Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[sfrench/cifs-2.6.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/pfn_t.h>
40 #include <linux/memremap.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/balloon_compaction.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48
49 #include <asm/tlbflush.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/migrate.h>
53
54 #include "internal.h"
55
56 /*
57  * migrate_prep() needs to be called before we start compiling a list of pages
58  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
59  * undesirable, use migrate_prep_local()
60  */
61 int migrate_prep(void)
62 {
63         /*
64          * Clear the LRU lists so pages can be isolated.
65          * Note that pages may be moved off the LRU after we have
66          * drained them. Those pages will fail to migrate like other
67          * pages that may be busy.
68          */
69         lru_add_drain_all();
70
71         return 0;
72 }
73
74 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
75 int migrate_prep_local(void)
76 {
77         lru_add_drain();
78
79         return 0;
80 }
81
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84         struct address_space *mapping;
85
86         /*
87          * Avoid burning cycles with pages that are yet under __free_pages(),
88          * or just got freed under us.
89          *
90          * In case we 'win' a race for a movable page being freed under us and
91          * raise its refcount preventing __free_pages() from doing its job
92          * the put_page() at the end of this block will take care of
93          * release this page, thus avoiding a nasty leakage.
94          */
95         if (unlikely(!get_page_unless_zero(page)))
96                 goto out;
97
98         /*
99          * Check PageMovable before holding a PG_lock because page's owner
100          * assumes anybody doesn't touch PG_lock of newly allocated page
101          * so unconditionally grapping the lock ruins page's owner side.
102          */
103         if (unlikely(!__PageMovable(page)))
104                 goto out_putpage;
105         /*
106          * As movable pages are not isolated from LRU lists, concurrent
107          * compaction threads can race against page migration functions
108          * as well as race against the releasing a page.
109          *
110          * In order to avoid having an already isolated movable page
111          * being (wrongly) re-isolated while it is under migration,
112          * or to avoid attempting to isolate pages being released,
113          * lets be sure we have the page lock
114          * before proceeding with the movable page isolation steps.
115          */
116         if (unlikely(!trylock_page(page)))
117                 goto out_putpage;
118
119         if (!PageMovable(page) || PageIsolated(page))
120                 goto out_no_isolated;
121
122         mapping = page_mapping(page);
123         VM_BUG_ON_PAGE(!mapping, page);
124
125         if (!mapping->a_ops->isolate_page(page, mode))
126                 goto out_no_isolated;
127
128         /* Driver shouldn't use PG_isolated bit of page->flags */
129         WARN_ON_ONCE(PageIsolated(page));
130         __SetPageIsolated(page);
131         unlock_page(page);
132
133         return 0;
134
135 out_no_isolated:
136         unlock_page(page);
137 out_putpage:
138         put_page(page);
139 out:
140         return -EBUSY;
141 }
142
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146         struct address_space *mapping;
147
148         VM_BUG_ON_PAGE(!PageLocked(page), page);
149         VM_BUG_ON_PAGE(!PageMovable(page), page);
150         VM_BUG_ON_PAGE(!PageIsolated(page), page);
151
152         mapping = page_mapping(page);
153         mapping->a_ops->putback_page(page);
154         __ClearPageIsolated(page);
155 }
156
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167         struct page *page;
168         struct page *page2;
169
170         list_for_each_entry_safe(page, page2, l, lru) {
171                 if (unlikely(PageHuge(page))) {
172                         putback_active_hugepage(page);
173                         continue;
174                 }
175                 list_del(&page->lru);
176                 /*
177                  * We isolated non-lru movable page so here we can use
178                  * __PageMovable because LRU page's mapping cannot have
179                  * PAGE_MAPPING_MOVABLE.
180                  */
181                 if (unlikely(__PageMovable(page))) {
182                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
183                         lock_page(page);
184                         if (PageMovable(page))
185                                 putback_movable_page(page);
186                         else
187                                 __ClearPageIsolated(page);
188                         unlock_page(page);
189                         put_page(page);
190                 } else {
191                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192                                         page_is_file_cache(page), -hpage_nr_pages(page));
193                         putback_lru_page(page);
194                 }
195         }
196 }
197
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202                                  unsigned long addr, void *old)
203 {
204         struct page_vma_mapped_walk pvmw = {
205                 .page = old,
206                 .vma = vma,
207                 .address = addr,
208                 .flags = PVMW_SYNC | PVMW_MIGRATION,
209         };
210         struct page *new;
211         pte_t pte;
212         swp_entry_t entry;
213
214         VM_BUG_ON_PAGE(PageTail(page), page);
215         while (page_vma_mapped_walk(&pvmw)) {
216                 if (PageKsm(page))
217                         new = page;
218                 else
219                         new = page - pvmw.page->index +
220                                 linear_page_index(vma, pvmw.address);
221
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223                 /* PMD-mapped THP migration entry */
224                 if (!pvmw.pte) {
225                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226                         remove_migration_pmd(&pvmw, new);
227                         continue;
228                 }
229 #endif
230
231                 get_page(new);
232                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233                 if (pte_swp_soft_dirty(*pvmw.pte))
234                         pte = pte_mksoft_dirty(pte);
235
236                 /*
237                  * Recheck VMA as permissions can change since migration started
238                  */
239                 entry = pte_to_swp_entry(*pvmw.pte);
240                 if (is_write_migration_entry(entry))
241                         pte = maybe_mkwrite(pte, vma);
242
243                 if (unlikely(is_zone_device_page(new))) {
244                         if (is_device_private_page(new)) {
245                                 entry = make_device_private_entry(new, pte_write(pte));
246                                 pte = swp_entry_to_pte(entry);
247                         } else if (is_device_public_page(new)) {
248                                 pte = pte_mkdevmap(pte);
249                                 flush_dcache_page(new);
250                         }
251                 } else
252                         flush_dcache_page(new);
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 /* No need to invalidate - it was non-present before */
277                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
278         }
279
280         return true;
281 }
282
283 /*
284  * Get rid of all migration entries and replace them by
285  * references to the indicated page.
286  */
287 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
288 {
289         struct rmap_walk_control rwc = {
290                 .rmap_one = remove_migration_pte,
291                 .arg = old,
292         };
293
294         if (locked)
295                 rmap_walk_locked(new, &rwc);
296         else
297                 rmap_walk(new, &rwc);
298 }
299
300 /*
301  * Something used the pte of a page under migration. We need to
302  * get to the page and wait until migration is finished.
303  * When we return from this function the fault will be retried.
304  */
305 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
306                                 spinlock_t *ptl)
307 {
308         pte_t pte;
309         swp_entry_t entry;
310         struct page *page;
311
312         spin_lock(ptl);
313         pte = *ptep;
314         if (!is_swap_pte(pte))
315                 goto out;
316
317         entry = pte_to_swp_entry(pte);
318         if (!is_migration_entry(entry))
319                 goto out;
320
321         page = migration_entry_to_page(entry);
322
323         /*
324          * Once radix-tree replacement of page migration started, page_count
325          * *must* be zero. And, we don't want to call wait_on_page_locked()
326          * against a page without get_page().
327          * So, we use get_page_unless_zero(), here. Even failed, page fault
328          * will occur again.
329          */
330         if (!get_page_unless_zero(page))
331                 goto out;
332         pte_unmap_unlock(ptep, ptl);
333         wait_on_page_locked(page);
334         put_page(page);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         wait_on_page_locked(page);
369         put_page(page);
370         return;
371 unlock:
372         spin_unlock(ptl);
373 }
374 #endif
375
376 #ifdef CONFIG_BLOCK
377 /* Returns true if all buffers are successfully locked */
378 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
379                                                         enum migrate_mode mode)
380 {
381         struct buffer_head *bh = head;
382
383         /* Simple case, sync compaction */
384         if (mode != MIGRATE_ASYNC) {
385                 do {
386                         get_bh(bh);
387                         lock_buffer(bh);
388                         bh = bh->b_this_page;
389
390                 } while (bh != head);
391
392                 return true;
393         }
394
395         /* async case, we cannot block on lock_buffer so use trylock_buffer */
396         do {
397                 get_bh(bh);
398                 if (!trylock_buffer(bh)) {
399                         /*
400                          * We failed to lock the buffer and cannot stall in
401                          * async migration. Release the taken locks
402                          */
403                         struct buffer_head *failed_bh = bh;
404                         put_bh(failed_bh);
405                         bh = head;
406                         while (bh != failed_bh) {
407                                 unlock_buffer(bh);
408                                 put_bh(bh);
409                                 bh = bh->b_this_page;
410                         }
411                         return false;
412                 }
413
414                 bh = bh->b_this_page;
415         } while (bh != head);
416         return true;
417 }
418 #else
419 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
420                                                         enum migrate_mode mode)
421 {
422         return true;
423 }
424 #endif /* CONFIG_BLOCK */
425
426 /*
427  * Replace the page in the mapping.
428  *
429  * The number of remaining references must be:
430  * 1 for anonymous pages without a mapping
431  * 2 for pages with a mapping
432  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
433  */
434 int migrate_page_move_mapping(struct address_space *mapping,
435                 struct page *newpage, struct page *page,
436                 struct buffer_head *head, enum migrate_mode mode,
437                 int extra_count)
438 {
439         struct zone *oldzone, *newzone;
440         int dirty;
441         int expected_count = 1 + extra_count;
442         void **pslot;
443
444         /*
445          * Device public or private pages have an extra refcount as they are
446          * ZONE_DEVICE pages.
447          */
448         expected_count += is_device_private_page(page);
449         expected_count += is_device_public_page(page);
450
451         if (!mapping) {
452                 /* Anonymous page without mapping */
453                 if (page_count(page) != expected_count)
454                         return -EAGAIN;
455
456                 /* No turning back from here */
457                 newpage->index = page->index;
458                 newpage->mapping = page->mapping;
459                 if (PageSwapBacked(page))
460                         __SetPageSwapBacked(newpage);
461
462                 return MIGRATEPAGE_SUCCESS;
463         }
464
465         oldzone = page_zone(page);
466         newzone = page_zone(newpage);
467
468         spin_lock_irq(&mapping->tree_lock);
469
470         pslot = radix_tree_lookup_slot(&mapping->page_tree,
471                                         page_index(page));
472
473         expected_count += 1 + page_has_private(page);
474         if (page_count(page) != expected_count ||
475                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
476                 spin_unlock_irq(&mapping->tree_lock);
477                 return -EAGAIN;
478         }
479
480         if (!page_ref_freeze(page, expected_count)) {
481                 spin_unlock_irq(&mapping->tree_lock);
482                 return -EAGAIN;
483         }
484
485         /*
486          * In the async migration case of moving a page with buffers, lock the
487          * buffers using trylock before the mapping is moved. If the mapping
488          * was moved, we later failed to lock the buffers and could not move
489          * the mapping back due to an elevated page count, we would have to
490          * block waiting on other references to be dropped.
491          */
492         if (mode == MIGRATE_ASYNC && head &&
493                         !buffer_migrate_lock_buffers(head, mode)) {
494                 page_ref_unfreeze(page, expected_count);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 return -EAGAIN;
497         }
498
499         /*
500          * Now we know that no one else is looking at the page:
501          * no turning back from here.
502          */
503         newpage->index = page->index;
504         newpage->mapping = page->mapping;
505         get_page(newpage);      /* add cache reference */
506         if (PageSwapBacked(page)) {
507                 __SetPageSwapBacked(newpage);
508                 if (PageSwapCache(page)) {
509                         SetPageSwapCache(newpage);
510                         set_page_private(newpage, page_private(page));
511                 }
512         } else {
513                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
514         }
515
516         /* Move dirty while page refs frozen and newpage not yet exposed */
517         dirty = PageDirty(page);
518         if (dirty) {
519                 ClearPageDirty(page);
520                 SetPageDirty(newpage);
521         }
522
523         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
524
525         /*
526          * Drop cache reference from old page by unfreezing
527          * to one less reference.
528          * We know this isn't the last reference.
529          */
530         page_ref_unfreeze(page, expected_count - 1);
531
532         spin_unlock(&mapping->tree_lock);
533         /* Leave irq disabled to prevent preemption while updating stats */
534
535         /*
536          * If moved to a different zone then also account
537          * the page for that zone. Other VM counters will be
538          * taken care of when we establish references to the
539          * new page and drop references to the old page.
540          *
541          * Note that anonymous pages are accounted for
542          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
543          * are mapped to swap space.
544          */
545         if (newzone != oldzone) {
546                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
547                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
548                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
549                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
550                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
551                 }
552                 if (dirty && mapping_cap_account_dirty(mapping)) {
553                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
554                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
555                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
556                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
557                 }
558         }
559         local_irq_enable();
560
561         return MIGRATEPAGE_SUCCESS;
562 }
563 EXPORT_SYMBOL(migrate_page_move_mapping);
564
565 /*
566  * The expected number of remaining references is the same as that
567  * of migrate_page_move_mapping().
568  */
569 int migrate_huge_page_move_mapping(struct address_space *mapping,
570                                    struct page *newpage, struct page *page)
571 {
572         int expected_count;
573         void **pslot;
574
575         spin_lock_irq(&mapping->tree_lock);
576
577         pslot = radix_tree_lookup_slot(&mapping->page_tree,
578                                         page_index(page));
579
580         expected_count = 2 + page_has_private(page);
581         if (page_count(page) != expected_count ||
582                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
583                 spin_unlock_irq(&mapping->tree_lock);
584                 return -EAGAIN;
585         }
586
587         if (!page_ref_freeze(page, expected_count)) {
588                 spin_unlock_irq(&mapping->tree_lock);
589                 return -EAGAIN;
590         }
591
592         newpage->index = page->index;
593         newpage->mapping = page->mapping;
594
595         get_page(newpage);
596
597         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
598
599         page_ref_unfreeze(page, expected_count - 1);
600
601         spin_unlock_irq(&mapping->tree_lock);
602
603         return MIGRATEPAGE_SUCCESS;
604 }
605
606 /*
607  * Gigantic pages are so large that we do not guarantee that page++ pointer
608  * arithmetic will work across the entire page.  We need something more
609  * specialized.
610  */
611 static void __copy_gigantic_page(struct page *dst, struct page *src,
612                                 int nr_pages)
613 {
614         int i;
615         struct page *dst_base = dst;
616         struct page *src_base = src;
617
618         for (i = 0; i < nr_pages; ) {
619                 cond_resched();
620                 copy_highpage(dst, src);
621
622                 i++;
623                 dst = mem_map_next(dst, dst_base, i);
624                 src = mem_map_next(src, src_base, i);
625         }
626 }
627
628 static void copy_huge_page(struct page *dst, struct page *src)
629 {
630         int i;
631         int nr_pages;
632
633         if (PageHuge(src)) {
634                 /* hugetlbfs page */
635                 struct hstate *h = page_hstate(src);
636                 nr_pages = pages_per_huge_page(h);
637
638                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
639                         __copy_gigantic_page(dst, src, nr_pages);
640                         return;
641                 }
642         } else {
643                 /* thp page */
644                 BUG_ON(!PageTransHuge(src));
645                 nr_pages = hpage_nr_pages(src);
646         }
647
648         for (i = 0; i < nr_pages; i++) {
649                 cond_resched();
650                 copy_highpage(dst + i, src + i);
651         }
652 }
653
654 /*
655  * Copy the page to its new location
656  */
657 void migrate_page_states(struct page *newpage, struct page *page)
658 {
659         int cpupid;
660
661         if (PageError(page))
662                 SetPageError(newpage);
663         if (PageReferenced(page))
664                 SetPageReferenced(newpage);
665         if (PageUptodate(page))
666                 SetPageUptodate(newpage);
667         if (TestClearPageActive(page)) {
668                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
669                 SetPageActive(newpage);
670         } else if (TestClearPageUnevictable(page))
671                 SetPageUnevictable(newpage);
672         if (PageChecked(page))
673                 SetPageChecked(newpage);
674         if (PageMappedToDisk(page))
675                 SetPageMappedToDisk(newpage);
676
677         /* Move dirty on pages not done by migrate_page_move_mapping() */
678         if (PageDirty(page))
679                 SetPageDirty(newpage);
680
681         if (page_is_young(page))
682                 set_page_young(newpage);
683         if (page_is_idle(page))
684                 set_page_idle(newpage);
685
686         /*
687          * Copy NUMA information to the new page, to prevent over-eager
688          * future migrations of this same page.
689          */
690         cpupid = page_cpupid_xchg_last(page, -1);
691         page_cpupid_xchg_last(newpage, cpupid);
692
693         ksm_migrate_page(newpage, page);
694         /*
695          * Please do not reorder this without considering how mm/ksm.c's
696          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
697          */
698         if (PageSwapCache(page))
699                 ClearPageSwapCache(page);
700         ClearPagePrivate(page);
701         set_page_private(page, 0);
702
703         /*
704          * If any waiters have accumulated on the new page then
705          * wake them up.
706          */
707         if (PageWriteback(newpage))
708                 end_page_writeback(newpage);
709
710         copy_page_owner(page, newpage);
711
712         mem_cgroup_migrate(page, newpage);
713 }
714 EXPORT_SYMBOL(migrate_page_states);
715
716 void migrate_page_copy(struct page *newpage, struct page *page)
717 {
718         if (PageHuge(page) || PageTransHuge(page))
719                 copy_huge_page(newpage, page);
720         else
721                 copy_highpage(newpage, page);
722
723         migrate_page_states(newpage, page);
724 }
725 EXPORT_SYMBOL(migrate_page_copy);
726
727 /************************************************************
728  *                    Migration functions
729  ***********************************************************/
730
731 /*
732  * Common logic to directly migrate a single LRU page suitable for
733  * pages that do not use PagePrivate/PagePrivate2.
734  *
735  * Pages are locked upon entry and exit.
736  */
737 int migrate_page(struct address_space *mapping,
738                 struct page *newpage, struct page *page,
739                 enum migrate_mode mode)
740 {
741         int rc;
742
743         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
744
745         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
746
747         if (rc != MIGRATEPAGE_SUCCESS)
748                 return rc;
749
750         if (mode != MIGRATE_SYNC_NO_COPY)
751                 migrate_page_copy(newpage, page);
752         else
753                 migrate_page_states(newpage, page);
754         return MIGRATEPAGE_SUCCESS;
755 }
756 EXPORT_SYMBOL(migrate_page);
757
758 #ifdef CONFIG_BLOCK
759 /*
760  * Migration function for pages with buffers. This function can only be used
761  * if the underlying filesystem guarantees that no other references to "page"
762  * exist.
763  */
764 int buffer_migrate_page(struct address_space *mapping,
765                 struct page *newpage, struct page *page, enum migrate_mode mode)
766 {
767         struct buffer_head *bh, *head;
768         int rc;
769
770         if (!page_has_buffers(page))
771                 return migrate_page(mapping, newpage, page, mode);
772
773         head = page_buffers(page);
774
775         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
776
777         if (rc != MIGRATEPAGE_SUCCESS)
778                 return rc;
779
780         /*
781          * In the async case, migrate_page_move_mapping locked the buffers
782          * with an IRQ-safe spinlock held. In the sync case, the buffers
783          * need to be locked now
784          */
785         if (mode != MIGRATE_ASYNC)
786                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
787
788         ClearPagePrivate(page);
789         set_page_private(newpage, page_private(page));
790         set_page_private(page, 0);
791         put_page(page);
792         get_page(newpage);
793
794         bh = head;
795         do {
796                 set_bh_page(bh, newpage, bh_offset(bh));
797                 bh = bh->b_this_page;
798
799         } while (bh != head);
800
801         SetPagePrivate(newpage);
802
803         if (mode != MIGRATE_SYNC_NO_COPY)
804                 migrate_page_copy(newpage, page);
805         else
806                 migrate_page_states(newpage, page);
807
808         bh = head;
809         do {
810                 unlock_buffer(bh);
811                 put_bh(bh);
812                 bh = bh->b_this_page;
813
814         } while (bh != head);
815
816         return MIGRATEPAGE_SUCCESS;
817 }
818 EXPORT_SYMBOL(buffer_migrate_page);
819 #endif
820
821 /*
822  * Writeback a page to clean the dirty state
823  */
824 static int writeout(struct address_space *mapping, struct page *page)
825 {
826         struct writeback_control wbc = {
827                 .sync_mode = WB_SYNC_NONE,
828                 .nr_to_write = 1,
829                 .range_start = 0,
830                 .range_end = LLONG_MAX,
831                 .for_reclaim = 1
832         };
833         int rc;
834
835         if (!mapping->a_ops->writepage)
836                 /* No write method for the address space */
837                 return -EINVAL;
838
839         if (!clear_page_dirty_for_io(page))
840                 /* Someone else already triggered a write */
841                 return -EAGAIN;
842
843         /*
844          * A dirty page may imply that the underlying filesystem has
845          * the page on some queue. So the page must be clean for
846          * migration. Writeout may mean we loose the lock and the
847          * page state is no longer what we checked for earlier.
848          * At this point we know that the migration attempt cannot
849          * be successful.
850          */
851         remove_migration_ptes(page, page, false);
852
853         rc = mapping->a_ops->writepage(page, &wbc);
854
855         if (rc != AOP_WRITEPAGE_ACTIVATE)
856                 /* unlocked. Relock */
857                 lock_page(page);
858
859         return (rc < 0) ? -EIO : -EAGAIN;
860 }
861
862 /*
863  * Default handling if a filesystem does not provide a migration function.
864  */
865 static int fallback_migrate_page(struct address_space *mapping,
866         struct page *newpage, struct page *page, enum migrate_mode mode)
867 {
868         if (PageDirty(page)) {
869                 /* Only writeback pages in full synchronous migration */
870                 switch (mode) {
871                 case MIGRATE_SYNC:
872                 case MIGRATE_SYNC_NO_COPY:
873                         break;
874                 default:
875                         return -EBUSY;
876                 }
877                 return writeout(mapping, page);
878         }
879
880         /*
881          * Buffers may be managed in a filesystem specific way.
882          * We must have no buffers or drop them.
883          */
884         if (page_has_private(page) &&
885             !try_to_release_page(page, GFP_KERNEL))
886                 return -EAGAIN;
887
888         return migrate_page(mapping, newpage, page, mode);
889 }
890
891 /*
892  * Move a page to a newly allocated page
893  * The page is locked and all ptes have been successfully removed.
894  *
895  * The new page will have replaced the old page if this function
896  * is successful.
897  *
898  * Return value:
899  *   < 0 - error code
900  *  MIGRATEPAGE_SUCCESS - success
901  */
902 static int move_to_new_page(struct page *newpage, struct page *page,
903                                 enum migrate_mode mode)
904 {
905         struct address_space *mapping;
906         int rc = -EAGAIN;
907         bool is_lru = !__PageMovable(page);
908
909         VM_BUG_ON_PAGE(!PageLocked(page), page);
910         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
911
912         mapping = page_mapping(page);
913
914         if (likely(is_lru)) {
915                 if (!mapping)
916                         rc = migrate_page(mapping, newpage, page, mode);
917                 else if (mapping->a_ops->migratepage)
918                         /*
919                          * Most pages have a mapping and most filesystems
920                          * provide a migratepage callback. Anonymous pages
921                          * are part of swap space which also has its own
922                          * migratepage callback. This is the most common path
923                          * for page migration.
924                          */
925                         rc = mapping->a_ops->migratepage(mapping, newpage,
926                                                         page, mode);
927                 else
928                         rc = fallback_migrate_page(mapping, newpage,
929                                                         page, mode);
930         } else {
931                 /*
932                  * In case of non-lru page, it could be released after
933                  * isolation step. In that case, we shouldn't try migration.
934                  */
935                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
936                 if (!PageMovable(page)) {
937                         rc = MIGRATEPAGE_SUCCESS;
938                         __ClearPageIsolated(page);
939                         goto out;
940                 }
941
942                 rc = mapping->a_ops->migratepage(mapping, newpage,
943                                                 page, mode);
944                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
945                         !PageIsolated(page));
946         }
947
948         /*
949          * When successful, old pagecache page->mapping must be cleared before
950          * page is freed; but stats require that PageAnon be left as PageAnon.
951          */
952         if (rc == MIGRATEPAGE_SUCCESS) {
953                 if (__PageMovable(page)) {
954                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
955
956                         /*
957                          * We clear PG_movable under page_lock so any compactor
958                          * cannot try to migrate this page.
959                          */
960                         __ClearPageIsolated(page);
961                 }
962
963                 /*
964                  * Anonymous and movable page->mapping will be cleard by
965                  * free_pages_prepare so don't reset it here for keeping
966                  * the type to work PageAnon, for example.
967                  */
968                 if (!PageMappingFlags(page))
969                         page->mapping = NULL;
970         }
971 out:
972         return rc;
973 }
974
975 static int __unmap_and_move(struct page *page, struct page *newpage,
976                                 int force, enum migrate_mode mode)
977 {
978         int rc = -EAGAIN;
979         int page_was_mapped = 0;
980         struct anon_vma *anon_vma = NULL;
981         bool is_lru = !__PageMovable(page);
982
983         if (!trylock_page(page)) {
984                 if (!force || mode == MIGRATE_ASYNC)
985                         goto out;
986
987                 /*
988                  * It's not safe for direct compaction to call lock_page.
989                  * For example, during page readahead pages are added locked
990                  * to the LRU. Later, when the IO completes the pages are
991                  * marked uptodate and unlocked. However, the queueing
992                  * could be merging multiple pages for one bio (e.g.
993                  * mpage_readpages). If an allocation happens for the
994                  * second or third page, the process can end up locking
995                  * the same page twice and deadlocking. Rather than
996                  * trying to be clever about what pages can be locked,
997                  * avoid the use of lock_page for direct compaction
998                  * altogether.
999                  */
1000                 if (current->flags & PF_MEMALLOC)
1001                         goto out;
1002
1003                 lock_page(page);
1004         }
1005
1006         if (PageWriteback(page)) {
1007                 /*
1008                  * Only in the case of a full synchronous migration is it
1009                  * necessary to wait for PageWriteback. In the async case,
1010                  * the retry loop is too short and in the sync-light case,
1011                  * the overhead of stalling is too much
1012                  */
1013                 switch (mode) {
1014                 case MIGRATE_SYNC:
1015                 case MIGRATE_SYNC_NO_COPY:
1016                         break;
1017                 default:
1018                         rc = -EBUSY;
1019                         goto out_unlock;
1020                 }
1021                 if (!force)
1022                         goto out_unlock;
1023                 wait_on_page_writeback(page);
1024         }
1025
1026         /*
1027          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1028          * we cannot notice that anon_vma is freed while we migrates a page.
1029          * This get_anon_vma() delays freeing anon_vma pointer until the end
1030          * of migration. File cache pages are no problem because of page_lock()
1031          * File Caches may use write_page() or lock_page() in migration, then,
1032          * just care Anon page here.
1033          *
1034          * Only page_get_anon_vma() understands the subtleties of
1035          * getting a hold on an anon_vma from outside one of its mms.
1036          * But if we cannot get anon_vma, then we won't need it anyway,
1037          * because that implies that the anon page is no longer mapped
1038          * (and cannot be remapped so long as we hold the page lock).
1039          */
1040         if (PageAnon(page) && !PageKsm(page))
1041                 anon_vma = page_get_anon_vma(page);
1042
1043         /*
1044          * Block others from accessing the new page when we get around to
1045          * establishing additional references. We are usually the only one
1046          * holding a reference to newpage at this point. We used to have a BUG
1047          * here if trylock_page(newpage) fails, but would like to allow for
1048          * cases where there might be a race with the previous use of newpage.
1049          * This is much like races on refcount of oldpage: just don't BUG().
1050          */
1051         if (unlikely(!trylock_page(newpage)))
1052                 goto out_unlock;
1053
1054         if (unlikely(!is_lru)) {
1055                 rc = move_to_new_page(newpage, page, mode);
1056                 goto out_unlock_both;
1057         }
1058
1059         /*
1060          * Corner case handling:
1061          * 1. When a new swap-cache page is read into, it is added to the LRU
1062          * and treated as swapcache but it has no rmap yet.
1063          * Calling try_to_unmap() against a page->mapping==NULL page will
1064          * trigger a BUG.  So handle it here.
1065          * 2. An orphaned page (see truncate_complete_page) might have
1066          * fs-private metadata. The page can be picked up due to memory
1067          * offlining.  Everywhere else except page reclaim, the page is
1068          * invisible to the vm, so the page can not be migrated.  So try to
1069          * free the metadata, so the page can be freed.
1070          */
1071         if (!page->mapping) {
1072                 VM_BUG_ON_PAGE(PageAnon(page), page);
1073                 if (page_has_private(page)) {
1074                         try_to_free_buffers(page);
1075                         goto out_unlock_both;
1076                 }
1077         } else if (page_mapped(page)) {
1078                 /* Establish migration ptes */
1079                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1080                                 page);
1081                 try_to_unmap(page,
1082                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1083                 page_was_mapped = 1;
1084         }
1085
1086         if (!page_mapped(page))
1087                 rc = move_to_new_page(newpage, page, mode);
1088
1089         if (page_was_mapped)
1090                 remove_migration_ptes(page,
1091                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1092
1093 out_unlock_both:
1094         unlock_page(newpage);
1095 out_unlock:
1096         /* Drop an anon_vma reference if we took one */
1097         if (anon_vma)
1098                 put_anon_vma(anon_vma);
1099         unlock_page(page);
1100 out:
1101         /*
1102          * If migration is successful, decrease refcount of the newpage
1103          * which will not free the page because new page owner increased
1104          * refcounter. As well, if it is LRU page, add the page to LRU
1105          * list in here.
1106          */
1107         if (rc == MIGRATEPAGE_SUCCESS) {
1108                 if (unlikely(__PageMovable(newpage)))
1109                         put_page(newpage);
1110                 else
1111                         putback_lru_page(newpage);
1112         }
1113
1114         return rc;
1115 }
1116
1117 /*
1118  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1119  * around it.
1120  */
1121 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1122 #define ICE_noinline noinline
1123 #else
1124 #define ICE_noinline
1125 #endif
1126
1127 /*
1128  * Obtain the lock on page, remove all ptes and migrate the page
1129  * to the newly allocated page in newpage.
1130  */
1131 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1132                                    free_page_t put_new_page,
1133                                    unsigned long private, struct page *page,
1134                                    int force, enum migrate_mode mode,
1135                                    enum migrate_reason reason)
1136 {
1137         int rc = MIGRATEPAGE_SUCCESS;
1138         int *result = NULL;
1139         struct page *newpage;
1140
1141         newpage = get_new_page(page, private, &result);
1142         if (!newpage)
1143                 return -ENOMEM;
1144
1145         if (page_count(page) == 1) {
1146                 /* page was freed from under us. So we are done. */
1147                 ClearPageActive(page);
1148                 ClearPageUnevictable(page);
1149                 if (unlikely(__PageMovable(page))) {
1150                         lock_page(page);
1151                         if (!PageMovable(page))
1152                                 __ClearPageIsolated(page);
1153                         unlock_page(page);
1154                 }
1155                 if (put_new_page)
1156                         put_new_page(newpage, private);
1157                 else
1158                         put_page(newpage);
1159                 goto out;
1160         }
1161
1162         if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1163                 lock_page(page);
1164                 rc = split_huge_page(page);
1165                 unlock_page(page);
1166                 if (rc)
1167                         goto out;
1168         }
1169
1170         rc = __unmap_and_move(page, newpage, force, mode);
1171         if (rc == MIGRATEPAGE_SUCCESS)
1172                 set_page_owner_migrate_reason(newpage, reason);
1173
1174 out:
1175         if (rc != -EAGAIN) {
1176                 /*
1177                  * A page that has been migrated has all references
1178                  * removed and will be freed. A page that has not been
1179                  * migrated will have kepts its references and be
1180                  * restored.
1181                  */
1182                 list_del(&page->lru);
1183
1184                 /*
1185                  * Compaction can migrate also non-LRU pages which are
1186                  * not accounted to NR_ISOLATED_*. They can be recognized
1187                  * as __PageMovable
1188                  */
1189                 if (likely(!__PageMovable(page)))
1190                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1191                                         page_is_file_cache(page), -hpage_nr_pages(page));
1192         }
1193
1194         /*
1195          * If migration is successful, releases reference grabbed during
1196          * isolation. Otherwise, restore the page to right list unless
1197          * we want to retry.
1198          */
1199         if (rc == MIGRATEPAGE_SUCCESS) {
1200                 put_page(page);
1201                 if (reason == MR_MEMORY_FAILURE) {
1202                         /*
1203                          * Set PG_HWPoison on just freed page
1204                          * intentionally. Although it's rather weird,
1205                          * it's how HWPoison flag works at the moment.
1206                          */
1207                         if (!test_set_page_hwpoison(page))
1208                                 num_poisoned_pages_inc();
1209                 }
1210         } else {
1211                 if (rc != -EAGAIN) {
1212                         if (likely(!__PageMovable(page))) {
1213                                 putback_lru_page(page);
1214                                 goto put_new;
1215                         }
1216
1217                         lock_page(page);
1218                         if (PageMovable(page))
1219                                 putback_movable_page(page);
1220                         else
1221                                 __ClearPageIsolated(page);
1222                         unlock_page(page);
1223                         put_page(page);
1224                 }
1225 put_new:
1226                 if (put_new_page)
1227                         put_new_page(newpage, private);
1228                 else
1229                         put_page(newpage);
1230         }
1231
1232         if (result) {
1233                 if (rc)
1234                         *result = rc;
1235                 else
1236                         *result = page_to_nid(newpage);
1237         }
1238         return rc;
1239 }
1240
1241 /*
1242  * Counterpart of unmap_and_move_page() for hugepage migration.
1243  *
1244  * This function doesn't wait the completion of hugepage I/O
1245  * because there is no race between I/O and migration for hugepage.
1246  * Note that currently hugepage I/O occurs only in direct I/O
1247  * where no lock is held and PG_writeback is irrelevant,
1248  * and writeback status of all subpages are counted in the reference
1249  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250  * under direct I/O, the reference of the head page is 512 and a bit more.)
1251  * This means that when we try to migrate hugepage whose subpages are
1252  * doing direct I/O, some references remain after try_to_unmap() and
1253  * hugepage migration fails without data corruption.
1254  *
1255  * There is also no race when direct I/O is issued on the page under migration,
1256  * because then pte is replaced with migration swap entry and direct I/O code
1257  * will wait in the page fault for migration to complete.
1258  */
1259 static int unmap_and_move_huge_page(new_page_t get_new_page,
1260                                 free_page_t put_new_page, unsigned long private,
1261                                 struct page *hpage, int force,
1262                                 enum migrate_mode mode, int reason)
1263 {
1264         int rc = -EAGAIN;
1265         int *result = NULL;
1266         int page_was_mapped = 0;
1267         struct page *new_hpage;
1268         struct anon_vma *anon_vma = NULL;
1269
1270         /*
1271          * Movability of hugepages depends on architectures and hugepage size.
1272          * This check is necessary because some callers of hugepage migration
1273          * like soft offline and memory hotremove don't walk through page
1274          * tables or check whether the hugepage is pmd-based or not before
1275          * kicking migration.
1276          */
1277         if (!hugepage_migration_supported(page_hstate(hpage))) {
1278                 putback_active_hugepage(hpage);
1279                 return -ENOSYS;
1280         }
1281
1282         new_hpage = get_new_page(hpage, private, &result);
1283         if (!new_hpage)
1284                 return -ENOMEM;
1285
1286         if (!trylock_page(hpage)) {
1287                 if (!force)
1288                         goto out;
1289                 switch (mode) {
1290                 case MIGRATE_SYNC:
1291                 case MIGRATE_SYNC_NO_COPY:
1292                         break;
1293                 default:
1294                         goto out;
1295                 }
1296                 lock_page(hpage);
1297         }
1298
1299         if (PageAnon(hpage))
1300                 anon_vma = page_get_anon_vma(hpage);
1301
1302         if (unlikely(!trylock_page(new_hpage)))
1303                 goto put_anon;
1304
1305         if (page_mapped(hpage)) {
1306                 try_to_unmap(hpage,
1307                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1308                 page_was_mapped = 1;
1309         }
1310
1311         if (!page_mapped(hpage))
1312                 rc = move_to_new_page(new_hpage, hpage, mode);
1313
1314         if (page_was_mapped)
1315                 remove_migration_ptes(hpage,
1316                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1317
1318         unlock_page(new_hpage);
1319
1320 put_anon:
1321         if (anon_vma)
1322                 put_anon_vma(anon_vma);
1323
1324         if (rc == MIGRATEPAGE_SUCCESS) {
1325                 hugetlb_cgroup_migrate(hpage, new_hpage);
1326                 put_new_page = NULL;
1327                 set_page_owner_migrate_reason(new_hpage, reason);
1328         }
1329
1330         unlock_page(hpage);
1331 out:
1332         if (rc != -EAGAIN)
1333                 putback_active_hugepage(hpage);
1334         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1335                 num_poisoned_pages_inc();
1336
1337         /*
1338          * If migration was not successful and there's a freeing callback, use
1339          * it.  Otherwise, put_page() will drop the reference grabbed during
1340          * isolation.
1341          */
1342         if (put_new_page)
1343                 put_new_page(new_hpage, private);
1344         else
1345                 putback_active_hugepage(new_hpage);
1346
1347         if (result) {
1348                 if (rc)
1349                         *result = rc;
1350                 else
1351                         *result = page_to_nid(new_hpage);
1352         }
1353         return rc;
1354 }
1355
1356 /*
1357  * migrate_pages - migrate the pages specified in a list, to the free pages
1358  *                 supplied as the target for the page migration
1359  *
1360  * @from:               The list of pages to be migrated.
1361  * @get_new_page:       The function used to allocate free pages to be used
1362  *                      as the target of the page migration.
1363  * @put_new_page:       The function used to free target pages if migration
1364  *                      fails, or NULL if no special handling is necessary.
1365  * @private:            Private data to be passed on to get_new_page()
1366  * @mode:               The migration mode that specifies the constraints for
1367  *                      page migration, if any.
1368  * @reason:             The reason for page migration.
1369  *
1370  * The function returns after 10 attempts or if no pages are movable any more
1371  * because the list has become empty or no retryable pages exist any more.
1372  * The caller should call putback_movable_pages() to return pages to the LRU
1373  * or free list only if ret != 0.
1374  *
1375  * Returns the number of pages that were not migrated, or an error code.
1376  */
1377 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1378                 free_page_t put_new_page, unsigned long private,
1379                 enum migrate_mode mode, int reason)
1380 {
1381         int retry = 1;
1382         int nr_failed = 0;
1383         int nr_succeeded = 0;
1384         int pass = 0;
1385         struct page *page;
1386         struct page *page2;
1387         int swapwrite = current->flags & PF_SWAPWRITE;
1388         int rc;
1389
1390         if (!swapwrite)
1391                 current->flags |= PF_SWAPWRITE;
1392
1393         for(pass = 0; pass < 10 && retry; pass++) {
1394                 retry = 0;
1395
1396                 list_for_each_entry_safe(page, page2, from, lru) {
1397                         cond_resched();
1398
1399                         if (PageHuge(page))
1400                                 rc = unmap_and_move_huge_page(get_new_page,
1401                                                 put_new_page, private, page,
1402                                                 pass > 2, mode, reason);
1403                         else
1404                                 rc = unmap_and_move(get_new_page, put_new_page,
1405                                                 private, page, pass > 2, mode,
1406                                                 reason);
1407
1408                         switch(rc) {
1409                         case -ENOMEM:
1410                                 nr_failed++;
1411                                 goto out;
1412                         case -EAGAIN:
1413                                 retry++;
1414                                 break;
1415                         case MIGRATEPAGE_SUCCESS:
1416                                 nr_succeeded++;
1417                                 break;
1418                         default:
1419                                 /*
1420                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1421                                  * unlike -EAGAIN case, the failed page is
1422                                  * removed from migration page list and not
1423                                  * retried in the next outer loop.
1424                                  */
1425                                 nr_failed++;
1426                                 break;
1427                         }
1428                 }
1429         }
1430         nr_failed += retry;
1431         rc = nr_failed;
1432 out:
1433         if (nr_succeeded)
1434                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1435         if (nr_failed)
1436                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1437         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1438
1439         if (!swapwrite)
1440                 current->flags &= ~PF_SWAPWRITE;
1441
1442         return rc;
1443 }
1444
1445 #ifdef CONFIG_NUMA
1446 /*
1447  * Move a list of individual pages
1448  */
1449 struct page_to_node {
1450         unsigned long addr;
1451         struct page *page;
1452         int node;
1453         int status;
1454 };
1455
1456 static struct page *new_page_node(struct page *p, unsigned long private,
1457                 int **result)
1458 {
1459         struct page_to_node *pm = (struct page_to_node *)private;
1460
1461         while (pm->node != MAX_NUMNODES && pm->page != p)
1462                 pm++;
1463
1464         if (pm->node == MAX_NUMNODES)
1465                 return NULL;
1466
1467         *result = &pm->status;
1468
1469         if (PageHuge(p))
1470                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1471                                         pm->node);
1472         else if (thp_migration_supported() && PageTransHuge(p)) {
1473                 struct page *thp;
1474
1475                 thp = alloc_pages_node(pm->node,
1476                         (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1477                         HPAGE_PMD_ORDER);
1478                 if (!thp)
1479                         return NULL;
1480                 prep_transhuge_page(thp);
1481                 return thp;
1482         } else
1483                 return __alloc_pages_node(pm->node,
1484                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1485 }
1486
1487 /*
1488  * Move a set of pages as indicated in the pm array. The addr
1489  * field must be set to the virtual address of the page to be moved
1490  * and the node number must contain a valid target node.
1491  * The pm array ends with node = MAX_NUMNODES.
1492  */
1493 static int do_move_page_to_node_array(struct mm_struct *mm,
1494                                       struct page_to_node *pm,
1495                                       int migrate_all)
1496 {
1497         int err;
1498         struct page_to_node *pp;
1499         LIST_HEAD(pagelist);
1500
1501         down_read(&mm->mmap_sem);
1502
1503         /*
1504          * Build a list of pages to migrate
1505          */
1506         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1507                 struct vm_area_struct *vma;
1508                 struct page *page;
1509                 struct page *head;
1510                 unsigned int follflags;
1511
1512                 err = -EFAULT;
1513                 vma = find_vma(mm, pp->addr);
1514                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1515                         goto set_status;
1516
1517                 /* FOLL_DUMP to ignore special (like zero) pages */
1518                 follflags = FOLL_GET | FOLL_DUMP;
1519                 if (!thp_migration_supported())
1520                         follflags |= FOLL_SPLIT;
1521                 page = follow_page(vma, pp->addr, follflags);
1522
1523                 err = PTR_ERR(page);
1524                 if (IS_ERR(page))
1525                         goto set_status;
1526
1527                 err = -ENOENT;
1528                 if (!page)
1529                         goto set_status;
1530
1531                 err = page_to_nid(page);
1532
1533                 if (err == pp->node)
1534                         /*
1535                          * Node already in the right place
1536                          */
1537                         goto put_and_set;
1538
1539                 err = -EACCES;
1540                 if (page_mapcount(page) > 1 &&
1541                                 !migrate_all)
1542                         goto put_and_set;
1543
1544                 if (PageHuge(page)) {
1545                         if (PageHead(page)) {
1546                                 isolate_huge_page(page, &pagelist);
1547                                 err = 0;
1548                                 pp->page = page;
1549                         }
1550                         goto put_and_set;
1551                 }
1552
1553                 pp->page = compound_head(page);
1554                 head = compound_head(page);
1555                 err = isolate_lru_page(head);
1556                 if (!err) {
1557                         list_add_tail(&head->lru, &pagelist);
1558                         mod_node_page_state(page_pgdat(head),
1559                                 NR_ISOLATED_ANON + page_is_file_cache(head),
1560                                 hpage_nr_pages(head));
1561                 }
1562 put_and_set:
1563                 /*
1564                  * Either remove the duplicate refcount from
1565                  * isolate_lru_page() or drop the page ref if it was
1566                  * not isolated.
1567                  */
1568                 put_page(page);
1569 set_status:
1570                 pp->status = err;
1571         }
1572
1573         err = 0;
1574         if (!list_empty(&pagelist)) {
1575                 err = migrate_pages(&pagelist, new_page_node, NULL,
1576                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1577                 if (err)
1578                         putback_movable_pages(&pagelist);
1579         }
1580
1581         up_read(&mm->mmap_sem);
1582         return err;
1583 }
1584
1585 /*
1586  * Migrate an array of page address onto an array of nodes and fill
1587  * the corresponding array of status.
1588  */
1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1590                          unsigned long nr_pages,
1591                          const void __user * __user *pages,
1592                          const int __user *nodes,
1593                          int __user *status, int flags)
1594 {
1595         struct page_to_node *pm;
1596         unsigned long chunk_nr_pages;
1597         unsigned long chunk_start;
1598         int err;
1599
1600         err = -ENOMEM;
1601         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1602         if (!pm)
1603                 goto out;
1604
1605         migrate_prep();
1606
1607         /*
1608          * Store a chunk of page_to_node array in a page,
1609          * but keep the last one as a marker
1610          */
1611         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1612
1613         for (chunk_start = 0;
1614              chunk_start < nr_pages;
1615              chunk_start += chunk_nr_pages) {
1616                 int j;
1617
1618                 if (chunk_start + chunk_nr_pages > nr_pages)
1619                         chunk_nr_pages = nr_pages - chunk_start;
1620
1621                 /* fill the chunk pm with addrs and nodes from user-space */
1622                 for (j = 0; j < chunk_nr_pages; j++) {
1623                         const void __user *p;
1624                         int node;
1625
1626                         err = -EFAULT;
1627                         if (get_user(p, pages + j + chunk_start))
1628                                 goto out_pm;
1629                         pm[j].addr = (unsigned long) p;
1630
1631                         if (get_user(node, nodes + j + chunk_start))
1632                                 goto out_pm;
1633
1634                         err = -ENODEV;
1635                         if (node < 0 || node >= MAX_NUMNODES)
1636                                 goto out_pm;
1637
1638                         if (!node_state(node, N_MEMORY))
1639                                 goto out_pm;
1640
1641                         err = -EACCES;
1642                         if (!node_isset(node, task_nodes))
1643                                 goto out_pm;
1644
1645                         pm[j].node = node;
1646                 }
1647
1648                 /* End marker for this chunk */
1649                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1650
1651                 /* Migrate this chunk */
1652                 err = do_move_page_to_node_array(mm, pm,
1653                                                  flags & MPOL_MF_MOVE_ALL);
1654                 if (err < 0)
1655                         goto out_pm;
1656
1657                 /* Return status information */
1658                 for (j = 0; j < chunk_nr_pages; j++)
1659                         if (put_user(pm[j].status, status + j + chunk_start)) {
1660                                 err = -EFAULT;
1661                                 goto out_pm;
1662                         }
1663         }
1664         err = 0;
1665
1666 out_pm:
1667         free_page((unsigned long)pm);
1668 out:
1669         return err;
1670 }
1671
1672 /*
1673  * Determine the nodes of an array of pages and store it in an array of status.
1674  */
1675 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1676                                 const void __user **pages, int *status)
1677 {
1678         unsigned long i;
1679
1680         down_read(&mm->mmap_sem);
1681
1682         for (i = 0; i < nr_pages; i++) {
1683                 unsigned long addr = (unsigned long)(*pages);
1684                 struct vm_area_struct *vma;
1685                 struct page *page;
1686                 int err = -EFAULT;
1687
1688                 vma = find_vma(mm, addr);
1689                 if (!vma || addr < vma->vm_start)
1690                         goto set_status;
1691
1692                 /* FOLL_DUMP to ignore special (like zero) pages */
1693                 page = follow_page(vma, addr, FOLL_DUMP);
1694
1695                 err = PTR_ERR(page);
1696                 if (IS_ERR(page))
1697                         goto set_status;
1698
1699                 err = page ? page_to_nid(page) : -ENOENT;
1700 set_status:
1701                 *status = err;
1702
1703                 pages++;
1704                 status++;
1705         }
1706
1707         up_read(&mm->mmap_sem);
1708 }
1709
1710 /*
1711  * Determine the nodes of a user array of pages and store it in
1712  * a user array of status.
1713  */
1714 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1715                          const void __user * __user *pages,
1716                          int __user *status)
1717 {
1718 #define DO_PAGES_STAT_CHUNK_NR 16
1719         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1720         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1721
1722         while (nr_pages) {
1723                 unsigned long chunk_nr;
1724
1725                 chunk_nr = nr_pages;
1726                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1727                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1728
1729                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1730                         break;
1731
1732                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1733
1734                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1735                         break;
1736
1737                 pages += chunk_nr;
1738                 status += chunk_nr;
1739                 nr_pages -= chunk_nr;
1740         }
1741         return nr_pages ? -EFAULT : 0;
1742 }
1743
1744 /*
1745  * Move a list of pages in the address space of the currently executing
1746  * process.
1747  */
1748 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1749                 const void __user * __user *, pages,
1750                 const int __user *, nodes,
1751                 int __user *, status, int, flags)
1752 {
1753         struct task_struct *task;
1754         struct mm_struct *mm;
1755         int err;
1756         nodemask_t task_nodes;
1757
1758         /* Check flags */
1759         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1760                 return -EINVAL;
1761
1762         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1763                 return -EPERM;
1764
1765         /* Find the mm_struct */
1766         rcu_read_lock();
1767         task = pid ? find_task_by_vpid(pid) : current;
1768         if (!task) {
1769                 rcu_read_unlock();
1770                 return -ESRCH;
1771         }
1772         get_task_struct(task);
1773
1774         /*
1775          * Check if this process has the right to modify the specified
1776          * process. Use the regular "ptrace_may_access()" checks.
1777          */
1778         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1779                 rcu_read_unlock();
1780                 err = -EPERM;
1781                 goto out;
1782         }
1783         rcu_read_unlock();
1784
1785         err = security_task_movememory(task);
1786         if (err)
1787                 goto out;
1788
1789         task_nodes = cpuset_mems_allowed(task);
1790         mm = get_task_mm(task);
1791         put_task_struct(task);
1792
1793         if (!mm)
1794                 return -EINVAL;
1795
1796         if (nodes)
1797                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1798                                     nodes, status, flags);
1799         else
1800                 err = do_pages_stat(mm, nr_pages, pages, status);
1801
1802         mmput(mm);
1803         return err;
1804
1805 out:
1806         put_task_struct(task);
1807         return err;
1808 }
1809
1810 #ifdef CONFIG_NUMA_BALANCING
1811 /*
1812  * Returns true if this is a safe migration target node for misplaced NUMA
1813  * pages. Currently it only checks the watermarks which crude
1814  */
1815 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1816                                    unsigned long nr_migrate_pages)
1817 {
1818         int z;
1819
1820         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1821                 struct zone *zone = pgdat->node_zones + z;
1822
1823                 if (!populated_zone(zone))
1824                         continue;
1825
1826                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1827                 if (!zone_watermark_ok(zone, 0,
1828                                        high_wmark_pages(zone) +
1829                                        nr_migrate_pages,
1830                                        0, 0))
1831                         continue;
1832                 return true;
1833         }
1834         return false;
1835 }
1836
1837 static struct page *alloc_misplaced_dst_page(struct page *page,
1838                                            unsigned long data,
1839                                            int **result)
1840 {
1841         int nid = (int) data;
1842         struct page *newpage;
1843
1844         newpage = __alloc_pages_node(nid,
1845                                          (GFP_HIGHUSER_MOVABLE |
1846                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1847                                           __GFP_NORETRY | __GFP_NOWARN) &
1848                                          ~__GFP_RECLAIM, 0);
1849
1850         return newpage;
1851 }
1852
1853 /*
1854  * page migration rate limiting control.
1855  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1856  * window of time. Default here says do not migrate more than 1280M per second.
1857  */
1858 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1859 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1860
1861 /* Returns true if the node is migrate rate-limited after the update */
1862 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1863                                         unsigned long nr_pages)
1864 {
1865         /*
1866          * Rate-limit the amount of data that is being migrated to a node.
1867          * Optimal placement is no good if the memory bus is saturated and
1868          * all the time is being spent migrating!
1869          */
1870         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1871                 spin_lock(&pgdat->numabalancing_migrate_lock);
1872                 pgdat->numabalancing_migrate_nr_pages = 0;
1873                 pgdat->numabalancing_migrate_next_window = jiffies +
1874                         msecs_to_jiffies(migrate_interval_millisecs);
1875                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1876         }
1877         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1878                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1879                                                                 nr_pages);
1880                 return true;
1881         }
1882
1883         /*
1884          * This is an unlocked non-atomic update so errors are possible.
1885          * The consequences are failing to migrate when we potentiall should
1886          * have which is not severe enough to warrant locking. If it is ever
1887          * a problem, it can be converted to a per-cpu counter.
1888          */
1889         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1890         return false;
1891 }
1892
1893 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1894 {
1895         int page_lru;
1896
1897         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1898
1899         /* Avoid migrating to a node that is nearly full */
1900         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1901                 return 0;
1902
1903         if (isolate_lru_page(page))
1904                 return 0;
1905
1906         /*
1907          * migrate_misplaced_transhuge_page() skips page migration's usual
1908          * check on page_count(), so we must do it here, now that the page
1909          * has been isolated: a GUP pin, or any other pin, prevents migration.
1910          * The expected page count is 3: 1 for page's mapcount and 1 for the
1911          * caller's pin and 1 for the reference taken by isolate_lru_page().
1912          */
1913         if (PageTransHuge(page) && page_count(page) != 3) {
1914                 putback_lru_page(page);
1915                 return 0;
1916         }
1917
1918         page_lru = page_is_file_cache(page);
1919         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1920                                 hpage_nr_pages(page));
1921
1922         /*
1923          * Isolating the page has taken another reference, so the
1924          * caller's reference can be safely dropped without the page
1925          * disappearing underneath us during migration.
1926          */
1927         put_page(page);
1928         return 1;
1929 }
1930
1931 bool pmd_trans_migrating(pmd_t pmd)
1932 {
1933         struct page *page = pmd_page(pmd);
1934         return PageLocked(page);
1935 }
1936
1937 /*
1938  * Attempt to migrate a misplaced page to the specified destination
1939  * node. Caller is expected to have an elevated reference count on
1940  * the page that will be dropped by this function before returning.
1941  */
1942 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1943                            int node)
1944 {
1945         pg_data_t *pgdat = NODE_DATA(node);
1946         int isolated;
1947         int nr_remaining;
1948         LIST_HEAD(migratepages);
1949
1950         /*
1951          * Don't migrate file pages that are mapped in multiple processes
1952          * with execute permissions as they are probably shared libraries.
1953          */
1954         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1955             (vma->vm_flags & VM_EXEC))
1956                 goto out;
1957
1958         /*
1959          * Rate-limit the amount of data that is being migrated to a node.
1960          * Optimal placement is no good if the memory bus is saturated and
1961          * all the time is being spent migrating!
1962          */
1963         if (numamigrate_update_ratelimit(pgdat, 1))
1964                 goto out;
1965
1966         isolated = numamigrate_isolate_page(pgdat, page);
1967         if (!isolated)
1968                 goto out;
1969
1970         list_add(&page->lru, &migratepages);
1971         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1972                                      NULL, node, MIGRATE_ASYNC,
1973                                      MR_NUMA_MISPLACED);
1974         if (nr_remaining) {
1975                 if (!list_empty(&migratepages)) {
1976                         list_del(&page->lru);
1977                         dec_node_page_state(page, NR_ISOLATED_ANON +
1978                                         page_is_file_cache(page));
1979                         putback_lru_page(page);
1980                 }
1981                 isolated = 0;
1982         } else
1983                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1984         BUG_ON(!list_empty(&migratepages));
1985         return isolated;
1986
1987 out:
1988         put_page(page);
1989         return 0;
1990 }
1991 #endif /* CONFIG_NUMA_BALANCING */
1992
1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1994 /*
1995  * Migrates a THP to a given target node. page must be locked and is unlocked
1996  * before returning.
1997  */
1998 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1999                                 struct vm_area_struct *vma,
2000                                 pmd_t *pmd, pmd_t entry,
2001                                 unsigned long address,
2002                                 struct page *page, int node)
2003 {
2004         spinlock_t *ptl;
2005         pg_data_t *pgdat = NODE_DATA(node);
2006         int isolated = 0;
2007         struct page *new_page = NULL;
2008         int page_lru = page_is_file_cache(page);
2009         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2010         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2011
2012         /*
2013          * Rate-limit the amount of data that is being migrated to a node.
2014          * Optimal placement is no good if the memory bus is saturated and
2015          * all the time is being spent migrating!
2016          */
2017         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2018                 goto out_dropref;
2019
2020         new_page = alloc_pages_node(node,
2021                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2022                 HPAGE_PMD_ORDER);
2023         if (!new_page)
2024                 goto out_fail;
2025         prep_transhuge_page(new_page);
2026
2027         isolated = numamigrate_isolate_page(pgdat, page);
2028         if (!isolated) {
2029                 put_page(new_page);
2030                 goto out_fail;
2031         }
2032
2033         /* Prepare a page as a migration target */
2034         __SetPageLocked(new_page);
2035         if (PageSwapBacked(page))
2036                 __SetPageSwapBacked(new_page);
2037
2038         /* anon mapping, we can simply copy page->mapping to the new page: */
2039         new_page->mapping = page->mapping;
2040         new_page->index = page->index;
2041         migrate_page_copy(new_page, page);
2042         WARN_ON(PageLRU(new_page));
2043
2044         /* Recheck the target PMD */
2045         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2046         ptl = pmd_lock(mm, pmd);
2047         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2048                 spin_unlock(ptl);
2049                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2050
2051                 /* Reverse changes made by migrate_page_copy() */
2052                 if (TestClearPageActive(new_page))
2053                         SetPageActive(page);
2054                 if (TestClearPageUnevictable(new_page))
2055                         SetPageUnevictable(page);
2056
2057                 unlock_page(new_page);
2058                 put_page(new_page);             /* Free it */
2059
2060                 /* Retake the callers reference and putback on LRU */
2061                 get_page(page);
2062                 putback_lru_page(page);
2063                 mod_node_page_state(page_pgdat(page),
2064                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2065
2066                 goto out_unlock;
2067         }
2068
2069         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2070         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2071
2072         /*
2073          * Clear the old entry under pagetable lock and establish the new PTE.
2074          * Any parallel GUP will either observe the old page blocking on the
2075          * page lock, block on the page table lock or observe the new page.
2076          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2077          * guarantee the copy is visible before the pagetable update.
2078          */
2079         flush_cache_range(vma, mmun_start, mmun_end);
2080         page_add_anon_rmap(new_page, vma, mmun_start, true);
2081         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2082         set_pmd_at(mm, mmun_start, pmd, entry);
2083         update_mmu_cache_pmd(vma, address, &entry);
2084
2085         page_ref_unfreeze(page, 2);
2086         mlock_migrate_page(new_page, page);
2087         page_remove_rmap(page, true);
2088         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2089
2090         spin_unlock(ptl);
2091         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2092
2093         /* Take an "isolate" reference and put new page on the LRU. */
2094         get_page(new_page);
2095         putback_lru_page(new_page);
2096
2097         unlock_page(new_page);
2098         unlock_page(page);
2099         put_page(page);                 /* Drop the rmap reference */
2100         put_page(page);                 /* Drop the LRU isolation reference */
2101
2102         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2103         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2104
2105         mod_node_page_state(page_pgdat(page),
2106                         NR_ISOLATED_ANON + page_lru,
2107                         -HPAGE_PMD_NR);
2108         return isolated;
2109
2110 out_fail:
2111         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2112 out_dropref:
2113         ptl = pmd_lock(mm, pmd);
2114         if (pmd_same(*pmd, entry)) {
2115                 entry = pmd_modify(entry, vma->vm_page_prot);
2116                 set_pmd_at(mm, mmun_start, pmd, entry);
2117                 update_mmu_cache_pmd(vma, address, &entry);
2118         }
2119         spin_unlock(ptl);
2120
2121 out_unlock:
2122         unlock_page(page);
2123         put_page(page);
2124         return 0;
2125 }
2126 #endif /* CONFIG_NUMA_BALANCING */
2127
2128 #endif /* CONFIG_NUMA */
2129
2130 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2131 struct migrate_vma {
2132         struct vm_area_struct   *vma;
2133         unsigned long           *dst;
2134         unsigned long           *src;
2135         unsigned long           cpages;
2136         unsigned long           npages;
2137         unsigned long           start;
2138         unsigned long           end;
2139 };
2140
2141 static int migrate_vma_collect_hole(unsigned long start,
2142                                     unsigned long end,
2143                                     struct mm_walk *walk)
2144 {
2145         struct migrate_vma *migrate = walk->private;
2146         unsigned long addr;
2147
2148         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149                 migrate->src[migrate->npages++] = MIGRATE_PFN_MIGRATE;
2150                 migrate->dst[migrate->npages] = 0;
2151                 migrate->cpages++;
2152         }
2153
2154         return 0;
2155 }
2156
2157 static int migrate_vma_collect_skip(unsigned long start,
2158                                     unsigned long end,
2159                                     struct mm_walk *walk)
2160 {
2161         struct migrate_vma *migrate = walk->private;
2162         unsigned long addr;
2163
2164         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2165                 migrate->dst[migrate->npages] = 0;
2166                 migrate->src[migrate->npages++] = 0;
2167         }
2168
2169         return 0;
2170 }
2171
2172 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2173                                    unsigned long start,
2174                                    unsigned long end,
2175                                    struct mm_walk *walk)
2176 {
2177         struct migrate_vma *migrate = walk->private;
2178         struct vm_area_struct *vma = walk->vma;
2179         struct mm_struct *mm = vma->vm_mm;
2180         unsigned long addr = start, unmapped = 0;
2181         spinlock_t *ptl;
2182         pte_t *ptep;
2183
2184 again:
2185         if (pmd_none(*pmdp))
2186                 return migrate_vma_collect_hole(start, end, walk);
2187
2188         if (pmd_trans_huge(*pmdp)) {
2189                 struct page *page;
2190
2191                 ptl = pmd_lock(mm, pmdp);
2192                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2193                         spin_unlock(ptl);
2194                         goto again;
2195                 }
2196
2197                 page = pmd_page(*pmdp);
2198                 if (is_huge_zero_page(page)) {
2199                         spin_unlock(ptl);
2200                         split_huge_pmd(vma, pmdp, addr);
2201                         if (pmd_trans_unstable(pmdp))
2202                                 return migrate_vma_collect_skip(start, end,
2203                                                                 walk);
2204                 } else {
2205                         int ret;
2206
2207                         get_page(page);
2208                         spin_unlock(ptl);
2209                         if (unlikely(!trylock_page(page)))
2210                                 return migrate_vma_collect_skip(start, end,
2211                                                                 walk);
2212                         ret = split_huge_page(page);
2213                         unlock_page(page);
2214                         put_page(page);
2215                         if (ret)
2216                                 return migrate_vma_collect_skip(start, end,
2217                                                                 walk);
2218                         if (pmd_none(*pmdp))
2219                                 return migrate_vma_collect_hole(start, end,
2220                                                                 walk);
2221                 }
2222         }
2223
2224         if (unlikely(pmd_bad(*pmdp)))
2225                 return migrate_vma_collect_skip(start, end, walk);
2226
2227         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2228         arch_enter_lazy_mmu_mode();
2229
2230         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2231                 unsigned long mpfn, pfn;
2232                 struct page *page;
2233                 swp_entry_t entry;
2234                 pte_t pte;
2235
2236                 pte = *ptep;
2237                 pfn = pte_pfn(pte);
2238
2239                 if (pte_none(pte)) {
2240                         mpfn = MIGRATE_PFN_MIGRATE;
2241                         migrate->cpages++;
2242                         pfn = 0;
2243                         goto next;
2244                 }
2245
2246                 if (!pte_present(pte)) {
2247                         mpfn = pfn = 0;
2248
2249                         /*
2250                          * Only care about unaddressable device page special
2251                          * page table entry. Other special swap entries are not
2252                          * migratable, and we ignore regular swapped page.
2253                          */
2254                         entry = pte_to_swp_entry(pte);
2255                         if (!is_device_private_entry(entry))
2256                                 goto next;
2257
2258                         page = device_private_entry_to_page(entry);
2259                         mpfn = migrate_pfn(page_to_pfn(page))|
2260                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2261                         if (is_write_device_private_entry(entry))
2262                                 mpfn |= MIGRATE_PFN_WRITE;
2263                 } else {
2264                         if (is_zero_pfn(pfn)) {
2265                                 mpfn = MIGRATE_PFN_MIGRATE;
2266                                 migrate->cpages++;
2267                                 pfn = 0;
2268                                 goto next;
2269                         }
2270                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2271                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2272                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2273                 }
2274
2275                 /* FIXME support THP */
2276                 if (!page || !page->mapping || PageTransCompound(page)) {
2277                         mpfn = pfn = 0;
2278                         goto next;
2279                 }
2280                 pfn = page_to_pfn(page);
2281
2282                 /*
2283                  * By getting a reference on the page we pin it and that blocks
2284                  * any kind of migration. Side effect is that it "freezes" the
2285                  * pte.
2286                  *
2287                  * We drop this reference after isolating the page from the lru
2288                  * for non device page (device page are not on the lru and thus
2289                  * can't be dropped from it).
2290                  */
2291                 get_page(page);
2292                 migrate->cpages++;
2293
2294                 /*
2295                  * Optimize for the common case where page is only mapped once
2296                  * in one process. If we can lock the page, then we can safely
2297                  * set up a special migration page table entry now.
2298                  */
2299                 if (trylock_page(page)) {
2300                         pte_t swp_pte;
2301
2302                         mpfn |= MIGRATE_PFN_LOCKED;
2303                         ptep_get_and_clear(mm, addr, ptep);
2304
2305                         /* Setup special migration page table entry */
2306                         entry = make_migration_entry(page, pte_write(pte));
2307                         swp_pte = swp_entry_to_pte(entry);
2308                         if (pte_soft_dirty(pte))
2309                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2310                         set_pte_at(mm, addr, ptep, swp_pte);
2311
2312                         /*
2313                          * This is like regular unmap: we remove the rmap and
2314                          * drop page refcount. Page won't be freed, as we took
2315                          * a reference just above.
2316                          */
2317                         page_remove_rmap(page, false);
2318                         put_page(page);
2319
2320                         if (pte_present(pte))
2321                                 unmapped++;
2322                 }
2323
2324 next:
2325                 migrate->dst[migrate->npages] = 0;
2326                 migrate->src[migrate->npages++] = mpfn;
2327         }
2328         arch_leave_lazy_mmu_mode();
2329         pte_unmap_unlock(ptep - 1, ptl);
2330
2331         /* Only flush the TLB if we actually modified any entries */
2332         if (unmapped)
2333                 flush_tlb_range(walk->vma, start, end);
2334
2335         return 0;
2336 }
2337
2338 /*
2339  * migrate_vma_collect() - collect pages over a range of virtual addresses
2340  * @migrate: migrate struct containing all migration information
2341  *
2342  * This will walk the CPU page table. For each virtual address backed by a
2343  * valid page, it updates the src array and takes a reference on the page, in
2344  * order to pin the page until we lock it and unmap it.
2345  */
2346 static void migrate_vma_collect(struct migrate_vma *migrate)
2347 {
2348         struct mm_walk mm_walk;
2349
2350         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2351         mm_walk.pte_entry = NULL;
2352         mm_walk.pte_hole = migrate_vma_collect_hole;
2353         mm_walk.hugetlb_entry = NULL;
2354         mm_walk.test_walk = NULL;
2355         mm_walk.vma = migrate->vma;
2356         mm_walk.mm = migrate->vma->vm_mm;
2357         mm_walk.private = migrate;
2358
2359         mmu_notifier_invalidate_range_start(mm_walk.mm,
2360                                             migrate->start,
2361                                             migrate->end);
2362         walk_page_range(migrate->start, migrate->end, &mm_walk);
2363         mmu_notifier_invalidate_range_end(mm_walk.mm,
2364                                           migrate->start,
2365                                           migrate->end);
2366
2367         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2368 }
2369
2370 /*
2371  * migrate_vma_check_page() - check if page is pinned or not
2372  * @page: struct page to check
2373  *
2374  * Pinned pages cannot be migrated. This is the same test as in
2375  * migrate_page_move_mapping(), except that here we allow migration of a
2376  * ZONE_DEVICE page.
2377  */
2378 static bool migrate_vma_check_page(struct page *page)
2379 {
2380         /*
2381          * One extra ref because caller holds an extra reference, either from
2382          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2383          * a device page.
2384          */
2385         int extra = 1;
2386
2387         /*
2388          * FIXME support THP (transparent huge page), it is bit more complex to
2389          * check them than regular pages, because they can be mapped with a pmd
2390          * or with a pte (split pte mapping).
2391          */
2392         if (PageCompound(page))
2393                 return false;
2394
2395         /* Page from ZONE_DEVICE have one extra reference */
2396         if (is_zone_device_page(page)) {
2397                 /*
2398                  * Private page can never be pin as they have no valid pte and
2399                  * GUP will fail for those. Yet if there is a pending migration
2400                  * a thread might try to wait on the pte migration entry and
2401                  * will bump the page reference count. Sadly there is no way to
2402                  * differentiate a regular pin from migration wait. Hence to
2403                  * avoid 2 racing thread trying to migrate back to CPU to enter
2404                  * infinite loop (one stoping migration because the other is
2405                  * waiting on pte migration entry). We always return true here.
2406                  *
2407                  * FIXME proper solution is to rework migration_entry_wait() so
2408                  * it does not need to take a reference on page.
2409                  */
2410                 if (is_device_private_page(page))
2411                         return true;
2412
2413                 /*
2414                  * Only allow device public page to be migrated and account for
2415                  * the extra reference count imply by ZONE_DEVICE pages.
2416                  */
2417                 if (!is_device_public_page(page))
2418                         return false;
2419                 extra++;
2420         }
2421
2422         /* For file back page */
2423         if (page_mapping(page))
2424                 extra += 1 + page_has_private(page);
2425
2426         if ((page_count(page) - extra) > page_mapcount(page))
2427                 return false;
2428
2429         return true;
2430 }
2431
2432 /*
2433  * migrate_vma_prepare() - lock pages and isolate them from the lru
2434  * @migrate: migrate struct containing all migration information
2435  *
2436  * This locks pages that have been collected by migrate_vma_collect(). Once each
2437  * page is locked it is isolated from the lru (for non-device pages). Finally,
2438  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2439  * migrated by concurrent kernel threads.
2440  */
2441 static void migrate_vma_prepare(struct migrate_vma *migrate)
2442 {
2443         const unsigned long npages = migrate->npages;
2444         const unsigned long start = migrate->start;
2445         unsigned long addr, i, restore = 0;
2446         bool allow_drain = true;
2447
2448         lru_add_drain();
2449
2450         for (i = 0; (i < npages) && migrate->cpages; i++) {
2451                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2452                 bool remap = true;
2453
2454                 if (!page)
2455                         continue;
2456
2457                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2458                         /*
2459                          * Because we are migrating several pages there can be
2460                          * a deadlock between 2 concurrent migration where each
2461                          * are waiting on each other page lock.
2462                          *
2463                          * Make migrate_vma() a best effort thing and backoff
2464                          * for any page we can not lock right away.
2465                          */
2466                         if (!trylock_page(page)) {
2467                                 migrate->src[i] = 0;
2468                                 migrate->cpages--;
2469                                 put_page(page);
2470                                 continue;
2471                         }
2472                         remap = false;
2473                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2474                 }
2475
2476                 /* ZONE_DEVICE pages are not on LRU */
2477                 if (!is_zone_device_page(page)) {
2478                         if (!PageLRU(page) && allow_drain) {
2479                                 /* Drain CPU's pagevec */
2480                                 lru_add_drain_all();
2481                                 allow_drain = false;
2482                         }
2483
2484                         if (isolate_lru_page(page)) {
2485                                 if (remap) {
2486                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2487                                         migrate->cpages--;
2488                                         restore++;
2489                                 } else {
2490                                         migrate->src[i] = 0;
2491                                         unlock_page(page);
2492                                         migrate->cpages--;
2493                                         put_page(page);
2494                                 }
2495                                 continue;
2496                         }
2497
2498                         /* Drop the reference we took in collect */
2499                         put_page(page);
2500                 }
2501
2502                 if (!migrate_vma_check_page(page)) {
2503                         if (remap) {
2504                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505                                 migrate->cpages--;
2506                                 restore++;
2507
2508                                 if (!is_zone_device_page(page)) {
2509                                         get_page(page);
2510                                         putback_lru_page(page);
2511                                 }
2512                         } else {
2513                                 migrate->src[i] = 0;
2514                                 unlock_page(page);
2515                                 migrate->cpages--;
2516
2517                                 if (!is_zone_device_page(page))
2518                                         putback_lru_page(page);
2519                                 else
2520                                         put_page(page);
2521                         }
2522                 }
2523         }
2524
2525         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2526                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2527
2528                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2529                         continue;
2530
2531                 remove_migration_pte(page, migrate->vma, addr, page);
2532
2533                 migrate->src[i] = 0;
2534                 unlock_page(page);
2535                 put_page(page);
2536                 restore--;
2537         }
2538 }
2539
2540 /*
2541  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2542  * @migrate: migrate struct containing all migration information
2543  *
2544  * Replace page mapping (CPU page table pte) with a special migration pte entry
2545  * and check again if it has been pinned. Pinned pages are restored because we
2546  * cannot migrate them.
2547  *
2548  * This is the last step before we call the device driver callback to allocate
2549  * destination memory and copy contents of original page over to new page.
2550  */
2551 static void migrate_vma_unmap(struct migrate_vma *migrate)
2552 {
2553         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2554         const unsigned long npages = migrate->npages;
2555         const unsigned long start = migrate->start;
2556         unsigned long addr, i, restore = 0;
2557
2558         for (i = 0; i < npages; i++) {
2559                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2560
2561                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2562                         continue;
2563
2564                 if (page_mapped(page)) {
2565                         try_to_unmap(page, flags);
2566                         if (page_mapped(page))
2567                                 goto restore;
2568                 }
2569
2570                 if (migrate_vma_check_page(page))
2571                         continue;
2572
2573 restore:
2574                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2575                 migrate->cpages--;
2576                 restore++;
2577         }
2578
2579         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2580                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581
2582                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2583                         continue;
2584
2585                 remove_migration_ptes(page, page, false);
2586
2587                 migrate->src[i] = 0;
2588                 unlock_page(page);
2589                 restore--;
2590
2591                 if (is_zone_device_page(page))
2592                         put_page(page);
2593                 else
2594                         putback_lru_page(page);
2595         }
2596 }
2597
2598 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2599                                     unsigned long addr,
2600                                     struct page *page,
2601                                     unsigned long *src,
2602                                     unsigned long *dst)
2603 {
2604         struct vm_area_struct *vma = migrate->vma;
2605         struct mm_struct *mm = vma->vm_mm;
2606         struct mem_cgroup *memcg;
2607         bool flush = false;
2608         spinlock_t *ptl;
2609         pte_t entry;
2610         pgd_t *pgdp;
2611         p4d_t *p4dp;
2612         pud_t *pudp;
2613         pmd_t *pmdp;
2614         pte_t *ptep;
2615
2616         /* Only allow populating anonymous memory */
2617         if (!vma_is_anonymous(vma))
2618                 goto abort;
2619
2620         pgdp = pgd_offset(mm, addr);
2621         p4dp = p4d_alloc(mm, pgdp, addr);
2622         if (!p4dp)
2623                 goto abort;
2624         pudp = pud_alloc(mm, p4dp, addr);
2625         if (!pudp)
2626                 goto abort;
2627         pmdp = pmd_alloc(mm, pudp, addr);
2628         if (!pmdp)
2629                 goto abort;
2630
2631         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2632                 goto abort;
2633
2634         /*
2635          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2636          * pte_offset_map() on pmds where a huge pmd might be created
2637          * from a different thread.
2638          *
2639          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2640          * parallel threads are excluded by other means.
2641          *
2642          * Here we only have down_read(mmap_sem).
2643          */
2644         if (pte_alloc(mm, pmdp, addr))
2645                 goto abort;
2646
2647         /* See the comment in pte_alloc_one_map() */
2648         if (unlikely(pmd_trans_unstable(pmdp)))
2649                 goto abort;
2650
2651         if (unlikely(anon_vma_prepare(vma)))
2652                 goto abort;
2653         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2654                 goto abort;
2655
2656         /*
2657          * The memory barrier inside __SetPageUptodate makes sure that
2658          * preceding stores to the page contents become visible before
2659          * the set_pte_at() write.
2660          */
2661         __SetPageUptodate(page);
2662
2663         if (is_zone_device_page(page)) {
2664                 if (is_device_private_page(page)) {
2665                         swp_entry_t swp_entry;
2666
2667                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2668                         entry = swp_entry_to_pte(swp_entry);
2669                 } else if (is_device_public_page(page)) {
2670                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2671                         if (vma->vm_flags & VM_WRITE)
2672                                 entry = pte_mkwrite(pte_mkdirty(entry));
2673                         entry = pte_mkdevmap(entry);
2674                 }
2675         } else {
2676                 entry = mk_pte(page, vma->vm_page_prot);
2677                 if (vma->vm_flags & VM_WRITE)
2678                         entry = pte_mkwrite(pte_mkdirty(entry));
2679         }
2680
2681         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2682
2683         if (pte_present(*ptep)) {
2684                 unsigned long pfn = pte_pfn(*ptep);
2685
2686                 if (!is_zero_pfn(pfn)) {
2687                         pte_unmap_unlock(ptep, ptl);
2688                         mem_cgroup_cancel_charge(page, memcg, false);
2689                         goto abort;
2690                 }
2691                 flush = true;
2692         } else if (!pte_none(*ptep)) {
2693                 pte_unmap_unlock(ptep, ptl);
2694                 mem_cgroup_cancel_charge(page, memcg, false);
2695                 goto abort;
2696         }
2697
2698         /*
2699          * Check for usefaultfd but do not deliver the fault. Instead,
2700          * just back off.
2701          */
2702         if (userfaultfd_missing(vma)) {
2703                 pte_unmap_unlock(ptep, ptl);
2704                 mem_cgroup_cancel_charge(page, memcg, false);
2705                 goto abort;
2706         }
2707
2708         inc_mm_counter(mm, MM_ANONPAGES);
2709         page_add_new_anon_rmap(page, vma, addr, false);
2710         mem_cgroup_commit_charge(page, memcg, false, false);
2711         if (!is_zone_device_page(page))
2712                 lru_cache_add_active_or_unevictable(page, vma);
2713         get_page(page);
2714
2715         if (flush) {
2716                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2717                 ptep_clear_flush_notify(vma, addr, ptep);
2718                 set_pte_at_notify(mm, addr, ptep, entry);
2719                 update_mmu_cache(vma, addr, ptep);
2720         } else {
2721                 /* No need to invalidate - it was non-present before */
2722                 set_pte_at(mm, addr, ptep, entry);
2723                 update_mmu_cache(vma, addr, ptep);
2724         }
2725
2726         pte_unmap_unlock(ptep, ptl);
2727         *src = MIGRATE_PFN_MIGRATE;
2728         return;
2729
2730 abort:
2731         *src &= ~MIGRATE_PFN_MIGRATE;
2732 }
2733
2734 /*
2735  * migrate_vma_pages() - migrate meta-data from src page to dst page
2736  * @migrate: migrate struct containing all migration information
2737  *
2738  * This migrates struct page meta-data from source struct page to destination
2739  * struct page. This effectively finishes the migration from source page to the
2740  * destination page.
2741  */
2742 static void migrate_vma_pages(struct migrate_vma *migrate)
2743 {
2744         const unsigned long npages = migrate->npages;
2745         const unsigned long start = migrate->start;
2746         struct vm_area_struct *vma = migrate->vma;
2747         struct mm_struct *mm = vma->vm_mm;
2748         unsigned long addr, i, mmu_start;
2749         bool notified = false;
2750
2751         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2752                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2753                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2754                 struct address_space *mapping;
2755                 int r;
2756
2757                 if (!newpage) {
2758                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759                         continue;
2760                 }
2761
2762                 if (!page) {
2763                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2764                                 continue;
2765                         }
2766                         if (!notified) {
2767                                 mmu_start = addr;
2768                                 notified = true;
2769                                 mmu_notifier_invalidate_range_start(mm,
2770                                                                 mmu_start,
2771                                                                 migrate->end);
2772                         }
2773                         migrate_vma_insert_page(migrate, addr, newpage,
2774                                                 &migrate->src[i],
2775                                                 &migrate->dst[i]);
2776                         continue;
2777                 }
2778
2779                 mapping = page_mapping(page);
2780
2781                 if (is_zone_device_page(newpage)) {
2782                         if (is_device_private_page(newpage)) {
2783                                 /*
2784                                  * For now only support private anonymous when
2785                                  * migrating to un-addressable device memory.
2786                                  */
2787                                 if (mapping) {
2788                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2789                                         continue;
2790                                 }
2791                         } else if (!is_device_public_page(newpage)) {
2792                                 /*
2793                                  * Other types of ZONE_DEVICE page are not
2794                                  * supported.
2795                                  */
2796                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2797                                 continue;
2798                         }
2799                 }
2800
2801                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2802                 if (r != MIGRATEPAGE_SUCCESS)
2803                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2804         }
2805
2806         if (notified)
2807                 mmu_notifier_invalidate_range_end(mm, mmu_start,
2808                                                   migrate->end);
2809 }
2810
2811 /*
2812  * migrate_vma_finalize() - restore CPU page table entry
2813  * @migrate: migrate struct containing all migration information
2814  *
2815  * This replaces the special migration pte entry with either a mapping to the
2816  * new page if migration was successful for that page, or to the original page
2817  * otherwise.
2818  *
2819  * This also unlocks the pages and puts them back on the lru, or drops the extra
2820  * refcount, for device pages.
2821  */
2822 static void migrate_vma_finalize(struct migrate_vma *migrate)
2823 {
2824         const unsigned long npages = migrate->npages;
2825         unsigned long i;
2826
2827         for (i = 0; i < npages; i++) {
2828                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2829                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2830
2831                 if (!page) {
2832                         if (newpage) {
2833                                 unlock_page(newpage);
2834                                 put_page(newpage);
2835                         }
2836                         continue;
2837                 }
2838
2839                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2840                         if (newpage) {
2841                                 unlock_page(newpage);
2842                                 put_page(newpage);
2843                         }
2844                         newpage = page;
2845                 }
2846
2847                 remove_migration_ptes(page, newpage, false);
2848                 unlock_page(page);
2849                 migrate->cpages--;
2850
2851                 if (is_zone_device_page(page))
2852                         put_page(page);
2853                 else
2854                         putback_lru_page(page);
2855
2856                 if (newpage != page) {
2857                         unlock_page(newpage);
2858                         if (is_zone_device_page(newpage))
2859                                 put_page(newpage);
2860                         else
2861                                 putback_lru_page(newpage);
2862                 }
2863         }
2864 }
2865
2866 /*
2867  * migrate_vma() - migrate a range of memory inside vma
2868  *
2869  * @ops: migration callback for allocating destination memory and copying
2870  * @vma: virtual memory area containing the range to be migrated
2871  * @start: start address of the range to migrate (inclusive)
2872  * @end: end address of the range to migrate (exclusive)
2873  * @src: array of hmm_pfn_t containing source pfns
2874  * @dst: array of hmm_pfn_t containing destination pfns
2875  * @private: pointer passed back to each of the callback
2876  * Returns: 0 on success, error code otherwise
2877  *
2878  * This function tries to migrate a range of memory virtual address range, using
2879  * callbacks to allocate and copy memory from source to destination. First it
2880  * collects all the pages backing each virtual address in the range, saving this
2881  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2882  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2883  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2884  * in the corresponding src array entry. It then restores any pages that are
2885  * pinned, by remapping and unlocking those pages.
2886  *
2887  * At this point it calls the alloc_and_copy() callback. For documentation on
2888  * what is expected from that callback, see struct migrate_vma_ops comments in
2889  * include/linux/migrate.h
2890  *
2891  * After the alloc_and_copy() callback, this function goes over each entry in
2892  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2893  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2894  * then the function tries to migrate struct page information from the source
2895  * struct page to the destination struct page. If it fails to migrate the struct
2896  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2897  * array.
2898  *
2899  * At this point all successfully migrated pages have an entry in the src
2900  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2901  * array entry with MIGRATE_PFN_VALID flag set.
2902  *
2903  * It then calls the finalize_and_map() callback. See comments for "struct
2904  * migrate_vma_ops", in include/linux/migrate.h for details about
2905  * finalize_and_map() behavior.
2906  *
2907  * After the finalize_and_map() callback, for successfully migrated pages, this
2908  * function updates the CPU page table to point to new pages, otherwise it
2909  * restores the CPU page table to point to the original source pages.
2910  *
2911  * Function returns 0 after the above steps, even if no pages were migrated
2912  * (The function only returns an error if any of the arguments are invalid.)
2913  *
2914  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2915  * unsigned long entries.
2916  */
2917 int migrate_vma(const struct migrate_vma_ops *ops,
2918                 struct vm_area_struct *vma,
2919                 unsigned long start,
2920                 unsigned long end,
2921                 unsigned long *src,
2922                 unsigned long *dst,
2923                 void *private)
2924 {
2925         struct migrate_vma migrate;
2926
2927         /* Sanity check the arguments */
2928         start &= PAGE_MASK;
2929         end &= PAGE_MASK;
2930         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2931                 return -EINVAL;
2932         if (start < vma->vm_start || start >= vma->vm_end)
2933                 return -EINVAL;
2934         if (end <= vma->vm_start || end > vma->vm_end)
2935                 return -EINVAL;
2936         if (!ops || !src || !dst || start >= end)
2937                 return -EINVAL;
2938
2939         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2940         migrate.src = src;
2941         migrate.dst = dst;
2942         migrate.start = start;
2943         migrate.npages = 0;
2944         migrate.cpages = 0;
2945         migrate.end = end;
2946         migrate.vma = vma;
2947
2948         /* Collect, and try to unmap source pages */
2949         migrate_vma_collect(&migrate);
2950         if (!migrate.cpages)
2951                 return 0;
2952
2953         /* Lock and isolate page */
2954         migrate_vma_prepare(&migrate);
2955         if (!migrate.cpages)
2956                 return 0;
2957
2958         /* Unmap pages */
2959         migrate_vma_unmap(&migrate);
2960         if (!migrate.cpages)
2961                 return 0;
2962
2963         /*
2964          * At this point pages are locked and unmapped, and thus they have
2965          * stable content and can safely be copied to destination memory that
2966          * is allocated by the callback.
2967          *
2968          * Note that migration can fail in migrate_vma_struct_page() for each
2969          * individual page.
2970          */
2971         ops->alloc_and_copy(vma, src, dst, start, end, private);
2972
2973         /* This does the real migration of struct page */
2974         migrate_vma_pages(&migrate);
2975
2976         ops->finalize_and_map(vma, src, dst, start, end, private);
2977
2978         /* Unlock and remap pages */
2979         migrate_vma_finalize(&migrate);
2980
2981         return 0;
2982 }
2983 EXPORT_SYMBOL(migrate_vma);
2984 #endif /* defined(MIGRATE_VMA_HELPER) */