Merge tag 'spdx-5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29
30 #include <trace/events/block.h>
31
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, bytes, bucket;
48
49         ddir = rq_data_dir(rq);
50         bytes = blk_rq_bytes(rq);
51
52         bucket = ddir + 2*(ilog2(bytes) - 9);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return !list_empty_careful(&hctx->dispatch) ||
69                 sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         const int bit = ctx->index_hw[hctx->type];
80
81         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82                 sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86                                       struct blk_mq_ctx *ctx)
87 {
88         const int bit = ctx->index_hw[hctx->type];
89
90         sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92
93 struct mq_inflight {
94         struct hd_struct *part;
95         unsigned int *inflight;
96 };
97
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99                                   struct request *rq, void *priv,
100                                   bool reserved)
101 {
102         struct mq_inflight *mi = priv;
103
104         /*
105          * index[0] counts the specific partition that was asked for.
106          */
107         if (rq->part == mi->part)
108                 mi->inflight[0]++;
109
110         return true;
111 }
112
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115         unsigned inflight[2];
116         struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118         inflight[0] = inflight[1] = 0;
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121         return inflight[0];
122 }
123
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125                                      struct request *rq, void *priv,
126                                      bool reserved)
127 {
128         struct mq_inflight *mi = priv;
129
130         if (rq->part == mi->part)
131                 mi->inflight[rq_data_dir(rq)]++;
132
133         return true;
134 }
135
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137                          unsigned int inflight[2])
138 {
139         struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141         inflight[0] = inflight[1] = 0;
142         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147         mutex_lock(&q->mq_freeze_lock);
148         if (++q->mq_freeze_depth == 1) {
149                 percpu_ref_kill(&q->q_usage_counter);
150                 mutex_unlock(&q->mq_freeze_lock);
151                 if (queue_is_mq(q))
152                         blk_mq_run_hw_queues(q, false);
153         } else {
154                 mutex_unlock(&q->mq_freeze_lock);
155         }
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166                                      unsigned long timeout)
167 {
168         return wait_event_timeout(q->mq_freeze_wq,
169                                         percpu_ref_is_zero(&q->q_usage_counter),
170                                         timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180         /*
181          * In the !blk_mq case we are only calling this to kill the
182          * q_usage_counter, otherwise this increases the freeze depth
183          * and waits for it to return to zero.  For this reason there is
184          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185          * exported to drivers as the only user for unfreeze is blk_mq.
186          */
187         blk_freeze_queue_start(q);
188         blk_mq_freeze_queue_wait(q);
189 }
190
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193         /*
194          * ...just an alias to keep freeze and unfreeze actions balanced
195          * in the blk_mq_* namespace
196          */
197         blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203         mutex_lock(&q->mq_freeze_lock);
204         q->mq_freeze_depth--;
205         WARN_ON_ONCE(q->mq_freeze_depth < 0);
206         if (!q->mq_freeze_depth) {
207                 percpu_ref_resurrect(&q->q_usage_counter);
208                 wake_up_all(&q->mq_freeze_wq);
209         }
210         mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235         struct blk_mq_hw_ctx *hctx;
236         unsigned int i;
237         bool rcu = false;
238
239         blk_mq_quiesce_queue_nowait(q);
240
241         queue_for_each_hw_ctx(q, hctx, i) {
242                 if (hctx->flags & BLK_MQ_F_BLOCKING)
243                         synchronize_srcu(hctx->srcu);
244                 else
245                         rcu = true;
246         }
247         if (rcu)
248                 synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262
263         /* dispatch requests which are inserted during quiescing */
264         blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270         struct blk_mq_hw_ctx *hctx;
271         unsigned int i;
272
273         queue_for_each_hw_ctx(q, hctx, i)
274                 if (blk_mq_hw_queue_mapped(hctx))
275                         blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280         return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283
284 /*
285  * Only need start/end time stamping if we have stats enabled, or using
286  * an IO scheduler.
287  */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290         return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294                 unsigned int tag, unsigned int op)
295 {
296         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297         struct request *rq = tags->static_rqs[tag];
298         req_flags_t rq_flags = 0;
299
300         if (data->flags & BLK_MQ_REQ_INTERNAL) {
301                 rq->tag = -1;
302                 rq->internal_tag = tag;
303         } else {
304                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305                         rq_flags = RQF_MQ_INFLIGHT;
306                         atomic_inc(&data->hctx->nr_active);
307                 }
308                 rq->tag = tag;
309                 rq->internal_tag = -1;
310                 data->hctx->tags->rqs[rq->tag] = rq;
311         }
312
313         /* csd/requeue_work/fifo_time is initialized before use */
314         rq->q = data->q;
315         rq->mq_ctx = data->ctx;
316         rq->mq_hctx = data->hctx;
317         rq->rq_flags = rq_flags;
318         rq->cmd_flags = op;
319         if (data->flags & BLK_MQ_REQ_PREEMPT)
320                 rq->rq_flags |= RQF_PREEMPT;
321         if (blk_queue_io_stat(data->q))
322                 rq->rq_flags |= RQF_IO_STAT;
323         INIT_LIST_HEAD(&rq->queuelist);
324         INIT_HLIST_NODE(&rq->hash);
325         RB_CLEAR_NODE(&rq->rb_node);
326         rq->rq_disk = NULL;
327         rq->part = NULL;
328         if (blk_mq_need_time_stamp(rq))
329                 rq->start_time_ns = ktime_get_ns();
330         else
331                 rq->start_time_ns = 0;
332         rq->io_start_time_ns = 0;
333         rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335         rq->nr_integrity_segments = 0;
336 #endif
337         /* tag was already set */
338         rq->extra_len = 0;
339         WRITE_ONCE(rq->deadline, 0);
340
341         rq->timeout = 0;
342
343         rq->end_io = NULL;
344         rq->end_io_data = NULL;
345
346         data->ctx->rq_dispatched[op_is_sync(op)]++;
347         refcount_set(&rq->ref, 1);
348         return rq;
349 }
350
351 static struct request *blk_mq_get_request(struct request_queue *q,
352                                           struct bio *bio,
353                                           struct blk_mq_alloc_data *data)
354 {
355         struct elevator_queue *e = q->elevator;
356         struct request *rq;
357         unsigned int tag;
358         bool clear_ctx_on_error = false;
359
360         blk_queue_enter_live(q);
361         data->q = q;
362         if (likely(!data->ctx)) {
363                 data->ctx = blk_mq_get_ctx(q);
364                 clear_ctx_on_error = true;
365         }
366         if (likely(!data->hctx))
367                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368                                                 data->ctx);
369         if (data->cmd_flags & REQ_NOWAIT)
370                 data->flags |= BLK_MQ_REQ_NOWAIT;
371
372         if (e) {
373                 data->flags |= BLK_MQ_REQ_INTERNAL;
374
375                 /*
376                  * Flush requests are special and go directly to the
377                  * dispatch list. Don't include reserved tags in the
378                  * limiting, as it isn't useful.
379                  */
380                 if (!op_is_flush(data->cmd_flags) &&
381                     e->type->ops.limit_depth &&
382                     !(data->flags & BLK_MQ_REQ_RESERVED))
383                         e->type->ops.limit_depth(data->cmd_flags, data);
384         } else {
385                 blk_mq_tag_busy(data->hctx);
386         }
387
388         tag = blk_mq_get_tag(data);
389         if (tag == BLK_MQ_TAG_FAIL) {
390                 if (clear_ctx_on_error)
391                         data->ctx = NULL;
392                 blk_queue_exit(q);
393                 return NULL;
394         }
395
396         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397         if (!op_is_flush(data->cmd_flags)) {
398                 rq->elv.icq = NULL;
399                 if (e && e->type->ops.prepare_request) {
400                         if (e->type->icq_cache)
401                                 blk_mq_sched_assign_ioc(rq);
402
403                         e->type->ops.prepare_request(rq, bio);
404                         rq->rq_flags |= RQF_ELVPRIV;
405                 }
406         }
407         data->hctx->queued++;
408         return rq;
409 }
410
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412                 blk_mq_req_flags_t flags)
413 {
414         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415         struct request *rq;
416         int ret;
417
418         ret = blk_queue_enter(q, flags);
419         if (ret)
420                 return ERR_PTR(ret);
421
422         rq = blk_mq_get_request(q, NULL, &alloc_data);
423         blk_queue_exit(q);
424
425         if (!rq)
426                 return ERR_PTR(-EWOULDBLOCK);
427
428         rq->__data_len = 0;
429         rq->__sector = (sector_t) -1;
430         rq->bio = rq->biotail = NULL;
431         return rq;
432 }
433 EXPORT_SYMBOL(blk_mq_alloc_request);
434
435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
436         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
437 {
438         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
439         struct request *rq;
440         unsigned int cpu;
441         int ret;
442
443         /*
444          * If the tag allocator sleeps we could get an allocation for a
445          * different hardware context.  No need to complicate the low level
446          * allocator for this for the rare use case of a command tied to
447          * a specific queue.
448          */
449         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
450                 return ERR_PTR(-EINVAL);
451
452         if (hctx_idx >= q->nr_hw_queues)
453                 return ERR_PTR(-EIO);
454
455         ret = blk_queue_enter(q, flags);
456         if (ret)
457                 return ERR_PTR(ret);
458
459         /*
460          * Check if the hardware context is actually mapped to anything.
461          * If not tell the caller that it should skip this queue.
462          */
463         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
464         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
465                 blk_queue_exit(q);
466                 return ERR_PTR(-EXDEV);
467         }
468         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
469         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
470
471         rq = blk_mq_get_request(q, NULL, &alloc_data);
472         blk_queue_exit(q);
473
474         if (!rq)
475                 return ERR_PTR(-EWOULDBLOCK);
476
477         return rq;
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
480
481 static void __blk_mq_free_request(struct request *rq)
482 {
483         struct request_queue *q = rq->q;
484         struct blk_mq_ctx *ctx = rq->mq_ctx;
485         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
486         const int sched_tag = rq->internal_tag;
487
488         blk_pm_mark_last_busy(rq);
489         rq->mq_hctx = NULL;
490         if (rq->tag != -1)
491                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492         if (sched_tag != -1)
493                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494         blk_mq_sched_restart(hctx);
495         blk_queue_exit(q);
496 }
497
498 void blk_mq_free_request(struct request *rq)
499 {
500         struct request_queue *q = rq->q;
501         struct elevator_queue *e = q->elevator;
502         struct blk_mq_ctx *ctx = rq->mq_ctx;
503         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
504
505         if (rq->rq_flags & RQF_ELVPRIV) {
506                 if (e && e->type->ops.finish_request)
507                         e->type->ops.finish_request(rq);
508                 if (rq->elv.icq) {
509                         put_io_context(rq->elv.icq->ioc);
510                         rq->elv.icq = NULL;
511                 }
512         }
513
514         ctx->rq_completed[rq_is_sync(rq)]++;
515         if (rq->rq_flags & RQF_MQ_INFLIGHT)
516                 atomic_dec(&hctx->nr_active);
517
518         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
519                 laptop_io_completion(q->backing_dev_info);
520
521         rq_qos_done(q, rq);
522
523         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
524         if (refcount_dec_and_test(&rq->ref))
525                 __blk_mq_free_request(rq);
526 }
527 EXPORT_SYMBOL_GPL(blk_mq_free_request);
528
529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531         u64 now = 0;
532
533         if (blk_mq_need_time_stamp(rq))
534                 now = ktime_get_ns();
535
536         if (rq->rq_flags & RQF_STATS) {
537                 blk_mq_poll_stats_start(rq->q);
538                 blk_stat_add(rq, now);
539         }
540
541         if (rq->internal_tag != -1)
542                 blk_mq_sched_completed_request(rq, now);
543
544         blk_account_io_done(rq, now);
545
546         if (rq->end_io) {
547                 rq_qos_done(rq->q, rq);
548                 rq->end_io(rq, error);
549         } else {
550                 blk_mq_free_request(rq);
551         }
552 }
553 EXPORT_SYMBOL(__blk_mq_end_request);
554
555 void blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
558                 BUG();
559         __blk_mq_end_request(rq, error);
560 }
561 EXPORT_SYMBOL(blk_mq_end_request);
562
563 static void __blk_mq_complete_request_remote(void *data)
564 {
565         struct request *rq = data;
566         struct request_queue *q = rq->q;
567
568         q->mq_ops->complete(rq);
569 }
570
571 static void __blk_mq_complete_request(struct request *rq)
572 {
573         struct blk_mq_ctx *ctx = rq->mq_ctx;
574         struct request_queue *q = rq->q;
575         bool shared = false;
576         int cpu;
577
578         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
579         /*
580          * Most of single queue controllers, there is only one irq vector
581          * for handling IO completion, and the only irq's affinity is set
582          * as all possible CPUs. On most of ARCHs, this affinity means the
583          * irq is handled on one specific CPU.
584          *
585          * So complete IO reqeust in softirq context in case of single queue
586          * for not degrading IO performance by irqsoff latency.
587          */
588         if (q->nr_hw_queues == 1) {
589                 __blk_complete_request(rq);
590                 return;
591         }
592
593         /*
594          * For a polled request, always complete locallly, it's pointless
595          * to redirect the completion.
596          */
597         if ((rq->cmd_flags & REQ_HIPRI) ||
598             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
599                 q->mq_ops->complete(rq);
600                 return;
601         }
602
603         cpu = get_cpu();
604         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
605                 shared = cpus_share_cache(cpu, ctx->cpu);
606
607         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
608                 rq->csd.func = __blk_mq_complete_request_remote;
609                 rq->csd.info = rq;
610                 rq->csd.flags = 0;
611                 smp_call_function_single_async(ctx->cpu, &rq->csd);
612         } else {
613                 q->mq_ops->complete(rq);
614         }
615         put_cpu();
616 }
617
618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
619         __releases(hctx->srcu)
620 {
621         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
622                 rcu_read_unlock();
623         else
624                 srcu_read_unlock(hctx->srcu, srcu_idx);
625 }
626
627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
628         __acquires(hctx->srcu)
629 {
630         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
631                 /* shut up gcc false positive */
632                 *srcu_idx = 0;
633                 rcu_read_lock();
634         } else
635                 *srcu_idx = srcu_read_lock(hctx->srcu);
636 }
637
638 /**
639  * blk_mq_complete_request - end I/O on a request
640  * @rq:         the request being processed
641  *
642  * Description:
643  *      Ends all I/O on a request. It does not handle partial completions.
644  *      The actual completion happens out-of-order, through a IPI handler.
645  **/
646 bool blk_mq_complete_request(struct request *rq)
647 {
648         if (unlikely(blk_should_fake_timeout(rq->q)))
649                 return false;
650         __blk_mq_complete_request(rq);
651         return true;
652 }
653 EXPORT_SYMBOL(blk_mq_complete_request);
654
655 void blk_mq_complete_request_sync(struct request *rq)
656 {
657         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658         rq->q->mq_ops->complete(rq);
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
661
662 int blk_mq_request_started(struct request *rq)
663 {
664         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667
668 void blk_mq_start_request(struct request *rq)
669 {
670         struct request_queue *q = rq->q;
671
672         trace_block_rq_issue(q, rq);
673
674         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675                 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677                 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679                 rq->rq_flags |= RQF_STATS;
680                 rq_qos_issue(q, rq);
681         }
682
683         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684
685         blk_add_timer(rq);
686         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687
688         if (q->dma_drain_size && blk_rq_bytes(rq)) {
689                 /*
690                  * Make sure space for the drain appears.  We know we can do
691                  * this because max_hw_segments has been adjusted to be one
692                  * fewer than the device can handle.
693                  */
694                 rq->nr_phys_segments++;
695         }
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702
703         blk_mq_put_driver_tag(rq);
704
705         trace_block_rq_requeue(q, rq);
706         rq_qos_requeue(q, rq);
707
708         if (blk_mq_request_started(rq)) {
709                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710                 rq->rq_flags &= ~RQF_TIMED_OUT;
711                 if (q->dma_drain_size && blk_rq_bytes(rq))
712                         rq->nr_phys_segments--;
713         }
714 }
715
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718         __blk_mq_requeue_request(rq);
719
720         /* this request will be re-inserted to io scheduler queue */
721         blk_mq_sched_requeue_request(rq);
722
723         BUG_ON(!list_empty(&rq->queuelist));
724         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730         struct request_queue *q =
731                 container_of(work, struct request_queue, requeue_work.work);
732         LIST_HEAD(rq_list);
733         struct request *rq, *next;
734
735         spin_lock_irq(&q->requeue_lock);
736         list_splice_init(&q->requeue_list, &rq_list);
737         spin_unlock_irq(&q->requeue_lock);
738
739         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741                         continue;
742
743                 rq->rq_flags &= ~RQF_SOFTBARRIER;
744                 list_del_init(&rq->queuelist);
745                 /*
746                  * If RQF_DONTPREP, rq has contained some driver specific
747                  * data, so insert it to hctx dispatch list to avoid any
748                  * merge.
749                  */
750                 if (rq->rq_flags & RQF_DONTPREP)
751                         blk_mq_request_bypass_insert(rq, false);
752                 else
753                         blk_mq_sched_insert_request(rq, true, false, false);
754         }
755
756         while (!list_empty(&rq_list)) {
757                 rq = list_entry(rq_list.next, struct request, queuelist);
758                 list_del_init(&rq->queuelist);
759                 blk_mq_sched_insert_request(rq, false, false, false);
760         }
761
762         blk_mq_run_hw_queues(q, false);
763 }
764
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766                                 bool kick_requeue_list)
767 {
768         struct request_queue *q = rq->q;
769         unsigned long flags;
770
771         /*
772          * We abuse this flag that is otherwise used by the I/O scheduler to
773          * request head insertion from the workqueue.
774          */
775         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
776
777         spin_lock_irqsave(&q->requeue_lock, flags);
778         if (at_head) {
779                 rq->rq_flags |= RQF_SOFTBARRIER;
780                 list_add(&rq->queuelist, &q->requeue_list);
781         } else {
782                 list_add_tail(&rq->queuelist, &q->requeue_list);
783         }
784         spin_unlock_irqrestore(&q->requeue_lock, flags);
785
786         if (kick_requeue_list)
787                 blk_mq_kick_requeue_list(q);
788 }
789
790 void blk_mq_kick_requeue_list(struct request_queue *q)
791 {
792         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
793 }
794 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
795
796 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
797                                     unsigned long msecs)
798 {
799         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
800                                     msecs_to_jiffies(msecs));
801 }
802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
803
804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
805 {
806         if (tag < tags->nr_tags) {
807                 prefetch(tags->rqs[tag]);
808                 return tags->rqs[tag];
809         }
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(blk_mq_tag_to_rq);
814
815 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
816                                void *priv, bool reserved)
817 {
818         /*
819          * If we find a request that is inflight and the queue matches,
820          * we know the queue is busy. Return false to stop the iteration.
821          */
822         if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
823                 bool *busy = priv;
824
825                 *busy = true;
826                 return false;
827         }
828
829         return true;
830 }
831
832 bool blk_mq_queue_inflight(struct request_queue *q)
833 {
834         bool busy = false;
835
836         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
837         return busy;
838 }
839 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
840
841 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
842 {
843         req->rq_flags |= RQF_TIMED_OUT;
844         if (req->q->mq_ops->timeout) {
845                 enum blk_eh_timer_return ret;
846
847                 ret = req->q->mq_ops->timeout(req, reserved);
848                 if (ret == BLK_EH_DONE)
849                         return;
850                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
851         }
852
853         blk_add_timer(req);
854 }
855
856 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
857 {
858         unsigned long deadline;
859
860         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
861                 return false;
862         if (rq->rq_flags & RQF_TIMED_OUT)
863                 return false;
864
865         deadline = READ_ONCE(rq->deadline);
866         if (time_after_eq(jiffies, deadline))
867                 return true;
868
869         if (*next == 0)
870                 *next = deadline;
871         else if (time_after(*next, deadline))
872                 *next = deadline;
873         return false;
874 }
875
876 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
877                 struct request *rq, void *priv, bool reserved)
878 {
879         unsigned long *next = priv;
880
881         /*
882          * Just do a quick check if it is expired before locking the request in
883          * so we're not unnecessarilly synchronizing across CPUs.
884          */
885         if (!blk_mq_req_expired(rq, next))
886                 return true;
887
888         /*
889          * We have reason to believe the request may be expired. Take a
890          * reference on the request to lock this request lifetime into its
891          * currently allocated context to prevent it from being reallocated in
892          * the event the completion by-passes this timeout handler.
893          *
894          * If the reference was already released, then the driver beat the
895          * timeout handler to posting a natural completion.
896          */
897         if (!refcount_inc_not_zero(&rq->ref))
898                 return true;
899
900         /*
901          * The request is now locked and cannot be reallocated underneath the
902          * timeout handler's processing. Re-verify this exact request is truly
903          * expired; if it is not expired, then the request was completed and
904          * reallocated as a new request.
905          */
906         if (blk_mq_req_expired(rq, next))
907                 blk_mq_rq_timed_out(rq, reserved);
908         if (refcount_dec_and_test(&rq->ref))
909                 __blk_mq_free_request(rq);
910
911         return true;
912 }
913
914 static void blk_mq_timeout_work(struct work_struct *work)
915 {
916         struct request_queue *q =
917                 container_of(work, struct request_queue, timeout_work);
918         unsigned long next = 0;
919         struct blk_mq_hw_ctx *hctx;
920         int i;
921
922         /* A deadlock might occur if a request is stuck requiring a
923          * timeout at the same time a queue freeze is waiting
924          * completion, since the timeout code would not be able to
925          * acquire the queue reference here.
926          *
927          * That's why we don't use blk_queue_enter here; instead, we use
928          * percpu_ref_tryget directly, because we need to be able to
929          * obtain a reference even in the short window between the queue
930          * starting to freeze, by dropping the first reference in
931          * blk_freeze_queue_start, and the moment the last request is
932          * consumed, marked by the instant q_usage_counter reaches
933          * zero.
934          */
935         if (!percpu_ref_tryget(&q->q_usage_counter))
936                 return;
937
938         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
939
940         if (next != 0) {
941                 mod_timer(&q->timeout, next);
942         } else {
943                 /*
944                  * Request timeouts are handled as a forward rolling timer. If
945                  * we end up here it means that no requests are pending and
946                  * also that no request has been pending for a while. Mark
947                  * each hctx as idle.
948                  */
949                 queue_for_each_hw_ctx(q, hctx, i) {
950                         /* the hctx may be unmapped, so check it here */
951                         if (blk_mq_hw_queue_mapped(hctx))
952                                 blk_mq_tag_idle(hctx);
953                 }
954         }
955         blk_queue_exit(q);
956 }
957
958 struct flush_busy_ctx_data {
959         struct blk_mq_hw_ctx *hctx;
960         struct list_head *list;
961 };
962
963 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
964 {
965         struct flush_busy_ctx_data *flush_data = data;
966         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
967         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
968         enum hctx_type type = hctx->type;
969
970         spin_lock(&ctx->lock);
971         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
972         sbitmap_clear_bit(sb, bitnr);
973         spin_unlock(&ctx->lock);
974         return true;
975 }
976
977 /*
978  * Process software queues that have been marked busy, splicing them
979  * to the for-dispatch
980  */
981 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
982 {
983         struct flush_busy_ctx_data data = {
984                 .hctx = hctx,
985                 .list = list,
986         };
987
988         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
989 }
990 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
991
992 struct dispatch_rq_data {
993         struct blk_mq_hw_ctx *hctx;
994         struct request *rq;
995 };
996
997 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
998                 void *data)
999 {
1000         struct dispatch_rq_data *dispatch_data = data;
1001         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1002         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1003         enum hctx_type type = hctx->type;
1004
1005         spin_lock(&ctx->lock);
1006         if (!list_empty(&ctx->rq_lists[type])) {
1007                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1008                 list_del_init(&dispatch_data->rq->queuelist);
1009                 if (list_empty(&ctx->rq_lists[type]))
1010                         sbitmap_clear_bit(sb, bitnr);
1011         }
1012         spin_unlock(&ctx->lock);
1013
1014         return !dispatch_data->rq;
1015 }
1016
1017 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1018                                         struct blk_mq_ctx *start)
1019 {
1020         unsigned off = start ? start->index_hw[hctx->type] : 0;
1021         struct dispatch_rq_data data = {
1022                 .hctx = hctx,
1023                 .rq   = NULL,
1024         };
1025
1026         __sbitmap_for_each_set(&hctx->ctx_map, off,
1027                                dispatch_rq_from_ctx, &data);
1028
1029         return data.rq;
1030 }
1031
1032 static inline unsigned int queued_to_index(unsigned int queued)
1033 {
1034         if (!queued)
1035                 return 0;
1036
1037         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1038 }
1039
1040 bool blk_mq_get_driver_tag(struct request *rq)
1041 {
1042         struct blk_mq_alloc_data data = {
1043                 .q = rq->q,
1044                 .hctx = rq->mq_hctx,
1045                 .flags = BLK_MQ_REQ_NOWAIT,
1046                 .cmd_flags = rq->cmd_flags,
1047         };
1048         bool shared;
1049
1050         if (rq->tag != -1)
1051                 goto done;
1052
1053         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1054                 data.flags |= BLK_MQ_REQ_RESERVED;
1055
1056         shared = blk_mq_tag_busy(data.hctx);
1057         rq->tag = blk_mq_get_tag(&data);
1058         if (rq->tag >= 0) {
1059                 if (shared) {
1060                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1061                         atomic_inc(&data.hctx->nr_active);
1062                 }
1063                 data.hctx->tags->rqs[rq->tag] = rq;
1064         }
1065
1066 done:
1067         return rq->tag != -1;
1068 }
1069
1070 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1071                                 int flags, void *key)
1072 {
1073         struct blk_mq_hw_ctx *hctx;
1074
1075         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1076
1077         spin_lock(&hctx->dispatch_wait_lock);
1078         if (!list_empty(&wait->entry)) {
1079                 struct sbitmap_queue *sbq;
1080
1081                 list_del_init(&wait->entry);
1082                 sbq = &hctx->tags->bitmap_tags;
1083                 atomic_dec(&sbq->ws_active);
1084         }
1085         spin_unlock(&hctx->dispatch_wait_lock);
1086
1087         blk_mq_run_hw_queue(hctx, true);
1088         return 1;
1089 }
1090
1091 /*
1092  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1093  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1094  * restart. For both cases, take care to check the condition again after
1095  * marking us as waiting.
1096  */
1097 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1098                                  struct request *rq)
1099 {
1100         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1101         struct wait_queue_head *wq;
1102         wait_queue_entry_t *wait;
1103         bool ret;
1104
1105         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1106                 blk_mq_sched_mark_restart_hctx(hctx);
1107
1108                 /*
1109                  * It's possible that a tag was freed in the window between the
1110                  * allocation failure and adding the hardware queue to the wait
1111                  * queue.
1112                  *
1113                  * Don't clear RESTART here, someone else could have set it.
1114                  * At most this will cost an extra queue run.
1115                  */
1116                 return blk_mq_get_driver_tag(rq);
1117         }
1118
1119         wait = &hctx->dispatch_wait;
1120         if (!list_empty_careful(&wait->entry))
1121                 return false;
1122
1123         wq = &bt_wait_ptr(sbq, hctx)->wait;
1124
1125         spin_lock_irq(&wq->lock);
1126         spin_lock(&hctx->dispatch_wait_lock);
1127         if (!list_empty(&wait->entry)) {
1128                 spin_unlock(&hctx->dispatch_wait_lock);
1129                 spin_unlock_irq(&wq->lock);
1130                 return false;
1131         }
1132
1133         atomic_inc(&sbq->ws_active);
1134         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1135         __add_wait_queue(wq, wait);
1136
1137         /*
1138          * It's possible that a tag was freed in the window between the
1139          * allocation failure and adding the hardware queue to the wait
1140          * queue.
1141          */
1142         ret = blk_mq_get_driver_tag(rq);
1143         if (!ret) {
1144                 spin_unlock(&hctx->dispatch_wait_lock);
1145                 spin_unlock_irq(&wq->lock);
1146                 return false;
1147         }
1148
1149         /*
1150          * We got a tag, remove ourselves from the wait queue to ensure
1151          * someone else gets the wakeup.
1152          */
1153         list_del_init(&wait->entry);
1154         atomic_dec(&sbq->ws_active);
1155         spin_unlock(&hctx->dispatch_wait_lock);
1156         spin_unlock_irq(&wq->lock);
1157
1158         return true;
1159 }
1160
1161 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1162 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1163 /*
1164  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1165  * - EWMA is one simple way to compute running average value
1166  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1167  * - take 4 as factor for avoiding to get too small(0) result, and this
1168  *   factor doesn't matter because EWMA decreases exponentially
1169  */
1170 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1171 {
1172         unsigned int ewma;
1173
1174         if (hctx->queue->elevator)
1175                 return;
1176
1177         ewma = hctx->dispatch_busy;
1178
1179         if (!ewma && !busy)
1180                 return;
1181
1182         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1183         if (busy)
1184                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1185         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1186
1187         hctx->dispatch_busy = ewma;
1188 }
1189
1190 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1191
1192 /*
1193  * Returns true if we did some work AND can potentially do more.
1194  */
1195 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1196                              bool got_budget)
1197 {
1198         struct blk_mq_hw_ctx *hctx;
1199         struct request *rq, *nxt;
1200         bool no_tag = false;
1201         int errors, queued;
1202         blk_status_t ret = BLK_STS_OK;
1203
1204         if (list_empty(list))
1205                 return false;
1206
1207         WARN_ON(!list_is_singular(list) && got_budget);
1208
1209         /*
1210          * Now process all the entries, sending them to the driver.
1211          */
1212         errors = queued = 0;
1213         do {
1214                 struct blk_mq_queue_data bd;
1215
1216                 rq = list_first_entry(list, struct request, queuelist);
1217
1218                 hctx = rq->mq_hctx;
1219                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1220                         break;
1221
1222                 if (!blk_mq_get_driver_tag(rq)) {
1223                         /*
1224                          * The initial allocation attempt failed, so we need to
1225                          * rerun the hardware queue when a tag is freed. The
1226                          * waitqueue takes care of that. If the queue is run
1227                          * before we add this entry back on the dispatch list,
1228                          * we'll re-run it below.
1229                          */
1230                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1231                                 blk_mq_put_dispatch_budget(hctx);
1232                                 /*
1233                                  * For non-shared tags, the RESTART check
1234                                  * will suffice.
1235                                  */
1236                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1237                                         no_tag = true;
1238                                 break;
1239                         }
1240                 }
1241
1242                 list_del_init(&rq->queuelist);
1243
1244                 bd.rq = rq;
1245
1246                 /*
1247                  * Flag last if we have no more requests, or if we have more
1248                  * but can't assign a driver tag to it.
1249                  */
1250                 if (list_empty(list))
1251                         bd.last = true;
1252                 else {
1253                         nxt = list_first_entry(list, struct request, queuelist);
1254                         bd.last = !blk_mq_get_driver_tag(nxt);
1255                 }
1256
1257                 ret = q->mq_ops->queue_rq(hctx, &bd);
1258                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1259                         /*
1260                          * If an I/O scheduler has been configured and we got a
1261                          * driver tag for the next request already, free it
1262                          * again.
1263                          */
1264                         if (!list_empty(list)) {
1265                                 nxt = list_first_entry(list, struct request, queuelist);
1266                                 blk_mq_put_driver_tag(nxt);
1267                         }
1268                         list_add(&rq->queuelist, list);
1269                         __blk_mq_requeue_request(rq);
1270                         break;
1271                 }
1272
1273                 if (unlikely(ret != BLK_STS_OK)) {
1274                         errors++;
1275                         blk_mq_end_request(rq, BLK_STS_IOERR);
1276                         continue;
1277                 }
1278
1279                 queued++;
1280         } while (!list_empty(list));
1281
1282         hctx->dispatched[queued_to_index(queued)]++;
1283
1284         /*
1285          * Any items that need requeuing? Stuff them into hctx->dispatch,
1286          * that is where we will continue on next queue run.
1287          */
1288         if (!list_empty(list)) {
1289                 bool needs_restart;
1290
1291                 /*
1292                  * If we didn't flush the entire list, we could have told
1293                  * the driver there was more coming, but that turned out to
1294                  * be a lie.
1295                  */
1296                 if (q->mq_ops->commit_rqs)
1297                         q->mq_ops->commit_rqs(hctx);
1298
1299                 spin_lock(&hctx->lock);
1300                 list_splice_init(list, &hctx->dispatch);
1301                 spin_unlock(&hctx->lock);
1302
1303                 /*
1304                  * If SCHED_RESTART was set by the caller of this function and
1305                  * it is no longer set that means that it was cleared by another
1306                  * thread and hence that a queue rerun is needed.
1307                  *
1308                  * If 'no_tag' is set, that means that we failed getting
1309                  * a driver tag with an I/O scheduler attached. If our dispatch
1310                  * waitqueue is no longer active, ensure that we run the queue
1311                  * AFTER adding our entries back to the list.
1312                  *
1313                  * If no I/O scheduler has been configured it is possible that
1314                  * the hardware queue got stopped and restarted before requests
1315                  * were pushed back onto the dispatch list. Rerun the queue to
1316                  * avoid starvation. Notes:
1317                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1318                  *   been stopped before rerunning a queue.
1319                  * - Some but not all block drivers stop a queue before
1320                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1321                  *   and dm-rq.
1322                  *
1323                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1324                  * bit is set, run queue after a delay to avoid IO stalls
1325                  * that could otherwise occur if the queue is idle.
1326                  */
1327                 needs_restart = blk_mq_sched_needs_restart(hctx);
1328                 if (!needs_restart ||
1329                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1330                         blk_mq_run_hw_queue(hctx, true);
1331                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1332                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1333
1334                 blk_mq_update_dispatch_busy(hctx, true);
1335                 return false;
1336         } else
1337                 blk_mq_update_dispatch_busy(hctx, false);
1338
1339         /*
1340          * If the host/device is unable to accept more work, inform the
1341          * caller of that.
1342          */
1343         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1344                 return false;
1345
1346         return (queued + errors) != 0;
1347 }
1348
1349 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1350 {
1351         int srcu_idx;
1352
1353         /*
1354          * We should be running this queue from one of the CPUs that
1355          * are mapped to it.
1356          *
1357          * There are at least two related races now between setting
1358          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1359          * __blk_mq_run_hw_queue():
1360          *
1361          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1362          *   but later it becomes online, then this warning is harmless
1363          *   at all
1364          *
1365          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1366          *   but later it becomes offline, then the warning can't be
1367          *   triggered, and we depend on blk-mq timeout handler to
1368          *   handle dispatched requests to this hctx
1369          */
1370         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1371                 cpu_online(hctx->next_cpu)) {
1372                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1373                         raw_smp_processor_id(),
1374                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1375                 dump_stack();
1376         }
1377
1378         /*
1379          * We can't run the queue inline with ints disabled. Ensure that
1380          * we catch bad users of this early.
1381          */
1382         WARN_ON_ONCE(in_interrupt());
1383
1384         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1385
1386         hctx_lock(hctx, &srcu_idx);
1387         blk_mq_sched_dispatch_requests(hctx);
1388         hctx_unlock(hctx, srcu_idx);
1389 }
1390
1391 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1394
1395         if (cpu >= nr_cpu_ids)
1396                 cpu = cpumask_first(hctx->cpumask);
1397         return cpu;
1398 }
1399
1400 /*
1401  * It'd be great if the workqueue API had a way to pass
1402  * in a mask and had some smarts for more clever placement.
1403  * For now we just round-robin here, switching for every
1404  * BLK_MQ_CPU_WORK_BATCH queued items.
1405  */
1406 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1407 {
1408         bool tried = false;
1409         int next_cpu = hctx->next_cpu;
1410
1411         if (hctx->queue->nr_hw_queues == 1)
1412                 return WORK_CPU_UNBOUND;
1413
1414         if (--hctx->next_cpu_batch <= 0) {
1415 select_cpu:
1416                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1417                                 cpu_online_mask);
1418                 if (next_cpu >= nr_cpu_ids)
1419                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1420                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1421         }
1422
1423         /*
1424          * Do unbound schedule if we can't find a online CPU for this hctx,
1425          * and it should only happen in the path of handling CPU DEAD.
1426          */
1427         if (!cpu_online(next_cpu)) {
1428                 if (!tried) {
1429                         tried = true;
1430                         goto select_cpu;
1431                 }
1432
1433                 /*
1434                  * Make sure to re-select CPU next time once after CPUs
1435                  * in hctx->cpumask become online again.
1436                  */
1437                 hctx->next_cpu = next_cpu;
1438                 hctx->next_cpu_batch = 1;
1439                 return WORK_CPU_UNBOUND;
1440         }
1441
1442         hctx->next_cpu = next_cpu;
1443         return next_cpu;
1444 }
1445
1446 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1447                                         unsigned long msecs)
1448 {
1449         if (unlikely(blk_mq_hctx_stopped(hctx)))
1450                 return;
1451
1452         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1453                 int cpu = get_cpu();
1454                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1455                         __blk_mq_run_hw_queue(hctx);
1456                         put_cpu();
1457                         return;
1458                 }
1459
1460                 put_cpu();
1461         }
1462
1463         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1464                                     msecs_to_jiffies(msecs));
1465 }
1466
1467 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1468 {
1469         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1470 }
1471 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1472
1473 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1474 {
1475         int srcu_idx;
1476         bool need_run;
1477
1478         /*
1479          * When queue is quiesced, we may be switching io scheduler, or
1480          * updating nr_hw_queues, or other things, and we can't run queue
1481          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1482          *
1483          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1484          * quiesced.
1485          */
1486         hctx_lock(hctx, &srcu_idx);
1487         need_run = !blk_queue_quiesced(hctx->queue) &&
1488                 blk_mq_hctx_has_pending(hctx);
1489         hctx_unlock(hctx, srcu_idx);
1490
1491         if (need_run) {
1492                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1493                 return true;
1494         }
1495
1496         return false;
1497 }
1498 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1499
1500 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1501 {
1502         struct blk_mq_hw_ctx *hctx;
1503         int i;
1504
1505         queue_for_each_hw_ctx(q, hctx, i) {
1506                 if (blk_mq_hctx_stopped(hctx))
1507                         continue;
1508
1509                 blk_mq_run_hw_queue(hctx, async);
1510         }
1511 }
1512 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1513
1514 /**
1515  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1516  * @q: request queue.
1517  *
1518  * The caller is responsible for serializing this function against
1519  * blk_mq_{start,stop}_hw_queue().
1520  */
1521 bool blk_mq_queue_stopped(struct request_queue *q)
1522 {
1523         struct blk_mq_hw_ctx *hctx;
1524         int i;
1525
1526         queue_for_each_hw_ctx(q, hctx, i)
1527                 if (blk_mq_hctx_stopped(hctx))
1528                         return true;
1529
1530         return false;
1531 }
1532 EXPORT_SYMBOL(blk_mq_queue_stopped);
1533
1534 /*
1535  * This function is often used for pausing .queue_rq() by driver when
1536  * there isn't enough resource or some conditions aren't satisfied, and
1537  * BLK_STS_RESOURCE is usually returned.
1538  *
1539  * We do not guarantee that dispatch can be drained or blocked
1540  * after blk_mq_stop_hw_queue() returns. Please use
1541  * blk_mq_quiesce_queue() for that requirement.
1542  */
1543 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1544 {
1545         cancel_delayed_work(&hctx->run_work);
1546
1547         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1548 }
1549 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1550
1551 /*
1552  * This function is often used for pausing .queue_rq() by driver when
1553  * there isn't enough resource or some conditions aren't satisfied, and
1554  * BLK_STS_RESOURCE is usually returned.
1555  *
1556  * We do not guarantee that dispatch can be drained or blocked
1557  * after blk_mq_stop_hw_queues() returns. Please use
1558  * blk_mq_quiesce_queue() for that requirement.
1559  */
1560 void blk_mq_stop_hw_queues(struct request_queue *q)
1561 {
1562         struct blk_mq_hw_ctx *hctx;
1563         int i;
1564
1565         queue_for_each_hw_ctx(q, hctx, i)
1566                 blk_mq_stop_hw_queue(hctx);
1567 }
1568 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1569
1570 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1571 {
1572         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1573
1574         blk_mq_run_hw_queue(hctx, false);
1575 }
1576 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1577
1578 void blk_mq_start_hw_queues(struct request_queue *q)
1579 {
1580         struct blk_mq_hw_ctx *hctx;
1581         int i;
1582
1583         queue_for_each_hw_ctx(q, hctx, i)
1584                 blk_mq_start_hw_queue(hctx);
1585 }
1586 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1587
1588 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1589 {
1590         if (!blk_mq_hctx_stopped(hctx))
1591                 return;
1592
1593         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1594         blk_mq_run_hw_queue(hctx, async);
1595 }
1596 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1597
1598 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1599 {
1600         struct blk_mq_hw_ctx *hctx;
1601         int i;
1602
1603         queue_for_each_hw_ctx(q, hctx, i)
1604                 blk_mq_start_stopped_hw_queue(hctx, async);
1605 }
1606 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1607
1608 static void blk_mq_run_work_fn(struct work_struct *work)
1609 {
1610         struct blk_mq_hw_ctx *hctx;
1611
1612         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1613
1614         /*
1615          * If we are stopped, don't run the queue.
1616          */
1617         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1618                 return;
1619
1620         __blk_mq_run_hw_queue(hctx);
1621 }
1622
1623 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1624                                             struct request *rq,
1625                                             bool at_head)
1626 {
1627         struct blk_mq_ctx *ctx = rq->mq_ctx;
1628         enum hctx_type type = hctx->type;
1629
1630         lockdep_assert_held(&ctx->lock);
1631
1632         trace_block_rq_insert(hctx->queue, rq);
1633
1634         if (at_head)
1635                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1636         else
1637                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1638 }
1639
1640 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1641                              bool at_head)
1642 {
1643         struct blk_mq_ctx *ctx = rq->mq_ctx;
1644
1645         lockdep_assert_held(&ctx->lock);
1646
1647         __blk_mq_insert_req_list(hctx, rq, at_head);
1648         blk_mq_hctx_mark_pending(hctx, ctx);
1649 }
1650
1651 /*
1652  * Should only be used carefully, when the caller knows we want to
1653  * bypass a potential IO scheduler on the target device.
1654  */
1655 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1656 {
1657         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1658
1659         spin_lock(&hctx->lock);
1660         list_add_tail(&rq->queuelist, &hctx->dispatch);
1661         spin_unlock(&hctx->lock);
1662
1663         if (run_queue)
1664                 blk_mq_run_hw_queue(hctx, false);
1665 }
1666
1667 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1668                             struct list_head *list)
1669
1670 {
1671         struct request *rq;
1672         enum hctx_type type = hctx->type;
1673
1674         /*
1675          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1676          * offline now
1677          */
1678         list_for_each_entry(rq, list, queuelist) {
1679                 BUG_ON(rq->mq_ctx != ctx);
1680                 trace_block_rq_insert(hctx->queue, rq);
1681         }
1682
1683         spin_lock(&ctx->lock);
1684         list_splice_tail_init(list, &ctx->rq_lists[type]);
1685         blk_mq_hctx_mark_pending(hctx, ctx);
1686         spin_unlock(&ctx->lock);
1687 }
1688
1689 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1690 {
1691         struct request *rqa = container_of(a, struct request, queuelist);
1692         struct request *rqb = container_of(b, struct request, queuelist);
1693
1694         if (rqa->mq_ctx < rqb->mq_ctx)
1695                 return -1;
1696         else if (rqa->mq_ctx > rqb->mq_ctx)
1697                 return 1;
1698         else if (rqa->mq_hctx < rqb->mq_hctx)
1699                 return -1;
1700         else if (rqa->mq_hctx > rqb->mq_hctx)
1701                 return 1;
1702
1703         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1704 }
1705
1706 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1707 {
1708         struct blk_mq_hw_ctx *this_hctx;
1709         struct blk_mq_ctx *this_ctx;
1710         struct request_queue *this_q;
1711         struct request *rq;
1712         LIST_HEAD(list);
1713         LIST_HEAD(rq_list);
1714         unsigned int depth;
1715
1716         list_splice_init(&plug->mq_list, &list);
1717
1718         if (plug->rq_count > 2 && plug->multiple_queues)
1719                 list_sort(NULL, &list, plug_rq_cmp);
1720
1721         plug->rq_count = 0;
1722
1723         this_q = NULL;
1724         this_hctx = NULL;
1725         this_ctx = NULL;
1726         depth = 0;
1727
1728         while (!list_empty(&list)) {
1729                 rq = list_entry_rq(list.next);
1730                 list_del_init(&rq->queuelist);
1731                 BUG_ON(!rq->q);
1732                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1733                         if (this_hctx) {
1734                                 trace_block_unplug(this_q, depth, !from_schedule);
1735                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1736                                                                 &rq_list,
1737                                                                 from_schedule);
1738                         }
1739
1740                         this_q = rq->q;
1741                         this_ctx = rq->mq_ctx;
1742                         this_hctx = rq->mq_hctx;
1743                         depth = 0;
1744                 }
1745
1746                 depth++;
1747                 list_add_tail(&rq->queuelist, &rq_list);
1748         }
1749
1750         /*
1751          * If 'this_hctx' is set, we know we have entries to complete
1752          * on 'rq_list'. Do those.
1753          */
1754         if (this_hctx) {
1755                 trace_block_unplug(this_q, depth, !from_schedule);
1756                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1757                                                 from_schedule);
1758         }
1759 }
1760
1761 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1762                 unsigned int nr_segs)
1763 {
1764         if (bio->bi_opf & REQ_RAHEAD)
1765                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1766
1767         rq->__sector = bio->bi_iter.bi_sector;
1768         rq->write_hint = bio->bi_write_hint;
1769         blk_rq_bio_prep(rq, bio, nr_segs);
1770
1771         blk_account_io_start(rq, true);
1772 }
1773
1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1775                                             struct request *rq,
1776                                             blk_qc_t *cookie, bool last)
1777 {
1778         struct request_queue *q = rq->q;
1779         struct blk_mq_queue_data bd = {
1780                 .rq = rq,
1781                 .last = last,
1782         };
1783         blk_qc_t new_cookie;
1784         blk_status_t ret;
1785
1786         new_cookie = request_to_qc_t(hctx, rq);
1787
1788         /*
1789          * For OK queue, we are done. For error, caller may kill it.
1790          * Any other error (busy), just add it to our list as we
1791          * previously would have done.
1792          */
1793         ret = q->mq_ops->queue_rq(hctx, &bd);
1794         switch (ret) {
1795         case BLK_STS_OK:
1796                 blk_mq_update_dispatch_busy(hctx, false);
1797                 *cookie = new_cookie;
1798                 break;
1799         case BLK_STS_RESOURCE:
1800         case BLK_STS_DEV_RESOURCE:
1801                 blk_mq_update_dispatch_busy(hctx, true);
1802                 __blk_mq_requeue_request(rq);
1803                 break;
1804         default:
1805                 blk_mq_update_dispatch_busy(hctx, false);
1806                 *cookie = BLK_QC_T_NONE;
1807                 break;
1808         }
1809
1810         return ret;
1811 }
1812
1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814                                                 struct request *rq,
1815                                                 blk_qc_t *cookie,
1816                                                 bool bypass_insert, bool last)
1817 {
1818         struct request_queue *q = rq->q;
1819         bool run_queue = true;
1820
1821         /*
1822          * RCU or SRCU read lock is needed before checking quiesced flag.
1823          *
1824          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1825          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1826          * and avoid driver to try to dispatch again.
1827          */
1828         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1829                 run_queue = false;
1830                 bypass_insert = false;
1831                 goto insert;
1832         }
1833
1834         if (q->elevator && !bypass_insert)
1835                 goto insert;
1836
1837         if (!blk_mq_get_dispatch_budget(hctx))
1838                 goto insert;
1839
1840         if (!blk_mq_get_driver_tag(rq)) {
1841                 blk_mq_put_dispatch_budget(hctx);
1842                 goto insert;
1843         }
1844
1845         return __blk_mq_issue_directly(hctx, rq, cookie, last);
1846 insert:
1847         if (bypass_insert)
1848                 return BLK_STS_RESOURCE;
1849
1850         blk_mq_request_bypass_insert(rq, run_queue);
1851         return BLK_STS_OK;
1852 }
1853
1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1855                 struct request *rq, blk_qc_t *cookie)
1856 {
1857         blk_status_t ret;
1858         int srcu_idx;
1859
1860         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1861
1862         hctx_lock(hctx, &srcu_idx);
1863
1864         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1865         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1866                 blk_mq_request_bypass_insert(rq, true);
1867         else if (ret != BLK_STS_OK)
1868                 blk_mq_end_request(rq, ret);
1869
1870         hctx_unlock(hctx, srcu_idx);
1871 }
1872
1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1874 {
1875         blk_status_t ret;
1876         int srcu_idx;
1877         blk_qc_t unused_cookie;
1878         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1879
1880         hctx_lock(hctx, &srcu_idx);
1881         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1882         hctx_unlock(hctx, srcu_idx);
1883
1884         return ret;
1885 }
1886
1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1888                 struct list_head *list)
1889 {
1890         while (!list_empty(list)) {
1891                 blk_status_t ret;
1892                 struct request *rq = list_first_entry(list, struct request,
1893                                 queuelist);
1894
1895                 list_del_init(&rq->queuelist);
1896                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1897                 if (ret != BLK_STS_OK) {
1898                         if (ret == BLK_STS_RESOURCE ||
1899                                         ret == BLK_STS_DEV_RESOURCE) {
1900                                 blk_mq_request_bypass_insert(rq,
1901                                                         list_empty(list));
1902                                 break;
1903                         }
1904                         blk_mq_end_request(rq, ret);
1905                 }
1906         }
1907
1908         /*
1909          * If we didn't flush the entire list, we could have told
1910          * the driver there was more coming, but that turned out to
1911          * be a lie.
1912          */
1913         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1914                 hctx->queue->mq_ops->commit_rqs(hctx);
1915 }
1916
1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1918 {
1919         list_add_tail(&rq->queuelist, &plug->mq_list);
1920         plug->rq_count++;
1921         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1922                 struct request *tmp;
1923
1924                 tmp = list_first_entry(&plug->mq_list, struct request,
1925                                                 queuelist);
1926                 if (tmp->q != rq->q)
1927                         plug->multiple_queues = true;
1928         }
1929 }
1930
1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1932 {
1933         const int is_sync = op_is_sync(bio->bi_opf);
1934         const int is_flush_fua = op_is_flush(bio->bi_opf);
1935         struct blk_mq_alloc_data data = { .flags = 0};
1936         struct request *rq;
1937         struct blk_plug *plug;
1938         struct request *same_queue_rq = NULL;
1939         unsigned int nr_segs;
1940         blk_qc_t cookie;
1941
1942         blk_queue_bounce(q, &bio);
1943         __blk_queue_split(q, &bio, &nr_segs);
1944
1945         if (!bio_integrity_prep(bio))
1946                 return BLK_QC_T_NONE;
1947
1948         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1949             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1950                 return BLK_QC_T_NONE;
1951
1952         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1953                 return BLK_QC_T_NONE;
1954
1955         rq_qos_throttle(q, bio);
1956
1957         data.cmd_flags = bio->bi_opf;
1958         rq = blk_mq_get_request(q, bio, &data);
1959         if (unlikely(!rq)) {
1960                 rq_qos_cleanup(q, bio);
1961
1962                 cookie = BLK_QC_T_NONE;
1963                 if (bio->bi_opf & REQ_NOWAIT_INLINE)
1964                         cookie = BLK_QC_T_EAGAIN;
1965                 else if (bio->bi_opf & REQ_NOWAIT)
1966                         bio_wouldblock_error(bio);
1967                 return cookie;
1968         }
1969
1970         trace_block_getrq(q, bio, bio->bi_opf);
1971
1972         rq_qos_track(q, rq, bio);
1973
1974         cookie = request_to_qc_t(data.hctx, rq);
1975
1976         blk_mq_bio_to_request(rq, bio, nr_segs);
1977
1978         plug = blk_mq_plug(q, bio);
1979         if (unlikely(is_flush_fua)) {
1980                 /* bypass scheduler for flush rq */
1981                 blk_insert_flush(rq);
1982                 blk_mq_run_hw_queue(data.hctx, true);
1983         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1984                 /*
1985                  * Use plugging if we have a ->commit_rqs() hook as well, as
1986                  * we know the driver uses bd->last in a smart fashion.
1987                  */
1988                 unsigned int request_count = plug->rq_count;
1989                 struct request *last = NULL;
1990
1991                 if (!request_count)
1992                         trace_block_plug(q);
1993                 else
1994                         last = list_entry_rq(plug->mq_list.prev);
1995
1996                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1997                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1998                         blk_flush_plug_list(plug, false);
1999                         trace_block_plug(q);
2000                 }
2001
2002                 blk_add_rq_to_plug(plug, rq);
2003         } else if (plug && !blk_queue_nomerges(q)) {
2004                 /*
2005                  * We do limited plugging. If the bio can be merged, do that.
2006                  * Otherwise the existing request in the plug list will be
2007                  * issued. So the plug list will have one request at most
2008                  * The plug list might get flushed before this. If that happens,
2009                  * the plug list is empty, and same_queue_rq is invalid.
2010                  */
2011                 if (list_empty(&plug->mq_list))
2012                         same_queue_rq = NULL;
2013                 if (same_queue_rq) {
2014                         list_del_init(&same_queue_rq->queuelist);
2015                         plug->rq_count--;
2016                 }
2017                 blk_add_rq_to_plug(plug, rq);
2018                 trace_block_plug(q);
2019
2020                 if (same_queue_rq) {
2021                         data.hctx = same_queue_rq->mq_hctx;
2022                         trace_block_unplug(q, 1, true);
2023                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2024                                         &cookie);
2025                 }
2026         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2027                         !data.hctx->dispatch_busy)) {
2028                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2029         } else {
2030                 blk_mq_sched_insert_request(rq, false, true, true);
2031         }
2032
2033         return cookie;
2034 }
2035
2036 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2037                      unsigned int hctx_idx)
2038 {
2039         struct page *page;
2040
2041         if (tags->rqs && set->ops->exit_request) {
2042                 int i;
2043
2044                 for (i = 0; i < tags->nr_tags; i++) {
2045                         struct request *rq = tags->static_rqs[i];
2046
2047                         if (!rq)
2048                                 continue;
2049                         set->ops->exit_request(set, rq, hctx_idx);
2050                         tags->static_rqs[i] = NULL;
2051                 }
2052         }
2053
2054         while (!list_empty(&tags->page_list)) {
2055                 page = list_first_entry(&tags->page_list, struct page, lru);
2056                 list_del_init(&page->lru);
2057                 /*
2058                  * Remove kmemleak object previously allocated in
2059                  * blk_mq_alloc_rqs().
2060                  */
2061                 kmemleak_free(page_address(page));
2062                 __free_pages(page, page->private);
2063         }
2064 }
2065
2066 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2067 {
2068         kfree(tags->rqs);
2069         tags->rqs = NULL;
2070         kfree(tags->static_rqs);
2071         tags->static_rqs = NULL;
2072
2073         blk_mq_free_tags(tags);
2074 }
2075
2076 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2077                                         unsigned int hctx_idx,
2078                                         unsigned int nr_tags,
2079                                         unsigned int reserved_tags)
2080 {
2081         struct blk_mq_tags *tags;
2082         int node;
2083
2084         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2085         if (node == NUMA_NO_NODE)
2086                 node = set->numa_node;
2087
2088         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2089                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2090         if (!tags)
2091                 return NULL;
2092
2093         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2094                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2095                                  node);
2096         if (!tags->rqs) {
2097                 blk_mq_free_tags(tags);
2098                 return NULL;
2099         }
2100
2101         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2102                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2103                                         node);
2104         if (!tags->static_rqs) {
2105                 kfree(tags->rqs);
2106                 blk_mq_free_tags(tags);
2107                 return NULL;
2108         }
2109
2110         return tags;
2111 }
2112
2113 static size_t order_to_size(unsigned int order)
2114 {
2115         return (size_t)PAGE_SIZE << order;
2116 }
2117
2118 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2119                                unsigned int hctx_idx, int node)
2120 {
2121         int ret;
2122
2123         if (set->ops->init_request) {
2124                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2125                 if (ret)
2126                         return ret;
2127         }
2128
2129         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2130         return 0;
2131 }
2132
2133 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2134                      unsigned int hctx_idx, unsigned int depth)
2135 {
2136         unsigned int i, j, entries_per_page, max_order = 4;
2137         size_t rq_size, left;
2138         int node;
2139
2140         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2141         if (node == NUMA_NO_NODE)
2142                 node = set->numa_node;
2143
2144         INIT_LIST_HEAD(&tags->page_list);
2145
2146         /*
2147          * rq_size is the size of the request plus driver payload, rounded
2148          * to the cacheline size
2149          */
2150         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2151                                 cache_line_size());
2152         left = rq_size * depth;
2153
2154         for (i = 0; i < depth; ) {
2155                 int this_order = max_order;
2156                 struct page *page;
2157                 int to_do;
2158                 void *p;
2159
2160                 while (this_order && left < order_to_size(this_order - 1))
2161                         this_order--;
2162
2163                 do {
2164                         page = alloc_pages_node(node,
2165                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2166                                 this_order);
2167                         if (page)
2168                                 break;
2169                         if (!this_order--)
2170                                 break;
2171                         if (order_to_size(this_order) < rq_size)
2172                                 break;
2173                 } while (1);
2174
2175                 if (!page)
2176                         goto fail;
2177
2178                 page->private = this_order;
2179                 list_add_tail(&page->lru, &tags->page_list);
2180
2181                 p = page_address(page);
2182                 /*
2183                  * Allow kmemleak to scan these pages as they contain pointers
2184                  * to additional allocations like via ops->init_request().
2185                  */
2186                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2187                 entries_per_page = order_to_size(this_order) / rq_size;
2188                 to_do = min(entries_per_page, depth - i);
2189                 left -= to_do * rq_size;
2190                 for (j = 0; j < to_do; j++) {
2191                         struct request *rq = p;
2192
2193                         tags->static_rqs[i] = rq;
2194                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2195                                 tags->static_rqs[i] = NULL;
2196                                 goto fail;
2197                         }
2198
2199                         p += rq_size;
2200                         i++;
2201                 }
2202         }
2203         return 0;
2204
2205 fail:
2206         blk_mq_free_rqs(set, tags, hctx_idx);
2207         return -ENOMEM;
2208 }
2209
2210 /*
2211  * 'cpu' is going away. splice any existing rq_list entries from this
2212  * software queue to the hw queue dispatch list, and ensure that it
2213  * gets run.
2214  */
2215 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2216 {
2217         struct blk_mq_hw_ctx *hctx;
2218         struct blk_mq_ctx *ctx;
2219         LIST_HEAD(tmp);
2220         enum hctx_type type;
2221
2222         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2223         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2224         type = hctx->type;
2225
2226         spin_lock(&ctx->lock);
2227         if (!list_empty(&ctx->rq_lists[type])) {
2228                 list_splice_init(&ctx->rq_lists[type], &tmp);
2229                 blk_mq_hctx_clear_pending(hctx, ctx);
2230         }
2231         spin_unlock(&ctx->lock);
2232
2233         if (list_empty(&tmp))
2234                 return 0;
2235
2236         spin_lock(&hctx->lock);
2237         list_splice_tail_init(&tmp, &hctx->dispatch);
2238         spin_unlock(&hctx->lock);
2239
2240         blk_mq_run_hw_queue(hctx, true);
2241         return 0;
2242 }
2243
2244 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2245 {
2246         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2247                                             &hctx->cpuhp_dead);
2248 }
2249
2250 /* hctx->ctxs will be freed in queue's release handler */
2251 static void blk_mq_exit_hctx(struct request_queue *q,
2252                 struct blk_mq_tag_set *set,
2253                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2254 {
2255         if (blk_mq_hw_queue_mapped(hctx))
2256                 blk_mq_tag_idle(hctx);
2257
2258         if (set->ops->exit_request)
2259                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2260
2261         if (set->ops->exit_hctx)
2262                 set->ops->exit_hctx(hctx, hctx_idx);
2263
2264         blk_mq_remove_cpuhp(hctx);
2265
2266         spin_lock(&q->unused_hctx_lock);
2267         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2268         spin_unlock(&q->unused_hctx_lock);
2269 }
2270
2271 static void blk_mq_exit_hw_queues(struct request_queue *q,
2272                 struct blk_mq_tag_set *set, int nr_queue)
2273 {
2274         struct blk_mq_hw_ctx *hctx;
2275         unsigned int i;
2276
2277         queue_for_each_hw_ctx(q, hctx, i) {
2278                 if (i == nr_queue)
2279                         break;
2280                 blk_mq_debugfs_unregister_hctx(hctx);
2281                 blk_mq_exit_hctx(q, set, hctx, i);
2282         }
2283 }
2284
2285 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2286 {
2287         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2288
2289         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2290                            __alignof__(struct blk_mq_hw_ctx)) !=
2291                      sizeof(struct blk_mq_hw_ctx));
2292
2293         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2294                 hw_ctx_size += sizeof(struct srcu_struct);
2295
2296         return hw_ctx_size;
2297 }
2298
2299 static int blk_mq_init_hctx(struct request_queue *q,
2300                 struct blk_mq_tag_set *set,
2301                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2302 {
2303         hctx->queue_num = hctx_idx;
2304
2305         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2306
2307         hctx->tags = set->tags[hctx_idx];
2308
2309         if (set->ops->init_hctx &&
2310             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2311                 goto unregister_cpu_notifier;
2312
2313         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2314                                 hctx->numa_node))
2315                 goto exit_hctx;
2316         return 0;
2317
2318  exit_hctx:
2319         if (set->ops->exit_hctx)
2320                 set->ops->exit_hctx(hctx, hctx_idx);
2321  unregister_cpu_notifier:
2322         blk_mq_remove_cpuhp(hctx);
2323         return -1;
2324 }
2325
2326 static struct blk_mq_hw_ctx *
2327 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2328                 int node)
2329 {
2330         struct blk_mq_hw_ctx *hctx;
2331         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2332
2333         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2334         if (!hctx)
2335                 goto fail_alloc_hctx;
2336
2337         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2338                 goto free_hctx;
2339
2340         atomic_set(&hctx->nr_active, 0);
2341         if (node == NUMA_NO_NODE)
2342                 node = set->numa_node;
2343         hctx->numa_node = node;
2344
2345         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2346         spin_lock_init(&hctx->lock);
2347         INIT_LIST_HEAD(&hctx->dispatch);
2348         hctx->queue = q;
2349         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2350
2351         INIT_LIST_HEAD(&hctx->hctx_list);
2352
2353         /*
2354          * Allocate space for all possible cpus to avoid allocation at
2355          * runtime
2356          */
2357         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2358                         gfp, node);
2359         if (!hctx->ctxs)
2360                 goto free_cpumask;
2361
2362         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2363                                 gfp, node))
2364                 goto free_ctxs;
2365         hctx->nr_ctx = 0;
2366
2367         spin_lock_init(&hctx->dispatch_wait_lock);
2368         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2369         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2370
2371         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2372                         gfp);
2373         if (!hctx->fq)
2374                 goto free_bitmap;
2375
2376         if (hctx->flags & BLK_MQ_F_BLOCKING)
2377                 init_srcu_struct(hctx->srcu);
2378         blk_mq_hctx_kobj_init(hctx);
2379
2380         return hctx;
2381
2382  free_bitmap:
2383         sbitmap_free(&hctx->ctx_map);
2384  free_ctxs:
2385         kfree(hctx->ctxs);
2386  free_cpumask:
2387         free_cpumask_var(hctx->cpumask);
2388  free_hctx:
2389         kfree(hctx);
2390  fail_alloc_hctx:
2391         return NULL;
2392 }
2393
2394 static void blk_mq_init_cpu_queues(struct request_queue *q,
2395                                    unsigned int nr_hw_queues)
2396 {
2397         struct blk_mq_tag_set *set = q->tag_set;
2398         unsigned int i, j;
2399
2400         for_each_possible_cpu(i) {
2401                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2402                 struct blk_mq_hw_ctx *hctx;
2403                 int k;
2404
2405                 __ctx->cpu = i;
2406                 spin_lock_init(&__ctx->lock);
2407                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2408                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2409
2410                 __ctx->queue = q;
2411
2412                 /*
2413                  * Set local node, IFF we have more than one hw queue. If
2414                  * not, we remain on the home node of the device
2415                  */
2416                 for (j = 0; j < set->nr_maps; j++) {
2417                         hctx = blk_mq_map_queue_type(q, j, i);
2418                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2419                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2420                 }
2421         }
2422 }
2423
2424 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2425 {
2426         int ret = 0;
2427
2428         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2429                                         set->queue_depth, set->reserved_tags);
2430         if (!set->tags[hctx_idx])
2431                 return false;
2432
2433         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2434                                 set->queue_depth);
2435         if (!ret)
2436                 return true;
2437
2438         blk_mq_free_rq_map(set->tags[hctx_idx]);
2439         set->tags[hctx_idx] = NULL;
2440         return false;
2441 }
2442
2443 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2444                                          unsigned int hctx_idx)
2445 {
2446         if (set->tags && set->tags[hctx_idx]) {
2447                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2448                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2449                 set->tags[hctx_idx] = NULL;
2450         }
2451 }
2452
2453 static void blk_mq_map_swqueue(struct request_queue *q)
2454 {
2455         unsigned int i, j, hctx_idx;
2456         struct blk_mq_hw_ctx *hctx;
2457         struct blk_mq_ctx *ctx;
2458         struct blk_mq_tag_set *set = q->tag_set;
2459
2460         /*
2461          * Avoid others reading imcomplete hctx->cpumask through sysfs
2462          */
2463         mutex_lock(&q->sysfs_lock);
2464
2465         queue_for_each_hw_ctx(q, hctx, i) {
2466                 cpumask_clear(hctx->cpumask);
2467                 hctx->nr_ctx = 0;
2468                 hctx->dispatch_from = NULL;
2469         }
2470
2471         /*
2472          * Map software to hardware queues.
2473          *
2474          * If the cpu isn't present, the cpu is mapped to first hctx.
2475          */
2476         for_each_possible_cpu(i) {
2477                 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2478                 /* unmapped hw queue can be remapped after CPU topo changed */
2479                 if (!set->tags[hctx_idx] &&
2480                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2481                         /*
2482                          * If tags initialization fail for some hctx,
2483                          * that hctx won't be brought online.  In this
2484                          * case, remap the current ctx to hctx[0] which
2485                          * is guaranteed to always have tags allocated
2486                          */
2487                         set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2488                 }
2489
2490                 ctx = per_cpu_ptr(q->queue_ctx, i);
2491                 for (j = 0; j < set->nr_maps; j++) {
2492                         if (!set->map[j].nr_queues) {
2493                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2494                                                 HCTX_TYPE_DEFAULT, i);
2495                                 continue;
2496                         }
2497
2498                         hctx = blk_mq_map_queue_type(q, j, i);
2499                         ctx->hctxs[j] = hctx;
2500                         /*
2501                          * If the CPU is already set in the mask, then we've
2502                          * mapped this one already. This can happen if
2503                          * devices share queues across queue maps.
2504                          */
2505                         if (cpumask_test_cpu(i, hctx->cpumask))
2506                                 continue;
2507
2508                         cpumask_set_cpu(i, hctx->cpumask);
2509                         hctx->type = j;
2510                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2511                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2512
2513                         /*
2514                          * If the nr_ctx type overflows, we have exceeded the
2515                          * amount of sw queues we can support.
2516                          */
2517                         BUG_ON(!hctx->nr_ctx);
2518                 }
2519
2520                 for (; j < HCTX_MAX_TYPES; j++)
2521                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2522                                         HCTX_TYPE_DEFAULT, i);
2523         }
2524
2525         mutex_unlock(&q->sysfs_lock);
2526
2527         queue_for_each_hw_ctx(q, hctx, i) {
2528                 /*
2529                  * If no software queues are mapped to this hardware queue,
2530                  * disable it and free the request entries.
2531                  */
2532                 if (!hctx->nr_ctx) {
2533                         /* Never unmap queue 0.  We need it as a
2534                          * fallback in case of a new remap fails
2535                          * allocation
2536                          */
2537                         if (i && set->tags[i])
2538                                 blk_mq_free_map_and_requests(set, i);
2539
2540                         hctx->tags = NULL;
2541                         continue;
2542                 }
2543
2544                 hctx->tags = set->tags[i];
2545                 WARN_ON(!hctx->tags);
2546
2547                 /*
2548                  * Set the map size to the number of mapped software queues.
2549                  * This is more accurate and more efficient than looping
2550                  * over all possibly mapped software queues.
2551                  */
2552                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2553
2554                 /*
2555                  * Initialize batch roundrobin counts
2556                  */
2557                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2558                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2559         }
2560 }
2561
2562 /*
2563  * Caller needs to ensure that we're either frozen/quiesced, or that
2564  * the queue isn't live yet.
2565  */
2566 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2567 {
2568         struct blk_mq_hw_ctx *hctx;
2569         int i;
2570
2571         queue_for_each_hw_ctx(q, hctx, i) {
2572                 if (shared)
2573                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2574                 else
2575                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2576         }
2577 }
2578
2579 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2580                                         bool shared)
2581 {
2582         struct request_queue *q;
2583
2584         lockdep_assert_held(&set->tag_list_lock);
2585
2586         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2587                 blk_mq_freeze_queue(q);
2588                 queue_set_hctx_shared(q, shared);
2589                 blk_mq_unfreeze_queue(q);
2590         }
2591 }
2592
2593 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2594 {
2595         struct blk_mq_tag_set *set = q->tag_set;
2596
2597         mutex_lock(&set->tag_list_lock);
2598         list_del_rcu(&q->tag_set_list);
2599         if (list_is_singular(&set->tag_list)) {
2600                 /* just transitioned to unshared */
2601                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2602                 /* update existing queue */
2603                 blk_mq_update_tag_set_depth(set, false);
2604         }
2605         mutex_unlock(&set->tag_list_lock);
2606         INIT_LIST_HEAD(&q->tag_set_list);
2607 }
2608
2609 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2610                                      struct request_queue *q)
2611 {
2612         mutex_lock(&set->tag_list_lock);
2613
2614         /*
2615          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2616          */
2617         if (!list_empty(&set->tag_list) &&
2618             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2619                 set->flags |= BLK_MQ_F_TAG_SHARED;
2620                 /* update existing queue */
2621                 blk_mq_update_tag_set_depth(set, true);
2622         }
2623         if (set->flags & BLK_MQ_F_TAG_SHARED)
2624                 queue_set_hctx_shared(q, true);
2625         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2626
2627         mutex_unlock(&set->tag_list_lock);
2628 }
2629
2630 /* All allocations will be freed in release handler of q->mq_kobj */
2631 static int blk_mq_alloc_ctxs(struct request_queue *q)
2632 {
2633         struct blk_mq_ctxs *ctxs;
2634         int cpu;
2635
2636         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2637         if (!ctxs)
2638                 return -ENOMEM;
2639
2640         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2641         if (!ctxs->queue_ctx)
2642                 goto fail;
2643
2644         for_each_possible_cpu(cpu) {
2645                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2646                 ctx->ctxs = ctxs;
2647         }
2648
2649         q->mq_kobj = &ctxs->kobj;
2650         q->queue_ctx = ctxs->queue_ctx;
2651
2652         return 0;
2653  fail:
2654         kfree(ctxs);
2655         return -ENOMEM;
2656 }
2657
2658 /*
2659  * It is the actual release handler for mq, but we do it from
2660  * request queue's release handler for avoiding use-after-free
2661  * and headache because q->mq_kobj shouldn't have been introduced,
2662  * but we can't group ctx/kctx kobj without it.
2663  */
2664 void blk_mq_release(struct request_queue *q)
2665 {
2666         struct blk_mq_hw_ctx *hctx, *next;
2667         int i;
2668
2669         cancel_delayed_work_sync(&q->requeue_work);
2670
2671         queue_for_each_hw_ctx(q, hctx, i)
2672                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2673
2674         /* all hctx are in .unused_hctx_list now */
2675         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2676                 list_del_init(&hctx->hctx_list);
2677                 kobject_put(&hctx->kobj);
2678         }
2679
2680         kfree(q->queue_hw_ctx);
2681
2682         /*
2683          * release .mq_kobj and sw queue's kobject now because
2684          * both share lifetime with request queue.
2685          */
2686         blk_mq_sysfs_deinit(q);
2687 }
2688
2689 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2690 {
2691         struct request_queue *uninit_q, *q;
2692
2693         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2694         if (!uninit_q)
2695                 return ERR_PTR(-ENOMEM);
2696
2697         q = blk_mq_init_allocated_queue(set, uninit_q);
2698         if (IS_ERR(q))
2699                 blk_cleanup_queue(uninit_q);
2700
2701         return q;
2702 }
2703 EXPORT_SYMBOL(blk_mq_init_queue);
2704
2705 /*
2706  * Helper for setting up a queue with mq ops, given queue depth, and
2707  * the passed in mq ops flags.
2708  */
2709 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2710                                            const struct blk_mq_ops *ops,
2711                                            unsigned int queue_depth,
2712                                            unsigned int set_flags)
2713 {
2714         struct request_queue *q;
2715         int ret;
2716
2717         memset(set, 0, sizeof(*set));
2718         set->ops = ops;
2719         set->nr_hw_queues = 1;
2720         set->nr_maps = 1;
2721         set->queue_depth = queue_depth;
2722         set->numa_node = NUMA_NO_NODE;
2723         set->flags = set_flags;
2724
2725         ret = blk_mq_alloc_tag_set(set);
2726         if (ret)
2727                 return ERR_PTR(ret);
2728
2729         q = blk_mq_init_queue(set);
2730         if (IS_ERR(q)) {
2731                 blk_mq_free_tag_set(set);
2732                 return q;
2733         }
2734
2735         return q;
2736 }
2737 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2738
2739 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2740                 struct blk_mq_tag_set *set, struct request_queue *q,
2741                 int hctx_idx, int node)
2742 {
2743         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2744
2745         /* reuse dead hctx first */
2746         spin_lock(&q->unused_hctx_lock);
2747         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2748                 if (tmp->numa_node == node) {
2749                         hctx = tmp;
2750                         break;
2751                 }
2752         }
2753         if (hctx)
2754                 list_del_init(&hctx->hctx_list);
2755         spin_unlock(&q->unused_hctx_lock);
2756
2757         if (!hctx)
2758                 hctx = blk_mq_alloc_hctx(q, set, node);
2759         if (!hctx)
2760                 goto fail;
2761
2762         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2763                 goto free_hctx;
2764
2765         return hctx;
2766
2767  free_hctx:
2768         kobject_put(&hctx->kobj);
2769  fail:
2770         return NULL;
2771 }
2772
2773 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2774                                                 struct request_queue *q)
2775 {
2776         int i, j, end;
2777         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2778
2779         /* protect against switching io scheduler  */
2780         mutex_lock(&q->sysfs_lock);
2781         for (i = 0; i < set->nr_hw_queues; i++) {
2782                 int node;
2783                 struct blk_mq_hw_ctx *hctx;
2784
2785                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2786                 /*
2787                  * If the hw queue has been mapped to another numa node,
2788                  * we need to realloc the hctx. If allocation fails, fallback
2789                  * to use the previous one.
2790                  */
2791                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2792                         continue;
2793
2794                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2795                 if (hctx) {
2796                         if (hctxs[i])
2797                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2798                         hctxs[i] = hctx;
2799                 } else {
2800                         if (hctxs[i])
2801                                 pr_warn("Allocate new hctx on node %d fails,\
2802                                                 fallback to previous one on node %d\n",
2803                                                 node, hctxs[i]->numa_node);
2804                         else
2805                                 break;
2806                 }
2807         }
2808         /*
2809          * Increasing nr_hw_queues fails. Free the newly allocated
2810          * hctxs and keep the previous q->nr_hw_queues.
2811          */
2812         if (i != set->nr_hw_queues) {
2813                 j = q->nr_hw_queues;
2814                 end = i;
2815         } else {
2816                 j = i;
2817                 end = q->nr_hw_queues;
2818                 q->nr_hw_queues = set->nr_hw_queues;
2819         }
2820
2821         for (; j < end; j++) {
2822                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2823
2824                 if (hctx) {
2825                         if (hctx->tags)
2826                                 blk_mq_free_map_and_requests(set, j);
2827                         blk_mq_exit_hctx(q, set, hctx, j);
2828                         hctxs[j] = NULL;
2829                 }
2830         }
2831         mutex_unlock(&q->sysfs_lock);
2832 }
2833
2834 /*
2835  * Maximum number of hardware queues we support. For single sets, we'll never
2836  * have more than the CPUs (software queues). For multiple sets, the tag_set
2837  * user may have set ->nr_hw_queues larger.
2838  */
2839 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2840 {
2841         if (set->nr_maps == 1)
2842                 return nr_cpu_ids;
2843
2844         return max(set->nr_hw_queues, nr_cpu_ids);
2845 }
2846
2847 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2848                                                   struct request_queue *q)
2849 {
2850         /* mark the queue as mq asap */
2851         q->mq_ops = set->ops;
2852
2853         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2854                                              blk_mq_poll_stats_bkt,
2855                                              BLK_MQ_POLL_STATS_BKTS, q);
2856         if (!q->poll_cb)
2857                 goto err_exit;
2858
2859         if (blk_mq_alloc_ctxs(q))
2860                 goto err_poll;
2861
2862         /* init q->mq_kobj and sw queues' kobjects */
2863         blk_mq_sysfs_init(q);
2864
2865         q->nr_queues = nr_hw_queues(set);
2866         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2867                                                 GFP_KERNEL, set->numa_node);
2868         if (!q->queue_hw_ctx)
2869                 goto err_sys_init;
2870
2871         INIT_LIST_HEAD(&q->unused_hctx_list);
2872         spin_lock_init(&q->unused_hctx_lock);
2873
2874         blk_mq_realloc_hw_ctxs(set, q);
2875         if (!q->nr_hw_queues)
2876                 goto err_hctxs;
2877
2878         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2879         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2880
2881         q->tag_set = set;
2882
2883         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2884         if (set->nr_maps > HCTX_TYPE_POLL &&
2885             set->map[HCTX_TYPE_POLL].nr_queues)
2886                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2887
2888         q->sg_reserved_size = INT_MAX;
2889
2890         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2891         INIT_LIST_HEAD(&q->requeue_list);
2892         spin_lock_init(&q->requeue_lock);
2893
2894         blk_queue_make_request(q, blk_mq_make_request);
2895
2896         /*
2897          * Do this after blk_queue_make_request() overrides it...
2898          */
2899         q->nr_requests = set->queue_depth;
2900
2901         /*
2902          * Default to classic polling
2903          */
2904         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2905
2906         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2907         blk_mq_add_queue_tag_set(set, q);
2908         blk_mq_map_swqueue(q);
2909
2910         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2911                 int ret;
2912
2913                 ret = elevator_init_mq(q);
2914                 if (ret)
2915                         return ERR_PTR(ret);
2916         }
2917
2918         return q;
2919
2920 err_hctxs:
2921         kfree(q->queue_hw_ctx);
2922 err_sys_init:
2923         blk_mq_sysfs_deinit(q);
2924 err_poll:
2925         blk_stat_free_callback(q->poll_cb);
2926         q->poll_cb = NULL;
2927 err_exit:
2928         q->mq_ops = NULL;
2929         return ERR_PTR(-ENOMEM);
2930 }
2931 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2932
2933 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2934 void blk_mq_exit_queue(struct request_queue *q)
2935 {
2936         struct blk_mq_tag_set   *set = q->tag_set;
2937
2938         blk_mq_del_queue_tag_set(q);
2939         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2940 }
2941
2942 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2943 {
2944         int i;
2945
2946         for (i = 0; i < set->nr_hw_queues; i++)
2947                 if (!__blk_mq_alloc_rq_map(set, i))
2948                         goto out_unwind;
2949
2950         return 0;
2951
2952 out_unwind:
2953         while (--i >= 0)
2954                 blk_mq_free_rq_map(set->tags[i]);
2955
2956         return -ENOMEM;
2957 }
2958
2959 /*
2960  * Allocate the request maps associated with this tag_set. Note that this
2961  * may reduce the depth asked for, if memory is tight. set->queue_depth
2962  * will be updated to reflect the allocated depth.
2963  */
2964 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2965 {
2966         unsigned int depth;
2967         int err;
2968
2969         depth = set->queue_depth;
2970         do {
2971                 err = __blk_mq_alloc_rq_maps(set);
2972                 if (!err)
2973                         break;
2974
2975                 set->queue_depth >>= 1;
2976                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2977                         err = -ENOMEM;
2978                         break;
2979                 }
2980         } while (set->queue_depth);
2981
2982         if (!set->queue_depth || err) {
2983                 pr_err("blk-mq: failed to allocate request map\n");
2984                 return -ENOMEM;
2985         }
2986
2987         if (depth != set->queue_depth)
2988                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2989                                                 depth, set->queue_depth);
2990
2991         return 0;
2992 }
2993
2994 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2995 {
2996         if (set->ops->map_queues && !is_kdump_kernel()) {
2997                 int i;
2998
2999                 /*
3000                  * transport .map_queues is usually done in the following
3001                  * way:
3002                  *
3003                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3004                  *      mask = get_cpu_mask(queue)
3005                  *      for_each_cpu(cpu, mask)
3006                  *              set->map[x].mq_map[cpu] = queue;
3007                  * }
3008                  *
3009                  * When we need to remap, the table has to be cleared for
3010                  * killing stale mapping since one CPU may not be mapped
3011                  * to any hw queue.
3012                  */
3013                 for (i = 0; i < set->nr_maps; i++)
3014                         blk_mq_clear_mq_map(&set->map[i]);
3015
3016                 return set->ops->map_queues(set);
3017         } else {
3018                 BUG_ON(set->nr_maps > 1);
3019                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3020         }
3021 }
3022
3023 /*
3024  * Alloc a tag set to be associated with one or more request queues.
3025  * May fail with EINVAL for various error conditions. May adjust the
3026  * requested depth down, if it's too large. In that case, the set
3027  * value will be stored in set->queue_depth.
3028  */
3029 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3030 {
3031         int i, ret;
3032
3033         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3034
3035         if (!set->nr_hw_queues)
3036                 return -EINVAL;
3037         if (!set->queue_depth)
3038                 return -EINVAL;
3039         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3040                 return -EINVAL;
3041
3042         if (!set->ops->queue_rq)
3043                 return -EINVAL;
3044
3045         if (!set->ops->get_budget ^ !set->ops->put_budget)
3046                 return -EINVAL;
3047
3048         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3049                 pr_info("blk-mq: reduced tag depth to %u\n",
3050                         BLK_MQ_MAX_DEPTH);
3051                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3052         }
3053
3054         if (!set->nr_maps)
3055                 set->nr_maps = 1;
3056         else if (set->nr_maps > HCTX_MAX_TYPES)
3057                 return -EINVAL;
3058
3059         /*
3060          * If a crashdump is active, then we are potentially in a very
3061          * memory constrained environment. Limit us to 1 queue and
3062          * 64 tags to prevent using too much memory.
3063          */
3064         if (is_kdump_kernel()) {
3065                 set->nr_hw_queues = 1;
3066                 set->nr_maps = 1;
3067                 set->queue_depth = min(64U, set->queue_depth);
3068         }
3069         /*
3070          * There is no use for more h/w queues than cpus if we just have
3071          * a single map
3072          */
3073         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3074                 set->nr_hw_queues = nr_cpu_ids;
3075
3076         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3077                                  GFP_KERNEL, set->numa_node);
3078         if (!set->tags)
3079                 return -ENOMEM;
3080
3081         ret = -ENOMEM;
3082         for (i = 0; i < set->nr_maps; i++) {
3083                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3084                                                   sizeof(set->map[i].mq_map[0]),
3085                                                   GFP_KERNEL, set->numa_node);
3086                 if (!set->map[i].mq_map)
3087                         goto out_free_mq_map;
3088                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3089         }
3090
3091         ret = blk_mq_update_queue_map(set);
3092         if (ret)
3093                 goto out_free_mq_map;
3094
3095         ret = blk_mq_alloc_rq_maps(set);
3096         if (ret)
3097                 goto out_free_mq_map;
3098
3099         mutex_init(&set->tag_list_lock);
3100         INIT_LIST_HEAD(&set->tag_list);
3101
3102         return 0;
3103
3104 out_free_mq_map:
3105         for (i = 0; i < set->nr_maps; i++) {
3106                 kfree(set->map[i].mq_map);
3107                 set->map[i].mq_map = NULL;
3108         }
3109         kfree(set->tags);
3110         set->tags = NULL;
3111         return ret;
3112 }
3113 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3114
3115 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3116 {
3117         int i, j;
3118
3119         for (i = 0; i < nr_hw_queues(set); i++)
3120                 blk_mq_free_map_and_requests(set, i);
3121
3122         for (j = 0; j < set->nr_maps; j++) {
3123                 kfree(set->map[j].mq_map);
3124                 set->map[j].mq_map = NULL;
3125         }
3126
3127         kfree(set->tags);
3128         set->tags = NULL;
3129 }
3130 EXPORT_SYMBOL(blk_mq_free_tag_set);
3131
3132 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3133 {
3134         struct blk_mq_tag_set *set = q->tag_set;
3135         struct blk_mq_hw_ctx *hctx;
3136         int i, ret;
3137
3138         if (!set)
3139                 return -EINVAL;
3140
3141         if (q->nr_requests == nr)
3142                 return 0;
3143
3144         blk_mq_freeze_queue(q);
3145         blk_mq_quiesce_queue(q);
3146
3147         ret = 0;
3148         queue_for_each_hw_ctx(q, hctx, i) {
3149                 if (!hctx->tags)
3150                         continue;
3151                 /*
3152                  * If we're using an MQ scheduler, just update the scheduler
3153                  * queue depth. This is similar to what the old code would do.
3154                  */
3155                 if (!hctx->sched_tags) {
3156                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3157                                                         false);
3158                 } else {
3159                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3160                                                         nr, true);
3161                 }
3162                 if (ret)
3163                         break;
3164                 if (q->elevator && q->elevator->type->ops.depth_updated)
3165                         q->elevator->type->ops.depth_updated(hctx);
3166         }
3167
3168         if (!ret)
3169                 q->nr_requests = nr;
3170
3171         blk_mq_unquiesce_queue(q);
3172         blk_mq_unfreeze_queue(q);
3173
3174         return ret;
3175 }
3176
3177 /*
3178  * request_queue and elevator_type pair.
3179  * It is just used by __blk_mq_update_nr_hw_queues to cache
3180  * the elevator_type associated with a request_queue.
3181  */
3182 struct blk_mq_qe_pair {
3183         struct list_head node;
3184         struct request_queue *q;
3185         struct elevator_type *type;
3186 };
3187
3188 /*
3189  * Cache the elevator_type in qe pair list and switch the
3190  * io scheduler to 'none'
3191  */
3192 static bool blk_mq_elv_switch_none(struct list_head *head,
3193                 struct request_queue *q)
3194 {
3195         struct blk_mq_qe_pair *qe;
3196
3197         if (!q->elevator)
3198                 return true;
3199
3200         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3201         if (!qe)
3202                 return false;
3203
3204         INIT_LIST_HEAD(&qe->node);
3205         qe->q = q;
3206         qe->type = q->elevator->type;
3207         list_add(&qe->node, head);
3208
3209         mutex_lock(&q->sysfs_lock);
3210         /*
3211          * After elevator_switch_mq, the previous elevator_queue will be
3212          * released by elevator_release. The reference of the io scheduler
3213          * module get by elevator_get will also be put. So we need to get
3214          * a reference of the io scheduler module here to prevent it to be
3215          * removed.
3216          */
3217         __module_get(qe->type->elevator_owner);
3218         elevator_switch_mq(q, NULL);
3219         mutex_unlock(&q->sysfs_lock);
3220
3221         return true;
3222 }
3223
3224 static void blk_mq_elv_switch_back(struct list_head *head,
3225                 struct request_queue *q)
3226 {
3227         struct blk_mq_qe_pair *qe;
3228         struct elevator_type *t = NULL;
3229
3230         list_for_each_entry(qe, head, node)
3231                 if (qe->q == q) {
3232                         t = qe->type;
3233                         break;
3234                 }
3235
3236         if (!t)
3237                 return;
3238
3239         list_del(&qe->node);
3240         kfree(qe);
3241
3242         mutex_lock(&q->sysfs_lock);
3243         elevator_switch_mq(q, t);
3244         mutex_unlock(&q->sysfs_lock);
3245 }
3246
3247 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3248                                                         int nr_hw_queues)
3249 {
3250         struct request_queue *q;
3251         LIST_HEAD(head);
3252         int prev_nr_hw_queues;
3253
3254         lockdep_assert_held(&set->tag_list_lock);
3255
3256         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3257                 nr_hw_queues = nr_cpu_ids;
3258         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3259                 return;
3260
3261         list_for_each_entry(q, &set->tag_list, tag_set_list)
3262                 blk_mq_freeze_queue(q);
3263         /*
3264          * Sync with blk_mq_queue_tag_busy_iter.
3265          */
3266         synchronize_rcu();
3267         /*
3268          * Switch IO scheduler to 'none', cleaning up the data associated
3269          * with the previous scheduler. We will switch back once we are done
3270          * updating the new sw to hw queue mappings.
3271          */
3272         list_for_each_entry(q, &set->tag_list, tag_set_list)
3273                 if (!blk_mq_elv_switch_none(&head, q))
3274                         goto switch_back;
3275
3276         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3277                 blk_mq_debugfs_unregister_hctxs(q);
3278                 blk_mq_sysfs_unregister(q);
3279         }
3280
3281         prev_nr_hw_queues = set->nr_hw_queues;
3282         set->nr_hw_queues = nr_hw_queues;
3283         blk_mq_update_queue_map(set);
3284 fallback:
3285         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3286                 blk_mq_realloc_hw_ctxs(set, q);
3287                 if (q->nr_hw_queues != set->nr_hw_queues) {
3288                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3289                                         nr_hw_queues, prev_nr_hw_queues);
3290                         set->nr_hw_queues = prev_nr_hw_queues;
3291                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3292                         goto fallback;
3293                 }
3294                 blk_mq_map_swqueue(q);
3295         }
3296
3297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3298                 blk_mq_sysfs_register(q);
3299                 blk_mq_debugfs_register_hctxs(q);
3300         }
3301
3302 switch_back:
3303         list_for_each_entry(q, &set->tag_list, tag_set_list)
3304                 blk_mq_elv_switch_back(&head, q);
3305
3306         list_for_each_entry(q, &set->tag_list, tag_set_list)
3307                 blk_mq_unfreeze_queue(q);
3308 }
3309
3310 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3311 {
3312         mutex_lock(&set->tag_list_lock);
3313         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3314         mutex_unlock(&set->tag_list_lock);
3315 }
3316 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3317
3318 /* Enable polling stats and return whether they were already enabled. */
3319 static bool blk_poll_stats_enable(struct request_queue *q)
3320 {
3321         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3322             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3323                 return true;
3324         blk_stat_add_callback(q, q->poll_cb);
3325         return false;
3326 }
3327
3328 static void blk_mq_poll_stats_start(struct request_queue *q)
3329 {
3330         /*
3331          * We don't arm the callback if polling stats are not enabled or the
3332          * callback is already active.
3333          */
3334         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3335             blk_stat_is_active(q->poll_cb))
3336                 return;
3337
3338         blk_stat_activate_msecs(q->poll_cb, 100);
3339 }
3340
3341 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3342 {
3343         struct request_queue *q = cb->data;
3344         int bucket;
3345
3346         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3347                 if (cb->stat[bucket].nr_samples)
3348                         q->poll_stat[bucket] = cb->stat[bucket];
3349         }
3350 }
3351
3352 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3353                                        struct blk_mq_hw_ctx *hctx,
3354                                        struct request *rq)
3355 {
3356         unsigned long ret = 0;
3357         int bucket;
3358
3359         /*
3360          * If stats collection isn't on, don't sleep but turn it on for
3361          * future users
3362          */
3363         if (!blk_poll_stats_enable(q))
3364                 return 0;
3365
3366         /*
3367          * As an optimistic guess, use half of the mean service time
3368          * for this type of request. We can (and should) make this smarter.
3369          * For instance, if the completion latencies are tight, we can
3370          * get closer than just half the mean. This is especially
3371          * important on devices where the completion latencies are longer
3372          * than ~10 usec. We do use the stats for the relevant IO size
3373          * if available which does lead to better estimates.
3374          */
3375         bucket = blk_mq_poll_stats_bkt(rq);
3376         if (bucket < 0)
3377                 return ret;
3378
3379         if (q->poll_stat[bucket].nr_samples)
3380                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3381
3382         return ret;
3383 }
3384
3385 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3386                                      struct blk_mq_hw_ctx *hctx,
3387                                      struct request *rq)
3388 {
3389         struct hrtimer_sleeper hs;
3390         enum hrtimer_mode mode;
3391         unsigned int nsecs;
3392         ktime_t kt;
3393
3394         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3395                 return false;
3396
3397         /*
3398          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3399          *
3400          *  0:  use half of prev avg
3401          * >0:  use this specific value
3402          */
3403         if (q->poll_nsec > 0)
3404                 nsecs = q->poll_nsec;
3405         else
3406                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3407
3408         if (!nsecs)
3409                 return false;
3410
3411         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3412
3413         /*
3414          * This will be replaced with the stats tracking code, using
3415          * 'avg_completion_time / 2' as the pre-sleep target.
3416          */
3417         kt = nsecs;
3418
3419         mode = HRTIMER_MODE_REL;
3420         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3421         hrtimer_set_expires(&hs.timer, kt);
3422
3423         hrtimer_init_sleeper(&hs, current);
3424         do {
3425                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3426                         break;
3427                 set_current_state(TASK_UNINTERRUPTIBLE);
3428                 hrtimer_start_expires(&hs.timer, mode);
3429                 if (hs.task)
3430                         io_schedule();
3431                 hrtimer_cancel(&hs.timer);
3432                 mode = HRTIMER_MODE_ABS;
3433         } while (hs.task && !signal_pending(current));
3434
3435         __set_current_state(TASK_RUNNING);
3436         destroy_hrtimer_on_stack(&hs.timer);
3437         return true;
3438 }
3439
3440 static bool blk_mq_poll_hybrid(struct request_queue *q,
3441                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3442 {
3443         struct request *rq;
3444
3445         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3446                 return false;
3447
3448         if (!blk_qc_t_is_internal(cookie))
3449                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3450         else {
3451                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3452                 /*
3453                  * With scheduling, if the request has completed, we'll
3454                  * get a NULL return here, as we clear the sched tag when
3455                  * that happens. The request still remains valid, like always,
3456                  * so we should be safe with just the NULL check.
3457                  */
3458                 if (!rq)
3459                         return false;
3460         }
3461
3462         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3463 }
3464
3465 /**
3466  * blk_poll - poll for IO completions
3467  * @q:  the queue
3468  * @cookie: cookie passed back at IO submission time
3469  * @spin: whether to spin for completions
3470  *
3471  * Description:
3472  *    Poll for completions on the passed in queue. Returns number of
3473  *    completed entries found. If @spin is true, then blk_poll will continue
3474  *    looping until at least one completion is found, unless the task is
3475  *    otherwise marked running (or we need to reschedule).
3476  */
3477 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3478 {
3479         struct blk_mq_hw_ctx *hctx;
3480         long state;
3481
3482         if (!blk_qc_t_valid(cookie) ||
3483             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3484                 return 0;
3485
3486         if (current->plug)
3487                 blk_flush_plug_list(current->plug, false);
3488
3489         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3490
3491         /*
3492          * If we sleep, have the caller restart the poll loop to reset
3493          * the state. Like for the other success return cases, the
3494          * caller is responsible for checking if the IO completed. If
3495          * the IO isn't complete, we'll get called again and will go
3496          * straight to the busy poll loop.
3497          */
3498         if (blk_mq_poll_hybrid(q, hctx, cookie))
3499                 return 1;
3500
3501         hctx->poll_considered++;
3502
3503         state = current->state;
3504         do {
3505                 int ret;
3506
3507                 hctx->poll_invoked++;
3508
3509                 ret = q->mq_ops->poll(hctx);
3510                 if (ret > 0) {
3511                         hctx->poll_success++;
3512                         __set_current_state(TASK_RUNNING);
3513                         return ret;
3514                 }
3515
3516                 if (signal_pending_state(state, current))
3517                         __set_current_state(TASK_RUNNING);
3518
3519                 if (current->state == TASK_RUNNING)
3520                         return 1;
3521                 if (ret < 0 || !spin)
3522                         break;
3523                 cpu_relax();
3524         } while (!need_resched());
3525
3526         __set_current_state(TASK_RUNNING);
3527         return 0;
3528 }
3529 EXPORT_SYMBOL_GPL(blk_poll);
3530
3531 unsigned int blk_mq_rq_cpu(struct request *rq)
3532 {
3533         return rq->mq_ctx->cpu;
3534 }
3535 EXPORT_SYMBOL(blk_mq_rq_cpu);
3536
3537 static int __init blk_mq_init(void)
3538 {
3539         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3540                                 blk_mq_hctx_notify_dead);
3541         return 0;
3542 }
3543 subsys_initcall(blk_mq_init);