Merge tag 'microblaze-v6.8' of git://git.monstr.eu/linux-2.6-microblaze
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ     ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69                                    struct ttm_tt *ttm,
70                                    struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72                                       struct ttm_tt *ttm);
73
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75                                     unsigned int type,
76                                     uint64_t size_in_page)
77 {
78         return ttm_range_man_init(&adev->mman.bdev, type,
79                                   false, size_in_page);
80 }
81
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91                                 struct ttm_placement *placement)
92 {
93         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94         struct amdgpu_bo *abo;
95         static const struct ttm_place placements = {
96                 .fpfn = 0,
97                 .lpfn = 0,
98                 .mem_type = TTM_PL_SYSTEM,
99                 .flags = 0
100         };
101
102         /* Don't handle scatter gather BOs */
103         if (bo->type == ttm_bo_type_sg) {
104                 placement->num_placement = 0;
105                 placement->num_busy_placement = 0;
106                 return;
107         }
108
109         /* Object isn't an AMDGPU object so ignore */
110         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111                 placement->placement = &placements;
112                 placement->busy_placement = &placements;
113                 placement->num_placement = 1;
114                 placement->num_busy_placement = 1;
115                 return;
116         }
117
118         abo = ttm_to_amdgpu_bo(bo);
119         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120                 placement->num_placement = 0;
121                 placement->num_busy_placement = 0;
122                 return;
123         }
124
125         switch (bo->resource->mem_type) {
126         case AMDGPU_PL_GDS:
127         case AMDGPU_PL_GWS:
128         case AMDGPU_PL_OA:
129         case AMDGPU_PL_DOORBELL:
130                 placement->num_placement = 0;
131                 placement->num_busy_placement = 0;
132                 return;
133
134         case TTM_PL_VRAM:
135                 if (!adev->mman.buffer_funcs_enabled) {
136                         /* Move to system memory */
137                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140                            amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142                         /* Try evicting to the CPU inaccessible part of VRAM
143                          * first, but only set GTT as busy placement, so this
144                          * BO will be evicted to GTT rather than causing other
145                          * BOs to be evicted from VRAM
146                          */
147                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148                                                         AMDGPU_GEM_DOMAIN_GTT |
149                                                         AMDGPU_GEM_DOMAIN_CPU);
150                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151                         abo->placements[0].lpfn = 0;
152                         abo->placement.busy_placement = &abo->placements[1];
153                         abo->placement.num_busy_placement = 1;
154                 } else {
155                         /* Move to GTT memory */
156                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157                                                         AMDGPU_GEM_DOMAIN_CPU);
158                 }
159                 break;
160         case TTM_PL_TT:
161         case AMDGPU_PL_PREEMPT:
162         default:
163                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164                 break;
165         }
166         *placement = abo->placement;
167 }
168
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184                                  struct ttm_resource *mem,
185                                  struct amdgpu_res_cursor *mm_cur,
186                                  unsigned int window, struct amdgpu_ring *ring,
187                                  bool tmz, uint64_t *size, uint64_t *addr)
188 {
189         struct amdgpu_device *adev = ring->adev;
190         unsigned int offset, num_pages, num_dw, num_bytes;
191         uint64_t src_addr, dst_addr;
192         struct amdgpu_job *job;
193         void *cpu_addr;
194         uint64_t flags;
195         unsigned int i;
196         int r;
197
198         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202                 return -EINVAL;
203
204         /* Map only what can't be accessed directly */
205         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207                         mm_cur->start;
208                 return 0;
209         }
210
211
212         /*
213          * If start begins at an offset inside the page, then adjust the size
214          * and addr accordingly
215          */
216         offset = mm_cur->start & ~PAGE_MASK;
217
218         num_pages = PFN_UP(*size + offset);
219         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223         *addr = adev->gmc.gart_start;
224         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225                 AMDGPU_GPU_PAGE_SIZE;
226         *addr += offset;
227
228         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232                                      AMDGPU_FENCE_OWNER_UNDEFINED,
233                                      num_dw * 4 + num_bytes,
234                                      AMDGPU_IB_POOL_DELAYED, &job);
235         if (r)
236                 return r;
237
238         src_addr = num_dw * 4;
239         src_addr += job->ibs[0].gpu_addr;
240
241         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244                                 dst_addr, num_bytes, false);
245
246         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247         WARN_ON(job->ibs[0].length_dw > num_dw);
248
249         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250         if (tmz)
251                 flags |= AMDGPU_PTE_TMZ;
252
253         cpu_addr = &job->ibs[0].ptr[num_dw];
254
255         if (mem->mem_type == TTM_PL_TT) {
256                 dma_addr_t *dma_addr;
257
258                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260         } else {
261                 dma_addr_t dma_address;
262
263                 dma_address = mm_cur->start;
264                 dma_address += adev->vm_manager.vram_base_offset;
265
266                 for (i = 0; i < num_pages; ++i) {
267                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268                                         flags, cpu_addr);
269                         dma_address += PAGE_SIZE;
270                 }
271         }
272
273         dma_fence_put(amdgpu_job_submit(job));
274         return 0;
275 }
276
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293                                const struct amdgpu_copy_mem *src,
294                                const struct amdgpu_copy_mem *dst,
295                                uint64_t size, bool tmz,
296                                struct dma_resv *resv,
297                                struct dma_fence **f)
298 {
299         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300         struct amdgpu_res_cursor src_mm, dst_mm;
301         struct dma_fence *fence = NULL;
302         int r = 0;
303
304         if (!adev->mman.buffer_funcs_enabled) {
305                 DRM_ERROR("Trying to move memory with ring turned off.\n");
306                 return -EINVAL;
307         }
308
309         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312         mutex_lock(&adev->mman.gtt_window_lock);
313         while (src_mm.remaining) {
314                 uint64_t from, to, cur_size;
315                 struct dma_fence *next;
316
317                 /* Never copy more than 256MiB at once to avoid a timeout */
318                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320                 /* Map src to window 0 and dst to window 1. */
321                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322                                           0, ring, tmz, &cur_size, &from);
323                 if (r)
324                         goto error;
325
326                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327                                           1, ring, tmz, &cur_size, &to);
328                 if (r)
329                         goto error;
330
331                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332                                        resv, &next, false, true, tmz);
333                 if (r)
334                         goto error;
335
336                 dma_fence_put(fence);
337                 fence = next;
338
339                 amdgpu_res_next(&src_mm, cur_size);
340                 amdgpu_res_next(&dst_mm, cur_size);
341         }
342 error:
343         mutex_unlock(&adev->mman.gtt_window_lock);
344         if (f)
345                 *f = dma_fence_get(fence);
346         dma_fence_put(fence);
347         return r;
348 }
349
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357                             bool evict,
358                             struct ttm_resource *new_mem,
359                             struct ttm_resource *old_mem)
360 {
361         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363         struct amdgpu_copy_mem src, dst;
364         struct dma_fence *fence = NULL;
365         int r;
366
367         src.bo = bo;
368         dst.bo = bo;
369         src.mem = old_mem;
370         dst.mem = new_mem;
371         src.offset = 0;
372         dst.offset = 0;
373
374         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375                                        new_mem->size,
376                                        amdgpu_bo_encrypted(abo),
377                                        bo->base.resv, &fence);
378         if (r)
379                 goto error;
380
381         /* clear the space being freed */
382         if (old_mem->mem_type == TTM_PL_VRAM &&
383             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384                 struct dma_fence *wipe_fence = NULL;
385
386                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387                                         false);
388                 if (r) {
389                         goto error;
390                 } else if (wipe_fence) {
391                         dma_fence_put(fence);
392                         fence = wipe_fence;
393                 }
394         }
395
396         /* Always block for VM page tables before committing the new location */
397         if (bo->type == ttm_bo_type_kernel)
398                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399         else
400                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401         dma_fence_put(fence);
402         return r;
403
404 error:
405         if (fence)
406                 dma_fence_wait(fence, false);
407         dma_fence_put(fence);
408         return r;
409 }
410
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417                                struct ttm_resource *mem)
418 {
419         u64 mem_size = (u64)mem->size;
420         struct amdgpu_res_cursor cursor;
421         u64 end;
422
423         if (mem->mem_type == TTM_PL_SYSTEM ||
424             mem->mem_type == TTM_PL_TT)
425                 return true;
426         if (mem->mem_type != TTM_PL_VRAM)
427                 return false;
428
429         amdgpu_res_first(mem, 0, mem_size, &cursor);
430         end = cursor.start + cursor.size;
431         while (cursor.remaining) {
432                 amdgpu_res_next(&cursor, cursor.size);
433
434                 if (!cursor.remaining)
435                         break;
436
437                 /* ttm_resource_ioremap only supports contiguous memory */
438                 if (end != cursor.start)
439                         return false;
440
441                 end = cursor.start + cursor.size;
442         }
443
444         return end <= adev->gmc.visible_vram_size;
445 }
446
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453                           struct ttm_operation_ctx *ctx,
454                           struct ttm_resource *new_mem,
455                           struct ttm_place *hop)
456 {
457         struct amdgpu_device *adev;
458         struct amdgpu_bo *abo;
459         struct ttm_resource *old_mem = bo->resource;
460         int r;
461
462         if (new_mem->mem_type == TTM_PL_TT ||
463             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465                 if (r)
466                         return r;
467         }
468
469         abo = ttm_to_amdgpu_bo(bo);
470         adev = amdgpu_ttm_adev(bo->bdev);
471
472         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473                          bo->ttm == NULL)) {
474                 ttm_bo_move_null(bo, new_mem);
475                 goto out;
476         }
477         if (old_mem->mem_type == TTM_PL_SYSTEM &&
478             (new_mem->mem_type == TTM_PL_TT ||
479              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480                 ttm_bo_move_null(bo, new_mem);
481                 goto out;
482         }
483         if ((old_mem->mem_type == TTM_PL_TT ||
484              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485             new_mem->mem_type == TTM_PL_SYSTEM) {
486                 r = ttm_bo_wait_ctx(bo, ctx);
487                 if (r)
488                         return r;
489
490                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491                 ttm_resource_free(bo, &bo->resource);
492                 ttm_bo_assign_mem(bo, new_mem);
493                 goto out;
494         }
495
496         if (old_mem->mem_type == AMDGPU_PL_GDS ||
497             old_mem->mem_type == AMDGPU_PL_GWS ||
498             old_mem->mem_type == AMDGPU_PL_OA ||
499             old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500             new_mem->mem_type == AMDGPU_PL_GDS ||
501             new_mem->mem_type == AMDGPU_PL_GWS ||
502             new_mem->mem_type == AMDGPU_PL_OA ||
503             new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504                 /* Nothing to save here */
505                 ttm_bo_move_null(bo, new_mem);
506                 goto out;
507         }
508
509         if (bo->type == ttm_bo_type_device &&
510             new_mem->mem_type == TTM_PL_VRAM &&
511             old_mem->mem_type != TTM_PL_VRAM) {
512                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513                  * accesses the BO after it's moved.
514                  */
515                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516         }
517
518         if (adev->mman.buffer_funcs_enabled) {
519                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520                       new_mem->mem_type == TTM_PL_VRAM) ||
521                      (old_mem->mem_type == TTM_PL_VRAM &&
522                       new_mem->mem_type == TTM_PL_SYSTEM))) {
523                         hop->fpfn = 0;
524                         hop->lpfn = 0;
525                         hop->mem_type = TTM_PL_TT;
526                         hop->flags = TTM_PL_FLAG_TEMPORARY;
527                         return -EMULTIHOP;
528                 }
529
530                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531         } else {
532                 r = -ENODEV;
533         }
534
535         if (r) {
536                 /* Check that all memory is CPU accessible */
537                 if (!amdgpu_mem_visible(adev, old_mem) ||
538                     !amdgpu_mem_visible(adev, new_mem)) {
539                         pr_err("Move buffer fallback to memcpy unavailable\n");
540                         return r;
541                 }
542
543                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544                 if (r)
545                         return r;
546         }
547
548         trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
549 out:
550         /* update statistics */
551         atomic64_add(bo->base.size, &adev->num_bytes_moved);
552         amdgpu_bo_move_notify(bo, evict);
553         return 0;
554 }
555
556 /*
557  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558  *
559  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560  */
561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562                                      struct ttm_resource *mem)
563 {
564         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565         size_t bus_size = (size_t)mem->size;
566
567         switch (mem->mem_type) {
568         case TTM_PL_SYSTEM:
569                 /* system memory */
570                 return 0;
571         case TTM_PL_TT:
572         case AMDGPU_PL_PREEMPT:
573                 break;
574         case TTM_PL_VRAM:
575                 mem->bus.offset = mem->start << PAGE_SHIFT;
576                 /* check if it's visible */
577                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578                         return -EINVAL;
579
580                 if (adev->mman.aper_base_kaddr &&
581                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583                                         mem->bus.offset;
584
585                 mem->bus.offset += adev->gmc.aper_base;
586                 mem->bus.is_iomem = true;
587                 break;
588         case AMDGPU_PL_DOORBELL:
589                 mem->bus.offset = mem->start << PAGE_SHIFT;
590                 mem->bus.offset += adev->doorbell.base;
591                 mem->bus.is_iomem = true;
592                 mem->bus.caching = ttm_uncached;
593                 break;
594         default:
595                 return -EINVAL;
596         }
597         return 0;
598 }
599
600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601                                            unsigned long page_offset)
602 {
603         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604         struct amdgpu_res_cursor cursor;
605
606         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607                          &cursor);
608
609         if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610                 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611
612         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613 }
614
615 /**
616  * amdgpu_ttm_domain_start - Returns GPU start address
617  * @adev: amdgpu device object
618  * @type: type of the memory
619  *
620  * Returns:
621  * GPU start address of a memory domain
622  */
623
624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625 {
626         switch (type) {
627         case TTM_PL_TT:
628                 return adev->gmc.gart_start;
629         case TTM_PL_VRAM:
630                 return adev->gmc.vram_start;
631         }
632
633         return 0;
634 }
635
636 /*
637  * TTM backend functions.
638  */
639 struct amdgpu_ttm_tt {
640         struct ttm_tt   ttm;
641         struct drm_gem_object   *gobj;
642         u64                     offset;
643         uint64_t                userptr;
644         struct task_struct      *usertask;
645         uint32_t                userflags;
646         bool                    bound;
647         int32_t                 pool_id;
648 };
649
650 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
651
652 #ifdef CONFIG_DRM_AMDGPU_USERPTR
653 /*
654  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655  * memory and start HMM tracking CPU page table update
656  *
657  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658  * once afterwards to stop HMM tracking
659  */
660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
661                                  struct hmm_range **range)
662 {
663         struct ttm_tt *ttm = bo->tbo.ttm;
664         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665         unsigned long start = gtt->userptr;
666         struct vm_area_struct *vma;
667         struct mm_struct *mm;
668         bool readonly;
669         int r = 0;
670
671         /* Make sure get_user_pages_done() can cleanup gracefully */
672         *range = NULL;
673
674         mm = bo->notifier.mm;
675         if (unlikely(!mm)) {
676                 DRM_DEBUG_DRIVER("BO is not registered?\n");
677                 return -EFAULT;
678         }
679
680         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681                 return -ESRCH;
682
683         mmap_read_lock(mm);
684         vma = vma_lookup(mm, start);
685         if (unlikely(!vma)) {
686                 r = -EFAULT;
687                 goto out_unlock;
688         }
689         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690                 vma->vm_file)) {
691                 r = -EPERM;
692                 goto out_unlock;
693         }
694
695         readonly = amdgpu_ttm_tt_is_readonly(ttm);
696         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697                                        readonly, NULL, pages, range);
698 out_unlock:
699         mmap_read_unlock(mm);
700         if (r)
701                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702
703         mmput(mm);
704
705         return r;
706 }
707
708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709  */
710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711                                       struct hmm_range *range)
712 {
713         struct amdgpu_ttm_tt *gtt = (void *)ttm;
714
715         if (gtt && gtt->userptr && range)
716                 amdgpu_hmm_range_get_pages_done(range);
717 }
718
719 /*
720  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721  * Check if the pages backing this ttm range have been invalidated
722  *
723  * Returns: true if pages are still valid
724  */
725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726                                        struct hmm_range *range)
727 {
728         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729
730         if (!gtt || !gtt->userptr || !range)
731                 return false;
732
733         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734                 gtt->userptr, ttm->num_pages);
735
736         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737
738         return !amdgpu_hmm_range_get_pages_done(range);
739 }
740 #endif
741
742 /*
743  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744  *
745  * Called by amdgpu_cs_list_validate(). This creates the page list
746  * that backs user memory and will ultimately be mapped into the device
747  * address space.
748  */
749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750 {
751         unsigned long i;
752
753         for (i = 0; i < ttm->num_pages; ++i)
754                 ttm->pages[i] = pages ? pages[i] : NULL;
755 }
756
757 /*
758  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759  *
760  * Called by amdgpu_ttm_backend_bind()
761  **/
762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763                                      struct ttm_tt *ttm)
764 {
765         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
766         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
768         enum dma_data_direction direction = write ?
769                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
770         int r;
771
772         /* Allocate an SG array and squash pages into it */
773         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
774                                       (u64)ttm->num_pages << PAGE_SHIFT,
775                                       GFP_KERNEL);
776         if (r)
777                 goto release_sg;
778
779         /* Map SG to device */
780         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781         if (r)
782                 goto release_sg;
783
784         /* convert SG to linear array of pages and dma addresses */
785         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
786                                        ttm->num_pages);
787
788         return 0;
789
790 release_sg:
791         kfree(ttm->sg);
792         ttm->sg = NULL;
793         return r;
794 }
795
796 /*
797  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
798  */
799 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
800                                         struct ttm_tt *ttm)
801 {
802         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805         enum dma_data_direction direction = write ?
806                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807
808         /* double check that we don't free the table twice */
809         if (!ttm->sg || !ttm->sg->sgl)
810                 return;
811
812         /* unmap the pages mapped to the device */
813         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
814         sg_free_table(ttm->sg);
815 }
816
817 /*
818  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
819  * MQDn+CtrlStackn where n is the number of XCCs per partition.
820  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
821  * and uses memory type default, UC. The rest of pages_per_xcc are
822  * Ctrl stack and modify their memory type to NC.
823  */
824 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
825                                 struct ttm_tt *ttm, uint64_t flags)
826 {
827         struct amdgpu_ttm_tt *gtt = (void *)ttm;
828         uint64_t total_pages = ttm->num_pages;
829         int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
830         uint64_t page_idx, pages_per_xcc;
831         int i;
832         uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
833                         AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
834
835         pages_per_xcc = total_pages;
836         do_div(pages_per_xcc, num_xcc);
837
838         for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
839                 /* MQD page: use default flags */
840                 amdgpu_gart_bind(adev,
841                                 gtt->offset + (page_idx << PAGE_SHIFT),
842                                 1, &gtt->ttm.dma_address[page_idx], flags);
843                 /*
844                  * Ctrl pages - modify the memory type to NC (ctrl_flags) from
845                  * the second page of the BO onward.
846                  */
847                 amdgpu_gart_bind(adev,
848                                 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
849                                 pages_per_xcc - 1,
850                                 &gtt->ttm.dma_address[page_idx + 1],
851                                 ctrl_flags);
852         }
853 }
854
855 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
856                                  struct ttm_buffer_object *tbo,
857                                  uint64_t flags)
858 {
859         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
860         struct ttm_tt *ttm = tbo->ttm;
861         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
862
863         if (amdgpu_bo_encrypted(abo))
864                 flags |= AMDGPU_PTE_TMZ;
865
866         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
867                 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
868         } else {
869                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
870                                  gtt->ttm.dma_address, flags);
871         }
872 }
873
874 /*
875  * amdgpu_ttm_backend_bind - Bind GTT memory
876  *
877  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
878  * This handles binding GTT memory to the device address space.
879  */
880 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
881                                    struct ttm_tt *ttm,
882                                    struct ttm_resource *bo_mem)
883 {
884         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
885         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886         uint64_t flags;
887         int r;
888
889         if (!bo_mem)
890                 return -EINVAL;
891
892         if (gtt->bound)
893                 return 0;
894
895         if (gtt->userptr) {
896                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
897                 if (r) {
898                         DRM_ERROR("failed to pin userptr\n");
899                         return r;
900                 }
901         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
902                 if (!ttm->sg) {
903                         struct dma_buf_attachment *attach;
904                         struct sg_table *sgt;
905
906                         attach = gtt->gobj->import_attach;
907                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
908                         if (IS_ERR(sgt))
909                                 return PTR_ERR(sgt);
910
911                         ttm->sg = sgt;
912                 }
913
914                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
915                                                ttm->num_pages);
916         }
917
918         if (!ttm->num_pages) {
919                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
920                      ttm->num_pages, bo_mem, ttm);
921         }
922
923         if (bo_mem->mem_type != TTM_PL_TT ||
924             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926                 return 0;
927         }
928
929         /* compute PTE flags relevant to this BO memory */
930         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931
932         /* bind pages into GART page tables */
933         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935                          gtt->ttm.dma_address, flags);
936         gtt->bound = true;
937         return 0;
938 }
939
940 /*
941  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942  * through AGP or GART aperture.
943  *
944  * If bo is accessible through AGP aperture, then use AGP aperture
945  * to access bo; otherwise allocate logical space in GART aperture
946  * and map bo to GART aperture.
947  */
948 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949 {
950         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951         struct ttm_operation_ctx ctx = { false, false };
952         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
953         struct ttm_placement placement;
954         struct ttm_place placements;
955         struct ttm_resource *tmp;
956         uint64_t addr, flags;
957         int r;
958
959         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960                 return 0;
961
962         addr = amdgpu_gmc_agp_addr(bo);
963         if (addr != AMDGPU_BO_INVALID_OFFSET)
964                 return 0;
965
966         /* allocate GART space */
967         placement.num_placement = 1;
968         placement.placement = &placements;
969         placement.num_busy_placement = 1;
970         placement.busy_placement = &placements;
971         placements.fpfn = 0;
972         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
973         placements.mem_type = TTM_PL_TT;
974         placements.flags = bo->resource->placement;
975
976         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
977         if (unlikely(r))
978                 return r;
979
980         /* compute PTE flags for this buffer object */
981         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
982
983         /* Bind pages */
984         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
985         amdgpu_ttm_gart_bind(adev, bo, flags);
986         amdgpu_gart_invalidate_tlb(adev);
987         ttm_resource_free(bo, &bo->resource);
988         ttm_bo_assign_mem(bo, tmp);
989
990         return 0;
991 }
992
993 /*
994  * amdgpu_ttm_recover_gart - Rebind GTT pages
995  *
996  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
997  * rebind GTT pages during a GPU reset.
998  */
999 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000 {
1001         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002         uint64_t flags;
1003
1004         if (!tbo->ttm)
1005                 return;
1006
1007         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008         amdgpu_ttm_gart_bind(adev, tbo, flags);
1009 }
1010
1011 /*
1012  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013  *
1014  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015  * ttm_tt_destroy().
1016  */
1017 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018                                       struct ttm_tt *ttm)
1019 {
1020         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1022
1023         /* if the pages have userptr pinning then clear that first */
1024         if (gtt->userptr) {
1025                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026         } else if (ttm->sg && gtt->gobj->import_attach) {
1027                 struct dma_buf_attachment *attach;
1028
1029                 attach = gtt->gobj->import_attach;
1030                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031                 ttm->sg = NULL;
1032         }
1033
1034         if (!gtt->bound)
1035                 return;
1036
1037         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038                 return;
1039
1040         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042         gtt->bound = false;
1043 }
1044
1045 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046                                        struct ttm_tt *ttm)
1047 {
1048         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
1050         if (gtt->usertask)
1051                 put_task_struct(gtt->usertask);
1052
1053         ttm_tt_fini(&gtt->ttm);
1054         kfree(gtt);
1055 }
1056
1057 /**
1058  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059  *
1060  * @bo: The buffer object to create a GTT ttm_tt object around
1061  * @page_flags: Page flags to be added to the ttm_tt object
1062  *
1063  * Called by ttm_tt_create().
1064  */
1065 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066                                            uint32_t page_flags)
1067 {
1068         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070         struct amdgpu_ttm_tt *gtt;
1071         enum ttm_caching caching;
1072
1073         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074         if (!gtt)
1075                 return NULL;
1076
1077         gtt->gobj = &bo->base;
1078         if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079                 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080         else
1081                 gtt->pool_id = abo->xcp_id;
1082
1083         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084                 caching = ttm_write_combined;
1085         else
1086                 caching = ttm_cached;
1087
1088         /* allocate space for the uninitialized page entries */
1089         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1090                 kfree(gtt);
1091                 return NULL;
1092         }
1093         return &gtt->ttm;
1094 }
1095
1096 /*
1097  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098  *
1099  * Map the pages of a ttm_tt object to an address space visible
1100  * to the underlying device.
1101  */
1102 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103                                   struct ttm_tt *ttm,
1104                                   struct ttm_operation_ctx *ctx)
1105 {
1106         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108         struct ttm_pool *pool;
1109         pgoff_t i;
1110         int ret;
1111
1112         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113         if (gtt->userptr) {
1114                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115                 if (!ttm->sg)
1116                         return -ENOMEM;
1117                 return 0;
1118         }
1119
1120         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121                 return 0;
1122
1123         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1125         else
1126                 pool = &adev->mman.bdev.pool;
1127         ret = ttm_pool_alloc(pool, ttm, ctx);
1128         if (ret)
1129                 return ret;
1130
1131         for (i = 0; i < ttm->num_pages; ++i)
1132                 ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134         return 0;
1135 }
1136
1137 /*
1138  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139  *
1140  * Unmaps pages of a ttm_tt object from the device address space and
1141  * unpopulates the page array backing it.
1142  */
1143 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144                                      struct ttm_tt *ttm)
1145 {
1146         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147         struct amdgpu_device *adev;
1148         struct ttm_pool *pool;
1149         pgoff_t i;
1150
1151         amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153         if (gtt->userptr) {
1154                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155                 kfree(ttm->sg);
1156                 ttm->sg = NULL;
1157                 return;
1158         }
1159
1160         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161                 return;
1162
1163         for (i = 0; i < ttm->num_pages; ++i)
1164                 ttm->pages[i]->mapping = NULL;
1165
1166         adev = amdgpu_ttm_adev(bdev);
1167
1168         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1170         else
1171                 pool = &adev->mman.bdev.pool;
1172
1173         return ttm_pool_free(pool, ttm);
1174 }
1175
1176 /**
1177  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178  * task
1179  *
1180  * @tbo: The ttm_buffer_object that contains the userptr
1181  * @user_addr:  The returned value
1182  */
1183 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184                               uint64_t *user_addr)
1185 {
1186         struct amdgpu_ttm_tt *gtt;
1187
1188         if (!tbo->ttm)
1189                 return -EINVAL;
1190
1191         gtt = (void *)tbo->ttm;
1192         *user_addr = gtt->userptr;
1193         return 0;
1194 }
1195
1196 /**
1197  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198  * task
1199  *
1200  * @bo: The ttm_buffer_object to bind this userptr to
1201  * @addr:  The address in the current tasks VM space to use
1202  * @flags: Requirements of userptr object.
1203  *
1204  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206  * initialize GPU VM for a KFD process.
1207  */
1208 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209                               uint64_t addr, uint32_t flags)
1210 {
1211         struct amdgpu_ttm_tt *gtt;
1212
1213         if (!bo->ttm) {
1214                 /* TODO: We want a separate TTM object type for userptrs */
1215                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216                 if (bo->ttm == NULL)
1217                         return -ENOMEM;
1218         }
1219
1220         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224         gtt->userptr = addr;
1225         gtt->userflags = flags;
1226
1227         if (gtt->usertask)
1228                 put_task_struct(gtt->usertask);
1229         gtt->usertask = current->group_leader;
1230         get_task_struct(gtt->usertask);
1231
1232         return 0;
1233 }
1234
1235 /*
1236  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237  */
1238 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239 {
1240         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242         if (gtt == NULL)
1243                 return NULL;
1244
1245         if (gtt->usertask == NULL)
1246                 return NULL;
1247
1248         return gtt->usertask->mm;
1249 }
1250
1251 /*
1252  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253  * address range for the current task.
1254  *
1255  */
1256 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257                                   unsigned long end, unsigned long *userptr)
1258 {
1259         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260         unsigned long size;
1261
1262         if (gtt == NULL || !gtt->userptr)
1263                 return false;
1264
1265         /* Return false if no part of the ttm_tt object lies within
1266          * the range
1267          */
1268         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269         if (gtt->userptr > end || gtt->userptr + size <= start)
1270                 return false;
1271
1272         if (userptr)
1273                 *userptr = gtt->userptr;
1274         return true;
1275 }
1276
1277 /*
1278  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279  */
1280 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281 {
1282         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284         if (gtt == NULL || !gtt->userptr)
1285                 return false;
1286
1287         return true;
1288 }
1289
1290 /*
1291  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292  */
1293 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294 {
1295         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297         if (gtt == NULL)
1298                 return false;
1299
1300         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301 }
1302
1303 /**
1304  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305  *
1306  * @ttm: The ttm_tt object to compute the flags for
1307  * @mem: The memory registry backing this ttm_tt object
1308  *
1309  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310  */
1311 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312 {
1313         uint64_t flags = 0;
1314
1315         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316                 flags |= AMDGPU_PTE_VALID;
1317
1318         if (mem && (mem->mem_type == TTM_PL_TT ||
1319                     mem->mem_type == AMDGPU_PL_DOORBELL ||
1320                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321                 flags |= AMDGPU_PTE_SYSTEM;
1322
1323                 if (ttm->caching == ttm_cached)
1324                         flags |= AMDGPU_PTE_SNOOPED;
1325         }
1326
1327         if (mem && mem->mem_type == TTM_PL_VRAM &&
1328                         mem->bus.caching == ttm_cached)
1329                 flags |= AMDGPU_PTE_SNOOPED;
1330
1331         return flags;
1332 }
1333
1334 /**
1335  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336  *
1337  * @adev: amdgpu_device pointer
1338  * @ttm: The ttm_tt object to compute the flags for
1339  * @mem: The memory registry backing this ttm_tt object
1340  *
1341  * Figure out the flags to use for a VM PTE (Page Table Entry).
1342  */
1343 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344                                  struct ttm_resource *mem)
1345 {
1346         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348         flags |= adev->gart.gart_pte_flags;
1349         flags |= AMDGPU_PTE_READABLE;
1350
1351         if (!amdgpu_ttm_tt_is_readonly(ttm))
1352                 flags |= AMDGPU_PTE_WRITEABLE;
1353
1354         return flags;
1355 }
1356
1357 /*
1358  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359  * object.
1360  *
1361  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364  * used to clean out a memory space.
1365  */
1366 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367                                             const struct ttm_place *place)
1368 {
1369         struct dma_resv_iter resv_cursor;
1370         struct dma_fence *f;
1371
1372         if (!amdgpu_bo_is_amdgpu_bo(bo))
1373                 return ttm_bo_eviction_valuable(bo, place);
1374
1375         /* Swapout? */
1376         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377                 return true;
1378
1379         if (bo->type == ttm_bo_type_kernel &&
1380             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381                 return false;
1382
1383         /* If bo is a KFD BO, check if the bo belongs to the current process.
1384          * If true, then return false as any KFD process needs all its BOs to
1385          * be resident to run successfully
1386          */
1387         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1389                 if (amdkfd_fence_check_mm(f, current->mm))
1390                         return false;
1391         }
1392
1393         /* Preemptible BOs don't own system resources managed by the
1394          * driver (pages, VRAM, GART space). They point to resources
1395          * owned by someone else (e.g. pageable memory in user mode
1396          * or a DMABuf). They are used in a preemptible context so we
1397          * can guarantee no deadlocks and good QoS in case of MMU
1398          * notifiers or DMABuf move notifiers from the resource owner.
1399          */
1400         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401                 return false;
1402
1403         if (bo->resource->mem_type == TTM_PL_TT &&
1404             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405                 return false;
1406
1407         return ttm_bo_eviction_valuable(bo, place);
1408 }
1409
1410 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411                                       void *buf, size_t size, bool write)
1412 {
1413         while (size) {
1414                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415                 uint64_t bytes = 4 - (pos & 0x3);
1416                 uint32_t shift = (pos & 0x3) * 8;
1417                 uint32_t mask = 0xffffffff << shift;
1418                 uint32_t value = 0;
1419
1420                 if (size < bytes) {
1421                         mask &= 0xffffffff >> (bytes - size) * 8;
1422                         bytes = size;
1423                 }
1424
1425                 if (mask != 0xffffffff) {
1426                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427                         if (write) {
1428                                 value &= ~mask;
1429                                 value |= (*(uint32_t *)buf << shift) & mask;
1430                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431                         } else {
1432                                 value = (value & mask) >> shift;
1433                                 memcpy(buf, &value, bytes);
1434                         }
1435                 } else {
1436                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437                 }
1438
1439                 pos += bytes;
1440                 buf += bytes;
1441                 size -= bytes;
1442         }
1443 }
1444
1445 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446                                         unsigned long offset, void *buf,
1447                                         int len, int write)
1448 {
1449         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451         struct amdgpu_res_cursor src_mm;
1452         struct amdgpu_job *job;
1453         struct dma_fence *fence;
1454         uint64_t src_addr, dst_addr;
1455         unsigned int num_dw;
1456         int r, idx;
1457
1458         if (len != PAGE_SIZE)
1459                 return -EINVAL;
1460
1461         if (!adev->mman.sdma_access_ptr)
1462                 return -EACCES;
1463
1464         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465                 return -ENODEV;
1466
1467         if (write)
1468                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1473                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474                                      &job);
1475         if (r)
1476                 goto out;
1477
1478         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480                 src_mm.start;
1481         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482         if (write)
1483                 swap(src_addr, dst_addr);
1484
1485         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486                                 PAGE_SIZE, false);
1487
1488         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489         WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491         fence = amdgpu_job_submit(job);
1492
1493         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494                 r = -ETIMEDOUT;
1495         dma_fence_put(fence);
1496
1497         if (!(r || write))
1498                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1499 out:
1500         drm_dev_exit(idx);
1501         return r;
1502 }
1503
1504 /**
1505  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506  *
1507  * @bo:  The buffer object to read/write
1508  * @offset:  Offset into buffer object
1509  * @buf:  Secondary buffer to write/read from
1510  * @len: Length in bytes of access
1511  * @write:  true if writing
1512  *
1513  * This is used to access VRAM that backs a buffer object via MMIO
1514  * access for debugging purposes.
1515  */
1516 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517                                     unsigned long offset, void *buf, int len,
1518                                     int write)
1519 {
1520         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522         struct amdgpu_res_cursor cursor;
1523         int ret = 0;
1524
1525         if (bo->resource->mem_type != TTM_PL_VRAM)
1526                 return -EIO;
1527
1528         if (amdgpu_device_has_timeouts_enabled(adev) &&
1529                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530                 return len;
1531
1532         amdgpu_res_first(bo->resource, offset, len, &cursor);
1533         while (cursor.remaining) {
1534                 size_t count, size = cursor.size;
1535                 loff_t pos = cursor.start;
1536
1537                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538                 size -= count;
1539                 if (size) {
1540                         /* using MM to access rest vram and handle un-aligned address */
1541                         pos += count;
1542                         buf += count;
1543                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544                 }
1545
1546                 ret += cursor.size;
1547                 buf += cursor.size;
1548                 amdgpu_res_next(&cursor, cursor.size);
1549         }
1550
1551         return ret;
1552 }
1553
1554 static void
1555 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556 {
1557         amdgpu_bo_move_notify(bo, false);
1558 }
1559
1560 static struct ttm_device_funcs amdgpu_bo_driver = {
1561         .ttm_tt_create = &amdgpu_ttm_tt_create,
1562         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566         .evict_flags = &amdgpu_evict_flags,
1567         .move = &amdgpu_bo_move,
1568         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569         .release_notify = &amdgpu_bo_release_notify,
1570         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572         .access_memory = &amdgpu_ttm_access_memory,
1573 };
1574
1575 /*
1576  * Firmware Reservation functions
1577  */
1578 /**
1579  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580  *
1581  * @adev: amdgpu_device pointer
1582  *
1583  * free fw reserved vram if it has been reserved.
1584  */
1585 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586 {
1587         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588                 NULL, &adev->mman.fw_vram_usage_va);
1589 }
1590
1591 /*
1592  * Driver Reservation functions
1593  */
1594 /**
1595  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596  *
1597  * @adev: amdgpu_device pointer
1598  *
1599  * free drv reserved vram if it has been reserved.
1600  */
1601 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602 {
1603         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604                                                   NULL,
1605                                                   &adev->mman.drv_vram_usage_va);
1606 }
1607
1608 /**
1609  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610  *
1611  * @adev: amdgpu_device pointer
1612  *
1613  * create bo vram reservation from fw.
1614  */
1615 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616 {
1617         uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619         adev->mman.fw_vram_usage_va = NULL;
1620         adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622         if (adev->mman.fw_vram_usage_size == 0 ||
1623             adev->mman.fw_vram_usage_size > vram_size)
1624                 return 0;
1625
1626         return amdgpu_bo_create_kernel_at(adev,
1627                                           adev->mman.fw_vram_usage_start_offset,
1628                                           adev->mman.fw_vram_usage_size,
1629                                           &adev->mman.fw_vram_usage_reserved_bo,
1630                                           &adev->mman.fw_vram_usage_va);
1631 }
1632
1633 /**
1634  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635  *
1636  * @adev: amdgpu_device pointer
1637  *
1638  * create bo vram reservation from drv.
1639  */
1640 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641 {
1642         u64 vram_size = adev->gmc.visible_vram_size;
1643
1644         adev->mman.drv_vram_usage_va = NULL;
1645         adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647         if (adev->mman.drv_vram_usage_size == 0 ||
1648             adev->mman.drv_vram_usage_size > vram_size)
1649                 return 0;
1650
1651         return amdgpu_bo_create_kernel_at(adev,
1652                                           adev->mman.drv_vram_usage_start_offset,
1653                                           adev->mman.drv_vram_usage_size,
1654                                           &adev->mman.drv_vram_usage_reserved_bo,
1655                                           &adev->mman.drv_vram_usage_va);
1656 }
1657
1658 /*
1659  * Memoy training reservation functions
1660  */
1661
1662 /**
1663  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664  *
1665  * @adev: amdgpu_device pointer
1666  *
1667  * free memory training reserved vram if it has been reserved.
1668  */
1669 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670 {
1671         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675         ctx->c2p_bo = NULL;
1676
1677         return 0;
1678 }
1679
1680 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681                                                 uint32_t reserve_size)
1682 {
1683         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685         memset(ctx, 0, sizeof(*ctx));
1686
1687         ctx->c2p_train_data_offset =
1688                 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689         ctx->p2c_train_data_offset =
1690                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691         ctx->train_data_size =
1692                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695                         ctx->train_data_size,
1696                         ctx->p2c_train_data_offset,
1697                         ctx->c2p_train_data_offset);
1698 }
1699
1700 /*
1701  * reserve TMR memory at the top of VRAM which holds
1702  * IP Discovery data and is protected by PSP.
1703  */
1704 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705 {
1706         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707         bool mem_train_support = false;
1708         uint32_t reserve_size = 0;
1709         int ret;
1710
1711         if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1713                         mem_train_support = true;
1714                 else
1715                         DRM_DEBUG("memory training does not support!\n");
1716         }
1717
1718         /*
1719          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721          *
1722          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723          * discovery data and G6 memory training data respectively
1724          */
1725         if (adev->bios)
1726                 reserve_size =
1727                         amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729         if (!adev->bios &&
1730             amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731                 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732         else if (!reserve_size)
1733                 reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735         if (mem_train_support) {
1736                 /* reserve vram for mem train according to TMR location */
1737                 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738                 ret = amdgpu_bo_create_kernel_at(adev,
1739                                                  ctx->c2p_train_data_offset,
1740                                                  ctx->train_data_size,
1741                                                  &ctx->c2p_bo,
1742                                                  NULL);
1743                 if (ret) {
1744                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745                         amdgpu_ttm_training_reserve_vram_fini(adev);
1746                         return ret;
1747                 }
1748                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749         }
1750
1751         if (!adev->gmc.is_app_apu) {
1752                 ret = amdgpu_bo_create_kernel_at(
1753                         adev, adev->gmc.real_vram_size - reserve_size,
1754                         reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755                 if (ret) {
1756                         DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757                         amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758                                               NULL, NULL);
1759                         return ret;
1760                 }
1761         } else {
1762                 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763         }
1764
1765         return 0;
1766 }
1767
1768 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769 {
1770         int i;
1771
1772         if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773                 return 0;
1774
1775         adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776                                        sizeof(*adev->mman.ttm_pools),
1777                                        GFP_KERNEL);
1778         if (!adev->mman.ttm_pools)
1779                 return -ENOMEM;
1780
1781         for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782                 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783                               adev->gmc.mem_partitions[i].numa.node,
1784                               false, false);
1785         }
1786         return 0;
1787 }
1788
1789 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790 {
1791         int i;
1792
1793         if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794                 return;
1795
1796         for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797                 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799         kfree(adev->mman.ttm_pools);
1800         adev->mman.ttm_pools = NULL;
1801 }
1802
1803 /*
1804  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805  * gtt/vram related fields.
1806  *
1807  * This initializes all of the memory space pools that the TTM layer
1808  * will need such as the GTT space (system memory mapped to the device),
1809  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810  * can be mapped per VMID.
1811  */
1812 int amdgpu_ttm_init(struct amdgpu_device *adev)
1813 {
1814         uint64_t gtt_size;
1815         int r;
1816
1817         mutex_init(&adev->mman.gtt_window_lock);
1818
1819         /* No others user of address space so set it to 0 */
1820         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821                                adev_to_drm(adev)->anon_inode->i_mapping,
1822                                adev_to_drm(adev)->vma_offset_manager,
1823                                adev->need_swiotlb,
1824                                dma_addressing_limited(adev->dev));
1825         if (r) {
1826                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827                 return r;
1828         }
1829
1830         r = amdgpu_ttm_pools_init(adev);
1831         if (r) {
1832                 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833                 return r;
1834         }
1835         adev->mman.initialized = true;
1836
1837         /* Initialize VRAM pool with all of VRAM divided into pages */
1838         r = amdgpu_vram_mgr_init(adev);
1839         if (r) {
1840                 DRM_ERROR("Failed initializing VRAM heap.\n");
1841                 return r;
1842         }
1843
1844         /* Change the size here instead of the init above so only lpfn is affected */
1845         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846 #ifdef CONFIG_64BIT
1847 #ifdef CONFIG_X86
1848         if (adev->gmc.xgmi.connected_to_cpu)
1849                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850                                 adev->gmc.visible_vram_size);
1851
1852         else if (adev->gmc.is_app_apu)
1853                 DRM_DEBUG_DRIVER(
1854                         "No need to ioremap when real vram size is 0\n");
1855         else
1856 #endif
1857                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858                                 adev->gmc.visible_vram_size);
1859 #endif
1860
1861         /*
1862          *The reserved vram for firmware must be pinned to the specified
1863          *place on the VRAM, so reserve it early.
1864          */
1865         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866         if (r)
1867                 return r;
1868
1869         /*
1870          *The reserved vram for driver must be pinned to the specified
1871          *place on the VRAM, so reserve it early.
1872          */
1873         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874         if (r)
1875                 return r;
1876
1877         /*
1878          * only NAVI10 and onwards ASIC support for IP discovery.
1879          * If IP discovery enabled, a block of memory should be
1880          * reserved for IP discovey.
1881          */
1882         if (adev->mman.discovery_bin) {
1883                 r = amdgpu_ttm_reserve_tmr(adev);
1884                 if (r)
1885                         return r;
1886         }
1887
1888         /* allocate memory as required for VGA
1889          * This is used for VGA emulation and pre-OS scanout buffers to
1890          * avoid display artifacts while transitioning between pre-OS
1891          * and driver.
1892          */
1893         if (!adev->gmc.is_app_apu) {
1894                 r = amdgpu_bo_create_kernel_at(adev, 0,
1895                                                adev->mman.stolen_vga_size,
1896                                                &adev->mman.stolen_vga_memory,
1897                                                NULL);
1898                 if (r)
1899                         return r;
1900
1901                 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902                                                adev->mman.stolen_extended_size,
1903                                                &adev->mman.stolen_extended_memory,
1904                                                NULL);
1905
1906                 if (r)
1907                         return r;
1908
1909                 r = amdgpu_bo_create_kernel_at(adev,
1910                                                adev->mman.stolen_reserved_offset,
1911                                                adev->mman.stolen_reserved_size,
1912                                                &adev->mman.stolen_reserved_memory,
1913                                                NULL);
1914                 if (r)
1915                         return r;
1916         } else {
1917                 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918         }
1919
1920         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921                  (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923         /* Compute GTT size, either based on TTM limit
1924          * or whatever the user passed on module init.
1925          */
1926         if (amdgpu_gtt_size == -1)
1927                 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928         else
1929                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931         /* Initialize GTT memory pool */
1932         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933         if (r) {
1934                 DRM_ERROR("Failed initializing GTT heap.\n");
1935                 return r;
1936         }
1937         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938                  (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940         /* Initiailize doorbell pool on PCI BAR */
1941         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942         if (r) {
1943                 DRM_ERROR("Failed initializing doorbell heap.\n");
1944                 return r;
1945         }
1946
1947         /* Create a boorbell page for kernel usages */
1948         r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949         if (r) {
1950                 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951                 return r;
1952         }
1953
1954         /* Initialize preemptible memory pool */
1955         r = amdgpu_preempt_mgr_init(adev);
1956         if (r) {
1957                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958                 return r;
1959         }
1960
1961         /* Initialize various on-chip memory pools */
1962         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963         if (r) {
1964                 DRM_ERROR("Failed initializing GDS heap.\n");
1965                 return r;
1966         }
1967
1968         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969         if (r) {
1970                 DRM_ERROR("Failed initializing gws heap.\n");
1971                 return r;
1972         }
1973
1974         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975         if (r) {
1976                 DRM_ERROR("Failed initializing oa heap.\n");
1977                 return r;
1978         }
1979         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980                                 AMDGPU_GEM_DOMAIN_GTT,
1981                                 &adev->mman.sdma_access_bo, NULL,
1982                                 &adev->mman.sdma_access_ptr))
1983                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985         return 0;
1986 }
1987
1988 /*
1989  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990  */
1991 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992 {
1993         int idx;
1994
1995         if (!adev->mman.initialized)
1996                 return;
1997
1998         amdgpu_ttm_pools_fini(adev);
1999
2000         amdgpu_ttm_training_reserve_vram_fini(adev);
2001         /* return the stolen vga memory back to VRAM */
2002         if (!adev->gmc.is_app_apu) {
2003                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004                 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005                 /* return the FW reserved memory back to VRAM */
2006                 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007                                       NULL);
2008                 if (adev->mman.stolen_reserved_size)
2009                         amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010                                               NULL, NULL);
2011         }
2012         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013                                         &adev->mman.sdma_access_ptr);
2014         amdgpu_ttm_fw_reserve_vram_fini(adev);
2015         amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019                 if (adev->mman.aper_base_kaddr)
2020                         iounmap(adev->mman.aper_base_kaddr);
2021                 adev->mman.aper_base_kaddr = NULL;
2022
2023                 drm_dev_exit(idx);
2024         }
2025
2026         amdgpu_vram_mgr_fini(adev);
2027         amdgpu_gtt_mgr_fini(adev);
2028         amdgpu_preempt_mgr_fini(adev);
2029         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032         ttm_device_fini(&adev->mman.bdev);
2033         adev->mman.initialized = false;
2034         DRM_INFO("amdgpu: ttm finalized\n");
2035 }
2036
2037 /**
2038  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039  *
2040  * @adev: amdgpu_device pointer
2041  * @enable: true when we can use buffer functions.
2042  *
2043  * Enable/disable use of buffer functions during suspend/resume. This should
2044  * only be called at bootup or when userspace isn't running.
2045  */
2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047 {
2048         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049         uint64_t size;
2050         int r;
2051
2052         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053             adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054                 return;
2055
2056         if (enable) {
2057                 struct amdgpu_ring *ring;
2058                 struct drm_gpu_scheduler *sched;
2059
2060                 ring = adev->mman.buffer_funcs_ring;
2061                 sched = &ring->sched;
2062                 r = drm_sched_entity_init(&adev->mman.high_pr,
2063                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2064                                           1, NULL);
2065                 if (r) {
2066                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067                                   r);
2068                         return;
2069                 }
2070
2071                 r = drm_sched_entity_init(&adev->mman.low_pr,
2072                                           DRM_SCHED_PRIORITY_NORMAL, &sched,
2073                                           1, NULL);
2074                 if (r) {
2075                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076                                   r);
2077                         goto error_free_entity;
2078                 }
2079         } else {
2080                 drm_sched_entity_destroy(&adev->mman.high_pr);
2081                 drm_sched_entity_destroy(&adev->mman.low_pr);
2082                 dma_fence_put(man->move);
2083                 man->move = NULL;
2084         }
2085
2086         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087         if (enable)
2088                 size = adev->gmc.real_vram_size;
2089         else
2090                 size = adev->gmc.visible_vram_size;
2091         man->size = size;
2092         adev->mman.buffer_funcs_enabled = enable;
2093
2094         return;
2095
2096 error_free_entity:
2097         drm_sched_entity_destroy(&adev->mman.high_pr);
2098 }
2099
2100 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101                                   bool direct_submit,
2102                                   unsigned int num_dw,
2103                                   struct dma_resv *resv,
2104                                   bool vm_needs_flush,
2105                                   struct amdgpu_job **job,
2106                                   bool delayed)
2107 {
2108         enum amdgpu_ib_pool_type pool = direct_submit ?
2109                 AMDGPU_IB_POOL_DIRECT :
2110                 AMDGPU_IB_POOL_DELAYED;
2111         int r;
2112         struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113                                                     &adev->mman.high_pr;
2114         r = amdgpu_job_alloc_with_ib(adev, entity,
2115                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2116                                      num_dw * 4, pool, job);
2117         if (r)
2118                 return r;
2119
2120         if (vm_needs_flush) {
2121                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122                                                         adev->gmc.pdb0_bo :
2123                                                         adev->gart.bo);
2124                 (*job)->vm_needs_flush = true;
2125         }
2126         if (!resv)
2127                 return 0;
2128
2129         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130                                                    DMA_RESV_USAGE_BOOKKEEP);
2131 }
2132
2133 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134                        uint64_t dst_offset, uint32_t byte_count,
2135                        struct dma_resv *resv,
2136                        struct dma_fence **fence, bool direct_submit,
2137                        bool vm_needs_flush, bool tmz)
2138 {
2139         struct amdgpu_device *adev = ring->adev;
2140         unsigned int num_loops, num_dw;
2141         struct amdgpu_job *job;
2142         uint32_t max_bytes;
2143         unsigned int i;
2144         int r;
2145
2146         if (!direct_submit && !ring->sched.ready) {
2147                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2148                 return -EINVAL;
2149         }
2150
2151         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155                                    resv, vm_needs_flush, &job, false);
2156         if (r)
2157                 return r;
2158
2159         for (i = 0; i < num_loops; i++) {
2160                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163                                         dst_offset, cur_size_in_bytes, tmz);
2164
2165                 src_offset += cur_size_in_bytes;
2166                 dst_offset += cur_size_in_bytes;
2167                 byte_count -= cur_size_in_bytes;
2168         }
2169
2170         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171         WARN_ON(job->ibs[0].length_dw > num_dw);
2172         if (direct_submit)
2173                 r = amdgpu_job_submit_direct(job, ring, fence);
2174         else
2175                 *fence = amdgpu_job_submit(job);
2176         if (r)
2177                 goto error_free;
2178
2179         return r;
2180
2181 error_free:
2182         amdgpu_job_free(job);
2183         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184         return r;
2185 }
2186
2187 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188                                uint64_t dst_addr, uint32_t byte_count,
2189                                struct dma_resv *resv,
2190                                struct dma_fence **fence,
2191                                bool vm_needs_flush, bool delayed)
2192 {
2193         struct amdgpu_device *adev = ring->adev;
2194         unsigned int num_loops, num_dw;
2195         struct amdgpu_job *job;
2196         uint32_t max_bytes;
2197         unsigned int i;
2198         int r;
2199
2200         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204                                    &job, delayed);
2205         if (r)
2206                 return r;
2207
2208         for (i = 0; i < num_loops; i++) {
2209                 uint32_t cur_size = min(byte_count, max_bytes);
2210
2211                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212                                         cur_size);
2213
2214                 dst_addr += cur_size;
2215                 byte_count -= cur_size;
2216         }
2217
2218         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219         WARN_ON(job->ibs[0].length_dw > num_dw);
2220         *fence = amdgpu_job_submit(job);
2221         return 0;
2222 }
2223
2224 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225                         uint32_t src_data,
2226                         struct dma_resv *resv,
2227                         struct dma_fence **f,
2228                         bool delayed)
2229 {
2230         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232         struct dma_fence *fence = NULL;
2233         struct amdgpu_res_cursor dst;
2234         int r;
2235
2236         if (!adev->mman.buffer_funcs_enabled) {
2237                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238                 return -EINVAL;
2239         }
2240
2241         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242
2243         mutex_lock(&adev->mman.gtt_window_lock);
2244         while (dst.remaining) {
2245                 struct dma_fence *next;
2246                 uint64_t cur_size, to;
2247
2248                 /* Never fill more than 256MiB at once to avoid timeouts */
2249                 cur_size = min(dst.size, 256ULL << 20);
2250
2251                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252                                           1, ring, false, &cur_size, &to);
2253                 if (r)
2254                         goto error;
2255
2256                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257                                         &next, true, delayed);
2258                 if (r)
2259                         goto error;
2260
2261                 dma_fence_put(fence);
2262                 fence = next;
2263
2264                 amdgpu_res_next(&dst, cur_size);
2265         }
2266 error:
2267         mutex_unlock(&adev->mman.gtt_window_lock);
2268         if (f)
2269                 *f = dma_fence_get(fence);
2270         dma_fence_put(fence);
2271         return r;
2272 }
2273
2274 /**
2275  * amdgpu_ttm_evict_resources - evict memory buffers
2276  * @adev: amdgpu device object
2277  * @mem_type: evicted BO's memory type
2278  *
2279  * Evicts all @mem_type buffers on the lru list of the memory type.
2280  *
2281  * Returns:
2282  * 0 for success or a negative error code on failure.
2283  */
2284 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285 {
2286         struct ttm_resource_manager *man;
2287
2288         switch (mem_type) {
2289         case TTM_PL_VRAM:
2290         case TTM_PL_TT:
2291         case AMDGPU_PL_GWS:
2292         case AMDGPU_PL_GDS:
2293         case AMDGPU_PL_OA:
2294                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295                 break;
2296         default:
2297                 DRM_ERROR("Trying to evict invalid memory type\n");
2298                 return -EINVAL;
2299         }
2300
2301         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302 }
2303
2304 #if defined(CONFIG_DEBUG_FS)
2305
2306 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307 {
2308         struct amdgpu_device *adev = m->private;
2309
2310         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311 }
2312
2313 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315 /*
2316  * amdgpu_ttm_vram_read - Linear read access to VRAM
2317  *
2318  * Accesses VRAM via MMIO for debugging purposes.
2319  */
2320 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321                                     size_t size, loff_t *pos)
2322 {
2323         struct amdgpu_device *adev = file_inode(f)->i_private;
2324         ssize_t result = 0;
2325
2326         if (size & 0x3 || *pos & 0x3)
2327                 return -EINVAL;
2328
2329         if (*pos >= adev->gmc.mc_vram_size)
2330                 return -ENXIO;
2331
2332         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333         while (size) {
2334                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338                 if (copy_to_user(buf, value, bytes))
2339                         return -EFAULT;
2340
2341                 result += bytes;
2342                 buf += bytes;
2343                 *pos += bytes;
2344                 size -= bytes;
2345         }
2346
2347         return result;
2348 }
2349
2350 /*
2351  * amdgpu_ttm_vram_write - Linear write access to VRAM
2352  *
2353  * Accesses VRAM via MMIO for debugging purposes.
2354  */
2355 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356                                     size_t size, loff_t *pos)
2357 {
2358         struct amdgpu_device *adev = file_inode(f)->i_private;
2359         ssize_t result = 0;
2360         int r;
2361
2362         if (size & 0x3 || *pos & 0x3)
2363                 return -EINVAL;
2364
2365         if (*pos >= adev->gmc.mc_vram_size)
2366                 return -ENXIO;
2367
2368         while (size) {
2369                 uint32_t value;
2370
2371                 if (*pos >= adev->gmc.mc_vram_size)
2372                         return result;
2373
2374                 r = get_user(value, (uint32_t *)buf);
2375                 if (r)
2376                         return r;
2377
2378                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379
2380                 result += 4;
2381                 buf += 4;
2382                 *pos += 4;
2383                 size -= 4;
2384         }
2385
2386         return result;
2387 }
2388
2389 static const struct file_operations amdgpu_ttm_vram_fops = {
2390         .owner = THIS_MODULE,
2391         .read = amdgpu_ttm_vram_read,
2392         .write = amdgpu_ttm_vram_write,
2393         .llseek = default_llseek,
2394 };
2395
2396 /*
2397  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398  *
2399  * This function is used to read memory that has been mapped to the
2400  * GPU and the known addresses are not physical addresses but instead
2401  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402  */
2403 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404                                  size_t size, loff_t *pos)
2405 {
2406         struct amdgpu_device *adev = file_inode(f)->i_private;
2407         struct iommu_domain *dom;
2408         ssize_t result = 0;
2409         int r;
2410
2411         /* retrieve the IOMMU domain if any for this device */
2412         dom = iommu_get_domain_for_dev(adev->dev);
2413
2414         while (size) {
2415                 phys_addr_t addr = *pos & PAGE_MASK;
2416                 loff_t off = *pos & ~PAGE_MASK;
2417                 size_t bytes = PAGE_SIZE - off;
2418                 unsigned long pfn;
2419                 struct page *p;
2420                 void *ptr;
2421
2422                 bytes = min(bytes, size);
2423
2424                 /* Translate the bus address to a physical address.  If
2425                  * the domain is NULL it means there is no IOMMU active
2426                  * and the address translation is the identity
2427                  */
2428                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430                 pfn = addr >> PAGE_SHIFT;
2431                 if (!pfn_valid(pfn))
2432                         return -EPERM;
2433
2434                 p = pfn_to_page(pfn);
2435                 if (p->mapping != adev->mman.bdev.dev_mapping)
2436                         return -EPERM;
2437
2438                 ptr = kmap_local_page(p);
2439                 r = copy_to_user(buf, ptr + off, bytes);
2440                 kunmap_local(ptr);
2441                 if (r)
2442                         return -EFAULT;
2443
2444                 size -= bytes;
2445                 *pos += bytes;
2446                 result += bytes;
2447         }
2448
2449         return result;
2450 }
2451
2452 /*
2453  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454  *
2455  * This function is used to write memory that has been mapped to the
2456  * GPU and the known addresses are not physical addresses but instead
2457  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458  */
2459 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460                                  size_t size, loff_t *pos)
2461 {
2462         struct amdgpu_device *adev = file_inode(f)->i_private;
2463         struct iommu_domain *dom;
2464         ssize_t result = 0;
2465         int r;
2466
2467         dom = iommu_get_domain_for_dev(adev->dev);
2468
2469         while (size) {
2470                 phys_addr_t addr = *pos & PAGE_MASK;
2471                 loff_t off = *pos & ~PAGE_MASK;
2472                 size_t bytes = PAGE_SIZE - off;
2473                 unsigned long pfn;
2474                 struct page *p;
2475                 void *ptr;
2476
2477                 bytes = min(bytes, size);
2478
2479                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481                 pfn = addr >> PAGE_SHIFT;
2482                 if (!pfn_valid(pfn))
2483                         return -EPERM;
2484
2485                 p = pfn_to_page(pfn);
2486                 if (p->mapping != adev->mman.bdev.dev_mapping)
2487                         return -EPERM;
2488
2489                 ptr = kmap_local_page(p);
2490                 r = copy_from_user(ptr + off, buf, bytes);
2491                 kunmap_local(ptr);
2492                 if (r)
2493                         return -EFAULT;
2494
2495                 size -= bytes;
2496                 *pos += bytes;
2497                 result += bytes;
2498         }
2499
2500         return result;
2501 }
2502
2503 static const struct file_operations amdgpu_ttm_iomem_fops = {
2504         .owner = THIS_MODULE,
2505         .read = amdgpu_iomem_read,
2506         .write = amdgpu_iomem_write,
2507         .llseek = default_llseek
2508 };
2509
2510 #endif
2511
2512 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513 {
2514 #if defined(CONFIG_DEBUG_FS)
2515         struct drm_minor *minor = adev_to_drm(adev)->primary;
2516         struct dentry *root = minor->debugfs_root;
2517
2518         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521                             &amdgpu_ttm_iomem_fops);
2522         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523                             &amdgpu_ttm_page_pool_fops);
2524         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525                                                              TTM_PL_VRAM),
2526                                             root, "amdgpu_vram_mm");
2527         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528                                                              TTM_PL_TT),
2529                                             root, "amdgpu_gtt_mm");
2530         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531                                                              AMDGPU_PL_GDS),
2532                                             root, "amdgpu_gds_mm");
2533         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534                                                              AMDGPU_PL_GWS),
2535                                             root, "amdgpu_gws_mm");
2536         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537                                                              AMDGPU_PL_OA),
2538                                             root, "amdgpu_oa_mm");
2539
2540 #endif
2541 }