Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[sfrench/cifs-2.6.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /******************************************************************************
680  *
681  *                    Device Boot-time Settings Routines
682  *
683  ******************************************************************************/
684
685 /* Boot time configuration table */
686 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
687
688 /**
689  *      netdev_boot_setup_add   - add new setup entry
690  *      @name: name of the device
691  *      @map: configured settings for the device
692  *
693  *      Adds new setup entry to the dev_boot_setup list.  The function
694  *      returns 0 on error and 1 on success.  This is a generic routine to
695  *      all netdevices.
696  */
697 static int netdev_boot_setup_add(char *name, struct ifmap *map)
698 {
699         struct netdev_boot_setup *s;
700         int i;
701
702         s = dev_boot_setup;
703         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
704                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
705                         memset(s[i].name, 0, sizeof(s[i].name));
706                         strlcpy(s[i].name, name, IFNAMSIZ);
707                         memcpy(&s[i].map, map, sizeof(s[i].map));
708                         break;
709                 }
710         }
711
712         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
713 }
714
715 /**
716  * netdev_boot_setup_check      - check boot time settings
717  * @dev: the netdevice
718  *
719  * Check boot time settings for the device.
720  * The found settings are set for the device to be used
721  * later in the device probing.
722  * Returns 0 if no settings found, 1 if they are.
723  */
724 int netdev_boot_setup_check(struct net_device *dev)
725 {
726         struct netdev_boot_setup *s = dev_boot_setup;
727         int i;
728
729         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
730                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
731                     !strcmp(dev->name, s[i].name)) {
732                         dev->irq = s[i].map.irq;
733                         dev->base_addr = s[i].map.base_addr;
734                         dev->mem_start = s[i].map.mem_start;
735                         dev->mem_end = s[i].map.mem_end;
736                         return 1;
737                 }
738         }
739         return 0;
740 }
741 EXPORT_SYMBOL(netdev_boot_setup_check);
742
743
744 /**
745  * netdev_boot_base     - get address from boot time settings
746  * @prefix: prefix for network device
747  * @unit: id for network device
748  *
749  * Check boot time settings for the base address of device.
750  * The found settings are set for the device to be used
751  * later in the device probing.
752  * Returns 0 if no settings found.
753  */
754 unsigned long netdev_boot_base(const char *prefix, int unit)
755 {
756         const struct netdev_boot_setup *s = dev_boot_setup;
757         char name[IFNAMSIZ];
758         int i;
759
760         sprintf(name, "%s%d", prefix, unit);
761
762         /*
763          * If device already registered then return base of 1
764          * to indicate not to probe for this interface
765          */
766         if (__dev_get_by_name(&init_net, name))
767                 return 1;
768
769         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
770                 if (!strcmp(name, s[i].name))
771                         return s[i].map.base_addr;
772         return 0;
773 }
774
775 /*
776  * Saves at boot time configured settings for any netdevice.
777  */
778 int __init netdev_boot_setup(char *str)
779 {
780         int ints[5];
781         struct ifmap map;
782
783         str = get_options(str, ARRAY_SIZE(ints), ints);
784         if (!str || !*str)
785                 return 0;
786
787         /* Save settings */
788         memset(&map, 0, sizeof(map));
789         if (ints[0] > 0)
790                 map.irq = ints[1];
791         if (ints[0] > 1)
792                 map.base_addr = ints[2];
793         if (ints[0] > 2)
794                 map.mem_start = ints[3];
795         if (ints[0] > 3)
796                 map.mem_end = ints[4];
797
798         /* Add new entry to the list */
799         return netdev_boot_setup_add(str, &map);
800 }
801
802 __setup("netdev=", netdev_boot_setup);
803
804 /*******************************************************************************
805  *
806  *                          Device Interface Subroutines
807  *
808  *******************************************************************************/
809
810 /**
811  *      dev_get_iflink  - get 'iflink' value of a interface
812  *      @dev: targeted interface
813  *
814  *      Indicates the ifindex the interface is linked to.
815  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
816  */
817
818 int dev_get_iflink(const struct net_device *dev)
819 {
820         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
821                 return dev->netdev_ops->ndo_get_iflink(dev);
822
823         return dev->ifindex;
824 }
825 EXPORT_SYMBOL(dev_get_iflink);
826
827 /**
828  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
829  *      @dev: targeted interface
830  *      @skb: The packet.
831  *
832  *      For better visibility of tunnel traffic OVS needs to retrieve
833  *      egress tunnel information for a packet. Following API allows
834  *      user to get this info.
835  */
836 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
837 {
838         struct ip_tunnel_info *info;
839
840         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
841                 return -EINVAL;
842
843         info = skb_tunnel_info_unclone(skb);
844         if (!info)
845                 return -ENOMEM;
846         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
847                 return -EINVAL;
848
849         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
850 }
851 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
852
853 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
854 {
855         int k = stack->num_paths++;
856
857         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
858                 return NULL;
859
860         return &stack->path[k];
861 }
862
863 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
864                           struct net_device_path_stack *stack)
865 {
866         const struct net_device *last_dev;
867         struct net_device_path_ctx ctx = {
868                 .dev    = dev,
869                 .daddr  = daddr,
870         };
871         struct net_device_path *path;
872         int ret = 0;
873
874         stack->num_paths = 0;
875         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
876                 last_dev = ctx.dev;
877                 path = dev_fwd_path(stack);
878                 if (!path)
879                         return -1;
880
881                 memset(path, 0, sizeof(struct net_device_path));
882                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
883                 if (ret < 0)
884                         return -1;
885
886                 if (WARN_ON_ONCE(last_dev == ctx.dev))
887                         return -1;
888         }
889         path = dev_fwd_path(stack);
890         if (!path)
891                 return -1;
892         path->type = DEV_PATH_ETHERNET;
893         path->dev = ctx.dev;
894
895         return ret;
896 }
897 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
898
899 /**
900  *      __dev_get_by_name       - find a device by its name
901  *      @net: the applicable net namespace
902  *      @name: name to find
903  *
904  *      Find an interface by name. Must be called under RTNL semaphore
905  *      or @dev_base_lock. If the name is found a pointer to the device
906  *      is returned. If the name is not found then %NULL is returned. The
907  *      reference counters are not incremented so the caller must be
908  *      careful with locks.
909  */
910
911 struct net_device *__dev_get_by_name(struct net *net, const char *name)
912 {
913         struct netdev_name_node *node_name;
914
915         node_name = netdev_name_node_lookup(net, name);
916         return node_name ? node_name->dev : NULL;
917 }
918 EXPORT_SYMBOL(__dev_get_by_name);
919
920 /**
921  * dev_get_by_name_rcu  - find a device by its name
922  * @net: the applicable net namespace
923  * @name: name to find
924  *
925  * Find an interface by name.
926  * If the name is found a pointer to the device is returned.
927  * If the name is not found then %NULL is returned.
928  * The reference counters are not incremented so the caller must be
929  * careful with locks. The caller must hold RCU lock.
930  */
931
932 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
933 {
934         struct netdev_name_node *node_name;
935
936         node_name = netdev_name_node_lookup_rcu(net, name);
937         return node_name ? node_name->dev : NULL;
938 }
939 EXPORT_SYMBOL(dev_get_by_name_rcu);
940
941 /**
942  *      dev_get_by_name         - find a device by its name
943  *      @net: the applicable net namespace
944  *      @name: name to find
945  *
946  *      Find an interface by name. This can be called from any
947  *      context and does its own locking. The returned handle has
948  *      the usage count incremented and the caller must use dev_put() to
949  *      release it when it is no longer needed. %NULL is returned if no
950  *      matching device is found.
951  */
952
953 struct net_device *dev_get_by_name(struct net *net, const char *name)
954 {
955         struct net_device *dev;
956
957         rcu_read_lock();
958         dev = dev_get_by_name_rcu(net, name);
959         if (dev)
960                 dev_hold(dev);
961         rcu_read_unlock();
962         return dev;
963 }
964 EXPORT_SYMBOL(dev_get_by_name);
965
966 /**
967  *      __dev_get_by_index - find a device by its ifindex
968  *      @net: the applicable net namespace
969  *      @ifindex: index of device
970  *
971  *      Search for an interface by index. Returns %NULL if the device
972  *      is not found or a pointer to the device. The device has not
973  *      had its reference counter increased so the caller must be careful
974  *      about locking. The caller must hold either the RTNL semaphore
975  *      or @dev_base_lock.
976  */
977
978 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
979 {
980         struct net_device *dev;
981         struct hlist_head *head = dev_index_hash(net, ifindex);
982
983         hlist_for_each_entry(dev, head, index_hlist)
984                 if (dev->ifindex == ifindex)
985                         return dev;
986
987         return NULL;
988 }
989 EXPORT_SYMBOL(__dev_get_by_index);
990
991 /**
992  *      dev_get_by_index_rcu - find a device by its ifindex
993  *      @net: the applicable net namespace
994  *      @ifindex: index of device
995  *
996  *      Search for an interface by index. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not
998  *      had its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1003 {
1004         struct net_device *dev;
1005         struct hlist_head *head = dev_index_hash(net, ifindex);
1006
1007         hlist_for_each_entry_rcu(dev, head, index_hlist)
1008                 if (dev->ifindex == ifindex)
1009                         return dev;
1010
1011         return NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_index_rcu);
1014
1015
1016 /**
1017  *      dev_get_by_index - find a device by its ifindex
1018  *      @net: the applicable net namespace
1019  *      @ifindex: index of device
1020  *
1021  *      Search for an interface by index. Returns NULL if the device
1022  *      is not found or a pointer to the device. The device returned has
1023  *      had a reference added and the pointer is safe until the user calls
1024  *      dev_put to indicate they have finished with it.
1025  */
1026
1027 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1028 {
1029         struct net_device *dev;
1030
1031         rcu_read_lock();
1032         dev = dev_get_by_index_rcu(net, ifindex);
1033         if (dev)
1034                 dev_hold(dev);
1035         rcu_read_unlock();
1036         return dev;
1037 }
1038 EXPORT_SYMBOL(dev_get_by_index);
1039
1040 /**
1041  *      dev_get_by_napi_id - find a device by napi_id
1042  *      @napi_id: ID of the NAPI struct
1043  *
1044  *      Search for an interface by NAPI ID. Returns %NULL if the device
1045  *      is not found or a pointer to the device. The device has not had
1046  *      its reference counter increased so the caller must be careful
1047  *      about locking. The caller must hold RCU lock.
1048  */
1049
1050 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1051 {
1052         struct napi_struct *napi;
1053
1054         WARN_ON_ONCE(!rcu_read_lock_held());
1055
1056         if (napi_id < MIN_NAPI_ID)
1057                 return NULL;
1058
1059         napi = napi_by_id(napi_id);
1060
1061         return napi ? napi->dev : NULL;
1062 }
1063 EXPORT_SYMBOL(dev_get_by_napi_id);
1064
1065 /**
1066  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1067  *      @net: network namespace
1068  *      @name: a pointer to the buffer where the name will be stored.
1069  *      @ifindex: the ifindex of the interface to get the name from.
1070  */
1071 int netdev_get_name(struct net *net, char *name, int ifindex)
1072 {
1073         struct net_device *dev;
1074         int ret;
1075
1076         down_read(&devnet_rename_sem);
1077         rcu_read_lock();
1078
1079         dev = dev_get_by_index_rcu(net, ifindex);
1080         if (!dev) {
1081                 ret = -ENODEV;
1082                 goto out;
1083         }
1084
1085         strcpy(name, dev->name);
1086
1087         ret = 0;
1088 out:
1089         rcu_read_unlock();
1090         up_read(&devnet_rename_sem);
1091         return ret;
1092 }
1093
1094 /**
1095  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1096  *      @net: the applicable net namespace
1097  *      @type: media type of device
1098  *      @ha: hardware address
1099  *
1100  *      Search for an interface by MAC address. Returns NULL if the device
1101  *      is not found or a pointer to the device.
1102  *      The caller must hold RCU or RTNL.
1103  *      The returned device has not had its ref count increased
1104  *      and the caller must therefore be careful about locking
1105  *
1106  */
1107
1108 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1109                                        const char *ha)
1110 {
1111         struct net_device *dev;
1112
1113         for_each_netdev_rcu(net, dev)
1114                 if (dev->type == type &&
1115                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1116                         return dev;
1117
1118         return NULL;
1119 }
1120 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1121
1122 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1123 {
1124         struct net_device *dev, *ret = NULL;
1125
1126         rcu_read_lock();
1127         for_each_netdev_rcu(net, dev)
1128                 if (dev->type == type) {
1129                         dev_hold(dev);
1130                         ret = dev;
1131                         break;
1132                 }
1133         rcu_read_unlock();
1134         return ret;
1135 }
1136 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1137
1138 /**
1139  *      __dev_get_by_flags - find any device with given flags
1140  *      @net: the applicable net namespace
1141  *      @if_flags: IFF_* values
1142  *      @mask: bitmask of bits in if_flags to check
1143  *
1144  *      Search for any interface with the given flags. Returns NULL if a device
1145  *      is not found or a pointer to the device. Must be called inside
1146  *      rtnl_lock(), and result refcount is unchanged.
1147  */
1148
1149 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1150                                       unsigned short mask)
1151 {
1152         struct net_device *dev, *ret;
1153
1154         ASSERT_RTNL();
1155
1156         ret = NULL;
1157         for_each_netdev(net, dev) {
1158                 if (((dev->flags ^ if_flags) & mask) == 0) {
1159                         ret = dev;
1160                         break;
1161                 }
1162         }
1163         return ret;
1164 }
1165 EXPORT_SYMBOL(__dev_get_by_flags);
1166
1167 /**
1168  *      dev_valid_name - check if name is okay for network device
1169  *      @name: name string
1170  *
1171  *      Network device names need to be valid file names to
1172  *      allow sysfs to work.  We also disallow any kind of
1173  *      whitespace.
1174  */
1175 bool dev_valid_name(const char *name)
1176 {
1177         if (*name == '\0')
1178                 return false;
1179         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1180                 return false;
1181         if (!strcmp(name, ".") || !strcmp(name, ".."))
1182                 return false;
1183
1184         while (*name) {
1185                 if (*name == '/' || *name == ':' || isspace(*name))
1186                         return false;
1187                 name++;
1188         }
1189         return true;
1190 }
1191 EXPORT_SYMBOL(dev_valid_name);
1192
1193 /**
1194  *      __dev_alloc_name - allocate a name for a device
1195  *      @net: network namespace to allocate the device name in
1196  *      @name: name format string
1197  *      @buf:  scratch buffer and result name string
1198  *
1199  *      Passed a format string - eg "lt%d" it will try and find a suitable
1200  *      id. It scans list of devices to build up a free map, then chooses
1201  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1202  *      while allocating the name and adding the device in order to avoid
1203  *      duplicates.
1204  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1205  *      Returns the number of the unit assigned or a negative errno code.
1206  */
1207
1208 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1209 {
1210         int i = 0;
1211         const char *p;
1212         const int max_netdevices = 8*PAGE_SIZE;
1213         unsigned long *inuse;
1214         struct net_device *d;
1215
1216         if (!dev_valid_name(name))
1217                 return -EINVAL;
1218
1219         p = strchr(name, '%');
1220         if (p) {
1221                 /*
1222                  * Verify the string as this thing may have come from
1223                  * the user.  There must be either one "%d" and no other "%"
1224                  * characters.
1225                  */
1226                 if (p[1] != 'd' || strchr(p + 2, '%'))
1227                         return -EINVAL;
1228
1229                 /* Use one page as a bit array of possible slots */
1230                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1231                 if (!inuse)
1232                         return -ENOMEM;
1233
1234                 for_each_netdev(net, d) {
1235                         struct netdev_name_node *name_node;
1236                         list_for_each_entry(name_node, &d->name_node->list, list) {
1237                                 if (!sscanf(name_node->name, name, &i))
1238                                         continue;
1239                                 if (i < 0 || i >= max_netdevices)
1240                                         continue;
1241
1242                                 /*  avoid cases where sscanf is not exact inverse of printf */
1243                                 snprintf(buf, IFNAMSIZ, name, i);
1244                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1245                                         set_bit(i, inuse);
1246                         }
1247                         if (!sscanf(d->name, name, &i))
1248                                 continue;
1249                         if (i < 0 || i >= max_netdevices)
1250                                 continue;
1251
1252                         /*  avoid cases where sscanf is not exact inverse of printf */
1253                         snprintf(buf, IFNAMSIZ, name, i);
1254                         if (!strncmp(buf, d->name, IFNAMSIZ))
1255                                 set_bit(i, inuse);
1256                 }
1257
1258                 i = find_first_zero_bit(inuse, max_netdevices);
1259                 free_page((unsigned long) inuse);
1260         }
1261
1262         snprintf(buf, IFNAMSIZ, name, i);
1263         if (!__dev_get_by_name(net, buf))
1264                 return i;
1265
1266         /* It is possible to run out of possible slots
1267          * when the name is long and there isn't enough space left
1268          * for the digits, or if all bits are used.
1269          */
1270         return -ENFILE;
1271 }
1272
1273 static int dev_alloc_name_ns(struct net *net,
1274                              struct net_device *dev,
1275                              const char *name)
1276 {
1277         char buf[IFNAMSIZ];
1278         int ret;
1279
1280         BUG_ON(!net);
1281         ret = __dev_alloc_name(net, name, buf);
1282         if (ret >= 0)
1283                 strlcpy(dev->name, buf, IFNAMSIZ);
1284         return ret;
1285 }
1286
1287 /**
1288  *      dev_alloc_name - allocate a name for a device
1289  *      @dev: device
1290  *      @name: name format string
1291  *
1292  *      Passed a format string - eg "lt%d" it will try and find a suitable
1293  *      id. It scans list of devices to build up a free map, then chooses
1294  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1295  *      while allocating the name and adding the device in order to avoid
1296  *      duplicates.
1297  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1298  *      Returns the number of the unit assigned or a negative errno code.
1299  */
1300
1301 int dev_alloc_name(struct net_device *dev, const char *name)
1302 {
1303         return dev_alloc_name_ns(dev_net(dev), dev, name);
1304 }
1305 EXPORT_SYMBOL(dev_alloc_name);
1306
1307 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1308                               const char *name)
1309 {
1310         BUG_ON(!net);
1311
1312         if (!dev_valid_name(name))
1313                 return -EINVAL;
1314
1315         if (strchr(name, '%'))
1316                 return dev_alloc_name_ns(net, dev, name);
1317         else if (__dev_get_by_name(net, name))
1318                 return -EEXIST;
1319         else if (dev->name != name)
1320                 strlcpy(dev->name, name, IFNAMSIZ);
1321
1322         return 0;
1323 }
1324
1325 /**
1326  *      dev_change_name - change name of a device
1327  *      @dev: device
1328  *      @newname: name (or format string) must be at least IFNAMSIZ
1329  *
1330  *      Change name of a device, can pass format strings "eth%d".
1331  *      for wildcarding.
1332  */
1333 int dev_change_name(struct net_device *dev, const char *newname)
1334 {
1335         unsigned char old_assign_type;
1336         char oldname[IFNAMSIZ];
1337         int err = 0;
1338         int ret;
1339         struct net *net;
1340
1341         ASSERT_RTNL();
1342         BUG_ON(!dev_net(dev));
1343
1344         net = dev_net(dev);
1345
1346         /* Some auto-enslaved devices e.g. failover slaves are
1347          * special, as userspace might rename the device after
1348          * the interface had been brought up and running since
1349          * the point kernel initiated auto-enslavement. Allow
1350          * live name change even when these slave devices are
1351          * up and running.
1352          *
1353          * Typically, users of these auto-enslaving devices
1354          * don't actually care about slave name change, as
1355          * they are supposed to operate on master interface
1356          * directly.
1357          */
1358         if (dev->flags & IFF_UP &&
1359             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1360                 return -EBUSY;
1361
1362         down_write(&devnet_rename_sem);
1363
1364         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1365                 up_write(&devnet_rename_sem);
1366                 return 0;
1367         }
1368
1369         memcpy(oldname, dev->name, IFNAMSIZ);
1370
1371         err = dev_get_valid_name(net, dev, newname);
1372         if (err < 0) {
1373                 up_write(&devnet_rename_sem);
1374                 return err;
1375         }
1376
1377         if (oldname[0] && !strchr(oldname, '%'))
1378                 netdev_info(dev, "renamed from %s\n", oldname);
1379
1380         old_assign_type = dev->name_assign_type;
1381         dev->name_assign_type = NET_NAME_RENAMED;
1382
1383 rollback:
1384         ret = device_rename(&dev->dev, dev->name);
1385         if (ret) {
1386                 memcpy(dev->name, oldname, IFNAMSIZ);
1387                 dev->name_assign_type = old_assign_type;
1388                 up_write(&devnet_rename_sem);
1389                 return ret;
1390         }
1391
1392         up_write(&devnet_rename_sem);
1393
1394         netdev_adjacent_rename_links(dev, oldname);
1395
1396         write_lock_bh(&dev_base_lock);
1397         netdev_name_node_del(dev->name_node);
1398         write_unlock_bh(&dev_base_lock);
1399
1400         synchronize_rcu();
1401
1402         write_lock_bh(&dev_base_lock);
1403         netdev_name_node_add(net, dev->name_node);
1404         write_unlock_bh(&dev_base_lock);
1405
1406         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1407         ret = notifier_to_errno(ret);
1408
1409         if (ret) {
1410                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1411                 if (err >= 0) {
1412                         err = ret;
1413                         down_write(&devnet_rename_sem);
1414                         memcpy(dev->name, oldname, IFNAMSIZ);
1415                         memcpy(oldname, newname, IFNAMSIZ);
1416                         dev->name_assign_type = old_assign_type;
1417                         old_assign_type = NET_NAME_RENAMED;
1418                         goto rollback;
1419                 } else {
1420                         pr_err("%s: name change rollback failed: %d\n",
1421                                dev->name, ret);
1422                 }
1423         }
1424
1425         return err;
1426 }
1427
1428 /**
1429  *      dev_set_alias - change ifalias of a device
1430  *      @dev: device
1431  *      @alias: name up to IFALIASZ
1432  *      @len: limit of bytes to copy from info
1433  *
1434  *      Set ifalias for a device,
1435  */
1436 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1437 {
1438         struct dev_ifalias *new_alias = NULL;
1439
1440         if (len >= IFALIASZ)
1441                 return -EINVAL;
1442
1443         if (len) {
1444                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1445                 if (!new_alias)
1446                         return -ENOMEM;
1447
1448                 memcpy(new_alias->ifalias, alias, len);
1449                 new_alias->ifalias[len] = 0;
1450         }
1451
1452         mutex_lock(&ifalias_mutex);
1453         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1454                                         mutex_is_locked(&ifalias_mutex));
1455         mutex_unlock(&ifalias_mutex);
1456
1457         if (new_alias)
1458                 kfree_rcu(new_alias, rcuhead);
1459
1460         return len;
1461 }
1462 EXPORT_SYMBOL(dev_set_alias);
1463
1464 /**
1465  *      dev_get_alias - get ifalias of a device
1466  *      @dev: device
1467  *      @name: buffer to store name of ifalias
1468  *      @len: size of buffer
1469  *
1470  *      get ifalias for a device.  Caller must make sure dev cannot go
1471  *      away,  e.g. rcu read lock or own a reference count to device.
1472  */
1473 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1474 {
1475         const struct dev_ifalias *alias;
1476         int ret = 0;
1477
1478         rcu_read_lock();
1479         alias = rcu_dereference(dev->ifalias);
1480         if (alias)
1481                 ret = snprintf(name, len, "%s", alias->ifalias);
1482         rcu_read_unlock();
1483
1484         return ret;
1485 }
1486
1487 /**
1488  *      netdev_features_change - device changes features
1489  *      @dev: device to cause notification
1490  *
1491  *      Called to indicate a device has changed features.
1492  */
1493 void netdev_features_change(struct net_device *dev)
1494 {
1495         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1496 }
1497 EXPORT_SYMBOL(netdev_features_change);
1498
1499 /**
1500  *      netdev_state_change - device changes state
1501  *      @dev: device to cause notification
1502  *
1503  *      Called to indicate a device has changed state. This function calls
1504  *      the notifier chains for netdev_chain and sends a NEWLINK message
1505  *      to the routing socket.
1506  */
1507 void netdev_state_change(struct net_device *dev)
1508 {
1509         if (dev->flags & IFF_UP) {
1510                 struct netdev_notifier_change_info change_info = {
1511                         .info.dev = dev,
1512                 };
1513
1514                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1515                                               &change_info.info);
1516                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1517         }
1518 }
1519 EXPORT_SYMBOL(netdev_state_change);
1520
1521 /**
1522  * __netdev_notify_peers - notify network peers about existence of @dev,
1523  * to be called when rtnl lock is already held.
1524  * @dev: network device
1525  *
1526  * Generate traffic such that interested network peers are aware of
1527  * @dev, such as by generating a gratuitous ARP. This may be used when
1528  * a device wants to inform the rest of the network about some sort of
1529  * reconfiguration such as a failover event or virtual machine
1530  * migration.
1531  */
1532 void __netdev_notify_peers(struct net_device *dev)
1533 {
1534         ASSERT_RTNL();
1535         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1536         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1537 }
1538 EXPORT_SYMBOL(__netdev_notify_peers);
1539
1540 /**
1541  * netdev_notify_peers - notify network peers about existence of @dev
1542  * @dev: network device
1543  *
1544  * Generate traffic such that interested network peers are aware of
1545  * @dev, such as by generating a gratuitous ARP. This may be used when
1546  * a device wants to inform the rest of the network about some sort of
1547  * reconfiguration such as a failover event or virtual machine
1548  * migration.
1549  */
1550 void netdev_notify_peers(struct net_device *dev)
1551 {
1552         rtnl_lock();
1553         __netdev_notify_peers(dev);
1554         rtnl_unlock();
1555 }
1556 EXPORT_SYMBOL(netdev_notify_peers);
1557
1558 static int napi_threaded_poll(void *data);
1559
1560 static int napi_kthread_create(struct napi_struct *n)
1561 {
1562         int err = 0;
1563
1564         /* Create and wake up the kthread once to put it in
1565          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1566          * warning and work with loadavg.
1567          */
1568         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1569                                 n->dev->name, n->napi_id);
1570         if (IS_ERR(n->thread)) {
1571                 err = PTR_ERR(n->thread);
1572                 pr_err("kthread_run failed with err %d\n", err);
1573                 n->thread = NULL;
1574         }
1575
1576         return err;
1577 }
1578
1579 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1580 {
1581         const struct net_device_ops *ops = dev->netdev_ops;
1582         int ret;
1583
1584         ASSERT_RTNL();
1585
1586         if (!netif_device_present(dev)) {
1587                 /* may be detached because parent is runtime-suspended */
1588                 if (dev->dev.parent)
1589                         pm_runtime_resume(dev->dev.parent);
1590                 if (!netif_device_present(dev))
1591                         return -ENODEV;
1592         }
1593
1594         /* Block netpoll from trying to do any rx path servicing.
1595          * If we don't do this there is a chance ndo_poll_controller
1596          * or ndo_poll may be running while we open the device
1597          */
1598         netpoll_poll_disable(dev);
1599
1600         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1601         ret = notifier_to_errno(ret);
1602         if (ret)
1603                 return ret;
1604
1605         set_bit(__LINK_STATE_START, &dev->state);
1606
1607         if (ops->ndo_validate_addr)
1608                 ret = ops->ndo_validate_addr(dev);
1609
1610         if (!ret && ops->ndo_open)
1611                 ret = ops->ndo_open(dev);
1612
1613         netpoll_poll_enable(dev);
1614
1615         if (ret)
1616                 clear_bit(__LINK_STATE_START, &dev->state);
1617         else {
1618                 dev->flags |= IFF_UP;
1619                 dev_set_rx_mode(dev);
1620                 dev_activate(dev);
1621                 add_device_randomness(dev->dev_addr, dev->addr_len);
1622         }
1623
1624         return ret;
1625 }
1626
1627 /**
1628  *      dev_open        - prepare an interface for use.
1629  *      @dev: device to open
1630  *      @extack: netlink extended ack
1631  *
1632  *      Takes a device from down to up state. The device's private open
1633  *      function is invoked and then the multicast lists are loaded. Finally
1634  *      the device is moved into the up state and a %NETDEV_UP message is
1635  *      sent to the netdev notifier chain.
1636  *
1637  *      Calling this function on an active interface is a nop. On a failure
1638  *      a negative errno code is returned.
1639  */
1640 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1641 {
1642         int ret;
1643
1644         if (dev->flags & IFF_UP)
1645                 return 0;
1646
1647         ret = __dev_open(dev, extack);
1648         if (ret < 0)
1649                 return ret;
1650
1651         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1652         call_netdevice_notifiers(NETDEV_UP, dev);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL(dev_open);
1657
1658 static void __dev_close_many(struct list_head *head)
1659 {
1660         struct net_device *dev;
1661
1662         ASSERT_RTNL();
1663         might_sleep();
1664
1665         list_for_each_entry(dev, head, close_list) {
1666                 /* Temporarily disable netpoll until the interface is down */
1667                 netpoll_poll_disable(dev);
1668
1669                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1670
1671                 clear_bit(__LINK_STATE_START, &dev->state);
1672
1673                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1674                  * can be even on different cpu. So just clear netif_running().
1675                  *
1676                  * dev->stop() will invoke napi_disable() on all of it's
1677                  * napi_struct instances on this device.
1678                  */
1679                 smp_mb__after_atomic(); /* Commit netif_running(). */
1680         }
1681
1682         dev_deactivate_many(head);
1683
1684         list_for_each_entry(dev, head, close_list) {
1685                 const struct net_device_ops *ops = dev->netdev_ops;
1686
1687                 /*
1688                  *      Call the device specific close. This cannot fail.
1689                  *      Only if device is UP
1690                  *
1691                  *      We allow it to be called even after a DETACH hot-plug
1692                  *      event.
1693                  */
1694                 if (ops->ndo_stop)
1695                         ops->ndo_stop(dev);
1696
1697                 dev->flags &= ~IFF_UP;
1698                 netpoll_poll_enable(dev);
1699         }
1700 }
1701
1702 static void __dev_close(struct net_device *dev)
1703 {
1704         LIST_HEAD(single);
1705
1706         list_add(&dev->close_list, &single);
1707         __dev_close_many(&single);
1708         list_del(&single);
1709 }
1710
1711 void dev_close_many(struct list_head *head, bool unlink)
1712 {
1713         struct net_device *dev, *tmp;
1714
1715         /* Remove the devices that don't need to be closed */
1716         list_for_each_entry_safe(dev, tmp, head, close_list)
1717                 if (!(dev->flags & IFF_UP))
1718                         list_del_init(&dev->close_list);
1719
1720         __dev_close_many(head);
1721
1722         list_for_each_entry_safe(dev, tmp, head, close_list) {
1723                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1724                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1725                 if (unlink)
1726                         list_del_init(&dev->close_list);
1727         }
1728 }
1729 EXPORT_SYMBOL(dev_close_many);
1730
1731 /**
1732  *      dev_close - shutdown an interface.
1733  *      @dev: device to shutdown
1734  *
1735  *      This function moves an active device into down state. A
1736  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1737  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1738  *      chain.
1739  */
1740 void dev_close(struct net_device *dev)
1741 {
1742         if (dev->flags & IFF_UP) {
1743                 LIST_HEAD(single);
1744
1745                 list_add(&dev->close_list, &single);
1746                 dev_close_many(&single, true);
1747                 list_del(&single);
1748         }
1749 }
1750 EXPORT_SYMBOL(dev_close);
1751
1752
1753 /**
1754  *      dev_disable_lro - disable Large Receive Offload on a device
1755  *      @dev: device
1756  *
1757  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1758  *      called under RTNL.  This is needed if received packets may be
1759  *      forwarded to another interface.
1760  */
1761 void dev_disable_lro(struct net_device *dev)
1762 {
1763         struct net_device *lower_dev;
1764         struct list_head *iter;
1765
1766         dev->wanted_features &= ~NETIF_F_LRO;
1767         netdev_update_features(dev);
1768
1769         if (unlikely(dev->features & NETIF_F_LRO))
1770                 netdev_WARN(dev, "failed to disable LRO!\n");
1771
1772         netdev_for_each_lower_dev(dev, lower_dev, iter)
1773                 dev_disable_lro(lower_dev);
1774 }
1775 EXPORT_SYMBOL(dev_disable_lro);
1776
1777 /**
1778  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1779  *      @dev: device
1780  *
1781  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1782  *      called under RTNL.  This is needed if Generic XDP is installed on
1783  *      the device.
1784  */
1785 static void dev_disable_gro_hw(struct net_device *dev)
1786 {
1787         dev->wanted_features &= ~NETIF_F_GRO_HW;
1788         netdev_update_features(dev);
1789
1790         if (unlikely(dev->features & NETIF_F_GRO_HW))
1791                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1792 }
1793
1794 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1795 {
1796 #define N(val)                                          \
1797         case NETDEV_##val:                              \
1798                 return "NETDEV_" __stringify(val);
1799         switch (cmd) {
1800         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1801         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1802         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1803         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1804         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1805         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1806         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1807         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1808         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1809         N(PRE_CHANGEADDR)
1810         }
1811 #undef N
1812         return "UNKNOWN_NETDEV_EVENT";
1813 }
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815
1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817                                    struct net_device *dev)
1818 {
1819         struct netdev_notifier_info info = {
1820                 .dev = dev,
1821         };
1822
1823         return nb->notifier_call(nb, val, &info);
1824 }
1825
1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827                                              struct net_device *dev)
1828 {
1829         int err;
1830
1831         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832         err = notifier_to_errno(err);
1833         if (err)
1834                 return err;
1835
1836         if (!(dev->flags & IFF_UP))
1837                 return 0;
1838
1839         call_netdevice_notifier(nb, NETDEV_UP, dev);
1840         return 0;
1841 }
1842
1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844                                                 struct net_device *dev)
1845 {
1846         if (dev->flags & IFF_UP) {
1847                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848                                         dev);
1849                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850         }
1851         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 }
1853
1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855                                                  struct net *net)
1856 {
1857         struct net_device *dev;
1858         int err;
1859
1860         for_each_netdev(net, dev) {
1861                 err = call_netdevice_register_notifiers(nb, dev);
1862                 if (err)
1863                         goto rollback;
1864         }
1865         return 0;
1866
1867 rollback:
1868         for_each_netdev_continue_reverse(net, dev)
1869                 call_netdevice_unregister_notifiers(nb, dev);
1870         return err;
1871 }
1872
1873 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874                                                     struct net *net)
1875 {
1876         struct net_device *dev;
1877
1878         for_each_netdev(net, dev)
1879                 call_netdevice_unregister_notifiers(nb, dev);
1880 }
1881
1882 static int dev_boot_phase = 1;
1883
1884 /**
1885  * register_netdevice_notifier - register a network notifier block
1886  * @nb: notifier
1887  *
1888  * Register a notifier to be called when network device events occur.
1889  * The notifier passed is linked into the kernel structures and must
1890  * not be reused until it has been unregistered. A negative errno code
1891  * is returned on a failure.
1892  *
1893  * When registered all registration and up events are replayed
1894  * to the new notifier to allow device to have a race free
1895  * view of the network device list.
1896  */
1897
1898 int register_netdevice_notifier(struct notifier_block *nb)
1899 {
1900         struct net *net;
1901         int err;
1902
1903         /* Close race with setup_net() and cleanup_net() */
1904         down_write(&pernet_ops_rwsem);
1905         rtnl_lock();
1906         err = raw_notifier_chain_register(&netdev_chain, nb);
1907         if (err)
1908                 goto unlock;
1909         if (dev_boot_phase)
1910                 goto unlock;
1911         for_each_net(net) {
1912                 err = call_netdevice_register_net_notifiers(nb, net);
1913                 if (err)
1914                         goto rollback;
1915         }
1916
1917 unlock:
1918         rtnl_unlock();
1919         up_write(&pernet_ops_rwsem);
1920         return err;
1921
1922 rollback:
1923         for_each_net_continue_reverse(net)
1924                 call_netdevice_unregister_net_notifiers(nb, net);
1925
1926         raw_notifier_chain_unregister(&netdev_chain, nb);
1927         goto unlock;
1928 }
1929 EXPORT_SYMBOL(register_netdevice_notifier);
1930
1931 /**
1932  * unregister_netdevice_notifier - unregister a network notifier block
1933  * @nb: notifier
1934  *
1935  * Unregister a notifier previously registered by
1936  * register_netdevice_notifier(). The notifier is unlinked into the
1937  * kernel structures and may then be reused. A negative errno code
1938  * is returned on a failure.
1939  *
1940  * After unregistering unregister and down device events are synthesized
1941  * for all devices on the device list to the removed notifier to remove
1942  * the need for special case cleanup code.
1943  */
1944
1945 int unregister_netdevice_notifier(struct notifier_block *nb)
1946 {
1947         struct net *net;
1948         int err;
1949
1950         /* Close race with setup_net() and cleanup_net() */
1951         down_write(&pernet_ops_rwsem);
1952         rtnl_lock();
1953         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1954         if (err)
1955                 goto unlock;
1956
1957         for_each_net(net)
1958                 call_netdevice_unregister_net_notifiers(nb, net);
1959
1960 unlock:
1961         rtnl_unlock();
1962         up_write(&pernet_ops_rwsem);
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier);
1966
1967 static int __register_netdevice_notifier_net(struct net *net,
1968                                              struct notifier_block *nb,
1969                                              bool ignore_call_fail)
1970 {
1971         int err;
1972
1973         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1974         if (err)
1975                 return err;
1976         if (dev_boot_phase)
1977                 return 0;
1978
1979         err = call_netdevice_register_net_notifiers(nb, net);
1980         if (err && !ignore_call_fail)
1981                 goto chain_unregister;
1982
1983         return 0;
1984
1985 chain_unregister:
1986         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1987         return err;
1988 }
1989
1990 static int __unregister_netdevice_notifier_net(struct net *net,
1991                                                struct notifier_block *nb)
1992 {
1993         int err;
1994
1995         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1996         if (err)
1997                 return err;
1998
1999         call_netdevice_unregister_net_notifiers(nb, net);
2000         return 0;
2001 }
2002
2003 /**
2004  * register_netdevice_notifier_net - register a per-netns network notifier block
2005  * @net: network namespace
2006  * @nb: notifier
2007  *
2008  * Register a notifier to be called when network device events occur.
2009  * The notifier passed is linked into the kernel structures and must
2010  * not be reused until it has been unregistered. A negative errno code
2011  * is returned on a failure.
2012  *
2013  * When registered all registration and up events are replayed
2014  * to the new notifier to allow device to have a race free
2015  * view of the network device list.
2016  */
2017
2018 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2019 {
2020         int err;
2021
2022         rtnl_lock();
2023         err = __register_netdevice_notifier_net(net, nb, false);
2024         rtnl_unlock();
2025         return err;
2026 }
2027 EXPORT_SYMBOL(register_netdevice_notifier_net);
2028
2029 /**
2030  * unregister_netdevice_notifier_net - unregister a per-netns
2031  *                                     network notifier block
2032  * @net: network namespace
2033  * @nb: notifier
2034  *
2035  * Unregister a notifier previously registered by
2036  * register_netdevice_notifier(). The notifier is unlinked into the
2037  * kernel structures and may then be reused. A negative errno code
2038  * is returned on a failure.
2039  *
2040  * After unregistering unregister and down device events are synthesized
2041  * for all devices on the device list to the removed notifier to remove
2042  * the need for special case cleanup code.
2043  */
2044
2045 int unregister_netdevice_notifier_net(struct net *net,
2046                                       struct notifier_block *nb)
2047 {
2048         int err;
2049
2050         rtnl_lock();
2051         err = __unregister_netdevice_notifier_net(net, nb);
2052         rtnl_unlock();
2053         return err;
2054 }
2055 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2056
2057 int register_netdevice_notifier_dev_net(struct net_device *dev,
2058                                         struct notifier_block *nb,
2059                                         struct netdev_net_notifier *nn)
2060 {
2061         int err;
2062
2063         rtnl_lock();
2064         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2065         if (!err) {
2066                 nn->nb = nb;
2067                 list_add(&nn->list, &dev->net_notifier_list);
2068         }
2069         rtnl_unlock();
2070         return err;
2071 }
2072 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2073
2074 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2075                                           struct notifier_block *nb,
2076                                           struct netdev_net_notifier *nn)
2077 {
2078         int err;
2079
2080         rtnl_lock();
2081         list_del(&nn->list);
2082         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2083         rtnl_unlock();
2084         return err;
2085 }
2086 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2087
2088 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2089                                              struct net *net)
2090 {
2091         struct netdev_net_notifier *nn;
2092
2093         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2094                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2095                 __register_netdevice_notifier_net(net, nn->nb, true);
2096         }
2097 }
2098
2099 /**
2100  *      call_netdevice_notifiers_info - call all network notifier blocks
2101  *      @val: value passed unmodified to notifier function
2102  *      @info: notifier information data
2103  *
2104  *      Call all network notifier blocks.  Parameters and return value
2105  *      are as for raw_notifier_call_chain().
2106  */
2107
2108 static int call_netdevice_notifiers_info(unsigned long val,
2109                                          struct netdev_notifier_info *info)
2110 {
2111         struct net *net = dev_net(info->dev);
2112         int ret;
2113
2114         ASSERT_RTNL();
2115
2116         /* Run per-netns notifier block chain first, then run the global one.
2117          * Hopefully, one day, the global one is going to be removed after
2118          * all notifier block registrators get converted to be per-netns.
2119          */
2120         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2121         if (ret & NOTIFY_STOP_MASK)
2122                 return ret;
2123         return raw_notifier_call_chain(&netdev_chain, val, info);
2124 }
2125
2126 static int call_netdevice_notifiers_extack(unsigned long val,
2127                                            struct net_device *dev,
2128                                            struct netlink_ext_ack *extack)
2129 {
2130         struct netdev_notifier_info info = {
2131                 .dev = dev,
2132                 .extack = extack,
2133         };
2134
2135         return call_netdevice_notifiers_info(val, &info);
2136 }
2137
2138 /**
2139  *      call_netdevice_notifiers - call all network notifier blocks
2140  *      @val: value passed unmodified to notifier function
2141  *      @dev: net_device pointer passed unmodified to notifier function
2142  *
2143  *      Call all network notifier blocks.  Parameters and return value
2144  *      are as for raw_notifier_call_chain().
2145  */
2146
2147 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2148 {
2149         return call_netdevice_notifiers_extack(val, dev, NULL);
2150 }
2151 EXPORT_SYMBOL(call_netdevice_notifiers);
2152
2153 /**
2154  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2155  *      @val: value passed unmodified to notifier function
2156  *      @dev: net_device pointer passed unmodified to notifier function
2157  *      @arg: additional u32 argument passed to the notifier function
2158  *
2159  *      Call all network notifier blocks.  Parameters and return value
2160  *      are as for raw_notifier_call_chain().
2161  */
2162 static int call_netdevice_notifiers_mtu(unsigned long val,
2163                                         struct net_device *dev, u32 arg)
2164 {
2165         struct netdev_notifier_info_ext info = {
2166                 .info.dev = dev,
2167                 .ext.mtu = arg,
2168         };
2169
2170         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2171
2172         return call_netdevice_notifiers_info(val, &info.info);
2173 }
2174
2175 #ifdef CONFIG_NET_INGRESS
2176 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2177
2178 void net_inc_ingress_queue(void)
2179 {
2180         static_branch_inc(&ingress_needed_key);
2181 }
2182 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2183
2184 void net_dec_ingress_queue(void)
2185 {
2186         static_branch_dec(&ingress_needed_key);
2187 }
2188 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2189 #endif
2190
2191 #ifdef CONFIG_NET_EGRESS
2192 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2193
2194 void net_inc_egress_queue(void)
2195 {
2196         static_branch_inc(&egress_needed_key);
2197 }
2198 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2199
2200 void net_dec_egress_queue(void)
2201 {
2202         static_branch_dec(&egress_needed_key);
2203 }
2204 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2205 #endif
2206
2207 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2208 #ifdef CONFIG_JUMP_LABEL
2209 static atomic_t netstamp_needed_deferred;
2210 static atomic_t netstamp_wanted;
2211 static void netstamp_clear(struct work_struct *work)
2212 {
2213         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2214         int wanted;
2215
2216         wanted = atomic_add_return(deferred, &netstamp_wanted);
2217         if (wanted > 0)
2218                 static_branch_enable(&netstamp_needed_key);
2219         else
2220                 static_branch_disable(&netstamp_needed_key);
2221 }
2222 static DECLARE_WORK(netstamp_work, netstamp_clear);
2223 #endif
2224
2225 void net_enable_timestamp(void)
2226 {
2227 #ifdef CONFIG_JUMP_LABEL
2228         int wanted;
2229
2230         while (1) {
2231                 wanted = atomic_read(&netstamp_wanted);
2232                 if (wanted <= 0)
2233                         break;
2234                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2235                         return;
2236         }
2237         atomic_inc(&netstamp_needed_deferred);
2238         schedule_work(&netstamp_work);
2239 #else
2240         static_branch_inc(&netstamp_needed_key);
2241 #endif
2242 }
2243 EXPORT_SYMBOL(net_enable_timestamp);
2244
2245 void net_disable_timestamp(void)
2246 {
2247 #ifdef CONFIG_JUMP_LABEL
2248         int wanted;
2249
2250         while (1) {
2251                 wanted = atomic_read(&netstamp_wanted);
2252                 if (wanted <= 1)
2253                         break;
2254                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2255                         return;
2256         }
2257         atomic_dec(&netstamp_needed_deferred);
2258         schedule_work(&netstamp_work);
2259 #else
2260         static_branch_dec(&netstamp_needed_key);
2261 #endif
2262 }
2263 EXPORT_SYMBOL(net_disable_timestamp);
2264
2265 static inline void net_timestamp_set(struct sk_buff *skb)
2266 {
2267         skb->tstamp = 0;
2268         if (static_branch_unlikely(&netstamp_needed_key))
2269                 __net_timestamp(skb);
2270 }
2271
2272 #define net_timestamp_check(COND, SKB)                          \
2273         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2274                 if ((COND) && !(SKB)->tstamp)                   \
2275                         __net_timestamp(SKB);                   \
2276         }                                                       \
2277
2278 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2279 {
2280         return __is_skb_forwardable(dev, skb, true);
2281 }
2282 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2283
2284 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2285                               bool check_mtu)
2286 {
2287         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2288
2289         if (likely(!ret)) {
2290                 skb->protocol = eth_type_trans(skb, dev);
2291                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2292         }
2293
2294         return ret;
2295 }
2296
2297 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2298 {
2299         return __dev_forward_skb2(dev, skb, true);
2300 }
2301 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2302
2303 /**
2304  * dev_forward_skb - loopback an skb to another netif
2305  *
2306  * @dev: destination network device
2307  * @skb: buffer to forward
2308  *
2309  * return values:
2310  *      NET_RX_SUCCESS  (no congestion)
2311  *      NET_RX_DROP     (packet was dropped, but freed)
2312  *
2313  * dev_forward_skb can be used for injecting an skb from the
2314  * start_xmit function of one device into the receive queue
2315  * of another device.
2316  *
2317  * The receiving device may be in another namespace, so
2318  * we have to clear all information in the skb that could
2319  * impact namespace isolation.
2320  */
2321 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2322 {
2323         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2324 }
2325 EXPORT_SYMBOL_GPL(dev_forward_skb);
2326
2327 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2328 {
2329         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2330 }
2331
2332 static inline int deliver_skb(struct sk_buff *skb,
2333                               struct packet_type *pt_prev,
2334                               struct net_device *orig_dev)
2335 {
2336         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2337                 return -ENOMEM;
2338         refcount_inc(&skb->users);
2339         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2340 }
2341
2342 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2343                                           struct packet_type **pt,
2344                                           struct net_device *orig_dev,
2345                                           __be16 type,
2346                                           struct list_head *ptype_list)
2347 {
2348         struct packet_type *ptype, *pt_prev = *pt;
2349
2350         list_for_each_entry_rcu(ptype, ptype_list, list) {
2351                 if (ptype->type != type)
2352                         continue;
2353                 if (pt_prev)
2354                         deliver_skb(skb, pt_prev, orig_dev);
2355                 pt_prev = ptype;
2356         }
2357         *pt = pt_prev;
2358 }
2359
2360 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2361 {
2362         if (!ptype->af_packet_priv || !skb->sk)
2363                 return false;
2364
2365         if (ptype->id_match)
2366                 return ptype->id_match(ptype, skb->sk);
2367         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2368                 return true;
2369
2370         return false;
2371 }
2372
2373 /**
2374  * dev_nit_active - return true if any network interface taps are in use
2375  *
2376  * @dev: network device to check for the presence of taps
2377  */
2378 bool dev_nit_active(struct net_device *dev)
2379 {
2380         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2381 }
2382 EXPORT_SYMBOL_GPL(dev_nit_active);
2383
2384 /*
2385  *      Support routine. Sends outgoing frames to any network
2386  *      taps currently in use.
2387  */
2388
2389 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2390 {
2391         struct packet_type *ptype;
2392         struct sk_buff *skb2 = NULL;
2393         struct packet_type *pt_prev = NULL;
2394         struct list_head *ptype_list = &ptype_all;
2395
2396         rcu_read_lock();
2397 again:
2398         list_for_each_entry_rcu(ptype, ptype_list, list) {
2399                 if (ptype->ignore_outgoing)
2400                         continue;
2401
2402                 /* Never send packets back to the socket
2403                  * they originated from - MvS (miquels@drinkel.ow.org)
2404                  */
2405                 if (skb_loop_sk(ptype, skb))
2406                         continue;
2407
2408                 if (pt_prev) {
2409                         deliver_skb(skb2, pt_prev, skb->dev);
2410                         pt_prev = ptype;
2411                         continue;
2412                 }
2413
2414                 /* need to clone skb, done only once */
2415                 skb2 = skb_clone(skb, GFP_ATOMIC);
2416                 if (!skb2)
2417                         goto out_unlock;
2418
2419                 net_timestamp_set(skb2);
2420
2421                 /* skb->nh should be correctly
2422                  * set by sender, so that the second statement is
2423                  * just protection against buggy protocols.
2424                  */
2425                 skb_reset_mac_header(skb2);
2426
2427                 if (skb_network_header(skb2) < skb2->data ||
2428                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2429                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2430                                              ntohs(skb2->protocol),
2431                                              dev->name);
2432                         skb_reset_network_header(skb2);
2433                 }
2434
2435                 skb2->transport_header = skb2->network_header;
2436                 skb2->pkt_type = PACKET_OUTGOING;
2437                 pt_prev = ptype;
2438         }
2439
2440         if (ptype_list == &ptype_all) {
2441                 ptype_list = &dev->ptype_all;
2442                 goto again;
2443         }
2444 out_unlock:
2445         if (pt_prev) {
2446                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2447                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2448                 else
2449                         kfree_skb(skb2);
2450         }
2451         rcu_read_unlock();
2452 }
2453 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2454
2455 /**
2456  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2457  * @dev: Network device
2458  * @txq: number of queues available
2459  *
2460  * If real_num_tx_queues is changed the tc mappings may no longer be
2461  * valid. To resolve this verify the tc mapping remains valid and if
2462  * not NULL the mapping. With no priorities mapping to this
2463  * offset/count pair it will no longer be used. In the worst case TC0
2464  * is invalid nothing can be done so disable priority mappings. If is
2465  * expected that drivers will fix this mapping if they can before
2466  * calling netif_set_real_num_tx_queues.
2467  */
2468 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2469 {
2470         int i;
2471         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2472
2473         /* If TC0 is invalidated disable TC mapping */
2474         if (tc->offset + tc->count > txq) {
2475                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2476                 dev->num_tc = 0;
2477                 return;
2478         }
2479
2480         /* Invalidated prio to tc mappings set to TC0 */
2481         for (i = 1; i < TC_BITMASK + 1; i++) {
2482                 int q = netdev_get_prio_tc_map(dev, i);
2483
2484                 tc = &dev->tc_to_txq[q];
2485                 if (tc->offset + tc->count > txq) {
2486                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2487                                 i, q);
2488                         netdev_set_prio_tc_map(dev, i, 0);
2489                 }
2490         }
2491 }
2492
2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2494 {
2495         if (dev->num_tc) {
2496                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2497                 int i;
2498
2499                 /* walk through the TCs and see if it falls into any of them */
2500                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2501                         if ((txq - tc->offset) < tc->count)
2502                                 return i;
2503                 }
2504
2505                 /* didn't find it, just return -1 to indicate no match */
2506                 return -1;
2507         }
2508
2509         return 0;
2510 }
2511 EXPORT_SYMBOL(netdev_txq_to_tc);
2512
2513 #ifdef CONFIG_XPS
2514 static struct static_key xps_needed __read_mostly;
2515 static struct static_key xps_rxqs_needed __read_mostly;
2516 static DEFINE_MUTEX(xps_map_mutex);
2517 #define xmap_dereference(P)             \
2518         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2519
2520 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2521                              struct xps_dev_maps *old_maps, int tci, u16 index)
2522 {
2523         struct xps_map *map = NULL;
2524         int pos;
2525
2526         if (dev_maps)
2527                 map = xmap_dereference(dev_maps->attr_map[tci]);
2528         if (!map)
2529                 return false;
2530
2531         for (pos = map->len; pos--;) {
2532                 if (map->queues[pos] != index)
2533                         continue;
2534
2535                 if (map->len > 1) {
2536                         map->queues[pos] = map->queues[--map->len];
2537                         break;
2538                 }
2539
2540                 if (old_maps)
2541                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2542                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2543                 kfree_rcu(map, rcu);
2544                 return false;
2545         }
2546
2547         return true;
2548 }
2549
2550 static bool remove_xps_queue_cpu(struct net_device *dev,
2551                                  struct xps_dev_maps *dev_maps,
2552                                  int cpu, u16 offset, u16 count)
2553 {
2554         int num_tc = dev_maps->num_tc;
2555         bool active = false;
2556         int tci;
2557
2558         for (tci = cpu * num_tc; num_tc--; tci++) {
2559                 int i, j;
2560
2561                 for (i = count, j = offset; i--; j++) {
2562                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2563                                 break;
2564                 }
2565
2566                 active |= i < 0;
2567         }
2568
2569         return active;
2570 }
2571
2572 static void reset_xps_maps(struct net_device *dev,
2573                            struct xps_dev_maps *dev_maps,
2574                            enum xps_map_type type)
2575 {
2576         static_key_slow_dec_cpuslocked(&xps_needed);
2577         if (type == XPS_RXQS)
2578                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2579
2580         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2581
2582         kfree_rcu(dev_maps, rcu);
2583 }
2584
2585 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2586                            u16 offset, u16 count)
2587 {
2588         struct xps_dev_maps *dev_maps;
2589         bool active = false;
2590         int i, j;
2591
2592         dev_maps = xmap_dereference(dev->xps_maps[type]);
2593         if (!dev_maps)
2594                 return;
2595
2596         for (j = 0; j < dev_maps->nr_ids; j++)
2597                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2598         if (!active)
2599                 reset_xps_maps(dev, dev_maps, type);
2600
2601         if (type == XPS_CPUS) {
2602                 for (i = offset + (count - 1); count--; i--)
2603                         netdev_queue_numa_node_write(
2604                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2605         }
2606 }
2607
2608 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2609                                    u16 count)
2610 {
2611         if (!static_key_false(&xps_needed))
2612                 return;
2613
2614         cpus_read_lock();
2615         mutex_lock(&xps_map_mutex);
2616
2617         if (static_key_false(&xps_rxqs_needed))
2618                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2619
2620         clean_xps_maps(dev, XPS_CPUS, offset, count);
2621
2622         mutex_unlock(&xps_map_mutex);
2623         cpus_read_unlock();
2624 }
2625
2626 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2627 {
2628         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2629 }
2630
2631 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2632                                       u16 index, bool is_rxqs_map)
2633 {
2634         struct xps_map *new_map;
2635         int alloc_len = XPS_MIN_MAP_ALLOC;
2636         int i, pos;
2637
2638         for (pos = 0; map && pos < map->len; pos++) {
2639                 if (map->queues[pos] != index)
2640                         continue;
2641                 return map;
2642         }
2643
2644         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2645         if (map) {
2646                 if (pos < map->alloc_len)
2647                         return map;
2648
2649                 alloc_len = map->alloc_len * 2;
2650         }
2651
2652         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2653          *  map
2654          */
2655         if (is_rxqs_map)
2656                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2657         else
2658                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2659                                        cpu_to_node(attr_index));
2660         if (!new_map)
2661                 return NULL;
2662
2663         for (i = 0; i < pos; i++)
2664                 new_map->queues[i] = map->queues[i];
2665         new_map->alloc_len = alloc_len;
2666         new_map->len = pos;
2667
2668         return new_map;
2669 }
2670
2671 /* Copy xps maps at a given index */
2672 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2673                               struct xps_dev_maps *new_dev_maps, int index,
2674                               int tc, bool skip_tc)
2675 {
2676         int i, tci = index * dev_maps->num_tc;
2677         struct xps_map *map;
2678
2679         /* copy maps belonging to foreign traffic classes */
2680         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2681                 if (i == tc && skip_tc)
2682                         continue;
2683
2684                 /* fill in the new device map from the old device map */
2685                 map = xmap_dereference(dev_maps->attr_map[tci]);
2686                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687         }
2688 }
2689
2690 /* Must be called under cpus_read_lock */
2691 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2692                           u16 index, enum xps_map_type type)
2693 {
2694         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2695         const unsigned long *online_mask = NULL;
2696         bool active = false, copy = false;
2697         int i, j, tci, numa_node_id = -2;
2698         int maps_sz, num_tc = 1, tc = 0;
2699         struct xps_map *map, *new_map;
2700         unsigned int nr_ids;
2701
2702         if (dev->num_tc) {
2703                 /* Do not allow XPS on subordinate device directly */
2704                 num_tc = dev->num_tc;
2705                 if (num_tc < 0)
2706                         return -EINVAL;
2707
2708                 /* If queue belongs to subordinate dev use its map */
2709                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2710
2711                 tc = netdev_txq_to_tc(dev, index);
2712                 if (tc < 0)
2713                         return -EINVAL;
2714         }
2715
2716         mutex_lock(&xps_map_mutex);
2717
2718         dev_maps = xmap_dereference(dev->xps_maps[type]);
2719         if (type == XPS_RXQS) {
2720                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2721                 nr_ids = dev->num_rx_queues;
2722         } else {
2723                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2724                 if (num_possible_cpus() > 1)
2725                         online_mask = cpumask_bits(cpu_online_mask);
2726                 nr_ids = nr_cpu_ids;
2727         }
2728
2729         if (maps_sz < L1_CACHE_BYTES)
2730                 maps_sz = L1_CACHE_BYTES;
2731
2732         /* The old dev_maps could be larger or smaller than the one we're
2733          * setting up now, as dev->num_tc or nr_ids could have been updated in
2734          * between. We could try to be smart, but let's be safe instead and only
2735          * copy foreign traffic classes if the two map sizes match.
2736          */
2737         if (dev_maps &&
2738             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2739                 copy = true;
2740
2741         /* allocate memory for queue storage */
2742         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2743              j < nr_ids;) {
2744                 if (!new_dev_maps) {
2745                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2746                         if (!new_dev_maps) {
2747                                 mutex_unlock(&xps_map_mutex);
2748                                 return -ENOMEM;
2749                         }
2750
2751                         new_dev_maps->nr_ids = nr_ids;
2752                         new_dev_maps->num_tc = num_tc;
2753                 }
2754
2755                 tci = j * num_tc + tc;
2756                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2757
2758                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2759                 if (!map)
2760                         goto error;
2761
2762                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2763         }
2764
2765         if (!new_dev_maps)
2766                 goto out_no_new_maps;
2767
2768         if (!dev_maps) {
2769                 /* Increment static keys at most once per type */
2770                 static_key_slow_inc_cpuslocked(&xps_needed);
2771                 if (type == XPS_RXQS)
2772                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2773         }
2774
2775         for (j = 0; j < nr_ids; j++) {
2776                 bool skip_tc = false;
2777
2778                 tci = j * num_tc + tc;
2779                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2780                     netif_attr_test_online(j, online_mask, nr_ids)) {
2781                         /* add tx-queue to CPU/rx-queue maps */
2782                         int pos = 0;
2783
2784                         skip_tc = true;
2785
2786                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2787                         while ((pos < map->len) && (map->queues[pos] != index))
2788                                 pos++;
2789
2790                         if (pos == map->len)
2791                                 map->queues[map->len++] = index;
2792 #ifdef CONFIG_NUMA
2793                         if (type == XPS_CPUS) {
2794                                 if (numa_node_id == -2)
2795                                         numa_node_id = cpu_to_node(j);
2796                                 else if (numa_node_id != cpu_to_node(j))
2797                                         numa_node_id = -1;
2798                         }
2799 #endif
2800                 }
2801
2802                 if (copy)
2803                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2804                                           skip_tc);
2805         }
2806
2807         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2808
2809         /* Cleanup old maps */
2810         if (!dev_maps)
2811                 goto out_no_old_maps;
2812
2813         for (j = 0; j < dev_maps->nr_ids; j++) {
2814                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2815                         map = xmap_dereference(dev_maps->attr_map[tci]);
2816                         if (!map)
2817                                 continue;
2818
2819                         if (copy) {
2820                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2821                                 if (map == new_map)
2822                                         continue;
2823                         }
2824
2825                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2826                         kfree_rcu(map, rcu);
2827                 }
2828         }
2829
2830         old_dev_maps = dev_maps;
2831
2832 out_no_old_maps:
2833         dev_maps = new_dev_maps;
2834         active = true;
2835
2836 out_no_new_maps:
2837         if (type == XPS_CPUS)
2838                 /* update Tx queue numa node */
2839                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2840                                              (numa_node_id >= 0) ?
2841                                              numa_node_id : NUMA_NO_NODE);
2842
2843         if (!dev_maps)
2844                 goto out_no_maps;
2845
2846         /* removes tx-queue from unused CPUs/rx-queues */
2847         for (j = 0; j < dev_maps->nr_ids; j++) {
2848                 tci = j * dev_maps->num_tc;
2849
2850                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2851                         if (i == tc &&
2852                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2853                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2854                                 continue;
2855
2856                         active |= remove_xps_queue(dev_maps,
2857                                                    copy ? old_dev_maps : NULL,
2858                                                    tci, index);
2859                 }
2860         }
2861
2862         if (old_dev_maps)
2863                 kfree_rcu(old_dev_maps, rcu);
2864
2865         /* free map if not active */
2866         if (!active)
2867                 reset_xps_maps(dev, dev_maps, type);
2868
2869 out_no_maps:
2870         mutex_unlock(&xps_map_mutex);
2871
2872         return 0;
2873 error:
2874         /* remove any maps that we added */
2875         for (j = 0; j < nr_ids; j++) {
2876                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2877                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878                         map = copy ?
2879                               xmap_dereference(dev_maps->attr_map[tci]) :
2880                               NULL;
2881                         if (new_map && new_map != map)
2882                                 kfree(new_map);
2883                 }
2884         }
2885
2886         mutex_unlock(&xps_map_mutex);
2887
2888         kfree(new_dev_maps);
2889         return -ENOMEM;
2890 }
2891 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2892
2893 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2894                         u16 index)
2895 {
2896         int ret;
2897
2898         cpus_read_lock();
2899         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2900         cpus_read_unlock();
2901
2902         return ret;
2903 }
2904 EXPORT_SYMBOL(netif_set_xps_queue);
2905
2906 #endif
2907 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2908 {
2909         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2910
2911         /* Unbind any subordinate channels */
2912         while (txq-- != &dev->_tx[0]) {
2913                 if (txq->sb_dev)
2914                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2915         }
2916 }
2917
2918 void netdev_reset_tc(struct net_device *dev)
2919 {
2920 #ifdef CONFIG_XPS
2921         netif_reset_xps_queues_gt(dev, 0);
2922 #endif
2923         netdev_unbind_all_sb_channels(dev);
2924
2925         /* Reset TC configuration of device */
2926         dev->num_tc = 0;
2927         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2928         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2929 }
2930 EXPORT_SYMBOL(netdev_reset_tc);
2931
2932 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2933 {
2934         if (tc >= dev->num_tc)
2935                 return -EINVAL;
2936
2937 #ifdef CONFIG_XPS
2938         netif_reset_xps_queues(dev, offset, count);
2939 #endif
2940         dev->tc_to_txq[tc].count = count;
2941         dev->tc_to_txq[tc].offset = offset;
2942         return 0;
2943 }
2944 EXPORT_SYMBOL(netdev_set_tc_queue);
2945
2946 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2947 {
2948         if (num_tc > TC_MAX_QUEUE)
2949                 return -EINVAL;
2950
2951 #ifdef CONFIG_XPS
2952         netif_reset_xps_queues_gt(dev, 0);
2953 #endif
2954         netdev_unbind_all_sb_channels(dev);
2955
2956         dev->num_tc = num_tc;
2957         return 0;
2958 }
2959 EXPORT_SYMBOL(netdev_set_num_tc);
2960
2961 void netdev_unbind_sb_channel(struct net_device *dev,
2962                               struct net_device *sb_dev)
2963 {
2964         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2965
2966 #ifdef CONFIG_XPS
2967         netif_reset_xps_queues_gt(sb_dev, 0);
2968 #endif
2969         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2970         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2971
2972         while (txq-- != &dev->_tx[0]) {
2973                 if (txq->sb_dev == sb_dev)
2974                         txq->sb_dev = NULL;
2975         }
2976 }
2977 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2978
2979 int netdev_bind_sb_channel_queue(struct net_device *dev,
2980                                  struct net_device *sb_dev,
2981                                  u8 tc, u16 count, u16 offset)
2982 {
2983         /* Make certain the sb_dev and dev are already configured */
2984         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2985                 return -EINVAL;
2986
2987         /* We cannot hand out queues we don't have */
2988         if ((offset + count) > dev->real_num_tx_queues)
2989                 return -EINVAL;
2990
2991         /* Record the mapping */
2992         sb_dev->tc_to_txq[tc].count = count;
2993         sb_dev->tc_to_txq[tc].offset = offset;
2994
2995         /* Provide a way for Tx queue to find the tc_to_txq map or
2996          * XPS map for itself.
2997          */
2998         while (count--)
2999                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3000
3001         return 0;
3002 }
3003 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3004
3005 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3006 {
3007         /* Do not use a multiqueue device to represent a subordinate channel */
3008         if (netif_is_multiqueue(dev))
3009                 return -ENODEV;
3010
3011         /* We allow channels 1 - 32767 to be used for subordinate channels.
3012          * Channel 0 is meant to be "native" mode and used only to represent
3013          * the main root device. We allow writing 0 to reset the device back
3014          * to normal mode after being used as a subordinate channel.
3015          */
3016         if (channel > S16_MAX)
3017                 return -EINVAL;
3018
3019         dev->num_tc = -channel;
3020
3021         return 0;
3022 }
3023 EXPORT_SYMBOL(netdev_set_sb_channel);
3024
3025 /*
3026  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3027  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3028  */
3029 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3030 {
3031         bool disabling;
3032         int rc;
3033
3034         disabling = txq < dev->real_num_tx_queues;
3035
3036         if (txq < 1 || txq > dev->num_tx_queues)
3037                 return -EINVAL;
3038
3039         if (dev->reg_state == NETREG_REGISTERED ||
3040             dev->reg_state == NETREG_UNREGISTERING) {
3041                 ASSERT_RTNL();
3042
3043                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3044                                                   txq);
3045                 if (rc)
3046                         return rc;
3047
3048                 if (dev->num_tc)
3049                         netif_setup_tc(dev, txq);
3050
3051                 dev->real_num_tx_queues = txq;
3052
3053                 if (disabling) {
3054                         synchronize_net();
3055                         qdisc_reset_all_tx_gt(dev, txq);
3056 #ifdef CONFIG_XPS
3057                         netif_reset_xps_queues_gt(dev, txq);
3058 #endif
3059                 }
3060         } else {
3061                 dev->real_num_tx_queues = txq;
3062         }
3063
3064         return 0;
3065 }
3066 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3067
3068 #ifdef CONFIG_SYSFS
3069 /**
3070  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3071  *      @dev: Network device
3072  *      @rxq: Actual number of RX queues
3073  *
3074  *      This must be called either with the rtnl_lock held or before
3075  *      registration of the net device.  Returns 0 on success, or a
3076  *      negative error code.  If called before registration, it always
3077  *      succeeds.
3078  */
3079 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3080 {
3081         int rc;
3082
3083         if (rxq < 1 || rxq > dev->num_rx_queues)
3084                 return -EINVAL;
3085
3086         if (dev->reg_state == NETREG_REGISTERED) {
3087                 ASSERT_RTNL();
3088
3089                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3090                                                   rxq);
3091                 if (rc)
3092                         return rc;
3093         }
3094
3095         dev->real_num_rx_queues = rxq;
3096         return 0;
3097 }
3098 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3099 #endif
3100
3101 /**
3102  * netif_get_num_default_rss_queues - default number of RSS queues
3103  *
3104  * This routine should set an upper limit on the number of RSS queues
3105  * used by default by multiqueue devices.
3106  */
3107 int netif_get_num_default_rss_queues(void)
3108 {
3109         return is_kdump_kernel() ?
3110                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3111 }
3112 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3113
3114 static void __netif_reschedule(struct Qdisc *q)
3115 {
3116         struct softnet_data *sd;
3117         unsigned long flags;
3118
3119         local_irq_save(flags);
3120         sd = this_cpu_ptr(&softnet_data);
3121         q->next_sched = NULL;
3122         *sd->output_queue_tailp = q;
3123         sd->output_queue_tailp = &q->next_sched;
3124         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3125         local_irq_restore(flags);
3126 }
3127
3128 void __netif_schedule(struct Qdisc *q)
3129 {
3130         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3131                 __netif_reschedule(q);
3132 }
3133 EXPORT_SYMBOL(__netif_schedule);
3134
3135 struct dev_kfree_skb_cb {
3136         enum skb_free_reason reason;
3137 };
3138
3139 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3140 {
3141         return (struct dev_kfree_skb_cb *)skb->cb;
3142 }
3143
3144 void netif_schedule_queue(struct netdev_queue *txq)
3145 {
3146         rcu_read_lock();
3147         if (!netif_xmit_stopped(txq)) {
3148                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3149
3150                 __netif_schedule(q);
3151         }
3152         rcu_read_unlock();
3153 }
3154 EXPORT_SYMBOL(netif_schedule_queue);
3155
3156 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3157 {
3158         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3159                 struct Qdisc *q;
3160
3161                 rcu_read_lock();
3162                 q = rcu_dereference(dev_queue->qdisc);
3163                 __netif_schedule(q);
3164                 rcu_read_unlock();
3165         }
3166 }
3167 EXPORT_SYMBOL(netif_tx_wake_queue);
3168
3169 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3170 {
3171         unsigned long flags;
3172
3173         if (unlikely(!skb))
3174                 return;
3175
3176         if (likely(refcount_read(&skb->users) == 1)) {
3177                 smp_rmb();
3178                 refcount_set(&skb->users, 0);
3179         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3180                 return;
3181         }
3182         get_kfree_skb_cb(skb)->reason = reason;
3183         local_irq_save(flags);
3184         skb->next = __this_cpu_read(softnet_data.completion_queue);
3185         __this_cpu_write(softnet_data.completion_queue, skb);
3186         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3187         local_irq_restore(flags);
3188 }
3189 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3190
3191 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3192 {
3193         if (in_irq() || irqs_disabled())
3194                 __dev_kfree_skb_irq(skb, reason);
3195         else
3196                 dev_kfree_skb(skb);
3197 }
3198 EXPORT_SYMBOL(__dev_kfree_skb_any);
3199
3200
3201 /**
3202  * netif_device_detach - mark device as removed
3203  * @dev: network device
3204  *
3205  * Mark device as removed from system and therefore no longer available.
3206  */
3207 void netif_device_detach(struct net_device *dev)
3208 {
3209         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3210             netif_running(dev)) {
3211                 netif_tx_stop_all_queues(dev);
3212         }
3213 }
3214 EXPORT_SYMBOL(netif_device_detach);
3215
3216 /**
3217  * netif_device_attach - mark device as attached
3218  * @dev: network device
3219  *
3220  * Mark device as attached from system and restart if needed.
3221  */
3222 void netif_device_attach(struct net_device *dev)
3223 {
3224         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3225             netif_running(dev)) {
3226                 netif_tx_wake_all_queues(dev);
3227                 __netdev_watchdog_up(dev);
3228         }
3229 }
3230 EXPORT_SYMBOL(netif_device_attach);
3231
3232 /*
3233  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3234  * to be used as a distribution range.
3235  */
3236 static u16 skb_tx_hash(const struct net_device *dev,
3237                        const struct net_device *sb_dev,
3238                        struct sk_buff *skb)
3239 {
3240         u32 hash;
3241         u16 qoffset = 0;
3242         u16 qcount = dev->real_num_tx_queues;
3243
3244         if (dev->num_tc) {
3245                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3246
3247                 qoffset = sb_dev->tc_to_txq[tc].offset;
3248                 qcount = sb_dev->tc_to_txq[tc].count;
3249         }
3250
3251         if (skb_rx_queue_recorded(skb)) {
3252                 hash = skb_get_rx_queue(skb);
3253                 if (hash >= qoffset)
3254                         hash -= qoffset;
3255                 while (unlikely(hash >= qcount))
3256                         hash -= qcount;
3257                 return hash + qoffset;
3258         }
3259
3260         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3261 }
3262
3263 static void skb_warn_bad_offload(const struct sk_buff *skb)
3264 {
3265         static const netdev_features_t null_features;
3266         struct net_device *dev = skb->dev;
3267         const char *name = "";
3268
3269         if (!net_ratelimit())
3270                 return;
3271
3272         if (dev) {
3273                 if (dev->dev.parent)
3274                         name = dev_driver_string(dev->dev.parent);
3275                 else
3276                         name = netdev_name(dev);
3277         }
3278         skb_dump(KERN_WARNING, skb, false);
3279         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3280              name, dev ? &dev->features : &null_features,
3281              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3282 }
3283
3284 /*
3285  * Invalidate hardware checksum when packet is to be mangled, and
3286  * complete checksum manually on outgoing path.
3287  */
3288 int skb_checksum_help(struct sk_buff *skb)
3289 {
3290         __wsum csum;
3291         int ret = 0, offset;
3292
3293         if (skb->ip_summed == CHECKSUM_COMPLETE)
3294                 goto out_set_summed;
3295
3296         if (unlikely(skb_is_gso(skb))) {
3297                 skb_warn_bad_offload(skb);
3298                 return -EINVAL;
3299         }
3300
3301         /* Before computing a checksum, we should make sure no frag could
3302          * be modified by an external entity : checksum could be wrong.
3303          */
3304         if (skb_has_shared_frag(skb)) {
3305                 ret = __skb_linearize(skb);
3306                 if (ret)
3307                         goto out;
3308         }
3309
3310         offset = skb_checksum_start_offset(skb);
3311         BUG_ON(offset >= skb_headlen(skb));
3312         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3313
3314         offset += skb->csum_offset;
3315         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3316
3317         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3318         if (ret)
3319                 goto out;
3320
3321         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3322 out_set_summed:
3323         skb->ip_summed = CHECKSUM_NONE;
3324 out:
3325         return ret;
3326 }
3327 EXPORT_SYMBOL(skb_checksum_help);
3328
3329 int skb_crc32c_csum_help(struct sk_buff *skb)
3330 {
3331         __le32 crc32c_csum;
3332         int ret = 0, offset, start;
3333
3334         if (skb->ip_summed != CHECKSUM_PARTIAL)
3335                 goto out;
3336
3337         if (unlikely(skb_is_gso(skb)))
3338                 goto out;
3339
3340         /* Before computing a checksum, we should make sure no frag could
3341          * be modified by an external entity : checksum could be wrong.
3342          */
3343         if (unlikely(skb_has_shared_frag(skb))) {
3344                 ret = __skb_linearize(skb);
3345                 if (ret)
3346                         goto out;
3347         }
3348         start = skb_checksum_start_offset(skb);
3349         offset = start + offsetof(struct sctphdr, checksum);
3350         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3351                 ret = -EINVAL;
3352                 goto out;
3353         }
3354
3355         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3356         if (ret)
3357                 goto out;
3358
3359         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3360                                                   skb->len - start, ~(__u32)0,
3361                                                   crc32c_csum_stub));
3362         *(__le32 *)(skb->data + offset) = crc32c_csum;
3363         skb->ip_summed = CHECKSUM_NONE;
3364         skb->csum_not_inet = 0;
3365 out:
3366         return ret;
3367 }
3368
3369 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3370 {
3371         __be16 type = skb->protocol;
3372
3373         /* Tunnel gso handlers can set protocol to ethernet. */
3374         if (type == htons(ETH_P_TEB)) {
3375                 struct ethhdr *eth;
3376
3377                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3378                         return 0;
3379
3380                 eth = (struct ethhdr *)skb->data;
3381                 type = eth->h_proto;
3382         }
3383
3384         return __vlan_get_protocol(skb, type, depth);
3385 }
3386
3387 /**
3388  *      skb_mac_gso_segment - mac layer segmentation handler.
3389  *      @skb: buffer to segment
3390  *      @features: features for the output path (see dev->features)
3391  */
3392 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3393                                     netdev_features_t features)
3394 {
3395         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3396         struct packet_offload *ptype;
3397         int vlan_depth = skb->mac_len;
3398         __be16 type = skb_network_protocol(skb, &vlan_depth);
3399
3400         if (unlikely(!type))
3401                 return ERR_PTR(-EINVAL);
3402
3403         __skb_pull(skb, vlan_depth);
3404
3405         rcu_read_lock();
3406         list_for_each_entry_rcu(ptype, &offload_base, list) {
3407                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3408                         segs = ptype->callbacks.gso_segment(skb, features);
3409                         break;
3410                 }
3411         }
3412         rcu_read_unlock();
3413
3414         __skb_push(skb, skb->data - skb_mac_header(skb));
3415
3416         return segs;
3417 }
3418 EXPORT_SYMBOL(skb_mac_gso_segment);
3419
3420
3421 /* openvswitch calls this on rx path, so we need a different check.
3422  */
3423 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3424 {
3425         if (tx_path)
3426                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3427                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3428
3429         return skb->ip_summed == CHECKSUM_NONE;
3430 }
3431
3432 /**
3433  *      __skb_gso_segment - Perform segmentation on skb.
3434  *      @skb: buffer to segment
3435  *      @features: features for the output path (see dev->features)
3436  *      @tx_path: whether it is called in TX path
3437  *
3438  *      This function segments the given skb and returns a list of segments.
3439  *
3440  *      It may return NULL if the skb requires no segmentation.  This is
3441  *      only possible when GSO is used for verifying header integrity.
3442  *
3443  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3444  */
3445 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3446                                   netdev_features_t features, bool tx_path)
3447 {
3448         struct sk_buff *segs;
3449
3450         if (unlikely(skb_needs_check(skb, tx_path))) {
3451                 int err;
3452
3453                 /* We're going to init ->check field in TCP or UDP header */
3454                 err = skb_cow_head(skb, 0);
3455                 if (err < 0)
3456                         return ERR_PTR(err);
3457         }
3458
3459         /* Only report GSO partial support if it will enable us to
3460          * support segmentation on this frame without needing additional
3461          * work.
3462          */
3463         if (features & NETIF_F_GSO_PARTIAL) {
3464                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3465                 struct net_device *dev = skb->dev;
3466
3467                 partial_features |= dev->features & dev->gso_partial_features;
3468                 if (!skb_gso_ok(skb, features | partial_features))
3469                         features &= ~NETIF_F_GSO_PARTIAL;
3470         }
3471
3472         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3473                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3474
3475         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3476         SKB_GSO_CB(skb)->encap_level = 0;
3477
3478         skb_reset_mac_header(skb);
3479         skb_reset_mac_len(skb);
3480
3481         segs = skb_mac_gso_segment(skb, features);
3482
3483         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3484                 skb_warn_bad_offload(skb);
3485
3486         return segs;
3487 }
3488 EXPORT_SYMBOL(__skb_gso_segment);
3489
3490 /* Take action when hardware reception checksum errors are detected. */
3491 #ifdef CONFIG_BUG
3492 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3493 {
3494         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3495         skb_dump(KERN_ERR, skb, true);
3496         dump_stack();
3497 }
3498
3499 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3500 {
3501         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3502 }
3503 EXPORT_SYMBOL(netdev_rx_csum_fault);
3504 #endif
3505
3506 /* XXX: check that highmem exists at all on the given machine. */
3507 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3508 {
3509 #ifdef CONFIG_HIGHMEM
3510         int i;
3511
3512         if (!(dev->features & NETIF_F_HIGHDMA)) {
3513                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3515
3516                         if (PageHighMem(skb_frag_page(frag)))
3517                                 return 1;
3518                 }
3519         }
3520 #endif
3521         return 0;
3522 }
3523
3524 /* If MPLS offload request, verify we are testing hardware MPLS features
3525  * instead of standard features for the netdev.
3526  */
3527 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3528 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3529                                            netdev_features_t features,
3530                                            __be16 type)
3531 {
3532         if (eth_p_mpls(type))
3533                 features &= skb->dev->mpls_features;
3534
3535         return features;
3536 }
3537 #else
3538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3539                                            netdev_features_t features,
3540                                            __be16 type)
3541 {
3542         return features;
3543 }
3544 #endif
3545
3546 static netdev_features_t harmonize_features(struct sk_buff *skb,
3547         netdev_features_t features)
3548 {
3549         __be16 type;
3550
3551         type = skb_network_protocol(skb, NULL);
3552         features = net_mpls_features(skb, features, type);
3553
3554         if (skb->ip_summed != CHECKSUM_NONE &&
3555             !can_checksum_protocol(features, type)) {
3556                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3557         }
3558         if (illegal_highdma(skb->dev, skb))
3559                 features &= ~NETIF_F_SG;
3560
3561         return features;
3562 }
3563
3564 netdev_features_t passthru_features_check(struct sk_buff *skb,
3565                                           struct net_device *dev,
3566                                           netdev_features_t features)
3567 {
3568         return features;
3569 }
3570 EXPORT_SYMBOL(passthru_features_check);
3571
3572 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3573                                              struct net_device *dev,
3574                                              netdev_features_t features)
3575 {
3576         return vlan_features_check(skb, features);
3577 }
3578
3579 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3580                                             struct net_device *dev,
3581                                             netdev_features_t features)
3582 {
3583         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3584
3585         if (gso_segs > dev->gso_max_segs)
3586                 return features & ~NETIF_F_GSO_MASK;
3587
3588         if (!skb_shinfo(skb)->gso_type) {
3589                 skb_warn_bad_offload(skb);
3590                 return features & ~NETIF_F_GSO_MASK;
3591         }
3592
3593         /* Support for GSO partial features requires software
3594          * intervention before we can actually process the packets
3595          * so we need to strip support for any partial features now
3596          * and we can pull them back in after we have partially
3597          * segmented the frame.
3598          */
3599         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3600                 features &= ~dev->gso_partial_features;
3601
3602         /* Make sure to clear the IPv4 ID mangling feature if the
3603          * IPv4 header has the potential to be fragmented.
3604          */
3605         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3606                 struct iphdr *iph = skb->encapsulation ?
3607                                     inner_ip_hdr(skb) : ip_hdr(skb);
3608
3609                 if (!(iph->frag_off & htons(IP_DF)))
3610                         features &= ~NETIF_F_TSO_MANGLEID;
3611         }
3612
3613         return features;
3614 }
3615
3616 netdev_features_t netif_skb_features(struct sk_buff *skb)
3617 {
3618         struct net_device *dev = skb->dev;
3619         netdev_features_t features = dev->features;
3620
3621         if (skb_is_gso(skb))
3622                 features = gso_features_check(skb, dev, features);
3623
3624         /* If encapsulation offload request, verify we are testing
3625          * hardware encapsulation features instead of standard
3626          * features for the netdev
3627          */
3628         if (skb->encapsulation)
3629                 features &= dev->hw_enc_features;
3630
3631         if (skb_vlan_tagged(skb))
3632                 features = netdev_intersect_features(features,
3633                                                      dev->vlan_features |
3634                                                      NETIF_F_HW_VLAN_CTAG_TX |
3635                                                      NETIF_F_HW_VLAN_STAG_TX);
3636
3637         if (dev->netdev_ops->ndo_features_check)
3638                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3639                                                                 features);
3640         else
3641                 features &= dflt_features_check(skb, dev, features);
3642
3643         return harmonize_features(skb, features);
3644 }
3645 EXPORT_SYMBOL(netif_skb_features);
3646
3647 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3648                     struct netdev_queue *txq, bool more)
3649 {
3650         unsigned int len;
3651         int rc;
3652
3653         if (dev_nit_active(dev))
3654                 dev_queue_xmit_nit(skb, dev);
3655
3656         len = skb->len;
3657         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3658         trace_net_dev_start_xmit(skb, dev);
3659         rc = netdev_start_xmit(skb, dev, txq, more);
3660         trace_net_dev_xmit(skb, rc, dev, len);
3661
3662         return rc;
3663 }
3664
3665 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3666                                     struct netdev_queue *txq, int *ret)
3667 {
3668         struct sk_buff *skb = first;
3669         int rc = NETDEV_TX_OK;
3670
3671         while (skb) {
3672                 struct sk_buff *next = skb->next;
3673
3674                 skb_mark_not_on_list(skb);
3675                 rc = xmit_one(skb, dev, txq, next != NULL);
3676                 if (unlikely(!dev_xmit_complete(rc))) {
3677                         skb->next = next;
3678                         goto out;
3679                 }
3680
3681                 skb = next;
3682                 if (netif_tx_queue_stopped(txq) && skb) {
3683                         rc = NETDEV_TX_BUSY;
3684                         break;
3685                 }
3686         }
3687
3688 out:
3689         *ret = rc;
3690         return skb;
3691 }
3692
3693 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3694                                           netdev_features_t features)
3695 {
3696         if (skb_vlan_tag_present(skb) &&
3697             !vlan_hw_offload_capable(features, skb->vlan_proto))
3698                 skb = __vlan_hwaccel_push_inside(skb);
3699         return skb;
3700 }
3701
3702 int skb_csum_hwoffload_help(struct sk_buff *skb,
3703                             const netdev_features_t features)
3704 {
3705         if (unlikely(skb_csum_is_sctp(skb)))
3706                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3707                         skb_crc32c_csum_help(skb);
3708
3709         if (features & NETIF_F_HW_CSUM)
3710                 return 0;
3711
3712         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3713                 switch (skb->csum_offset) {
3714                 case offsetof(struct tcphdr, check):
3715                 case offsetof(struct udphdr, check):
3716                         return 0;
3717                 }
3718         }
3719
3720         return skb_checksum_help(skb);
3721 }
3722 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3723
3724 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3725 {
3726         netdev_features_t features;
3727
3728         features = netif_skb_features(skb);
3729         skb = validate_xmit_vlan(skb, features);
3730         if (unlikely(!skb))
3731                 goto out_null;
3732
3733         skb = sk_validate_xmit_skb(skb, dev);
3734         if (unlikely(!skb))
3735                 goto out_null;
3736
3737         if (netif_needs_gso(skb, features)) {
3738                 struct sk_buff *segs;
3739
3740                 segs = skb_gso_segment(skb, features);
3741                 if (IS_ERR(segs)) {
3742                         goto out_kfree_skb;
3743                 } else if (segs) {
3744                         consume_skb(skb);
3745                         skb = segs;
3746                 }
3747         } else {
3748                 if (skb_needs_linearize(skb, features) &&
3749                     __skb_linearize(skb))
3750                         goto out_kfree_skb;
3751
3752                 /* If packet is not checksummed and device does not
3753                  * support checksumming for this protocol, complete
3754                  * checksumming here.
3755                  */
3756                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3757                         if (skb->encapsulation)
3758                                 skb_set_inner_transport_header(skb,
3759                                                                skb_checksum_start_offset(skb));
3760                         else
3761                                 skb_set_transport_header(skb,
3762                                                          skb_checksum_start_offset(skb));
3763                         if (skb_csum_hwoffload_help(skb, features))
3764                                 goto out_kfree_skb;
3765                 }
3766         }
3767
3768         skb = validate_xmit_xfrm(skb, features, again);
3769
3770         return skb;
3771
3772 out_kfree_skb:
3773         kfree_skb(skb);
3774 out_null:
3775         atomic_long_inc(&dev->tx_dropped);
3776         return NULL;
3777 }
3778
3779 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3780 {
3781         struct sk_buff *next, *head = NULL, *tail;
3782
3783         for (; skb != NULL; skb = next) {
3784                 next = skb->next;
3785                 skb_mark_not_on_list(skb);
3786
3787                 /* in case skb wont be segmented, point to itself */
3788                 skb->prev = skb;
3789
3790                 skb = validate_xmit_skb(skb, dev, again);
3791                 if (!skb)
3792                         continue;
3793
3794                 if (!head)
3795                         head = skb;
3796                 else
3797                         tail->next = skb;
3798                 /* If skb was segmented, skb->prev points to
3799                  * the last segment. If not, it still contains skb.
3800                  */
3801                 tail = skb->prev;
3802         }
3803         return head;
3804 }
3805 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3806
3807 static void qdisc_pkt_len_init(struct sk_buff *skb)
3808 {
3809         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3810
3811         qdisc_skb_cb(skb)->pkt_len = skb->len;
3812
3813         /* To get more precise estimation of bytes sent on wire,
3814          * we add to pkt_len the headers size of all segments
3815          */
3816         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3817                 unsigned int hdr_len;
3818                 u16 gso_segs = shinfo->gso_segs;
3819
3820                 /* mac layer + network layer */
3821                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3822
3823                 /* + transport layer */
3824                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3825                         const struct tcphdr *th;
3826                         struct tcphdr _tcphdr;
3827
3828                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3829                                                 sizeof(_tcphdr), &_tcphdr);
3830                         if (likely(th))
3831                                 hdr_len += __tcp_hdrlen(th);
3832                 } else {
3833                         struct udphdr _udphdr;
3834
3835                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3836                                                sizeof(_udphdr), &_udphdr))
3837                                 hdr_len += sizeof(struct udphdr);
3838                 }
3839
3840                 if (shinfo->gso_type & SKB_GSO_DODGY)
3841                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3842                                                 shinfo->gso_size);
3843
3844                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3845         }
3846 }
3847
3848 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3849                              struct sk_buff **to_free,
3850                              struct netdev_queue *txq)
3851 {
3852         int rc;
3853
3854         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3855         if (rc == NET_XMIT_SUCCESS)
3856                 trace_qdisc_enqueue(q, txq, skb);
3857         return rc;
3858 }
3859
3860 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3861                                  struct net_device *dev,
3862                                  struct netdev_queue *txq)
3863 {
3864         spinlock_t *root_lock = qdisc_lock(q);
3865         struct sk_buff *to_free = NULL;
3866         bool contended;
3867         int rc;
3868
3869         qdisc_calculate_pkt_len(skb, q);
3870
3871         if (q->flags & TCQ_F_NOLOCK) {
3872                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3873                     qdisc_run_begin(q)) {
3874                         /* Retest nolock_qdisc_is_empty() within the protection
3875                          * of q->seqlock to protect from racing with requeuing.
3876                          */
3877                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3878                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3879                                 __qdisc_run(q);
3880                                 qdisc_run_end(q);
3881
3882                                 goto no_lock_out;
3883                         }
3884
3885                         qdisc_bstats_cpu_update(q, skb);
3886                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3887                             !nolock_qdisc_is_empty(q))
3888                                 __qdisc_run(q);
3889
3890                         qdisc_run_end(q);
3891                         return NET_XMIT_SUCCESS;
3892                 }
3893
3894                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3895                 qdisc_run(q);
3896
3897 no_lock_out:
3898                 if (unlikely(to_free))
3899                         kfree_skb_list(to_free);
3900                 return rc;
3901         }
3902
3903         /*
3904          * Heuristic to force contended enqueues to serialize on a
3905          * separate lock before trying to get qdisc main lock.
3906          * This permits qdisc->running owner to get the lock more
3907          * often and dequeue packets faster.
3908          */
3909         contended = qdisc_is_running(q);
3910         if (unlikely(contended))
3911                 spin_lock(&q->busylock);
3912
3913         spin_lock(root_lock);
3914         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3915                 __qdisc_drop(skb, &to_free);
3916                 rc = NET_XMIT_DROP;
3917         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3918                    qdisc_run_begin(q)) {
3919                 /*
3920                  * This is a work-conserving queue; there are no old skbs
3921                  * waiting to be sent out; and the qdisc is not running -
3922                  * xmit the skb directly.
3923                  */
3924
3925                 qdisc_bstats_update(q, skb);
3926
3927                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3928                         if (unlikely(contended)) {
3929                                 spin_unlock(&q->busylock);
3930                                 contended = false;
3931                         }
3932                         __qdisc_run(q);
3933                 }
3934
3935                 qdisc_run_end(q);
3936                 rc = NET_XMIT_SUCCESS;
3937         } else {
3938                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3939                 if (qdisc_run_begin(q)) {
3940                         if (unlikely(contended)) {
3941                                 spin_unlock(&q->busylock);
3942                                 contended = false;
3943                         }
3944                         __qdisc_run(q);
3945                         qdisc_run_end(q);
3946                 }
3947         }
3948         spin_unlock(root_lock);
3949         if (unlikely(to_free))
3950                 kfree_skb_list(to_free);
3951         if (unlikely(contended))
3952                 spin_unlock(&q->busylock);
3953         return rc;
3954 }
3955
3956 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3957 static void skb_update_prio(struct sk_buff *skb)
3958 {
3959         const struct netprio_map *map;
3960         const struct sock *sk;
3961         unsigned int prioidx;
3962
3963         if (skb->priority)
3964                 return;
3965         map = rcu_dereference_bh(skb->dev->priomap);
3966         if (!map)
3967                 return;
3968         sk = skb_to_full_sk(skb);
3969         if (!sk)
3970                 return;
3971
3972         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3973
3974         if (prioidx < map->priomap_len)
3975                 skb->priority = map->priomap[prioidx];
3976 }
3977 #else
3978 #define skb_update_prio(skb)
3979 #endif
3980
3981 /**
3982  *      dev_loopback_xmit - loop back @skb
3983  *      @net: network namespace this loopback is happening in
3984  *      @sk:  sk needed to be a netfilter okfn
3985  *      @skb: buffer to transmit
3986  */
3987 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3988 {
3989         skb_reset_mac_header(skb);
3990         __skb_pull(skb, skb_network_offset(skb));
3991         skb->pkt_type = PACKET_LOOPBACK;
3992         skb->ip_summed = CHECKSUM_UNNECESSARY;
3993         WARN_ON(!skb_dst(skb));
3994         skb_dst_force(skb);
3995         netif_rx_ni(skb);
3996         return 0;
3997 }
3998 EXPORT_SYMBOL(dev_loopback_xmit);
3999
4000 #ifdef CONFIG_NET_EGRESS
4001 static struct sk_buff *
4002 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4003 {
4004         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
4005         struct tcf_result cl_res;
4006
4007         if (!miniq)
4008                 return skb;
4009
4010         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
4011         qdisc_skb_cb(skb)->mru = 0;
4012         qdisc_skb_cb(skb)->post_ct = false;
4013         mini_qdisc_bstats_cpu_update(miniq, skb);
4014
4015         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4016         case TC_ACT_OK:
4017         case TC_ACT_RECLASSIFY:
4018                 skb->tc_index = TC_H_MIN(cl_res.classid);
4019                 break;
4020         case TC_ACT_SHOT:
4021                 mini_qdisc_qstats_cpu_drop(miniq);
4022                 *ret = NET_XMIT_DROP;
4023                 kfree_skb(skb);
4024                 return NULL;
4025         case TC_ACT_STOLEN:
4026         case TC_ACT_QUEUED:
4027         case TC_ACT_TRAP:
4028                 *ret = NET_XMIT_SUCCESS;
4029                 consume_skb(skb);
4030                 return NULL;
4031         case TC_ACT_REDIRECT:
4032                 /* No need to push/pop skb's mac_header here on egress! */
4033                 skb_do_redirect(skb);
4034                 *ret = NET_XMIT_SUCCESS;
4035                 return NULL;
4036         default:
4037                 break;
4038         }
4039
4040         return skb;
4041 }
4042 #endif /* CONFIG_NET_EGRESS */
4043
4044 #ifdef CONFIG_XPS
4045 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4046                                struct xps_dev_maps *dev_maps, unsigned int tci)
4047 {
4048         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4049         struct xps_map *map;
4050         int queue_index = -1;
4051
4052         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4053                 return queue_index;
4054
4055         tci *= dev_maps->num_tc;
4056         tci += tc;
4057
4058         map = rcu_dereference(dev_maps->attr_map[tci]);
4059         if (map) {
4060                 if (map->len == 1)
4061                         queue_index = map->queues[0];
4062                 else
4063                         queue_index = map->queues[reciprocal_scale(
4064                                                 skb_get_hash(skb), map->len)];
4065                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4066                         queue_index = -1;
4067         }
4068         return queue_index;
4069 }
4070 #endif
4071
4072 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4073                          struct sk_buff *skb)
4074 {
4075 #ifdef CONFIG_XPS
4076         struct xps_dev_maps *dev_maps;
4077         struct sock *sk = skb->sk;
4078         int queue_index = -1;
4079
4080         if (!static_key_false(&xps_needed))
4081                 return -1;
4082
4083         rcu_read_lock();
4084         if (!static_key_false(&xps_rxqs_needed))
4085                 goto get_cpus_map;
4086
4087         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4088         if (dev_maps) {
4089                 int tci = sk_rx_queue_get(sk);
4090
4091                 if (tci >= 0)
4092                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4093                                                           tci);
4094         }
4095
4096 get_cpus_map:
4097         if (queue_index < 0) {
4098                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4099                 if (dev_maps) {
4100                         unsigned int tci = skb->sender_cpu - 1;
4101
4102                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4103                                                           tci);
4104                 }
4105         }
4106         rcu_read_unlock();
4107
4108         return queue_index;
4109 #else
4110         return -1;
4111 #endif
4112 }
4113
4114 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4115                      struct net_device *sb_dev)
4116 {
4117         return 0;
4118 }
4119 EXPORT_SYMBOL(dev_pick_tx_zero);
4120
4121 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4122                        struct net_device *sb_dev)
4123 {
4124         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4125 }
4126 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4127
4128 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4129                      struct net_device *sb_dev)
4130 {
4131         struct sock *sk = skb->sk;
4132         int queue_index = sk_tx_queue_get(sk);
4133
4134         sb_dev = sb_dev ? : dev;
4135
4136         if (queue_index < 0 || skb->ooo_okay ||
4137             queue_index >= dev->real_num_tx_queues) {
4138                 int new_index = get_xps_queue(dev, sb_dev, skb);
4139
4140                 if (new_index < 0)
4141                         new_index = skb_tx_hash(dev, sb_dev, skb);
4142
4143                 if (queue_index != new_index && sk &&
4144                     sk_fullsock(sk) &&
4145                     rcu_access_pointer(sk->sk_dst_cache))
4146                         sk_tx_queue_set(sk, new_index);
4147
4148                 queue_index = new_index;
4149         }
4150
4151         return queue_index;
4152 }
4153 EXPORT_SYMBOL(netdev_pick_tx);
4154
4155 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4156                                          struct sk_buff *skb,
4157                                          struct net_device *sb_dev)
4158 {
4159         int queue_index = 0;
4160
4161 #ifdef CONFIG_XPS
4162         u32 sender_cpu = skb->sender_cpu - 1;
4163
4164         if (sender_cpu >= (u32)NR_CPUS)
4165                 skb->sender_cpu = raw_smp_processor_id() + 1;
4166 #endif
4167
4168         if (dev->real_num_tx_queues != 1) {
4169                 const struct net_device_ops *ops = dev->netdev_ops;
4170
4171                 if (ops->ndo_select_queue)
4172                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4173                 else
4174                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4175
4176                 queue_index = netdev_cap_txqueue(dev, queue_index);
4177         }
4178
4179         skb_set_queue_mapping(skb, queue_index);
4180         return netdev_get_tx_queue(dev, queue_index);
4181 }
4182
4183 /**
4184  *      __dev_queue_xmit - transmit a buffer
4185  *      @skb: buffer to transmit
4186  *      @sb_dev: suboordinate device used for L2 forwarding offload
4187  *
4188  *      Queue a buffer for transmission to a network device. The caller must
4189  *      have set the device and priority and built the buffer before calling
4190  *      this function. The function can be called from an interrupt.
4191  *
4192  *      A negative errno code is returned on a failure. A success does not
4193  *      guarantee the frame will be transmitted as it may be dropped due
4194  *      to congestion or traffic shaping.
4195  *
4196  * -----------------------------------------------------------------------------------
4197  *      I notice this method can also return errors from the queue disciplines,
4198  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4199  *      be positive.
4200  *
4201  *      Regardless of the return value, the skb is consumed, so it is currently
4202  *      difficult to retry a send to this method.  (You can bump the ref count
4203  *      before sending to hold a reference for retry if you are careful.)
4204  *
4205  *      When calling this method, interrupts MUST be enabled.  This is because
4206  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4207  *          --BLG
4208  */
4209 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4210 {
4211         struct net_device *dev = skb->dev;
4212         struct netdev_queue *txq;
4213         struct Qdisc *q;
4214         int rc = -ENOMEM;
4215         bool again = false;
4216
4217         skb_reset_mac_header(skb);
4218
4219         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4220                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4221
4222         /* Disable soft irqs for various locks below. Also
4223          * stops preemption for RCU.
4224          */
4225         rcu_read_lock_bh();
4226
4227         skb_update_prio(skb);
4228
4229         qdisc_pkt_len_init(skb);
4230 #ifdef CONFIG_NET_CLS_ACT
4231         skb->tc_at_ingress = 0;
4232 # ifdef CONFIG_NET_EGRESS
4233         if (static_branch_unlikely(&egress_needed_key)) {
4234                 skb = sch_handle_egress(skb, &rc, dev);
4235                 if (!skb)
4236                         goto out;
4237         }
4238 # endif
4239 #endif
4240         /* If device/qdisc don't need skb->dst, release it right now while
4241          * its hot in this cpu cache.
4242          */
4243         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4244                 skb_dst_drop(skb);
4245         else
4246                 skb_dst_force(skb);
4247
4248         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4249         q = rcu_dereference_bh(txq->qdisc);
4250
4251         trace_net_dev_queue(skb);
4252         if (q->enqueue) {
4253                 rc = __dev_xmit_skb(skb, q, dev, txq);
4254                 goto out;
4255         }
4256
4257         /* The device has no queue. Common case for software devices:
4258          * loopback, all the sorts of tunnels...
4259
4260          * Really, it is unlikely that netif_tx_lock protection is necessary
4261          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4262          * counters.)
4263          * However, it is possible, that they rely on protection
4264          * made by us here.
4265
4266          * Check this and shot the lock. It is not prone from deadlocks.
4267          *Either shot noqueue qdisc, it is even simpler 8)
4268          */
4269         if (dev->flags & IFF_UP) {
4270                 int cpu = smp_processor_id(); /* ok because BHs are off */
4271
4272                 if (txq->xmit_lock_owner != cpu) {
4273                         if (dev_xmit_recursion())
4274                                 goto recursion_alert;
4275
4276                         skb = validate_xmit_skb(skb, dev, &again);
4277                         if (!skb)
4278                                 goto out;
4279
4280                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4281                         HARD_TX_LOCK(dev, txq, cpu);
4282
4283                         if (!netif_xmit_stopped(txq)) {
4284                                 dev_xmit_recursion_inc();
4285                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4286                                 dev_xmit_recursion_dec();
4287                                 if (dev_xmit_complete(rc)) {
4288                                         HARD_TX_UNLOCK(dev, txq);
4289                                         goto out;
4290                                 }
4291                         }
4292                         HARD_TX_UNLOCK(dev, txq);
4293                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4294                                              dev->name);
4295                 } else {
4296                         /* Recursion is detected! It is possible,
4297                          * unfortunately
4298                          */
4299 recursion_alert:
4300                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4301                                              dev->name);
4302                 }
4303         }
4304
4305         rc = -ENETDOWN;
4306         rcu_read_unlock_bh();
4307
4308         atomic_long_inc(&dev->tx_dropped);
4309         kfree_skb_list(skb);
4310         return rc;
4311 out:
4312         rcu_read_unlock_bh();
4313         return rc;
4314 }
4315
4316 int dev_queue_xmit(struct sk_buff *skb)
4317 {
4318         return __dev_queue_xmit(skb, NULL);
4319 }
4320 EXPORT_SYMBOL(dev_queue_xmit);
4321
4322 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4323 {
4324         return __dev_queue_xmit(skb, sb_dev);
4325 }
4326 EXPORT_SYMBOL(dev_queue_xmit_accel);
4327
4328 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4329 {
4330         struct net_device *dev = skb->dev;
4331         struct sk_buff *orig_skb = skb;
4332         struct netdev_queue *txq;
4333         int ret = NETDEV_TX_BUSY;
4334         bool again = false;
4335
4336         if (unlikely(!netif_running(dev) ||
4337                      !netif_carrier_ok(dev)))
4338                 goto drop;
4339
4340         skb = validate_xmit_skb_list(skb, dev, &again);
4341         if (skb != orig_skb)
4342                 goto drop;
4343
4344         skb_set_queue_mapping(skb, queue_id);
4345         txq = skb_get_tx_queue(dev, skb);
4346         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4347
4348         local_bh_disable();
4349
4350         dev_xmit_recursion_inc();
4351         HARD_TX_LOCK(dev, txq, smp_processor_id());
4352         if (!netif_xmit_frozen_or_drv_stopped(txq))
4353                 ret = netdev_start_xmit(skb, dev, txq, false);
4354         HARD_TX_UNLOCK(dev, txq);
4355         dev_xmit_recursion_dec();
4356
4357         local_bh_enable();
4358         return ret;
4359 drop:
4360         atomic_long_inc(&dev->tx_dropped);
4361         kfree_skb_list(skb);
4362         return NET_XMIT_DROP;
4363 }
4364 EXPORT_SYMBOL(__dev_direct_xmit);
4365
4366 /*************************************************************************
4367  *                      Receiver routines
4368  *************************************************************************/
4369
4370 int netdev_max_backlog __read_mostly = 1000;
4371 EXPORT_SYMBOL(netdev_max_backlog);
4372
4373 int netdev_tstamp_prequeue __read_mostly = 1;
4374 int netdev_budget __read_mostly = 300;
4375 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4376 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4377 int weight_p __read_mostly = 64;           /* old backlog weight */
4378 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4379 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4380 int dev_rx_weight __read_mostly = 64;
4381 int dev_tx_weight __read_mostly = 64;
4382 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4383 int gro_normal_batch __read_mostly = 8;
4384
4385 /* Called with irq disabled */
4386 static inline void ____napi_schedule(struct softnet_data *sd,
4387                                      struct napi_struct *napi)
4388 {
4389         struct task_struct *thread;
4390
4391         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4392                 /* Paired with smp_mb__before_atomic() in
4393                  * napi_enable()/dev_set_threaded().
4394                  * Use READ_ONCE() to guarantee a complete
4395                  * read on napi->thread. Only call
4396                  * wake_up_process() when it's not NULL.
4397                  */
4398                 thread = READ_ONCE(napi->thread);
4399                 if (thread) {
4400                         /* Avoid doing set_bit() if the thread is in
4401                          * INTERRUPTIBLE state, cause napi_thread_wait()
4402                          * makes sure to proceed with napi polling
4403                          * if the thread is explicitly woken from here.
4404                          */
4405                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4406                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4407                         wake_up_process(thread);
4408                         return;
4409                 }
4410         }
4411
4412         list_add_tail(&napi->poll_list, &sd->poll_list);
4413         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4414 }
4415
4416 #ifdef CONFIG_RPS
4417
4418 /* One global table that all flow-based protocols share. */
4419 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4420 EXPORT_SYMBOL(rps_sock_flow_table);
4421 u32 rps_cpu_mask __read_mostly;
4422 EXPORT_SYMBOL(rps_cpu_mask);
4423
4424 struct static_key_false rps_needed __read_mostly;
4425 EXPORT_SYMBOL(rps_needed);
4426 struct static_key_false rfs_needed __read_mostly;
4427 EXPORT_SYMBOL(rfs_needed);
4428
4429 static struct rps_dev_flow *
4430 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431             struct rps_dev_flow *rflow, u16 next_cpu)
4432 {
4433         if (next_cpu < nr_cpu_ids) {
4434 #ifdef CONFIG_RFS_ACCEL
4435                 struct netdev_rx_queue *rxqueue;
4436                 struct rps_dev_flow_table *flow_table;
4437                 struct rps_dev_flow *old_rflow;
4438                 u32 flow_id;
4439                 u16 rxq_index;
4440                 int rc;
4441
4442                 /* Should we steer this flow to a different hardware queue? */
4443                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4444                     !(dev->features & NETIF_F_NTUPLE))
4445                         goto out;
4446                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4447                 if (rxq_index == skb_get_rx_queue(skb))
4448                         goto out;
4449
4450                 rxqueue = dev->_rx + rxq_index;
4451                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4452                 if (!flow_table)
4453                         goto out;
4454                 flow_id = skb_get_hash(skb) & flow_table->mask;
4455                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4456                                                         rxq_index, flow_id);
4457                 if (rc < 0)
4458                         goto out;
4459                 old_rflow = rflow;
4460                 rflow = &flow_table->flows[flow_id];
4461                 rflow->filter = rc;
4462                 if (old_rflow->filter == rflow->filter)
4463                         old_rflow->filter = RPS_NO_FILTER;
4464         out:
4465 #endif
4466                 rflow->last_qtail =
4467                         per_cpu(softnet_data, next_cpu).input_queue_head;
4468         }
4469
4470         rflow->cpu = next_cpu;
4471         return rflow;
4472 }
4473
4474 /*
4475  * get_rps_cpu is called from netif_receive_skb and returns the target
4476  * CPU from the RPS map of the receiving queue for a given skb.
4477  * rcu_read_lock must be held on entry.
4478  */
4479 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480                        struct rps_dev_flow **rflowp)
4481 {
4482         const struct rps_sock_flow_table *sock_flow_table;
4483         struct netdev_rx_queue *rxqueue = dev->_rx;
4484         struct rps_dev_flow_table *flow_table;
4485         struct rps_map *map;
4486         int cpu = -1;
4487         u32 tcpu;
4488         u32 hash;
4489
4490         if (skb_rx_queue_recorded(skb)) {
4491                 u16 index = skb_get_rx_queue(skb);
4492
4493                 if (unlikely(index >= dev->real_num_rx_queues)) {
4494                         WARN_ONCE(dev->real_num_rx_queues > 1,
4495                                   "%s received packet on queue %u, but number "
4496                                   "of RX queues is %u\n",
4497                                   dev->name, index, dev->real_num_rx_queues);
4498                         goto done;
4499                 }
4500                 rxqueue += index;
4501         }
4502
4503         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4504
4505         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4506         map = rcu_dereference(rxqueue->rps_map);
4507         if (!flow_table && !map)
4508                 goto done;
4509
4510         skb_reset_network_header(skb);
4511         hash = skb_get_hash(skb);
4512         if (!hash)
4513                 goto done;
4514
4515         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4516         if (flow_table && sock_flow_table) {
4517                 struct rps_dev_flow *rflow;
4518                 u32 next_cpu;
4519                 u32 ident;
4520
4521                 /* First check into global flow table if there is a match */
4522                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4523                 if ((ident ^ hash) & ~rps_cpu_mask)
4524                         goto try_rps;
4525
4526                 next_cpu = ident & rps_cpu_mask;
4527
4528                 /* OK, now we know there is a match,
4529                  * we can look at the local (per receive queue) flow table
4530                  */
4531                 rflow = &flow_table->flows[hash & flow_table->mask];
4532                 tcpu = rflow->cpu;
4533
4534                 /*
4535                  * If the desired CPU (where last recvmsg was done) is
4536                  * different from current CPU (one in the rx-queue flow
4537                  * table entry), switch if one of the following holds:
4538                  *   - Current CPU is unset (>= nr_cpu_ids).
4539                  *   - Current CPU is offline.
4540                  *   - The current CPU's queue tail has advanced beyond the
4541                  *     last packet that was enqueued using this table entry.
4542                  *     This guarantees that all previous packets for the flow
4543                  *     have been dequeued, thus preserving in order delivery.
4544                  */
4545                 if (unlikely(tcpu != next_cpu) &&
4546                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4547                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4548                       rflow->last_qtail)) >= 0)) {
4549                         tcpu = next_cpu;
4550                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4551                 }
4552
4553                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4554                         *rflowp = rflow;
4555                         cpu = tcpu;
4556                         goto done;
4557                 }
4558         }
4559
4560 try_rps:
4561
4562         if (map) {
4563                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4564                 if (cpu_online(tcpu)) {
4565                         cpu = tcpu;
4566                         goto done;
4567                 }
4568         }
4569
4570 done:
4571         return cpu;
4572 }
4573
4574 #ifdef CONFIG_RFS_ACCEL
4575
4576 /**
4577  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4578  * @dev: Device on which the filter was set
4579  * @rxq_index: RX queue index
4580  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4581  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4582  *
4583  * Drivers that implement ndo_rx_flow_steer() should periodically call
4584  * this function for each installed filter and remove the filters for
4585  * which it returns %true.
4586  */
4587 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4588                          u32 flow_id, u16 filter_id)
4589 {
4590         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4591         struct rps_dev_flow_table *flow_table;
4592         struct rps_dev_flow *rflow;
4593         bool expire = true;
4594         unsigned int cpu;
4595
4596         rcu_read_lock();
4597         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4598         if (flow_table && flow_id <= flow_table->mask) {
4599                 rflow = &flow_table->flows[flow_id];
4600                 cpu = READ_ONCE(rflow->cpu);
4601                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4602                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4603                            rflow->last_qtail) <
4604                      (int)(10 * flow_table->mask)))
4605                         expire = false;
4606         }
4607         rcu_read_unlock();
4608         return expire;
4609 }
4610 EXPORT_SYMBOL(rps_may_expire_flow);
4611
4612 #endif /* CONFIG_RFS_ACCEL */
4613
4614 /* Called from hardirq (IPI) context */
4615 static void rps_trigger_softirq(void *data)
4616 {
4617         struct softnet_data *sd = data;
4618
4619         ____napi_schedule(sd, &sd->backlog);
4620         sd->received_rps++;
4621 }
4622
4623 #endif /* CONFIG_RPS */
4624
4625 /*
4626  * Check if this softnet_data structure is another cpu one
4627  * If yes, queue it to our IPI list and return 1
4628  * If no, return 0
4629  */
4630 static int rps_ipi_queued(struct softnet_data *sd)
4631 {
4632 #ifdef CONFIG_RPS
4633         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4634
4635         if (sd != mysd) {
4636                 sd->rps_ipi_next = mysd->rps_ipi_list;
4637                 mysd->rps_ipi_list = sd;
4638
4639                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4640                 return 1;
4641         }
4642 #endif /* CONFIG_RPS */
4643         return 0;
4644 }
4645
4646 #ifdef CONFIG_NET_FLOW_LIMIT
4647 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4648 #endif
4649
4650 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4651 {
4652 #ifdef CONFIG_NET_FLOW_LIMIT
4653         struct sd_flow_limit *fl;
4654         struct softnet_data *sd;
4655         unsigned int old_flow, new_flow;
4656
4657         if (qlen < (netdev_max_backlog >> 1))
4658                 return false;
4659
4660         sd = this_cpu_ptr(&softnet_data);
4661
4662         rcu_read_lock();
4663         fl = rcu_dereference(sd->flow_limit);
4664         if (fl) {
4665                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4666                 old_flow = fl->history[fl->history_head];
4667                 fl->history[fl->history_head] = new_flow;
4668
4669                 fl->history_head++;
4670                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4671
4672                 if (likely(fl->buckets[old_flow]))
4673                         fl->buckets[old_flow]--;
4674
4675                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4676                         fl->count++;
4677                         rcu_read_unlock();
4678                         return true;
4679                 }
4680         }
4681         rcu_read_unlock();
4682 #endif
4683         return false;
4684 }
4685
4686 /*
4687  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4688  * queue (may be a remote CPU queue).
4689  */
4690 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4691                               unsigned int *qtail)
4692 {
4693         struct softnet_data *sd;
4694         unsigned long flags;
4695         unsigned int qlen;
4696
4697         sd = &per_cpu(softnet_data, cpu);
4698
4699         local_irq_save(flags);
4700
4701         rps_lock(sd);
4702         if (!netif_running(skb->dev))
4703                 goto drop;
4704         qlen = skb_queue_len(&sd->input_pkt_queue);
4705         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4706                 if (qlen) {
4707 enqueue:
4708                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4709                         input_queue_tail_incr_save(sd, qtail);
4710                         rps_unlock(sd);
4711                         local_irq_restore(flags);
4712                         return NET_RX_SUCCESS;
4713                 }
4714
4715                 /* Schedule NAPI for backlog device
4716                  * We can use non atomic operation since we own the queue lock
4717                  */
4718                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4719                         if (!rps_ipi_queued(sd))
4720                                 ____napi_schedule(sd, &sd->backlog);
4721                 }
4722                 goto enqueue;
4723         }
4724
4725 drop:
4726         sd->dropped++;
4727         rps_unlock(sd);
4728
4729         local_irq_restore(flags);
4730
4731         atomic_long_inc(&skb->dev->rx_dropped);
4732         kfree_skb(skb);
4733         return NET_RX_DROP;
4734 }
4735
4736 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4737 {
4738         struct net_device *dev = skb->dev;
4739         struct netdev_rx_queue *rxqueue;
4740
4741         rxqueue = dev->_rx;
4742
4743         if (skb_rx_queue_recorded(skb)) {
4744                 u16 index = skb_get_rx_queue(skb);
4745
4746                 if (unlikely(index >= dev->real_num_rx_queues)) {
4747                         WARN_ONCE(dev->real_num_rx_queues > 1,
4748                                   "%s received packet on queue %u, but number "
4749                                   "of RX queues is %u\n",
4750                                   dev->name, index, dev->real_num_rx_queues);
4751
4752                         return rxqueue; /* Return first rxqueue */
4753                 }
4754                 rxqueue += index;
4755         }
4756         return rxqueue;
4757 }
4758
4759 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4760                                      struct xdp_buff *xdp,
4761                                      struct bpf_prog *xdp_prog)
4762 {
4763         void *orig_data, *orig_data_end, *hard_start;
4764         struct netdev_rx_queue *rxqueue;
4765         u32 metalen, act = XDP_DROP;
4766         bool orig_bcast, orig_host;
4767         u32 mac_len, frame_sz;
4768         __be16 orig_eth_type;
4769         struct ethhdr *eth;
4770         int off;
4771
4772         /* Reinjected packets coming from act_mirred or similar should
4773          * not get XDP generic processing.
4774          */
4775         if (skb_is_redirected(skb))
4776                 return XDP_PASS;
4777
4778         /* XDP packets must be linear and must have sufficient headroom
4779          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4780          * native XDP provides, thus we need to do it here as well.
4781          */
4782         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4783             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4784                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4785                 int troom = skb->tail + skb->data_len - skb->end;
4786
4787                 /* In case we have to go down the path and also linearize,
4788                  * then lets do the pskb_expand_head() work just once here.
4789                  */
4790                 if (pskb_expand_head(skb,
4791                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4792                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4793                         goto do_drop;
4794                 if (skb_linearize(skb))
4795                         goto do_drop;
4796         }
4797
4798         /* The XDP program wants to see the packet starting at the MAC
4799          * header.
4800          */
4801         mac_len = skb->data - skb_mac_header(skb);
4802         hard_start = skb->data - skb_headroom(skb);
4803
4804         /* SKB "head" area always have tailroom for skb_shared_info */
4805         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4806         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4807
4808         rxqueue = netif_get_rxqueue(skb);
4809         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4810         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4811                          skb_headlen(skb) + mac_len, true);
4812
4813         orig_data_end = xdp->data_end;
4814         orig_data = xdp->data;
4815         eth = (struct ethhdr *)xdp->data;
4816         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4817         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4818         orig_eth_type = eth->h_proto;
4819
4820         act = bpf_prog_run_xdp(xdp_prog, xdp);
4821
4822         /* check if bpf_xdp_adjust_head was used */
4823         off = xdp->data - orig_data;
4824         if (off) {
4825                 if (off > 0)
4826                         __skb_pull(skb, off);
4827                 else if (off < 0)
4828                         __skb_push(skb, -off);
4829
4830                 skb->mac_header += off;
4831                 skb_reset_network_header(skb);
4832         }
4833
4834         /* check if bpf_xdp_adjust_tail was used */
4835         off = xdp->data_end - orig_data_end;
4836         if (off != 0) {
4837                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4838                 skb->len += off; /* positive on grow, negative on shrink */
4839         }
4840
4841         /* check if XDP changed eth hdr such SKB needs update */
4842         eth = (struct ethhdr *)xdp->data;
4843         if ((orig_eth_type != eth->h_proto) ||
4844             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4845                                                   skb->dev->dev_addr)) ||
4846             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4847                 __skb_push(skb, ETH_HLEN);
4848                 skb->pkt_type = PACKET_HOST;
4849                 skb->protocol = eth_type_trans(skb, skb->dev);
4850         }
4851
4852         switch (act) {
4853         case XDP_REDIRECT:
4854         case XDP_TX:
4855                 __skb_push(skb, mac_len);
4856                 break;
4857         case XDP_PASS:
4858                 metalen = xdp->data - xdp->data_meta;
4859                 if (metalen)
4860                         skb_metadata_set(skb, metalen);
4861                 break;
4862         default:
4863                 bpf_warn_invalid_xdp_action(act);
4864                 fallthrough;
4865         case XDP_ABORTED:
4866                 trace_xdp_exception(skb->dev, xdp_prog, act);
4867                 fallthrough;
4868         case XDP_DROP:
4869         do_drop:
4870                 kfree_skb(skb);
4871                 break;
4872         }
4873
4874         return act;
4875 }
4876
4877 /* When doing generic XDP we have to bypass the qdisc layer and the
4878  * network taps in order to match in-driver-XDP behavior.
4879  */
4880 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4881 {
4882         struct net_device *dev = skb->dev;
4883         struct netdev_queue *txq;
4884         bool free_skb = true;
4885         int cpu, rc;
4886
4887         txq = netdev_core_pick_tx(dev, skb, NULL);
4888         cpu = smp_processor_id();
4889         HARD_TX_LOCK(dev, txq, cpu);
4890         if (!netif_xmit_stopped(txq)) {
4891                 rc = netdev_start_xmit(skb, dev, txq, 0);
4892                 if (dev_xmit_complete(rc))
4893                         free_skb = false;
4894         }
4895         HARD_TX_UNLOCK(dev, txq);
4896         if (free_skb) {
4897                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4898                 kfree_skb(skb);
4899         }
4900 }
4901
4902 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4903
4904 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4905 {
4906         if (xdp_prog) {
4907                 struct xdp_buff xdp;
4908                 u32 act;
4909                 int err;
4910
4911                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4912                 if (act != XDP_PASS) {
4913                         switch (act) {
4914                         case XDP_REDIRECT:
4915                                 err = xdp_do_generic_redirect(skb->dev, skb,
4916                                                               &xdp, xdp_prog);
4917                                 if (err)
4918                                         goto out_redir;
4919                                 break;
4920                         case XDP_TX:
4921                                 generic_xdp_tx(skb, xdp_prog);
4922                                 break;
4923                         }
4924                         return XDP_DROP;
4925                 }
4926         }
4927         return XDP_PASS;
4928 out_redir:
4929         kfree_skb(skb);
4930         return XDP_DROP;
4931 }
4932 EXPORT_SYMBOL_GPL(do_xdp_generic);
4933
4934 static int netif_rx_internal(struct sk_buff *skb)
4935 {
4936         int ret;
4937
4938         net_timestamp_check(netdev_tstamp_prequeue, skb);
4939
4940         trace_netif_rx(skb);
4941
4942 #ifdef CONFIG_RPS
4943         if (static_branch_unlikely(&rps_needed)) {
4944                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4945                 int cpu;
4946
4947                 preempt_disable();
4948                 rcu_read_lock();
4949
4950                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4951                 if (cpu < 0)
4952                         cpu = smp_processor_id();
4953
4954                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4955
4956                 rcu_read_unlock();
4957                 preempt_enable();
4958         } else
4959 #endif
4960         {
4961                 unsigned int qtail;
4962
4963                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4964                 put_cpu();
4965         }
4966         return ret;
4967 }
4968
4969 /**
4970  *      netif_rx        -       post buffer to the network code
4971  *      @skb: buffer to post
4972  *
4973  *      This function receives a packet from a device driver and queues it for
4974  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4975  *      may be dropped during processing for congestion control or by the
4976  *      protocol layers.
4977  *
4978  *      return values:
4979  *      NET_RX_SUCCESS  (no congestion)
4980  *      NET_RX_DROP     (packet was dropped)
4981  *
4982  */
4983
4984 int netif_rx(struct sk_buff *skb)
4985 {
4986         int ret;
4987
4988         trace_netif_rx_entry(skb);
4989
4990         ret = netif_rx_internal(skb);
4991         trace_netif_rx_exit(ret);
4992
4993         return ret;
4994 }
4995 EXPORT_SYMBOL(netif_rx);
4996
4997 int netif_rx_ni(struct sk_buff *skb)
4998 {
4999         int err;
5000
5001         trace_netif_rx_ni_entry(skb);
5002
5003         preempt_disable();
5004         err = netif_rx_internal(skb);
5005         if (local_softirq_pending())
5006                 do_softirq();
5007         preempt_enable();
5008         trace_netif_rx_ni_exit(err);
5009
5010         return err;
5011 }
5012 EXPORT_SYMBOL(netif_rx_ni);
5013
5014 int netif_rx_any_context(struct sk_buff *skb)
5015 {
5016         /*
5017          * If invoked from contexts which do not invoke bottom half
5018          * processing either at return from interrupt or when softrqs are
5019          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5020          * directly.
5021          */
5022         if (in_interrupt())
5023                 return netif_rx(skb);
5024         else
5025                 return netif_rx_ni(skb);
5026 }
5027 EXPORT_SYMBOL(netif_rx_any_context);
5028
5029 static __latent_entropy void net_tx_action(struct softirq_action *h)
5030 {
5031         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5032
5033         if (sd->completion_queue) {
5034                 struct sk_buff *clist;
5035
5036                 local_irq_disable();
5037                 clist = sd->completion_queue;
5038                 sd->completion_queue = NULL;
5039                 local_irq_enable();
5040
5041                 while (clist) {
5042                         struct sk_buff *skb = clist;
5043
5044                         clist = clist->next;
5045
5046                         WARN_ON(refcount_read(&skb->users));
5047                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5048                                 trace_consume_skb(skb);
5049                         else
5050                                 trace_kfree_skb(skb, net_tx_action);
5051
5052                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5053                                 __kfree_skb(skb);
5054                         else
5055                                 __kfree_skb_defer(skb);
5056                 }
5057         }
5058
5059         if (sd->output_queue) {
5060                 struct Qdisc *head;
5061
5062                 local_irq_disable();
5063                 head = sd->output_queue;
5064                 sd->output_queue = NULL;
5065                 sd->output_queue_tailp = &sd->output_queue;
5066                 local_irq_enable();
5067
5068                 rcu_read_lock();
5069
5070                 while (head) {
5071                         struct Qdisc *q = head;
5072                         spinlock_t *root_lock = NULL;
5073
5074                         head = head->next_sched;
5075
5076                         /* We need to make sure head->next_sched is read
5077                          * before clearing __QDISC_STATE_SCHED
5078                          */
5079                         smp_mb__before_atomic();
5080
5081                         if (!(q->flags & TCQ_F_NOLOCK)) {
5082                                 root_lock = qdisc_lock(q);
5083                                 spin_lock(root_lock);
5084                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5085                                                      &q->state))) {
5086                                 /* There is a synchronize_net() between
5087                                  * STATE_DEACTIVATED flag being set and
5088                                  * qdisc_reset()/some_qdisc_is_busy() in
5089                                  * dev_deactivate(), so we can safely bail out
5090                                  * early here to avoid data race between
5091                                  * qdisc_deactivate() and some_qdisc_is_busy()
5092                                  * for lockless qdisc.
5093                                  */
5094                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5095                                 continue;
5096                         }
5097
5098                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5099                         qdisc_run(q);
5100                         if (root_lock)
5101                                 spin_unlock(root_lock);
5102                 }
5103
5104                 rcu_read_unlock();
5105         }
5106
5107         xfrm_dev_backlog(sd);
5108 }
5109
5110 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5111 /* This hook is defined here for ATM LANE */
5112 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5113                              unsigned char *addr) __read_mostly;
5114 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5115 #endif
5116
5117 static inline struct sk_buff *
5118 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5119                    struct net_device *orig_dev, bool *another)
5120 {
5121 #ifdef CONFIG_NET_CLS_ACT
5122         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5123         struct tcf_result cl_res;
5124
5125         /* If there's at least one ingress present somewhere (so
5126          * we get here via enabled static key), remaining devices
5127          * that are not configured with an ingress qdisc will bail
5128          * out here.
5129          */
5130         if (!miniq)
5131                 return skb;
5132
5133         if (*pt_prev) {
5134                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5135                 *pt_prev = NULL;
5136         }
5137
5138         qdisc_skb_cb(skb)->pkt_len = skb->len;
5139         qdisc_skb_cb(skb)->mru = 0;
5140         qdisc_skb_cb(skb)->post_ct = false;
5141         skb->tc_at_ingress = 1;
5142         mini_qdisc_bstats_cpu_update(miniq, skb);
5143
5144         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5145                                      &cl_res, false)) {
5146         case TC_ACT_OK:
5147         case TC_ACT_RECLASSIFY:
5148                 skb->tc_index = TC_H_MIN(cl_res.classid);
5149                 break;
5150         case TC_ACT_SHOT:
5151                 mini_qdisc_qstats_cpu_drop(miniq);
5152                 kfree_skb(skb);
5153                 return NULL;
5154         case TC_ACT_STOLEN:
5155         case TC_ACT_QUEUED:
5156         case TC_ACT_TRAP:
5157                 consume_skb(skb);
5158                 return NULL;
5159         case TC_ACT_REDIRECT:
5160                 /* skb_mac_header check was done by cls/act_bpf, so
5161                  * we can safely push the L2 header back before
5162                  * redirecting to another netdev
5163                  */
5164                 __skb_push(skb, skb->mac_len);
5165                 if (skb_do_redirect(skb) == -EAGAIN) {
5166                         __skb_pull(skb, skb->mac_len);
5167                         *another = true;
5168                         break;
5169                 }
5170                 return NULL;
5171         case TC_ACT_CONSUMED:
5172                 return NULL;
5173         default:
5174                 break;
5175         }
5176 #endif /* CONFIG_NET_CLS_ACT */
5177         return skb;
5178 }
5179
5180 /**
5181  *      netdev_is_rx_handler_busy - check if receive handler is registered
5182  *      @dev: device to check
5183  *
5184  *      Check if a receive handler is already registered for a given device.
5185  *      Return true if there one.
5186  *
5187  *      The caller must hold the rtnl_mutex.
5188  */
5189 bool netdev_is_rx_handler_busy(struct net_device *dev)
5190 {
5191         ASSERT_RTNL();
5192         return dev && rtnl_dereference(dev->rx_handler);
5193 }
5194 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5195
5196 /**
5197  *      netdev_rx_handler_register - register receive handler
5198  *      @dev: device to register a handler for
5199  *      @rx_handler: receive handler to register
5200  *      @rx_handler_data: data pointer that is used by rx handler
5201  *
5202  *      Register a receive handler for a device. This handler will then be
5203  *      called from __netif_receive_skb. A negative errno code is returned
5204  *      on a failure.
5205  *
5206  *      The caller must hold the rtnl_mutex.
5207  *
5208  *      For a general description of rx_handler, see enum rx_handler_result.
5209  */
5210 int netdev_rx_handler_register(struct net_device *dev,
5211                                rx_handler_func_t *rx_handler,
5212                                void *rx_handler_data)
5213 {
5214         if (netdev_is_rx_handler_busy(dev))
5215                 return -EBUSY;
5216
5217         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5218                 return -EINVAL;
5219
5220         /* Note: rx_handler_data must be set before rx_handler */
5221         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5222         rcu_assign_pointer(dev->rx_handler, rx_handler);
5223
5224         return 0;
5225 }
5226 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5227
5228 /**
5229  *      netdev_rx_handler_unregister - unregister receive handler
5230  *      @dev: device to unregister a handler from
5231  *
5232  *      Unregister a receive handler from a device.
5233  *
5234  *      The caller must hold the rtnl_mutex.
5235  */
5236 void netdev_rx_handler_unregister(struct net_device *dev)
5237 {
5238
5239         ASSERT_RTNL();
5240         RCU_INIT_POINTER(dev->rx_handler, NULL);
5241         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5242          * section has a guarantee to see a non NULL rx_handler_data
5243          * as well.
5244          */
5245         synchronize_net();
5246         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5247 }
5248 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5249
5250 /*
5251  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5252  * the special handling of PFMEMALLOC skbs.
5253  */
5254 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5255 {
5256         switch (skb->protocol) {
5257         case htons(ETH_P_ARP):
5258         case htons(ETH_P_IP):
5259         case htons(ETH_P_IPV6):
5260         case htons(ETH_P_8021Q):
5261         case htons(ETH_P_8021AD):
5262                 return true;
5263         default:
5264                 return false;
5265         }
5266 }
5267
5268 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5269                              int *ret, struct net_device *orig_dev)
5270 {
5271         if (nf_hook_ingress_active(skb)) {
5272                 int ingress_retval;
5273
5274                 if (*pt_prev) {
5275                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5276                         *pt_prev = NULL;
5277                 }
5278
5279                 rcu_read_lock();
5280                 ingress_retval = nf_hook_ingress(skb);
5281                 rcu_read_unlock();
5282                 return ingress_retval;
5283         }
5284         return 0;
5285 }
5286
5287 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5288                                     struct packet_type **ppt_prev)
5289 {
5290         struct packet_type *ptype, *pt_prev;
5291         rx_handler_func_t *rx_handler;
5292         struct sk_buff *skb = *pskb;
5293         struct net_device *orig_dev;
5294         bool deliver_exact = false;
5295         int ret = NET_RX_DROP;
5296         __be16 type;
5297
5298         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5299
5300         trace_netif_receive_skb(skb);
5301
5302         orig_dev = skb->dev;
5303
5304         skb_reset_network_header(skb);
5305         if (!skb_transport_header_was_set(skb))
5306                 skb_reset_transport_header(skb);
5307         skb_reset_mac_len(skb);
5308
5309         pt_prev = NULL;
5310
5311 another_round:
5312         skb->skb_iif = skb->dev->ifindex;
5313
5314         __this_cpu_inc(softnet_data.processed);
5315
5316         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5317                 int ret2;
5318
5319                 migrate_disable();
5320                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5321                 migrate_enable();
5322
5323                 if (ret2 != XDP_PASS) {
5324                         ret = NET_RX_DROP;
5325                         goto out;
5326                 }
5327                 skb_reset_mac_len(skb);
5328         }
5329
5330         if (eth_type_vlan(skb->protocol)) {
5331                 skb = skb_vlan_untag(skb);
5332                 if (unlikely(!skb))
5333                         goto out;
5334         }
5335
5336         if (skb_skip_tc_classify(skb))
5337                 goto skip_classify;
5338
5339         if (pfmemalloc)
5340                 goto skip_taps;
5341
5342         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5343                 if (pt_prev)
5344                         ret = deliver_skb(skb, pt_prev, orig_dev);
5345                 pt_prev = ptype;
5346         }
5347
5348         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5349                 if (pt_prev)
5350                         ret = deliver_skb(skb, pt_prev, orig_dev);
5351                 pt_prev = ptype;
5352         }
5353
5354 skip_taps:
5355 #ifdef CONFIG_NET_INGRESS
5356         if (static_branch_unlikely(&ingress_needed_key)) {
5357                 bool another = false;
5358
5359                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5360                                          &another);
5361                 if (another)
5362                         goto another_round;
5363                 if (!skb)
5364                         goto out;
5365
5366                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5367                         goto out;
5368         }
5369 #endif
5370         skb_reset_redirect(skb);
5371 skip_classify:
5372         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5373                 goto drop;
5374
5375         if (skb_vlan_tag_present(skb)) {
5376                 if (pt_prev) {
5377                         ret = deliver_skb(skb, pt_prev, orig_dev);
5378                         pt_prev = NULL;
5379                 }
5380                 if (vlan_do_receive(&skb))
5381                         goto another_round;
5382                 else if (unlikely(!skb))
5383                         goto out;
5384         }
5385
5386         rx_handler = rcu_dereference(skb->dev->rx_handler);
5387         if (rx_handler) {
5388                 if (pt_prev) {
5389                         ret = deliver_skb(skb, pt_prev, orig_dev);
5390                         pt_prev = NULL;
5391                 }
5392                 switch (rx_handler(&skb)) {
5393                 case RX_HANDLER_CONSUMED:
5394                         ret = NET_RX_SUCCESS;
5395                         goto out;
5396                 case RX_HANDLER_ANOTHER:
5397                         goto another_round;
5398                 case RX_HANDLER_EXACT:
5399                         deliver_exact = true;
5400                         break;
5401                 case RX_HANDLER_PASS:
5402                         break;
5403                 default:
5404                         BUG();
5405                 }
5406         }
5407
5408         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5409 check_vlan_id:
5410                 if (skb_vlan_tag_get_id(skb)) {
5411                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5412                          * find vlan device.
5413                          */
5414                         skb->pkt_type = PACKET_OTHERHOST;
5415                 } else if (eth_type_vlan(skb->protocol)) {
5416                         /* Outer header is 802.1P with vlan 0, inner header is
5417                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5418                          * not find vlan dev for vlan id 0.
5419                          */
5420                         __vlan_hwaccel_clear_tag(skb);
5421                         skb = skb_vlan_untag(skb);
5422                         if (unlikely(!skb))
5423                                 goto out;
5424                         if (vlan_do_receive(&skb))
5425                                 /* After stripping off 802.1P header with vlan 0
5426                                  * vlan dev is found for inner header.
5427                                  */
5428                                 goto another_round;
5429                         else if (unlikely(!skb))
5430                                 goto out;
5431                         else
5432                                 /* We have stripped outer 802.1P vlan 0 header.
5433                                  * But could not find vlan dev.
5434                                  * check again for vlan id to set OTHERHOST.
5435                                  */
5436                                 goto check_vlan_id;
5437                 }
5438                 /* Note: we might in the future use prio bits
5439                  * and set skb->priority like in vlan_do_receive()
5440                  * For the time being, just ignore Priority Code Point
5441                  */
5442                 __vlan_hwaccel_clear_tag(skb);
5443         }
5444
5445         type = skb->protocol;
5446
5447         /* deliver only exact match when indicated */
5448         if (likely(!deliver_exact)) {
5449                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5450                                        &ptype_base[ntohs(type) &
5451                                                    PTYPE_HASH_MASK]);
5452         }
5453
5454         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5455                                &orig_dev->ptype_specific);
5456
5457         if (unlikely(skb->dev != orig_dev)) {
5458                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5459                                        &skb->dev->ptype_specific);
5460         }
5461
5462         if (pt_prev) {
5463                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5464                         goto drop;
5465                 *ppt_prev = pt_prev;
5466         } else {
5467 drop:
5468                 if (!deliver_exact)
5469                         atomic_long_inc(&skb->dev->rx_dropped);
5470                 else
5471                         atomic_long_inc(&skb->dev->rx_nohandler);
5472                 kfree_skb(skb);
5473                 /* Jamal, now you will not able to escape explaining
5474                  * me how you were going to use this. :-)
5475                  */
5476                 ret = NET_RX_DROP;
5477         }
5478
5479 out:
5480         /* The invariant here is that if *ppt_prev is not NULL
5481          * then skb should also be non-NULL.
5482          *
5483          * Apparently *ppt_prev assignment above holds this invariant due to
5484          * skb dereferencing near it.
5485          */
5486         *pskb = skb;
5487         return ret;
5488 }
5489
5490 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5491 {
5492         struct net_device *orig_dev = skb->dev;
5493         struct packet_type *pt_prev = NULL;
5494         int ret;
5495
5496         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5497         if (pt_prev)
5498                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5499                                          skb->dev, pt_prev, orig_dev);
5500         return ret;
5501 }
5502
5503 /**
5504  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5505  *      @skb: buffer to process
5506  *
5507  *      More direct receive version of netif_receive_skb().  It should
5508  *      only be used by callers that have a need to skip RPS and Generic XDP.
5509  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5510  *
5511  *      This function may only be called from softirq context and interrupts
5512  *      should be enabled.
5513  *
5514  *      Return values (usually ignored):
5515  *      NET_RX_SUCCESS: no congestion
5516  *      NET_RX_DROP: packet was dropped
5517  */
5518 int netif_receive_skb_core(struct sk_buff *skb)
5519 {
5520         int ret;
5521
5522         rcu_read_lock();
5523         ret = __netif_receive_skb_one_core(skb, false);
5524         rcu_read_unlock();
5525
5526         return ret;
5527 }
5528 EXPORT_SYMBOL(netif_receive_skb_core);
5529
5530 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5531                                                   struct packet_type *pt_prev,
5532                                                   struct net_device *orig_dev)
5533 {
5534         struct sk_buff *skb, *next;
5535
5536         if (!pt_prev)
5537                 return;
5538         if (list_empty(head))
5539                 return;
5540         if (pt_prev->list_func != NULL)
5541                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5542                                    ip_list_rcv, head, pt_prev, orig_dev);
5543         else
5544                 list_for_each_entry_safe(skb, next, head, list) {
5545                         skb_list_del_init(skb);
5546                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5547                 }
5548 }
5549
5550 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5551 {
5552         /* Fast-path assumptions:
5553          * - There is no RX handler.
5554          * - Only one packet_type matches.
5555          * If either of these fails, we will end up doing some per-packet
5556          * processing in-line, then handling the 'last ptype' for the whole
5557          * sublist.  This can't cause out-of-order delivery to any single ptype,
5558          * because the 'last ptype' must be constant across the sublist, and all
5559          * other ptypes are handled per-packet.
5560          */
5561         /* Current (common) ptype of sublist */
5562         struct packet_type *pt_curr = NULL;
5563         /* Current (common) orig_dev of sublist */
5564         struct net_device *od_curr = NULL;
5565         struct list_head sublist;
5566         struct sk_buff *skb, *next;
5567
5568         INIT_LIST_HEAD(&sublist);
5569         list_for_each_entry_safe(skb, next, head, list) {
5570                 struct net_device *orig_dev = skb->dev;
5571                 struct packet_type *pt_prev = NULL;
5572
5573                 skb_list_del_init(skb);
5574                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5575                 if (!pt_prev)
5576                         continue;
5577                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5578                         /* dispatch old sublist */
5579                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5580                         /* start new sublist */
5581                         INIT_LIST_HEAD(&sublist);
5582                         pt_curr = pt_prev;
5583                         od_curr = orig_dev;
5584                 }
5585                 list_add_tail(&skb->list, &sublist);
5586         }
5587
5588         /* dispatch final sublist */
5589         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5590 }
5591
5592 static int __netif_receive_skb(struct sk_buff *skb)
5593 {
5594         int ret;
5595
5596         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5597                 unsigned int noreclaim_flag;
5598
5599                 /*
5600                  * PFMEMALLOC skbs are special, they should
5601                  * - be delivered to SOCK_MEMALLOC sockets only
5602                  * - stay away from userspace
5603                  * - have bounded memory usage
5604                  *
5605                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5606                  * context down to all allocation sites.
5607                  */
5608                 noreclaim_flag = memalloc_noreclaim_save();
5609                 ret = __netif_receive_skb_one_core(skb, true);
5610                 memalloc_noreclaim_restore(noreclaim_flag);
5611         } else
5612                 ret = __netif_receive_skb_one_core(skb, false);
5613
5614         return ret;
5615 }
5616
5617 static void __netif_receive_skb_list(struct list_head *head)
5618 {
5619         unsigned long noreclaim_flag = 0;
5620         struct sk_buff *skb, *next;
5621         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5622
5623         list_for_each_entry_safe(skb, next, head, list) {
5624                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5625                         struct list_head sublist;
5626
5627                         /* Handle the previous sublist */
5628                         list_cut_before(&sublist, head, &skb->list);
5629                         if (!list_empty(&sublist))
5630                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5631                         pfmemalloc = !pfmemalloc;
5632                         /* See comments in __netif_receive_skb */
5633                         if (pfmemalloc)
5634                                 noreclaim_flag = memalloc_noreclaim_save();
5635                         else
5636                                 memalloc_noreclaim_restore(noreclaim_flag);
5637                 }
5638         }
5639         /* Handle the remaining sublist */
5640         if (!list_empty(head))
5641                 __netif_receive_skb_list_core(head, pfmemalloc);
5642         /* Restore pflags */
5643         if (pfmemalloc)
5644                 memalloc_noreclaim_restore(noreclaim_flag);
5645 }
5646
5647 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5648 {
5649         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5650         struct bpf_prog *new = xdp->prog;
5651         int ret = 0;
5652
5653         if (new) {
5654                 u32 i;
5655
5656                 mutex_lock(&new->aux->used_maps_mutex);
5657
5658                 /* generic XDP does not work with DEVMAPs that can
5659                  * have a bpf_prog installed on an entry
5660                  */
5661                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5662                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5663                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5664                                 mutex_unlock(&new->aux->used_maps_mutex);
5665                                 return -EINVAL;
5666                         }
5667                 }
5668
5669                 mutex_unlock(&new->aux->used_maps_mutex);
5670         }
5671
5672         switch (xdp->command) {
5673         case XDP_SETUP_PROG:
5674                 rcu_assign_pointer(dev->xdp_prog, new);
5675                 if (old)
5676                         bpf_prog_put(old);
5677
5678                 if (old && !new) {
5679                         static_branch_dec(&generic_xdp_needed_key);
5680                 } else if (new && !old) {
5681                         static_branch_inc(&generic_xdp_needed_key);
5682                         dev_disable_lro(dev);
5683                         dev_disable_gro_hw(dev);
5684                 }
5685                 break;
5686
5687         default:
5688                 ret = -EINVAL;
5689                 break;
5690         }
5691
5692         return ret;
5693 }
5694
5695 static int netif_receive_skb_internal(struct sk_buff *skb)
5696 {
5697         int ret;
5698
5699         net_timestamp_check(netdev_tstamp_prequeue, skb);
5700
5701         if (skb_defer_rx_timestamp(skb))
5702                 return NET_RX_SUCCESS;
5703
5704         rcu_read_lock();
5705 #ifdef CONFIG_RPS
5706         if (static_branch_unlikely(&rps_needed)) {
5707                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5708                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709
5710                 if (cpu >= 0) {
5711                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712                         rcu_read_unlock();
5713                         return ret;
5714                 }
5715         }
5716 #endif
5717         ret = __netif_receive_skb(skb);
5718         rcu_read_unlock();
5719         return ret;
5720 }
5721
5722 static void netif_receive_skb_list_internal(struct list_head *head)
5723 {
5724         struct sk_buff *skb, *next;
5725         struct list_head sublist;
5726
5727         INIT_LIST_HEAD(&sublist);
5728         list_for_each_entry_safe(skb, next, head, list) {
5729                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5730                 skb_list_del_init(skb);
5731                 if (!skb_defer_rx_timestamp(skb))
5732                         list_add_tail(&skb->list, &sublist);
5733         }
5734         list_splice_init(&sublist, head);
5735
5736         rcu_read_lock();
5737 #ifdef CONFIG_RPS
5738         if (static_branch_unlikely(&rps_needed)) {
5739                 list_for_each_entry_safe(skb, next, head, list) {
5740                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5741                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5742
5743                         if (cpu >= 0) {
5744                                 /* Will be handled, remove from list */
5745                                 skb_list_del_init(skb);
5746                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5747                         }
5748                 }
5749         }
5750 #endif
5751         __netif_receive_skb_list(head);
5752         rcu_read_unlock();
5753 }
5754
5755 /**
5756  *      netif_receive_skb - process receive buffer from network
5757  *      @skb: buffer to process
5758  *
5759  *      netif_receive_skb() is the main receive data processing function.
5760  *      It always succeeds. The buffer may be dropped during processing
5761  *      for congestion control or by the protocol layers.
5762  *
5763  *      This function may only be called from softirq context and interrupts
5764  *      should be enabled.
5765  *
5766  *      Return values (usually ignored):
5767  *      NET_RX_SUCCESS: no congestion
5768  *      NET_RX_DROP: packet was dropped
5769  */
5770 int netif_receive_skb(struct sk_buff *skb)
5771 {
5772         int ret;
5773
5774         trace_netif_receive_skb_entry(skb);
5775
5776         ret = netif_receive_skb_internal(skb);
5777         trace_netif_receive_skb_exit(ret);
5778
5779         return ret;
5780 }
5781 EXPORT_SYMBOL(netif_receive_skb);
5782
5783 /**
5784  *      netif_receive_skb_list - process many receive buffers from network
5785  *      @head: list of skbs to process.
5786  *
5787  *      Since return value of netif_receive_skb() is normally ignored, and
5788  *      wouldn't be meaningful for a list, this function returns void.
5789  *
5790  *      This function may only be called from softirq context and interrupts
5791  *      should be enabled.
5792  */
5793 void netif_receive_skb_list(struct list_head *head)
5794 {
5795         struct sk_buff *skb;
5796
5797         if (list_empty(head))
5798                 return;
5799         if (trace_netif_receive_skb_list_entry_enabled()) {
5800                 list_for_each_entry(skb, head, list)
5801                         trace_netif_receive_skb_list_entry(skb);
5802         }
5803         netif_receive_skb_list_internal(head);
5804         trace_netif_receive_skb_list_exit(0);
5805 }
5806 EXPORT_SYMBOL(netif_receive_skb_list);
5807
5808 static DEFINE_PER_CPU(struct work_struct, flush_works);
5809
5810 /* Network device is going away, flush any packets still pending */
5811 static void flush_backlog(struct work_struct *work)
5812 {
5813         struct sk_buff *skb, *tmp;
5814         struct softnet_data *sd;
5815
5816         local_bh_disable();
5817         sd = this_cpu_ptr(&softnet_data);
5818
5819         local_irq_disable();
5820         rps_lock(sd);
5821         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5822                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5823                         __skb_unlink(skb, &sd->input_pkt_queue);
5824                         dev_kfree_skb_irq(skb);
5825                         input_queue_head_incr(sd);
5826                 }
5827         }
5828         rps_unlock(sd);
5829         local_irq_enable();
5830
5831         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5832                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5833                         __skb_unlink(skb, &sd->process_queue);
5834                         kfree_skb(skb);
5835                         input_queue_head_incr(sd);
5836                 }
5837         }
5838         local_bh_enable();
5839 }
5840
5841 static bool flush_required(int cpu)
5842 {
5843 #if IS_ENABLED(CONFIG_RPS)
5844         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5845         bool do_flush;
5846
5847         local_irq_disable();
5848         rps_lock(sd);
5849
5850         /* as insertion into process_queue happens with the rps lock held,
5851          * process_queue access may race only with dequeue
5852          */
5853         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5854                    !skb_queue_empty_lockless(&sd->process_queue);
5855         rps_unlock(sd);
5856         local_irq_enable();
5857
5858         return do_flush;
5859 #endif
5860         /* without RPS we can't safely check input_pkt_queue: during a
5861          * concurrent remote skb_queue_splice() we can detect as empty both
5862          * input_pkt_queue and process_queue even if the latter could end-up
5863          * containing a lot of packets.
5864          */
5865         return true;
5866 }
5867
5868 static void flush_all_backlogs(void)
5869 {
5870         static cpumask_t flush_cpus;
5871         unsigned int cpu;
5872
5873         /* since we are under rtnl lock protection we can use static data
5874          * for the cpumask and avoid allocating on stack the possibly
5875          * large mask
5876          */
5877         ASSERT_RTNL();
5878
5879         get_online_cpus();
5880
5881         cpumask_clear(&flush_cpus);
5882         for_each_online_cpu(cpu) {
5883                 if (flush_required(cpu)) {
5884                         queue_work_on(cpu, system_highpri_wq,
5885                                       per_cpu_ptr(&flush_works, cpu));
5886                         cpumask_set_cpu(cpu, &flush_cpus);
5887                 }
5888         }
5889
5890         /* we can have in flight packet[s] on the cpus we are not flushing,
5891          * synchronize_net() in unregister_netdevice_many() will take care of
5892          * them
5893          */
5894         for_each_cpu(cpu, &flush_cpus)
5895                 flush_work(per_cpu_ptr(&flush_works, cpu));
5896
5897         put_online_cpus();
5898 }
5899
5900 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5901 static void gro_normal_list(struct napi_struct *napi)
5902 {
5903         if (!napi->rx_count)
5904                 return;
5905         netif_receive_skb_list_internal(&napi->rx_list);
5906         INIT_LIST_HEAD(&napi->rx_list);
5907         napi->rx_count = 0;
5908 }
5909
5910 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5911  * pass the whole batch up to the stack.
5912  */
5913 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5914 {
5915         list_add_tail(&skb->list, &napi->rx_list);
5916         napi->rx_count += segs;
5917         if (napi->rx_count >= gro_normal_batch)
5918                 gro_normal_list(napi);
5919 }
5920
5921 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5922 {
5923         struct packet_offload *ptype;
5924         __be16 type = skb->protocol;
5925         struct list_head *head = &offload_base;
5926         int err = -ENOENT;
5927
5928         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5929
5930         if (NAPI_GRO_CB(skb)->count == 1) {
5931                 skb_shinfo(skb)->gso_size = 0;
5932                 goto out;
5933         }
5934
5935         rcu_read_lock();
5936         list_for_each_entry_rcu(ptype, head, list) {
5937                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5938                         continue;
5939
5940                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5941                                          ipv6_gro_complete, inet_gro_complete,
5942                                          skb, 0);
5943                 break;
5944         }
5945         rcu_read_unlock();
5946
5947         if (err) {
5948                 WARN_ON(&ptype->list == head);
5949                 kfree_skb(skb);
5950                 return NET_RX_SUCCESS;
5951         }
5952
5953 out:
5954         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5955         return NET_RX_SUCCESS;
5956 }
5957
5958 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5959                                    bool flush_old)
5960 {
5961         struct list_head *head = &napi->gro_hash[index].list;
5962         struct sk_buff *skb, *p;
5963
5964         list_for_each_entry_safe_reverse(skb, p, head, list) {
5965                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5966                         return;
5967                 skb_list_del_init(skb);
5968                 napi_gro_complete(napi, skb);
5969                 napi->gro_hash[index].count--;
5970         }
5971
5972         if (!napi->gro_hash[index].count)
5973                 __clear_bit(index, &napi->gro_bitmask);
5974 }
5975
5976 /* napi->gro_hash[].list contains packets ordered by age.
5977  * youngest packets at the head of it.
5978  * Complete skbs in reverse order to reduce latencies.
5979  */
5980 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5981 {
5982         unsigned long bitmask = napi->gro_bitmask;
5983         unsigned int i, base = ~0U;
5984
5985         while ((i = ffs(bitmask)) != 0) {
5986                 bitmask >>= i;
5987                 base += i;
5988                 __napi_gro_flush_chain(napi, base, flush_old);
5989         }
5990 }
5991 EXPORT_SYMBOL(napi_gro_flush);
5992
5993 static void gro_list_prepare(const struct list_head *head,
5994                              const struct sk_buff *skb)
5995 {
5996         unsigned int maclen = skb->dev->hard_header_len;
5997         u32 hash = skb_get_hash_raw(skb);
5998         struct sk_buff *p;
5999
6000         list_for_each_entry(p, head, list) {
6001                 unsigned long diffs;
6002
6003                 NAPI_GRO_CB(p)->flush = 0;
6004
6005                 if (hash != skb_get_hash_raw(p)) {
6006                         NAPI_GRO_CB(p)->same_flow = 0;
6007                         continue;
6008                 }
6009
6010                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
6011                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6012                 if (skb_vlan_tag_present(p))
6013                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6014                 diffs |= skb_metadata_dst_cmp(p, skb);
6015                 diffs |= skb_metadata_differs(p, skb);
6016                 if (maclen == ETH_HLEN)
6017                         diffs |= compare_ether_header(skb_mac_header(p),
6018                                                       skb_mac_header(skb));
6019                 else if (!diffs)
6020                         diffs = memcmp(skb_mac_header(p),
6021                                        skb_mac_header(skb),
6022                                        maclen);
6023
6024                 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6025 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6026                 if (!diffs) {
6027                         struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6028                         struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6029
6030                         diffs |= (!!p_ext) ^ (!!skb_ext);
6031                         if (!diffs && unlikely(skb_ext))
6032                                 diffs |= p_ext->chain ^ skb_ext->chain;
6033                 }
6034 #endif
6035
6036                 NAPI_GRO_CB(p)->same_flow = !diffs;
6037         }
6038 }
6039
6040 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6041 {
6042         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6043         const skb_frag_t *frag0 = &pinfo->frags[0];
6044
6045         NAPI_GRO_CB(skb)->data_offset = 0;
6046         NAPI_GRO_CB(skb)->frag0 = NULL;
6047         NAPI_GRO_CB(skb)->frag0_len = 0;
6048
6049         if (!skb_headlen(skb) && pinfo->nr_frags &&
6050             !PageHighMem(skb_frag_page(frag0)) &&
6051             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6052                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6053                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6054                                                     skb_frag_size(frag0),
6055                                                     skb->end - skb->tail);
6056         }
6057 }
6058
6059 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6060 {
6061         struct skb_shared_info *pinfo = skb_shinfo(skb);
6062
6063         BUG_ON(skb->end - skb->tail < grow);
6064
6065         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6066
6067         skb->data_len -= grow;
6068         skb->tail += grow;
6069
6070         skb_frag_off_add(&pinfo->frags[0], grow);
6071         skb_frag_size_sub(&pinfo->frags[0], grow);
6072
6073         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6074                 skb_frag_unref(skb, 0);
6075                 memmove(pinfo->frags, pinfo->frags + 1,
6076                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6077         }
6078 }
6079
6080 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6081 {
6082         struct sk_buff *oldest;
6083
6084         oldest = list_last_entry(head, struct sk_buff, list);
6085
6086         /* We are called with head length >= MAX_GRO_SKBS, so this is
6087          * impossible.
6088          */
6089         if (WARN_ON_ONCE(!oldest))
6090                 return;
6091
6092         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6093          * SKB to the chain.
6094          */
6095         skb_list_del_init(oldest);
6096         napi_gro_complete(napi, oldest);
6097 }
6098
6099 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6100 {
6101         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6102         struct gro_list *gro_list = &napi->gro_hash[bucket];
6103         struct list_head *head = &offload_base;
6104         struct packet_offload *ptype;
6105         __be16 type = skb->protocol;
6106         struct sk_buff *pp = NULL;
6107         enum gro_result ret;
6108         int same_flow;
6109         int grow;
6110
6111         if (netif_elide_gro(skb->dev))
6112                 goto normal;
6113
6114         gro_list_prepare(&gro_list->list, skb);
6115
6116         rcu_read_lock();
6117         list_for_each_entry_rcu(ptype, head, list) {
6118                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6119                         continue;
6120
6121                 skb_set_network_header(skb, skb_gro_offset(skb));
6122                 skb_reset_mac_len(skb);
6123                 NAPI_GRO_CB(skb)->same_flow = 0;
6124                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6125                 NAPI_GRO_CB(skb)->free = 0;
6126                 NAPI_GRO_CB(skb)->encap_mark = 0;
6127                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6128                 NAPI_GRO_CB(skb)->is_fou = 0;
6129                 NAPI_GRO_CB(skb)->is_atomic = 1;
6130                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6131
6132                 /* Setup for GRO checksum validation */
6133                 switch (skb->ip_summed) {
6134                 case CHECKSUM_COMPLETE:
6135                         NAPI_GRO_CB(skb)->csum = skb->csum;
6136                         NAPI_GRO_CB(skb)->csum_valid = 1;
6137                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6138                         break;
6139                 case CHECKSUM_UNNECESSARY:
6140                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6141                         NAPI_GRO_CB(skb)->csum_valid = 0;
6142                         break;
6143                 default:
6144                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6145                         NAPI_GRO_CB(skb)->csum_valid = 0;
6146                 }
6147
6148                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6149                                         ipv6_gro_receive, inet_gro_receive,
6150                                         &gro_list->list, skb);
6151                 break;
6152         }
6153         rcu_read_unlock();
6154
6155         if (&ptype->list == head)
6156                 goto normal;
6157
6158         if (PTR_ERR(pp) == -EINPROGRESS) {
6159                 ret = GRO_CONSUMED;
6160                 goto ok;
6161         }
6162
6163         same_flow = NAPI_GRO_CB(skb)->same_flow;
6164         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6165
6166         if (pp) {
6167                 skb_list_del_init(pp);
6168                 napi_gro_complete(napi, pp);
6169                 gro_list->count--;
6170         }
6171
6172         if (same_flow)
6173                 goto ok;
6174
6175         if (NAPI_GRO_CB(skb)->flush)
6176                 goto normal;
6177
6178         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6179                 gro_flush_oldest(napi, &gro_list->list);
6180         else
6181                 gro_list->count++;
6182
6183         NAPI_GRO_CB(skb)->count = 1;
6184         NAPI_GRO_CB(skb)->age = jiffies;
6185         NAPI_GRO_CB(skb)->last = skb;
6186         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6187         list_add(&skb->list, &gro_list->list);
6188         ret = GRO_HELD;
6189
6190 pull:
6191         grow = skb_gro_offset(skb) - skb_headlen(skb);
6192         if (grow > 0)
6193                 gro_pull_from_frag0(skb, grow);
6194 ok:
6195         if (gro_list->count) {
6196                 if (!test_bit(bucket, &napi->gro_bitmask))
6197                         __set_bit(bucket, &napi->gro_bitmask);
6198         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6199                 __clear_bit(bucket, &napi->gro_bitmask);
6200         }
6201
6202         return ret;
6203
6204 normal:
6205         ret = GRO_NORMAL;
6206         goto pull;
6207 }
6208
6209 struct packet_offload *gro_find_receive_by_type(__be16 type)
6210 {
6211         struct list_head *offload_head = &offload_base;
6212         struct packet_offload *ptype;
6213
6214         list_for_each_entry_rcu(ptype, offload_head, list) {
6215                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6216                         continue;
6217                 return ptype;
6218         }
6219         return NULL;
6220 }
6221 EXPORT_SYMBOL(gro_find_receive_by_type);
6222
6223 struct packet_offload *gro_find_complete_by_type(__be16 type)
6224 {
6225         struct list_head *offload_head = &offload_base;
6226         struct packet_offload *ptype;
6227
6228         list_for_each_entry_rcu(ptype, offload_head, list) {
6229                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6230                         continue;
6231                 return ptype;
6232         }
6233         return NULL;
6234 }
6235 EXPORT_SYMBOL(gro_find_complete_by_type);
6236
6237 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6238                                     struct sk_buff *skb,
6239                                     gro_result_t ret)
6240 {
6241         switch (ret) {
6242         case GRO_NORMAL:
6243                 gro_normal_one(napi, skb, 1);
6244                 break;
6245
6246         case GRO_MERGED_FREE:
6247                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6248                         napi_skb_free_stolen_head(skb);
6249                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6250                         __kfree_skb(skb);
6251                 else
6252                         __kfree_skb_defer(skb);
6253                 break;
6254
6255         case GRO_HELD:
6256         case GRO_MERGED:
6257         case GRO_CONSUMED:
6258                 break;
6259         }
6260
6261         return ret;
6262 }
6263
6264 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6265 {
6266         gro_result_t ret;
6267
6268         skb_mark_napi_id(skb, napi);
6269         trace_napi_gro_receive_entry(skb);
6270
6271         skb_gro_reset_offset(skb, 0);
6272
6273         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6274         trace_napi_gro_receive_exit(ret);
6275
6276         return ret;
6277 }
6278 EXPORT_SYMBOL(napi_gro_receive);
6279
6280 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6281 {
6282         if (unlikely(skb->pfmemalloc)) {
6283                 consume_skb(skb);
6284                 return;
6285         }
6286         __skb_pull(skb, skb_headlen(skb));
6287         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6288         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6289         __vlan_hwaccel_clear_tag(skb);
6290         skb->dev = napi->dev;
6291         skb->skb_iif = 0;
6292
6293         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6294         skb->pkt_type = PACKET_HOST;
6295
6296         skb->encapsulation = 0;
6297         skb_shinfo(skb)->gso_type = 0;
6298         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6299         skb_ext_reset(skb);
6300         nf_reset_ct(skb);
6301
6302         napi->skb = skb;
6303 }
6304
6305 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6306 {
6307         struct sk_buff *skb = napi->skb;
6308
6309         if (!skb) {
6310                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6311                 if (skb) {
6312                         napi->skb = skb;
6313                         skb_mark_napi_id(skb, napi);
6314                 }
6315         }
6316         return skb;
6317 }
6318 EXPORT_SYMBOL(napi_get_frags);
6319
6320 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6321                                       struct sk_buff *skb,
6322                                       gro_result_t ret)
6323 {
6324         switch (ret) {
6325         case GRO_NORMAL:
6326         case GRO_HELD:
6327                 __skb_push(skb, ETH_HLEN);
6328                 skb->protocol = eth_type_trans(skb, skb->dev);
6329                 if (ret == GRO_NORMAL)
6330                         gro_normal_one(napi, skb, 1);
6331                 break;
6332
6333         case GRO_MERGED_FREE:
6334                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6335                         napi_skb_free_stolen_head(skb);
6336                 else
6337                         napi_reuse_skb(napi, skb);
6338                 break;
6339
6340         case GRO_MERGED:
6341         case GRO_CONSUMED:
6342                 break;
6343         }
6344
6345         return ret;
6346 }
6347
6348 /* Upper GRO stack assumes network header starts at gro_offset=0
6349  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6350  * We copy ethernet header into skb->data to have a common layout.
6351  */
6352 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6353 {
6354         struct sk_buff *skb = napi->skb;
6355         const struct ethhdr *eth;
6356         unsigned int hlen = sizeof(*eth);
6357
6358         napi->skb = NULL;
6359
6360         skb_reset_mac_header(skb);
6361         skb_gro_reset_offset(skb, hlen);
6362
6363         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6364                 eth = skb_gro_header_slow(skb, hlen, 0);
6365                 if (unlikely(!eth)) {
6366                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6367                                              __func__, napi->dev->name);
6368                         napi_reuse_skb(napi, skb);
6369                         return NULL;
6370                 }
6371         } else {
6372                 eth = (const struct ethhdr *)skb->data;
6373                 gro_pull_from_frag0(skb, hlen);
6374                 NAPI_GRO_CB(skb)->frag0 += hlen;
6375                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6376         }
6377         __skb_pull(skb, hlen);
6378
6379         /*
6380          * This works because the only protocols we care about don't require
6381          * special handling.
6382          * We'll fix it up properly in napi_frags_finish()
6383          */
6384         skb->protocol = eth->h_proto;
6385
6386         return skb;
6387 }
6388
6389 gro_result_t napi_gro_frags(struct napi_struct *napi)
6390 {
6391         gro_result_t ret;
6392         struct sk_buff *skb = napi_frags_skb(napi);
6393
6394         trace_napi_gro_frags_entry(skb);
6395
6396         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6397         trace_napi_gro_frags_exit(ret);
6398
6399         return ret;
6400 }
6401 EXPORT_SYMBOL(napi_gro_frags);
6402
6403 /* Compute the checksum from gro_offset and return the folded value
6404  * after adding in any pseudo checksum.
6405  */
6406 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6407 {
6408         __wsum wsum;
6409         __sum16 sum;
6410
6411         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6412
6413         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6414         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6415         /* See comments in __skb_checksum_complete(). */
6416         if (likely(!sum)) {
6417                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6418                     !skb->csum_complete_sw)
6419                         netdev_rx_csum_fault(skb->dev, skb);
6420         }
6421
6422         NAPI_GRO_CB(skb)->csum = wsum;
6423         NAPI_GRO_CB(skb)->csum_valid = 1;
6424
6425         return sum;
6426 }
6427 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6428
6429 static void net_rps_send_ipi(struct softnet_data *remsd)
6430 {
6431 #ifdef CONFIG_RPS
6432         while (remsd) {
6433                 struct softnet_data *next = remsd->rps_ipi_next;
6434
6435                 if (cpu_online(remsd->cpu))
6436                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6437                 remsd = next;
6438         }
6439 #endif
6440 }
6441
6442 /*
6443  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6444  * Note: called with local irq disabled, but exits with local irq enabled.
6445  */
6446 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6447 {
6448 #ifdef CONFIG_RPS
6449         struct softnet_data *remsd = sd->rps_ipi_list;
6450
6451         if (remsd) {
6452                 sd->rps_ipi_list = NULL;
6453
6454                 local_irq_enable();
6455
6456                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6457                 net_rps_send_ipi(remsd);
6458         } else
6459 #endif
6460                 local_irq_enable();
6461 }
6462
6463 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6464 {
6465 #ifdef CONFIG_RPS
6466         return sd->rps_ipi_list != NULL;
6467 #else
6468         return false;
6469 #endif
6470 }
6471
6472 static int process_backlog(struct napi_struct *napi, int quota)
6473 {
6474         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6475         bool again = true;
6476         int work = 0;
6477
6478         /* Check if we have pending ipi, its better to send them now,
6479          * not waiting net_rx_action() end.
6480          */
6481         if (sd_has_rps_ipi_waiting(sd)) {
6482                 local_irq_disable();
6483                 net_rps_action_and_irq_enable(sd);
6484         }
6485
6486         napi->weight = dev_rx_weight;
6487         while (again) {
6488                 struct sk_buff *skb;
6489
6490                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6491                         rcu_read_lock();
6492                         __netif_receive_skb(skb);
6493                         rcu_read_unlock();
6494                         input_queue_head_incr(sd);
6495                         if (++work >= quota)
6496                                 return work;
6497
6498                 }
6499
6500                 local_irq_disable();
6501                 rps_lock(sd);
6502                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6503                         /*
6504                          * Inline a custom version of __napi_complete().
6505                          * only current cpu owns and manipulates this napi,
6506                          * and NAPI_STATE_SCHED is the only possible flag set
6507                          * on backlog.
6508                          * We can use a plain write instead of clear_bit(),
6509                          * and we dont need an smp_mb() memory barrier.
6510                          */
6511                         napi->state = 0;
6512                         again = false;
6513                 } else {
6514                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6515                                                    &sd->process_queue);
6516                 }
6517                 rps_unlock(sd);
6518                 local_irq_enable();
6519         }
6520
6521         return work;
6522 }
6523
6524 /**
6525  * __napi_schedule - schedule for receive
6526  * @n: entry to schedule
6527  *
6528  * The entry's receive function will be scheduled to run.
6529  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6530  */
6531 void __napi_schedule(struct napi_struct *n)
6532 {
6533         unsigned long flags;
6534
6535         local_irq_save(flags);
6536         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6537         local_irq_restore(flags);
6538 }
6539 EXPORT_SYMBOL(__napi_schedule);
6540
6541 /**
6542  *      napi_schedule_prep - check if napi can be scheduled
6543  *      @n: napi context
6544  *
6545  * Test if NAPI routine is already running, and if not mark
6546  * it as running.  This is used as a condition variable to
6547  * insure only one NAPI poll instance runs.  We also make
6548  * sure there is no pending NAPI disable.
6549  */
6550 bool napi_schedule_prep(struct napi_struct *n)
6551 {
6552         unsigned long val, new;
6553
6554         do {
6555                 val = READ_ONCE(n->state);
6556                 if (unlikely(val & NAPIF_STATE_DISABLE))
6557                         return false;
6558                 new = val | NAPIF_STATE_SCHED;
6559
6560                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6561                  * This was suggested by Alexander Duyck, as compiler
6562                  * emits better code than :
6563                  * if (val & NAPIF_STATE_SCHED)
6564                  *     new |= NAPIF_STATE_MISSED;
6565                  */
6566                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6567                                                    NAPIF_STATE_MISSED;
6568         } while (cmpxchg(&n->state, val, new) != val);
6569
6570         return !(val & NAPIF_STATE_SCHED);
6571 }
6572 EXPORT_SYMBOL(napi_schedule_prep);
6573
6574 /**
6575  * __napi_schedule_irqoff - schedule for receive
6576  * @n: entry to schedule
6577  *
6578  * Variant of __napi_schedule() assuming hard irqs are masked.
6579  *
6580  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6581  * because the interrupt disabled assumption might not be true
6582  * due to force-threaded interrupts and spinlock substitution.
6583  */
6584 void __napi_schedule_irqoff(struct napi_struct *n)
6585 {
6586         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6587                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6588         else
6589                 __napi_schedule(n);
6590 }
6591 EXPORT_SYMBOL(__napi_schedule_irqoff);
6592
6593 bool napi_complete_done(struct napi_struct *n, int work_done)
6594 {
6595         unsigned long flags, val, new, timeout = 0;
6596         bool ret = true;
6597
6598         /*
6599          * 1) Don't let napi dequeue from the cpu poll list
6600          *    just in case its running on a different cpu.
6601          * 2) If we are busy polling, do nothing here, we have
6602          *    the guarantee we will be called later.
6603          */
6604         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6605                                  NAPIF_STATE_IN_BUSY_POLL)))
6606                 return false;
6607
6608         if (work_done) {
6609                 if (n->gro_bitmask)
6610                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6611                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6612         }
6613         if (n->defer_hard_irqs_count > 0) {
6614                 n->defer_hard_irqs_count--;
6615                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6616                 if (timeout)
6617                         ret = false;
6618         }
6619         if (n->gro_bitmask) {
6620                 /* When the NAPI instance uses a timeout and keeps postponing
6621                  * it, we need to bound somehow the time packets are kept in
6622                  * the GRO layer
6623                  */
6624                 napi_gro_flush(n, !!timeout);
6625         }
6626
6627         gro_normal_list(n);
6628
6629         if (unlikely(!list_empty(&n->poll_list))) {
6630                 /* If n->poll_list is not empty, we need to mask irqs */
6631                 local_irq_save(flags);
6632                 list_del_init(&n->poll_list);
6633                 local_irq_restore(flags);
6634         }
6635
6636         do {
6637                 val = READ_ONCE(n->state);
6638
6639                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6640
6641                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6642                               NAPIF_STATE_SCHED_THREADED |
6643                               NAPIF_STATE_PREFER_BUSY_POLL);
6644
6645                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6646                  * because we will call napi->poll() one more time.
6647                  * This C code was suggested by Alexander Duyck to help gcc.
6648                  */
6649                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6650                                                     NAPIF_STATE_SCHED;
6651         } while (cmpxchg(&n->state, val, new) != val);
6652
6653         if (unlikely(val & NAPIF_STATE_MISSED)) {
6654                 __napi_schedule(n);
6655                 return false;
6656         }
6657
6658         if (timeout)
6659                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6660                               HRTIMER_MODE_REL_PINNED);
6661         return ret;
6662 }
6663 EXPORT_SYMBOL(napi_complete_done);
6664
6665 /* must be called under rcu_read_lock(), as we dont take a reference */
6666 static struct napi_struct *napi_by_id(unsigned int napi_id)
6667 {
6668         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6669         struct napi_struct *napi;
6670
6671         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6672                 if (napi->napi_id == napi_id)
6673                         return napi;
6674
6675         return NULL;
6676 }
6677
6678 #if defined(CONFIG_NET_RX_BUSY_POLL)
6679
6680 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6681 {
6682         if (!skip_schedule) {
6683                 gro_normal_list(napi);
6684                 __napi_schedule(napi);
6685                 return;
6686         }
6687
6688         if (napi->gro_bitmask) {
6689                 /* flush too old packets
6690                  * If HZ < 1000, flush all packets.
6691                  */
6692                 napi_gro_flush(napi, HZ >= 1000);
6693         }
6694
6695         gro_normal_list(napi);
6696         clear_bit(NAPI_STATE_SCHED, &napi->state);
6697 }
6698
6699 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6700                            u16 budget)
6701 {
6702         bool skip_schedule = false;
6703         unsigned long timeout;
6704         int rc;
6705
6706         /* Busy polling means there is a high chance device driver hard irq
6707          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6708          * set in napi_schedule_prep().
6709          * Since we are about to call napi->poll() once more, we can safely
6710          * clear NAPI_STATE_MISSED.
6711          *
6712          * Note: x86 could use a single "lock and ..." instruction
6713          * to perform these two clear_bit()
6714          */
6715         clear_bit(NAPI_STATE_MISSED, &napi->state);
6716         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6717
6718         local_bh_disable();
6719
6720         if (prefer_busy_poll) {
6721                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6722                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6723                 if (napi->defer_hard_irqs_count && timeout) {
6724                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6725                         skip_schedule = true;
6726                 }
6727         }
6728
6729         /* All we really want here is to re-enable device interrupts.
6730          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6731          */
6732         rc = napi->poll(napi, budget);
6733         /* We can't gro_normal_list() here, because napi->poll() might have
6734          * rearmed the napi (napi_complete_done()) in which case it could
6735          * already be running on another CPU.
6736          */
6737         trace_napi_poll(napi, rc, budget);
6738         netpoll_poll_unlock(have_poll_lock);
6739         if (rc == budget)
6740                 __busy_poll_stop(napi, skip_schedule);
6741         local_bh_enable();
6742 }
6743
6744 void napi_busy_loop(unsigned int napi_id,
6745                     bool (*loop_end)(void *, unsigned long),
6746                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6747 {
6748         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6749         int (*napi_poll)(struct napi_struct *napi, int budget);
6750         void *have_poll_lock = NULL;
6751         struct napi_struct *napi;
6752
6753 restart:
6754         napi_poll = NULL;
6755
6756         rcu_read_lock();
6757
6758         napi = napi_by_id(napi_id);
6759         if (!napi)
6760                 goto out;
6761
6762         preempt_disable();
6763         for (;;) {
6764                 int work = 0;
6765
6766                 local_bh_disable();
6767                 if (!napi_poll) {
6768                         unsigned long val = READ_ONCE(napi->state);
6769
6770                         /* If multiple threads are competing for this napi,
6771                          * we avoid dirtying napi->state as much as we can.
6772                          */
6773                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6774                                    NAPIF_STATE_IN_BUSY_POLL)) {
6775                                 if (prefer_busy_poll)
6776                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6777                                 goto count;
6778                         }
6779                         if (cmpxchg(&napi->state, val,
6780                                     val | NAPIF_STATE_IN_BUSY_POLL |
6781                                           NAPIF_STATE_SCHED) != val) {
6782                                 if (prefer_busy_poll)
6783                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6784                                 goto count;
6785                         }
6786                         have_poll_lock = netpoll_poll_lock(napi);
6787                         napi_poll = napi->poll;
6788                 }
6789                 work = napi_poll(napi, budget);
6790                 trace_napi_poll(napi, work, budget);
6791                 gro_normal_list(napi);
6792 count:
6793                 if (work > 0)
6794                         __NET_ADD_STATS(dev_net(napi->dev),
6795                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6796                 local_bh_enable();
6797
6798                 if (!loop_end || loop_end(loop_end_arg, start_time))
6799                         break;
6800
6801                 if (unlikely(need_resched())) {
6802                         if (napi_poll)
6803                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6804                         preempt_enable();
6805                         rcu_read_unlock();
6806                         cond_resched();
6807                         if (loop_end(loop_end_arg, start_time))
6808                                 return;
6809                         goto restart;
6810                 }
6811                 cpu_relax();
6812         }
6813         if (napi_poll)
6814                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6815         preempt_enable();
6816 out:
6817         rcu_read_unlock();
6818 }
6819 EXPORT_SYMBOL(napi_busy_loop);
6820
6821 #endif /* CONFIG_NET_RX_BUSY_POLL */
6822
6823 static void napi_hash_add(struct napi_struct *napi)
6824 {
6825         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6826                 return;
6827
6828         spin_lock(&napi_hash_lock);
6829
6830         /* 0..NR_CPUS range is reserved for sender_cpu use */
6831         do {
6832                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6833                         napi_gen_id = MIN_NAPI_ID;
6834         } while (napi_by_id(napi_gen_id));
6835         napi->napi_id = napi_gen_id;
6836
6837         hlist_add_head_rcu(&napi->napi_hash_node,
6838                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6839
6840         spin_unlock(&napi_hash_lock);
6841 }
6842
6843 /* Warning : caller is responsible to make sure rcu grace period
6844  * is respected before freeing memory containing @napi
6845  */
6846 static void napi_hash_del(struct napi_struct *napi)
6847 {
6848         spin_lock(&napi_hash_lock);
6849
6850         hlist_del_init_rcu(&napi->napi_hash_node);
6851
6852         spin_unlock(&napi_hash_lock);
6853 }
6854
6855 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6856 {
6857         struct napi_struct *napi;
6858
6859         napi = container_of(timer, struct napi_struct, timer);
6860
6861         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6862          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6863          */
6864         if (!napi_disable_pending(napi) &&
6865             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6866                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6867                 __napi_schedule_irqoff(napi);
6868         }
6869
6870         return HRTIMER_NORESTART;
6871 }
6872
6873 static void init_gro_hash(struct napi_struct *napi)
6874 {
6875         int i;
6876
6877         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6878                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6879                 napi->gro_hash[i].count = 0;
6880         }
6881         napi->gro_bitmask = 0;
6882 }
6883
6884 int dev_set_threaded(struct net_device *dev, bool threaded)
6885 {
6886         struct napi_struct *napi;
6887         int err = 0;
6888
6889         if (dev->threaded == threaded)
6890                 return 0;
6891
6892         if (threaded) {
6893                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6894                         if (!napi->thread) {
6895                                 err = napi_kthread_create(napi);
6896                                 if (err) {
6897                                         threaded = false;
6898                                         break;
6899                                 }
6900                         }
6901                 }
6902         }
6903
6904         dev->threaded = threaded;
6905
6906         /* Make sure kthread is created before THREADED bit
6907          * is set.
6908          */
6909         smp_mb__before_atomic();
6910
6911         /* Setting/unsetting threaded mode on a napi might not immediately
6912          * take effect, if the current napi instance is actively being
6913          * polled. In this case, the switch between threaded mode and
6914          * softirq mode will happen in the next round of napi_schedule().
6915          * This should not cause hiccups/stalls to the live traffic.
6916          */
6917         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6918                 if (threaded)
6919                         set_bit(NAPI_STATE_THREADED, &napi->state);
6920                 else
6921                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6922         }
6923
6924         return err;
6925 }
6926 EXPORT_SYMBOL(dev_set_threaded);
6927
6928 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6929                     int (*poll)(struct napi_struct *, int), int weight)
6930 {
6931         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6932                 return;
6933
6934         INIT_LIST_HEAD(&napi->poll_list);
6935         INIT_HLIST_NODE(&napi->napi_hash_node);
6936         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6937         napi->timer.function = napi_watchdog;
6938         init_gro_hash(napi);
6939         napi->skb = NULL;
6940         INIT_LIST_HEAD(&napi->rx_list);
6941         napi->rx_count = 0;
6942         napi->poll = poll;
6943         if (weight > NAPI_POLL_WEIGHT)
6944                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6945                                 weight);
6946         napi->weight = weight;
6947         napi->dev = dev;
6948 #ifdef CONFIG_NETPOLL
6949         napi->poll_owner = -1;
6950 #endif
6951         set_bit(NAPI_STATE_SCHED, &napi->state);
6952         set_bit(NAPI_STATE_NPSVC, &napi->state);
6953         list_add_rcu(&napi->dev_list, &dev->napi_list);
6954         napi_hash_add(napi);
6955         /* Create kthread for this napi if dev->threaded is set.
6956          * Clear dev->threaded if kthread creation failed so that
6957          * threaded mode will not be enabled in napi_enable().
6958          */
6959         if (dev->threaded && napi_kthread_create(napi))
6960                 dev->threaded = 0;
6961 }
6962 EXPORT_SYMBOL(netif_napi_add);
6963
6964 void napi_disable(struct napi_struct *n)
6965 {
6966         might_sleep();
6967         set_bit(NAPI_STATE_DISABLE, &n->state);
6968
6969         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6970                 msleep(1);
6971         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6972                 msleep(1);
6973
6974         hrtimer_cancel(&n->timer);
6975
6976         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6977         clear_bit(NAPI_STATE_DISABLE, &n->state);
6978         clear_bit(NAPI_STATE_THREADED, &n->state);
6979 }
6980 EXPORT_SYMBOL(napi_disable);
6981
6982 /**
6983  *      napi_enable - enable NAPI scheduling
6984  *      @n: NAPI context
6985  *
6986  * Resume NAPI from being scheduled on this context.
6987  * Must be paired with napi_disable.
6988  */
6989 void napi_enable(struct napi_struct *n)
6990 {
6991         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6992         smp_mb__before_atomic();
6993         clear_bit(NAPI_STATE_SCHED, &n->state);
6994         clear_bit(NAPI_STATE_NPSVC, &n->state);
6995         if (n->dev->threaded && n->thread)
6996                 set_bit(NAPI_STATE_THREADED, &n->state);
6997 }
6998 EXPORT_SYMBOL(napi_enable);
6999
7000 static void flush_gro_hash(struct napi_struct *napi)
7001 {
7002         int i;
7003
7004         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7005                 struct sk_buff *skb, *n;
7006
7007                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7008                         kfree_skb(skb);
7009                 napi->gro_hash[i].count = 0;
7010         }
7011 }
7012
7013 /* Must be called in process context */
7014 void __netif_napi_del(struct napi_struct *napi)
7015 {
7016         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7017                 return;
7018
7019         napi_hash_del(napi);
7020         list_del_rcu(&napi->dev_list);
7021         napi_free_frags(napi);
7022
7023         flush_gro_hash(napi);
7024         napi->gro_bitmask = 0;
7025
7026         if (napi->thread) {
7027                 kthread_stop(napi->thread);
7028                 napi->thread = NULL;
7029         }
7030 }
7031 EXPORT_SYMBOL(__netif_napi_del);
7032
7033 static int __napi_poll(struct napi_struct *n, bool *repoll)
7034 {
7035         int work, weight;
7036
7037         weight = n->weight;
7038
7039         /* This NAPI_STATE_SCHED test is for avoiding a race
7040          * with netpoll's poll_napi().  Only the entity which
7041          * obtains the lock and sees NAPI_STATE_SCHED set will
7042          * actually make the ->poll() call.  Therefore we avoid
7043          * accidentally calling ->poll() when NAPI is not scheduled.
7044          */
7045         work = 0;
7046         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7047                 work = n->poll(n, weight);
7048                 trace_napi_poll(n, work, weight);
7049         }
7050
7051         if (unlikely(work > weight))
7052                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7053                             n->poll, work, weight);
7054
7055         if (likely(work < weight))
7056                 return work;
7057
7058         /* Drivers must not modify the NAPI state if they
7059          * consume the entire weight.  In such cases this code
7060          * still "owns" the NAPI instance and therefore can
7061          * move the instance around on the list at-will.
7062          */
7063         if (unlikely(napi_disable_pending(n))) {
7064                 napi_complete(n);
7065                 return work;
7066         }
7067
7068         /* The NAPI context has more processing work, but busy-polling
7069          * is preferred. Exit early.
7070          */
7071         if (napi_prefer_busy_poll(n)) {
7072                 if (napi_complete_done(n, work)) {
7073                         /* If timeout is not set, we need to make sure
7074                          * that the NAPI is re-scheduled.
7075                          */
7076                         napi_schedule(n);
7077                 }
7078                 return work;
7079         }
7080
7081         if (n->gro_bitmask) {
7082                 /* flush too old packets
7083                  * If HZ < 1000, flush all packets.
7084                  */
7085                 napi_gro_flush(n, HZ >= 1000);
7086         }
7087
7088         gro_normal_list(n);
7089
7090         /* Some drivers may have called napi_schedule
7091          * prior to exhausting their budget.
7092          */
7093         if (unlikely(!list_empty(&n->poll_list))) {
7094                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7095                              n->dev ? n->dev->name : "backlog");
7096                 return work;
7097         }
7098
7099         *repoll = true;
7100
7101         return work;
7102 }
7103
7104 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7105 {
7106         bool do_repoll = false;
7107         void *have;
7108         int work;
7109
7110         list_del_init(&n->poll_list);
7111
7112         have = netpoll_poll_lock(n);
7113
7114         work = __napi_poll(n, &do_repoll);
7115
7116         if (do_repoll)
7117                 list_add_tail(&n->poll_list, repoll);
7118
7119         netpoll_poll_unlock(have);
7120
7121         return work;
7122 }
7123
7124 static int napi_thread_wait(struct napi_struct *napi)
7125 {
7126         bool woken = false;
7127
7128         set_current_state(TASK_INTERRUPTIBLE);
7129
7130         while (!kthread_should_stop()) {
7131                 /* Testing SCHED_THREADED bit here to make sure the current
7132                  * kthread owns this napi and could poll on this napi.
7133                  * Testing SCHED bit is not enough because SCHED bit might be
7134                  * set by some other busy poll thread or by napi_disable().
7135                  */
7136                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7137                         WARN_ON(!list_empty(&napi->poll_list));
7138                         __set_current_state(TASK_RUNNING);
7139                         return 0;
7140                 }
7141
7142                 schedule();
7143                 /* woken being true indicates this thread owns this napi. */
7144                 woken = true;
7145                 set_current_state(TASK_INTERRUPTIBLE);
7146         }
7147         __set_current_state(TASK_RUNNING);
7148
7149         return -1;
7150 }
7151
7152 static int napi_threaded_poll(void *data)
7153 {
7154         struct napi_struct *napi = data;
7155         void *have;
7156
7157         while (!napi_thread_wait(napi)) {
7158                 for (;;) {
7159                         bool repoll = false;
7160
7161                         local_bh_disable();
7162
7163                         have = netpoll_poll_lock(napi);
7164                         __napi_poll(napi, &repoll);
7165                         netpoll_poll_unlock(have);
7166
7167                         local_bh_enable();
7168
7169                         if (!repoll)
7170                                 break;
7171
7172                         cond_resched();
7173                 }
7174         }
7175         return 0;
7176 }
7177
7178 static __latent_entropy void net_rx_action(struct softirq_action *h)
7179 {
7180         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7181         unsigned long time_limit = jiffies +
7182                 usecs_to_jiffies(netdev_budget_usecs);
7183         int budget = netdev_budget;
7184         LIST_HEAD(list);
7185         LIST_HEAD(repoll);
7186
7187         local_irq_disable();
7188         list_splice_init(&sd->poll_list, &list);
7189         local_irq_enable();
7190
7191         for (;;) {
7192                 struct napi_struct *n;
7193
7194                 if (list_empty(&list)) {
7195                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7196                                 return;
7197                         break;
7198                 }
7199
7200                 n = list_first_entry(&list, struct napi_struct, poll_list);
7201                 budget -= napi_poll(n, &repoll);
7202
7203                 /* If softirq window is exhausted then punt.
7204                  * Allow this to run for 2 jiffies since which will allow
7205                  * an average latency of 1.5/HZ.
7206                  */
7207                 if (unlikely(budget <= 0 ||
7208                              time_after_eq(jiffies, time_limit))) {
7209                         sd->time_squeeze++;
7210                         break;
7211                 }
7212         }
7213
7214         local_irq_disable();
7215
7216         list_splice_tail_init(&sd->poll_list, &list);
7217         list_splice_tail(&repoll, &list);
7218         list_splice(&list, &sd->poll_list);
7219         if (!list_empty(&sd->poll_list))
7220                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7221
7222         net_rps_action_and_irq_enable(sd);
7223 }
7224
7225 struct netdev_adjacent {
7226         struct net_device *dev;
7227
7228         /* upper master flag, there can only be one master device per list */
7229         bool master;
7230
7231         /* lookup ignore flag */
7232         bool ignore;
7233
7234         /* counter for the number of times this device was added to us */
7235         u16 ref_nr;
7236
7237         /* private field for the users */
7238         void *private;
7239
7240         struct list_head list;
7241         struct rcu_head rcu;
7242 };
7243
7244 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7245                                                  struct list_head *adj_list)
7246 {
7247         struct netdev_adjacent *adj;
7248
7249         list_for_each_entry(adj, adj_list, list) {
7250                 if (adj->dev == adj_dev)
7251                         return adj;
7252         }
7253         return NULL;
7254 }
7255
7256 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7257                                     struct netdev_nested_priv *priv)
7258 {
7259         struct net_device *dev = (struct net_device *)priv->data;
7260
7261         return upper_dev == dev;
7262 }
7263
7264 /**
7265  * netdev_has_upper_dev - Check if device is linked to an upper device
7266  * @dev: device
7267  * @upper_dev: upper device to check
7268  *
7269  * Find out if a device is linked to specified upper device and return true
7270  * in case it is. Note that this checks only immediate upper device,
7271  * not through a complete stack of devices. The caller must hold the RTNL lock.
7272  */
7273 bool netdev_has_upper_dev(struct net_device *dev,
7274                           struct net_device *upper_dev)
7275 {
7276         struct netdev_nested_priv priv = {
7277                 .data = (void *)upper_dev,
7278         };
7279
7280         ASSERT_RTNL();
7281
7282         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7283                                              &priv);
7284 }
7285 EXPORT_SYMBOL(netdev_has_upper_dev);
7286
7287 /**
7288  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7289  * @dev: device
7290  * @upper_dev: upper device to check
7291  *
7292  * Find out if a device is linked to specified upper device and return true
7293  * in case it is. Note that this checks the entire upper device chain.
7294  * The caller must hold rcu lock.
7295  */
7296
7297 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7298                                   struct net_device *upper_dev)
7299 {
7300         struct netdev_nested_priv priv = {
7301                 .data = (void *)upper_dev,
7302         };
7303
7304         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7305                                                &priv);
7306 }
7307 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7308
7309 /**
7310  * netdev_has_any_upper_dev - Check if device is linked to some device
7311  * @dev: device
7312  *
7313  * Find out if a device is linked to an upper device and return true in case
7314  * it is. The caller must hold the RTNL lock.
7315  */
7316 bool netdev_has_any_upper_dev(struct net_device *dev)
7317 {
7318         ASSERT_RTNL();
7319
7320         return !list_empty(&dev->adj_list.upper);
7321 }
7322 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7323
7324 /**
7325  * netdev_master_upper_dev_get - Get master upper device
7326  * @dev: device
7327  *
7328  * Find a master upper device and return pointer to it or NULL in case
7329  * it's not there. The caller must hold the RTNL lock.
7330  */
7331 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7332 {
7333         struct netdev_adjacent *upper;
7334
7335         ASSERT_RTNL();
7336
7337         if (list_empty(&dev->adj_list.upper))
7338                 return NULL;
7339
7340         upper = list_first_entry(&dev->adj_list.upper,
7341                                  struct netdev_adjacent, list);
7342         if (likely(upper->master))
7343                 return upper->dev;
7344         return NULL;
7345 }
7346 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7347
7348 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7349 {
7350         struct netdev_adjacent *upper;
7351
7352         ASSERT_RTNL();
7353
7354         if (list_empty(&dev->adj_list.upper))
7355                 return NULL;
7356
7357         upper = list_first_entry(&dev->adj_list.upper,
7358                                  struct netdev_adjacent, list);
7359         if (likely(upper->master) && !upper->ignore)
7360                 return upper->dev;
7361         return NULL;
7362 }
7363
7364 /**
7365  * netdev_has_any_lower_dev - Check if device is linked to some device
7366  * @dev: device
7367  *
7368  * Find out if a device is linked to a lower device and return true in case
7369  * it is. The caller must hold the RTNL lock.
7370  */
7371 static bool netdev_has_any_lower_dev(struct net_device *dev)
7372 {
7373         ASSERT_RTNL();
7374
7375         return !list_empty(&dev->adj_list.lower);
7376 }
7377
7378 void *netdev_adjacent_get_private(struct list_head *adj_list)
7379 {
7380         struct netdev_adjacent *adj;
7381
7382         adj = list_entry(adj_list, struct netdev_adjacent, list);
7383
7384         return adj->private;
7385 }
7386 EXPORT_SYMBOL(netdev_adjacent_get_private);
7387
7388 /**
7389  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7390  * @dev: device
7391  * @iter: list_head ** of the current position
7392  *
7393  * Gets the next device from the dev's upper list, starting from iter
7394  * position. The caller must hold RCU read lock.
7395  */
7396 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7397                                                  struct list_head **iter)
7398 {
7399         struct netdev_adjacent *upper;
7400
7401         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7402
7403         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7404
7405         if (&upper->list == &dev->adj_list.upper)
7406                 return NULL;
7407
7408         *iter = &upper->list;
7409
7410         return upper->dev;
7411 }
7412 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7413
7414 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7415                                                   struct list_head **iter,
7416                                                   bool *ignore)
7417 {
7418         struct netdev_adjacent *upper;
7419
7420         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7421
7422         if (&upper->list == &dev->adj_list.upper)
7423                 return NULL;
7424
7425         *iter = &upper->list;
7426         *ignore = upper->ignore;
7427
7428         return upper->dev;
7429 }
7430
7431 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7432                                                     struct list_head **iter)
7433 {
7434         struct netdev_adjacent *upper;
7435
7436         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7437
7438         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7439
7440         if (&upper->list == &dev->adj_list.upper)
7441                 return NULL;
7442
7443         *iter = &upper->list;
7444
7445         return upper->dev;
7446 }
7447
7448 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7449                                        int (*fn)(struct net_device *dev,
7450                                          struct netdev_nested_priv *priv),
7451                                        struct netdev_nested_priv *priv)
7452 {
7453         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7454         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7455         int ret, cur = 0;
7456         bool ignore;
7457
7458         now = dev;
7459         iter = &dev->adj_list.upper;
7460
7461         while (1) {
7462                 if (now != dev) {
7463                         ret = fn(now, priv);
7464                         if (ret)
7465                                 return ret;
7466                 }
7467
7468                 next = NULL;
7469                 while (1) {
7470                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7471                         if (!udev)
7472                                 break;
7473                         if (ignore)
7474                                 continue;
7475
7476                         next = udev;
7477                         niter = &udev->adj_list.upper;
7478                         dev_stack[cur] = now;
7479                         iter_stack[cur++] = iter;
7480                         break;
7481                 }
7482
7483                 if (!next) {
7484                         if (!cur)
7485                                 return 0;
7486                         next = dev_stack[--cur];
7487                         niter = iter_stack[cur];
7488                 }
7489
7490                 now = next;
7491                 iter = niter;
7492         }
7493
7494         return 0;
7495 }
7496
7497 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7498                                   int (*fn)(struct net_device *dev,
7499                                             struct netdev_nested_priv *priv),
7500                                   struct netdev_nested_priv *priv)
7501 {
7502         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7503         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7504         int ret, cur = 0;
7505
7506         now = dev;
7507         iter = &dev->adj_list.upper;
7508
7509         while (1) {
7510                 if (now != dev) {
7511                         ret = fn(now, priv);
7512                         if (ret)
7513                                 return ret;
7514                 }
7515
7516                 next = NULL;
7517                 while (1) {
7518                         udev = netdev_next_upper_dev_rcu(now, &iter);
7519                         if (!udev)
7520                                 break;
7521
7522                         next = udev;
7523                         niter = &udev->adj_list.upper;
7524                         dev_stack[cur] = now;
7525                         iter_stack[cur++] = iter;
7526                         break;
7527                 }
7528
7529                 if (!next) {
7530                         if (!cur)
7531                                 return 0;
7532                         next = dev_stack[--cur];
7533                         niter = iter_stack[cur];
7534                 }
7535
7536                 now = next;
7537                 iter = niter;
7538         }
7539
7540         return 0;
7541 }
7542 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7543
7544 static bool __netdev_has_upper_dev(struct net_device *dev,
7545                                    struct net_device *upper_dev)
7546 {
7547         struct netdev_nested_priv priv = {
7548                 .flags = 0,
7549                 .data = (void *)upper_dev,
7550         };
7551
7552         ASSERT_RTNL();
7553
7554         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7555                                            &priv);
7556 }
7557
7558 /**
7559  * netdev_lower_get_next_private - Get the next ->private from the
7560  *                                 lower neighbour list
7561  * @dev: device
7562  * @iter: list_head ** of the current position
7563  *
7564  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7565  * list, starting from iter position. The caller must hold either hold the
7566  * RTNL lock or its own locking that guarantees that the neighbour lower
7567  * list will remain unchanged.
7568  */
7569 void *netdev_lower_get_next_private(struct net_device *dev,
7570                                     struct list_head **iter)
7571 {
7572         struct netdev_adjacent *lower;
7573
7574         lower = list_entry(*iter, struct netdev_adjacent, list);
7575
7576         if (&lower->list == &dev->adj_list.lower)
7577                 return NULL;
7578
7579         *iter = lower->list.next;
7580
7581         return lower->private;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_next_private);
7584
7585 /**
7586  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7587  *                                     lower neighbour list, RCU
7588  *                                     variant
7589  * @dev: device
7590  * @iter: list_head ** of the current position
7591  *
7592  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7593  * list, starting from iter position. The caller must hold RCU read lock.
7594  */
7595 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7596                                         struct list_head **iter)
7597 {
7598         struct netdev_adjacent *lower;
7599
7600         WARN_ON_ONCE(!rcu_read_lock_held());
7601
7602         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7603
7604         if (&lower->list == &dev->adj_list.lower)
7605                 return NULL;
7606
7607         *iter = &lower->list;
7608
7609         return lower->private;
7610 }
7611 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7612
7613 /**
7614  * netdev_lower_get_next - Get the next device from the lower neighbour
7615  *                         list
7616  * @dev: device
7617  * @iter: list_head ** of the current position
7618  *
7619  * Gets the next netdev_adjacent from the dev's lower neighbour
7620  * list, starting from iter position. The caller must hold RTNL lock or
7621  * its own locking that guarantees that the neighbour lower
7622  * list will remain unchanged.
7623  */
7624 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7625 {
7626         struct netdev_adjacent *lower;
7627
7628         lower = list_entry(*iter, struct netdev_adjacent, list);
7629
7630         if (&lower->list == &dev->adj_list.lower)
7631                 return NULL;
7632
7633         *iter = lower->list.next;
7634
7635         return lower->dev;
7636 }
7637 EXPORT_SYMBOL(netdev_lower_get_next);
7638
7639 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7640                                                 struct list_head **iter)
7641 {
7642         struct netdev_adjacent *lower;
7643
7644         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7645
7646         if (&lower->list == &dev->adj_list.lower)
7647                 return NULL;
7648
7649         *iter = &lower->list;
7650
7651         return lower->dev;
7652 }
7653
7654 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7655                                                   struct list_head **iter,
7656                                                   bool *ignore)
7657 {
7658         struct netdev_adjacent *lower;
7659
7660         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7661
7662         if (&lower->list == &dev->adj_list.lower)
7663                 return NULL;
7664
7665         *iter = &lower->list;
7666         *ignore = lower->ignore;
7667
7668         return lower->dev;
7669 }
7670
7671 int netdev_walk_all_lower_dev(struct net_device *dev,
7672                               int (*fn)(struct net_device *dev,
7673                                         struct netdev_nested_priv *priv),
7674                               struct netdev_nested_priv *priv)
7675 {
7676         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7677         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7678         int ret, cur = 0;
7679
7680         now = dev;
7681         iter = &dev->adj_list.lower;
7682
7683         while (1) {
7684                 if (now != dev) {
7685                         ret = fn(now, priv);
7686                         if (ret)
7687                                 return ret;
7688                 }
7689
7690                 next = NULL;
7691                 while (1) {
7692                         ldev = netdev_next_lower_dev(now, &iter);
7693                         if (!ldev)
7694                                 break;
7695
7696                         next = ldev;
7697                         niter = &ldev->adj_list.lower;
7698                         dev_stack[cur] = now;
7699                         iter_stack[cur++] = iter;
7700                         break;
7701                 }
7702
7703                 if (!next) {
7704                         if (!cur)
7705                                 return 0;
7706                         next = dev_stack[--cur];
7707                         niter = iter_stack[cur];
7708                 }
7709
7710                 now = next;
7711                 iter = niter;
7712         }
7713
7714         return 0;
7715 }
7716 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7717
7718 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7719                                        int (*fn)(struct net_device *dev,
7720                                          struct netdev_nested_priv *priv),
7721                                        struct netdev_nested_priv *priv)
7722 {
7723         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7724         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7725         int ret, cur = 0;
7726         bool ignore;
7727
7728         now = dev;
7729         iter = &dev->adj_list.lower;
7730
7731         while (1) {
7732                 if (now != dev) {
7733                         ret = fn(now, priv);
7734                         if (ret)
7735                                 return ret;
7736                 }
7737
7738                 next = NULL;
7739                 while (1) {
7740                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7741                         if (!ldev)
7742                                 break;
7743                         if (ignore)
7744                                 continue;
7745
7746                         next = ldev;
7747                         niter = &ldev->adj_list.lower;
7748                         dev_stack[cur] = now;
7749                         iter_stack[cur++] = iter;
7750                         break;
7751                 }
7752
7753                 if (!next) {
7754                         if (!cur)
7755                                 return 0;
7756                         next = dev_stack[--cur];
7757                         niter = iter_stack[cur];
7758                 }
7759
7760                 now = next;
7761                 iter = niter;
7762         }
7763
7764         return 0;
7765 }
7766
7767 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7768                                              struct list_head **iter)
7769 {
7770         struct netdev_adjacent *lower;
7771
7772         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7773         if (&lower->list == &dev->adj_list.lower)
7774                 return NULL;
7775
7776         *iter = &lower->list;
7777
7778         return lower->dev;
7779 }
7780 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7781
7782 static u8 __netdev_upper_depth(struct net_device *dev)
7783 {
7784         struct net_device *udev;
7785         struct list_head *iter;
7786         u8 max_depth = 0;
7787         bool ignore;
7788
7789         for (iter = &dev->adj_list.upper,
7790              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7791              udev;
7792              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7793                 if (ignore)
7794                         continue;
7795                 if (max_depth < udev->upper_level)
7796                         max_depth = udev->upper_level;
7797         }
7798
7799         return max_depth;
7800 }
7801
7802 static u8 __netdev_lower_depth(struct net_device *dev)
7803 {
7804         struct net_device *ldev;
7805         struct list_head *iter;
7806         u8 max_depth = 0;
7807         bool ignore;
7808
7809         for (iter = &dev->adj_list.lower,
7810              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7811              ldev;
7812              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7813                 if (ignore)
7814                         continue;
7815                 if (max_depth < ldev->lower_level)
7816                         max_depth = ldev->lower_level;
7817         }
7818
7819         return max_depth;
7820 }
7821
7822 static int __netdev_update_upper_level(struct net_device *dev,
7823                                        struct netdev_nested_priv *__unused)
7824 {
7825         dev->upper_level = __netdev_upper_depth(dev) + 1;
7826         return 0;
7827 }
7828
7829 static int __netdev_update_lower_level(struct net_device *dev,
7830                                        struct netdev_nested_priv *priv)
7831 {
7832         dev->lower_level = __netdev_lower_depth(dev) + 1;
7833
7834 #ifdef CONFIG_LOCKDEP
7835         if (!priv)
7836                 return 0;
7837
7838         if (priv->flags & NESTED_SYNC_IMM)
7839                 dev->nested_level = dev->lower_level - 1;
7840         if (priv->flags & NESTED_SYNC_TODO)
7841                 net_unlink_todo(dev);
7842 #endif
7843         return 0;
7844 }
7845
7846 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7847                                   int (*fn)(struct net_device *dev,
7848                                             struct netdev_nested_priv *priv),
7849                                   struct netdev_nested_priv *priv)
7850 {
7851         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7852         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7853         int ret, cur = 0;
7854
7855         now = dev;
7856         iter = &dev->adj_list.lower;
7857
7858         while (1) {
7859                 if (now != dev) {
7860                         ret = fn(now, priv);
7861                         if (ret)
7862                                 return ret;
7863                 }
7864
7865                 next = NULL;
7866                 while (1) {
7867                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7868                         if (!ldev)
7869                                 break;
7870
7871                         next = ldev;
7872                         niter = &ldev->adj_list.lower;
7873                         dev_stack[cur] = now;
7874                         iter_stack[cur++] = iter;
7875                         break;
7876                 }
7877
7878                 if (!next) {
7879                         if (!cur)
7880                                 return 0;
7881                         next = dev_stack[--cur];
7882                         niter = iter_stack[cur];
7883                 }
7884
7885                 now = next;
7886                 iter = niter;
7887         }
7888
7889         return 0;
7890 }
7891 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7892
7893 /**
7894  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7895  *                                     lower neighbour list, RCU
7896  *                                     variant
7897  * @dev: device
7898  *
7899  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7900  * list. The caller must hold RCU read lock.
7901  */
7902 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7903 {
7904         struct netdev_adjacent *lower;
7905
7906         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7907                         struct netdev_adjacent, list);
7908         if (lower)
7909                 return lower->private;
7910         return NULL;
7911 }
7912 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7913
7914 /**
7915  * netdev_master_upper_dev_get_rcu - Get master upper device
7916  * @dev: device
7917  *
7918  * Find a master upper device and return pointer to it or NULL in case
7919  * it's not there. The caller must hold the RCU read lock.
7920  */
7921 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7922 {
7923         struct netdev_adjacent *upper;
7924
7925         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7926                                        struct netdev_adjacent, list);
7927         if (upper && likely(upper->master))
7928                 return upper->dev;
7929         return NULL;
7930 }
7931 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7932
7933 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7934                               struct net_device *adj_dev,
7935                               struct list_head *dev_list)
7936 {
7937         char linkname[IFNAMSIZ+7];
7938
7939         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7940                 "upper_%s" : "lower_%s", adj_dev->name);
7941         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7942                                  linkname);
7943 }
7944 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7945                                char *name,
7946                                struct list_head *dev_list)
7947 {
7948         char linkname[IFNAMSIZ+7];
7949
7950         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7951                 "upper_%s" : "lower_%s", name);
7952         sysfs_remove_link(&(dev->dev.kobj), linkname);
7953 }
7954
7955 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7956                                                  struct net_device *adj_dev,
7957                                                  struct list_head *dev_list)
7958 {
7959         return (dev_list == &dev->adj_list.upper ||
7960                 dev_list == &dev->adj_list.lower) &&
7961                 net_eq(dev_net(dev), dev_net(adj_dev));
7962 }
7963
7964 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7965                                         struct net_device *adj_dev,
7966                                         struct list_head *dev_list,
7967                                         void *private, bool master)
7968 {
7969         struct netdev_adjacent *adj;
7970         int ret;
7971
7972         adj = __netdev_find_adj(adj_dev, dev_list);
7973
7974         if (adj) {
7975                 adj->ref_nr += 1;
7976                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7977                          dev->name, adj_dev->name, adj->ref_nr);
7978
7979                 return 0;
7980         }
7981
7982         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7983         if (!adj)
7984                 return -ENOMEM;
7985
7986         adj->dev = adj_dev;
7987         adj->master = master;
7988         adj->ref_nr = 1;
7989         adj->private = private;
7990         adj->ignore = false;
7991         dev_hold(adj_dev);
7992
7993         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7994                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7995
7996         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7997                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7998                 if (ret)
7999                         goto free_adj;
8000         }
8001
8002         /* Ensure that master link is always the first item in list. */
8003         if (master) {
8004                 ret = sysfs_create_link(&(dev->dev.kobj),
8005                                         &(adj_dev->dev.kobj), "master");
8006                 if (ret)
8007                         goto remove_symlinks;
8008
8009                 list_add_rcu(&adj->list, dev_list);
8010         } else {
8011                 list_add_tail_rcu(&adj->list, dev_list);
8012         }
8013
8014         return 0;
8015
8016 remove_symlinks:
8017         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8018                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8019 free_adj:
8020         kfree(adj);
8021         dev_put(adj_dev);
8022
8023         return ret;
8024 }
8025
8026 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8027                                          struct net_device *adj_dev,
8028                                          u16 ref_nr,
8029                                          struct list_head *dev_list)
8030 {
8031         struct netdev_adjacent *adj;
8032
8033         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8034                  dev->name, adj_dev->name, ref_nr);
8035
8036         adj = __netdev_find_adj(adj_dev, dev_list);
8037
8038         if (!adj) {
8039                 pr_err("Adjacency does not exist for device %s from %s\n",
8040                        dev->name, adj_dev->name);
8041                 WARN_ON(1);
8042                 return;
8043         }
8044
8045         if (adj->ref_nr > ref_nr) {
8046                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8047                          dev->name, adj_dev->name, ref_nr,
8048                          adj->ref_nr - ref_nr);
8049                 adj->ref_nr -= ref_nr;
8050                 return;
8051         }
8052
8053         if (adj->master)
8054                 sysfs_remove_link(&(dev->dev.kobj), "master");
8055
8056         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8057                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8058
8059         list_del_rcu(&adj->list);
8060         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8061                  adj_dev->name, dev->name, adj_dev->name);
8062         dev_put(adj_dev);
8063         kfree_rcu(adj, rcu);
8064 }
8065
8066 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8067                                             struct net_device *upper_dev,
8068                                             struct list_head *up_list,
8069                                             struct list_head *down_list,
8070                                             void *private, bool master)
8071 {
8072         int ret;
8073
8074         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8075                                            private, master);
8076         if (ret)
8077                 return ret;
8078
8079         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8080                                            private, false);
8081         if (ret) {
8082                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8083                 return ret;
8084         }
8085
8086         return 0;
8087 }
8088
8089 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8090                                                struct net_device *upper_dev,
8091                                                u16 ref_nr,
8092                                                struct list_head *up_list,
8093                                                struct list_head *down_list)
8094 {
8095         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8096         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8097 }
8098
8099 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8100                                                 struct net_device *upper_dev,
8101                                                 void *private, bool master)
8102 {
8103         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8104                                                 &dev->adj_list.upper,
8105                                                 &upper_dev->adj_list.lower,
8106                                                 private, master);
8107 }
8108
8109 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8110                                                    struct net_device *upper_dev)
8111 {
8112         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8113                                            &dev->adj_list.upper,
8114                                            &upper_dev->adj_list.lower);
8115 }
8116
8117 static int __netdev_upper_dev_link(struct net_device *dev,
8118                                    struct net_device *upper_dev, bool master,
8119                                    void *upper_priv, void *upper_info,
8120                                    struct netdev_nested_priv *priv,
8121                                    struct netlink_ext_ack *extack)
8122 {
8123         struct netdev_notifier_changeupper_info changeupper_info = {
8124                 .info = {
8125                         .dev = dev,
8126                         .extack = extack,
8127                 },
8128                 .upper_dev = upper_dev,
8129                 .master = master,
8130                 .linking = true,
8131                 .upper_info = upper_info,
8132         };
8133         struct net_device *master_dev;
8134         int ret = 0;
8135
8136         ASSERT_RTNL();
8137
8138         if (dev == upper_dev)
8139                 return -EBUSY;
8140
8141         /* To prevent loops, check if dev is not upper device to upper_dev. */
8142         if (__netdev_has_upper_dev(upper_dev, dev))
8143                 return -EBUSY;
8144
8145         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8146                 return -EMLINK;
8147
8148         if (!master) {
8149                 if (__netdev_has_upper_dev(dev, upper_dev))
8150                         return -EEXIST;
8151         } else {
8152                 master_dev = __netdev_master_upper_dev_get(dev);
8153                 if (master_dev)
8154                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8155         }
8156
8157         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8158                                             &changeupper_info.info);
8159         ret = notifier_to_errno(ret);
8160         if (ret)
8161                 return ret;
8162
8163         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8164                                                    master);
8165         if (ret)
8166                 return ret;
8167
8168         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8169                                             &changeupper_info.info);
8170         ret = notifier_to_errno(ret);
8171         if (ret)
8172                 goto rollback;
8173
8174         __netdev_update_upper_level(dev, NULL);
8175         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8176
8177         __netdev_update_lower_level(upper_dev, priv);
8178         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8179                                     priv);
8180
8181         return 0;
8182
8183 rollback:
8184         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8185
8186         return ret;
8187 }
8188
8189 /**
8190  * netdev_upper_dev_link - Add a link to the upper device
8191  * @dev: device
8192  * @upper_dev: new upper device
8193  * @extack: netlink extended ack
8194  *
8195  * Adds a link to device which is upper to this one. The caller must hold
8196  * the RTNL lock. On a failure a negative errno code is returned.
8197  * On success the reference counts are adjusted and the function
8198  * returns zero.
8199  */
8200 int netdev_upper_dev_link(struct net_device *dev,
8201                           struct net_device *upper_dev,
8202                           struct netlink_ext_ack *extack)
8203 {
8204         struct netdev_nested_priv priv = {
8205                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8206                 .data = NULL,
8207         };
8208
8209         return __netdev_upper_dev_link(dev, upper_dev, false,
8210                                        NULL, NULL, &priv, extack);
8211 }
8212 EXPORT_SYMBOL(netdev_upper_dev_link);
8213
8214 /**
8215  * netdev_master_upper_dev_link - Add a master link to the upper device
8216  * @dev: device
8217  * @upper_dev: new upper device
8218  * @upper_priv: upper device private
8219  * @upper_info: upper info to be passed down via notifier
8220  * @extack: netlink extended ack
8221  *
8222  * Adds a link to device which is upper to this one. In this case, only
8223  * one master upper device can be linked, although other non-master devices
8224  * might be linked as well. The caller must hold the RTNL lock.
8225  * On a failure a negative errno code is returned. On success the reference
8226  * counts are adjusted and the function returns zero.
8227  */
8228 int netdev_master_upper_dev_link(struct net_device *dev,
8229                                  struct net_device *upper_dev,
8230                                  void *upper_priv, void *upper_info,
8231                                  struct netlink_ext_ack *extack)
8232 {
8233         struct netdev_nested_priv priv = {
8234                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8235                 .data = NULL,
8236         };
8237
8238         return __netdev_upper_dev_link(dev, upper_dev, true,
8239                                        upper_priv, upper_info, &priv, extack);
8240 }
8241 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8242
8243 static void __netdev_upper_dev_unlink(struct net_device *dev,
8244                                       struct net_device *upper_dev,
8245                                       struct netdev_nested_priv *priv)
8246 {
8247         struct netdev_notifier_changeupper_info changeupper_info = {
8248                 .info = {
8249                         .dev = dev,
8250                 },
8251                 .upper_dev = upper_dev,
8252                 .linking = false,
8253         };
8254
8255         ASSERT_RTNL();
8256
8257         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8258
8259         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8260                                       &changeupper_info.info);
8261
8262         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8263
8264         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8265                                       &changeupper_info.info);
8266
8267         __netdev_update_upper_level(dev, NULL);
8268         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8269
8270         __netdev_update_lower_level(upper_dev, priv);
8271         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8272                                     priv);
8273 }
8274
8275 /**
8276  * netdev_upper_dev_unlink - Removes a link to upper device
8277  * @dev: device
8278  * @upper_dev: new upper device
8279  *
8280  * Removes a link to device which is upper to this one. The caller must hold
8281  * the RTNL lock.
8282  */
8283 void netdev_upper_dev_unlink(struct net_device *dev,
8284                              struct net_device *upper_dev)
8285 {
8286         struct netdev_nested_priv priv = {
8287                 .flags = NESTED_SYNC_TODO,
8288                 .data = NULL,
8289         };
8290
8291         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8292 }
8293 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8294
8295 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8296                                       struct net_device *lower_dev,
8297                                       bool val)
8298 {
8299         struct netdev_adjacent *adj;
8300
8301         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8302         if (adj)
8303                 adj->ignore = val;
8304
8305         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8306         if (adj)
8307                 adj->ignore = val;
8308 }
8309
8310 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8311                                         struct net_device *lower_dev)
8312 {
8313         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8314 }
8315
8316 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8317                                        struct net_device *lower_dev)
8318 {
8319         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8320 }
8321
8322 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8323                                    struct net_device *new_dev,
8324                                    struct net_device *dev,
8325                                    struct netlink_ext_ack *extack)
8326 {
8327         struct netdev_nested_priv priv = {
8328                 .flags = 0,
8329                 .data = NULL,
8330         };
8331         int err;
8332
8333         if (!new_dev)
8334                 return 0;
8335
8336         if (old_dev && new_dev != old_dev)
8337                 netdev_adjacent_dev_disable(dev, old_dev);
8338         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8339                                       extack);
8340         if (err) {
8341                 if (old_dev && new_dev != old_dev)
8342                         netdev_adjacent_dev_enable(dev, old_dev);
8343                 return err;
8344         }
8345
8346         return 0;
8347 }
8348 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8349
8350 void netdev_adjacent_change_commit(struct net_device *old_dev,
8351                                    struct net_device *new_dev,
8352                                    struct net_device *dev)
8353 {
8354         struct netdev_nested_priv priv = {
8355                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8356                 .data = NULL,
8357         };
8358
8359         if (!new_dev || !old_dev)
8360                 return;
8361
8362         if (new_dev == old_dev)
8363                 return;
8364
8365         netdev_adjacent_dev_enable(dev, old_dev);
8366         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8367 }
8368 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8369
8370 void netdev_adjacent_change_abort(struct net_device *old_dev,
8371                                   struct net_device *new_dev,
8372                                   struct net_device *dev)
8373 {
8374         struct netdev_nested_priv priv = {
8375                 .flags = 0,
8376                 .data = NULL,
8377         };
8378
8379         if (!new_dev)
8380                 return;
8381
8382         if (old_dev && new_dev != old_dev)
8383                 netdev_adjacent_dev_enable(dev, old_dev);
8384
8385         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8386 }
8387 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8388
8389 /**
8390  * netdev_bonding_info_change - Dispatch event about slave change
8391  * @dev: device
8392  * @bonding_info: info to dispatch
8393  *
8394  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8395  * The caller must hold the RTNL lock.
8396  */
8397 void netdev_bonding_info_change(struct net_device *dev,
8398                                 struct netdev_bonding_info *bonding_info)
8399 {
8400         struct netdev_notifier_bonding_info info = {
8401                 .info.dev = dev,
8402         };
8403
8404         memcpy(&info.bonding_info, bonding_info,
8405                sizeof(struct netdev_bonding_info));
8406         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8407                                       &info.info);
8408 }
8409 EXPORT_SYMBOL(netdev_bonding_info_change);
8410
8411 /**
8412  * netdev_get_xmit_slave - Get the xmit slave of master device
8413  * @dev: device
8414  * @skb: The packet
8415  * @all_slaves: assume all the slaves are active
8416  *
8417  * The reference counters are not incremented so the caller must be
8418  * careful with locks. The caller must hold RCU lock.
8419  * %NULL is returned if no slave is found.
8420  */
8421
8422 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8423                                          struct sk_buff *skb,
8424                                          bool all_slaves)
8425 {
8426         const struct net_device_ops *ops = dev->netdev_ops;
8427
8428         if (!ops->ndo_get_xmit_slave)
8429                 return NULL;
8430         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8431 }
8432 EXPORT_SYMBOL(netdev_get_xmit_slave);
8433
8434 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8435                                                   struct sock *sk)
8436 {
8437         const struct net_device_ops *ops = dev->netdev_ops;
8438
8439         if (!ops->ndo_sk_get_lower_dev)
8440                 return NULL;
8441         return ops->ndo_sk_get_lower_dev(dev, sk);
8442 }
8443
8444 /**
8445  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8446  * @dev: device
8447  * @sk: the socket
8448  *
8449  * %NULL is returned if no lower device is found.
8450  */
8451
8452 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8453                                             struct sock *sk)
8454 {
8455         struct net_device *lower;
8456
8457         lower = netdev_sk_get_lower_dev(dev, sk);
8458         while (lower) {
8459                 dev = lower;
8460                 lower = netdev_sk_get_lower_dev(dev, sk);
8461         }
8462
8463         return dev;
8464 }
8465 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8466
8467 static void netdev_adjacent_add_links(struct net_device *dev)
8468 {
8469         struct netdev_adjacent *iter;
8470
8471         struct net *net = dev_net(dev);
8472
8473         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8474                 if (!net_eq(net, dev_net(iter->dev)))
8475                         continue;
8476                 netdev_adjacent_sysfs_add(iter->dev, dev,
8477                                           &iter->dev->adj_list.lower);
8478                 netdev_adjacent_sysfs_add(dev, iter->dev,
8479                                           &dev->adj_list.upper);
8480         }
8481
8482         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8483                 if (!net_eq(net, dev_net(iter->dev)))
8484                         continue;
8485                 netdev_adjacent_sysfs_add(iter->dev, dev,
8486                                           &iter->dev->adj_list.upper);
8487                 netdev_adjacent_sysfs_add(dev, iter->dev,
8488                                           &dev->adj_list.lower);
8489         }
8490 }
8491
8492 static void netdev_adjacent_del_links(struct net_device *dev)
8493 {
8494         struct netdev_adjacent *iter;
8495
8496         struct net *net = dev_net(dev);
8497
8498         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8499                 if (!net_eq(net, dev_net(iter->dev)))
8500                         continue;
8501                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8502                                           &iter->dev->adj_list.lower);
8503                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8504                                           &dev->adj_list.upper);
8505         }
8506
8507         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8508                 if (!net_eq(net, dev_net(iter->dev)))
8509                         continue;
8510                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8511                                           &iter->dev->adj_list.upper);
8512                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8513                                           &dev->adj_list.lower);
8514         }
8515 }
8516
8517 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8518 {
8519         struct netdev_adjacent *iter;
8520
8521         struct net *net = dev_net(dev);
8522
8523         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8524                 if (!net_eq(net, dev_net(iter->dev)))
8525                         continue;
8526                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8527                                           &iter->dev->adj_list.lower);
8528                 netdev_adjacent_sysfs_add(iter->dev, dev,
8529                                           &iter->dev->adj_list.lower);
8530         }
8531
8532         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8533                 if (!net_eq(net, dev_net(iter->dev)))
8534                         continue;
8535                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8536                                           &iter->dev->adj_list.upper);
8537                 netdev_adjacent_sysfs_add(iter->dev, dev,
8538                                           &iter->dev->adj_list.upper);
8539         }
8540 }
8541
8542 void *netdev_lower_dev_get_private(struct net_device *dev,
8543                                    struct net_device *lower_dev)
8544 {
8545         struct netdev_adjacent *lower;
8546
8547         if (!lower_dev)
8548                 return NULL;
8549         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8550         if (!lower)
8551                 return NULL;
8552
8553         return lower->private;
8554 }
8555 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8556
8557
8558 /**
8559  * netdev_lower_state_changed - Dispatch event about lower device state change
8560  * @lower_dev: device
8561  * @lower_state_info: state to dispatch
8562  *
8563  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8564  * The caller must hold the RTNL lock.
8565  */
8566 void netdev_lower_state_changed(struct net_device *lower_dev,
8567                                 void *lower_state_info)
8568 {
8569         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8570                 .info.dev = lower_dev,
8571         };
8572
8573         ASSERT_RTNL();
8574         changelowerstate_info.lower_state_info = lower_state_info;
8575         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8576                                       &changelowerstate_info.info);
8577 }
8578 EXPORT_SYMBOL(netdev_lower_state_changed);
8579
8580 static void dev_change_rx_flags(struct net_device *dev, int flags)
8581 {
8582         const struct net_device_ops *ops = dev->netdev_ops;
8583
8584         if (ops->ndo_change_rx_flags)
8585                 ops->ndo_change_rx_flags(dev, flags);
8586 }
8587
8588 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8589 {
8590         unsigned int old_flags = dev->flags;
8591         kuid_t uid;
8592         kgid_t gid;
8593
8594         ASSERT_RTNL();
8595
8596         dev->flags |= IFF_PROMISC;
8597         dev->promiscuity += inc;
8598         if (dev->promiscuity == 0) {
8599                 /*
8600                  * Avoid overflow.
8601                  * If inc causes overflow, untouch promisc and return error.
8602                  */
8603                 if (inc < 0)
8604                         dev->flags &= ~IFF_PROMISC;
8605                 else {
8606                         dev->promiscuity -= inc;
8607                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8608                                 dev->name);
8609                         return -EOVERFLOW;
8610                 }
8611         }
8612         if (dev->flags != old_flags) {
8613                 pr_info("device %s %s promiscuous mode\n",
8614                         dev->name,
8615                         dev->flags & IFF_PROMISC ? "entered" : "left");
8616                 if (audit_enabled) {
8617                         current_uid_gid(&uid, &gid);
8618                         audit_log(audit_context(), GFP_ATOMIC,
8619                                   AUDIT_ANOM_PROMISCUOUS,
8620                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8621                                   dev->name, (dev->flags & IFF_PROMISC),
8622                                   (old_flags & IFF_PROMISC),
8623                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8624                                   from_kuid(&init_user_ns, uid),
8625                                   from_kgid(&init_user_ns, gid),
8626                                   audit_get_sessionid(current));
8627                 }
8628
8629                 dev_change_rx_flags(dev, IFF_PROMISC);
8630         }
8631         if (notify)
8632                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8633         return 0;
8634 }
8635
8636 /**
8637  *      dev_set_promiscuity     - update promiscuity count on a device
8638  *      @dev: device
8639  *      @inc: modifier
8640  *
8641  *      Add or remove promiscuity from a device. While the count in the device
8642  *      remains above zero the interface remains promiscuous. Once it hits zero
8643  *      the device reverts back to normal filtering operation. A negative inc
8644  *      value is used to drop promiscuity on the device.
8645  *      Return 0 if successful or a negative errno code on error.
8646  */
8647 int dev_set_promiscuity(struct net_device *dev, int inc)
8648 {
8649         unsigned int old_flags = dev->flags;
8650         int err;
8651
8652         err = __dev_set_promiscuity(dev, inc, true);
8653         if (err < 0)
8654                 return err;
8655         if (dev->flags != old_flags)
8656                 dev_set_rx_mode(dev);
8657         return err;
8658 }
8659 EXPORT_SYMBOL(dev_set_promiscuity);
8660
8661 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8662 {
8663         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8664
8665         ASSERT_RTNL();
8666
8667         dev->flags |= IFF_ALLMULTI;
8668         dev->allmulti += inc;
8669         if (dev->allmulti == 0) {
8670                 /*
8671                  * Avoid overflow.
8672                  * If inc causes overflow, untouch allmulti and return error.
8673                  */
8674                 if (inc < 0)
8675                         dev->flags &= ~IFF_ALLMULTI;
8676                 else {
8677                         dev->allmulti -= inc;
8678                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8679                                 dev->name);
8680                         return -EOVERFLOW;
8681                 }
8682         }
8683         if (dev->flags ^ old_flags) {
8684                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8685                 dev_set_rx_mode(dev);
8686                 if (notify)
8687                         __dev_notify_flags(dev, old_flags,
8688                                            dev->gflags ^ old_gflags);
8689         }
8690         return 0;
8691 }
8692
8693 /**
8694  *      dev_set_allmulti        - update allmulti count on a device
8695  *      @dev: device
8696  *      @inc: modifier
8697  *
8698  *      Add or remove reception of all multicast frames to a device. While the
8699  *      count in the device remains above zero the interface remains listening
8700  *      to all interfaces. Once it hits zero the device reverts back to normal
8701  *      filtering operation. A negative @inc value is used to drop the counter
8702  *      when releasing a resource needing all multicasts.
8703  *      Return 0 if successful or a negative errno code on error.
8704  */
8705
8706 int dev_set_allmulti(struct net_device *dev, int inc)
8707 {
8708         return __dev_set_allmulti(dev, inc, true);
8709 }
8710 EXPORT_SYMBOL(dev_set_allmulti);
8711
8712 /*
8713  *      Upload unicast and multicast address lists to device and
8714  *      configure RX filtering. When the device doesn't support unicast
8715  *      filtering it is put in promiscuous mode while unicast addresses
8716  *      are present.
8717  */
8718 void __dev_set_rx_mode(struct net_device *dev)
8719 {
8720         const struct net_device_ops *ops = dev->netdev_ops;
8721
8722         /* dev_open will call this function so the list will stay sane. */
8723         if (!(dev->flags&IFF_UP))
8724                 return;
8725
8726         if (!netif_device_present(dev))
8727                 return;
8728
8729         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8730                 /* Unicast addresses changes may only happen under the rtnl,
8731                  * therefore calling __dev_set_promiscuity here is safe.
8732                  */
8733                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8734                         __dev_set_promiscuity(dev, 1, false);
8735                         dev->uc_promisc = true;
8736                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8737                         __dev_set_promiscuity(dev, -1, false);
8738                         dev->uc_promisc = false;
8739                 }
8740         }
8741
8742         if (ops->ndo_set_rx_mode)
8743                 ops->ndo_set_rx_mode(dev);
8744 }
8745
8746 void dev_set_rx_mode(struct net_device *dev)
8747 {
8748         netif_addr_lock_bh(dev);
8749         __dev_set_rx_mode(dev);
8750         netif_addr_unlock_bh(dev);
8751 }
8752
8753 /**
8754  *      dev_get_flags - get flags reported to userspace
8755  *      @dev: device
8756  *
8757  *      Get the combination of flag bits exported through APIs to userspace.
8758  */
8759 unsigned int dev_get_flags(const struct net_device *dev)
8760 {
8761         unsigned int flags;
8762
8763         flags = (dev->flags & ~(IFF_PROMISC |
8764                                 IFF_ALLMULTI |
8765                                 IFF_RUNNING |
8766                                 IFF_LOWER_UP |
8767                                 IFF_DORMANT)) |
8768                 (dev->gflags & (IFF_PROMISC |
8769                                 IFF_ALLMULTI));
8770
8771         if (netif_running(dev)) {
8772                 if (netif_oper_up(dev))
8773                         flags |= IFF_RUNNING;
8774                 if (netif_carrier_ok(dev))
8775                         flags |= IFF_LOWER_UP;
8776                 if (netif_dormant(dev))
8777                         flags |= IFF_DORMANT;
8778         }
8779
8780         return flags;
8781 }
8782 EXPORT_SYMBOL(dev_get_flags);
8783
8784 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8785                        struct netlink_ext_ack *extack)
8786 {
8787         unsigned int old_flags = dev->flags;
8788         int ret;
8789
8790         ASSERT_RTNL();
8791
8792         /*
8793          *      Set the flags on our device.
8794          */
8795
8796         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8797                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8798                                IFF_AUTOMEDIA)) |
8799                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8800                                     IFF_ALLMULTI));
8801
8802         /*
8803          *      Load in the correct multicast list now the flags have changed.
8804          */
8805
8806         if ((old_flags ^ flags) & IFF_MULTICAST)
8807                 dev_change_rx_flags(dev, IFF_MULTICAST);
8808
8809         dev_set_rx_mode(dev);
8810
8811         /*
8812          *      Have we downed the interface. We handle IFF_UP ourselves
8813          *      according to user attempts to set it, rather than blindly
8814          *      setting it.
8815          */
8816
8817         ret = 0;
8818         if ((old_flags ^ flags) & IFF_UP) {
8819                 if (old_flags & IFF_UP)
8820                         __dev_close(dev);
8821                 else
8822                         ret = __dev_open(dev, extack);
8823         }
8824
8825         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8826                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8827                 unsigned int old_flags = dev->flags;
8828
8829                 dev->gflags ^= IFF_PROMISC;
8830
8831                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8832                         if (dev->flags != old_flags)
8833                                 dev_set_rx_mode(dev);
8834         }
8835
8836         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8837          * is important. Some (broken) drivers set IFF_PROMISC, when
8838          * IFF_ALLMULTI is requested not asking us and not reporting.
8839          */
8840         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8841                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8842
8843                 dev->gflags ^= IFF_ALLMULTI;
8844                 __dev_set_allmulti(dev, inc, false);
8845         }
8846
8847         return ret;
8848 }
8849
8850 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8851                         unsigned int gchanges)
8852 {
8853         unsigned int changes = dev->flags ^ old_flags;
8854
8855         if (gchanges)
8856                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8857
8858         if (changes & IFF_UP) {
8859                 if (dev->flags & IFF_UP)
8860                         call_netdevice_notifiers(NETDEV_UP, dev);
8861                 else
8862                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8863         }
8864
8865         if (dev->flags & IFF_UP &&
8866             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8867                 struct netdev_notifier_change_info change_info = {
8868                         .info = {
8869                                 .dev = dev,
8870                         },
8871                         .flags_changed = changes,
8872                 };
8873
8874                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8875         }
8876 }
8877
8878 /**
8879  *      dev_change_flags - change device settings
8880  *      @dev: device
8881  *      @flags: device state flags
8882  *      @extack: netlink extended ack
8883  *
8884  *      Change settings on device based state flags. The flags are
8885  *      in the userspace exported format.
8886  */
8887 int dev_change_flags(struct net_device *dev, unsigned int flags,
8888                      struct netlink_ext_ack *extack)
8889 {
8890         int ret;
8891         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8892
8893         ret = __dev_change_flags(dev, flags, extack);
8894         if (ret < 0)
8895                 return ret;
8896
8897         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8898         __dev_notify_flags(dev, old_flags, changes);
8899         return ret;
8900 }
8901 EXPORT_SYMBOL(dev_change_flags);
8902
8903 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8904 {
8905         const struct net_device_ops *ops = dev->netdev_ops;
8906
8907         if (ops->ndo_change_mtu)
8908                 return ops->ndo_change_mtu(dev, new_mtu);
8909
8910         /* Pairs with all the lockless reads of dev->mtu in the stack */
8911         WRITE_ONCE(dev->mtu, new_mtu);
8912         return 0;
8913 }
8914 EXPORT_SYMBOL(__dev_set_mtu);
8915
8916 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8917                      struct netlink_ext_ack *extack)
8918 {
8919         /* MTU must be positive, and in range */
8920         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8921                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8922                 return -EINVAL;
8923         }
8924
8925         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8926                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8927                 return -EINVAL;
8928         }
8929         return 0;
8930 }
8931
8932 /**
8933  *      dev_set_mtu_ext - Change maximum transfer unit
8934  *      @dev: device
8935  *      @new_mtu: new transfer unit
8936  *      @extack: netlink extended ack
8937  *
8938  *      Change the maximum transfer size of the network device.
8939  */
8940 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8941                     struct netlink_ext_ack *extack)
8942 {
8943         int err, orig_mtu;
8944
8945         if (new_mtu == dev->mtu)
8946                 return 0;
8947
8948         err = dev_validate_mtu(dev, new_mtu, extack);
8949         if (err)
8950                 return err;
8951
8952         if (!netif_device_present(dev))
8953                 return -ENODEV;
8954
8955         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8956         err = notifier_to_errno(err);
8957         if (err)
8958                 return err;
8959
8960         orig_mtu = dev->mtu;
8961         err = __dev_set_mtu(dev, new_mtu);
8962
8963         if (!err) {
8964                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8965                                                    orig_mtu);
8966                 err = notifier_to_errno(err);
8967                 if (err) {
8968                         /* setting mtu back and notifying everyone again,
8969                          * so that they have a chance to revert changes.
8970                          */
8971                         __dev_set_mtu(dev, orig_mtu);
8972                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8973                                                      new_mtu);
8974                 }
8975         }
8976         return err;
8977 }
8978
8979 int dev_set_mtu(struct net_device *dev, int new_mtu)
8980 {
8981         struct netlink_ext_ack extack;
8982         int err;
8983
8984         memset(&extack, 0, sizeof(extack));
8985         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8986         if (err && extack._msg)
8987                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8988         return err;
8989 }
8990 EXPORT_SYMBOL(dev_set_mtu);
8991
8992 /**
8993  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8994  *      @dev: device
8995  *      @new_len: new tx queue length
8996  */
8997 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8998 {
8999         unsigned int orig_len = dev->tx_queue_len;
9000         int res;
9001
9002         if (new_len != (unsigned int)new_len)
9003                 return -ERANGE;
9004
9005         if (new_len != orig_len) {
9006                 dev->tx_queue_len = new_len;
9007                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9008                 res = notifier_to_errno(res);
9009                 if (res)
9010                         goto err_rollback;
9011                 res = dev_qdisc_change_tx_queue_len(dev);
9012                 if (res)
9013                         goto err_rollback;
9014         }
9015
9016         return 0;
9017
9018 err_rollback:
9019         netdev_err(dev, "refused to change device tx_queue_len\n");
9020         dev->tx_queue_len = orig_len;
9021         return res;
9022 }
9023
9024 /**
9025  *      dev_set_group - Change group this device belongs to
9026  *      @dev: device
9027  *      @new_group: group this device should belong to
9028  */
9029 void dev_set_group(struct net_device *dev, int new_group)
9030 {
9031         dev->group = new_group;
9032 }
9033 EXPORT_SYMBOL(dev_set_group);
9034
9035 /**
9036  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9037  *      @dev: device
9038  *      @addr: new address
9039  *      @extack: netlink extended ack
9040  */
9041 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9042                               struct netlink_ext_ack *extack)
9043 {
9044         struct netdev_notifier_pre_changeaddr_info info = {
9045                 .info.dev = dev,
9046                 .info.extack = extack,
9047                 .dev_addr = addr,
9048         };
9049         int rc;
9050
9051         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9052         return notifier_to_errno(rc);
9053 }
9054 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9055
9056 /**
9057  *      dev_set_mac_address - Change Media Access Control Address
9058  *      @dev: device
9059  *      @sa: new address
9060  *      @extack: netlink extended ack
9061  *
9062  *      Change the hardware (MAC) address of the device
9063  */
9064 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9065                         struct netlink_ext_ack *extack)
9066 {
9067         const struct net_device_ops *ops = dev->netdev_ops;
9068         int err;
9069
9070         if (!ops->ndo_set_mac_address)
9071                 return -EOPNOTSUPP;
9072         if (sa->sa_family != dev->type)
9073                 return -EINVAL;
9074         if (!netif_device_present(dev))
9075                 return -ENODEV;
9076         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9077         if (err)
9078                 return err;
9079         err = ops->ndo_set_mac_address(dev, sa);
9080         if (err)
9081                 return err;
9082         dev->addr_assign_type = NET_ADDR_SET;
9083         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9084         add_device_randomness(dev->dev_addr, dev->addr_len);
9085         return 0;
9086 }
9087 EXPORT_SYMBOL(dev_set_mac_address);
9088
9089 static DECLARE_RWSEM(dev_addr_sem);
9090
9091 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9092                              struct netlink_ext_ack *extack)
9093 {
9094         int ret;
9095
9096         down_write(&dev_addr_sem);
9097         ret = dev_set_mac_address(dev, sa, extack);
9098         up_write(&dev_addr_sem);
9099         return ret;
9100 }
9101 EXPORT_SYMBOL(dev_set_mac_address_user);
9102
9103 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9104 {
9105         size_t size = sizeof(sa->sa_data);
9106         struct net_device *dev;
9107         int ret = 0;
9108
9109         down_read(&dev_addr_sem);
9110         rcu_read_lock();
9111
9112         dev = dev_get_by_name_rcu(net, dev_name);
9113         if (!dev) {
9114                 ret = -ENODEV;
9115                 goto unlock;
9116         }
9117         if (!dev->addr_len)
9118                 memset(sa->sa_data, 0, size);
9119         else
9120                 memcpy(sa->sa_data, dev->dev_addr,
9121                        min_t(size_t, size, dev->addr_len));
9122         sa->sa_family = dev->type;
9123
9124 unlock:
9125         rcu_read_unlock();
9126         up_read(&dev_addr_sem);
9127         return ret;
9128 }
9129 EXPORT_SYMBOL(dev_get_mac_address);
9130
9131 /**
9132  *      dev_change_carrier - Change device carrier
9133  *      @dev: device
9134  *      @new_carrier: new value
9135  *
9136  *      Change device carrier
9137  */
9138 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9139 {
9140         const struct net_device_ops *ops = dev->netdev_ops;
9141
9142         if (!ops->ndo_change_carrier)
9143                 return -EOPNOTSUPP;
9144         if (!netif_device_present(dev))
9145                 return -ENODEV;
9146         return ops->ndo_change_carrier(dev, new_carrier);
9147 }
9148 EXPORT_SYMBOL(dev_change_carrier);
9149
9150 /**
9151  *      dev_get_phys_port_id - Get device physical port ID
9152  *      @dev: device
9153  *      @ppid: port ID
9154  *
9155  *      Get device physical port ID
9156  */
9157 int dev_get_phys_port_id(struct net_device *dev,
9158                          struct netdev_phys_item_id *ppid)
9159 {
9160         const struct net_device_ops *ops = dev->netdev_ops;
9161
9162         if (!ops->ndo_get_phys_port_id)
9163                 return -EOPNOTSUPP;
9164         return ops->ndo_get_phys_port_id(dev, ppid);
9165 }
9166 EXPORT_SYMBOL(dev_get_phys_port_id);
9167
9168 /**
9169  *      dev_get_phys_port_name - Get device physical port name
9170  *      @dev: device
9171  *      @name: port name
9172  *      @len: limit of bytes to copy to name
9173  *
9174  *      Get device physical port name
9175  */
9176 int dev_get_phys_port_name(struct net_device *dev,
9177                            char *name, size_t len)
9178 {
9179         const struct net_device_ops *ops = dev->netdev_ops;
9180         int err;
9181
9182         if (ops->ndo_get_phys_port_name) {
9183                 err = ops->ndo_get_phys_port_name(dev, name, len);
9184                 if (err != -EOPNOTSUPP)
9185                         return err;
9186         }
9187         return devlink_compat_phys_port_name_get(dev, name, len);
9188 }
9189 EXPORT_SYMBOL(dev_get_phys_port_name);
9190
9191 /**
9192  *      dev_get_port_parent_id - Get the device's port parent identifier
9193  *      @dev: network device
9194  *      @ppid: pointer to a storage for the port's parent identifier
9195  *      @recurse: allow/disallow recursion to lower devices
9196  *
9197  *      Get the devices's port parent identifier
9198  */
9199 int dev_get_port_parent_id(struct net_device *dev,
9200                            struct netdev_phys_item_id *ppid,
9201                            bool recurse)
9202 {
9203         const struct net_device_ops *ops = dev->netdev_ops;
9204         struct netdev_phys_item_id first = { };
9205         struct net_device *lower_dev;
9206         struct list_head *iter;
9207         int err;
9208
9209         if (ops->ndo_get_port_parent_id) {
9210                 err = ops->ndo_get_port_parent_id(dev, ppid);
9211                 if (err != -EOPNOTSUPP)
9212                         return err;
9213         }
9214
9215         err = devlink_compat_switch_id_get(dev, ppid);
9216         if (!err || err != -EOPNOTSUPP)
9217                 return err;
9218
9219         if (!recurse)
9220                 return -EOPNOTSUPP;
9221
9222         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9223                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9224                 if (err)
9225                         break;
9226                 if (!first.id_len)
9227                         first = *ppid;
9228                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9229                         return -EOPNOTSUPP;
9230         }
9231
9232         return err;
9233 }
9234 EXPORT_SYMBOL(dev_get_port_parent_id);
9235
9236 /**
9237  *      netdev_port_same_parent_id - Indicate if two network devices have
9238  *      the same port parent identifier
9239  *      @a: first network device
9240  *      @b: second network device
9241  */
9242 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9243 {
9244         struct netdev_phys_item_id a_id = { };
9245         struct netdev_phys_item_id b_id = { };
9246
9247         if (dev_get_port_parent_id(a, &a_id, true) ||
9248             dev_get_port_parent_id(b, &b_id, true))
9249                 return false;
9250
9251         return netdev_phys_item_id_same(&a_id, &b_id);
9252 }
9253 EXPORT_SYMBOL(netdev_port_same_parent_id);
9254
9255 /**
9256  *      dev_change_proto_down - update protocol port state information
9257  *      @dev: device
9258  *      @proto_down: new value
9259  *
9260  *      This info can be used by switch drivers to set the phys state of the
9261  *      port.
9262  */
9263 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9264 {
9265         const struct net_device_ops *ops = dev->netdev_ops;
9266
9267         if (!ops->ndo_change_proto_down)
9268                 return -EOPNOTSUPP;
9269         if (!netif_device_present(dev))
9270                 return -ENODEV;
9271         return ops->ndo_change_proto_down(dev, proto_down);
9272 }
9273 EXPORT_SYMBOL(dev_change_proto_down);
9274
9275 /**
9276  *      dev_change_proto_down_generic - generic implementation for
9277  *      ndo_change_proto_down that sets carrier according to
9278  *      proto_down.
9279  *
9280  *      @dev: device
9281  *      @proto_down: new value
9282  */
9283 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9284 {
9285         if (proto_down)
9286                 netif_carrier_off(dev);
9287         else
9288                 netif_carrier_on(dev);
9289         dev->proto_down = proto_down;
9290         return 0;
9291 }
9292 EXPORT_SYMBOL(dev_change_proto_down_generic);
9293
9294 /**
9295  *      dev_change_proto_down_reason - proto down reason
9296  *
9297  *      @dev: device
9298  *      @mask: proto down mask
9299  *      @value: proto down value
9300  */
9301 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9302                                   u32 value)
9303 {
9304         int b;
9305
9306         if (!mask) {
9307                 dev->proto_down_reason = value;
9308         } else {
9309                 for_each_set_bit(b, &mask, 32) {
9310                         if (value & (1 << b))
9311                                 dev->proto_down_reason |= BIT(b);
9312                         else
9313                                 dev->proto_down_reason &= ~BIT(b);
9314                 }
9315         }
9316 }
9317 EXPORT_SYMBOL(dev_change_proto_down_reason);
9318
9319 struct bpf_xdp_link {
9320         struct bpf_link link;
9321         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9322         int flags;
9323 };
9324
9325 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9326 {
9327         if (flags & XDP_FLAGS_HW_MODE)
9328                 return XDP_MODE_HW;
9329         if (flags & XDP_FLAGS_DRV_MODE)
9330                 return XDP_MODE_DRV;
9331         if (flags & XDP_FLAGS_SKB_MODE)
9332                 return XDP_MODE_SKB;
9333         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9334 }
9335
9336 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9337 {
9338         switch (mode) {
9339         case XDP_MODE_SKB:
9340                 return generic_xdp_install;
9341         case XDP_MODE_DRV:
9342         case XDP_MODE_HW:
9343                 return dev->netdev_ops->ndo_bpf;
9344         default:
9345                 return NULL;
9346         }
9347 }
9348
9349 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9350                                          enum bpf_xdp_mode mode)
9351 {
9352         return dev->xdp_state[mode].link;
9353 }
9354
9355 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9356                                      enum bpf_xdp_mode mode)
9357 {
9358         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9359
9360         if (link)
9361                 return link->link.prog;
9362         return dev->xdp_state[mode].prog;
9363 }
9364
9365 static u8 dev_xdp_prog_count(struct net_device *dev)
9366 {
9367         u8 count = 0;
9368         int i;
9369
9370         for (i = 0; i < __MAX_XDP_MODE; i++)
9371                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9372                         count++;
9373         return count;
9374 }
9375
9376 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9377 {
9378         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9379
9380         return prog ? prog->aux->id : 0;
9381 }
9382
9383 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9384                              struct bpf_xdp_link *link)
9385 {
9386         dev->xdp_state[mode].link = link;
9387         dev->xdp_state[mode].prog = NULL;
9388 }
9389
9390 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9391                              struct bpf_prog *prog)
9392 {
9393         dev->xdp_state[mode].link = NULL;
9394         dev->xdp_state[mode].prog = prog;
9395 }
9396
9397 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9398                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9399                            u32 flags, struct bpf_prog *prog)
9400 {
9401         struct netdev_bpf xdp;
9402         int err;
9403
9404         memset(&xdp, 0, sizeof(xdp));
9405         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9406         xdp.extack = extack;
9407         xdp.flags = flags;
9408         xdp.prog = prog;
9409
9410         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9411          * "moved" into driver), so they don't increment it on their own, but
9412          * they do decrement refcnt when program is detached or replaced.
9413          * Given net_device also owns link/prog, we need to bump refcnt here
9414          * to prevent drivers from underflowing it.
9415          */
9416         if (prog)
9417                 bpf_prog_inc(prog);
9418         err = bpf_op(dev, &xdp);
9419         if (err) {
9420                 if (prog)
9421                         bpf_prog_put(prog);
9422                 return err;
9423         }
9424
9425         if (mode != XDP_MODE_HW)
9426                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9427
9428         return 0;
9429 }
9430
9431 static void dev_xdp_uninstall(struct net_device *dev)
9432 {
9433         struct bpf_xdp_link *link;
9434         struct bpf_prog *prog;
9435         enum bpf_xdp_mode mode;
9436         bpf_op_t bpf_op;
9437
9438         ASSERT_RTNL();
9439
9440         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9441                 prog = dev_xdp_prog(dev, mode);
9442                 if (!prog)
9443                         continue;
9444
9445                 bpf_op = dev_xdp_bpf_op(dev, mode);
9446                 if (!bpf_op)
9447                         continue;
9448
9449                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9450
9451                 /* auto-detach link from net device */
9452                 link = dev_xdp_link(dev, mode);
9453                 if (link)
9454                         link->dev = NULL;
9455                 else
9456                         bpf_prog_put(prog);
9457
9458                 dev_xdp_set_link(dev, mode, NULL);
9459         }
9460 }
9461
9462 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9463                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9464                           struct bpf_prog *old_prog, u32 flags)
9465 {
9466         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9467         struct bpf_prog *cur_prog;
9468         enum bpf_xdp_mode mode;
9469         bpf_op_t bpf_op;
9470         int err;
9471
9472         ASSERT_RTNL();
9473
9474         /* either link or prog attachment, never both */
9475         if (link && (new_prog || old_prog))
9476                 return -EINVAL;
9477         /* link supports only XDP mode flags */
9478         if (link && (flags & ~XDP_FLAGS_MODES)) {
9479                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9480                 return -EINVAL;
9481         }
9482         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9483         if (num_modes > 1) {
9484                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9485                 return -EINVAL;
9486         }
9487         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9488         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9489                 NL_SET_ERR_MSG(extack,
9490                                "More than one program loaded, unset mode is ambiguous");
9491                 return -EINVAL;
9492         }
9493         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9494         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9495                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9496                 return -EINVAL;
9497         }
9498
9499         mode = dev_xdp_mode(dev, flags);
9500         /* can't replace attached link */
9501         if (dev_xdp_link(dev, mode)) {
9502                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9503                 return -EBUSY;
9504         }
9505
9506         cur_prog = dev_xdp_prog(dev, mode);
9507         /* can't replace attached prog with link */
9508         if (link && cur_prog) {
9509                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9510                 return -EBUSY;
9511         }
9512         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9513                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9514                 return -EEXIST;
9515         }
9516
9517         /* put effective new program into new_prog */
9518         if (link)
9519                 new_prog = link->link.prog;
9520
9521         if (new_prog) {
9522                 bool offload = mode == XDP_MODE_HW;
9523                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9524                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9525
9526                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9527                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9528                         return -EBUSY;
9529                 }
9530                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9531                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9532                         return -EEXIST;
9533                 }
9534                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9535                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9536                         return -EINVAL;
9537                 }
9538                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9539                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9540                         return -EINVAL;
9541                 }
9542                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9543                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9544                         return -EINVAL;
9545                 }
9546         }
9547
9548         /* don't call drivers if the effective program didn't change */
9549         if (new_prog != cur_prog) {
9550                 bpf_op = dev_xdp_bpf_op(dev, mode);
9551                 if (!bpf_op) {
9552                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9553                         return -EOPNOTSUPP;
9554                 }
9555
9556                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9557                 if (err)
9558                         return err;
9559         }
9560
9561         if (link)
9562                 dev_xdp_set_link(dev, mode, link);
9563         else
9564                 dev_xdp_set_prog(dev, mode, new_prog);
9565         if (cur_prog)
9566                 bpf_prog_put(cur_prog);
9567
9568         return 0;
9569 }
9570
9571 static int dev_xdp_attach_link(struct net_device *dev,
9572                                struct netlink_ext_ack *extack,
9573                                struct bpf_xdp_link *link)
9574 {
9575         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9576 }
9577
9578 static int dev_xdp_detach_link(struct net_device *dev,
9579                                struct netlink_ext_ack *extack,
9580                                struct bpf_xdp_link *link)
9581 {
9582         enum bpf_xdp_mode mode;
9583         bpf_op_t bpf_op;
9584
9585         ASSERT_RTNL();
9586
9587         mode = dev_xdp_mode(dev, link->flags);
9588         if (dev_xdp_link(dev, mode) != link)
9589                 return -EINVAL;
9590
9591         bpf_op = dev_xdp_bpf_op(dev, mode);
9592         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9593         dev_xdp_set_link(dev, mode, NULL);
9594         return 0;
9595 }
9596
9597 static void bpf_xdp_link_release(struct bpf_link *link)
9598 {
9599         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9600
9601         rtnl_lock();
9602
9603         /* if racing with net_device's tear down, xdp_link->dev might be
9604          * already NULL, in which case link was already auto-detached
9605          */
9606         if (xdp_link->dev) {
9607                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9608                 xdp_link->dev = NULL;
9609         }
9610
9611         rtnl_unlock();
9612 }
9613
9614 static int bpf_xdp_link_detach(struct bpf_link *link)
9615 {
9616         bpf_xdp_link_release(link);
9617         return 0;
9618 }
9619
9620 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9621 {
9622         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9623
9624         kfree(xdp_link);
9625 }
9626
9627 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9628                                      struct seq_file *seq)
9629 {
9630         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9631         u32 ifindex = 0;
9632
9633         rtnl_lock();
9634         if (xdp_link->dev)
9635                 ifindex = xdp_link->dev->ifindex;
9636         rtnl_unlock();
9637
9638         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9639 }
9640
9641 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9642                                        struct bpf_link_info *info)
9643 {
9644         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9645         u32 ifindex = 0;
9646
9647         rtnl_lock();
9648         if (xdp_link->dev)
9649                 ifindex = xdp_link->dev->ifindex;
9650         rtnl_unlock();
9651
9652         info->xdp.ifindex = ifindex;
9653         return 0;
9654 }
9655
9656 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9657                                struct bpf_prog *old_prog)
9658 {
9659         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9660         enum bpf_xdp_mode mode;
9661         bpf_op_t bpf_op;
9662         int err = 0;
9663
9664         rtnl_lock();
9665
9666         /* link might have been auto-released already, so fail */
9667         if (!xdp_link->dev) {
9668                 err = -ENOLINK;
9669                 goto out_unlock;
9670         }
9671
9672         if (old_prog && link->prog != old_prog) {
9673                 err = -EPERM;
9674                 goto out_unlock;
9675         }
9676         old_prog = link->prog;
9677         if (old_prog == new_prog) {
9678                 /* no-op, don't disturb drivers */
9679                 bpf_prog_put(new_prog);
9680                 goto out_unlock;
9681         }
9682
9683         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9684         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9685         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9686                               xdp_link->flags, new_prog);
9687         if (err)
9688                 goto out_unlock;
9689
9690         old_prog = xchg(&link->prog, new_prog);
9691         bpf_prog_put(old_prog);
9692
9693 out_unlock:
9694         rtnl_unlock();
9695         return err;
9696 }
9697
9698 static const struct bpf_link_ops bpf_xdp_link_lops = {
9699         .release = bpf_xdp_link_release,
9700         .dealloc = bpf_xdp_link_dealloc,
9701         .detach = bpf_xdp_link_detach,
9702         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9703         .fill_link_info = bpf_xdp_link_fill_link_info,
9704         .update_prog = bpf_xdp_link_update,
9705 };
9706
9707 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9708 {
9709         struct net *net = current->nsproxy->net_ns;
9710         struct bpf_link_primer link_primer;
9711         struct bpf_xdp_link *link;
9712         struct net_device *dev;
9713         int err, fd;
9714
9715         rtnl_lock();
9716         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9717         if (!dev) {
9718                 rtnl_unlock();
9719                 return -EINVAL;
9720         }
9721
9722         link = kzalloc(sizeof(*link), GFP_USER);
9723         if (!link) {
9724                 err = -ENOMEM;
9725                 goto unlock;
9726         }
9727
9728         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9729         link->dev = dev;
9730         link->flags = attr->link_create.flags;
9731
9732         err = bpf_link_prime(&link->link, &link_primer);
9733         if (err) {
9734                 kfree(link);
9735                 goto unlock;
9736         }
9737
9738         err = dev_xdp_attach_link(dev, NULL, link);
9739         rtnl_unlock();
9740
9741         if (err) {
9742                 link->dev = NULL;
9743                 bpf_link_cleanup(&link_primer);
9744                 goto out_put_dev;
9745         }
9746
9747         fd = bpf_link_settle(&link_primer);
9748         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9749         dev_put(dev);
9750         return fd;
9751
9752 unlock:
9753         rtnl_unlock();
9754
9755 out_put_dev:
9756         dev_put(dev);
9757         return err;
9758 }
9759
9760 /**
9761  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9762  *      @dev: device
9763  *      @extack: netlink extended ack
9764  *      @fd: new program fd or negative value to clear
9765  *      @expected_fd: old program fd that userspace expects to replace or clear
9766  *      @flags: xdp-related flags
9767  *
9768  *      Set or clear a bpf program for a device
9769  */
9770 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9771                       int fd, int expected_fd, u32 flags)
9772 {
9773         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9774         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9775         int err;
9776
9777         ASSERT_RTNL();
9778
9779         if (fd >= 0) {
9780                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9781                                                  mode != XDP_MODE_SKB);
9782                 if (IS_ERR(new_prog))
9783                         return PTR_ERR(new_prog);
9784         }
9785
9786         if (expected_fd >= 0) {
9787                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9788                                                  mode != XDP_MODE_SKB);
9789                 if (IS_ERR(old_prog)) {
9790                         err = PTR_ERR(old_prog);
9791                         old_prog = NULL;
9792                         goto err_out;
9793                 }
9794         }
9795
9796         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9797
9798 err_out:
9799         if (err && new_prog)
9800                 bpf_prog_put(new_prog);
9801         if (old_prog)
9802                 bpf_prog_put(old_prog);
9803         return err;
9804 }
9805
9806 /**
9807  *      dev_new_index   -       allocate an ifindex
9808  *      @net: the applicable net namespace
9809  *
9810  *      Returns a suitable unique value for a new device interface
9811  *      number.  The caller must hold the rtnl semaphore or the
9812  *      dev_base_lock to be sure it remains unique.
9813  */
9814 static int dev_new_index(struct net *net)
9815 {
9816         int ifindex = net->ifindex;
9817
9818         for (;;) {
9819                 if (++ifindex <= 0)
9820                         ifindex = 1;
9821                 if (!__dev_get_by_index(net, ifindex))
9822                         return net->ifindex = ifindex;
9823         }
9824 }
9825
9826 /* Delayed registration/unregisteration */
9827 static LIST_HEAD(net_todo_list);
9828 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9829
9830 static void net_set_todo(struct net_device *dev)
9831 {
9832         list_add_tail(&dev->todo_list, &net_todo_list);
9833         dev_net(dev)->dev_unreg_count++;
9834 }
9835
9836 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9837         struct net_device *upper, netdev_features_t features)
9838 {
9839         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9840         netdev_features_t feature;
9841         int feature_bit;
9842
9843         for_each_netdev_feature(upper_disables, feature_bit) {
9844                 feature = __NETIF_F_BIT(feature_bit);
9845                 if (!(upper->wanted_features & feature)
9846                     && (features & feature)) {
9847                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9848                                    &feature, upper->name);
9849                         features &= ~feature;
9850                 }
9851         }
9852
9853         return features;
9854 }
9855
9856 static void netdev_sync_lower_features(struct net_device *upper,
9857         struct net_device *lower, netdev_features_t features)
9858 {
9859         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9860         netdev_features_t feature;
9861         int feature_bit;
9862
9863         for_each_netdev_feature(upper_disables, feature_bit) {
9864                 feature = __NETIF_F_BIT(feature_bit);
9865                 if (!(features & feature) && (lower->features & feature)) {
9866                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9867                                    &feature, lower->name);
9868                         lower->wanted_features &= ~feature;
9869                         __netdev_update_features(lower);
9870
9871                         if (unlikely(lower->features & feature))
9872                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9873                                             &feature, lower->name);
9874                         else
9875                                 netdev_features_change(lower);
9876                 }
9877         }
9878 }
9879
9880 static netdev_features_t netdev_fix_features(struct net_device *dev,
9881         netdev_features_t features)
9882 {
9883         /* Fix illegal checksum combinations */
9884         if ((features & NETIF_F_HW_CSUM) &&
9885             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9886                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9887                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9888         }
9889
9890         /* TSO requires that SG is present as well. */
9891         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9892                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9893                 features &= ~NETIF_F_ALL_TSO;
9894         }
9895
9896         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9897                                         !(features & NETIF_F_IP_CSUM)) {
9898                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9899                 features &= ~NETIF_F_TSO;
9900                 features &= ~NETIF_F_TSO_ECN;
9901         }
9902
9903         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9904                                          !(features & NETIF_F_IPV6_CSUM)) {
9905                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9906                 features &= ~NETIF_F_TSO6;
9907         }
9908
9909         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9910         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9911                 features &= ~NETIF_F_TSO_MANGLEID;
9912
9913         /* TSO ECN requires that TSO is present as well. */
9914         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9915                 features &= ~NETIF_F_TSO_ECN;
9916
9917         /* Software GSO depends on SG. */
9918         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9919                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9920                 features &= ~NETIF_F_GSO;
9921         }
9922
9923         /* GSO partial features require GSO partial be set */
9924         if ((features & dev->gso_partial_features) &&
9925             !(features & NETIF_F_GSO_PARTIAL)) {
9926                 netdev_dbg(dev,
9927                            "Dropping partially supported GSO features since no GSO partial.\n");
9928                 features &= ~dev->gso_partial_features;
9929         }
9930
9931         if (!(features & NETIF_F_RXCSUM)) {
9932                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9933                  * successfully merged by hardware must also have the
9934                  * checksum verified by hardware.  If the user does not
9935                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9936                  */
9937                 if (features & NETIF_F_GRO_HW) {
9938                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9939                         features &= ~NETIF_F_GRO_HW;
9940                 }
9941         }
9942
9943         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9944         if (features & NETIF_F_RXFCS) {
9945                 if (features & NETIF_F_LRO) {
9946                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9947                         features &= ~NETIF_F_LRO;
9948                 }
9949
9950                 if (features & NETIF_F_GRO_HW) {
9951                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9952                         features &= ~NETIF_F_GRO_HW;
9953                 }
9954         }
9955
9956         if (features & NETIF_F_HW_TLS_TX) {
9957                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9958                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9959                 bool hw_csum = features & NETIF_F_HW_CSUM;
9960
9961                 if (!ip_csum && !hw_csum) {
9962                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9963                         features &= ~NETIF_F_HW_TLS_TX;
9964                 }
9965         }
9966
9967         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9968                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9969                 features &= ~NETIF_F_HW_TLS_RX;
9970         }
9971
9972         return features;
9973 }
9974
9975 int __netdev_update_features(struct net_device *dev)
9976 {
9977         struct net_device *upper, *lower;
9978         netdev_features_t features;
9979         struct list_head *iter;
9980         int err = -1;
9981
9982         ASSERT_RTNL();
9983
9984         features = netdev_get_wanted_features(dev);
9985
9986         if (dev->netdev_ops->ndo_fix_features)
9987                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9988
9989         /* driver might be less strict about feature dependencies */
9990         features = netdev_fix_features(dev, features);
9991
9992         /* some features can't be enabled if they're off on an upper device */
9993         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9994                 features = netdev_sync_upper_features(dev, upper, features);
9995
9996         if (dev->features == features)
9997                 goto sync_lower;
9998
9999         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10000                 &dev->features, &features);
10001
10002         if (dev->netdev_ops->ndo_set_features)
10003                 err = dev->netdev_ops->ndo_set_features(dev, features);
10004         else
10005                 err = 0;
10006
10007         if (unlikely(err < 0)) {
10008                 netdev_err(dev,
10009                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
10010                         err, &features, &dev->features);
10011                 /* return non-0 since some features might have changed and
10012                  * it's better to fire a spurious notification than miss it
10013                  */
10014                 return -1;
10015         }
10016
10017 sync_lower:
10018         /* some features must be disabled on lower devices when disabled
10019          * on an upper device (think: bonding master or bridge)
10020          */
10021         netdev_for_each_lower_dev(dev, lower, iter)
10022                 netdev_sync_lower_features(dev, lower, features);
10023
10024         if (!err) {
10025                 netdev_features_t diff = features ^ dev->features;
10026
10027                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10028                         /* udp_tunnel_{get,drop}_rx_info both need
10029                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10030                          * device, or they won't do anything.
10031                          * Thus we need to update dev->features
10032                          * *before* calling udp_tunnel_get_rx_info,
10033                          * but *after* calling udp_tunnel_drop_rx_info.
10034                          */
10035                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10036                                 dev->features = features;
10037                                 udp_tunnel_get_rx_info(dev);
10038                         } else {
10039                                 udp_tunnel_drop_rx_info(dev);
10040                         }
10041                 }
10042
10043                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10044                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10045                                 dev->features = features;
10046                                 err |= vlan_get_rx_ctag_filter_info(dev);
10047                         } else {
10048                                 vlan_drop_rx_ctag_filter_info(dev);
10049                         }
10050                 }
10051
10052                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10053                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10054                                 dev->features = features;
10055                                 err |= vlan_get_rx_stag_filter_info(dev);
10056                         } else {
10057                                 vlan_drop_rx_stag_filter_info(dev);
10058                         }
10059                 }
10060
10061                 dev->features = features;
10062         }
10063
10064         return err < 0 ? 0 : 1;
10065 }
10066
10067 /**
10068  *      netdev_update_features - recalculate device features
10069  *      @dev: the device to check
10070  *
10071  *      Recalculate dev->features set and send notifications if it
10072  *      has changed. Should be called after driver or hardware dependent
10073  *      conditions might have changed that influence the features.
10074  */
10075 void netdev_update_features(struct net_device *dev)
10076 {
10077         if (__netdev_update_features(dev))
10078                 netdev_features_change(dev);
10079 }
10080 EXPORT_SYMBOL(netdev_update_features);
10081
10082 /**
10083  *      netdev_change_features - recalculate device features
10084  *      @dev: the device to check
10085  *
10086  *      Recalculate dev->features set and send notifications even
10087  *      if they have not changed. Should be called instead of
10088  *      netdev_update_features() if also dev->vlan_features might
10089  *      have changed to allow the changes to be propagated to stacked
10090  *      VLAN devices.
10091  */
10092 void netdev_change_features(struct net_device *dev)
10093 {
10094         __netdev_update_features(dev);
10095         netdev_features_change(dev);
10096 }
10097 EXPORT_SYMBOL(netdev_change_features);
10098
10099 /**
10100  *      netif_stacked_transfer_operstate -      transfer operstate
10101  *      @rootdev: the root or lower level device to transfer state from
10102  *      @dev: the device to transfer operstate to
10103  *
10104  *      Transfer operational state from root to device. This is normally
10105  *      called when a stacking relationship exists between the root
10106  *      device and the device(a leaf device).
10107  */
10108 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10109                                         struct net_device *dev)
10110 {
10111         if (rootdev->operstate == IF_OPER_DORMANT)
10112                 netif_dormant_on(dev);
10113         else
10114                 netif_dormant_off(dev);
10115
10116         if (rootdev->operstate == IF_OPER_TESTING)
10117                 netif_testing_on(dev);
10118         else
10119                 netif_testing_off(dev);
10120
10121         if (netif_carrier_ok(rootdev))
10122                 netif_carrier_on(dev);
10123         else
10124                 netif_carrier_off(dev);
10125 }
10126 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10127
10128 static int netif_alloc_rx_queues(struct net_device *dev)
10129 {
10130         unsigned int i, count = dev->num_rx_queues;
10131         struct netdev_rx_queue *rx;
10132         size_t sz = count * sizeof(*rx);
10133         int err = 0;
10134
10135         BUG_ON(count < 1);
10136
10137         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10138         if (!rx)
10139                 return -ENOMEM;
10140
10141         dev->_rx = rx;
10142
10143         for (i = 0; i < count; i++) {
10144                 rx[i].dev = dev;
10145
10146                 /* XDP RX-queue setup */
10147                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10148                 if (err < 0)
10149                         goto err_rxq_info;
10150         }
10151         return 0;
10152
10153 err_rxq_info:
10154         /* Rollback successful reg's and free other resources */
10155         while (i--)
10156                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10157         kvfree(dev->_rx);
10158         dev->_rx = NULL;
10159         return err;
10160 }
10161
10162 static void netif_free_rx_queues(struct net_device *dev)
10163 {
10164         unsigned int i, count = dev->num_rx_queues;
10165
10166         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10167         if (!dev->_rx)
10168                 return;
10169
10170         for (i = 0; i < count; i++)
10171                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10172
10173         kvfree(dev->_rx);
10174 }
10175
10176 static void netdev_init_one_queue(struct net_device *dev,
10177                                   struct netdev_queue *queue, void *_unused)
10178 {
10179         /* Initialize queue lock */
10180         spin_lock_init(&queue->_xmit_lock);
10181         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10182         queue->xmit_lock_owner = -1;
10183         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10184         queue->dev = dev;
10185 #ifdef CONFIG_BQL
10186         dql_init(&queue->dql, HZ);
10187 #endif
10188 }
10189
10190 static void netif_free_tx_queues(struct net_device *dev)
10191 {
10192         kvfree(dev->_tx);
10193 }
10194
10195 static int netif_alloc_netdev_queues(struct net_device *dev)
10196 {
10197         unsigned int count = dev->num_tx_queues;
10198         struct netdev_queue *tx;
10199         size_t sz = count * sizeof(*tx);
10200
10201         if (count < 1 || count > 0xffff)
10202                 return -EINVAL;
10203
10204         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10205         if (!tx)
10206                 return -ENOMEM;
10207
10208         dev->_tx = tx;
10209
10210         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10211         spin_lock_init(&dev->tx_global_lock);
10212
10213         return 0;
10214 }
10215
10216 void netif_tx_stop_all_queues(struct net_device *dev)
10217 {
10218         unsigned int i;
10219
10220         for (i = 0; i < dev->num_tx_queues; i++) {
10221                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10222
10223                 netif_tx_stop_queue(txq);
10224         }
10225 }
10226 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10227
10228 /**
10229  *      register_netdevice      - register a network device
10230  *      @dev: device to register
10231  *
10232  *      Take a completed network device structure and add it to the kernel
10233  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10234  *      chain. 0 is returned on success. A negative errno code is returned
10235  *      on a failure to set up the device, or if the name is a duplicate.
10236  *
10237  *      Callers must hold the rtnl semaphore. You may want
10238  *      register_netdev() instead of this.
10239  *
10240  *      BUGS:
10241  *      The locking appears insufficient to guarantee two parallel registers
10242  *      will not get the same name.
10243  */
10244
10245 int register_netdevice(struct net_device *dev)
10246 {
10247         int ret;
10248         struct net *net = dev_net(dev);
10249
10250         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10251                      NETDEV_FEATURE_COUNT);
10252         BUG_ON(dev_boot_phase);
10253         ASSERT_RTNL();
10254
10255         might_sleep();
10256
10257         /* When net_device's are persistent, this will be fatal. */
10258         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10259         BUG_ON(!net);
10260
10261         ret = ethtool_check_ops(dev->ethtool_ops);
10262         if (ret)
10263                 return ret;
10264
10265         spin_lock_init(&dev->addr_list_lock);
10266         netdev_set_addr_lockdep_class(dev);
10267
10268         ret = dev_get_valid_name(net, dev, dev->name);
10269         if (ret < 0)
10270                 goto out;
10271
10272         ret = -ENOMEM;
10273         dev->name_node = netdev_name_node_head_alloc(dev);
10274         if (!dev->name_node)
10275                 goto out;
10276
10277         /* Init, if this function is available */
10278         if (dev->netdev_ops->ndo_init) {
10279                 ret = dev->netdev_ops->ndo_init(dev);
10280                 if (ret) {
10281                         if (ret > 0)
10282                                 ret = -EIO;
10283                         goto err_free_name;
10284                 }
10285         }
10286
10287         if (((dev->hw_features | dev->features) &
10288              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10289             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10290              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10291                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10292                 ret = -EINVAL;
10293                 goto err_uninit;
10294         }
10295
10296         ret = -EBUSY;
10297         if (!dev->ifindex)
10298                 dev->ifindex = dev_new_index(net);
10299         else if (__dev_get_by_index(net, dev->ifindex))
10300                 goto err_uninit;
10301
10302         /* Transfer changeable features to wanted_features and enable
10303          * software offloads (GSO and GRO).
10304          */
10305         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10306         dev->features |= NETIF_F_SOFT_FEATURES;
10307
10308         if (dev->udp_tunnel_nic_info) {
10309                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10310                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10311         }
10312
10313         dev->wanted_features = dev->features & dev->hw_features;
10314
10315         if (!(dev->flags & IFF_LOOPBACK))
10316                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10317
10318         /* If IPv4 TCP segmentation offload is supported we should also
10319          * allow the device to enable segmenting the frame with the option
10320          * of ignoring a static IP ID value.  This doesn't enable the
10321          * feature itself but allows the user to enable it later.
10322          */
10323         if (dev->hw_features & NETIF_F_TSO)
10324                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10325         if (dev->vlan_features & NETIF_F_TSO)
10326                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10327         if (dev->mpls_features & NETIF_F_TSO)
10328                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10329         if (dev->hw_enc_features & NETIF_F_TSO)
10330                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10331
10332         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10333          */
10334         dev->vlan_features |= NETIF_F_HIGHDMA;
10335
10336         /* Make NETIF_F_SG inheritable to tunnel devices.
10337          */
10338         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10339
10340         /* Make NETIF_F_SG inheritable to MPLS.
10341          */
10342         dev->mpls_features |= NETIF_F_SG;
10343
10344         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10345         ret = notifier_to_errno(ret);
10346         if (ret)
10347                 goto err_uninit;
10348
10349         ret = netdev_register_kobject(dev);
10350         if (ret) {
10351                 dev->reg_state = NETREG_UNREGISTERED;
10352                 goto err_uninit;
10353         }
10354         dev->reg_state = NETREG_REGISTERED;
10355
10356         __netdev_update_features(dev);
10357
10358         /*
10359          *      Default initial state at registry is that the
10360          *      device is present.
10361          */
10362
10363         set_bit(__LINK_STATE_PRESENT, &dev->state);
10364
10365         linkwatch_init_dev(dev);
10366
10367         dev_init_scheduler(dev);
10368         dev_hold(dev);
10369         list_netdevice(dev);
10370         add_device_randomness(dev->dev_addr, dev->addr_len);
10371
10372         /* If the device has permanent device address, driver should
10373          * set dev_addr and also addr_assign_type should be set to
10374          * NET_ADDR_PERM (default value).
10375          */
10376         if (dev->addr_assign_type == NET_ADDR_PERM)
10377                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10378
10379         /* Notify protocols, that a new device appeared. */
10380         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10381         ret = notifier_to_errno(ret);
10382         if (ret) {
10383                 /* Expect explicit free_netdev() on failure */
10384                 dev->needs_free_netdev = false;
10385                 unregister_netdevice_queue(dev, NULL);
10386                 goto out;
10387         }
10388         /*
10389          *      Prevent userspace races by waiting until the network
10390          *      device is fully setup before sending notifications.
10391          */
10392         if (!dev->rtnl_link_ops ||
10393             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10394                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10395
10396 out:
10397         return ret;
10398
10399 err_uninit:
10400         if (dev->netdev_ops->ndo_uninit)
10401                 dev->netdev_ops->ndo_uninit(dev);
10402         if (dev->priv_destructor)
10403                 dev->priv_destructor(dev);
10404 err_free_name:
10405         netdev_name_node_free(dev->name_node);
10406         goto out;
10407 }
10408 EXPORT_SYMBOL(register_netdevice);
10409
10410 /**
10411  *      init_dummy_netdev       - init a dummy network device for NAPI
10412  *      @dev: device to init
10413  *
10414  *      This takes a network device structure and initialize the minimum
10415  *      amount of fields so it can be used to schedule NAPI polls without
10416  *      registering a full blown interface. This is to be used by drivers
10417  *      that need to tie several hardware interfaces to a single NAPI
10418  *      poll scheduler due to HW limitations.
10419  */
10420 int init_dummy_netdev(struct net_device *dev)
10421 {
10422         /* Clear everything. Note we don't initialize spinlocks
10423          * are they aren't supposed to be taken by any of the
10424          * NAPI code and this dummy netdev is supposed to be
10425          * only ever used for NAPI polls
10426          */
10427         memset(dev, 0, sizeof(struct net_device));
10428
10429         /* make sure we BUG if trying to hit standard
10430          * register/unregister code path
10431          */
10432         dev->reg_state = NETREG_DUMMY;
10433
10434         /* NAPI wants this */
10435         INIT_LIST_HEAD(&dev->napi_list);
10436
10437         /* a dummy interface is started by default */
10438         set_bit(__LINK_STATE_PRESENT, &dev->state);
10439         set_bit(__LINK_STATE_START, &dev->state);
10440
10441         /* napi_busy_loop stats accounting wants this */
10442         dev_net_set(dev, &init_net);
10443
10444         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10445          * because users of this 'device' dont need to change
10446          * its refcount.
10447          */
10448
10449         return 0;
10450 }
10451 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10452
10453
10454 /**
10455  *      register_netdev - register a network device
10456  *      @dev: device to register
10457  *
10458  *      Take a completed network device structure and add it to the kernel
10459  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10460  *      chain. 0 is returned on success. A negative errno code is returned
10461  *      on a failure to set up the device, or if the name is a duplicate.
10462  *
10463  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10464  *      and expands the device name if you passed a format string to
10465  *      alloc_netdev.
10466  */
10467 int register_netdev(struct net_device *dev)
10468 {
10469         int err;
10470
10471         if (rtnl_lock_killable())
10472                 return -EINTR;
10473         err = register_netdevice(dev);
10474         rtnl_unlock();
10475         return err;
10476 }
10477 EXPORT_SYMBOL(register_netdev);
10478
10479 int netdev_refcnt_read(const struct net_device *dev)
10480 {
10481 #ifdef CONFIG_PCPU_DEV_REFCNT
10482         int i, refcnt = 0;
10483
10484         for_each_possible_cpu(i)
10485                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10486         return refcnt;
10487 #else
10488         return refcount_read(&dev->dev_refcnt);
10489 #endif
10490 }
10491 EXPORT_SYMBOL(netdev_refcnt_read);
10492
10493 int netdev_unregister_timeout_secs __read_mostly = 10;
10494
10495 #define WAIT_REFS_MIN_MSECS 1
10496 #define WAIT_REFS_MAX_MSECS 250
10497 /**
10498  * netdev_wait_allrefs - wait until all references are gone.
10499  * @dev: target net_device
10500  *
10501  * This is called when unregistering network devices.
10502  *
10503  * Any protocol or device that holds a reference should register
10504  * for netdevice notification, and cleanup and put back the
10505  * reference if they receive an UNREGISTER event.
10506  * We can get stuck here if buggy protocols don't correctly
10507  * call dev_put.
10508  */
10509 static void netdev_wait_allrefs(struct net_device *dev)
10510 {
10511         unsigned long rebroadcast_time, warning_time;
10512         int wait = 0, refcnt;
10513
10514         linkwatch_forget_dev(dev);
10515
10516         rebroadcast_time = warning_time = jiffies;
10517         refcnt = netdev_refcnt_read(dev);
10518
10519         while (refcnt != 1) {
10520                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10521                         rtnl_lock();
10522
10523                         /* Rebroadcast unregister notification */
10524                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10525
10526                         __rtnl_unlock();
10527                         rcu_barrier();
10528                         rtnl_lock();
10529
10530                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10531                                      &dev->state)) {
10532                                 /* We must not have linkwatch events
10533                                  * pending on unregister. If this
10534                                  * happens, we simply run the queue
10535                                  * unscheduled, resulting in a noop
10536                                  * for this device.
10537                                  */
10538                                 linkwatch_run_queue();
10539                         }
10540
10541                         __rtnl_unlock();
10542
10543                         rebroadcast_time = jiffies;
10544                 }
10545
10546                 if (!wait) {
10547                         rcu_barrier();
10548                         wait = WAIT_REFS_MIN_MSECS;
10549                 } else {
10550                         msleep(wait);
10551                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10552                 }
10553
10554                 refcnt = netdev_refcnt_read(dev);
10555
10556                 if (refcnt != 1 &&
10557                     time_after(jiffies, warning_time +
10558                                netdev_unregister_timeout_secs * HZ)) {
10559                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10560                                  dev->name, refcnt);
10561                         warning_time = jiffies;
10562                 }
10563         }
10564 }
10565
10566 /* The sequence is:
10567  *
10568  *      rtnl_lock();
10569  *      ...
10570  *      register_netdevice(x1);
10571  *      register_netdevice(x2);
10572  *      ...
10573  *      unregister_netdevice(y1);
10574  *      unregister_netdevice(y2);
10575  *      ...
10576  *      rtnl_unlock();
10577  *      free_netdev(y1);
10578  *      free_netdev(y2);
10579  *
10580  * We are invoked by rtnl_unlock().
10581  * This allows us to deal with problems:
10582  * 1) We can delete sysfs objects which invoke hotplug
10583  *    without deadlocking with linkwatch via keventd.
10584  * 2) Since we run with the RTNL semaphore not held, we can sleep
10585  *    safely in order to wait for the netdev refcnt to drop to zero.
10586  *
10587  * We must not return until all unregister events added during
10588  * the interval the lock was held have been completed.
10589  */
10590 void netdev_run_todo(void)
10591 {
10592         struct list_head list;
10593 #ifdef CONFIG_LOCKDEP
10594         struct list_head unlink_list;
10595
10596         list_replace_init(&net_unlink_list, &unlink_list);
10597
10598         while (!list_empty(&unlink_list)) {
10599                 struct net_device *dev = list_first_entry(&unlink_list,
10600                                                           struct net_device,
10601                                                           unlink_list);
10602                 list_del_init(&dev->unlink_list);
10603                 dev->nested_level = dev->lower_level - 1;
10604         }
10605 #endif
10606
10607         /* Snapshot list, allow later requests */
10608         list_replace_init(&net_todo_list, &list);
10609
10610         __rtnl_unlock();
10611
10612
10613         /* Wait for rcu callbacks to finish before next phase */
10614         if (!list_empty(&list))
10615                 rcu_barrier();
10616
10617         while (!list_empty(&list)) {
10618                 struct net_device *dev
10619                         = list_first_entry(&list, struct net_device, todo_list);
10620                 list_del(&dev->todo_list);
10621
10622                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10623                         pr_err("network todo '%s' but state %d\n",
10624                                dev->name, dev->reg_state);
10625                         dump_stack();
10626                         continue;
10627                 }
10628
10629                 dev->reg_state = NETREG_UNREGISTERED;
10630
10631                 netdev_wait_allrefs(dev);
10632
10633                 /* paranoia */
10634                 BUG_ON(netdev_refcnt_read(dev) != 1);
10635                 BUG_ON(!list_empty(&dev->ptype_all));
10636                 BUG_ON(!list_empty(&dev->ptype_specific));
10637                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10638                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10639 #if IS_ENABLED(CONFIG_DECNET)
10640                 WARN_ON(dev->dn_ptr);
10641 #endif
10642                 if (dev->priv_destructor)
10643                         dev->priv_destructor(dev);
10644                 if (dev->needs_free_netdev)
10645                         free_netdev(dev);
10646
10647                 /* Report a network device has been unregistered */
10648                 rtnl_lock();
10649                 dev_net(dev)->dev_unreg_count--;
10650                 __rtnl_unlock();
10651                 wake_up(&netdev_unregistering_wq);
10652
10653                 /* Free network device */
10654                 kobject_put(&dev->dev.kobj);
10655         }
10656 }
10657
10658 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10659  * all the same fields in the same order as net_device_stats, with only
10660  * the type differing, but rtnl_link_stats64 may have additional fields
10661  * at the end for newer counters.
10662  */
10663 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10664                              const struct net_device_stats *netdev_stats)
10665 {
10666 #if BITS_PER_LONG == 64
10667         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10668         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10669         /* zero out counters that only exist in rtnl_link_stats64 */
10670         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10671                sizeof(*stats64) - sizeof(*netdev_stats));
10672 #else
10673         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10674         const unsigned long *src = (const unsigned long *)netdev_stats;
10675         u64 *dst = (u64 *)stats64;
10676
10677         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10678         for (i = 0; i < n; i++)
10679                 dst[i] = src[i];
10680         /* zero out counters that only exist in rtnl_link_stats64 */
10681         memset((char *)stats64 + n * sizeof(u64), 0,
10682                sizeof(*stats64) - n * sizeof(u64));
10683 #endif
10684 }
10685 EXPORT_SYMBOL(netdev_stats_to_stats64);
10686
10687 /**
10688  *      dev_get_stats   - get network device statistics
10689  *      @dev: device to get statistics from
10690  *      @storage: place to store stats
10691  *
10692  *      Get network statistics from device. Return @storage.
10693  *      The device driver may provide its own method by setting
10694  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10695  *      otherwise the internal statistics structure is used.
10696  */
10697 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10698                                         struct rtnl_link_stats64 *storage)
10699 {
10700         const struct net_device_ops *ops = dev->netdev_ops;
10701
10702         if (ops->ndo_get_stats64) {
10703                 memset(storage, 0, sizeof(*storage));
10704                 ops->ndo_get_stats64(dev, storage);
10705         } else if (ops->ndo_get_stats) {
10706                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10707         } else {
10708                 netdev_stats_to_stats64(storage, &dev->stats);
10709         }
10710         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10711         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10712         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10713         return storage;
10714 }
10715 EXPORT_SYMBOL(dev_get_stats);
10716
10717 /**
10718  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10719  *      @s: place to store stats
10720  *      @netstats: per-cpu network stats to read from
10721  *
10722  *      Read per-cpu network statistics and populate the related fields in @s.
10723  */
10724 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10725                            const struct pcpu_sw_netstats __percpu *netstats)
10726 {
10727         int cpu;
10728
10729         for_each_possible_cpu(cpu) {
10730                 const struct pcpu_sw_netstats *stats;
10731                 struct pcpu_sw_netstats tmp;
10732                 unsigned int start;
10733
10734                 stats = per_cpu_ptr(netstats, cpu);
10735                 do {
10736                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10737                         tmp.rx_packets = stats->rx_packets;
10738                         tmp.rx_bytes   = stats->rx_bytes;
10739                         tmp.tx_packets = stats->tx_packets;
10740                         tmp.tx_bytes   = stats->tx_bytes;
10741                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10742
10743                 s->rx_packets += tmp.rx_packets;
10744                 s->rx_bytes   += tmp.rx_bytes;
10745                 s->tx_packets += tmp.tx_packets;
10746                 s->tx_bytes   += tmp.tx_bytes;
10747         }
10748 }
10749 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10750
10751 /**
10752  *      dev_get_tstats64 - ndo_get_stats64 implementation
10753  *      @dev: device to get statistics from
10754  *      @s: place to store stats
10755  *
10756  *      Populate @s from dev->stats and dev->tstats. Can be used as
10757  *      ndo_get_stats64() callback.
10758  */
10759 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10760 {
10761         netdev_stats_to_stats64(s, &dev->stats);
10762         dev_fetch_sw_netstats(s, dev->tstats);
10763 }
10764 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10765
10766 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10767 {
10768         struct netdev_queue *queue = dev_ingress_queue(dev);
10769
10770 #ifdef CONFIG_NET_CLS_ACT
10771         if (queue)
10772                 return queue;
10773         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10774         if (!queue)
10775                 return NULL;
10776         netdev_init_one_queue(dev, queue, NULL);
10777         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10778         queue->qdisc_sleeping = &noop_qdisc;
10779         rcu_assign_pointer(dev->ingress_queue, queue);
10780 #endif
10781         return queue;
10782 }
10783
10784 static const struct ethtool_ops default_ethtool_ops;
10785
10786 void netdev_set_default_ethtool_ops(struct net_device *dev,
10787                                     const struct ethtool_ops *ops)
10788 {
10789         if (dev->ethtool_ops == &default_ethtool_ops)
10790                 dev->ethtool_ops = ops;
10791 }
10792 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10793
10794 void netdev_freemem(struct net_device *dev)
10795 {
10796         char *addr = (char *)dev - dev->padded;
10797
10798         kvfree(addr);
10799 }
10800
10801 /**
10802  * alloc_netdev_mqs - allocate network device
10803  * @sizeof_priv: size of private data to allocate space for
10804  * @name: device name format string
10805  * @name_assign_type: origin of device name
10806  * @setup: callback to initialize device
10807  * @txqs: the number of TX subqueues to allocate
10808  * @rxqs: the number of RX subqueues to allocate
10809  *
10810  * Allocates a struct net_device with private data area for driver use
10811  * and performs basic initialization.  Also allocates subqueue structs
10812  * for each queue on the device.
10813  */
10814 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10815                 unsigned char name_assign_type,
10816                 void (*setup)(struct net_device *),
10817                 unsigned int txqs, unsigned int rxqs)
10818 {
10819         struct net_device *dev;
10820         unsigned int alloc_size;
10821         struct net_device *p;
10822
10823         BUG_ON(strlen(name) >= sizeof(dev->name));
10824
10825         if (txqs < 1) {
10826                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10827                 return NULL;
10828         }
10829
10830         if (rxqs < 1) {
10831                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10832                 return NULL;
10833         }
10834
10835         alloc_size = sizeof(struct net_device);
10836         if (sizeof_priv) {
10837                 /* ensure 32-byte alignment of private area */
10838                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10839                 alloc_size += sizeof_priv;
10840         }
10841         /* ensure 32-byte alignment of whole construct */
10842         alloc_size += NETDEV_ALIGN - 1;
10843
10844         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10845         if (!p)
10846                 return NULL;
10847
10848         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10849         dev->padded = (char *)dev - (char *)p;
10850
10851 #ifdef CONFIG_PCPU_DEV_REFCNT
10852         dev->pcpu_refcnt = alloc_percpu(int);
10853         if (!dev->pcpu_refcnt)
10854                 goto free_dev;
10855         dev_hold(dev);
10856 #else
10857         refcount_set(&dev->dev_refcnt, 1);
10858 #endif
10859
10860         if (dev_addr_init(dev))
10861                 goto free_pcpu;
10862
10863         dev_mc_init(dev);
10864         dev_uc_init(dev);
10865
10866         dev_net_set(dev, &init_net);
10867
10868         dev->gso_max_size = GSO_MAX_SIZE;
10869         dev->gso_max_segs = GSO_MAX_SEGS;
10870         dev->upper_level = 1;
10871         dev->lower_level = 1;
10872 #ifdef CONFIG_LOCKDEP
10873         dev->nested_level = 0;
10874         INIT_LIST_HEAD(&dev->unlink_list);
10875 #endif
10876
10877         INIT_LIST_HEAD(&dev->napi_list);
10878         INIT_LIST_HEAD(&dev->unreg_list);
10879         INIT_LIST_HEAD(&dev->close_list);
10880         INIT_LIST_HEAD(&dev->link_watch_list);
10881         INIT_LIST_HEAD(&dev->adj_list.upper);
10882         INIT_LIST_HEAD(&dev->adj_list.lower);
10883         INIT_LIST_HEAD(&dev->ptype_all);
10884         INIT_LIST_HEAD(&dev->ptype_specific);
10885         INIT_LIST_HEAD(&dev->net_notifier_list);
10886 #ifdef CONFIG_NET_SCHED
10887         hash_init(dev->qdisc_hash);
10888 #endif
10889         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10890         setup(dev);
10891
10892         if (!dev->tx_queue_len) {
10893                 dev->priv_flags |= IFF_NO_QUEUE;
10894                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10895         }
10896
10897         dev->num_tx_queues = txqs;
10898         dev->real_num_tx_queues = txqs;
10899         if (netif_alloc_netdev_queues(dev))
10900                 goto free_all;
10901
10902         dev->num_rx_queues = rxqs;
10903         dev->real_num_rx_queues = rxqs;
10904         if (netif_alloc_rx_queues(dev))
10905                 goto free_all;
10906
10907         strcpy(dev->name, name);
10908         dev->name_assign_type = name_assign_type;
10909         dev->group = INIT_NETDEV_GROUP;
10910         if (!dev->ethtool_ops)
10911                 dev->ethtool_ops = &default_ethtool_ops;
10912
10913         nf_hook_ingress_init(dev);
10914
10915         return dev;
10916
10917 free_all:
10918         free_netdev(dev);
10919         return NULL;
10920
10921 free_pcpu:
10922 #ifdef CONFIG_PCPU_DEV_REFCNT
10923         free_percpu(dev->pcpu_refcnt);
10924 free_dev:
10925 #endif
10926         netdev_freemem(dev);
10927         return NULL;
10928 }
10929 EXPORT_SYMBOL(alloc_netdev_mqs);
10930
10931 /**
10932  * free_netdev - free network device
10933  * @dev: device
10934  *
10935  * This function does the last stage of destroying an allocated device
10936  * interface. The reference to the device object is released. If this
10937  * is the last reference then it will be freed.Must be called in process
10938  * context.
10939  */
10940 void free_netdev(struct net_device *dev)
10941 {
10942         struct napi_struct *p, *n;
10943
10944         might_sleep();
10945
10946         /* When called immediately after register_netdevice() failed the unwind
10947          * handling may still be dismantling the device. Handle that case by
10948          * deferring the free.
10949          */
10950         if (dev->reg_state == NETREG_UNREGISTERING) {
10951                 ASSERT_RTNL();
10952                 dev->needs_free_netdev = true;
10953                 return;
10954         }
10955
10956         netif_free_tx_queues(dev);
10957         netif_free_rx_queues(dev);
10958
10959         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10960
10961         /* Flush device addresses */
10962         dev_addr_flush(dev);
10963
10964         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10965                 netif_napi_del(p);
10966
10967 #ifdef CONFIG_PCPU_DEV_REFCNT
10968         free_percpu(dev->pcpu_refcnt);
10969         dev->pcpu_refcnt = NULL;
10970 #endif
10971         free_percpu(dev->xdp_bulkq);
10972         dev->xdp_bulkq = NULL;
10973
10974         /*  Compatibility with error handling in drivers */
10975         if (dev->reg_state == NETREG_UNINITIALIZED) {
10976                 netdev_freemem(dev);
10977                 return;
10978         }
10979
10980         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10981         dev->reg_state = NETREG_RELEASED;
10982
10983         /* will free via device release */
10984         put_device(&dev->dev);
10985 }
10986 EXPORT_SYMBOL(free_netdev);
10987
10988 /**
10989  *      synchronize_net -  Synchronize with packet receive processing
10990  *
10991  *      Wait for packets currently being received to be done.
10992  *      Does not block later packets from starting.
10993  */
10994 void synchronize_net(void)
10995 {
10996         might_sleep();
10997         if (rtnl_is_locked())
10998                 synchronize_rcu_expedited();
10999         else
11000                 synchronize_rcu();
11001 }
11002 EXPORT_SYMBOL(synchronize_net);
11003
11004 /**
11005  *      unregister_netdevice_queue - remove device from the kernel
11006  *      @dev: device
11007  *      @head: list
11008  *
11009  *      This function shuts down a device interface and removes it
11010  *      from the kernel tables.
11011  *      If head not NULL, device is queued to be unregistered later.
11012  *
11013  *      Callers must hold the rtnl semaphore.  You may want
11014  *      unregister_netdev() instead of this.
11015  */
11016
11017 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11018 {
11019         ASSERT_RTNL();
11020
11021         if (head) {
11022                 list_move_tail(&dev->unreg_list, head);
11023         } else {
11024                 LIST_HEAD(single);
11025
11026                 list_add(&dev->unreg_list, &single);
11027                 unregister_netdevice_many(&single);
11028         }
11029 }
11030 EXPORT_SYMBOL(unregister_netdevice_queue);
11031
11032 /**
11033  *      unregister_netdevice_many - unregister many devices
11034  *      @head: list of devices
11035  *
11036  *  Note: As most callers use a stack allocated list_head,
11037  *  we force a list_del() to make sure stack wont be corrupted later.
11038  */
11039 void unregister_netdevice_many(struct list_head *head)
11040 {
11041         struct net_device *dev, *tmp;
11042         LIST_HEAD(close_head);
11043
11044         BUG_ON(dev_boot_phase);
11045         ASSERT_RTNL();
11046
11047         if (list_empty(head))
11048                 return;
11049
11050         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11051                 /* Some devices call without registering
11052                  * for initialization unwind. Remove those
11053                  * devices and proceed with the remaining.
11054                  */
11055                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11056                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11057                                  dev->name, dev);
11058
11059                         WARN_ON(1);
11060                         list_del(&dev->unreg_list);
11061                         continue;
11062                 }
11063                 dev->dismantle = true;
11064                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11065         }
11066
11067         /* If device is running, close it first. */
11068         list_for_each_entry(dev, head, unreg_list)
11069                 list_add_tail(&dev->close_list, &close_head);
11070         dev_close_many(&close_head, true);
11071
11072         list_for_each_entry(dev, head, unreg_list) {
11073                 /* And unlink it from device chain. */
11074                 unlist_netdevice(dev);
11075
11076                 dev->reg_state = NETREG_UNREGISTERING;
11077         }
11078         flush_all_backlogs();
11079
11080         synchronize_net();
11081
11082         list_for_each_entry(dev, head, unreg_list) {
11083                 struct sk_buff *skb = NULL;
11084
11085                 /* Shutdown queueing discipline. */
11086                 dev_shutdown(dev);
11087
11088                 dev_xdp_uninstall(dev);
11089
11090                 /* Notify protocols, that we are about to destroy
11091                  * this device. They should clean all the things.
11092                  */
11093                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11094
11095                 if (!dev->rtnl_link_ops ||
11096                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11097                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11098                                                      GFP_KERNEL, NULL, 0);
11099
11100                 /*
11101                  *      Flush the unicast and multicast chains
11102                  */
11103                 dev_uc_flush(dev);
11104                 dev_mc_flush(dev);
11105
11106                 netdev_name_node_alt_flush(dev);
11107                 netdev_name_node_free(dev->name_node);
11108
11109                 if (dev->netdev_ops->ndo_uninit)
11110                         dev->netdev_ops->ndo_uninit(dev);
11111
11112                 if (skb)
11113                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11114
11115                 /* Notifier chain MUST detach us all upper devices. */
11116                 WARN_ON(netdev_has_any_upper_dev(dev));
11117                 WARN_ON(netdev_has_any_lower_dev(dev));
11118
11119                 /* Remove entries from kobject tree */
11120                 netdev_unregister_kobject(dev);
11121 #ifdef CONFIG_XPS
11122                 /* Remove XPS queueing entries */
11123                 netif_reset_xps_queues_gt(dev, 0);
11124 #endif
11125         }
11126
11127         synchronize_net();
11128
11129         list_for_each_entry(dev, head, unreg_list) {
11130                 dev_put(dev);
11131                 net_set_todo(dev);
11132         }
11133
11134         list_del(head);
11135 }
11136 EXPORT_SYMBOL(unregister_netdevice_many);
11137
11138 /**
11139  *      unregister_netdev - remove device from the kernel
11140  *      @dev: device
11141  *
11142  *      This function shuts down a device interface and removes it
11143  *      from the kernel tables.
11144  *
11145  *      This is just a wrapper for unregister_netdevice that takes
11146  *      the rtnl semaphore.  In general you want to use this and not
11147  *      unregister_netdevice.
11148  */
11149 void unregister_netdev(struct net_device *dev)
11150 {
11151         rtnl_lock();
11152         unregister_netdevice(dev);
11153         rtnl_unlock();
11154 }
11155 EXPORT_SYMBOL(unregister_netdev);
11156
11157 /**
11158  *      __dev_change_net_namespace - move device to different nethost namespace
11159  *      @dev: device
11160  *      @net: network namespace
11161  *      @pat: If not NULL name pattern to try if the current device name
11162  *            is already taken in the destination network namespace.
11163  *      @new_ifindex: If not zero, specifies device index in the target
11164  *                    namespace.
11165  *
11166  *      This function shuts down a device interface and moves it
11167  *      to a new network namespace. On success 0 is returned, on
11168  *      a failure a netagive errno code is returned.
11169  *
11170  *      Callers must hold the rtnl semaphore.
11171  */
11172
11173 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11174                                const char *pat, int new_ifindex)
11175 {
11176         struct net *net_old = dev_net(dev);
11177         int err, new_nsid;
11178
11179         ASSERT_RTNL();
11180
11181         /* Don't allow namespace local devices to be moved. */
11182         err = -EINVAL;
11183         if (dev->features & NETIF_F_NETNS_LOCAL)
11184                 goto out;
11185
11186         /* Ensure the device has been registrered */
11187         if (dev->reg_state != NETREG_REGISTERED)
11188                 goto out;
11189
11190         /* Get out if there is nothing todo */
11191         err = 0;
11192         if (net_eq(net_old, net))
11193                 goto out;
11194
11195         /* Pick the destination device name, and ensure
11196          * we can use it in the destination network namespace.
11197          */
11198         err = -EEXIST;
11199         if (__dev_get_by_name(net, dev->name)) {
11200                 /* We get here if we can't use the current device name */
11201                 if (!pat)
11202                         goto out;
11203                 err = dev_get_valid_name(net, dev, pat);
11204                 if (err < 0)
11205                         goto out;
11206         }
11207
11208         /* Check that new_ifindex isn't used yet. */
11209         err = -EBUSY;
11210         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11211                 goto out;
11212
11213         /*
11214          * And now a mini version of register_netdevice unregister_netdevice.
11215          */
11216
11217         /* If device is running close it first. */
11218         dev_close(dev);
11219
11220         /* And unlink it from device chain */
11221         unlist_netdevice(dev);
11222
11223         synchronize_net();
11224
11225         /* Shutdown queueing discipline. */
11226         dev_shutdown(dev);
11227
11228         /* Notify protocols, that we are about to destroy
11229          * this device. They should clean all the things.
11230          *
11231          * Note that dev->reg_state stays at NETREG_REGISTERED.
11232          * This is wanted because this way 8021q and macvlan know
11233          * the device is just moving and can keep their slaves up.
11234          */
11235         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11236         rcu_barrier();
11237
11238         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11239         /* If there is an ifindex conflict assign a new one */
11240         if (!new_ifindex) {
11241                 if (__dev_get_by_index(net, dev->ifindex))
11242                         new_ifindex = dev_new_index(net);
11243                 else
11244                         new_ifindex = dev->ifindex;
11245         }
11246
11247         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11248                             new_ifindex);
11249
11250         /*
11251          *      Flush the unicast and multicast chains
11252          */
11253         dev_uc_flush(dev);
11254         dev_mc_flush(dev);
11255
11256         /* Send a netdev-removed uevent to the old namespace */
11257         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11258         netdev_adjacent_del_links(dev);
11259
11260         /* Move per-net netdevice notifiers that are following the netdevice */
11261         move_netdevice_notifiers_dev_net(dev, net);
11262
11263         /* Actually switch the network namespace */
11264         dev_net_set(dev, net);
11265         dev->ifindex = new_ifindex;
11266
11267         /* Send a netdev-add uevent to the new namespace */
11268         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11269         netdev_adjacent_add_links(dev);
11270
11271         /* Fixup kobjects */
11272         err = device_rename(&dev->dev, dev->name);
11273         WARN_ON(err);
11274
11275         /* Adapt owner in case owning user namespace of target network
11276          * namespace is different from the original one.
11277          */
11278         err = netdev_change_owner(dev, net_old, net);
11279         WARN_ON(err);
11280
11281         /* Add the device back in the hashes */
11282         list_netdevice(dev);
11283
11284         /* Notify protocols, that a new device appeared. */
11285         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11286
11287         /*
11288          *      Prevent userspace races by waiting until the network
11289          *      device is fully setup before sending notifications.
11290          */
11291         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11292
11293         synchronize_net();
11294         err = 0;
11295 out:
11296         return err;
11297 }
11298 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11299
11300 static int dev_cpu_dead(unsigned int oldcpu)
11301 {
11302         struct sk_buff **list_skb;
11303         struct sk_buff *skb;
11304         unsigned int cpu;
11305         struct softnet_data *sd, *oldsd, *remsd = NULL;
11306
11307         local_irq_disable();
11308         cpu = smp_processor_id();
11309         sd = &per_cpu(softnet_data, cpu);
11310         oldsd = &per_cpu(softnet_data, oldcpu);
11311
11312         /* Find end of our completion_queue. */
11313         list_skb = &sd->completion_queue;
11314         while (*list_skb)
11315                 list_skb = &(*list_skb)->next;
11316         /* Append completion queue from offline CPU. */
11317         *list_skb = oldsd->completion_queue;
11318         oldsd->completion_queue = NULL;
11319
11320         /* Append output queue from offline CPU. */
11321         if (oldsd->output_queue) {
11322                 *sd->output_queue_tailp = oldsd->output_queue;
11323                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11324                 oldsd->output_queue = NULL;
11325                 oldsd->output_queue_tailp = &oldsd->output_queue;
11326         }
11327         /* Append NAPI poll list from offline CPU, with one exception :
11328          * process_backlog() must be called by cpu owning percpu backlog.
11329          * We properly handle process_queue & input_pkt_queue later.
11330          */
11331         while (!list_empty(&oldsd->poll_list)) {
11332                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11333                                                             struct napi_struct,
11334                                                             poll_list);
11335
11336                 list_del_init(&napi->poll_list);
11337                 if (napi->poll == process_backlog)
11338                         napi->state = 0;
11339                 else
11340                         ____napi_schedule(sd, napi);
11341         }
11342
11343         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11344         local_irq_enable();
11345
11346 #ifdef CONFIG_RPS
11347         remsd = oldsd->rps_ipi_list;
11348         oldsd->rps_ipi_list = NULL;
11349 #endif
11350         /* send out pending IPI's on offline CPU */
11351         net_rps_send_ipi(remsd);
11352
11353         /* Process offline CPU's input_pkt_queue */
11354         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11355                 netif_rx_ni(skb);
11356                 input_queue_head_incr(oldsd);
11357         }
11358         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11359                 netif_rx_ni(skb);
11360                 input_queue_head_incr(oldsd);
11361         }
11362
11363         return 0;
11364 }
11365
11366 /**
11367  *      netdev_increment_features - increment feature set by one
11368  *      @all: current feature set
11369  *      @one: new feature set
11370  *      @mask: mask feature set
11371  *
11372  *      Computes a new feature set after adding a device with feature set
11373  *      @one to the master device with current feature set @all.  Will not
11374  *      enable anything that is off in @mask. Returns the new feature set.
11375  */
11376 netdev_features_t netdev_increment_features(netdev_features_t all,
11377         netdev_features_t one, netdev_features_t mask)
11378 {
11379         if (mask & NETIF_F_HW_CSUM)
11380                 mask |= NETIF_F_CSUM_MASK;
11381         mask |= NETIF_F_VLAN_CHALLENGED;
11382
11383         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11384         all &= one | ~NETIF_F_ALL_FOR_ALL;
11385
11386         /* If one device supports hw checksumming, set for all. */
11387         if (all & NETIF_F_HW_CSUM)
11388                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11389
11390         return all;
11391 }
11392 EXPORT_SYMBOL(netdev_increment_features);
11393
11394 static struct hlist_head * __net_init netdev_create_hash(void)
11395 {
11396         int i;
11397         struct hlist_head *hash;
11398
11399         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11400         if (hash != NULL)
11401                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11402                         INIT_HLIST_HEAD(&hash[i]);
11403
11404         return hash;
11405 }
11406
11407 /* Initialize per network namespace state */
11408 static int __net_init netdev_init(struct net *net)
11409 {
11410         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11411                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11412
11413         if (net != &init_net)
11414                 INIT_LIST_HEAD(&net->dev_base_head);
11415
11416         net->dev_name_head = netdev_create_hash();
11417         if (net->dev_name_head == NULL)
11418                 goto err_name;
11419
11420         net->dev_index_head = netdev_create_hash();
11421         if (net->dev_index_head == NULL)
11422                 goto err_idx;
11423
11424         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11425
11426         return 0;
11427
11428 err_idx:
11429         kfree(net->dev_name_head);
11430 err_name:
11431         return -ENOMEM;
11432 }
11433
11434 /**
11435  *      netdev_drivername - network driver for the device
11436  *      @dev: network device
11437  *
11438  *      Determine network driver for device.
11439  */
11440 const char *netdev_drivername(const struct net_device *dev)
11441 {
11442         const struct device_driver *driver;
11443         const struct device *parent;
11444         const char *empty = "";
11445
11446         parent = dev->dev.parent;
11447         if (!parent)
11448                 return empty;
11449
11450         driver = parent->driver;
11451         if (driver && driver->name)
11452                 return driver->name;
11453         return empty;
11454 }
11455
11456 static void __netdev_printk(const char *level, const struct net_device *dev,
11457                             struct va_format *vaf)
11458 {
11459         if (dev && dev->dev.parent) {
11460                 dev_printk_emit(level[1] - '0',
11461                                 dev->dev.parent,
11462                                 "%s %s %s%s: %pV",
11463                                 dev_driver_string(dev->dev.parent),
11464                                 dev_name(dev->dev.parent),
11465                                 netdev_name(dev), netdev_reg_state(dev),
11466                                 vaf);
11467         } else if (dev) {
11468                 printk("%s%s%s: %pV",
11469                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11470         } else {
11471                 printk("%s(NULL net_device): %pV", level, vaf);
11472         }
11473 }
11474
11475 void netdev_printk(const char *level, const struct net_device *dev,
11476                    const char *format, ...)
11477 {
11478         struct va_format vaf;
11479         va_list args;
11480
11481         va_start(args, format);
11482
11483         vaf.fmt = format;
11484         vaf.va = &args;
11485
11486         __netdev_printk(level, dev, &vaf);
11487
11488         va_end(args);
11489 }
11490 EXPORT_SYMBOL(netdev_printk);
11491
11492 #define define_netdev_printk_level(func, level)                 \
11493 void func(const struct net_device *dev, const char *fmt, ...)   \
11494 {                                                               \
11495         struct va_format vaf;                                   \
11496         va_list args;                                           \
11497                                                                 \
11498         va_start(args, fmt);                                    \
11499                                                                 \
11500         vaf.fmt = fmt;                                          \
11501         vaf.va = &args;                                         \
11502                                                                 \
11503         __netdev_printk(level, dev, &vaf);                      \
11504                                                                 \
11505         va_end(args);                                           \
11506 }                                                               \
11507 EXPORT_SYMBOL(func);
11508
11509 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11510 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11511 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11512 define_netdev_printk_level(netdev_err, KERN_ERR);
11513 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11514 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11515 define_netdev_printk_level(netdev_info, KERN_INFO);
11516
11517 static void __net_exit netdev_exit(struct net *net)
11518 {
11519         kfree(net->dev_name_head);
11520         kfree(net->dev_index_head);
11521         if (net != &init_net)
11522                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11523 }
11524
11525 static struct pernet_operations __net_initdata netdev_net_ops = {
11526         .init = netdev_init,
11527         .exit = netdev_exit,
11528 };
11529
11530 static void __net_exit default_device_exit(struct net *net)
11531 {
11532         struct net_device *dev, *aux;
11533         /*
11534          * Push all migratable network devices back to the
11535          * initial network namespace
11536          */
11537         rtnl_lock();
11538         for_each_netdev_safe(net, dev, aux) {
11539                 int err;
11540                 char fb_name[IFNAMSIZ];
11541
11542                 /* Ignore unmoveable devices (i.e. loopback) */
11543                 if (dev->features & NETIF_F_NETNS_LOCAL)
11544                         continue;
11545
11546                 /* Leave virtual devices for the generic cleanup */
11547                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11548                         continue;
11549
11550                 /* Push remaining network devices to init_net */
11551                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11552                 if (__dev_get_by_name(&init_net, fb_name))
11553                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11554                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11555                 if (err) {
11556                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11557                                  __func__, dev->name, err);
11558                         BUG();
11559                 }
11560         }
11561         rtnl_unlock();
11562 }
11563
11564 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11565 {
11566         /* Return with the rtnl_lock held when there are no network
11567          * devices unregistering in any network namespace in net_list.
11568          */
11569         struct net *net;
11570         bool unregistering;
11571         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11572
11573         add_wait_queue(&netdev_unregistering_wq, &wait);
11574         for (;;) {
11575                 unregistering = false;
11576                 rtnl_lock();
11577                 list_for_each_entry(net, net_list, exit_list) {
11578                         if (net->dev_unreg_count > 0) {
11579                                 unregistering = true;
11580                                 break;
11581                         }
11582                 }
11583                 if (!unregistering)
11584                         break;
11585                 __rtnl_unlock();
11586
11587                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11588         }
11589         remove_wait_queue(&netdev_unregistering_wq, &wait);
11590 }
11591
11592 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11593 {
11594         /* At exit all network devices most be removed from a network
11595          * namespace.  Do this in the reverse order of registration.
11596          * Do this across as many network namespaces as possible to
11597          * improve batching efficiency.
11598          */
11599         struct net_device *dev;
11600         struct net *net;
11601         LIST_HEAD(dev_kill_list);
11602
11603         /* To prevent network device cleanup code from dereferencing
11604          * loopback devices or network devices that have been freed
11605          * wait here for all pending unregistrations to complete,
11606          * before unregistring the loopback device and allowing the
11607          * network namespace be freed.
11608          *
11609          * The netdev todo list containing all network devices
11610          * unregistrations that happen in default_device_exit_batch
11611          * will run in the rtnl_unlock() at the end of
11612          * default_device_exit_batch.
11613          */
11614         rtnl_lock_unregistering(net_list);
11615         list_for_each_entry(net, net_list, exit_list) {
11616                 for_each_netdev_reverse(net, dev) {
11617                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11618                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11619                         else
11620                                 unregister_netdevice_queue(dev, &dev_kill_list);
11621                 }
11622         }
11623         unregister_netdevice_many(&dev_kill_list);
11624         rtnl_unlock();
11625 }
11626
11627 static struct pernet_operations __net_initdata default_device_ops = {
11628         .exit = default_device_exit,
11629         .exit_batch = default_device_exit_batch,
11630 };
11631
11632 /*
11633  *      Initialize the DEV module. At boot time this walks the device list and
11634  *      unhooks any devices that fail to initialise (normally hardware not
11635  *      present) and leaves us with a valid list of present and active devices.
11636  *
11637  */
11638
11639 /*
11640  *       This is called single threaded during boot, so no need
11641  *       to take the rtnl semaphore.
11642  */
11643 static int __init net_dev_init(void)
11644 {
11645         int i, rc = -ENOMEM;
11646
11647         BUG_ON(!dev_boot_phase);
11648
11649         if (dev_proc_init())
11650                 goto out;
11651
11652         if (netdev_kobject_init())
11653                 goto out;
11654
11655         INIT_LIST_HEAD(&ptype_all);
11656         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11657                 INIT_LIST_HEAD(&ptype_base[i]);
11658
11659         INIT_LIST_HEAD(&offload_base);
11660
11661         if (register_pernet_subsys(&netdev_net_ops))
11662                 goto out;
11663
11664         /*
11665          *      Initialise the packet receive queues.
11666          */
11667
11668         for_each_possible_cpu(i) {
11669                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11670                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11671
11672                 INIT_WORK(flush, flush_backlog);
11673
11674                 skb_queue_head_init(&sd->input_pkt_queue);
11675                 skb_queue_head_init(&sd->process_queue);
11676 #ifdef CONFIG_XFRM_OFFLOAD
11677                 skb_queue_head_init(&sd->xfrm_backlog);
11678 #endif
11679                 INIT_LIST_HEAD(&sd->poll_list);
11680                 sd->output_queue_tailp = &sd->output_queue;
11681 #ifdef CONFIG_RPS
11682                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11683                 sd->cpu = i;
11684 #endif
11685
11686                 init_gro_hash(&sd->backlog);
11687                 sd->backlog.poll = process_backlog;
11688                 sd->backlog.weight = weight_p;
11689         }
11690
11691         dev_boot_phase = 0;
11692
11693         /* The loopback device is special if any other network devices
11694          * is present in a network namespace the loopback device must
11695          * be present. Since we now dynamically allocate and free the
11696          * loopback device ensure this invariant is maintained by
11697          * keeping the loopback device as the first device on the
11698          * list of network devices.  Ensuring the loopback devices
11699          * is the first device that appears and the last network device
11700          * that disappears.
11701          */
11702         if (register_pernet_device(&loopback_net_ops))
11703                 goto out;
11704
11705         if (register_pernet_device(&default_device_ops))
11706                 goto out;
11707
11708         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11709         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11710
11711         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11712                                        NULL, dev_cpu_dead);
11713         WARN_ON(rc < 0);
11714         rc = 0;
11715 out:
11716         return rc;
11717 }
11718
11719 subsys_initcall(net_dev_init);