469d65b2112285f47a222cb83515500b4df6f08c
[sfrench/cifs-2.6.git] / tools / perf / bench / numa.c
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6
7 #include <inttypes.h>
8 /* For the CLR_() macros */
9 #include <pthread.h>
10
11 #include "../perf.h"
12 #include "../builtin.h"
13 #include "../util/util.h"
14 #include <subcmd/parse-options.h>
15 #include "../util/cloexec.h"
16
17 #include "bench.h"
18
19 #include <errno.h>
20 #include <sched.h>
21 #include <stdio.h>
22 #include <assert.h>
23 #include <malloc.h>
24 #include <signal.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <sys/mman.h>
29 #include <sys/time.h>
30 #include <sys/resource.h>
31 #include <sys/wait.h>
32 #include <sys/prctl.h>
33 #include <sys/types.h>
34 #include <linux/kernel.h>
35 #include <linux/time64.h>
36
37 #include <numa.h>
38 #include <numaif.h>
39
40 /*
41  * Regular printout to the terminal, supressed if -q is specified:
42  */
43 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
44
45 /*
46  * Debug printf:
47  */
48 #undef dprintf
49 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
50
51 struct thread_data {
52         int                     curr_cpu;
53         cpu_set_t               bind_cpumask;
54         int                     bind_node;
55         u8                      *process_data;
56         int                     process_nr;
57         int                     thread_nr;
58         int                     task_nr;
59         unsigned int            loops_done;
60         u64                     val;
61         u64                     runtime_ns;
62         u64                     system_time_ns;
63         u64                     user_time_ns;
64         double                  speed_gbs;
65         pthread_mutex_t         *process_lock;
66 };
67
68 /* Parameters set by options: */
69
70 struct params {
71         /* Startup synchronization: */
72         bool                    serialize_startup;
73
74         /* Task hierarchy: */
75         int                     nr_proc;
76         int                     nr_threads;
77
78         /* Working set sizes: */
79         const char              *mb_global_str;
80         const char              *mb_proc_str;
81         const char              *mb_proc_locked_str;
82         const char              *mb_thread_str;
83
84         double                  mb_global;
85         double                  mb_proc;
86         double                  mb_proc_locked;
87         double                  mb_thread;
88
89         /* Access patterns to the working set: */
90         bool                    data_reads;
91         bool                    data_writes;
92         bool                    data_backwards;
93         bool                    data_zero_memset;
94         bool                    data_rand_walk;
95         u32                     nr_loops;
96         u32                     nr_secs;
97         u32                     sleep_usecs;
98
99         /* Working set initialization: */
100         bool                    init_zero;
101         bool                    init_random;
102         bool                    init_cpu0;
103
104         /* Misc options: */
105         int                     show_details;
106         int                     run_all;
107         int                     thp;
108
109         long                    bytes_global;
110         long                    bytes_process;
111         long                    bytes_process_locked;
112         long                    bytes_thread;
113
114         int                     nr_tasks;
115         bool                    show_quiet;
116
117         bool                    show_convergence;
118         bool                    measure_convergence;
119
120         int                     perturb_secs;
121         int                     nr_cpus;
122         int                     nr_nodes;
123
124         /* Affinity options -C and -N: */
125         char                    *cpu_list_str;
126         char                    *node_list_str;
127 };
128
129
130 /* Global, read-writable area, accessible to all processes and threads: */
131
132 struct global_info {
133         u8                      *data;
134
135         pthread_mutex_t         startup_mutex;
136         int                     nr_tasks_started;
137
138         pthread_mutex_t         startup_done_mutex;
139
140         pthread_mutex_t         start_work_mutex;
141         int                     nr_tasks_working;
142
143         pthread_mutex_t         stop_work_mutex;
144         u64                     bytes_done;
145
146         struct thread_data      *threads;
147
148         /* Convergence latency measurement: */
149         bool                    all_converged;
150         bool                    stop_work;
151
152         int                     print_once;
153
154         struct params           p;
155 };
156
157 static struct global_info       *g = NULL;
158
159 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
160 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
161
162 struct params p0;
163
164 static const struct option options[] = {
165         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
166         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
167
168         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
169         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
170         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
171         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
172
173         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
174         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
175         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
176
177         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
178         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
179         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
180         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
181         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
182
183
184         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
185         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
186         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
187         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
188
189         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
190         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
191         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
192         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
193                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
194         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
195         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
196         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
197
198         /* Special option string parsing callbacks: */
199         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
200                         "bind the first N tasks to these specific cpus (the rest is unbound)",
201                         parse_cpus_opt),
202         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
203                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
204                         parse_nodes_opt),
205         OPT_END()
206 };
207
208 static const char * const bench_numa_usage[] = {
209         "perf bench numa <options>",
210         NULL
211 };
212
213 static const char * const numa_usage[] = {
214         "perf bench numa mem [<options>]",
215         NULL
216 };
217
218 static cpu_set_t bind_to_cpu(int target_cpu)
219 {
220         cpu_set_t orig_mask, mask;
221         int ret;
222
223         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
224         BUG_ON(ret);
225
226         CPU_ZERO(&mask);
227
228         if (target_cpu == -1) {
229                 int cpu;
230
231                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
232                         CPU_SET(cpu, &mask);
233         } else {
234                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
235                 CPU_SET(target_cpu, &mask);
236         }
237
238         ret = sched_setaffinity(0, sizeof(mask), &mask);
239         BUG_ON(ret);
240
241         return orig_mask;
242 }
243
244 static cpu_set_t bind_to_node(int target_node)
245 {
246         int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
247         cpu_set_t orig_mask, mask;
248         int cpu;
249         int ret;
250
251         BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
252         BUG_ON(!cpus_per_node);
253
254         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
255         BUG_ON(ret);
256
257         CPU_ZERO(&mask);
258
259         if (target_node == -1) {
260                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
261                         CPU_SET(cpu, &mask);
262         } else {
263                 int cpu_start = (target_node + 0) * cpus_per_node;
264                 int cpu_stop  = (target_node + 1) * cpus_per_node;
265
266                 BUG_ON(cpu_stop > g->p.nr_cpus);
267
268                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
269                         CPU_SET(cpu, &mask);
270         }
271
272         ret = sched_setaffinity(0, sizeof(mask), &mask);
273         BUG_ON(ret);
274
275         return orig_mask;
276 }
277
278 static void bind_to_cpumask(cpu_set_t mask)
279 {
280         int ret;
281
282         ret = sched_setaffinity(0, sizeof(mask), &mask);
283         BUG_ON(ret);
284 }
285
286 static void mempol_restore(void)
287 {
288         int ret;
289
290         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
291
292         BUG_ON(ret);
293 }
294
295 static void bind_to_memnode(int node)
296 {
297         unsigned long nodemask;
298         int ret;
299
300         if (node == -1)
301                 return;
302
303         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
304         nodemask = 1L << node;
305
306         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
307         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
308
309         BUG_ON(ret);
310 }
311
312 #define HPSIZE (2*1024*1024)
313
314 #define set_taskname(fmt...)                            \
315 do {                                                    \
316         char name[20];                                  \
317                                                         \
318         snprintf(name, 20, fmt);                        \
319         prctl(PR_SET_NAME, name);                       \
320 } while (0)
321
322 static u8 *alloc_data(ssize_t bytes0, int map_flags,
323                       int init_zero, int init_cpu0, int thp, int init_random)
324 {
325         cpu_set_t orig_mask;
326         ssize_t bytes;
327         u8 *buf;
328         int ret;
329
330         if (!bytes0)
331                 return NULL;
332
333         /* Allocate and initialize all memory on CPU#0: */
334         if (init_cpu0) {
335                 orig_mask = bind_to_node(0);
336                 bind_to_memnode(0);
337         }
338
339         bytes = bytes0 + HPSIZE;
340
341         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
342         BUG_ON(buf == (void *)-1);
343
344         if (map_flags == MAP_PRIVATE) {
345                 if (thp > 0) {
346                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
347                         if (ret && !g->print_once) {
348                                 g->print_once = 1;
349                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
350                         }
351                 }
352                 if (thp < 0) {
353                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
354                         if (ret && !g->print_once) {
355                                 g->print_once = 1;
356                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
357                         }
358                 }
359         }
360
361         if (init_zero) {
362                 bzero(buf, bytes);
363         } else {
364                 /* Initialize random contents, different in each word: */
365                 if (init_random) {
366                         u64 *wbuf = (void *)buf;
367                         long off = rand();
368                         long i;
369
370                         for (i = 0; i < bytes/8; i++)
371                                 wbuf[i] = i + off;
372                 }
373         }
374
375         /* Align to 2MB boundary: */
376         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
377
378         /* Restore affinity: */
379         if (init_cpu0) {
380                 bind_to_cpumask(orig_mask);
381                 mempol_restore();
382         }
383
384         return buf;
385 }
386
387 static void free_data(void *data, ssize_t bytes)
388 {
389         int ret;
390
391         if (!data)
392                 return;
393
394         ret = munmap(data, bytes);
395         BUG_ON(ret);
396 }
397
398 /*
399  * Create a shared memory buffer that can be shared between processes, zeroed:
400  */
401 static void * zalloc_shared_data(ssize_t bytes)
402 {
403         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
404 }
405
406 /*
407  * Create a shared memory buffer that can be shared between processes:
408  */
409 static void * setup_shared_data(ssize_t bytes)
410 {
411         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
412 }
413
414 /*
415  * Allocate process-local memory - this will either be shared between
416  * threads of this process, or only be accessed by this thread:
417  */
418 static void * setup_private_data(ssize_t bytes)
419 {
420         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
421 }
422
423 /*
424  * Return a process-shared (global) mutex:
425  */
426 static void init_global_mutex(pthread_mutex_t *mutex)
427 {
428         pthread_mutexattr_t attr;
429
430         pthread_mutexattr_init(&attr);
431         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
432         pthread_mutex_init(mutex, &attr);
433 }
434
435 static int parse_cpu_list(const char *arg)
436 {
437         p0.cpu_list_str = strdup(arg);
438
439         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
440
441         return 0;
442 }
443
444 static int parse_setup_cpu_list(void)
445 {
446         struct thread_data *td;
447         char *str0, *str;
448         int t;
449
450         if (!g->p.cpu_list_str)
451                 return 0;
452
453         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
454
455         str0 = str = strdup(g->p.cpu_list_str);
456         t = 0;
457
458         BUG_ON(!str);
459
460         tprintf("# binding tasks to CPUs:\n");
461         tprintf("#  ");
462
463         while (true) {
464                 int bind_cpu, bind_cpu_0, bind_cpu_1;
465                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
466                 int bind_len;
467                 int step;
468                 int mul;
469
470                 tok = strsep(&str, ",");
471                 if (!tok)
472                         break;
473
474                 tok_end = strstr(tok, "-");
475
476                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
477                 if (!tok_end) {
478                         /* Single CPU specified: */
479                         bind_cpu_0 = bind_cpu_1 = atol(tok);
480                 } else {
481                         /* CPU range specified (for example: "5-11"): */
482                         bind_cpu_0 = atol(tok);
483                         bind_cpu_1 = atol(tok_end + 1);
484                 }
485
486                 step = 1;
487                 tok_step = strstr(tok, "#");
488                 if (tok_step) {
489                         step = atol(tok_step + 1);
490                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
491                 }
492
493                 /*
494                  * Mask length.
495                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
496                  * where the _4 means the next 4 CPUs are allowed.
497                  */
498                 bind_len = 1;
499                 tok_len = strstr(tok, "_");
500                 if (tok_len) {
501                         bind_len = atol(tok_len + 1);
502                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
503                 }
504
505                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
506                 mul = 1;
507                 tok_mul = strstr(tok, "x");
508                 if (tok_mul) {
509                         mul = atol(tok_mul + 1);
510                         BUG_ON(mul <= 0);
511                 }
512
513                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
514
515                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
516                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
517                         return -1;
518                 }
519
520                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
521                 BUG_ON(bind_cpu_0 > bind_cpu_1);
522
523                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
524                         int i;
525
526                         for (i = 0; i < mul; i++) {
527                                 int cpu;
528
529                                 if (t >= g->p.nr_tasks) {
530                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
531                                         goto out;
532                                 }
533                                 td = g->threads + t;
534
535                                 if (t)
536                                         tprintf(",");
537                                 if (bind_len > 1) {
538                                         tprintf("%2d/%d", bind_cpu, bind_len);
539                                 } else {
540                                         tprintf("%2d", bind_cpu);
541                                 }
542
543                                 CPU_ZERO(&td->bind_cpumask);
544                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
545                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
546                                         CPU_SET(cpu, &td->bind_cpumask);
547                                 }
548                                 t++;
549                         }
550                 }
551         }
552 out:
553
554         tprintf("\n");
555
556         if (t < g->p.nr_tasks)
557                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
558
559         free(str0);
560         return 0;
561 }
562
563 static int parse_cpus_opt(const struct option *opt __maybe_unused,
564                           const char *arg, int unset __maybe_unused)
565 {
566         if (!arg)
567                 return -1;
568
569         return parse_cpu_list(arg);
570 }
571
572 static int parse_node_list(const char *arg)
573 {
574         p0.node_list_str = strdup(arg);
575
576         dprintf("got NODE list: {%s}\n", p0.node_list_str);
577
578         return 0;
579 }
580
581 static int parse_setup_node_list(void)
582 {
583         struct thread_data *td;
584         char *str0, *str;
585         int t;
586
587         if (!g->p.node_list_str)
588                 return 0;
589
590         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
591
592         str0 = str = strdup(g->p.node_list_str);
593         t = 0;
594
595         BUG_ON(!str);
596
597         tprintf("# binding tasks to NODEs:\n");
598         tprintf("# ");
599
600         while (true) {
601                 int bind_node, bind_node_0, bind_node_1;
602                 char *tok, *tok_end, *tok_step, *tok_mul;
603                 int step;
604                 int mul;
605
606                 tok = strsep(&str, ",");
607                 if (!tok)
608                         break;
609
610                 tok_end = strstr(tok, "-");
611
612                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
613                 if (!tok_end) {
614                         /* Single NODE specified: */
615                         bind_node_0 = bind_node_1 = atol(tok);
616                 } else {
617                         /* NODE range specified (for example: "5-11"): */
618                         bind_node_0 = atol(tok);
619                         bind_node_1 = atol(tok_end + 1);
620                 }
621
622                 step = 1;
623                 tok_step = strstr(tok, "#");
624                 if (tok_step) {
625                         step = atol(tok_step + 1);
626                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
627                 }
628
629                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
630                 mul = 1;
631                 tok_mul = strstr(tok, "x");
632                 if (tok_mul) {
633                         mul = atol(tok_mul + 1);
634                         BUG_ON(mul <= 0);
635                 }
636
637                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
638
639                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
640                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
641                         return -1;
642                 }
643
644                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
645                 BUG_ON(bind_node_0 > bind_node_1);
646
647                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
648                         int i;
649
650                         for (i = 0; i < mul; i++) {
651                                 if (t >= g->p.nr_tasks) {
652                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
653                                         goto out;
654                                 }
655                                 td = g->threads + t;
656
657                                 if (!t)
658                                         tprintf(" %2d", bind_node);
659                                 else
660                                         tprintf(",%2d", bind_node);
661
662                                 td->bind_node = bind_node;
663                                 t++;
664                         }
665                 }
666         }
667 out:
668
669         tprintf("\n");
670
671         if (t < g->p.nr_tasks)
672                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
673
674         free(str0);
675         return 0;
676 }
677
678 static int parse_nodes_opt(const struct option *opt __maybe_unused,
679                           const char *arg, int unset __maybe_unused)
680 {
681         if (!arg)
682                 return -1;
683
684         return parse_node_list(arg);
685
686         return 0;
687 }
688
689 #define BIT(x) (1ul << x)
690
691 static inline uint32_t lfsr_32(uint32_t lfsr)
692 {
693         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
694         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
695 }
696
697 /*
698  * Make sure there's real data dependency to RAM (when read
699  * accesses are enabled), so the compiler, the CPU and the
700  * kernel (KSM, zero page, etc.) cannot optimize away RAM
701  * accesses:
702  */
703 static inline u64 access_data(u64 *data, u64 val)
704 {
705         if (g->p.data_reads)
706                 val += *data;
707         if (g->p.data_writes)
708                 *data = val + 1;
709         return val;
710 }
711
712 /*
713  * The worker process does two types of work, a forwards going
714  * loop and a backwards going loop.
715  *
716  * We do this so that on multiprocessor systems we do not create
717  * a 'train' of processing, with highly synchronized processes,
718  * skewing the whole benchmark.
719  */
720 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
721 {
722         long words = bytes/sizeof(u64);
723         u64 *data = (void *)__data;
724         long chunk_0, chunk_1;
725         u64 *d0, *d, *d1;
726         long off;
727         long i;
728
729         BUG_ON(!data && words);
730         BUG_ON(data && !words);
731
732         if (!data)
733                 return val;
734
735         /* Very simple memset() work variant: */
736         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
737                 bzero(data, bytes);
738                 return val;
739         }
740
741         /* Spread out by PID/TID nr and by loop nr: */
742         chunk_0 = words/nr_max;
743         chunk_1 = words/g->p.nr_loops;
744         off = nr*chunk_0 + loop*chunk_1;
745
746         while (off >= words)
747                 off -= words;
748
749         if (g->p.data_rand_walk) {
750                 u32 lfsr = nr + loop + val;
751                 int j;
752
753                 for (i = 0; i < words/1024; i++) {
754                         long start, end;
755
756                         lfsr = lfsr_32(lfsr);
757
758                         start = lfsr % words;
759                         end = min(start + 1024, words-1);
760
761                         if (g->p.data_zero_memset) {
762                                 bzero(data + start, (end-start) * sizeof(u64));
763                         } else {
764                                 for (j = start; j < end; j++)
765                                         val = access_data(data + j, val);
766                         }
767                 }
768         } else if (!g->p.data_backwards || (nr + loop) & 1) {
769
770                 d0 = data + off;
771                 d  = data + off + 1;
772                 d1 = data + words;
773
774                 /* Process data forwards: */
775                 for (;;) {
776                         if (unlikely(d >= d1))
777                                 d = data;
778                         if (unlikely(d == d0))
779                                 break;
780
781                         val = access_data(d, val);
782
783                         d++;
784                 }
785         } else {
786                 /* Process data backwards: */
787
788                 d0 = data + off;
789                 d  = data + off - 1;
790                 d1 = data + words;
791
792                 /* Process data forwards: */
793                 for (;;) {
794                         if (unlikely(d < data))
795                                 d = data + words-1;
796                         if (unlikely(d == d0))
797                                 break;
798
799                         val = access_data(d, val);
800
801                         d--;
802                 }
803         }
804
805         return val;
806 }
807
808 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
809 {
810         unsigned int cpu;
811
812         cpu = sched_getcpu();
813
814         g->threads[task_nr].curr_cpu = cpu;
815         prctl(0, bytes_worked);
816 }
817
818 #define MAX_NR_NODES    64
819
820 /*
821  * Count the number of nodes a process's threads
822  * are spread out on.
823  *
824  * A count of 1 means that the process is compressed
825  * to a single node. A count of g->p.nr_nodes means it's
826  * spread out on the whole system.
827  */
828 static int count_process_nodes(int process_nr)
829 {
830         char node_present[MAX_NR_NODES] = { 0, };
831         int nodes;
832         int n, t;
833
834         for (t = 0; t < g->p.nr_threads; t++) {
835                 struct thread_data *td;
836                 int task_nr;
837                 int node;
838
839                 task_nr = process_nr*g->p.nr_threads + t;
840                 td = g->threads + task_nr;
841
842                 node = numa_node_of_cpu(td->curr_cpu);
843                 if (node < 0) /* curr_cpu was likely still -1 */
844                         return 0;
845
846                 node_present[node] = 1;
847         }
848
849         nodes = 0;
850
851         for (n = 0; n < MAX_NR_NODES; n++)
852                 nodes += node_present[n];
853
854         return nodes;
855 }
856
857 /*
858  * Count the number of distinct process-threads a node contains.
859  *
860  * A count of 1 means that the node contains only a single
861  * process. If all nodes on the system contain at most one
862  * process then we are well-converged.
863  */
864 static int count_node_processes(int node)
865 {
866         int processes = 0;
867         int t, p;
868
869         for (p = 0; p < g->p.nr_proc; p++) {
870                 for (t = 0; t < g->p.nr_threads; t++) {
871                         struct thread_data *td;
872                         int task_nr;
873                         int n;
874
875                         task_nr = p*g->p.nr_threads + t;
876                         td = g->threads + task_nr;
877
878                         n = numa_node_of_cpu(td->curr_cpu);
879                         if (n == node) {
880                                 processes++;
881                                 break;
882                         }
883                 }
884         }
885
886         return processes;
887 }
888
889 static void calc_convergence_compression(int *strong)
890 {
891         unsigned int nodes_min, nodes_max;
892         int p;
893
894         nodes_min = -1;
895         nodes_max =  0;
896
897         for (p = 0; p < g->p.nr_proc; p++) {
898                 unsigned int nodes = count_process_nodes(p);
899
900                 if (!nodes) {
901                         *strong = 0;
902                         return;
903                 }
904
905                 nodes_min = min(nodes, nodes_min);
906                 nodes_max = max(nodes, nodes_max);
907         }
908
909         /* Strong convergence: all threads compress on a single node: */
910         if (nodes_min == 1 && nodes_max == 1) {
911                 *strong = 1;
912         } else {
913                 *strong = 0;
914                 tprintf(" {%d-%d}", nodes_min, nodes_max);
915         }
916 }
917
918 static void calc_convergence(double runtime_ns_max, double *convergence)
919 {
920         unsigned int loops_done_min, loops_done_max;
921         int process_groups;
922         int nodes[MAX_NR_NODES];
923         int distance;
924         int nr_min;
925         int nr_max;
926         int strong;
927         int sum;
928         int nr;
929         int node;
930         int cpu;
931         int t;
932
933         if (!g->p.show_convergence && !g->p.measure_convergence)
934                 return;
935
936         for (node = 0; node < g->p.nr_nodes; node++)
937                 nodes[node] = 0;
938
939         loops_done_min = -1;
940         loops_done_max = 0;
941
942         for (t = 0; t < g->p.nr_tasks; t++) {
943                 struct thread_data *td = g->threads + t;
944                 unsigned int loops_done;
945
946                 cpu = td->curr_cpu;
947
948                 /* Not all threads have written it yet: */
949                 if (cpu < 0)
950                         continue;
951
952                 node = numa_node_of_cpu(cpu);
953
954                 nodes[node]++;
955
956                 loops_done = td->loops_done;
957                 loops_done_min = min(loops_done, loops_done_min);
958                 loops_done_max = max(loops_done, loops_done_max);
959         }
960
961         nr_max = 0;
962         nr_min = g->p.nr_tasks;
963         sum = 0;
964
965         for (node = 0; node < g->p.nr_nodes; node++) {
966                 nr = nodes[node];
967                 nr_min = min(nr, nr_min);
968                 nr_max = max(nr, nr_max);
969                 sum += nr;
970         }
971         BUG_ON(nr_min > nr_max);
972
973         BUG_ON(sum > g->p.nr_tasks);
974
975         if (0 && (sum < g->p.nr_tasks))
976                 return;
977
978         /*
979          * Count the number of distinct process groups present
980          * on nodes - when we are converged this will decrease
981          * to g->p.nr_proc:
982          */
983         process_groups = 0;
984
985         for (node = 0; node < g->p.nr_nodes; node++) {
986                 int processes = count_node_processes(node);
987
988                 nr = nodes[node];
989                 tprintf(" %2d/%-2d", nr, processes);
990
991                 process_groups += processes;
992         }
993
994         distance = nr_max - nr_min;
995
996         tprintf(" [%2d/%-2d]", distance, process_groups);
997
998         tprintf(" l:%3d-%-3d (%3d)",
999                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1000
1001         if (loops_done_min && loops_done_max) {
1002                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1003
1004                 tprintf(" [%4.1f%%]", skew * 100.0);
1005         }
1006
1007         calc_convergence_compression(&strong);
1008
1009         if (strong && process_groups == g->p.nr_proc) {
1010                 if (!*convergence) {
1011                         *convergence = runtime_ns_max;
1012                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1013                         if (g->p.measure_convergence) {
1014                                 g->all_converged = true;
1015                                 g->stop_work = true;
1016                         }
1017                 }
1018         } else {
1019                 if (*convergence) {
1020                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1021                         *convergence = 0;
1022                 }
1023                 tprintf("\n");
1024         }
1025 }
1026
1027 static void show_summary(double runtime_ns_max, int l, double *convergence)
1028 {
1029         tprintf("\r #  %5.1f%%  [%.1f mins]",
1030                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1031
1032         calc_convergence(runtime_ns_max, convergence);
1033
1034         if (g->p.show_details >= 0)
1035                 fflush(stdout);
1036 }
1037
1038 static void *worker_thread(void *__tdata)
1039 {
1040         struct thread_data *td = __tdata;
1041         struct timeval start0, start, stop, diff;
1042         int process_nr = td->process_nr;
1043         int thread_nr = td->thread_nr;
1044         unsigned long last_perturbance;
1045         int task_nr = td->task_nr;
1046         int details = g->p.show_details;
1047         int first_task, last_task;
1048         double convergence = 0;
1049         u64 val = td->val;
1050         double runtime_ns_max;
1051         u8 *global_data;
1052         u8 *process_data;
1053         u8 *thread_data;
1054         u64 bytes_done;
1055         long work_done;
1056         u32 l;
1057         struct rusage rusage;
1058
1059         bind_to_cpumask(td->bind_cpumask);
1060         bind_to_memnode(td->bind_node);
1061
1062         set_taskname("thread %d/%d", process_nr, thread_nr);
1063
1064         global_data = g->data;
1065         process_data = td->process_data;
1066         thread_data = setup_private_data(g->p.bytes_thread);
1067
1068         bytes_done = 0;
1069
1070         last_task = 0;
1071         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1072                 last_task = 1;
1073
1074         first_task = 0;
1075         if (process_nr == 0 && thread_nr == 0)
1076                 first_task = 1;
1077
1078         if (details >= 2) {
1079                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1080                         process_nr, thread_nr, global_data, process_data, thread_data);
1081         }
1082
1083         if (g->p.serialize_startup) {
1084                 pthread_mutex_lock(&g->startup_mutex);
1085                 g->nr_tasks_started++;
1086                 pthread_mutex_unlock(&g->startup_mutex);
1087
1088                 /* Here we will wait for the main process to start us all at once: */
1089                 pthread_mutex_lock(&g->start_work_mutex);
1090                 g->nr_tasks_working++;
1091
1092                 /* Last one wake the main process: */
1093                 if (g->nr_tasks_working == g->p.nr_tasks)
1094                         pthread_mutex_unlock(&g->startup_done_mutex);
1095
1096                 pthread_mutex_unlock(&g->start_work_mutex);
1097         }
1098
1099         gettimeofday(&start0, NULL);
1100
1101         start = stop = start0;
1102         last_perturbance = start.tv_sec;
1103
1104         for (l = 0; l < g->p.nr_loops; l++) {
1105                 start = stop;
1106
1107                 if (g->stop_work)
1108                         break;
1109
1110                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1111                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1112                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1113
1114                 if (g->p.sleep_usecs) {
1115                         pthread_mutex_lock(td->process_lock);
1116                         usleep(g->p.sleep_usecs);
1117                         pthread_mutex_unlock(td->process_lock);
1118                 }
1119                 /*
1120                  * Amount of work to be done under a process-global lock:
1121                  */
1122                 if (g->p.bytes_process_locked) {
1123                         pthread_mutex_lock(td->process_lock);
1124                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1125                         pthread_mutex_unlock(td->process_lock);
1126                 }
1127
1128                 work_done = g->p.bytes_global + g->p.bytes_process +
1129                             g->p.bytes_process_locked + g->p.bytes_thread;
1130
1131                 update_curr_cpu(task_nr, work_done);
1132                 bytes_done += work_done;
1133
1134                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1135                         continue;
1136
1137                 td->loops_done = l;
1138
1139                 gettimeofday(&stop, NULL);
1140
1141                 /* Check whether our max runtime timed out: */
1142                 if (g->p.nr_secs) {
1143                         timersub(&stop, &start0, &diff);
1144                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1145                                 g->stop_work = true;
1146                                 break;
1147                         }
1148                 }
1149
1150                 /* Update the summary at most once per second: */
1151                 if (start.tv_sec == stop.tv_sec)
1152                         continue;
1153
1154                 /*
1155                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1156                  * by migrating to CPU#0:
1157                  */
1158                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1159                         cpu_set_t orig_mask;
1160                         int target_cpu;
1161                         int this_cpu;
1162
1163                         last_perturbance = stop.tv_sec;
1164
1165                         /*
1166                          * Depending on where we are running, move into
1167                          * the other half of the system, to create some
1168                          * real disturbance:
1169                          */
1170                         this_cpu = g->threads[task_nr].curr_cpu;
1171                         if (this_cpu < g->p.nr_cpus/2)
1172                                 target_cpu = g->p.nr_cpus-1;
1173                         else
1174                                 target_cpu = 0;
1175
1176                         orig_mask = bind_to_cpu(target_cpu);
1177
1178                         /* Here we are running on the target CPU already */
1179                         if (details >= 1)
1180                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1181
1182                         bind_to_cpumask(orig_mask);
1183                 }
1184
1185                 if (details >= 3) {
1186                         timersub(&stop, &start, &diff);
1187                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1188                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1189
1190                         if (details >= 0) {
1191                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1192                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1193                         }
1194                         fflush(stdout);
1195                 }
1196                 if (!last_task)
1197                         continue;
1198
1199                 timersub(&stop, &start0, &diff);
1200                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1201                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1202
1203                 show_summary(runtime_ns_max, l, &convergence);
1204         }
1205
1206         gettimeofday(&stop, NULL);
1207         timersub(&stop, &start0, &diff);
1208         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1209         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1210         td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1211
1212         getrusage(RUSAGE_THREAD, &rusage);
1213         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1214         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1215         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1216         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1217
1218         free_data(thread_data, g->p.bytes_thread);
1219
1220         pthread_mutex_lock(&g->stop_work_mutex);
1221         g->bytes_done += bytes_done;
1222         pthread_mutex_unlock(&g->stop_work_mutex);
1223
1224         return NULL;
1225 }
1226
1227 /*
1228  * A worker process starts a couple of threads:
1229  */
1230 static void worker_process(int process_nr)
1231 {
1232         pthread_mutex_t process_lock;
1233         struct thread_data *td;
1234         pthread_t *pthreads;
1235         u8 *process_data;
1236         int task_nr;
1237         int ret;
1238         int t;
1239
1240         pthread_mutex_init(&process_lock, NULL);
1241         set_taskname("process %d", process_nr);
1242
1243         /*
1244          * Pick up the memory policy and the CPU binding of our first thread,
1245          * so that we initialize memory accordingly:
1246          */
1247         task_nr = process_nr*g->p.nr_threads;
1248         td = g->threads + task_nr;
1249
1250         bind_to_memnode(td->bind_node);
1251         bind_to_cpumask(td->bind_cpumask);
1252
1253         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1254         process_data = setup_private_data(g->p.bytes_process);
1255
1256         if (g->p.show_details >= 3) {
1257                 printf(" # process %2d global mem: %p, process mem: %p\n",
1258                         process_nr, g->data, process_data);
1259         }
1260
1261         for (t = 0; t < g->p.nr_threads; t++) {
1262                 task_nr = process_nr*g->p.nr_threads + t;
1263                 td = g->threads + task_nr;
1264
1265                 td->process_data = process_data;
1266                 td->process_nr   = process_nr;
1267                 td->thread_nr    = t;
1268                 td->task_nr      = task_nr;
1269                 td->val          = rand();
1270                 td->curr_cpu     = -1;
1271                 td->process_lock = &process_lock;
1272
1273                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1274                 BUG_ON(ret);
1275         }
1276
1277         for (t = 0; t < g->p.nr_threads; t++) {
1278                 ret = pthread_join(pthreads[t], NULL);
1279                 BUG_ON(ret);
1280         }
1281
1282         free_data(process_data, g->p.bytes_process);
1283         free(pthreads);
1284 }
1285
1286 static void print_summary(void)
1287 {
1288         if (g->p.show_details < 0)
1289                 return;
1290
1291         printf("\n ###\n");
1292         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1293                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1294         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1295                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1296         printf(" #      %5dx %5ldMB process shared mem operations\n",
1297                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1298         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1299                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1300
1301         printf(" ###\n");
1302
1303         printf("\n ###\n"); fflush(stdout);
1304 }
1305
1306 static void init_thread_data(void)
1307 {
1308         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1309         int t;
1310
1311         g->threads = zalloc_shared_data(size);
1312
1313         for (t = 0; t < g->p.nr_tasks; t++) {
1314                 struct thread_data *td = g->threads + t;
1315                 int cpu;
1316
1317                 /* Allow all nodes by default: */
1318                 td->bind_node = -1;
1319
1320                 /* Allow all CPUs by default: */
1321                 CPU_ZERO(&td->bind_cpumask);
1322                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1323                         CPU_SET(cpu, &td->bind_cpumask);
1324         }
1325 }
1326
1327 static void deinit_thread_data(void)
1328 {
1329         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1330
1331         free_data(g->threads, size);
1332 }
1333
1334 static int init(void)
1335 {
1336         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1337
1338         /* Copy over options: */
1339         g->p = p0;
1340
1341         g->p.nr_cpus = numa_num_configured_cpus();
1342
1343         g->p.nr_nodes = numa_max_node() + 1;
1344
1345         /* char array in count_process_nodes(): */
1346         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1347
1348         if (g->p.show_quiet && !g->p.show_details)
1349                 g->p.show_details = -1;
1350
1351         /* Some memory should be specified: */
1352         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1353                 return -1;
1354
1355         if (g->p.mb_global_str) {
1356                 g->p.mb_global = atof(g->p.mb_global_str);
1357                 BUG_ON(g->p.mb_global < 0);
1358         }
1359
1360         if (g->p.mb_proc_str) {
1361                 g->p.mb_proc = atof(g->p.mb_proc_str);
1362                 BUG_ON(g->p.mb_proc < 0);
1363         }
1364
1365         if (g->p.mb_proc_locked_str) {
1366                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1367                 BUG_ON(g->p.mb_proc_locked < 0);
1368                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1369         }
1370
1371         if (g->p.mb_thread_str) {
1372                 g->p.mb_thread = atof(g->p.mb_thread_str);
1373                 BUG_ON(g->p.mb_thread < 0);
1374         }
1375
1376         BUG_ON(g->p.nr_threads <= 0);
1377         BUG_ON(g->p.nr_proc <= 0);
1378
1379         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1380
1381         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1382         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1383         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1384         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1385
1386         g->data = setup_shared_data(g->p.bytes_global);
1387
1388         /* Startup serialization: */
1389         init_global_mutex(&g->start_work_mutex);
1390         init_global_mutex(&g->startup_mutex);
1391         init_global_mutex(&g->startup_done_mutex);
1392         init_global_mutex(&g->stop_work_mutex);
1393
1394         init_thread_data();
1395
1396         tprintf("#\n");
1397         if (parse_setup_cpu_list() || parse_setup_node_list())
1398                 return -1;
1399         tprintf("#\n");
1400
1401         print_summary();
1402
1403         return 0;
1404 }
1405
1406 static void deinit(void)
1407 {
1408         free_data(g->data, g->p.bytes_global);
1409         g->data = NULL;
1410
1411         deinit_thread_data();
1412
1413         free_data(g, sizeof(*g));
1414         g = NULL;
1415 }
1416
1417 /*
1418  * Print a short or long result, depending on the verbosity setting:
1419  */
1420 static void print_res(const char *name, double val,
1421                       const char *txt_unit, const char *txt_short, const char *txt_long)
1422 {
1423         if (!name)
1424                 name = "main,";
1425
1426         if (!g->p.show_quiet)
1427                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1428         else
1429                 printf(" %14.3f %s\n", val, txt_long);
1430 }
1431
1432 static int __bench_numa(const char *name)
1433 {
1434         struct timeval start, stop, diff;
1435         u64 runtime_ns_min, runtime_ns_sum;
1436         pid_t *pids, pid, wpid;
1437         double delta_runtime;
1438         double runtime_avg;
1439         double runtime_sec_max;
1440         double runtime_sec_min;
1441         int wait_stat;
1442         double bytes;
1443         int i, t, p;
1444
1445         if (init())
1446                 return -1;
1447
1448         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1449         pid = -1;
1450
1451         /* All threads try to acquire it, this way we can wait for them to start up: */
1452         pthread_mutex_lock(&g->start_work_mutex);
1453
1454         if (g->p.serialize_startup) {
1455                 tprintf(" #\n");
1456                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1457         }
1458
1459         gettimeofday(&start, NULL);
1460
1461         for (i = 0; i < g->p.nr_proc; i++) {
1462                 pid = fork();
1463                 dprintf(" # process %2d: PID %d\n", i, pid);
1464
1465                 BUG_ON(pid < 0);
1466                 if (!pid) {
1467                         /* Child process: */
1468                         worker_process(i);
1469
1470                         exit(0);
1471                 }
1472                 pids[i] = pid;
1473
1474         }
1475         /* Wait for all the threads to start up: */
1476         while (g->nr_tasks_started != g->p.nr_tasks)
1477                 usleep(USEC_PER_MSEC);
1478
1479         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1480
1481         if (g->p.serialize_startup) {
1482                 double startup_sec;
1483
1484                 pthread_mutex_lock(&g->startup_done_mutex);
1485
1486                 /* This will start all threads: */
1487                 pthread_mutex_unlock(&g->start_work_mutex);
1488
1489                 /* This mutex is locked - the last started thread will wake us: */
1490                 pthread_mutex_lock(&g->startup_done_mutex);
1491
1492                 gettimeofday(&stop, NULL);
1493
1494                 timersub(&stop, &start, &diff);
1495
1496                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1497                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1498                 startup_sec /= NSEC_PER_SEC;
1499
1500                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1501                 tprintf(" #\n");
1502
1503                 start = stop;
1504                 pthread_mutex_unlock(&g->startup_done_mutex);
1505         } else {
1506                 gettimeofday(&start, NULL);
1507         }
1508
1509         /* Parent process: */
1510
1511
1512         for (i = 0; i < g->p.nr_proc; i++) {
1513                 wpid = waitpid(pids[i], &wait_stat, 0);
1514                 BUG_ON(wpid < 0);
1515                 BUG_ON(!WIFEXITED(wait_stat));
1516
1517         }
1518
1519         runtime_ns_sum = 0;
1520         runtime_ns_min = -1LL;
1521
1522         for (t = 0; t < g->p.nr_tasks; t++) {
1523                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1524
1525                 runtime_ns_sum += thread_runtime_ns;
1526                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1527         }
1528
1529         gettimeofday(&stop, NULL);
1530         timersub(&stop, &start, &diff);
1531
1532         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1533
1534         tprintf("\n ###\n");
1535         tprintf("\n");
1536
1537         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1538         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1539         runtime_sec_max /= NSEC_PER_SEC;
1540
1541         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1542
1543         bytes = g->bytes_done;
1544         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1545
1546         if (g->p.measure_convergence) {
1547                 print_res(name, runtime_sec_max,
1548                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1549         }
1550
1551         print_res(name, runtime_sec_max,
1552                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1553
1554         print_res(name, runtime_sec_min,
1555                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1556
1557         print_res(name, runtime_avg,
1558                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1559
1560         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1561         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1562                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1563
1564         print_res(name, bytes / g->p.nr_tasks / 1e9,
1565                 "GB,", "data/thread",           "GB data processed, per thread");
1566
1567         print_res(name, bytes / 1e9,
1568                 "GB,", "data-total",            "GB data processed, total");
1569
1570         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1571                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1572
1573         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1574                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1575
1576         print_res(name, bytes / runtime_sec_max / 1e9,
1577                 "GB/sec,", "total-speed",       "GB/sec total speed");
1578
1579         if (g->p.show_details >= 2) {
1580                 char tname[14 + 2 * 10 + 1];
1581                 struct thread_data *td;
1582                 for (p = 0; p < g->p.nr_proc; p++) {
1583                         for (t = 0; t < g->p.nr_threads; t++) {
1584                                 memset(tname, 0, sizeof(tname));
1585                                 td = g->threads + p*g->p.nr_threads + t;
1586                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1587                                 print_res(tname, td->speed_gbs,
1588                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1589                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1590                                         "secs", "thread-system-time", "system CPU time/thread");
1591                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1592                                         "secs", "thread-user-time", "user CPU time/thread");
1593                         }
1594                 }
1595         }
1596
1597         free(pids);
1598
1599         deinit();
1600
1601         return 0;
1602 }
1603
1604 #define MAX_ARGS 50
1605
1606 static int command_size(const char **argv)
1607 {
1608         int size = 0;
1609
1610         while (*argv) {
1611                 size++;
1612                 argv++;
1613         }
1614
1615         BUG_ON(size >= MAX_ARGS);
1616
1617         return size;
1618 }
1619
1620 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1621 {
1622         int i;
1623
1624         printf("\n # Running %s \"perf bench numa", name);
1625
1626         for (i = 0; i < argc; i++)
1627                 printf(" %s", argv[i]);
1628
1629         printf("\"\n");
1630
1631         memset(p, 0, sizeof(*p));
1632
1633         /* Initialize nonzero defaults: */
1634
1635         p->serialize_startup            = 1;
1636         p->data_reads                   = true;
1637         p->data_writes                  = true;
1638         p->data_backwards               = true;
1639         p->data_rand_walk               = true;
1640         p->nr_loops                     = -1;
1641         p->init_random                  = true;
1642         p->mb_global_str                = "1";
1643         p->nr_proc                      = 1;
1644         p->nr_threads                   = 1;
1645         p->nr_secs                      = 5;
1646         p->run_all                      = argc == 1;
1647 }
1648
1649 static int run_bench_numa(const char *name, const char **argv)
1650 {
1651         int argc = command_size(argv);
1652
1653         init_params(&p0, name, argc, argv);
1654         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1655         if (argc)
1656                 goto err;
1657
1658         if (__bench_numa(name))
1659                 goto err;
1660
1661         return 0;
1662
1663 err:
1664         return -1;
1665 }
1666
1667 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1668 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1669
1670 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1671 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1672
1673 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1674 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1675
1676 /*
1677  * The built-in test-suite executed by "perf bench numa -a".
1678  *
1679  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1680  */
1681 static const char *tests[][MAX_ARGS] = {
1682    /* Basic single-stream NUMA bandwidth measurements: */
1683    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1685    { "RAM-bw-local-NOTHP,",
1686                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1687                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1688    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1689                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1690
1691    /* 2-stream NUMA bandwidth measurements: */
1692    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1693                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1694    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1695                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1696
1697    /* Cross-stream NUMA bandwidth measurement: */
1698    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1699                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1700
1701    /* Convergence latency measurements: */
1702    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1703    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1704    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1705    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1706    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1707    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1708    { " 4x4-convergence-NOTHP,",
1709                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1710    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1711    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1712    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1713    { " 8x4-convergence-NOTHP,",
1714                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1715    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1716    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1717    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1718    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1719    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1720
1721    /* Various NUMA process/thread layout bandwidth measurements: */
1722    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1723    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1724    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1725    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1726    { " 8x1-bw-process-NOTHP,",
1727                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1728    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1729
1730    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1731    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1732    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1733    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1734
1735    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1736    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1737    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1738    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1739    { " 4x8-bw-thread-NOTHP,",
1740                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1741    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1742    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1743
1744    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1745    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1746
1747    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1748    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1749    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1750    { "numa01-bw-thread-NOTHP,",
1751                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1752 };
1753
1754 static int bench_all(void)
1755 {
1756         int nr = ARRAY_SIZE(tests);
1757         int ret;
1758         int i;
1759
1760         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1761         BUG_ON(ret < 0);
1762
1763         for (i = 0; i < nr; i++) {
1764                 run_bench_numa(tests[i][0], tests[i] + 1);
1765         }
1766
1767         printf("\n");
1768
1769         return 0;
1770 }
1771
1772 int bench_numa(int argc, const char **argv)
1773 {
1774         init_params(&p0, "main,", argc, argv);
1775         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1776         if (argc)
1777                 goto err;
1778
1779         if (p0.run_all)
1780                 return bench_all();
1781
1782         if (__bench_numa(NULL))
1783                 goto err;
1784
1785         return 0;
1786
1787 err:
1788         usage_with_options(numa_usage, options);
1789         return -1;
1790 }