9f459f7f8f8312b762cf2222927f39f10e023de6
[sfrench/cifs-2.6.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 struct wb_domain global_wb_domain;
121
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125         struct wb_domain        *dom;
126         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
127 #endif
128         struct bdi_writeback    *wb;
129         struct fprop_local_percpu *wb_completions;
130
131         unsigned long           avail;          /* dirtyable */
132         unsigned long           dirty;          /* file_dirty + write + nfs */
133         unsigned long           thresh;         /* dirty threshold */
134         unsigned long           bg_thresh;      /* dirty background threshold */
135
136         unsigned long           wb_dirty;       /* per-wb counterparts */
137         unsigned long           wb_thresh;
138         unsigned long           wb_bg_thresh;
139
140         unsigned long           pos_ratio;
141 };
142
143 /*
144  * Length of period for aging writeout fractions of bdis. This is an
145  * arbitrarily chosen number. The longer the period, the slower fractions will
146  * reflect changes in current writeout rate.
147  */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149
150 #ifdef CONFIG_CGROUP_WRITEBACK
151
152 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
153                                 .dom = &global_wb_domain,               \
154                                 .wb_completions = &(__wb)->completions
155
156 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
157
158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
159                                 .dom = mem_cgroup_wb_domain(__wb),      \
160                                 .wb_completions = &(__wb)->memcg_completions, \
161                                 .gdtc = __gdtc
162
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165         return dtc->dom;
166 }
167
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175         return mdtc->gdtc;
176 }
177
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180         return &wb->memcg_completions;
181 }
182
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184                              unsigned long *minp, unsigned long *maxp)
185 {
186         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188         unsigned long long min = wb->bdi->min_ratio;
189         unsigned long long max = wb->bdi->max_ratio;
190
191         /*
192          * @wb may already be clean by the time control reaches here and
193          * the total may not include its bw.
194          */
195         if (this_bw < tot_bw) {
196                 if (min) {
197                         min *= this_bw;
198                         min = div64_ul(min, tot_bw);
199                 }
200                 if (max < 100) {
201                         max *= this_bw;
202                         max = div64_ul(max, tot_bw);
203                 }
204         }
205
206         *minp = min;
207         *maxp = max;
208 }
209
210 #else   /* CONFIG_CGROUP_WRITEBACK */
211
212 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
213                                 .wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219         return false;
220 }
221
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224         return &global_wb_domain;
225 }
226
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229         return NULL;
230 }
231
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234         return NULL;
235 }
236
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238                              unsigned long *minp, unsigned long *maxp)
239 {
240         *minp = wb->bdi->min_ratio;
241         *maxp = wb->bdi->max_ratio;
242 }
243
244 #endif  /* CONFIG_CGROUP_WRITEBACK */
245
246 /*
247  * In a memory zone, there is a certain amount of pages we consider
248  * available for the page cache, which is essentially the number of
249  * free and reclaimable pages, minus some zone reserves to protect
250  * lowmem and the ability to uphold the zone's watermarks without
251  * requiring writeback.
252  *
253  * This number of dirtyable pages is the base value of which the
254  * user-configurable dirty ratio is the effective number of pages that
255  * are allowed to be actually dirtied.  Per individual zone, or
256  * globally by using the sum of dirtyable pages over all zones.
257  *
258  * Because the user is allowed to specify the dirty limit globally as
259  * absolute number of bytes, calculating the per-zone dirty limit can
260  * require translating the configured limit into a percentage of
261  * global dirtyable memory first.
262  */
263
264 /**
265  * node_dirtyable_memory - number of dirtyable pages in a node
266  * @pgdat: the node
267  *
268  * Return: the node's number of pages potentially available for dirty
269  * page cache.  This is the base value for the per-node dirty limits.
270  */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273         unsigned long nr_pages = 0;
274         int z;
275
276         for (z = 0; z < MAX_NR_ZONES; z++) {
277                 struct zone *zone = pgdat->node_zones + z;
278
279                 if (!populated_zone(zone))
280                         continue;
281
282                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283         }
284
285         /*
286          * Pages reserved for the kernel should not be considered
287          * dirtyable, to prevent a situation where reclaim has to
288          * clean pages in order to balance the zones.
289          */
290         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291
292         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294
295         return nr_pages;
296 }
297
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301         int node;
302         unsigned long x = 0;
303         int i;
304
305         for_each_node_state(node, N_HIGH_MEMORY) {
306                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307                         struct zone *z;
308                         unsigned long nr_pages;
309
310                         if (!is_highmem_idx(i))
311                                 continue;
312
313                         z = &NODE_DATA(node)->node_zones[i];
314                         if (!populated_zone(z))
315                                 continue;
316
317                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
318                         /* watch for underflows */
319                         nr_pages -= min(nr_pages, high_wmark_pages(z));
320                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322                         x += nr_pages;
323                 }
324         }
325
326         /*
327          * Make sure that the number of highmem pages is never larger
328          * than the number of the total dirtyable memory. This can only
329          * occur in very strange VM situations but we want to make sure
330          * that this does not occur.
331          */
332         return min(x, total);
333 #else
334         return 0;
335 #endif
336 }
337
338 /**
339  * global_dirtyable_memory - number of globally dirtyable pages
340  *
341  * Return: the global number of pages potentially available for dirty
342  * page cache.  This is the base value for the global dirty limits.
343  */
344 static unsigned long global_dirtyable_memory(void)
345 {
346         unsigned long x;
347
348         x = global_zone_page_state(NR_FREE_PAGES);
349         /*
350          * Pages reserved for the kernel should not be considered
351          * dirtyable, to prevent a situation where reclaim has to
352          * clean pages in order to balance the zones.
353          */
354         x -= min(x, totalreserve_pages);
355
356         x += global_node_page_state(NR_INACTIVE_FILE);
357         x += global_node_page_state(NR_ACTIVE_FILE);
358
359         if (!vm_highmem_is_dirtyable)
360                 x -= highmem_dirtyable_memory(x);
361
362         return x + 1;   /* Ensure that we never return 0 */
363 }
364
365 /**
366  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367  * @dtc: dirty_throttle_control of interest
368  *
369  * Calculate @dtc->thresh and ->bg_thresh considering
370  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
371  * must ensure that @dtc->avail is set before calling this function.  The
372  * dirty limits will be lifted by 1/4 for real-time tasks.
373  */
374 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
375 {
376         const unsigned long available_memory = dtc->avail;
377         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378         unsigned long bytes = vm_dirty_bytes;
379         unsigned long bg_bytes = dirty_background_bytes;
380         /* convert ratios to per-PAGE_SIZE for higher precision */
381         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
383         unsigned long thresh;
384         unsigned long bg_thresh;
385         struct task_struct *tsk;
386
387         /* gdtc is !NULL iff @dtc is for memcg domain */
388         if (gdtc) {
389                 unsigned long global_avail = gdtc->avail;
390
391                 /*
392                  * The byte settings can't be applied directly to memcg
393                  * domains.  Convert them to ratios by scaling against
394                  * globally available memory.  As the ratios are in
395                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
396                  * number of pages.
397                  */
398                 if (bytes)
399                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
400                                     PAGE_SIZE);
401                 if (bg_bytes)
402                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403                                        PAGE_SIZE);
404                 bytes = bg_bytes = 0;
405         }
406
407         if (bytes)
408                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
409         else
410                 thresh = (ratio * available_memory) / PAGE_SIZE;
411
412         if (bg_bytes)
413                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
414         else
415                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
416
417         if (bg_thresh >= thresh)
418                 bg_thresh = thresh / 2;
419         tsk = current;
420         if (rt_task(tsk)) {
421                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
423         }
424         dtc->thresh = thresh;
425         dtc->bg_thresh = bg_thresh;
426
427         /* we should eventually report the domain in the TP */
428         if (!gdtc)
429                 trace_global_dirty_state(bg_thresh, thresh);
430 }
431
432 /**
433  * global_dirty_limits - background-writeback and dirty-throttling thresholds
434  * @pbackground: out parameter for bg_thresh
435  * @pdirty: out parameter for thresh
436  *
437  * Calculate bg_thresh and thresh for global_wb_domain.  See
438  * domain_dirty_limits() for details.
439  */
440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441 {
442         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444         gdtc.avail = global_dirtyable_memory();
445         domain_dirty_limits(&gdtc);
446
447         *pbackground = gdtc.bg_thresh;
448         *pdirty = gdtc.thresh;
449 }
450
451 /**
452  * node_dirty_limit - maximum number of dirty pages allowed in a node
453  * @pgdat: the node
454  *
455  * Return: the maximum number of dirty pages allowed in a node, based
456  * on the node's dirtyable memory.
457  */
458 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
459 {
460         unsigned long node_memory = node_dirtyable_memory(pgdat);
461         struct task_struct *tsk = current;
462         unsigned long dirty;
463
464         if (vm_dirty_bytes)
465                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
466                         node_memory / global_dirtyable_memory();
467         else
468                 dirty = vm_dirty_ratio * node_memory / 100;
469
470         if (rt_task(tsk))
471                 dirty += dirty / 4;
472
473         return dirty;
474 }
475
476 /**
477  * node_dirty_ok - tells whether a node is within its dirty limits
478  * @pgdat: the node to check
479  *
480  * Return: %true when the dirty pages in @pgdat are within the node's
481  * dirty limit, %false if the limit is exceeded.
482  */
483 bool node_dirty_ok(struct pglist_data *pgdat)
484 {
485         unsigned long limit = node_dirty_limit(pgdat);
486         unsigned long nr_pages = 0;
487
488         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
489         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
490
491         return nr_pages <= limit;
492 }
493
494 int dirty_background_ratio_handler(struct ctl_table *table, int write,
495                 void *buffer, size_t *lenp, loff_t *ppos)
496 {
497         int ret;
498
499         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
500         if (ret == 0 && write)
501                 dirty_background_bytes = 0;
502         return ret;
503 }
504
505 int dirty_background_bytes_handler(struct ctl_table *table, int write,
506                 void *buffer, size_t *lenp, loff_t *ppos)
507 {
508         int ret;
509
510         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
511         if (ret == 0 && write)
512                 dirty_background_ratio = 0;
513         return ret;
514 }
515
516 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
517                 size_t *lenp, loff_t *ppos)
518 {
519         int old_ratio = vm_dirty_ratio;
520         int ret;
521
522         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524                 writeback_set_ratelimit();
525                 vm_dirty_bytes = 0;
526         }
527         return ret;
528 }
529
530 int dirty_bytes_handler(struct ctl_table *table, int write,
531                 void *buffer, size_t *lenp, loff_t *ppos)
532 {
533         unsigned long old_bytes = vm_dirty_bytes;
534         int ret;
535
536         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538                 writeback_set_ratelimit();
539                 vm_dirty_ratio = 0;
540         }
541         return ret;
542 }
543
544 static unsigned long wp_next_time(unsigned long cur_time)
545 {
546         cur_time += VM_COMPLETIONS_PERIOD_LEN;
547         /* 0 has a special meaning... */
548         if (!cur_time)
549                 return 1;
550         return cur_time;
551 }
552
553 static void wb_domain_writeout_add(struct wb_domain *dom,
554                                    struct fprop_local_percpu *completions,
555                                    unsigned int max_prop_frac, long nr)
556 {
557         __fprop_add_percpu_max(&dom->completions, completions,
558                                max_prop_frac, nr);
559         /* First event after period switching was turned off? */
560         if (unlikely(!dom->period_time)) {
561                 /*
562                  * We can race with other __bdi_writeout_inc calls here but
563                  * it does not cause any harm since the resulting time when
564                  * timer will fire and what is in writeout_period_time will be
565                  * roughly the same.
566                  */
567                 dom->period_time = wp_next_time(jiffies);
568                 mod_timer(&dom->period_timer, dom->period_time);
569         }
570 }
571
572 /*
573  * Increment @wb's writeout completion count and the global writeout
574  * completion count. Called from __folio_end_writeback().
575  */
576 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
577 {
578         struct wb_domain *cgdom;
579
580         wb_stat_mod(wb, WB_WRITTEN, nr);
581         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
582                                wb->bdi->max_prop_frac, nr);
583
584         cgdom = mem_cgroup_wb_domain(wb);
585         if (cgdom)
586                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
587                                        wb->bdi->max_prop_frac, nr);
588 }
589
590 void wb_writeout_inc(struct bdi_writeback *wb)
591 {
592         unsigned long flags;
593
594         local_irq_save(flags);
595         __wb_writeout_add(wb, 1);
596         local_irq_restore(flags);
597 }
598 EXPORT_SYMBOL_GPL(wb_writeout_inc);
599
600 /*
601  * On idle system, we can be called long after we scheduled because we use
602  * deferred timers so count with missed periods.
603  */
604 static void writeout_period(struct timer_list *t)
605 {
606         struct wb_domain *dom = from_timer(dom, t, period_timer);
607         int miss_periods = (jiffies - dom->period_time) /
608                                                  VM_COMPLETIONS_PERIOD_LEN;
609
610         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
611                 dom->period_time = wp_next_time(dom->period_time +
612                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
613                 mod_timer(&dom->period_timer, dom->period_time);
614         } else {
615                 /*
616                  * Aging has zeroed all fractions. Stop wasting CPU on period
617                  * updates.
618                  */
619                 dom->period_time = 0;
620         }
621 }
622
623 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
624 {
625         memset(dom, 0, sizeof(*dom));
626
627         spin_lock_init(&dom->lock);
628
629         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
630
631         dom->dirty_limit_tstamp = jiffies;
632
633         return fprop_global_init(&dom->completions, gfp);
634 }
635
636 #ifdef CONFIG_CGROUP_WRITEBACK
637 void wb_domain_exit(struct wb_domain *dom)
638 {
639         del_timer_sync(&dom->period_timer);
640         fprop_global_destroy(&dom->completions);
641 }
642 #endif
643
644 /*
645  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
646  * registered backing devices, which, for obvious reasons, can not
647  * exceed 100%.
648  */
649 static unsigned int bdi_min_ratio;
650
651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
652 {
653         unsigned int delta;
654         int ret = 0;
655
656         spin_lock_bh(&bdi_lock);
657         if (min_ratio > bdi->max_ratio) {
658                 ret = -EINVAL;
659         } else {
660                 if (min_ratio < bdi->min_ratio) {
661                         delta = bdi->min_ratio - min_ratio;
662                         bdi_min_ratio -= delta;
663                         bdi->min_ratio = min_ratio;
664                 } else {
665                         delta = min_ratio - bdi->min_ratio;
666                         if (bdi_min_ratio + delta < 100) {
667                                 bdi_min_ratio += delta;
668                                 bdi->min_ratio = min_ratio;
669                         } else {
670                                 ret = -EINVAL;
671                         }
672                 }
673         }
674         spin_unlock_bh(&bdi_lock);
675
676         return ret;
677 }
678
679 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
680 {
681         int ret = 0;
682
683         if (max_ratio > 100)
684                 return -EINVAL;
685
686         spin_lock_bh(&bdi_lock);
687         if (bdi->min_ratio > max_ratio) {
688                 ret = -EINVAL;
689         } else {
690                 bdi->max_ratio = max_ratio;
691                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
692         }
693         spin_unlock_bh(&bdi_lock);
694
695         return ret;
696 }
697 EXPORT_SYMBOL(bdi_set_max_ratio);
698
699 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
700                                            unsigned long bg_thresh)
701 {
702         return (thresh + bg_thresh) / 2;
703 }
704
705 static unsigned long hard_dirty_limit(struct wb_domain *dom,
706                                       unsigned long thresh)
707 {
708         return max(thresh, dom->dirty_limit);
709 }
710
711 /*
712  * Memory which can be further allocated to a memcg domain is capped by
713  * system-wide clean memory excluding the amount being used in the domain.
714  */
715 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
716                             unsigned long filepages, unsigned long headroom)
717 {
718         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
719         unsigned long clean = filepages - min(filepages, mdtc->dirty);
720         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
721         unsigned long other_clean = global_clean - min(global_clean, clean);
722
723         mdtc->avail = filepages + min(headroom, other_clean);
724 }
725
726 /**
727  * __wb_calc_thresh - @wb's share of dirty throttling threshold
728  * @dtc: dirty_throttle_context of interest
729  *
730  * Note that balance_dirty_pages() will only seriously take it as a hard limit
731  * when sleeping max_pause per page is not enough to keep the dirty pages under
732  * control. For example, when the device is completely stalled due to some error
733  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
734  * In the other normal situations, it acts more gently by throttling the tasks
735  * more (rather than completely block them) when the wb dirty pages go high.
736  *
737  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
738  * - starving fast devices
739  * - piling up dirty pages (that will take long time to sync) on slow devices
740  *
741  * The wb's share of dirty limit will be adapting to its throughput and
742  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
743  *
744  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
745  * dirty balancing includes all PG_dirty and PG_writeback pages.
746  */
747 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
748 {
749         struct wb_domain *dom = dtc_dom(dtc);
750         unsigned long thresh = dtc->thresh;
751         u64 wb_thresh;
752         unsigned long numerator, denominator;
753         unsigned long wb_min_ratio, wb_max_ratio;
754
755         /*
756          * Calculate this BDI's share of the thresh ratio.
757          */
758         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
759                               &numerator, &denominator);
760
761         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
762         wb_thresh *= numerator;
763         wb_thresh = div64_ul(wb_thresh, denominator);
764
765         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
766
767         wb_thresh += (thresh * wb_min_ratio) / 100;
768         if (wb_thresh > (thresh * wb_max_ratio) / 100)
769                 wb_thresh = thresh * wb_max_ratio / 100;
770
771         return wb_thresh;
772 }
773
774 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
775 {
776         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
777                                                .thresh = thresh };
778         return __wb_calc_thresh(&gdtc);
779 }
780
781 /*
782  *                           setpoint - dirty 3
783  *        f(dirty) := 1.0 + (----------------)
784  *                           limit - setpoint
785  *
786  * it's a 3rd order polynomial that subjects to
787  *
788  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
789  * (2) f(setpoint) = 1.0 => the balance point
790  * (3) f(limit)    = 0   => the hard limit
791  * (4) df/dx      <= 0   => negative feedback control
792  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
793  *     => fast response on large errors; small oscillation near setpoint
794  */
795 static long long pos_ratio_polynom(unsigned long setpoint,
796                                           unsigned long dirty,
797                                           unsigned long limit)
798 {
799         long long pos_ratio;
800         long x;
801
802         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
803                       (limit - setpoint) | 1);
804         pos_ratio = x;
805         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
806         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
807         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
808
809         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
810 }
811
812 /*
813  * Dirty position control.
814  *
815  * (o) global/bdi setpoints
816  *
817  * We want the dirty pages be balanced around the global/wb setpoints.
818  * When the number of dirty pages is higher/lower than the setpoint, the
819  * dirty position control ratio (and hence task dirty ratelimit) will be
820  * decreased/increased to bring the dirty pages back to the setpoint.
821  *
822  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
823  *
824  *     if (dirty < setpoint) scale up   pos_ratio
825  *     if (dirty > setpoint) scale down pos_ratio
826  *
827  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
828  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
829  *
830  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
831  *
832  * (o) global control line
833  *
834  *     ^ pos_ratio
835  *     |
836  *     |            |<===== global dirty control scope ======>|
837  * 2.0  * * * * * * *
838  *     |            .*
839  *     |            . *
840  *     |            .   *
841  *     |            .     *
842  *     |            .        *
843  *     |            .            *
844  * 1.0 ................................*
845  *     |            .                  .     *
846  *     |            .                  .          *
847  *     |            .                  .              *
848  *     |            .                  .                 *
849  *     |            .                  .                    *
850  *   0 +------------.------------------.----------------------*------------->
851  *           freerun^          setpoint^                 limit^   dirty pages
852  *
853  * (o) wb control line
854  *
855  *     ^ pos_ratio
856  *     |
857  *     |            *
858  *     |              *
859  *     |                *
860  *     |                  *
861  *     |                    * |<=========== span ============>|
862  * 1.0 .......................*
863  *     |                      . *
864  *     |                      .   *
865  *     |                      .     *
866  *     |                      .       *
867  *     |                      .         *
868  *     |                      .           *
869  *     |                      .             *
870  *     |                      .               *
871  *     |                      .                 *
872  *     |                      .                   *
873  *     |                      .                     *
874  * 1/4 ...............................................* * * * * * * * * * * *
875  *     |                      .                         .
876  *     |                      .                           .
877  *     |                      .                             .
878  *   0 +----------------------.-------------------------------.------------->
879  *                wb_setpoint^                    x_intercept^
880  *
881  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
882  * be smoothly throttled down to normal if it starts high in situations like
883  * - start writing to a slow SD card and a fast disk at the same time. The SD
884  *   card's wb_dirty may rush to many times higher than wb_setpoint.
885  * - the wb dirty thresh drops quickly due to change of JBOD workload
886  */
887 static void wb_position_ratio(struct dirty_throttle_control *dtc)
888 {
889         struct bdi_writeback *wb = dtc->wb;
890         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
891         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
892         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
893         unsigned long wb_thresh = dtc->wb_thresh;
894         unsigned long x_intercept;
895         unsigned long setpoint;         /* dirty pages' target balance point */
896         unsigned long wb_setpoint;
897         unsigned long span;
898         long long pos_ratio;            /* for scaling up/down the rate limit */
899         long x;
900
901         dtc->pos_ratio = 0;
902
903         if (unlikely(dtc->dirty >= limit))
904                 return;
905
906         /*
907          * global setpoint
908          *
909          * See comment for pos_ratio_polynom().
910          */
911         setpoint = (freerun + limit) / 2;
912         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
913
914         /*
915          * The strictlimit feature is a tool preventing mistrusted filesystems
916          * from growing a large number of dirty pages before throttling. For
917          * such filesystems balance_dirty_pages always checks wb counters
918          * against wb limits. Even if global "nr_dirty" is under "freerun".
919          * This is especially important for fuse which sets bdi->max_ratio to
920          * 1% by default. Without strictlimit feature, fuse writeback may
921          * consume arbitrary amount of RAM because it is accounted in
922          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
923          *
924          * Here, in wb_position_ratio(), we calculate pos_ratio based on
925          * two values: wb_dirty and wb_thresh. Let's consider an example:
926          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
927          * limits are set by default to 10% and 20% (background and throttle).
928          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
929          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
930          * about ~6K pages (as the average of background and throttle wb
931          * limits). The 3rd order polynomial will provide positive feedback if
932          * wb_dirty is under wb_setpoint and vice versa.
933          *
934          * Note, that we cannot use global counters in these calculations
935          * because we want to throttle process writing to a strictlimit wb
936          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
937          * in the example above).
938          */
939         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
940                 long long wb_pos_ratio;
941
942                 if (dtc->wb_dirty < 8) {
943                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
944                                            2 << RATELIMIT_CALC_SHIFT);
945                         return;
946                 }
947
948                 if (dtc->wb_dirty >= wb_thresh)
949                         return;
950
951                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
952                                                     dtc->wb_bg_thresh);
953
954                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
955                         return;
956
957                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
958                                                  wb_thresh);
959
960                 /*
961                  * Typically, for strictlimit case, wb_setpoint << setpoint
962                  * and pos_ratio >> wb_pos_ratio. In the other words global
963                  * state ("dirty") is not limiting factor and we have to
964                  * make decision based on wb counters. But there is an
965                  * important case when global pos_ratio should get precedence:
966                  * global limits are exceeded (e.g. due to activities on other
967                  * wb's) while given strictlimit wb is below limit.
968                  *
969                  * "pos_ratio * wb_pos_ratio" would work for the case above,
970                  * but it would look too non-natural for the case of all
971                  * activity in the system coming from a single strictlimit wb
972                  * with bdi->max_ratio == 100%.
973                  *
974                  * Note that min() below somewhat changes the dynamics of the
975                  * control system. Normally, pos_ratio value can be well over 3
976                  * (when globally we are at freerun and wb is well below wb
977                  * setpoint). Now the maximum pos_ratio in the same situation
978                  * is 2. We might want to tweak this if we observe the control
979                  * system is too slow to adapt.
980                  */
981                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
982                 return;
983         }
984
985         /*
986          * We have computed basic pos_ratio above based on global situation. If
987          * the wb is over/under its share of dirty pages, we want to scale
988          * pos_ratio further down/up. That is done by the following mechanism.
989          */
990
991         /*
992          * wb setpoint
993          *
994          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
995          *
996          *                        x_intercept - wb_dirty
997          *                     := --------------------------
998          *                        x_intercept - wb_setpoint
999          *
1000          * The main wb control line is a linear function that subjects to
1001          *
1002          * (1) f(wb_setpoint) = 1.0
1003          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1004          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1005          *
1006          * For single wb case, the dirty pages are observed to fluctuate
1007          * regularly within range
1008          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1009          * for various filesystems, where (2) can yield in a reasonable 12.5%
1010          * fluctuation range for pos_ratio.
1011          *
1012          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1013          * own size, so move the slope over accordingly and choose a slope that
1014          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1015          */
1016         if (unlikely(wb_thresh > dtc->thresh))
1017                 wb_thresh = dtc->thresh;
1018         /*
1019          * It's very possible that wb_thresh is close to 0 not because the
1020          * device is slow, but that it has remained inactive for long time.
1021          * Honour such devices a reasonable good (hopefully IO efficient)
1022          * threshold, so that the occasional writes won't be blocked and active
1023          * writes can rampup the threshold quickly.
1024          */
1025         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1026         /*
1027          * scale global setpoint to wb's:
1028          *      wb_setpoint = setpoint * wb_thresh / thresh
1029          */
1030         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1031         wb_setpoint = setpoint * (u64)x >> 16;
1032         /*
1033          * Use span=(8*write_bw) in single wb case as indicated by
1034          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1035          *
1036          *        wb_thresh                    thresh - wb_thresh
1037          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1038          *         thresh                           thresh
1039          */
1040         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1041         x_intercept = wb_setpoint + span;
1042
1043         if (dtc->wb_dirty < x_intercept - span / 4) {
1044                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1045                                       (x_intercept - wb_setpoint) | 1);
1046         } else
1047                 pos_ratio /= 4;
1048
1049         /*
1050          * wb reserve area, safeguard against dirty pool underrun and disk idle
1051          * It may push the desired control point of global dirty pages higher
1052          * than setpoint.
1053          */
1054         x_intercept = wb_thresh / 2;
1055         if (dtc->wb_dirty < x_intercept) {
1056                 if (dtc->wb_dirty > x_intercept / 8)
1057                         pos_ratio = div_u64(pos_ratio * x_intercept,
1058                                             dtc->wb_dirty);
1059                 else
1060                         pos_ratio *= 8;
1061         }
1062
1063         dtc->pos_ratio = pos_ratio;
1064 }
1065
1066 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1067                                       unsigned long elapsed,
1068                                       unsigned long written)
1069 {
1070         const unsigned long period = roundup_pow_of_two(3 * HZ);
1071         unsigned long avg = wb->avg_write_bandwidth;
1072         unsigned long old = wb->write_bandwidth;
1073         u64 bw;
1074
1075         /*
1076          * bw = written * HZ / elapsed
1077          *
1078          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1079          * write_bandwidth = ---------------------------------------------------
1080          *                                          period
1081          *
1082          * @written may have decreased due to folio_account_redirty().
1083          * Avoid underflowing @bw calculation.
1084          */
1085         bw = written - min(written, wb->written_stamp);
1086         bw *= HZ;
1087         if (unlikely(elapsed > period)) {
1088                 bw = div64_ul(bw, elapsed);
1089                 avg = bw;
1090                 goto out;
1091         }
1092         bw += (u64)wb->write_bandwidth * (period - elapsed);
1093         bw >>= ilog2(period);
1094
1095         /*
1096          * one more level of smoothing, for filtering out sudden spikes
1097          */
1098         if (avg > old && old >= (unsigned long)bw)
1099                 avg -= (avg - old) >> 3;
1100
1101         if (avg < old && old <= (unsigned long)bw)
1102                 avg += (old - avg) >> 3;
1103
1104 out:
1105         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1106         avg = max(avg, 1LU);
1107         if (wb_has_dirty_io(wb)) {
1108                 long delta = avg - wb->avg_write_bandwidth;
1109                 WARN_ON_ONCE(atomic_long_add_return(delta,
1110                                         &wb->bdi->tot_write_bandwidth) <= 0);
1111         }
1112         wb->write_bandwidth = bw;
1113         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1114 }
1115
1116 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1117 {
1118         struct wb_domain *dom = dtc_dom(dtc);
1119         unsigned long thresh = dtc->thresh;
1120         unsigned long limit = dom->dirty_limit;
1121
1122         /*
1123          * Follow up in one step.
1124          */
1125         if (limit < thresh) {
1126                 limit = thresh;
1127                 goto update;
1128         }
1129
1130         /*
1131          * Follow down slowly. Use the higher one as the target, because thresh
1132          * may drop below dirty. This is exactly the reason to introduce
1133          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1134          */
1135         thresh = max(thresh, dtc->dirty);
1136         if (limit > thresh) {
1137                 limit -= (limit - thresh) >> 5;
1138                 goto update;
1139         }
1140         return;
1141 update:
1142         dom->dirty_limit = limit;
1143 }
1144
1145 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1146                                       unsigned long now)
1147 {
1148         struct wb_domain *dom = dtc_dom(dtc);
1149
1150         /*
1151          * check locklessly first to optimize away locking for the most time
1152          */
1153         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1154                 return;
1155
1156         spin_lock(&dom->lock);
1157         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1158                 update_dirty_limit(dtc);
1159                 dom->dirty_limit_tstamp = now;
1160         }
1161         spin_unlock(&dom->lock);
1162 }
1163
1164 /*
1165  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1166  *
1167  * Normal wb tasks will be curbed at or below it in long term.
1168  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1169  */
1170 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1171                                       unsigned long dirtied,
1172                                       unsigned long elapsed)
1173 {
1174         struct bdi_writeback *wb = dtc->wb;
1175         unsigned long dirty = dtc->dirty;
1176         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1177         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1178         unsigned long setpoint = (freerun + limit) / 2;
1179         unsigned long write_bw = wb->avg_write_bandwidth;
1180         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1181         unsigned long dirty_rate;
1182         unsigned long task_ratelimit;
1183         unsigned long balanced_dirty_ratelimit;
1184         unsigned long step;
1185         unsigned long x;
1186         unsigned long shift;
1187
1188         /*
1189          * The dirty rate will match the writeout rate in long term, except
1190          * when dirty pages are truncated by userspace or re-dirtied by FS.
1191          */
1192         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1193
1194         /*
1195          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1196          */
1197         task_ratelimit = (u64)dirty_ratelimit *
1198                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1199         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1200
1201         /*
1202          * A linear estimation of the "balanced" throttle rate. The theory is,
1203          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1204          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1205          * formula will yield the balanced rate limit (write_bw / N).
1206          *
1207          * Note that the expanded form is not a pure rate feedback:
1208          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1209          * but also takes pos_ratio into account:
1210          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1211          *
1212          * (1) is not realistic because pos_ratio also takes part in balancing
1213          * the dirty rate.  Consider the state
1214          *      pos_ratio = 0.5                                              (3)
1215          *      rate = 2 * (write_bw / N)                                    (4)
1216          * If (1) is used, it will stuck in that state! Because each dd will
1217          * be throttled at
1218          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1219          * yielding
1220          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1221          * put (6) into (1) we get
1222          *      rate_(i+1) = rate_(i)                                        (7)
1223          *
1224          * So we end up using (2) to always keep
1225          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1226          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1227          * pos_ratio is able to drive itself to 1.0, which is not only where
1228          * the dirty count meet the setpoint, but also where the slope of
1229          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1230          */
1231         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1232                                            dirty_rate | 1);
1233         /*
1234          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1235          */
1236         if (unlikely(balanced_dirty_ratelimit > write_bw))
1237                 balanced_dirty_ratelimit = write_bw;
1238
1239         /*
1240          * We could safely do this and return immediately:
1241          *
1242          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1243          *
1244          * However to get a more stable dirty_ratelimit, the below elaborated
1245          * code makes use of task_ratelimit to filter out singular points and
1246          * limit the step size.
1247          *
1248          * The below code essentially only uses the relative value of
1249          *
1250          *      task_ratelimit - dirty_ratelimit
1251          *      = (pos_ratio - 1) * dirty_ratelimit
1252          *
1253          * which reflects the direction and size of dirty position error.
1254          */
1255
1256         /*
1257          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1258          * task_ratelimit is on the same side of dirty_ratelimit, too.
1259          * For example, when
1260          * - dirty_ratelimit > balanced_dirty_ratelimit
1261          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1262          * lowering dirty_ratelimit will help meet both the position and rate
1263          * control targets. Otherwise, don't update dirty_ratelimit if it will
1264          * only help meet the rate target. After all, what the users ultimately
1265          * feel and care are stable dirty rate and small position error.
1266          *
1267          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1268          * and filter out the singular points of balanced_dirty_ratelimit. Which
1269          * keeps jumping around randomly and can even leap far away at times
1270          * due to the small 200ms estimation period of dirty_rate (we want to
1271          * keep that period small to reduce time lags).
1272          */
1273         step = 0;
1274
1275         /*
1276          * For strictlimit case, calculations above were based on wb counters
1277          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1278          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1279          * Hence, to calculate "step" properly, we have to use wb_dirty as
1280          * "dirty" and wb_setpoint as "setpoint".
1281          *
1282          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1283          * it's possible that wb_thresh is close to zero due to inactivity
1284          * of backing device.
1285          */
1286         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1287                 dirty = dtc->wb_dirty;
1288                 if (dtc->wb_dirty < 8)
1289                         setpoint = dtc->wb_dirty + 1;
1290                 else
1291                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1292         }
1293
1294         if (dirty < setpoint) {
1295                 x = min3(wb->balanced_dirty_ratelimit,
1296                          balanced_dirty_ratelimit, task_ratelimit);
1297                 if (dirty_ratelimit < x)
1298                         step = x - dirty_ratelimit;
1299         } else {
1300                 x = max3(wb->balanced_dirty_ratelimit,
1301                          balanced_dirty_ratelimit, task_ratelimit);
1302                 if (dirty_ratelimit > x)
1303                         step = dirty_ratelimit - x;
1304         }
1305
1306         /*
1307          * Don't pursue 100% rate matching. It's impossible since the balanced
1308          * rate itself is constantly fluctuating. So decrease the track speed
1309          * when it gets close to the target. Helps eliminate pointless tremors.
1310          */
1311         shift = dirty_ratelimit / (2 * step + 1);
1312         if (shift < BITS_PER_LONG)
1313                 step = DIV_ROUND_UP(step >> shift, 8);
1314         else
1315                 step = 0;
1316
1317         if (dirty_ratelimit < balanced_dirty_ratelimit)
1318                 dirty_ratelimit += step;
1319         else
1320                 dirty_ratelimit -= step;
1321
1322         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1323         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1324
1325         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1326 }
1327
1328 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1329                                   struct dirty_throttle_control *mdtc,
1330                                   bool update_ratelimit)
1331 {
1332         struct bdi_writeback *wb = gdtc->wb;
1333         unsigned long now = jiffies;
1334         unsigned long elapsed;
1335         unsigned long dirtied;
1336         unsigned long written;
1337
1338         spin_lock(&wb->list_lock);
1339
1340         /*
1341          * Lockless checks for elapsed time are racy and delayed update after
1342          * IO completion doesn't do it at all (to make sure written pages are
1343          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1344          * division errors.
1345          */
1346         elapsed = max(now - wb->bw_time_stamp, 1UL);
1347         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1348         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1349
1350         if (update_ratelimit) {
1351                 domain_update_dirty_limit(gdtc, now);
1352                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1353
1354                 /*
1355                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1356                  * compiler has no way to figure that out.  Help it.
1357                  */
1358                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1359                         domain_update_dirty_limit(mdtc, now);
1360                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1361                 }
1362         }
1363         wb_update_write_bandwidth(wb, elapsed, written);
1364
1365         wb->dirtied_stamp = dirtied;
1366         wb->written_stamp = written;
1367         WRITE_ONCE(wb->bw_time_stamp, now);
1368         spin_unlock(&wb->list_lock);
1369 }
1370
1371 void wb_update_bandwidth(struct bdi_writeback *wb)
1372 {
1373         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1374
1375         __wb_update_bandwidth(&gdtc, NULL, false);
1376 }
1377
1378 /* Interval after which we consider wb idle and don't estimate bandwidth */
1379 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1380
1381 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1382 {
1383         unsigned long now = jiffies;
1384         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1385
1386         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1387             !atomic_read(&wb->writeback_inodes)) {
1388                 spin_lock(&wb->list_lock);
1389                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1390                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1391                 WRITE_ONCE(wb->bw_time_stamp, now);
1392                 spin_unlock(&wb->list_lock);
1393         }
1394 }
1395
1396 /*
1397  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1398  * will look to see if it needs to start dirty throttling.
1399  *
1400  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1401  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1402  * (the number of pages we may dirty without exceeding the dirty limits).
1403  */
1404 static unsigned long dirty_poll_interval(unsigned long dirty,
1405                                          unsigned long thresh)
1406 {
1407         if (thresh > dirty)
1408                 return 1UL << (ilog2(thresh - dirty) >> 1);
1409
1410         return 1;
1411 }
1412
1413 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1414                                   unsigned long wb_dirty)
1415 {
1416         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1417         unsigned long t;
1418
1419         /*
1420          * Limit pause time for small memory systems. If sleeping for too long
1421          * time, a small pool of dirty/writeback pages may go empty and disk go
1422          * idle.
1423          *
1424          * 8 serves as the safety ratio.
1425          */
1426         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1427         t++;
1428
1429         return min_t(unsigned long, t, MAX_PAUSE);
1430 }
1431
1432 static long wb_min_pause(struct bdi_writeback *wb,
1433                          long max_pause,
1434                          unsigned long task_ratelimit,
1435                          unsigned long dirty_ratelimit,
1436                          int *nr_dirtied_pause)
1437 {
1438         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1439         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1440         long t;         /* target pause */
1441         long pause;     /* estimated next pause */
1442         int pages;      /* target nr_dirtied_pause */
1443
1444         /* target for 10ms pause on 1-dd case */
1445         t = max(1, HZ / 100);
1446
1447         /*
1448          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1449          * overheads.
1450          *
1451          * (N * 10ms) on 2^N concurrent tasks.
1452          */
1453         if (hi > lo)
1454                 t += (hi - lo) * (10 * HZ) / 1024;
1455
1456         /*
1457          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1458          * on the much more stable dirty_ratelimit. However the next pause time
1459          * will be computed based on task_ratelimit and the two rate limits may
1460          * depart considerably at some time. Especially if task_ratelimit goes
1461          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1462          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1463          * result task_ratelimit won't be executed faithfully, which could
1464          * eventually bring down dirty_ratelimit.
1465          *
1466          * We apply two rules to fix it up:
1467          * 1) try to estimate the next pause time and if necessary, use a lower
1468          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1469          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1470          * 2) limit the target pause time to max_pause/2, so that the normal
1471          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1472          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1473          */
1474         t = min(t, 1 + max_pause / 2);
1475         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1476
1477         /*
1478          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1479          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1480          * When the 16 consecutive reads are often interrupted by some dirty
1481          * throttling pause during the async writes, cfq will go into idles
1482          * (deadline is fine). So push nr_dirtied_pause as high as possible
1483          * until reaches DIRTY_POLL_THRESH=32 pages.
1484          */
1485         if (pages < DIRTY_POLL_THRESH) {
1486                 t = max_pause;
1487                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1488                 if (pages > DIRTY_POLL_THRESH) {
1489                         pages = DIRTY_POLL_THRESH;
1490                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1491                 }
1492         }
1493
1494         pause = HZ * pages / (task_ratelimit + 1);
1495         if (pause > max_pause) {
1496                 t = max_pause;
1497                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1498         }
1499
1500         *nr_dirtied_pause = pages;
1501         /*
1502          * The minimal pause time will normally be half the target pause time.
1503          */
1504         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1505 }
1506
1507 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1508 {
1509         struct bdi_writeback *wb = dtc->wb;
1510         unsigned long wb_reclaimable;
1511
1512         /*
1513          * wb_thresh is not treated as some limiting factor as
1514          * dirty_thresh, due to reasons
1515          * - in JBOD setup, wb_thresh can fluctuate a lot
1516          * - in a system with HDD and USB key, the USB key may somehow
1517          *   go into state (wb_dirty >> wb_thresh) either because
1518          *   wb_dirty starts high, or because wb_thresh drops low.
1519          *   In this case we don't want to hard throttle the USB key
1520          *   dirtiers for 100 seconds until wb_dirty drops under
1521          *   wb_thresh. Instead the auxiliary wb control line in
1522          *   wb_position_ratio() will let the dirtier task progress
1523          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1524          */
1525         dtc->wb_thresh = __wb_calc_thresh(dtc);
1526         dtc->wb_bg_thresh = dtc->thresh ?
1527                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1528
1529         /*
1530          * In order to avoid the stacked BDI deadlock we need
1531          * to ensure we accurately count the 'dirty' pages when
1532          * the threshold is low.
1533          *
1534          * Otherwise it would be possible to get thresh+n pages
1535          * reported dirty, even though there are thresh-m pages
1536          * actually dirty; with m+n sitting in the percpu
1537          * deltas.
1538          */
1539         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1540                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1541                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1542         } else {
1543                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1544                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1545         }
1546 }
1547
1548 /*
1549  * balance_dirty_pages() must be called by processes which are generating dirty
1550  * data.  It looks at the number of dirty pages in the machine and will force
1551  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1552  * If we're over `background_thresh' then the writeback threads are woken to
1553  * perform some writeout.
1554  */
1555 static void balance_dirty_pages(struct bdi_writeback *wb,
1556                                 unsigned long pages_dirtied)
1557 {
1558         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1559         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1560         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1561         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1562                                                      &mdtc_stor : NULL;
1563         struct dirty_throttle_control *sdtc;
1564         unsigned long nr_reclaimable;   /* = file_dirty */
1565         long period;
1566         long pause;
1567         long max_pause;
1568         long min_pause;
1569         int nr_dirtied_pause;
1570         bool dirty_exceeded = false;
1571         unsigned long task_ratelimit;
1572         unsigned long dirty_ratelimit;
1573         struct backing_dev_info *bdi = wb->bdi;
1574         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1575         unsigned long start_time = jiffies;
1576
1577         for (;;) {
1578                 unsigned long now = jiffies;
1579                 unsigned long dirty, thresh, bg_thresh;
1580                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1581                 unsigned long m_thresh = 0;
1582                 unsigned long m_bg_thresh = 0;
1583
1584                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1585                 gdtc->avail = global_dirtyable_memory();
1586                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1587
1588                 domain_dirty_limits(gdtc);
1589
1590                 if (unlikely(strictlimit)) {
1591                         wb_dirty_limits(gdtc);
1592
1593                         dirty = gdtc->wb_dirty;
1594                         thresh = gdtc->wb_thresh;
1595                         bg_thresh = gdtc->wb_bg_thresh;
1596                 } else {
1597                         dirty = gdtc->dirty;
1598                         thresh = gdtc->thresh;
1599                         bg_thresh = gdtc->bg_thresh;
1600                 }
1601
1602                 if (mdtc) {
1603                         unsigned long filepages, headroom, writeback;
1604
1605                         /*
1606                          * If @wb belongs to !root memcg, repeat the same
1607                          * basic calculations for the memcg domain.
1608                          */
1609                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1610                                             &mdtc->dirty, &writeback);
1611                         mdtc->dirty += writeback;
1612                         mdtc_calc_avail(mdtc, filepages, headroom);
1613
1614                         domain_dirty_limits(mdtc);
1615
1616                         if (unlikely(strictlimit)) {
1617                                 wb_dirty_limits(mdtc);
1618                                 m_dirty = mdtc->wb_dirty;
1619                                 m_thresh = mdtc->wb_thresh;
1620                                 m_bg_thresh = mdtc->wb_bg_thresh;
1621                         } else {
1622                                 m_dirty = mdtc->dirty;
1623                                 m_thresh = mdtc->thresh;
1624                                 m_bg_thresh = mdtc->bg_thresh;
1625                         }
1626                 }
1627
1628                 /*
1629                  * Throttle it only when the background writeback cannot
1630                  * catch-up. This avoids (excessively) small writeouts
1631                  * when the wb limits are ramping up in case of !strictlimit.
1632                  *
1633                  * In strictlimit case make decision based on the wb counters
1634                  * and limits. Small writeouts when the wb limits are ramping
1635                  * up are the price we consciously pay for strictlimit-ing.
1636                  *
1637                  * If memcg domain is in effect, @dirty should be under
1638                  * both global and memcg freerun ceilings.
1639                  */
1640                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1641                     (!mdtc ||
1642                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1643                         unsigned long intv;
1644                         unsigned long m_intv;
1645
1646 free_running:
1647                         intv = dirty_poll_interval(dirty, thresh);
1648                         m_intv = ULONG_MAX;
1649
1650                         current->dirty_paused_when = now;
1651                         current->nr_dirtied = 0;
1652                         if (mdtc)
1653                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1654                         current->nr_dirtied_pause = min(intv, m_intv);
1655                         break;
1656                 }
1657
1658                 if (unlikely(!writeback_in_progress(wb)))
1659                         wb_start_background_writeback(wb);
1660
1661                 mem_cgroup_flush_foreign(wb);
1662
1663                 /*
1664                  * Calculate global domain's pos_ratio and select the
1665                  * global dtc by default.
1666                  */
1667                 if (!strictlimit) {
1668                         wb_dirty_limits(gdtc);
1669
1670                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1671                             gdtc->wb_dirty <
1672                             dirty_freerun_ceiling(gdtc->wb_thresh,
1673                                                   gdtc->wb_bg_thresh))
1674                                 /*
1675                                  * LOCAL_THROTTLE tasks must not be throttled
1676                                  * when below the per-wb freerun ceiling.
1677                                  */
1678                                 goto free_running;
1679                 }
1680
1681                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1683
1684                 wb_position_ratio(gdtc);
1685                 sdtc = gdtc;
1686
1687                 if (mdtc) {
1688                         /*
1689                          * If memcg domain is in effect, calculate its
1690                          * pos_ratio.  @wb should satisfy constraints from
1691                          * both global and memcg domains.  Choose the one
1692                          * w/ lower pos_ratio.
1693                          */
1694                         if (!strictlimit) {
1695                                 wb_dirty_limits(mdtc);
1696
1697                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1698                                     mdtc->wb_dirty <
1699                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1700                                                           mdtc->wb_bg_thresh))
1701                                         /*
1702                                          * LOCAL_THROTTLE tasks must not be
1703                                          * throttled when below the per-wb
1704                                          * freerun ceiling.
1705                                          */
1706                                         goto free_running;
1707                         }
1708                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1709                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1710
1711                         wb_position_ratio(mdtc);
1712                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1713                                 sdtc = mdtc;
1714                 }
1715
1716                 if (dirty_exceeded && !wb->dirty_exceeded)
1717                         wb->dirty_exceeded = 1;
1718
1719                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1720                                            BANDWIDTH_INTERVAL))
1721                         __wb_update_bandwidth(gdtc, mdtc, true);
1722
1723                 /* throttle according to the chosen dtc */
1724                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1725                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1726                                                         RATELIMIT_CALC_SHIFT;
1727                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1728                 min_pause = wb_min_pause(wb, max_pause,
1729                                          task_ratelimit, dirty_ratelimit,
1730                                          &nr_dirtied_pause);
1731
1732                 if (unlikely(task_ratelimit == 0)) {
1733                         period = max_pause;
1734                         pause = max_pause;
1735                         goto pause;
1736                 }
1737                 period = HZ * pages_dirtied / task_ratelimit;
1738                 pause = period;
1739                 if (current->dirty_paused_when)
1740                         pause -= now - current->dirty_paused_when;
1741                 /*
1742                  * For less than 1s think time (ext3/4 may block the dirtier
1743                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1744                  * however at much less frequency), try to compensate it in
1745                  * future periods by updating the virtual time; otherwise just
1746                  * do a reset, as it may be a light dirtier.
1747                  */
1748                 if (pause < min_pause) {
1749                         trace_balance_dirty_pages(wb,
1750                                                   sdtc->thresh,
1751                                                   sdtc->bg_thresh,
1752                                                   sdtc->dirty,
1753                                                   sdtc->wb_thresh,
1754                                                   sdtc->wb_dirty,
1755                                                   dirty_ratelimit,
1756                                                   task_ratelimit,
1757                                                   pages_dirtied,
1758                                                   period,
1759                                                   min(pause, 0L),
1760                                                   start_time);
1761                         if (pause < -HZ) {
1762                                 current->dirty_paused_when = now;
1763                                 current->nr_dirtied = 0;
1764                         } else if (period) {
1765                                 current->dirty_paused_when += period;
1766                                 current->nr_dirtied = 0;
1767                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1768                                 current->nr_dirtied_pause += pages_dirtied;
1769                         break;
1770                 }
1771                 if (unlikely(pause > max_pause)) {
1772                         /* for occasional dropped task_ratelimit */
1773                         now += min(pause - max_pause, max_pause);
1774                         pause = max_pause;
1775                 }
1776
1777 pause:
1778                 trace_balance_dirty_pages(wb,
1779                                           sdtc->thresh,
1780                                           sdtc->bg_thresh,
1781                                           sdtc->dirty,
1782                                           sdtc->wb_thresh,
1783                                           sdtc->wb_dirty,
1784                                           dirty_ratelimit,
1785                                           task_ratelimit,
1786                                           pages_dirtied,
1787                                           period,
1788                                           pause,
1789                                           start_time);
1790                 __set_current_state(TASK_KILLABLE);
1791                 wb->dirty_sleep = now;
1792                 io_schedule_timeout(pause);
1793
1794                 current->dirty_paused_when = now + pause;
1795                 current->nr_dirtied = 0;
1796                 current->nr_dirtied_pause = nr_dirtied_pause;
1797
1798                 /*
1799                  * This is typically equal to (dirty < thresh) and can also
1800                  * keep "1000+ dd on a slow USB stick" under control.
1801                  */
1802                 if (task_ratelimit)
1803                         break;
1804
1805                 /*
1806                  * In the case of an unresponsive NFS server and the NFS dirty
1807                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1808                  * to go through, so that tasks on them still remain responsive.
1809                  *
1810                  * In theory 1 page is enough to keep the consumer-producer
1811                  * pipe going: the flusher cleans 1 page => the task dirties 1
1812                  * more page. However wb_dirty has accounting errors.  So use
1813                  * the larger and more IO friendly wb_stat_error.
1814                  */
1815                 if (sdtc->wb_dirty <= wb_stat_error())
1816                         break;
1817
1818                 if (fatal_signal_pending(current))
1819                         break;
1820         }
1821
1822         if (!dirty_exceeded && wb->dirty_exceeded)
1823                 wb->dirty_exceeded = 0;
1824
1825         if (writeback_in_progress(wb))
1826                 return;
1827
1828         /*
1829          * In laptop mode, we wait until hitting the higher threshold before
1830          * starting background writeout, and then write out all the way down
1831          * to the lower threshold.  So slow writers cause minimal disk activity.
1832          *
1833          * In normal mode, we start background writeout at the lower
1834          * background_thresh, to keep the amount of dirty memory low.
1835          */
1836         if (laptop_mode)
1837                 return;
1838
1839         if (nr_reclaimable > gdtc->bg_thresh)
1840                 wb_start_background_writeback(wb);
1841 }
1842
1843 static DEFINE_PER_CPU(int, bdp_ratelimits);
1844
1845 /*
1846  * Normal tasks are throttled by
1847  *      loop {
1848  *              dirty tsk->nr_dirtied_pause pages;
1849  *              take a snap in balance_dirty_pages();
1850  *      }
1851  * However there is a worst case. If every task exit immediately when dirtied
1852  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1853  * called to throttle the page dirties. The solution is to save the not yet
1854  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1855  * randomly into the running tasks. This works well for the above worst case,
1856  * as the new task will pick up and accumulate the old task's leaked dirty
1857  * count and eventually get throttled.
1858  */
1859 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1860
1861 /**
1862  * balance_dirty_pages_ratelimited - balance dirty memory state
1863  * @mapping: address_space which was dirtied
1864  *
1865  * Processes which are dirtying memory should call in here once for each page
1866  * which was newly dirtied.  The function will periodically check the system's
1867  * dirty state and will initiate writeback if needed.
1868  *
1869  * Once we're over the dirty memory limit we decrease the ratelimiting
1870  * by a lot, to prevent individual processes from overshooting the limit
1871  * by (ratelimit_pages) each.
1872  */
1873 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1874 {
1875         struct inode *inode = mapping->host;
1876         struct backing_dev_info *bdi = inode_to_bdi(inode);
1877         struct bdi_writeback *wb = NULL;
1878         int ratelimit;
1879         int *p;
1880
1881         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1882                 return;
1883
1884         if (inode_cgwb_enabled(inode))
1885                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1886         if (!wb)
1887                 wb = &bdi->wb;
1888
1889         ratelimit = current->nr_dirtied_pause;
1890         if (wb->dirty_exceeded)
1891                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1892
1893         preempt_disable();
1894         /*
1895          * This prevents one CPU to accumulate too many dirtied pages without
1896          * calling into balance_dirty_pages(), which can happen when there are
1897          * 1000+ tasks, all of them start dirtying pages at exactly the same
1898          * time, hence all honoured too large initial task->nr_dirtied_pause.
1899          */
1900         p =  this_cpu_ptr(&bdp_ratelimits);
1901         if (unlikely(current->nr_dirtied >= ratelimit))
1902                 *p = 0;
1903         else if (unlikely(*p >= ratelimit_pages)) {
1904                 *p = 0;
1905                 ratelimit = 0;
1906         }
1907         /*
1908          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1909          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1910          * the dirty throttling and livelock other long-run dirtiers.
1911          */
1912         p = this_cpu_ptr(&dirty_throttle_leaks);
1913         if (*p > 0 && current->nr_dirtied < ratelimit) {
1914                 unsigned long nr_pages_dirtied;
1915                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1916                 *p -= nr_pages_dirtied;
1917                 current->nr_dirtied += nr_pages_dirtied;
1918         }
1919         preempt_enable();
1920
1921         if (unlikely(current->nr_dirtied >= ratelimit))
1922                 balance_dirty_pages(wb, current->nr_dirtied);
1923
1924         wb_put(wb);
1925 }
1926 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1927
1928 /**
1929  * wb_over_bg_thresh - does @wb need to be written back?
1930  * @wb: bdi_writeback of interest
1931  *
1932  * Determines whether background writeback should keep writing @wb or it's
1933  * clean enough.
1934  *
1935  * Return: %true if writeback should continue.
1936  */
1937 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1938 {
1939         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1940         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1941         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1942         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1943                                                      &mdtc_stor : NULL;
1944         unsigned long reclaimable;
1945         unsigned long thresh;
1946
1947         /*
1948          * Similar to balance_dirty_pages() but ignores pages being written
1949          * as we're trying to decide whether to put more under writeback.
1950          */
1951         gdtc->avail = global_dirtyable_memory();
1952         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1953         domain_dirty_limits(gdtc);
1954
1955         if (gdtc->dirty > gdtc->bg_thresh)
1956                 return true;
1957
1958         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1959         if (thresh < 2 * wb_stat_error())
1960                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1961         else
1962                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1963
1964         if (reclaimable > thresh)
1965                 return true;
1966
1967         if (mdtc) {
1968                 unsigned long filepages, headroom, writeback;
1969
1970                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1971                                     &writeback);
1972                 mdtc_calc_avail(mdtc, filepages, headroom);
1973                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1974
1975                 if (mdtc->dirty > mdtc->bg_thresh)
1976                         return true;
1977
1978                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1979                 if (thresh < 2 * wb_stat_error())
1980                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1981                 else
1982                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1983
1984                 if (reclaimable > thresh)
1985                         return true;
1986         }
1987
1988         return false;
1989 }
1990
1991 /*
1992  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1993  */
1994 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1995                 void *buffer, size_t *length, loff_t *ppos)
1996 {
1997         unsigned int old_interval = dirty_writeback_interval;
1998         int ret;
1999
2000         ret = proc_dointvec(table, write, buffer, length, ppos);
2001
2002         /*
2003          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2004          * and a different non-zero value will wakeup the writeback threads.
2005          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2006          * iterate over all bdis and wbs.
2007          * The reason we do this is to make the change take effect immediately.
2008          */
2009         if (!ret && write && dirty_writeback_interval &&
2010                 dirty_writeback_interval != old_interval)
2011                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2012
2013         return ret;
2014 }
2015
2016 void laptop_mode_timer_fn(struct timer_list *t)
2017 {
2018         struct backing_dev_info *backing_dev_info =
2019                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2020
2021         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2022 }
2023
2024 /*
2025  * We've spun up the disk and we're in laptop mode: schedule writeback
2026  * of all dirty data a few seconds from now.  If the flush is already scheduled
2027  * then push it back - the user is still using the disk.
2028  */
2029 void laptop_io_completion(struct backing_dev_info *info)
2030 {
2031         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2032 }
2033
2034 /*
2035  * We're in laptop mode and we've just synced. The sync's writes will have
2036  * caused another writeback to be scheduled by laptop_io_completion.
2037  * Nothing needs to be written back anymore, so we unschedule the writeback.
2038  */
2039 void laptop_sync_completion(void)
2040 {
2041         struct backing_dev_info *bdi;
2042
2043         rcu_read_lock();
2044
2045         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2046                 del_timer(&bdi->laptop_mode_wb_timer);
2047
2048         rcu_read_unlock();
2049 }
2050
2051 /*
2052  * If ratelimit_pages is too high then we can get into dirty-data overload
2053  * if a large number of processes all perform writes at the same time.
2054  *
2055  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2056  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2057  * thresholds.
2058  */
2059
2060 void writeback_set_ratelimit(void)
2061 {
2062         struct wb_domain *dom = &global_wb_domain;
2063         unsigned long background_thresh;
2064         unsigned long dirty_thresh;
2065
2066         global_dirty_limits(&background_thresh, &dirty_thresh);
2067         dom->dirty_limit = dirty_thresh;
2068         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2069         if (ratelimit_pages < 16)
2070                 ratelimit_pages = 16;
2071 }
2072
2073 static int page_writeback_cpu_online(unsigned int cpu)
2074 {
2075         writeback_set_ratelimit();
2076         return 0;
2077 }
2078
2079 /*
2080  * Called early on to tune the page writeback dirty limits.
2081  *
2082  * We used to scale dirty pages according to how total memory
2083  * related to pages that could be allocated for buffers.
2084  *
2085  * However, that was when we used "dirty_ratio" to scale with
2086  * all memory, and we don't do that any more. "dirty_ratio"
2087  * is now applied to total non-HIGHPAGE memory, and as such we can't
2088  * get into the old insane situation any more where we had
2089  * large amounts of dirty pages compared to a small amount of
2090  * non-HIGHMEM memory.
2091  *
2092  * But we might still want to scale the dirty_ratio by how
2093  * much memory the box has..
2094  */
2095 void __init page_writeback_init(void)
2096 {
2097         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2098
2099         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2100                           page_writeback_cpu_online, NULL);
2101         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2102                           page_writeback_cpu_online);
2103 }
2104
2105 /**
2106  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2107  * @mapping: address space structure to write
2108  * @start: starting page index
2109  * @end: ending page index (inclusive)
2110  *
2111  * This function scans the page range from @start to @end (inclusive) and tags
2112  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2113  * that write_cache_pages (or whoever calls this function) will then use
2114  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2115  * used to avoid livelocking of writeback by a process steadily creating new
2116  * dirty pages in the file (thus it is important for this function to be quick
2117  * so that it can tag pages faster than a dirtying process can create them).
2118  */
2119 void tag_pages_for_writeback(struct address_space *mapping,
2120                              pgoff_t start, pgoff_t end)
2121 {
2122         XA_STATE(xas, &mapping->i_pages, start);
2123         unsigned int tagged = 0;
2124         void *page;
2125
2126         xas_lock_irq(&xas);
2127         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2128                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2129                 if (++tagged % XA_CHECK_SCHED)
2130                         continue;
2131
2132                 xas_pause(&xas);
2133                 xas_unlock_irq(&xas);
2134                 cond_resched();
2135                 xas_lock_irq(&xas);
2136         }
2137         xas_unlock_irq(&xas);
2138 }
2139 EXPORT_SYMBOL(tag_pages_for_writeback);
2140
2141 /**
2142  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2143  * @mapping: address space structure to write
2144  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2145  * @writepage: function called for each page
2146  * @data: data passed to writepage function
2147  *
2148  * If a page is already under I/O, write_cache_pages() skips it, even
2149  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2150  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2151  * and msync() need to guarantee that all the data which was dirty at the time
2152  * the call was made get new I/O started against them.  If wbc->sync_mode is
2153  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2154  * existing IO to complete.
2155  *
2156  * To avoid livelocks (when other process dirties new pages), we first tag
2157  * pages which should be written back with TOWRITE tag and only then start
2158  * writing them. For data-integrity sync we have to be careful so that we do
2159  * not miss some pages (e.g., because some other process has cleared TOWRITE
2160  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2161  * by the process clearing the DIRTY tag (and submitting the page for IO).
2162  *
2163  * To avoid deadlocks between range_cyclic writeback and callers that hold
2164  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2165  * we do not loop back to the start of the file. Doing so causes a page
2166  * lock/page writeback access order inversion - we should only ever lock
2167  * multiple pages in ascending page->index order, and looping back to the start
2168  * of the file violates that rule and causes deadlocks.
2169  *
2170  * Return: %0 on success, negative error code otherwise
2171  */
2172 int write_cache_pages(struct address_space *mapping,
2173                       struct writeback_control *wbc, writepage_t writepage,
2174                       void *data)
2175 {
2176         int ret = 0;
2177         int done = 0;
2178         int error;
2179         struct pagevec pvec;
2180         int nr_pages;
2181         pgoff_t index;
2182         pgoff_t end;            /* Inclusive */
2183         pgoff_t done_index;
2184         int range_whole = 0;
2185         xa_mark_t tag;
2186
2187         pagevec_init(&pvec);
2188         if (wbc->range_cyclic) {
2189                 index = mapping->writeback_index; /* prev offset */
2190                 end = -1;
2191         } else {
2192                 index = wbc->range_start >> PAGE_SHIFT;
2193                 end = wbc->range_end >> PAGE_SHIFT;
2194                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2195                         range_whole = 1;
2196         }
2197         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2198                 tag_pages_for_writeback(mapping, index, end);
2199                 tag = PAGECACHE_TAG_TOWRITE;
2200         } else {
2201                 tag = PAGECACHE_TAG_DIRTY;
2202         }
2203         done_index = index;
2204         while (!done && (index <= end)) {
2205                 int i;
2206
2207                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2208                                 tag);
2209                 if (nr_pages == 0)
2210                         break;
2211
2212                 for (i = 0; i < nr_pages; i++) {
2213                         struct page *page = pvec.pages[i];
2214
2215                         done_index = page->index;
2216
2217                         lock_page(page);
2218
2219                         /*
2220                          * Page truncated or invalidated. We can freely skip it
2221                          * then, even for data integrity operations: the page
2222                          * has disappeared concurrently, so there could be no
2223                          * real expectation of this data integrity operation
2224                          * even if there is now a new, dirty page at the same
2225                          * pagecache address.
2226                          */
2227                         if (unlikely(page->mapping != mapping)) {
2228 continue_unlock:
2229                                 unlock_page(page);
2230                                 continue;
2231                         }
2232
2233                         if (!PageDirty(page)) {
2234                                 /* someone wrote it for us */
2235                                 goto continue_unlock;
2236                         }
2237
2238                         if (PageWriteback(page)) {
2239                                 if (wbc->sync_mode != WB_SYNC_NONE)
2240                                         wait_on_page_writeback(page);
2241                                 else
2242                                         goto continue_unlock;
2243                         }
2244
2245                         BUG_ON(PageWriteback(page));
2246                         if (!clear_page_dirty_for_io(page))
2247                                 goto continue_unlock;
2248
2249                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2250                         error = (*writepage)(page, wbc, data);
2251                         if (unlikely(error)) {
2252                                 /*
2253                                  * Handle errors according to the type of
2254                                  * writeback. There's no need to continue for
2255                                  * background writeback. Just push done_index
2256                                  * past this page so media errors won't choke
2257                                  * writeout for the entire file. For integrity
2258                                  * writeback, we must process the entire dirty
2259                                  * set regardless of errors because the fs may
2260                                  * still have state to clear for each page. In
2261                                  * that case we continue processing and return
2262                                  * the first error.
2263                                  */
2264                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2265                                         unlock_page(page);
2266                                         error = 0;
2267                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2268                                         ret = error;
2269                                         done_index = page->index + 1;
2270                                         done = 1;
2271                                         break;
2272                                 }
2273                                 if (!ret)
2274                                         ret = error;
2275                         }
2276
2277                         /*
2278                          * We stop writing back only if we are not doing
2279                          * integrity sync. In case of integrity sync we have to
2280                          * keep going until we have written all the pages
2281                          * we tagged for writeback prior to entering this loop.
2282                          */
2283                         if (--wbc->nr_to_write <= 0 &&
2284                             wbc->sync_mode == WB_SYNC_NONE) {
2285                                 done = 1;
2286                                 break;
2287                         }
2288                 }
2289                 pagevec_release(&pvec);
2290                 cond_resched();
2291         }
2292
2293         /*
2294          * If we hit the last page and there is more work to be done: wrap
2295          * back the index back to the start of the file for the next
2296          * time we are called.
2297          */
2298         if (wbc->range_cyclic && !done)
2299                 done_index = 0;
2300         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2301                 mapping->writeback_index = done_index;
2302
2303         return ret;
2304 }
2305 EXPORT_SYMBOL(write_cache_pages);
2306
2307 /*
2308  * Function used by generic_writepages to call the real writepage
2309  * function and set the mapping flags on error
2310  */
2311 static int __writepage(struct page *page, struct writeback_control *wbc,
2312                        void *data)
2313 {
2314         struct address_space *mapping = data;
2315         int ret = mapping->a_ops->writepage(page, wbc);
2316         mapping_set_error(mapping, ret);
2317         return ret;
2318 }
2319
2320 /**
2321  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2322  * @mapping: address space structure to write
2323  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2324  *
2325  * This is a library function, which implements the writepages()
2326  * address_space_operation.
2327  *
2328  * Return: %0 on success, negative error code otherwise
2329  */
2330 int generic_writepages(struct address_space *mapping,
2331                        struct writeback_control *wbc)
2332 {
2333         struct blk_plug plug;
2334         int ret;
2335
2336         /* deal with chardevs and other special file */
2337         if (!mapping->a_ops->writepage)
2338                 return 0;
2339
2340         blk_start_plug(&plug);
2341         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2342         blk_finish_plug(&plug);
2343         return ret;
2344 }
2345
2346 EXPORT_SYMBOL(generic_writepages);
2347
2348 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2349 {
2350         int ret;
2351         struct bdi_writeback *wb;
2352
2353         if (wbc->nr_to_write <= 0)
2354                 return 0;
2355         wb = inode_to_wb_wbc(mapping->host, wbc);
2356         wb_bandwidth_estimate_start(wb);
2357         while (1) {
2358                 if (mapping->a_ops->writepages)
2359                         ret = mapping->a_ops->writepages(mapping, wbc);
2360                 else
2361                         ret = generic_writepages(mapping, wbc);
2362                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2363                         break;
2364
2365                 /*
2366                  * Lacking an allocation context or the locality or writeback
2367                  * state of any of the inode's pages, throttle based on
2368                  * writeback activity on the local node. It's as good a
2369                  * guess as any.
2370                  */
2371                 reclaim_throttle(NODE_DATA(numa_node_id()),
2372                         VMSCAN_THROTTLE_WRITEBACK);
2373         }
2374         /*
2375          * Usually few pages are written by now from those we've just submitted
2376          * but if there's constant writeback being submitted, this makes sure
2377          * writeback bandwidth is updated once in a while.
2378          */
2379         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2380                                    BANDWIDTH_INTERVAL))
2381                 wb_update_bandwidth(wb);
2382         return ret;
2383 }
2384
2385 /**
2386  * folio_write_one - write out a single folio and wait on I/O.
2387  * @folio: The folio to write.
2388  *
2389  * The folio must be locked by the caller and will be unlocked upon return.
2390  *
2391  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2392  * function returns.
2393  *
2394  * Return: %0 on success, negative error code otherwise
2395  */
2396 int folio_write_one(struct folio *folio)
2397 {
2398         struct address_space *mapping = folio->mapping;
2399         int ret = 0;
2400         struct writeback_control wbc = {
2401                 .sync_mode = WB_SYNC_ALL,
2402                 .nr_to_write = folio_nr_pages(folio),
2403         };
2404
2405         BUG_ON(!folio_test_locked(folio));
2406
2407         folio_wait_writeback(folio);
2408
2409         if (folio_clear_dirty_for_io(folio)) {
2410                 folio_get(folio);
2411                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2412                 if (ret == 0)
2413                         folio_wait_writeback(folio);
2414                 folio_put(folio);
2415         } else {
2416                 folio_unlock(folio);
2417         }
2418
2419         if (!ret)
2420                 ret = filemap_check_errors(mapping);
2421         return ret;
2422 }
2423 EXPORT_SYMBOL(folio_write_one);
2424
2425 /*
2426  * For address_spaces which do not use buffers nor write back.
2427  */
2428 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2429 {
2430         if (!folio_test_dirty(folio))
2431                 return !folio_test_set_dirty(folio);
2432         return false;
2433 }
2434 EXPORT_SYMBOL(noop_dirty_folio);
2435
2436 /*
2437  * Helper function for set_page_dirty family.
2438  *
2439  * Caller must hold lock_page_memcg().
2440  *
2441  * NOTE: This relies on being atomic wrt interrupts.
2442  */
2443 static void folio_account_dirtied(struct folio *folio,
2444                 struct address_space *mapping)
2445 {
2446         struct inode *inode = mapping->host;
2447
2448         trace_writeback_dirty_folio(folio, mapping);
2449
2450         if (mapping_can_writeback(mapping)) {
2451                 struct bdi_writeback *wb;
2452                 long nr = folio_nr_pages(folio);
2453
2454                 inode_attach_wb(inode, &folio->page);
2455                 wb = inode_to_wb(inode);
2456
2457                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2458                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2459                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2460                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2461                 wb_stat_mod(wb, WB_DIRTIED, nr);
2462                 task_io_account_write(nr * PAGE_SIZE);
2463                 current->nr_dirtied += nr;
2464                 __this_cpu_add(bdp_ratelimits, nr);
2465
2466                 mem_cgroup_track_foreign_dirty(folio, wb);
2467         }
2468 }
2469
2470 /*
2471  * Helper function for deaccounting dirty page without writeback.
2472  *
2473  * Caller must hold lock_page_memcg().
2474  */
2475 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2476 {
2477         long nr = folio_nr_pages(folio);
2478
2479         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2480         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2481         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2482         task_io_account_cancelled_write(nr * PAGE_SIZE);
2483 }
2484
2485 /*
2486  * Mark the folio dirty, and set it dirty in the page cache, and mark
2487  * the inode dirty.
2488  *
2489  * If warn is true, then emit a warning if the folio is not uptodate and has
2490  * not been truncated.
2491  *
2492  * The caller must hold lock_page_memcg().  Most callers have the folio
2493  * locked.  A few have the folio blocked from truncation through other
2494  * means (eg zap_page_range() has it mapped and is holding the page table
2495  * lock).  This can also be called from mark_buffer_dirty(), which I
2496  * cannot prove is always protected against truncate.
2497  */
2498 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2499                              int warn)
2500 {
2501         unsigned long flags;
2502
2503         xa_lock_irqsave(&mapping->i_pages, flags);
2504         if (folio->mapping) {   /* Race with truncate? */
2505                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2506                 folio_account_dirtied(folio, mapping);
2507                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2508                                 PAGECACHE_TAG_DIRTY);
2509         }
2510         xa_unlock_irqrestore(&mapping->i_pages, flags);
2511 }
2512
2513 /**
2514  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2515  * @mapping: Address space this folio belongs to.
2516  * @folio: Folio to be marked as dirty.
2517  *
2518  * Filesystems which do not use buffer heads should call this function
2519  * from their set_page_dirty address space operation.  It ignores the
2520  * contents of folio_get_private(), so if the filesystem marks individual
2521  * blocks as dirty, the filesystem should handle that itself.
2522  *
2523  * This is also sometimes used by filesystems which use buffer_heads when
2524  * a single buffer is being dirtied: we want to set the folio dirty in
2525  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2526  * whereas block_dirty_folio() is a "top-down" dirtying.
2527  *
2528  * The caller must ensure this doesn't race with truncation.  Most will
2529  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2530  * folio mapped and the pte lock held, which also locks out truncation.
2531  */
2532 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2533 {
2534         folio_memcg_lock(folio);
2535         if (folio_test_set_dirty(folio)) {
2536                 folio_memcg_unlock(folio);
2537                 return false;
2538         }
2539
2540         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2541         folio_memcg_unlock(folio);
2542
2543         if (mapping->host) {
2544                 /* !PageAnon && !swapper_space */
2545                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2546         }
2547         return true;
2548 }
2549 EXPORT_SYMBOL(filemap_dirty_folio);
2550
2551 /**
2552  * folio_account_redirty - Manually account for redirtying a page.
2553  * @folio: The folio which is being redirtied.
2554  *
2555  * Most filesystems should call folio_redirty_for_writepage() instead
2556  * of this fuction.  If your filesystem is doing writeback outside the
2557  * context of a writeback_control(), it can call this when redirtying
2558  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2559  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2560  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2561  * in balanced_dirty_ratelimit and the dirty pages position control.
2562  */
2563 void folio_account_redirty(struct folio *folio)
2564 {
2565         struct address_space *mapping = folio->mapping;
2566
2567         if (mapping && mapping_can_writeback(mapping)) {
2568                 struct inode *inode = mapping->host;
2569                 struct bdi_writeback *wb;
2570                 struct wb_lock_cookie cookie = {};
2571                 long nr = folio_nr_pages(folio);
2572
2573                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2574                 current->nr_dirtied -= nr;
2575                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2576                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2577                 unlocked_inode_to_wb_end(inode, &cookie);
2578         }
2579 }
2580 EXPORT_SYMBOL(folio_account_redirty);
2581
2582 /**
2583  * folio_redirty_for_writepage - Decline to write a dirty folio.
2584  * @wbc: The writeback control.
2585  * @folio: The folio.
2586  *
2587  * When a writepage implementation decides that it doesn't want to write
2588  * @folio for some reason, it should call this function, unlock @folio and
2589  * return 0.
2590  *
2591  * Return: True if we redirtied the folio.  False if someone else dirtied
2592  * it first.
2593  */
2594 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2595                 struct folio *folio)
2596 {
2597         bool ret;
2598         long nr = folio_nr_pages(folio);
2599
2600         wbc->pages_skipped += nr;
2601         ret = filemap_dirty_folio(folio->mapping, folio);
2602         folio_account_redirty(folio);
2603
2604         return ret;
2605 }
2606 EXPORT_SYMBOL(folio_redirty_for_writepage);
2607
2608 /**
2609  * folio_mark_dirty - Mark a folio as being modified.
2610  * @folio: The folio.
2611  *
2612  * For folios with a mapping this should be done with the folio lock held
2613  * for the benefit of asynchronous memory errors who prefer a consistent
2614  * dirty state. This rule can be broken in some special cases,
2615  * but should be better not to.
2616  *
2617  * Return: True if the folio was newly dirtied, false if it was already dirty.
2618  */
2619 bool folio_mark_dirty(struct folio *folio)
2620 {
2621         struct address_space *mapping = folio_mapping(folio);
2622
2623         if (likely(mapping)) {
2624                 /*
2625                  * readahead/lru_deactivate_page could remain
2626                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2627                  * About readahead, if the folio is written, the flags would be
2628                  * reset. So no problem.
2629                  * About lru_deactivate_page, if the folio is redirtied,
2630                  * the flag will be reset. So no problem. but if the
2631                  * folio is used by readahead it will confuse readahead
2632                  * and make it restart the size rampup process. But it's
2633                  * a trivial problem.
2634                  */
2635                 if (folio_test_reclaim(folio))
2636                         folio_clear_reclaim(folio);
2637                 return mapping->a_ops->dirty_folio(mapping, folio);
2638         }
2639
2640         return noop_dirty_folio(mapping, folio);
2641 }
2642 EXPORT_SYMBOL(folio_mark_dirty);
2643
2644 /*
2645  * set_page_dirty() is racy if the caller has no reference against
2646  * page->mapping->host, and if the page is unlocked.  This is because another
2647  * CPU could truncate the page off the mapping and then free the mapping.
2648  *
2649  * Usually, the page _is_ locked, or the caller is a user-space process which
2650  * holds a reference on the inode by having an open file.
2651  *
2652  * In other cases, the page should be locked before running set_page_dirty().
2653  */
2654 int set_page_dirty_lock(struct page *page)
2655 {
2656         int ret;
2657
2658         lock_page(page);
2659         ret = set_page_dirty(page);
2660         unlock_page(page);
2661         return ret;
2662 }
2663 EXPORT_SYMBOL(set_page_dirty_lock);
2664
2665 /*
2666  * This cancels just the dirty bit on the kernel page itself, it does NOT
2667  * actually remove dirty bits on any mmap's that may be around. It also
2668  * leaves the page tagged dirty, so any sync activity will still find it on
2669  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2670  * look at the dirty bits in the VM.
2671  *
2672  * Doing this should *normally* only ever be done when a page is truncated,
2673  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2674  * this when it notices that somebody has cleaned out all the buffers on a
2675  * page without actually doing it through the VM. Can you say "ext3 is
2676  * horribly ugly"? Thought you could.
2677  */
2678 void __folio_cancel_dirty(struct folio *folio)
2679 {
2680         struct address_space *mapping = folio_mapping(folio);
2681
2682         if (mapping_can_writeback(mapping)) {
2683                 struct inode *inode = mapping->host;
2684                 struct bdi_writeback *wb;
2685                 struct wb_lock_cookie cookie = {};
2686
2687                 folio_memcg_lock(folio);
2688                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2689
2690                 if (folio_test_clear_dirty(folio))
2691                         folio_account_cleaned(folio, wb);
2692
2693                 unlocked_inode_to_wb_end(inode, &cookie);
2694                 folio_memcg_unlock(folio);
2695         } else {
2696                 folio_clear_dirty(folio);
2697         }
2698 }
2699 EXPORT_SYMBOL(__folio_cancel_dirty);
2700
2701 /*
2702  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2703  * Returns true if the folio was previously dirty.
2704  *
2705  * This is for preparing to put the folio under writeout.  We leave
2706  * the folio tagged as dirty in the xarray so that a concurrent
2707  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2708  * The ->writepage implementation will run either folio_start_writeback()
2709  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2710  * and xarray dirty tag back into sync.
2711  *
2712  * This incoherency between the folio's dirty flag and xarray tag is
2713  * unfortunate, but it only exists while the folio is locked.
2714  */
2715 bool folio_clear_dirty_for_io(struct folio *folio)
2716 {
2717         struct address_space *mapping = folio_mapping(folio);
2718         bool ret = false;
2719
2720         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2721
2722         if (mapping && mapping_can_writeback(mapping)) {
2723                 struct inode *inode = mapping->host;
2724                 struct bdi_writeback *wb;
2725                 struct wb_lock_cookie cookie = {};
2726
2727                 /*
2728                  * Yes, Virginia, this is indeed insane.
2729                  *
2730                  * We use this sequence to make sure that
2731                  *  (a) we account for dirty stats properly
2732                  *  (b) we tell the low-level filesystem to
2733                  *      mark the whole folio dirty if it was
2734                  *      dirty in a pagetable. Only to then
2735                  *  (c) clean the folio again and return 1 to
2736                  *      cause the writeback.
2737                  *
2738                  * This way we avoid all nasty races with the
2739                  * dirty bit in multiple places and clearing
2740                  * them concurrently from different threads.
2741                  *
2742                  * Note! Normally the "folio_mark_dirty(folio)"
2743                  * has no effect on the actual dirty bit - since
2744                  * that will already usually be set. But we
2745                  * need the side effects, and it can help us
2746                  * avoid races.
2747                  *
2748                  * We basically use the folio "master dirty bit"
2749                  * as a serialization point for all the different
2750                  * threads doing their things.
2751                  */
2752                 if (folio_mkclean(folio))
2753                         folio_mark_dirty(folio);
2754                 /*
2755                  * We carefully synchronise fault handlers against
2756                  * installing a dirty pte and marking the folio dirty
2757                  * at this point.  We do this by having them hold the
2758                  * page lock while dirtying the folio, and folios are
2759                  * always locked coming in here, so we get the desired
2760                  * exclusion.
2761                  */
2762                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2763                 if (folio_test_clear_dirty(folio)) {
2764                         long nr = folio_nr_pages(folio);
2765                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2766                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2767                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2768                         ret = true;
2769                 }
2770                 unlocked_inode_to_wb_end(inode, &cookie);
2771                 return ret;
2772         }
2773         return folio_test_clear_dirty(folio);
2774 }
2775 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2776
2777 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2778 {
2779         atomic_inc(&wb->writeback_inodes);
2780 }
2781
2782 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2783 {
2784         atomic_dec(&wb->writeback_inodes);
2785         /*
2786          * Make sure estimate of writeback throughput gets updated after
2787          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2788          * (which is the interval other bandwidth updates use for batching) so
2789          * that if multiple inodes end writeback at a similar time, they get
2790          * batched into one bandwidth update.
2791          */
2792         queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2793 }
2794
2795 bool __folio_end_writeback(struct folio *folio)
2796 {
2797         long nr = folio_nr_pages(folio);
2798         struct address_space *mapping = folio_mapping(folio);
2799         bool ret;
2800
2801         folio_memcg_lock(folio);
2802         if (mapping && mapping_use_writeback_tags(mapping)) {
2803                 struct inode *inode = mapping->host;
2804                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2805                 unsigned long flags;
2806
2807                 xa_lock_irqsave(&mapping->i_pages, flags);
2808                 ret = folio_test_clear_writeback(folio);
2809                 if (ret) {
2810                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2811                                                 PAGECACHE_TAG_WRITEBACK);
2812                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2813                                 struct bdi_writeback *wb = inode_to_wb(inode);
2814
2815                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2816                                 __wb_writeout_add(wb, nr);
2817                                 if (!mapping_tagged(mapping,
2818                                                     PAGECACHE_TAG_WRITEBACK))
2819                                         wb_inode_writeback_end(wb);
2820                         }
2821                 }
2822
2823                 if (mapping->host && !mapping_tagged(mapping,
2824                                                      PAGECACHE_TAG_WRITEBACK))
2825                         sb_clear_inode_writeback(mapping->host);
2826
2827                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2828         } else {
2829                 ret = folio_test_clear_writeback(folio);
2830         }
2831         if (ret) {
2832                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2833                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2834                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
2835         }
2836         folio_memcg_unlock(folio);
2837         return ret;
2838 }
2839
2840 bool __folio_start_writeback(struct folio *folio, bool keep_write)
2841 {
2842         long nr = folio_nr_pages(folio);
2843         struct address_space *mapping = folio_mapping(folio);
2844         bool ret;
2845         int access_ret;
2846
2847         folio_memcg_lock(folio);
2848         if (mapping && mapping_use_writeback_tags(mapping)) {
2849                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
2850                 struct inode *inode = mapping->host;
2851                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2852                 unsigned long flags;
2853
2854                 xas_lock_irqsave(&xas, flags);
2855                 xas_load(&xas);
2856                 ret = folio_test_set_writeback(folio);
2857                 if (!ret) {
2858                         bool on_wblist;
2859
2860                         on_wblist = mapping_tagged(mapping,
2861                                                    PAGECACHE_TAG_WRITEBACK);
2862
2863                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2864                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2865                                 struct bdi_writeback *wb = inode_to_wb(inode);
2866
2867                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
2868                                 if (!on_wblist)
2869                                         wb_inode_writeback_start(wb);
2870                         }
2871
2872                         /*
2873                          * We can come through here when swapping
2874                          * anonymous folios, so we don't necessarily
2875                          * have an inode to track for sync.
2876                          */
2877                         if (mapping->host && !on_wblist)
2878                                 sb_mark_inode_writeback(mapping->host);
2879                 }
2880                 if (!folio_test_dirty(folio))
2881                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2882                 if (!keep_write)
2883                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2884                 xas_unlock_irqrestore(&xas, flags);
2885         } else {
2886                 ret = folio_test_set_writeback(folio);
2887         }
2888         if (!ret) {
2889                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
2890                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2891         }
2892         folio_memcg_unlock(folio);
2893         access_ret = arch_make_folio_accessible(folio);
2894         /*
2895          * If writeback has been triggered on a page that cannot be made
2896          * accessible, it is too late to recover here.
2897          */
2898         VM_BUG_ON_FOLIO(access_ret != 0, folio);
2899
2900         return ret;
2901 }
2902 EXPORT_SYMBOL(__folio_start_writeback);
2903
2904 /**
2905  * folio_wait_writeback - Wait for a folio to finish writeback.
2906  * @folio: The folio to wait for.
2907  *
2908  * If the folio is currently being written back to storage, wait for the
2909  * I/O to complete.
2910  *
2911  * Context: Sleeps.  Must be called in process context and with
2912  * no spinlocks held.  Caller should hold a reference on the folio.
2913  * If the folio is not locked, writeback may start again after writeback
2914  * has finished.
2915  */
2916 void folio_wait_writeback(struct folio *folio)
2917 {
2918         while (folio_test_writeback(folio)) {
2919                 trace_folio_wait_writeback(folio, folio_mapping(folio));
2920                 folio_wait_bit(folio, PG_writeback);
2921         }
2922 }
2923 EXPORT_SYMBOL_GPL(folio_wait_writeback);
2924
2925 /**
2926  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
2927  * @folio: The folio to wait for.
2928  *
2929  * If the folio is currently being written back to storage, wait for the
2930  * I/O to complete or a fatal signal to arrive.
2931  *
2932  * Context: Sleeps.  Must be called in process context and with
2933  * no spinlocks held.  Caller should hold a reference on the folio.
2934  * If the folio is not locked, writeback may start again after writeback
2935  * has finished.
2936  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
2937  */
2938 int folio_wait_writeback_killable(struct folio *folio)
2939 {
2940         while (folio_test_writeback(folio)) {
2941                 trace_folio_wait_writeback(folio, folio_mapping(folio));
2942                 if (folio_wait_bit_killable(folio, PG_writeback))
2943                         return -EINTR;
2944         }
2945
2946         return 0;
2947 }
2948 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
2949
2950 /**
2951  * folio_wait_stable() - wait for writeback to finish, if necessary.
2952  * @folio: The folio to wait on.
2953  *
2954  * This function determines if the given folio is related to a backing
2955  * device that requires folio contents to be held stable during writeback.
2956  * If so, then it will wait for any pending writeback to complete.
2957  *
2958  * Context: Sleeps.  Must be called in process context and with
2959  * no spinlocks held.  Caller should hold a reference on the folio.
2960  * If the folio is not locked, writeback may start again after writeback
2961  * has finished.
2962  */
2963 void folio_wait_stable(struct folio *folio)
2964 {
2965         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
2966                 folio_wait_writeback(folio);
2967 }
2968 EXPORT_SYMBOL_GPL(folio_wait_stable);