
1961  * the driver advances its @tx buffer pointer monotonically.
1962  */
1963 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1964                             struct spi_transfer *xfer,
1965                             size_t progress, bool irqs_off)
1966 {
1967         if (!xfer->ptp_sts)
1968                 return;
1969
1970         if (xfer->timestamped)
1971                 return;
1972
1973         if (progress > xfer->ptp_sts_word_pre)
1974                 return;
1975
1976         /* Capture the resolution of the timestamp */
1977         xfer->ptp_sts_word_pre = progress;
1978
1979         if (irqs_off) {
1980                 local_irq_save(ctlr->irq_flags);
1981                 preempt_disable();
1982         }
1983
1984         ptp_read_system_prets(xfer->ptp_sts);
1985 }
1986 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1987
1988 /**
1989  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1990  * @ctlr: Pointer to the spi_controller structure of the driver
1991  * @xfer: Pointer to the transfer being timestamped
1992  * @progress: How many words (not bytes) have been transferred so far
1993  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1994  *
1995  * This is a helper for drivers to collect the end of the TX timestamp for
1996  * the requested byte from the SPI transfer. Can be called with an arbitrary
1997  * frequency: only the first call where @tx exceeds or is equal to the
1998  * requested word will be timestamped.
1999  */
2000 void spi_take_timestamp_post(struct spi_controller *ctlr,
2001                              struct spi_transfer *xfer,
2002                              size_t progress, bool irqs_off)
2003 {
2004         if (!xfer->ptp_sts)
2005                 return;
2006
2007         if (xfer->timestamped)
2008                 return;
2009
2010         if (progress < xfer->ptp_sts_word_post)
2011                 return;
2012
2013         ptp_read_system_postts(xfer->ptp_sts);
2014
2015         if (irqs_off) {
2016                 local_irq_restore(ctlr->irq_flags);
2017                 preempt_enable();
2018         }
2019
2020         /* Capture the resolution of the timestamp */
2021         xfer->ptp_sts_word_post = progress;
2022
2023         xfer->timestamped = 1;
2024 }
2025 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2026
2027 /**
2028  * spi_set_thread_rt - set the controller to pump at realtime priority
2029  * @ctlr: controller to boost priority of
2030  *
2031  * This can be called because the controller requested realtime priority
2032  * (by setting the ->rt value before calling spi_register_controller()) or
2033  * because a device on the bus said that its transfers needed realtime
2034  * priority.
2035  *
2036  * NOTE: at the moment if any device on a bus says it needs realtime then
2037  * the thread will be at realtime priority for all transfers on that
2038  * controller.  If this eventually becomes a problem we may see if we can
2039  * find a way to boost the priority only temporarily during relevant
2040  * transfers.
2041  */
2042 static void spi_set_thread_rt(struct spi_controller *ctlr)
2043 {
2044         dev_info(&ctlr->dev,
2045                 "will run message pump with realtime priority\n");
2046         sched_set_fifo(ctlr->kworker->task);
2047 }
2048
2049 static int spi_init_queue(struct spi_controller *ctlr)
2050 {
2051         ctlr->running = false;
2052         ctlr->busy = false;
2053         ctlr->queue_empty = true;
2054
2055         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2056         if (IS_ERR(ctlr->kworker)) {
2057                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2058                 return PTR_ERR(ctlr->kworker);
2059         }
2060
2061         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2062
2063         /*
2064          * Controller config will indicate if this controller should run the
2065          * message pump with high (realtime) priority to reduce the transfer
2066          * latency on the bus by minimising the delay between a transfer
2067          * request and the scheduling of the message pump thread. Without this
2068          * setting the message pump thread will remain at default priority.
2069          */
2070         if (ctlr->rt)
2071                 spi_set_thread_rt(ctlr);
2072
2073         return 0;
2074 }
2075
2076 /**
2077  * spi_get_next_queued_message() - called by driver to check for queued
2078  * messages
2079  * @ctlr: the controller to check for queued messages
2080  *
2081  * If there are more messages in the queue, the next message is returned from
2082  * this call.
2083  *
2084  * Return: the next message in the queue, else NULL if the queue is empty.
2085  */
2086 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2087 {
2088         struct spi_message *next;
2089         unsigned long flags;
2090
2091         /* Get a pointer to the next message, if any */
2092         spin_lock_irqsave(&ctlr->queue_lock, flags);
2093         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2094                                         queue);
2095         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2096
2097         return next;
2098 }
2099 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2100
2101 /*
2102  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2103  *                            and spi_maybe_unoptimize_message()
2104  * @msg: the message to unoptimize
2105  *
2106  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2107  * core should use spi_maybe_unoptimize_message() rather than calling this
2108  * function directly.
2109  *
2110  * It is not valid to call this on a message that is not currently optimized.
2111  */
2112 static void __spi_unoptimize_message(struct spi_message *msg)
2113 {
2114         struct spi_controller *ctlr = msg->spi->controller;
2115
2116         if (ctlr->unoptimize_message)
2117                 ctlr->unoptimize_message(msg);
2118
2119         spi_res_release(ctlr, msg);
2120
2121         msg->optimized = false;
2122         msg->opt_state = NULL;
2123 }
2124
2125 /*
2126  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2127  * @msg: the message to unoptimize
2128  *
2129  * This function is used to unoptimize a message if and only if it was
2130  * optimized by the core (via spi_maybe_optimize_message()).
2131  */
2132 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2133 {
2134         if (!msg->pre_optimized && msg->optimized)
2135                 __spi_unoptimize_message(msg);
2136 }
2137
2138 /**
2139  * spi_finalize_current_message() - the current message is complete
2140  * @ctlr: the controller to return the message to
2141  *
2142  * Called by the driver to notify the core that the message in the front of the
2143  * queue is complete and can be removed from the queue.
2144  */
2145 void spi_finalize_current_message(struct spi_controller *ctlr)
2146 {
2147         struct spi_transfer *xfer;
2148         struct spi_message *mesg;
2149         int ret;
2150
2151         mesg = ctlr->cur_msg;
2152
2153         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2154                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2155                         ptp_read_system_postts(xfer->ptp_sts);
2156                         xfer->ptp_sts_word_post = xfer->len;
2157                 }
2158         }
2159
2160         if (unlikely(ctlr->ptp_sts_supported))
2161                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2162                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2163
2164         spi_unmap_msg(ctlr, mesg);
2165
2166         if (mesg->prepared && ctlr->unprepare_message) {
2167                 ret = ctlr->unprepare_message(ctlr, mesg);
2168                 if (ret) {
2169                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2170                                 ret);
2171                 }
2172         }
2173
2174         mesg->prepared = false;
2175
2176         spi_maybe_unoptimize_message(mesg);
2177
2178         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2179         smp_mb(); /* See __spi_pump_transfer_message()... */
2180         if (READ_ONCE(ctlr->cur_msg_need_completion))
2181                 complete(&ctlr->cur_msg_completion);
2182
2183         trace_spi_message_done(mesg);
2184
2185         mesg->state = NULL;
2186         if (mesg->complete)
2187                 mesg->complete(mesg->context);
2188 }
2189 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2190
2191 static int spi_start_queue(struct spi_controller *ctlr)
2192 {
2193         unsigned long flags;
2194
2195         spin_lock_irqsave(&ctlr->queue_lock, flags);
2196
2197         if (ctlr->running || ctlr->busy) {
2198                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2199                 return -EBUSY;
2200         }
2201
2202         ctlr->running = true;
2203         ctlr->cur_msg = NULL;
2204         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2205
2206         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2207
2208         return 0;
2209 }
2210
2211 static int spi_stop_queue(struct spi_controller *ctlr)
2212 {
2213         unsigned long flags;
2214         unsigned limit = 500;
2215         int ret = 0;
2216
2217         spin_lock_irqsave(&ctlr->queue_lock, flags);
2218
2219         /*
2220          * This is a bit lame, but is optimized for the common execution path.
2221          * A wait_queue on the ctlr->busy could be used, but then the common
2222          * execution path (pump_messages) would be required to call wake_up or
2223          * friends on every SPI message. Do this instead.
2224          */
2225         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2226                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2227                 usleep_range(10000, 11000);
2228                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2229         }
2230
2231         if (!list_empty(&ctlr->queue) || ctlr->busy)
2232                 ret = -EBUSY;
2233         else
2234                 ctlr->running = false;
2235
2236         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2237
2238         return ret;
2239 }
2240
2241 static int spi_destroy_queue(struct spi_controller *ctlr)
2242 {
2243         int ret;
2244
2245         ret = spi_stop_queue(ctlr);
2246
2247         /*
2248          * kthread_flush_worker will block until all work is done.
2249          * If the reason that stop_queue timed out is that the work will never
2250          * finish, then it does no good to call flush/stop thread, so
2251          * return anyway.
2252          */
2253         if (ret) {
2254                 dev_err(&ctlr->dev, "problem destroying queue\n");
2255                 return ret;
2256         }
2257
2258         kthread_destroy_worker(ctlr->kworker);
2259
2260         return 0;
2261 }
2262
2263 static int __spi_queued_transfer(struct spi_device *spi,
2264                                  struct spi_message *msg,
2265                                  bool need_pump)
2266 {
2267         struct spi_controller *ctlr = spi->controller;
2268         unsigned long flags;
2269
2270         spin_lock_irqsave(&ctlr->queue_lock, flags);
2271
2272         if (!ctlr->running) {
2273                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2274                 return -ESHUTDOWN;
2275         }
2276         msg->actual_length = 0;
2277         msg->status = -EINPROGRESS;
2278
2279         list_add_tail(&msg->queue, &ctlr->queue);
2280         ctlr->queue_empty = false;
2281         if (!ctlr->busy && need_pump)
2282                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2283
2284         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2285         return 0;
2286 }
2287
2288 /**
2289  * spi_queued_transfer - transfer function for queued transfers
2290  * @spi: SPI device which is requesting transfer
2291  * @msg: SPI message which is to handled is queued to driver queue
2292  *
2293  * Return: zero on success, else a negative error code.
2294  */
2295 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2296 {
2297         return __spi_queued_transfer(spi, msg, true);
2298 }
2299
2300 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2301 {
2302         int ret;
2303
2304         ctlr->transfer = spi_queued_transfer;
2305         if (!ctlr->transfer_one_message)
2306                 ctlr->transfer_one_message = spi_transfer_one_message;
2307
2308         /* Initialize and start queue */
2309         ret = spi_init_queue(ctlr);
2310         if (ret) {
2311                 dev_err(&ctlr->dev, "problem initializing queue\n");
2312                 goto err_init_queue;
2313         }
2314         ctlr->queued = true;
2315         ret = spi_start_queue(ctlr);
2316         if (ret) {
2317                 dev_err(&ctlr->dev, "problem starting queue\n");
2318                 goto err_start_queue;
2319         }
2320
2321         return 0;
2322
2323 err_start_queue:
2324         spi_destroy_queue(ctlr);
2325 err_init_queue:
2326         return ret;
2327 }
2328
2329 /**
2330  * spi_flush_queue - Send all pending messages in the queue from the callers'
2331  *                   context
2332  * @ctlr: controller to process queue for
2333  *
2334  * This should be used when one wants to ensure all pending messages have been
2335  * sent before doing something. Is used by the spi-mem code to make sure SPI
2336  * memory operations do not preempt regular SPI transfers that have been queued
2337  * before the spi-mem operation.
2338  */
2339 void spi_flush_queue(struct spi_controller *ctlr)
2340 {
2341         if (ctlr->transfer == spi_queued_transfer)
2342                 __spi_pump_messages(ctlr, false);
2343 }
2344
2345 /*-------------------------------------------------------------------------*/
2346
2347 #if defined(CONFIG_OF)
2348 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2349                                      struct spi_delay *delay, const char *prop)
2350 {
2351         u32 value;
2352
2353         if (!of_property_read_u32(nc, prop, &value)) {
2354                 if (value > U16_MAX) {
2355                         delay->value = DIV_ROUND_UP(value, 1000);
2356                         delay->unit = SPI_DELAY_UNIT_USECS;
2357                 } else {
2358                         delay->value = value;
2359                         delay->unit = SPI_DELAY_UNIT_NSECS;
2360                 }
2361         }
2362 }
2363
2364 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2365                            struct device_node *nc)
2366 {
2367         u32 value, cs[SPI_CS_CNT_MAX];
2368         int rc, idx;
2369
2370         /* Mode (clock phase/polarity/etc.) */
2371         if (of_property_read_bool(nc, "spi-cpha"))
2372                 spi->mode |= SPI_CPHA;
2373         if (of_property_read_bool(nc, "spi-cpol"))
2374                 spi->mode |= SPI_CPOL;
2375         if (of_property_read_bool(nc, "spi-3wire"))
2376                 spi->mode |= SPI_3WIRE;
2377         if (of_property_read_bool(nc, "spi-lsb-first"))
2378                 spi->mode |= SPI_LSB_FIRST;
2379         if (of_property_read_bool(nc, "spi-cs-high"))
2380                 spi->mode |= SPI_CS_HIGH;
2381
2382         /* Device DUAL/QUAD mode */
2383         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2384                 switch (value) {
2385                 case 0:
2386                         spi->mode |= SPI_NO_TX;
2387                         break;
2388                 case 1:
2389                         break;
2390                 case 2:
2391                         spi->mode |= SPI_TX_DUAL;
2392                         break;
2393                 case 4:
2394                         spi->mode |= SPI_TX_QUAD;
2395                         break;
2396                 case 8:
2397                         spi->mode |= SPI_TX_OCTAL;
2398                         break;
2399                 default:
2400                         dev_warn(&ctlr->dev,
2401                                 "spi-tx-bus-width %d not supported\n",
2402                                 value);
2403                         break;
2404                 }
2405         }
2406
2407         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2408                 switch (value) {
2409                 case 0:
2410                         spi->mode |= SPI_NO_RX;
2411                         break;
2412                 case 1:
2413                         break;
2414                 case 2:
2415                         spi->mode |= SPI_RX_DUAL;
2416                         break;
2417                 case 4:
2418                         spi->mode |= SPI_RX_QUAD;
2419                         break;
2420                 case 8:
2421                         spi->mode |= SPI_RX_OCTAL;
2422                         break;
2423                 default:
2424                         dev_warn(&ctlr->dev,
2425                                 "spi-rx-bus-width %d not supported\n",
2426                                 value);
2427                         break;
2428                 }
2429         }
2430
2431         if (spi_controller_is_slave(ctlr)) {
2432                 if (!of_node_name_eq(nc, "slave")) {
2433                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2434                                 nc);
2435                         return -EINVAL;
2436                 }
2437                 return 0;
2438         }
2439
2440         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2441                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2442                 return -EINVAL;
2443         }
2444
2445         spi_set_all_cs_unused(spi);
2446
2447         /* Device address */
2448         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2449                                                  SPI_CS_CNT_MAX);
2450         if (rc < 0) {
2451                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2452                         nc, rc);
2453                 return rc;
2454         }
2455         if (rc > ctlr->num_chipselect) {
2456                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2457                         nc, rc);
2458                 return rc;
2459         }
2460         if ((of_property_read_bool(nc, "parallel-memories")) &&
2461             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2462                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2463                 return -EINVAL;
2464         }
2465         for (idx = 0; idx < rc; idx++)
2466                 spi_set_chipselect(spi, idx, cs[idx]);
2467
2468         /*
2469          * By default spi->chip_select[0] will hold the physical CS number,
2470          * so set bit 0 in spi->cs_index_mask.
2471          */
2472         spi->cs_index_mask = BIT(0);
2473
2474         /* Device speed */
2475         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2476                 spi->max_speed_hz = value;
2477
2478         /* Device CS delays */
2479         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2480         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2481         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2482
2483         return 0;
2484 }
2485
2486 static struct spi_device *
2487 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2488 {
2489         struct spi_device *spi;
2490         int rc;
2491
2492         /* Alloc an spi_device */
2493         spi = spi_alloc_device(ctlr);
2494         if (!spi) {
2495                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2496                 rc = -ENOMEM;
2497                 goto err_out;
2498         }
2499
2500         /* Select device driver */
2501         rc = of_alias_from_compatible(nc, spi->modalias,
2502                                       sizeof(spi->modalias));
2503         if (rc < 0) {
2504                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2505                 goto err_out;
2506         }
2507
2508         rc = of_spi_parse_dt(ctlr, spi, nc);
2509         if (rc)
2510                 goto err_out;
2511
2512         /* Store a pointer to the node in the device structure */
2513         of_node_get(nc);
2514
2515         device_set_node(&spi->dev, of_fwnode_handle(nc));
2516
2517         /* Register the new device */
2518         rc = spi_add_device(spi);
2519         if (rc) {
2520                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2521                 goto err_of_node_put;
2522         }
2523
2524         return spi;
2525
2526 err_of_node_put:
2527         of_node_put(nc);
2528 err_out:
2529         spi_dev_put(spi);
2530         return ERR_PTR(rc);
2531 }
2532
2533 /**
2534  * of_register_spi_devices() - Register child devices onto the SPI bus
2535  * @ctlr:       Pointer to spi_controller device
2536  *
2537  * Registers an spi_device for each child node of controller node which
2538  * represents a valid SPI slave.
2539  */
2540 static void of_register_spi_devices(struct spi_controller *ctlr)
2541 {
2542         struct spi_device *spi;
2543         struct device_node *nc;
2544
2545         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2546                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2547                         continue;
2548                 spi = of_register_spi_device(ctlr, nc);
2549                 if (IS_ERR(spi)) {
2550                         dev_warn(&ctlr->dev,
2551                                  "Failed to create SPI device for %pOF\n", nc);
2552                         of_node_clear_flag(nc, OF_POPULATED);
2553                 }
2554         }
2555 }
2556 #else
2557 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2558 #endif
2559
2560 /**
2561  * spi_new_ancillary_device() - Register ancillary SPI device
2562  * @spi:         Pointer to the main SPI device registering the ancillary device
2563  * @chip_select: Chip Select of the ancillary device
2564  *
2565  * Register an ancillary SPI device; for example some chips have a chip-select
2566  * for normal device usage and another one for setup/firmware upload.
2567  *
2568  * This may only be called from main SPI device's probe routine.
2569  *
2570  * Return: 0 on success; negative errno on failure
2571  */
2572 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2573                                              u8 chip_select)
2574 {
2575         struct spi_controller *ctlr = spi->controller;
2576         struct spi_device *ancillary;
2577         int rc = 0;
2578
2579         /* Alloc an spi_device */
2580         ancillary = spi_alloc_device(ctlr);
2581         if (!ancillary) {
2582                 rc = -ENOMEM;
2583                 goto err_out;
2584         }
2585
2586         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2587
2588         /* Use provided chip-select for ancillary device */
2589         spi_set_all_cs_unused(ancillary);
2590         spi_set_chipselect(ancillary, 0, chip_select);
2591
2592         /* Take over SPI mode/speed from SPI main device */
2593         ancillary->max_speed_hz = spi->max_speed_hz;
2594         ancillary->mode = spi->mode;
2595         /*
2596          * By default spi->chip_select[0] will hold the physical CS number,
2597          * so set bit 0 in spi->cs_index_mask.
2598          */
2599         ancillary->cs_index_mask = BIT(0);
2600
2601         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2602
2603         /* Register the new device */
2604         rc = __spi_add_device(ancillary);
2605         if (rc) {
2606                 dev_err(&spi->dev, "failed to register ancillary device\n");
2607                 goto err_out;
2608         }
2609
2610         return ancillary;
2611
2612 err_out:
2613         spi_dev_put(ancillary);
2614         return ERR_PTR(rc);
2615 }
2616 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2617
2618 #ifdef CONFIG_ACPI
2619 struct acpi_spi_lookup {
2620         struct spi_controller   *ctlr;
2621         u32                     max_speed_hz;
2622         u32                     mode;
2623         int                     irq;
2624         u8                      bits_per_word;
2625         u8                      chip_select;
2626         int                     n;
2627         int                     index;
2628 };
2629
2630 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2631 {
2632         struct acpi_resource_spi_serialbus *sb;
2633         int *count = data;
2634
2635         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2636                 return 1;
2637
2638         sb = &ares->data.spi_serial_bus;
2639         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2640                 return 1;
2641
2642         *count = *count + 1;
2643
2644         return 1;
2645 }
2646
2647 /**
2648  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2649  * @adev:       ACPI device
2650  *
2651  * Return: the number of SpiSerialBus resources in the ACPI-device's
2652  * resource-list; or a negative error code.
2653  */
2654 int acpi_spi_count_resources(struct acpi_device *adev)
2655 {
2656         LIST_HEAD(r);
2657         int count = 0;
2658         int ret;
2659
2660         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2661         if (ret < 0)
2662                 return ret;
2663
2664         acpi_dev_free_resource_list(&r);
2665
2666         return count;
2667 }
2668 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2669
2670 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2671                                             struct acpi_spi_lookup *lookup)
2672 {
2673         const union acpi_object *obj;
2674
2675         if (!x86_apple_machine)
2676                 return;
2677
2678         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2679             && obj->buffer.length >= 4)
2680                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2681
2682         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2683             && obj->buffer.length == 8)
2684                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2685
2686         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2687             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2688                 lookup->mode |= SPI_LSB_FIRST;
2689
2690         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2691             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2692                 lookup->mode |= SPI_CPOL;
2693
2694         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2695             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696                 lookup->mode |= SPI_CPHA;
2697 }
2698
2699 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2700 {
2701         struct acpi_spi_lookup *lookup = data;
2702         struct spi_controller *ctlr = lookup->ctlr;
2703
2704         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2705                 struct acpi_resource_spi_serialbus *sb;
2706                 acpi_handle parent_handle;
2707                 acpi_status status;
2708
2709                 sb = &ares->data.spi_serial_bus;
2710                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2711
2712                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2713                                 return 1;
2714
2715                         status = acpi_get_handle(NULL,
2716                                                  sb->resource_source.string_ptr,
2717                                                  &parent_handle);
2718
2719                         if (ACPI_FAILURE(status))
2720                                 return -ENODEV;
2721
2722                         if (ctlr) {
2723                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2724                                         return -ENODEV;
2725                         } else {
2726                                 struct acpi_device *adev;
2727
2728                                 adev = acpi_fetch_acpi_dev(parent_handle);
2729                                 if (!adev)
2730                                         return -ENODEV;
2731
2732                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2733                                 if (!ctlr)
2734                                         return -EPROBE_DEFER;
2735
2736                                 lookup->ctlr = ctlr;
2737                         }
2738
2739                         /*
2740                          * ACPI DeviceSelection numbering is handled by the
2741                          * host controller driver in Windows and can vary
2742                          * from driver to driver. In Linux we always expect
2743                          * 0 .. max - 1 so we need to ask the driver to
2744                          * translate between the two schemes.
2745                          */
2746                         if (ctlr->fw_translate_cs) {
2747                                 int cs = ctlr->fw_translate_cs(ctlr,
2748                                                 sb->device_selection);
2749                                 if (cs < 0)
2750                                         return cs;
2751                                 lookup->chip_select = cs;
2752                         } else {
2753                                 lookup->chip_select = sb->device_selection;
2754                         }
2755
2756                         lookup->max_speed_hz = sb->connection_speed;
2757                         lookup->bits_per_word = sb->data_bit_length;
2758
2759                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2760                                 lookup->mode |= SPI_CPHA;
2761                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2762                                 lookup->mode |= SPI_CPOL;
2763                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2764                                 lookup->mode |= SPI_CS_HIGH;
2765                 }
2766         } else if (lookup->irq < 0) {
2767                 struct resource r;
2768
2769                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2770                         lookup->irq = r.start;
2771         }
2772
2773         /* Always tell the ACPI core to skip this resource */
2774         return 1;
2775 }
2776
2777 /**
2778  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2779  * @ctlr: controller to which the spi device belongs
2780  * @adev: ACPI Device for the spi device
2781  * @index: Index of the spi resource inside the ACPI Node
2782  *
2783  * This should be used to allocate a new SPI device from and ACPI Device node.
2784  * The caller is responsible for calling spi_add_device to register the SPI device.
2785  *
2786  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2787  * using the resource.
2788  * If index is set to -1, index is not used.
2789  * Note: If index is -1, ctlr must be set.
2790  *
2791  * Return: a pointer to the new device, or ERR_PTR on error.
2792  */
2793 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2794                                          struct acpi_device *adev,
2795                                          int index)
2796 {
2797         acpi_handle parent_handle = NULL;
2798         struct list_head resource_list;
2799         struct acpi_spi_lookup lookup = {};
2800         struct spi_device *spi;
2801         int ret;
2802
2803         if (!ctlr && index == -1)
2804                 return ERR_PTR(-EINVAL);
2805
2806         lookup.ctlr             = ctlr;
2807         lookup.irq              = -1;
2808         lookup.index            = index;
2809         lookup.n                = 0;
2810
2811         INIT_LIST_HEAD(&resource_list);
2812         ret = acpi_dev_get_resources(adev, &resource_list,
2813                                      acpi_spi_add_resource, &lookup);
2814         acpi_dev_free_resource_list(&resource_list);
2815
2816         if (ret < 0)
2817                 /* Found SPI in _CRS but it points to another controller */
2818                 return ERR_PTR(ret);
2819
2820         if (!lookup.max_speed_hz &&
2821             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2822             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2823                 /* Apple does not use _CRS but nested devices for SPI slaves */
2824                 acpi_spi_parse_apple_properties(adev, &lookup);
2825         }
2826
2827         if (!lookup.max_speed_hz)
2828                 return ERR_PTR(-ENODEV);
2829
2830         spi = spi_alloc_device(lookup.ctlr);
2831         if (!spi) {
2832                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2833                         dev_name(&adev->dev));
2834                 return ERR_PTR(-ENOMEM);
2835         }
2836
2837         spi_set_all_cs_unused(spi);
2838         spi_set_chipselect(spi, 0, lookup.chip_select);
2839
2840         ACPI_COMPANION_SET(&spi->dev, adev);
2841         spi->max_speed_hz       = lookup.max_speed_hz;
2842         spi->mode               |= lookup.mode;
2843         spi->irq                = lookup.irq;
2844         spi->bits_per_word      = lookup.bits_per_word;
2845         /*
2846          * By default spi->chip_select[0] will hold the physical CS number,
2847          * so set bit 0 in spi->cs_index_mask.
2848          */
2849         spi->cs_index_mask      = BIT(0);
2850
2851         return spi;
2852 }
2853 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2854
2855 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2856                                             struct acpi_device *adev)
2857 {
2858         struct spi_device *spi;
2859
2860         if (acpi_bus_get_status(adev) || !adev->status.present ||
2861             acpi_device_enumerated(adev))
2862                 return AE_OK;
2863
2864         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2865         if (IS_ERR(spi)) {
2866                 if (PTR_ERR(spi) == -ENOMEM)
2867                         return AE_NO_MEMORY;
2868                 else
2869                         return AE_OK;
2870         }
2871
2872         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2873                           sizeof(spi->modalias));
2874
2875         if (spi->irq < 0)
2876                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2877
2878         acpi_device_set_enumerated(adev);
2879
2880         adev->power.flags.ignore_parent = true;
2881         if (spi_add_device(spi)) {
2882                 adev->power.flags.ignore_parent = false;
2883                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2884                         dev_name(&adev->dev));
2885                 spi_dev_put(spi);
2886         }
2887
2888         return AE_OK;
2889 }
2890
2891 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2892                                        void *data, void **return_value)
2893 {
2894         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2895         struct spi_controller *ctlr = data;
2896
2897         if (!adev)
2898                 return AE_OK;
2899
2900         return acpi_register_spi_device(ctlr, adev);
2901 }
2902
2903 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2904
2905 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2906 {
2907         acpi_status status;
2908         acpi_handle handle;
2909
2910         handle = ACPI_HANDLE(ctlr->dev.parent);
2911         if (!handle)
2912                 return;
2913
2914         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2915                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2916                                      acpi_spi_add_device, NULL, ctlr, NULL);
2917         if (ACPI_FAILURE(status))
2918                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2919 }
2920 #else
2921 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2922 #endif /* CONFIG_ACPI */
2923
2924 static void spi_controller_release(struct device *dev)
2925 {
2926         struct spi_controller *ctlr;
2927
2928         ctlr = container_of(dev, struct spi_controller, dev);
2929         kfree(ctlr);
2930 }
2931
2932 static struct class spi_master_class = {
2933         .name           = "spi_master",
2934         .dev_release    = spi_controller_release,
2935         .dev_groups     = spi_master_groups,
2936 };
2937
2938 #ifdef CONFIG_SPI_SLAVE
2939 /**
2940  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2941  *                   controller
2942  * @spi: device used for the current transfer
2943  */
2944 int spi_slave_abort(struct spi_device *spi)
2945 {
2946         struct spi_controller *ctlr = spi->controller;
2947
2948         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2949                 return ctlr->slave_abort(ctlr);
2950
2951         return -ENOTSUPP;
2952 }
2953 EXPORT_SYMBOL_GPL(spi_slave_abort);
2954
2955 int spi_target_abort(struct spi_device *spi)
2956 {
2957         struct spi_controller *ctlr = spi->controller;
2958
2959         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2960                 return ctlr->target_abort(ctlr);
2961
2962         return -ENOTSUPP;
2963 }
2964 EXPORT_SYMBOL_GPL(spi_target_abort);
2965
2966 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2967                           char *buf)
2968 {
2969         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2970                                                    dev);
2971         struct device *child;
2972
2973         child = device_find_any_child(&ctlr->dev);
2974         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2975 }
2976
2977 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2978                            const char *buf, size_t count)
2979 {
2980         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2981                                                    dev);
2982         struct spi_device *spi;
2983         struct device *child;
2984         char name[32];
2985         int rc;
2986
2987         rc = sscanf(buf, "%31s", name);
2988         if (rc != 1 || !name[0])
2989                 return -EINVAL;
2990
2991         child = device_find_any_child(&ctlr->dev);
2992         if (child) {
2993                 /* Remove registered slave */
2994                 device_unregister(child);
2995                 put_device(child);
2996         }
2997
2998         if (strcmp(name, "(null)")) {
2999                 /* Register new slave */
3000                 spi = spi_alloc_device(ctlr);
3001                 if (!spi)
3002                         return -ENOMEM;
3003
3004                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3005
3006                 rc = spi_add_device(spi);
3007                 if (rc) {
3008                         spi_dev_put(spi);
3009                         return rc;
3010                 }
3011         }
3012
3013         return count;
3014 }
3015
3016 static DEVICE_ATTR_RW(slave);
3017
3018 static struct attribute *spi_slave_attrs[] = {
3019         &dev_attr_slave.attr,
3020         NULL,
3021 };
3022
3023 static const struct attribute_group spi_slave_group = {
3024         .attrs = spi_slave_attrs,
3025 };
3026
3027 static const struct attribute_group *spi_slave_groups[] = {
3028         &spi_controller_statistics_group,
3029         &spi_slave_group,
3030         NULL,
3031 };
3032
3033 static struct class spi_slave_class = {
3034         .name           = "spi_slave",
3035         .dev_release    = spi_controller_release,
3036         .dev_groups     = spi_slave_groups,
3037 };
3038 #else
3039 extern struct class spi_slave_class;    /* dummy */
3040 #endif
3041
3042 /**
3043  * __spi_alloc_controller - allocate an SPI master or slave controller
3044  * @dev: the controller, possibly using the platform_bus
3045  * @size: how much zeroed driver-private data to allocate; the pointer to this
3046  *      memory is in the driver_data field of the returned device, accessible
3047  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3048  *      drivers granting DMA access to portions of their private data need to
3049  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3050  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3051  *      slave (true) controller
3052  * Context: can sleep
3053  *
3054  * This call is used only by SPI controller drivers, which are the
3055  * only ones directly touching chip registers.  It's how they allocate
3056  * an spi_controller structure, prior to calling spi_register_controller().
3057  *
3058  * This must be called from context that can sleep.
3059  *
3060  * The caller is responsible for assigning the bus number and initializing the
3061  * controller's methods before calling spi_register_controller(); and (after
3062  * errors adding the device) calling spi_controller_put() to prevent a memory
3063  * leak.
3064  *
3065  * Return: the SPI controller structure on success, else NULL.
3066  */
3067 struct spi_controller *__spi_alloc_controller(struct device *dev,
3068                                               unsigned int size, bool slave)
3069 {
3070         struct spi_controller   *ctlr;
3071         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3072
3073         if (!dev)
3074                 return NULL;
3075
3076         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3077         if (!ctlr)
3078                 return NULL;
3079
3080         device_initialize(&ctlr->dev);
3081         INIT_LIST_HEAD(&ctlr->queue);
3082         spin_lock_init(&ctlr->queue_lock);
3083         spin_lock_init(&ctlr->bus_lock_spinlock);
3084         mutex_init(&ctlr->bus_lock_mutex);
3085         mutex_init(&ctlr->io_mutex);
3086         mutex_init(&ctlr->add_lock);
3087         ctlr->bus_num = -1;
3088         ctlr->num_chipselect = 1;
3089         ctlr->slave = slave;
3090         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3091                 ctlr->dev.class = &spi_slave_class;
3092         else
3093                 ctlr->dev.class = &spi_master_class;
3094         ctlr->dev.parent = dev;
3095         pm_suspend_ignore_children(&ctlr->dev, true);
3096         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3097
3098         return ctlr;
3099 }
3100 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3101
3102 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3103 {
3104         spi_controller_put(*(struct spi_controller **)ctlr);
3105 }
3106
3107 /**
3108  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3109  * @dev: physical device of SPI controller
3110  * @size: how much zeroed driver-private data to allocate
3111  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3112  * Context: can sleep
3113  *
3114  * Allocate an SPI controller and automatically release a reference on it
3115  * when @dev is unbound from its driver.  Drivers are thus relieved from
3116  * having to call spi_controller_put().
3117  *
3118  * The arguments to this function are identical to __spi_alloc_controller().
3119  *
3120  * Return: the SPI controller structure on success, else NULL.
3121  */
3122 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3123                                                    unsigned int size,
3124                                                    bool slave)
3125 {
3126         struct spi_controller **ptr, *ctlr;
3127
3128         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3129                            GFP_KERNEL);
3130         if (!ptr)
3131                 return NULL;
3132
3133         ctlr = __spi_alloc_controller(dev, size, slave);
3134         if (ctlr) {
3135                 ctlr->devm_allocated = true;
3136                 *ptr = ctlr;
3137                 devres_add(dev, ptr);
3138         } else {
3139                 devres_free(ptr);
3140         }
3141
3142         return ctlr;
3143 }
3144 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3145
3146 /**
3147  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3148  * @ctlr: The SPI master to grab GPIO descriptors for
3149  */
3150 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3151 {
3152         int nb, i;
3153         struct gpio_desc **cs;
3154         struct device *dev = &ctlr->dev;
3155         unsigned long native_cs_mask = 0;
3156         unsigned int num_cs_gpios = 0;
3157
3158         nb = gpiod_count(dev, "cs");
3159         if (nb < 0) {
3160                 /* No GPIOs at all is fine, else return the error */
3161                 if (nb == -ENOENT)
3162                         return 0;
3163                 return nb;
3164         }
3165
3166         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3167
3168         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3169                           GFP_KERNEL);
3170         if (!cs)
3171                 return -ENOMEM;
3172         ctlr->cs_gpiods = cs;
3173
3174         for (i = 0; i < nb; i++) {
3175                 /*
3176                  * Most chipselects are active low, the inverted
3177                  * semantics are handled by special quirks in gpiolib,
3178                  * so initializing them GPIOD_OUT_LOW here means
3179                  * "unasserted", in most cases this will drive the physical
3180                  * line high.
3181                  */
3182                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3183                                                       GPIOD_OUT_LOW);
3184                 if (IS_ERR(cs[i]))
3185                         return PTR_ERR(cs[i]);
3186
3187                 if (cs[i]) {
3188                         /*
3189                          * If we find a CS GPIO, name it after the device and
3190                          * chip select line.
3191                          */
3192                         char *gpioname;
3193
3194                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3195                                                   dev_name(dev), i);
3196                         if (!gpioname)
3197                                 return -ENOMEM;
3198                         gpiod_set_consumer_name(cs[i], gpioname);
3199                         num_cs_gpios++;
3200                         continue;
3201                 }
3202
3203                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3204                         dev_err(dev, "Invalid native chip select %d\n", i);
3205                         return -EINVAL;
3206                 }
3207                 native_cs_mask |= BIT(i);
3208         }
3209
3210         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3211
3212         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3213             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3214                 dev_err(dev, "No unused native chip select available\n");
3215                 return -EINVAL;
3216         }
3217
3218         return 0;
3219 }
3220
3221 static int spi_controller_check_ops(struct spi_controller *ctlr)
3222 {
3223         /*
3224          * The controller may implement only the high-level SPI-memory like
3225          * operations if it does not support regular SPI transfers, and this is
3226          * valid use case.
3227          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3228          * one of the ->transfer_xxx() method be implemented.
3229          */
3230         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3231                 if (!ctlr->transfer && !ctlr->transfer_one &&
3232                    !ctlr->transfer_one_message) {
3233                         return -EINVAL;
3234                 }
3235         }
3236
3237         return 0;
3238 }
3239
3240 /* Allocate dynamic bus number using Linux idr */
3241 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3242 {
3243         int id;
3244
3245         mutex_lock(&board_lock);
3246         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3247         mutex_unlock(&board_lock);
3248         if (WARN(id < 0, "couldn't get idr"))
3249                 return id == -ENOSPC ? -EBUSY : id;
3250         ctlr->bus_num = id;
3251         return 0;
3252 }
3253
3254 /**
3255  * spi_register_controller - register SPI master or slave controller
3256  * @ctlr: initialized master, originally from spi_alloc_master() or
3257  *      spi_alloc_slave()
3258  * Context: can sleep
3259  *
3260  * SPI controllers connect to their drivers using some non-SPI bus,
3261  * such as the platform bus.  The final stage of probe() in that code
3262  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3263  *
3264  * SPI controllers use board specific (often SOC specific) bus numbers,
3265  * and board-specific addressing for SPI devices combines those numbers
3266  * with chip select numbers.  Since SPI does not directly support dynamic
3267  * device identification, boards need configuration tables telling which
3268  * chip is at which address.
3269  *
3270  * This must be called from context that can sleep.  It returns zero on
3271  * success, else a negative error code (dropping the controller's refcount).
3272  * After a successful return, the caller is responsible for calling
3273  * spi_unregister_controller().
3274  *
3275  * Return: zero on success, else a negative error code.
3276  */
3277 int spi_register_controller(struct spi_controller *ctlr)
3278 {
3279         struct device           *dev = ctlr->dev.parent;
3280         struct boardinfo        *bi;
3281         int                     first_dynamic;
3282         int                     status;
3283         int                     idx;
3284
3285         if (!dev)
3286                 return -ENODEV;
3287
3288         /*
3289          * Make sure all necessary hooks are implemented before registering
3290          * the SPI controller.
3291          */
3292         status = spi_controller_check_ops(ctlr);
3293         if (status)
3294                 return status;
3295
3296         if (ctlr->bus_num < 0)
3297                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3298         if (ctlr->bus_num >= 0) {
3299                 /* Devices with a fixed bus num must check-in with the num */
3300                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3301                 if (status)
3302                         return status;
3303         }
3304         if (ctlr->bus_num < 0) {
3305                 first_dynamic = of_alias_get_highest_id("spi");
3306                 if (first_dynamic < 0)
3307                         first_dynamic = 0;
3308                 else
3309                         first_dynamic++;
3310
3311                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3312                 if (status)
3313                         return status;
3314         }
3315         ctlr->bus_lock_flag = 0;
3316         init_completion(&ctlr->xfer_completion);
3317         init_completion(&ctlr->cur_msg_completion);
3318         if (!ctlr->max_dma_len)
3319                 ctlr->max_dma_len = INT_MAX;
3320
3321         /*
3322          * Register the device, then userspace will see it.
3323          * Registration fails if the bus ID is in use.
3324          */
3325         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3326
3327         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3328                 status = spi_get_gpio_descs(ctlr);
3329                 if (status)
3330                         goto free_bus_id;
3331                 /*
3332                  * A controller using GPIO descriptors always
3333                  * supports SPI_CS_HIGH if need be.
3334                  */
3335                 ctlr->mode_bits |= SPI_CS_HIGH;
3336         }
3337
3338         /*
3339          * Even if it's just one always-selected device, there must
3340          * be at least one chipselect.
3341          */
3342         if (!ctlr->num_chipselect) {
3343                 status = -EINVAL;
3344                 goto free_bus_id;
3345         }
3346
3347         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3348         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3349                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3350
3351         status = device_add(&ctlr->dev);
3352         if (status < 0)
3353                 goto free_bus_id;
3354         dev_dbg(dev, "registered %s %s\n",
3355                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3356                         dev_name(&ctlr->dev));
3357
3358         /*
3359          * If we're using a queued driver, start the queue. Note that we don't
3360          * need the queueing logic if the driver is only supporting high-level
3361          * memory operations.
3362          */
3363         if (ctlr->transfer) {
3364                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3365         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3366                 status = spi_controller_initialize_queue(ctlr);
3367                 if (status) {
3368                         device_del(&ctlr->dev);
3369                         goto free_bus_id;
3370                 }
3371         }
3372         /* Add statistics */
3373         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3374         if (!ctlr->pcpu_statistics) {
3375                 dev_err(dev, "Error allocating per-cpu statistics\n");
3376                 status = -ENOMEM;
3377                 goto destroy_queue;
3378         }
3379
3380         mutex_lock(&board_lock);
3381         list_add_tail(&ctlr->list, &spi_controller_list);
3382         list_for_each_entry(bi, &board_list, list)
3383                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3384         mutex_unlock(&board_lock);
3385
3386         /* Register devices from the device tree and ACPI */
3387         of_register_spi_devices(ctlr);
3388         acpi_register_spi_devices(ctlr);
3389         return status;
3390
3391 destroy_queue:
3392         spi_destroy_queue(ctlr);
3393 free_bus_id:
3394         mutex_lock(&board_lock);
3395         idr_remove(&spi_master_idr, ctlr->bus_num);
3396         mutex_unlock(&board_lock);
3397         return status;
3398 }
3399 EXPORT_SYMBOL_GPL(spi_register_controller);
3400
3401 static void devm_spi_unregister(struct device *dev, void *res)
3402 {
3403         spi_unregister_controller(*(struct spi_controller **)res);
3404 }
3405
3406 /**
3407  * devm_spi_register_controller - register managed SPI master or slave
3408  *      controller
3409  * @dev:    device managing SPI controller
3410  * @ctlr: initialized controller, originally from spi_alloc_master() or
3411  *      spi_alloc_slave()
3412  * Context: can sleep
3413  *
3414  * Register a SPI device as with spi_register_controller() which will
3415  * automatically be unregistered and freed.
3416  *
3417  * Return: zero on success, else a negative error code.
3418  */
3419 int devm_spi_register_controller(struct device *dev,
3420                                  struct spi_controller *ctlr)
3421 {
3422         struct spi_controller **ptr;
3423         int ret;
3424
3425         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3426         if (!ptr)
3427                 return -ENOMEM;
3428
3429         ret = spi_register_controller(ctlr);
3430         if (!ret) {
3431                 *ptr = ctlr;
3432                 devres_add(dev, ptr);
3433         } else {
3434                 devres_free(ptr);
3435         }
3436
3437         return ret;
3438 }
3439 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3440
3441 static int __unregister(struct device *dev, void *null)
3442 {
3443         spi_unregister_device(to_spi_device(dev));
3444         return 0;
3445 }
3446
3447 /**
3448  * spi_unregister_controller - unregister SPI master or slave controller
3449  * @ctlr: the controller being unregistered
3450  * Context: can sleep
3451  *
3452  * This call is used only by SPI controller drivers, which are the
3453  * only ones directly touching chip registers.
3454  *
3455  * This must be called from context that can sleep.
3456  *
3457  * Note that this function also drops a reference to the controller.
3458  */
3459 void spi_unregister_controller(struct spi_controller *ctlr)
3460 {
3461         struct spi_controller *found;
3462         int id = ctlr->bus_num;
3463
3464         /* Prevent addition of new devices, unregister existing ones */
3465         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3466                 mutex_lock(&ctlr->add_lock);
3467
3468         device_for_each_child(&ctlr->dev, NULL, __unregister);
3469
3470         /* First make sure that this controller was ever added */
3471         mutex_lock(&board_lock);
3472         found = idr_find(&spi_master_idr, id);
3473         mutex_unlock(&board_lock);
3474         if (ctlr->queued) {
3475                 if (spi_destroy_queue(ctlr))
3476                         dev_err(&ctlr->dev, "queue remove failed\n");
3477         }
3478         mutex_lock(&board_lock);
3479         list_del(&ctlr->list);
3480         mutex_unlock(&board_lock);
3481
3482         device_del(&ctlr->dev);
3483
3484         /* Free bus id */
3485         mutex_lock(&board_lock);
3486         if (found == ctlr)
3487                 idr_remove(&spi_master_idr, id);
3488         mutex_unlock(&board_lock);
3489
3490         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3491                 mutex_unlock(&ctlr->add_lock);
3492
3493         /*
3494          * Release the last reference on the controller if its driver
3495          * has not yet been converted to devm_spi_alloc_master/slave().
3496          */
3497         if (!ctlr->devm_allocated)
3498                 put_device(&ctlr->dev);
3499 }
3500 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3501
3502 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3503 {
3504         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3505 }
3506
3507 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3508 {
3509         mutex_lock(&ctlr->bus_lock_mutex);
3510         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3511         mutex_unlock(&ctlr->bus_lock_mutex);
3512 }
3513
3514 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3515 {
3516         mutex_lock(&ctlr->bus_lock_mutex);
3517         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3518         mutex_unlock(&ctlr->bus_lock_mutex);
3519 }
3520
3521 int spi_controller_suspend(struct spi_controller *ctlr)
3522 {
3523         int ret = 0;
3524
3525         /* Basically no-ops for non-queued controllers */
3526         if (ctlr->queued) {
3527                 ret = spi_stop_queue(ctlr);
3528                 if (ret)
3529                         dev_err(&ctlr->dev, "queue stop failed\n");
3530         }
3531
3532         __spi_mark_suspended(ctlr);
3533         return ret;
3534 }
3535 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3536
3537 int spi_controller_resume(struct spi_controller *ctlr)
3538 {
3539         int ret = 0;
3540
3541         __spi_mark_resumed(ctlr);
3542
3543         if (ctlr->queued) {
3544                 ret = spi_start_queue(ctlr);
3545                 if (ret)
3546                         dev_err(&ctlr->dev, "queue restart failed\n");
3547         }
3548         return ret;
3549 }
3550 EXPORT_SYMBOL_GPL(spi_controller_resume);
3551
3552 /*-------------------------------------------------------------------------*/
3553
3554 /* Core methods for spi_message alterations */
3555
3556 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3557                                             struct spi_message *msg,
3558                                             void *res)
3559 {
3560         struct spi_replaced_transfers *rxfer = res;
3561         size_t i;
3562
3563         /* Call extra callback if requested */
3564         if (rxfer->release)
3565                 rxfer->release(ctlr, msg, res);
3566
3567         /* Insert replaced transfers back into the message */
3568         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3569
3570         /* Remove the formerly inserted entries */
3571         for (i = 0; i < rxfer->inserted; i++)
3572                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3573 }
3574
3575 /**
3576  * spi_replace_transfers - replace transfers with several transfers
3577  *                         and register change with spi_message.resources
3578  * @msg:           the spi_message we work upon
3579  * @xfer_first:    the first spi_transfer we want to replace
3580  * @remove:        number of transfers to remove
3581  * @insert:        the number of transfers we want to insert instead
3582  * @release:       extra release code necessary in some circumstances
3583  * @extradatasize: extra data to allocate (with alignment guarantees
3584  *                 of struct @spi_transfer)
3585  * @gfp:           gfp flags
3586  *
3587  * Returns: pointer to @spi_replaced_transfers,
3588  *          PTR_ERR(...) in case of errors.
3589  */
3590 static struct spi_replaced_transfers *spi_replace_transfers(
3591         struct spi_message *msg,
3592         struct spi_transfer *xfer_first,
3593         size_t remove,
3594         size_t insert,
3595         spi_replaced_release_t release,
3596         size_t extradatasize,
3597         gfp_t gfp)
3598 {
3599         struct spi_replaced_transfers *rxfer;
3600         struct spi_transfer *xfer;
3601         size_t i;
3602
3603         /* Allocate the structure using spi_res */
3604         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3605                               struct_size(rxfer, inserted_transfers, insert)
3606                               + extradatasize,
3607                               gfp);
3608         if (!rxfer)
3609                 return ERR_PTR(-ENOMEM);
3610
3611         /* The release code to invoke before running the generic release */
3612         rxfer->release = release;
3613
3614         /* Assign extradata */
3615         if (extradatasize)
3616                 rxfer->extradata =
3617                         &rxfer->inserted_transfers[insert];
3618
3619         /* Init the replaced_transfers list */
3620         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3621
3622         /*
3623          * Assign the list_entry after which we should reinsert
3624          * the @replaced_transfers - it may be spi_message.messages!
3625          */
3626         rxfer->replaced_after = xfer_first->transfer_list.prev;
3627
3628         /* Remove the requested number of transfers */
3629         for (i = 0; i < remove; i++) {
3630                 /*
3631                  * If the entry after replaced_after it is msg->transfers
3632                  * then we have been requested to remove more transfers
3633                  * than are in the list.
3634                  */
3635                 if (rxfer->replaced_after->next == &msg->transfers) {
3636                         dev_err(&msg->spi->dev,
3637                                 "requested to remove more spi_transfers than are available\n");
3638                         /* Insert replaced transfers back into the message */
3639                         list_splice(&rxfer->replaced_transfers,
3640                                     rxfer->replaced_after);
3641
3642                         /* Free the spi_replace_transfer structure... */
3643                         spi_res_free(rxfer);
3644
3645                         /* ...and return with an error */
3646                         return ERR_PTR(-EINVAL);
3647                 }
3648
3649                 /*
3650                  * Remove the entry after replaced_after from list of
3651                  * transfers and add it to list of replaced_transfers.
3652                  */
3653                 list_move_tail(rxfer->replaced_after->next,
3654                                &rxfer->replaced_transfers);
3655         }
3656
3657         /*
3658          * Create copy of the given xfer with identical settings
3659          * based on the first transfer to get removed.
3660          */
3661         for (i = 0; i < insert; i++) {
3662                 /* We need to run in reverse order */
3663                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3664
3665                 /* Copy all spi_transfer data */
3666                 memcpy(xfer, xfer_first, sizeof(*xfer));
3667
3668                 /* Add to list */
3669                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3670
3671                 /* Clear cs_change and delay for all but the last */
3672                 if (i) {
3673                         xfer->cs_change = false;
3674                         xfer->delay.value = 0;
3675                 }
3676         }
3677
3678         /* Set up inserted... */
3679         rxfer->inserted = insert;
3680
3681         /* ...and register it with spi_res/spi_message */
3682         spi_res_add(msg, rxfer);
3683
3684         return rxfer;
3685 }
3686
3687 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3688                                         struct spi_message *msg,
3689                                         struct spi_transfer **xferp,
3690                                         size_t maxsize)
3691 {
3692         struct spi_transfer *xfer = *xferp, *xfers;
3693         struct spi_replaced_transfers *srt;
3694         size_t offset;
3695         size_t count, i;
3696
3697         /* Calculate how many we have to replace */
3698         count = DIV_ROUND_UP(xfer->len, maxsize);
3699
3700         /* Create replacement */
3701         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3702         if (IS_ERR(srt))
3703                 return PTR_ERR(srt);
3704         xfers = srt->inserted_transfers;
3705
3706         /*
3707          * Now handle each of those newly inserted spi_transfers.
3708          * Note that the replacements spi_transfers all are preset
3709          * to the same values as *xferp, so tx_buf, rx_buf and len
3710          * are all identical (as well as most others)
3711          * so we just have to fix up len and the pointers.
3712          *
3713          * This also includes support for the depreciated
3714          * spi_message.is_dma_mapped interface.
3715          */
3716
3717         /*
3718          * The first transfer just needs the length modified, so we
3719          * run it outside the loop.
3720          */
3721         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3722
3723         /* All the others need rx_buf/tx_buf also set */
3724         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3725                 /* Update rx_buf, tx_buf and DMA */
3726                 if (xfers[i].rx_buf)
3727                         xfers[i].rx_buf += offset;
3728                 if (xfers[i].rx_dma)
3729                         xfers[i].rx_dma += offset;
3730                 if (xfers[i].tx_buf)
3731                         xfers[i].tx_buf += offset;
3732                 if (xfers[i].tx_dma)
3733                         xfers[i].tx_dma += offset;
3734
3735                 /* Update length */
3736                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3737         }
3738
3739         /*
3740          * We set up xferp to the last entry we have inserted,
3741          * so that we skip those already split transfers.
3742          */
3743         *xferp = &xfers[count - 1];
3744
3745         /* Increment statistics counters */
3746         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3747                                        transfers_split_maxsize);
3748         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3749                                        transfers_split_maxsize);
3750
3751         return 0;
3752 }
3753
3754 /**
3755  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3756  *                               when an individual transfer exceeds a
3757  *                               certain size
3758  * @ctlr:    the @spi_controller for this transfer
3759  * @msg:   the @spi_message to transform
3760  * @maxsize:  the maximum when to apply this
3761  *
3762  * This function allocates resources that are automatically freed during the
3763  * spi message unoptimize phase so this function should only be called from
3764  * optimize_message callbacks.
3765  *
3766  * Return: status of transformation
3767  */
3768 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3769                                 struct spi_message *msg,
3770                                 size_t maxsize)
3771 {
3772         struct spi_transfer *xfer;
3773         int ret;
3774
3775         /*
3776          * Iterate over the transfer_list,
3777          * but note that xfer is advanced to the last transfer inserted
3778          * to avoid checking sizes again unnecessarily (also xfer does
3779          * potentially belong to a different list by the time the
3780          * replacement has happened).
3781          */
3782         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3783                 if (xfer->len > maxsize) {
3784                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3785                                                            maxsize);
3786                         if (ret)
3787                                 return ret;
3788                 }
3789         }
3790
3791         return 0;
3792 }
3793 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3794
3795
3796 /**
3797  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3798  *                                when an individual transfer exceeds a
3799  *                                certain number of SPI words
3800  * @ctlr:     the @spi_controller for this transfer
3801  * @msg:      the @spi_message to transform
3802  * @maxwords: the number of words to limit each transfer to
3803  *
3804  * This function allocates resources that are automatically freed during the
3805  * spi message unoptimize phase so this function should only be called from
3806  * optimize_message callbacks.
3807  *
3808  * Return: status of transformation
3809  */
3810 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3811                                  struct spi_message *msg,
3812                                  size_t maxwords)
3813 {
3814         struct spi_transfer *xfer;
3815
3816         /*
3817          * Iterate over the transfer_list,
3818          * but note that xfer is advanced to the last transfer inserted
3819          * to avoid checking sizes again unnecessarily (also xfer does
3820          * potentially belong to a different list by the time the
3821          * replacement has happened).
3822          */
3823         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3824                 size_t maxsize;
3825                 int ret;
3826
3827                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3828                 if (xfer->len > maxsize) {
3829                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3830                                                            maxsize);
3831                         if (ret)
3832                                 return ret;
3833                 }
3834         }
3835
3836         return 0;
3837 }
3838 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3839
3840 /*-------------------------------------------------------------------------*/
3841
3842 /*
3843  * Core methods for SPI controller protocol drivers. Some of the
3844  * other core methods are currently defined as inline functions.
3845  */
3846
3847 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3848                                         u8 bits_per_word)
3849 {
3850         if (ctlr->bits_per_word_mask) {
3851                 /* Only 32 bits fit in the mask */
3852                 if (bits_per_word > 32)
3853                         return -EINVAL;
3854                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3855                         return -EINVAL;
3856         }
3857
3858         return 0;
3859 }
3860
3861 /**
3862  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3863  * @spi: the device that requires specific CS timing configuration
3864  *
3865  * Return: zero on success, else a negative error code.
3866  */
3867 static int spi_set_cs_timing(struct spi_device *spi)
3868 {
3869         struct device *parent = spi->controller->dev.parent;
3870         int status = 0;
3871
3872         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3873                 if (spi->controller->auto_runtime_pm) {
3874                         status = pm_runtime_get_sync(parent);
3875                         if (status < 0) {
3876                                 pm_runtime_put_noidle(parent);
3877                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3878                                         status);
3879                                 return status;
3880                         }
3881
3882                         status = spi->controller->set_cs_timing(spi);
3883                         pm_runtime_mark_last_busy(parent);
3884                         pm_runtime_put_autosuspend(parent);
3885                 } else {
3886                         status = spi->controller->set_cs_timing(spi);
3887                 }
3888         }
3889         return status;
3890 }
3891
3892 /**
3893  * spi_setup - setup SPI mode and clock rate
3894  * @spi: the device whose settings are being modified
3895  * Context: can sleep, and no requests are queued to the device
3896  *
3897  * SPI protocol drivers may need to update the transfer mode if the
3898  * device doesn't work with its default.  They may likewise need
3899  * to update clock rates or word sizes from initial values.  This function
3900  * changes those settings, and must be called from a context that can sleep.
3901  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3902  * effect the next time the device is selected and data is transferred to
3903  * or from it.  When this function returns, the SPI device is deselected.
3904  *
3905  * Note that this call will fail if the protocol driver specifies an option
3906  * that the underlying controller or its driver does not support.  For
3907  * example, not all hardware supports wire transfers using nine bit words,
3908  * LSB-first wire encoding, or active-high chipselects.
3909  *
3910  * Return: zero on success, else a negative error code.
3911  */
3912 int spi_setup(struct spi_device *spi)
3913 {
3914         unsigned        bad_bits, ugly_bits;
3915         int             status = 0;
3916
3917         /*
3918          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3919          * are set at the same time.
3920          */
3921         if ((hweight_long(spi->mode &
3922                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3923             (hweight_long(spi->mode &
3924                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3925                 dev_err(&spi->dev,
3926                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3927                 return -EINVAL;
3928         }
3929         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3930         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3931                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3932                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3933                 return -EINVAL;
3934         /*
3935          * Help drivers fail *cleanly* when they need options
3936          * that aren't supported with their current controller.
3937          * SPI_CS_WORD has a fallback software implementation,
3938          * so it is ignored here.
3939          */
3940         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3941                                  SPI_NO_TX | SPI_NO_RX);
3942         ugly_bits = bad_bits &
3943                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3944                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3945         if (ugly_bits) {
3946                 dev_warn(&spi->dev,
3947                          "setup: ignoring unsupported mode bits %x\n",
3948                          ugly_bits);
3949                 spi->mode &= ~ugly_bits;
3950                 bad_bits &= ~ugly_bits;
3951         }
3952         if (bad_bits) {
3953                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3954                         bad_bits);
3955                 return -EINVAL;
3956         }
3957
3958         if (!spi->bits_per_word) {
3959                 spi->bits_per_word = 8;
3960         } else {
3961                 /*
3962                  * Some controllers may not support the default 8 bits-per-word
3963                  * so only perform the check when this is explicitly provided.
3964                  */
3965                 status = __spi_validate_bits_per_word(spi->controller,
3966                                                       spi->bits_per_word);
3967                 if (status)
3968                         return status;
3969         }
3970
3971         if (spi->controller->max_speed_hz &&
3972             (!spi->max_speed_hz ||
3973              spi->max_speed_hz > spi->controller->max_speed_hz))
3974                 spi->max_speed_hz = spi->controller->max_speed_hz;
3975
3976         mutex_lock(&spi->controller->io_mutex);
3977
3978         if (spi->controller->setup) {
3979                 status = spi->controller->setup(spi);
3980                 if (status) {
3981                         mutex_unlock(&spi->controller->io_mutex);
3982                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3983                                 status);
3984                         return status;
3985                 }
3986         }
3987
3988         status = spi_set_cs_timing(spi);
3989         if (status) {
3990                 mutex_unlock(&spi->controller->io_mutex);
3991                 return status;
3992         }
3993
3994         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3995                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3996                 if (status < 0) {
3997                         mutex_unlock(&spi->controller->io_mutex);
3998                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3999                                 status);
4000                         return status;
4001                 }
4002
4003                 /*
4004                  * We do not want to return positive value from pm_runtime_get,
4005                  * there are many instances of devices calling spi_setup() and
4006                  * checking for a non-zero return value instead of a negative
4007                  * return value.
4008                  */
4009                 status = 0;
4010
4011                 spi_set_cs(spi, false, true);
4012                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4013                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4014         } else {
4015                 spi_set_cs(spi, false, true);
4016         }
4017
4018         mutex_unlock(&spi->controller->io_mutex);
4019
4020         if (spi->rt && !spi->controller->rt) {
4021                 spi->controller->rt = true;
4022                 spi_set_thread_rt(spi->controller);
4023         }
4024
4025         trace_spi_setup(spi, status);
4026
4027         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4028                         spi->mode & SPI_MODE_X_MASK,
4029                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4030                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4031                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4032                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4033                         spi->bits_per_word, spi->max_speed_hz,
4034                         status);
4035
4036         return status;
4037 }
4038 EXPORT_SYMBOL_GPL(spi_setup);
4039
4040 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4041                                        struct spi_device *spi)
4042 {
4043         int delay1, delay2;
4044
4045         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4046         if (delay1 < 0)
4047                 return delay1;
4048
4049         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4050         if (delay2 < 0)
4051                 return delay2;
4052
4053         if (delay1 < delay2)
4054                 memcpy(&xfer->word_delay, &spi->word_delay,
4055                        sizeof(xfer->word_delay));
4056
4057         return 0;
4058 }
4059
4060 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4061 {
4062         struct spi_controller *ctlr = spi->controller;
4063         struct spi_transfer *xfer;
4064         int w_size;
4065
4066         if (list_empty(&message->transfers))
4067                 return -EINVAL;
4068
4069         message->spi = spi;
4070
4071         /*
4072          * Half-duplex links include original MicroWire, and ones with
4073          * only one data pin like SPI_3WIRE (switches direction) or where
4074          * either MOSI or MISO is missing.  They can also be caused by
4075          * software limitations.
4076          */
4077         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4078             (spi->mode & SPI_3WIRE)) {
4079                 unsigned flags = ctlr->flags;
4080
4081                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4082                         if (xfer->rx_buf && xfer->tx_buf)
4083                                 return -EINVAL;
4084                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4085                                 return -EINVAL;
4086                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4087                                 return -EINVAL;
4088                 }
4089         }
4090
4091         /*
4092          * Set transfer bits_per_word and max speed as spi device default if
4093          * it is not set for this transfer.
4094          * Set transfer tx_nbits and rx_nbits as single transfer default
4095          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4096          * Ensure transfer word_delay is at least as long as that required by
4097          * device itself.
4098          */
4099         message->frame_length = 0;
4100         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4101                 xfer->effective_speed_hz = 0;
4102                 message->frame_length += xfer->len;
4103                 if (!xfer->bits_per_word)
4104                         xfer->bits_per_word = spi->bits_per_word;
4105
4106                 if (!xfer->speed_hz)
4107                         xfer->speed_hz = spi->max_speed_hz;
4108
4109                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4110                         xfer->speed_hz = ctlr->max_speed_hz;
4111
4112                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4113                         return -EINVAL;
4114
4115                 /*
4116                  * SPI transfer length should be multiple of SPI word size
4117                  * where SPI word size should be power-of-two multiple.
4118                  */
4119                 if (xfer->bits_per_word <= 8)
4120                         w_size = 1;
4121                 else if (xfer->bits_per_word <= 16)
4122                         w_size = 2;
4123                 else
4124                         w_size = 4;
4125
4126                 /* No partial transfers accepted */
4127                 if (xfer->len % w_size)
4128                         return -EINVAL;
4129
4130                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4131                     xfer->speed_hz < ctlr->min_speed_hz)
4132                         return -EINVAL;
4133
4134                 if (xfer->tx_buf && !xfer->tx_nbits)
4135                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4136                 if (xfer->rx_buf && !xfer->rx_nbits)
4137                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4138                 /*
4139                  * Check transfer tx/rx_nbits:
4140                  * 1. check the value matches one of single, dual and quad
4141                  * 2. check tx/rx_nbits match the mode in spi_device
4142                  */
4143                 if (xfer->tx_buf) {
4144                         if (spi->mode & SPI_NO_TX)
4145                                 return -EINVAL;
4146                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4147                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4148                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4149                                 return -EINVAL;
4150                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4151                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4152                                 return -EINVAL;
4153                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4154                                 !(spi->mode & SPI_TX_QUAD))
4155                                 return -EINVAL;
4156                 }
4157                 /* Check transfer rx_nbits */
4158                 if (xfer->rx_buf) {
4159                         if (spi->mode & SPI_NO_RX)
4160                                 return -EINVAL;
4161                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4162                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4163                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4164                                 return -EINVAL;
4165                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4166                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4167                                 return -EINVAL;
4168                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4169                                 !(spi->mode & SPI_RX_QUAD))
4170                                 return -EINVAL;
4171                 }
4172
4173                 if (_spi_xfer_word_delay_update(xfer, spi))
4174                         return -EINVAL;
4175         }
4176
4177         message->status = -EINPROGRESS;
4178
4179         return 0;
4180 }
4181
4182 /*
4183  * spi_split_transfers - generic handling of transfer splitting
4184  * @msg: the message to split
4185  *
4186  * Under certain conditions, a SPI controller may not support arbitrary
4187  * transfer sizes or other features required by a peripheral. This function
4188  * will split the transfers in the message into smaller transfers that are
4189  * supported by the controller.
4190  *
4191  * Controllers with special requirements not covered here can also split
4192  * transfers in the optimize_message() callback.
4193  *
4194  * Context: can sleep
4195  * Return: zero on success, else a negative error code
4196  */
4197 static int spi_split_transfers(struct spi_message *msg)
4198 {
4199         struct spi_controller *ctlr = msg->spi->controller;
4200         struct spi_transfer *xfer;
4201         int ret;
4202
4203         /*
4204          * If an SPI controller does not support toggling the CS line on each
4205          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4206          * for the CS line, we can emulate the CS-per-word hardware function by
4207          * splitting transfers into one-word transfers and ensuring that
4208          * cs_change is set for each transfer.
4209          */
4210         if ((msg->spi->mode & SPI_CS_WORD) &&
4211             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4212                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4213                 if (ret)
4214                         return ret;
4215
4216                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4217                         /* Don't change cs_change on the last entry in the list */
4218                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4219                                 break;
4220
4221                         xfer->cs_change = 1;
4222                 }
4223         } else {
4224                 ret = spi_split_transfers_maxsize(ctlr, msg,
4225                                                   spi_max_transfer_size(msg->spi));
4226                 if (ret)
4227                         return ret;
4228         }
4229
4230         return 0;
4231 }
4232
4233 /*
4234  * __spi_optimize_message - shared implementation for spi_optimize_message()
4235  *                          and spi_maybe_optimize_message()
4236  * @spi: the device that will be used for the message
4237  * @msg: the message to optimize
4238  *
4239  * Peripheral drivers will call spi_optimize_message() and the spi core will
4240  * call spi_maybe_optimize_message() instead of calling this directly.
4241  *
4242  * It is not valid to call this on a message that has already been optimized.
4243  *
4244  * Return: zero on success, else a negative error code
4245  */
4246 static int __spi_optimize_message(struct spi_device *spi,
4247                                   struct spi_message *msg)
4248 {
4249         struct spi_controller *ctlr = spi->controller;
4250         int ret;
4251
4252         ret = __spi_validate(spi, msg);
4253         if (ret)
4254                 return ret;
4255
4256         ret = spi_split_transfers(msg);
4257         if (ret)
4258                 return ret;
4259
4260         if (ctlr->optimize_message) {
4261                 ret = ctlr->optimize_message(msg);
4262                 if (ret) {
4263                         spi_res_release(ctlr, msg);
4264                         return ret;
4265                 }
4266         }
4267
4268         msg->optimized = true;
4269
4270         return 0;
4271 }
4272
4273 /*
4274  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4275  * @spi: the device that will be used for the message
4276  * @msg: the message to optimize
4277  * Return: zero on success, else a negative error code
4278  */
4279 static int spi_maybe_optimize_message(struct spi_device *spi,
4280                                       struct spi_message *msg)
4281 {
4282         if (msg->pre_optimized)
4283                 return 0;
4284
4285         return __spi_optimize_message(spi, msg);
4286 }
4287
4288 /**
4289  * spi_optimize_message - do any one-time validation and setup for a SPI message
4290  * @spi: the device that will be used for the message
4291  * @msg: the message to optimize
4292  *
4293  * Peripheral drivers that reuse the same message repeatedly may call this to
4294  * perform as much message prep as possible once, rather than repeating it each
4295  * time a message transfer is performed to improve throughput and reduce CPU
4296  * usage.
4297  *
4298  * Once a message has been optimized, it cannot be modified with the exception
4299  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4300  * only the data in the memory it points to).
4301  *
4302  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4303  * to avoid leaking resources.
4304  *
4305  * Context: can sleep
4306  * Return: zero on success, else a negative error code
4307  */
4308 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4309 {
4310         int ret;
4311
4312         ret = __spi_optimize_message(spi, msg);
4313         if (ret)
4314                 return ret;
4315
4316         /*
4317          * This flag indicates that the peripheral driver called spi_optimize_message()
4318          * and therefore we shouldn't unoptimize message automatically when finalizing
4319          * the message but rather wait until spi_unoptimize_message() is called
4320          * by the peripheral driver.
4321          */
4322         msg->pre_optimized = true;
4323
4324         return 0;
4325 }
4326 EXPORT_SYMBOL_GPL(spi_optimize_message);
4327
4328 /**
4329  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4330  * @msg: the message to unoptimize
4331  *
4332  * Calls to this function must be balanced with calls to spi_optimize_message().
4333  *
4334  * Context: can sleep
4335  */
4336 void spi_unoptimize_message(struct spi_message *msg)
4337 {
4338         __spi_unoptimize_message(msg);
4339         msg->pre_optimized = false;
4340 }
4341 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4342
4343 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4344 {
4345         struct spi_controller *ctlr = spi->controller;
4346         struct spi_transfer *xfer;
4347
4348         /*
4349          * Some controllers do not support doing regular SPI transfers. Return
4350          * ENOTSUPP when this is the case.
4351          */
4352         if (!ctlr->transfer)
4353                 return -ENOTSUPP;
4354
4355         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4356         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4357
4358         trace_spi_message_submit(message);
4359
4360         if (!ctlr->ptp_sts_supported) {
4361                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4362                         xfer->ptp_sts_word_pre = 0;
4363                         ptp_read_system_prets(xfer->ptp_sts);
4364                 }
4365         }
4366
4367         return ctlr->transfer(spi, message);
4368 }
4369
4370 /**
4371  * spi_async - asynchronous SPI transfer
4372  * @spi: device with which data will be exchanged
4373  * @message: describes the data transfers, including completion callback
4374  * Context: any (IRQs may be blocked, etc)
4375  *
4376  * This call may be used in_irq and other contexts which can't sleep,
4377  * as well as from task contexts which can sleep.
4378  *
4379  * The completion callback is invoked in a context which can't sleep.
4380  * Before that invocation, the value of message->status is undefined.
4381  * When the callback is issued, message->status holds either zero (to
4382  * indicate complete success) or a negative error code.  After that
4383  * callback returns, the driver which issued the transfer request may
4384  * deallocate the associated memory; it's no longer in use by any SPI
4385  * core or controller driver code.
4386  *
4387  * Note that although all messages to a spi_device are handled in
4388  * FIFO order, messages may go to different devices in other orders.
4389  * Some device might be higher priority, or have various "hard" access
4390  * time requirements, for example.
4391  *
4392  * On detection of any fault during the transfer, processing of
4393  * the entire message is aborted, and the device is deselected.
4394  * Until returning from the associated message completion callback,
4395  * no other spi_message queued to that device will be processed.
4396  * (This rule applies equally to all the synchronous transfer calls,
4397  * which are wrappers around this core asynchronous primitive.)
4398  *
4399  * Return: zero on success, else a negative error code.
4400  */
4401 int spi_async(struct spi_device *spi, struct spi_message *message)
4402 {
4403         struct spi_controller *ctlr = spi->controller;
4404         int ret;
4405         unsigned long flags;
4406
4407         ret = spi_maybe_optimize_message(spi, message);
4408         if (ret)
4409                 return ret;
4410
4411         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4412
4413         if (ctlr->bus_lock_flag)
4414                 ret = -EBUSY;
4415         else
4416                 ret = __spi_async(spi, message);
4417
4418         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4419
4420         spi_maybe_unoptimize_message(message);
4421
4422         return ret;
4423 }
4424 EXPORT_SYMBOL_GPL(spi_async);
4425
4426 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4427 {
4428         bool was_busy;
4429         int ret;
4430
4431         mutex_lock(&ctlr->io_mutex);
4432
4433         was_busy = ctlr->busy;
4434
4435         ctlr->cur_msg = msg;
4436         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4437         if (ret)
4438                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4439         ctlr->cur_msg = NULL;
4440         ctlr->fallback = false;
4441
4442         if (!was_busy) {
4443                 kfree(ctlr->dummy_rx);
4444                 ctlr->dummy_rx = NULL;
4445                 kfree(ctlr->dummy_tx);
4446                 ctlr->dummy_tx = NULL;
4447                 if (ctlr->unprepare_transfer_hardware &&
4448                     ctlr->unprepare_transfer_hardware(ctlr))
4449                         dev_err(&ctlr->dev,
4450                                 "failed to unprepare transfer hardware\n");
4451                 spi_idle_runtime_pm(ctlr);
4452         }
4453
4454         mutex_unlock(&ctlr->io_mutex);
4455 }
4456
4457 /*-------------------------------------------------------------------------*/
4458
4459 /*
4460  * Utility methods for SPI protocol drivers, layered on
4461  * top of the core.  Some other utility methods are defined as
4462  * inline functions.
4463  */
4464
4465 static void spi_complete(void *arg)
4466 {
4467         complete(arg);
4468 }
4469
4470 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4471 {
4472         DECLARE_COMPLETION_ONSTACK(done);
4473         unsigned long flags;
4474         int status;
4475         struct spi_controller *ctlr = spi->controller;
4476
4477         if (__spi_check_suspended(ctlr)) {
4478                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4479                 return -ESHUTDOWN;
4480         }
4481
4482         status = spi_maybe_optimize_message(spi, message);
4483         if (status)
4484                 return status;
4485
4486         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4487         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4488
4489         /*
4490          * Checking queue_empty here only guarantees async/sync message
4491          * ordering when coming from the same context. It does not need to
4492          * guard against reentrancy from a different context. The io_mutex
4493          * will catch those cases.
4494          */
4495         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4496                 message->actual_length = 0;
4497                 message->status = -EINPROGRESS;
4498
4499                 trace_spi_message_submit(message);
4500
4501                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4502                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4503
4504                 __spi_transfer_message_noqueue(ctlr, message);
4505
4506                 return message->status;
4507         }
4508
4509         /*
4510          * There are messages in the async queue that could have originated
4511          * from the same context, so we need to preserve ordering.
4512          * Therefor we send the message to the async queue and wait until they
4513          * are completed.
4514          */
4515         message->complete = spi_complete;
4516         message->context = &done;
4517
4518         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4519         status = __spi_async(spi, message);
4520         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4521
4522         if (status == 0) {
4523                 wait_for_completion(&done);
4524                 status = message->status;
4525         }
4526         message->context = NULL;
4527
4528         return status;
4529 }
4530
4531 /**
4532  * spi_sync - blocking/synchronous SPI data transfers
4533  * @spi: device with which data will be exchanged
4534  * @message: describes the data transfers
4535  * Context: can sleep
4536  *
4537  * This call may only be used from a context that may sleep.  The sleep
4538  * is non-interruptible, and has no timeout.  Low-overhead controller
4539  * drivers may DMA directly into and out of the message buffers.
4540  *
4541  * Note that the SPI device's chip select is active during the message,
4542  * and then is normally disabled between messages.  Drivers for some
4543  * frequently-used devices may want to minimize costs of selecting a chip,
4544  * by leaving it selected in anticipation that the next message will go
4545  * to the same chip.  (That may increase power usage.)
4546  *
4547  * Also, the caller is guaranteeing that the memory associated with the
4548  * message will not be freed before this call returns.
4549  *
4550  * Return: zero on success, else a negative error code.
4551  */
4552 int spi_sync(struct spi_device *spi, struct spi_message *message)
4553 {
4554         int ret;
4555
4556         mutex_lock(&spi->controller->bus_lock_mutex);
4557         ret = __spi_sync(spi, message);
4558         mutex_unlock(&spi->controller->bus_lock_mutex);
4559
4560         return ret;
4561 }
4562 EXPORT_SYMBOL_GPL(spi_sync);
4563
4564 /**
4565  * spi_sync_locked - version of spi_sync with exclusive bus usage
4566  * @spi: device with which data will be exchanged
4567  * @message: describes the data transfers
4568  * Context: can sleep
4569  *
4570  * This call may only be used from a context that may sleep.  The sleep
4571  * is non-interruptible, and has no timeout.  Low-overhead controller
4572  * drivers may DMA directly into and out of the message buffers.
4573  *
4574  * This call should be used by drivers that require exclusive access to the
4575  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4576  * be released by a spi_bus_unlock call when the exclusive access is over.
4577  *
4578  * Return: zero on success, else a negative error code.
4579  */
4580 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4581 {
4582         return __spi_sync(spi, message);
4583 }
4584 EXPORT_SYMBOL_GPL(spi_sync_locked);
4585
4586 /**
4587  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4588  * @ctlr: SPI bus master that should be locked for exclusive bus access
4589  * Context: can sleep
4590  *
4591  * This call may only be used from a context that may sleep.  The sleep
4592  * is non-interruptible, and has no timeout.
4593  *
4594  * This call should be used by drivers that require exclusive access to the
4595  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4596  * exclusive access is over. Data transfer must be done by spi_sync_locked
4597  * and spi_async_locked calls when the SPI bus lock is held.
4598  *
4599  * Return: always zero.
4600  */
4601 int spi_bus_lock(struct spi_controller *ctlr)
4602 {
4603         unsigned long flags;
4604
4605         mutex_lock(&ctlr->bus_lock_mutex);
4606
4607         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4608         ctlr->bus_lock_flag = 1;
4609         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4610
4611         /* Mutex remains locked until spi_bus_unlock() is called */
4612
4613         return 0;
4614 }
4615 EXPORT_SYMBOL_GPL(spi_bus_lock);
4616
4617 /**
4618  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4619  * @ctlr: SPI bus master that was locked for exclusive bus access
4620  * Context: can sleep
4621  *
4622  * This call may only be used from a context that may sleep.  The sleep
4623  * is non-interruptible, and has no timeout.
4624  *
4625  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4626  * call.
4627  *
4628  * Return: always zero.
4629  */
4630 int spi_bus_unlock(struct spi_controller *ctlr)
4631 {
4632         ctlr->bus_lock_flag = 0;
4633
4634         mutex_unlock(&ctlr->bus_lock_mutex);
4635
4636         return 0;
4637 }
4638 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4639
4640 /* Portable code must never pass more than 32 bytes */
4641 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4642
4643 static u8       *buf;
4644
4645 /**
4646  * spi_write_then_read - SPI synchronous write followed by read
4647  * @spi: device with which data will be exchanged
4648  * @txbuf: data to be written (need not be DMA-safe)
4649  * @n_tx: size of txbuf, in bytes
4650  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4651  * @n_rx: size of rxbuf, in bytes
4652  * Context: can sleep
4653  *
4654  * This performs a half duplex MicroWire style transaction with the
4655  * device, sending txbuf and then reading rxbuf.  The return value
4656  * is zero for success, else a negative errno status code.
4657  * This call may only be used from a context that may sleep.
4658  *
4659  * Parameters to this routine are always copied using a small buffer.
4660  * Performance-sensitive or bulk transfer code should instead use
4661  * spi_{async,sync}() calls with DMA-safe buffers.
4662  *
4663  * Return: zero on success, else a negative error code.
4664  */
4665 int spi_write_then_read(struct spi_device *spi,
4666                 const void *txbuf, unsigned n_tx,
4667                 void *rxbuf, unsigned n_rx)
4668 {
4669         static DEFINE_MUTEX(lock);
4670
4671         int                     status;
4672         struct spi_message      message;
4673         struct spi_transfer     x[2];
4674         u8                      *local_buf;
4675
4676         /*
4677          * Use preallocated DMA-safe buffer if we can. We can't avoid
4678          * copying here, (as a pure convenience thing), but we can
4679          * keep heap costs out of the hot path unless someone else is
4680          * using the pre-allocated buffer or the transfer is too large.
4681          */
4682         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4683                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4684                                     GFP_KERNEL | GFP_DMA);
4685                 if (!local_buf)
4686                         return -ENOMEM;
4687         } else {
4688                 local_buf = buf;
4689         }
4690
4691         spi_message_init(&message);
4692         memset(x, 0, sizeof(x));
4693         if (n_tx) {
4694                 x[0].len = n_tx;
4695                 spi_message_add_tail(&x[0], &message);
4696         }
4697         if (n_rx) {
4698                 x[1].len = n_rx;
4699                 spi_message_add_tail(&x[1], &message);
4700         }
4701
4702         memcpy(local_buf, txbuf, n_tx);
4703         x[0].tx_buf = local_buf;
4704         x[1].rx_buf = local_buf + n_tx;
4705
4706         /* Do the I/O */
4707         status = spi_sync(spi, &message);
4708         if (status == 0)
4709                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4710
4711         if (x[0].tx_buf == buf)
4712                 mutex_unlock(&lock);
4713         else
4714                 kfree(local_buf);
4715
4716         return status;
4717 }
4718 EXPORT_SYMBOL_GPL(spi_write_then_read);
4719
4720 /*-------------------------------------------------------------------------*/
4721
4722 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4723 /* Must call put_device() when done with returned spi_device device */
4724 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4725 {
4726         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4727
4728         return dev ? to_spi_device(dev) : NULL;
4729 }
4730
4731 /* The spi controllers are not using spi_bus, so we find it with another way */
4732 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4733 {
4734         struct device *dev;
4735
4736         dev = class_find_device_by_of_node(&spi_master_class, node);
4737         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4738                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4739         if (!dev)
4740                 return NULL;
4741
4742         /* Reference got in class_find_device */
4743         return container_of(dev, struct spi_controller, dev);
4744 }
4745
4746 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4747                          void *arg)
4748 {
4749         struct of_reconfig_data *rd = arg;
4750         struct spi_controller *ctlr;
4751         struct spi_device *spi;
4752
4753         switch (of_reconfig_get_state_change(action, arg)) {
4754         case OF_RECONFIG_CHANGE_ADD:
4755                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4756                 if (ctlr == NULL)
4757                         return NOTIFY_OK;       /* Not for us */
4758
4759                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4760                         put_device(&ctlr->dev);
4761                         return NOTIFY_OK;
4762                 }
4763
4764                 /*
4765                  * Clear the flag before adding the device so that fw_devlink
4766                  * doesn't skip adding consumers to this device.
4767                  */
4768                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4769                 spi = of_register_spi_device(ctlr, rd->dn);
4770                 put_device(&ctlr->dev);
4771
4772                 if (IS_ERR(spi)) {
4773                         pr_err("%s: failed to create for '%pOF'\n",
4774                                         __func__, rd->dn);
4775                         of_node_clear_flag(rd->dn, OF_POPULATED);
4776                         return notifier_from_errno(PTR_ERR(spi));
4777                 }
4778                 break;
4779
4780         case OF_RECONFIG_CHANGE_REMOVE:
4781                 /* Already depopulated? */
4782                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4783                         return NOTIFY_OK;
4784
4785                 /* Find our device by node */
4786                 spi = of_find_spi_device_by_node(rd->dn);
4787                 if (spi == NULL)
4788                         return NOTIFY_OK;       /* No? not meant for us */
4789
4790                 /* Unregister takes one ref away */
4791                 spi_unregister_device(spi);
4792
4793                 /* And put the reference of the find */
4794                 put_device(&spi->dev);
4795                 break;
4796         }
4797
4798         return NOTIFY_OK;
4799 }
4800
4801 static struct notifier_block spi_of_notifier = {
4802         .notifier_call = of_spi_notify,
4803 };
4804 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4805 extern struct notifier_block spi_of_notifier;
4806 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4807
4808 #if IS_ENABLED(CONFIG_ACPI)
4809 static int spi_acpi_controller_match(struct device *dev, const void *data)
4810 {
4811         return ACPI_COMPANION(dev->parent) == data;
4812 }
4813
4814 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4815 {
4816         struct device *dev;
4817
4818         dev = class_find_device(&spi_master_class, NULL, adev,
4819                                 spi_acpi_controller_match);
4820         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4821                 dev = class_find_device(&spi_slave_class, NULL, adev,
4822                                         spi_acpi_controller_match);
4823         if (!dev)
4824                 return NULL;
4825
4826         return container_of(dev, struct spi_controller, dev);
4827 }
4828 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4829
4830 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4831 {
4832         struct device *dev;
4833
4834         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4835         return to_spi_device(dev);
4836 }
4837
4838 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4839                            void *arg)
4840 {
4841         struct acpi_device *adev = arg;
4842         struct spi_controller *ctlr;
4843         struct spi_device *spi;
4844
4845         switch (value) {
4846         case ACPI_RECONFIG_DEVICE_ADD:
4847                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4848                 if (!ctlr)
4849                         break;
4850
4851                 acpi_register_spi_device(ctlr, adev);
4852                 put_device(&ctlr->dev);
4853                 break;
4854         case ACPI_RECONFIG_DEVICE_REMOVE:
4855                 if (!acpi_device_enumerated(adev))
4856                         break;
4857
4858                 spi = acpi_spi_find_device_by_adev(adev);
4859                 if (!spi)
4860                         break;
4861
4862                 spi_unregister_device(spi);
4863                 put_device(&spi->dev);
4864                 break;
4865         }
4866
4867         return NOTIFY_OK;
4868 }
4869
4870 static struct notifier_block spi_acpi_notifier = {
4871         .notifier_call = acpi_spi_notify,
4872 };
4873 #else
4874 extern struct notifier_block spi_acpi_notifier;
4875 #endif
4876
4877 static int __init spi_init(void)
4878 {
4879         int     status;
4880
4881         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4882         if (!buf) {
4883                 status = -ENOMEM;
4884                 goto err0;
4885         }
4886
4887         status = bus_register(&spi_bus_type);
4888         if (status < 0)
4889                 goto err1;
4890
4891         status = class_register(&spi_master_class);
4892         if (status < 0)
4893                 goto err2;
4894
4895         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4896                 status = class_register(&spi_slave_class);
4897                 if (status < 0)
4898                         goto err3;
4899         }
4900
4901         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4902                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4903         if (IS_ENABLED(CONFIG_ACPI))
4904                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4905
4906         return 0;
4907
4908 err3:
4909         class_unregister(&spi_master_class);
4910 err2:
4911         bus_unregister(&spi_bus_type);
4912 err1:
4913         kfree(buf);
4914         buf = NULL;
4915 err0:
4916         return status;
4917 }
4918
4919 /*
4920  * A board_info is normally registered in arch_initcall(),
4921  * but even essential drivers wait till later.
4922  *
4923  * REVISIT only boardinfo really needs static linking. The rest (device and
4924  * driver registration) _could_ be dynamically linked (modular) ... Costs
4925  * include needing to have boardinfo data structures be much more public.
4926  */
4927 postcore_initcall(spi_init);