Merge tag 's390-6.1-6' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264         struct file_region *nrg;
265
266         VM_BUG_ON(resv->region_cache_count <= 0);
267
268         resv->region_cache_count--;
269         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270         list_del(&nrg->link);
271
272         nrg->from = from;
273         nrg->to = to;
274
275         return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279                                               struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         nrg->reservation_counter = rg->reservation_counter;
283         nrg->css = rg->css;
284         if (rg->css)
285                 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291                                                 struct hstate *h,
292                                                 struct resv_map *resv,
293                                                 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296         if (h_cg) {
297                 nrg->reservation_counter =
298                         &h_cg->rsvd_hugepage[hstate_index(h)];
299                 nrg->css = &h_cg->css;
300                 /*
301                  * The caller will hold exactly one h_cg->css reference for the
302                  * whole contiguous reservation region. But this area might be
303                  * scattered when there are already some file_regions reside in
304                  * it. As a result, many file_regions may share only one css
305                  * reference. In order to ensure that one file_region must hold
306                  * exactly one h_cg->css reference, we should do css_get for
307                  * each file_region and leave the reference held by caller
308                  * untouched.
309                  */
310                 css_get(&h_cg->css);
311                 if (!resv->pages_per_hpage)
312                         resv->pages_per_hpage = pages_per_huge_page(h);
313                 /* pages_per_hpage should be the same for all entries in
314                  * a resv_map.
315                  */
316                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317         } else {
318                 nrg->reservation_counter = NULL;
319                 nrg->css = NULL;
320         }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327         if (rg->css)
328                 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333                                    struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336         return rg->reservation_counter == org->reservation_counter &&
337                rg->css == org->css;
338
339 #else
340         return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346         struct file_region *nrg, *prg;
347
348         prg = list_prev_entry(rg, link);
349         if (&prg->link != &resv->regions && prg->to == rg->from &&
350             has_same_uncharge_info(prg, rg)) {
351                 prg->to = rg->to;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356
357                 rg = prg;
358         }
359
360         nrg = list_next_entry(rg, link);
361         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362             has_same_uncharge_info(nrg, rg)) {
363                 nrg->from = rg->from;
364
365                 list_del(&rg->link);
366                 put_uncharge_info(rg);
367                 kfree(rg);
368         }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
374                      long *regions_needed)
375 {
376         struct file_region *nrg;
377
378         if (!regions_needed) {
379                 nrg = get_file_region_entry_from_cache(map, from, to);
380                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381                 list_add(&nrg->link, rg);
382                 coalesce_file_region(map, nrg);
383         } else
384                 *regions_needed += 1;
385
386         return to - from;
387 }
388
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398                                      struct hugetlb_cgroup *h_cg,
399                                      struct hstate *h, long *regions_needed)
400 {
401         long add = 0;
402         struct list_head *head = &resv->regions;
403         long last_accounted_offset = f;
404         struct file_region *iter, *trg = NULL;
405         struct list_head *rg = NULL;
406
407         if (regions_needed)
408                 *regions_needed = 0;
409
410         /* In this loop, we essentially handle an entry for the range
411          * [last_accounted_offset, iter->from), at every iteration, with some
412          * bounds checking.
413          */
414         list_for_each_entry_safe(iter, trg, head, link) {
415                 /* Skip irrelevant regions that start before our range. */
416                 if (iter->from < f) {
417                         /* If this region ends after the last accounted offset,
418                          * then we need to update last_accounted_offset.
419                          */
420                         if (iter->to > last_accounted_offset)
421                                 last_accounted_offset = iter->to;
422                         continue;
423                 }
424
425                 /* When we find a region that starts beyond our range, we've
426                  * finished.
427                  */
428                 if (iter->from >= t) {
429                         rg = iter->link.prev;
430                         break;
431                 }
432
433                 /* Add an entry for last_accounted_offset -> iter->from, and
434                  * update last_accounted_offset.
435                  */
436                 if (iter->from > last_accounted_offset)
437                         add += hugetlb_resv_map_add(resv, iter->link.prev,
438                                                     last_accounted_offset,
439                                                     iter->from, h, h_cg,
440                                                     regions_needed);
441
442                 last_accounted_offset = iter->to;
443         }
444
445         /* Handle the case where our range extends beyond
446          * last_accounted_offset.
447          */
448         if (!rg)
449                 rg = head->prev;
450         if (last_accounted_offset < t)
451                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452                                             t, h, h_cg, regions_needed);
453
454         return add;
455 }
456
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460                                         int regions_needed)
461         __must_hold(&resv->lock)
462 {
463         LIST_HEAD(allocated_regions);
464         int to_allocate = 0, i = 0;
465         struct file_region *trg = NULL, *rg = NULL;
466
467         VM_BUG_ON(regions_needed < 0);
468
469         /*
470          * Check for sufficient descriptors in the cache to accommodate
471          * the number of in progress add operations plus regions_needed.
472          *
473          * This is a while loop because when we drop the lock, some other call
474          * to region_add or region_del may have consumed some region_entries,
475          * so we keep looping here until we finally have enough entries for
476          * (adds_in_progress + regions_needed).
477          */
478         while (resv->region_cache_count <
479                (resv->adds_in_progress + regions_needed)) {
480                 to_allocate = resv->adds_in_progress + regions_needed -
481                               resv->region_cache_count;
482
483                 /* At this point, we should have enough entries in the cache
484                  * for all the existing adds_in_progress. We should only be
485                  * needing to allocate for regions_needed.
486                  */
487                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489                 spin_unlock(&resv->lock);
490                 for (i = 0; i < to_allocate; i++) {
491                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492                         if (!trg)
493                                 goto out_of_memory;
494                         list_add(&trg->link, &allocated_regions);
495                 }
496
497                 spin_lock(&resv->lock);
498
499                 list_splice(&allocated_regions, &resv->region_cache);
500                 resv->region_cache_count += to_allocate;
501         }
502
503         return 0;
504
505 out_of_memory:
506         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507                 list_del(&rg->link);
508                 kfree(rg);
509         }
510         return -ENOMEM;
511 }
512
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531                        long in_regions_needed, struct hstate *h,
532                        struct hugetlb_cgroup *h_cg)
533 {
534         long add = 0, actual_regions_needed = 0;
535
536         spin_lock(&resv->lock);
537 retry:
538
539         /* Count how many regions are actually needed to execute this add. */
540         add_reservation_in_range(resv, f, t, NULL, NULL,
541                                  &actual_regions_needed);
542
543         /*
544          * Check for sufficient descriptors in the cache to accommodate
545          * this add operation. Note that actual_regions_needed may be greater
546          * than in_regions_needed, as the resv_map may have been modified since
547          * the region_chg call. In this case, we need to make sure that we
548          * allocate extra entries, such that we have enough for all the
549          * existing adds_in_progress, plus the excess needed for this
550          * operation.
551          */
552         if (actual_regions_needed > in_regions_needed &&
553             resv->region_cache_count <
554                     resv->adds_in_progress +
555                             (actual_regions_needed - in_regions_needed)) {
556                 /* region_add operation of range 1 should never need to
557                  * allocate file_region entries.
558                  */
559                 VM_BUG_ON(t - f <= 1);
560
561                 if (allocate_file_region_entries(
562                             resv, actual_regions_needed - in_regions_needed)) {
563                         return -ENOMEM;
564                 }
565
566                 goto retry;
567         }
568
569         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570
571         resv->adds_in_progress -= in_regions_needed;
572
573         spin_unlock(&resv->lock);
574         return add;
575 }
576
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598                        long *out_regions_needed)
599 {
600         long chg = 0;
601
602         spin_lock(&resv->lock);
603
604         /* Count how many hugepages in this range are NOT represented. */
605         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606                                        out_regions_needed);
607
608         if (*out_regions_needed == 0)
609                 *out_regions_needed = 1;
610
611         if (allocate_file_region_entries(resv, *out_regions_needed))
612                 return -ENOMEM;
613
614         resv->adds_in_progress += *out_regions_needed;
615
616         spin_unlock(&resv->lock);
617         return chg;
618 }
619
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634                          long regions_needed)
635 {
636         spin_lock(&resv->lock);
637         VM_BUG_ON(!resv->region_cache_count);
638         resv->adds_in_progress -= regions_needed;
639         spin_unlock(&resv->lock);
640 }
641
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658         struct list_head *head = &resv->regions;
659         struct file_region *rg, *trg;
660         struct file_region *nrg = NULL;
661         long del = 0;
662
663 retry:
664         spin_lock(&resv->lock);
665         list_for_each_entry_safe(rg, trg, head, link) {
666                 /*
667                  * Skip regions before the range to be deleted.  file_region
668                  * ranges are normally of the form [from, to).  However, there
669                  * may be a "placeholder" entry in the map which is of the form
670                  * (from, to) with from == to.  Check for placeholder entries
671                  * at the beginning of the range to be deleted.
672                  */
673                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674                         continue;
675
676                 if (rg->from >= t)
677                         break;
678
679                 if (f > rg->from && t < rg->to) { /* Must split region */
680                         /*
681                          * Check for an entry in the cache before dropping
682                          * lock and attempting allocation.
683                          */
684                         if (!nrg &&
685                             resv->region_cache_count > resv->adds_in_progress) {
686                                 nrg = list_first_entry(&resv->region_cache,
687                                                         struct file_region,
688                                                         link);
689                                 list_del(&nrg->link);
690                                 resv->region_cache_count--;
691                         }
692
693                         if (!nrg) {
694                                 spin_unlock(&resv->lock);
695                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696                                 if (!nrg)
697                                         return -ENOMEM;
698                                 goto retry;
699                         }
700
701                         del += t - f;
702                         hugetlb_cgroup_uncharge_file_region(
703                                 resv, rg, t - f, false);
704
705                         /* New entry for end of split region */
706                         nrg->from = t;
707                         nrg->to = rg->to;
708
709                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
711                         INIT_LIST_HEAD(&nrg->link);
712
713                         /* Original entry is trimmed */
714                         rg->to = f;
715
716                         list_add(&nrg->link, &rg->link);
717                         nrg = NULL;
718                         break;
719                 }
720
721                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722                         del += rg->to - rg->from;
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - rg->from, true);
725                         list_del(&rg->link);
726                         kfree(rg);
727                         continue;
728                 }
729
730                 if (f <= rg->from) {    /* Trim beginning of region */
731                         hugetlb_cgroup_uncharge_file_region(resv, rg,
732                                                             t - rg->from, false);
733
734                         del += t - rg->from;
735                         rg->from = t;
736                 } else {                /* Trim end of region */
737                         hugetlb_cgroup_uncharge_file_region(resv, rg,
738                                                             rg->to - f, false);
739
740                         del += rg->to - f;
741                         rg->to = f;
742                 }
743         }
744
745         spin_unlock(&resv->lock);
746         kfree(nrg);
747         return del;
748 }
749
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761         struct hugepage_subpool *spool = subpool_inode(inode);
762         long rsv_adjust;
763         bool reserved = false;
764
765         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766         if (rsv_adjust > 0) {
767                 struct hstate *h = hstate_inode(inode);
768
769                 if (!hugetlb_acct_memory(h, 1))
770                         reserved = true;
771         } else if (!rsv_adjust) {
772                 reserved = true;
773         }
774
775         if (!reserved)
776                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785         struct list_head *head = &resv->regions;
786         struct file_region *rg;
787         long chg = 0;
788
789         spin_lock(&resv->lock);
790         /* Locate each segment we overlap with, and count that overlap. */
791         list_for_each_entry(rg, head, link) {
792                 long seg_from;
793                 long seg_to;
794
795                 if (rg->to <= f)
796                         continue;
797                 if (rg->from >= t)
798                         break;
799
800                 seg_from = max(rg->from, f);
801                 seg_to = min(rg->to, t);
802
803                 chg += seg_to - seg_from;
804         }
805         spin_unlock(&resv->lock);
806
807         return chg;
808 }
809
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815                         struct vm_area_struct *vma, unsigned long address)
816 {
817         return ((address - vma->vm_start) >> huge_page_shift(h)) +
818                         (vma->vm_pgoff >> huge_page_order(h));
819 }
820
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822                                      unsigned long address)
823 {
824         return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834         if (vma->vm_ops && vma->vm_ops->pagesize)
835                 return vma->vm_ops->pagesize(vma);
836         return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848         return vma_kernel_pagesize(vma);
849 }
850
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881         return (unsigned long)vma->vm_private_data;
882 }
883
884 static void set_vma_private_data(struct vm_area_struct *vma,
885                                                         unsigned long value)
886 {
887         vma->vm_private_data = (void *)value;
888 }
889
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892                                           struct hugetlb_cgroup *h_cg,
893                                           struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896         if (!h_cg || !h) {
897                 resv_map->reservation_counter = NULL;
898                 resv_map->pages_per_hpage = 0;
899                 resv_map->css = NULL;
900         } else {
901                 resv_map->reservation_counter =
902                         &h_cg->rsvd_hugepage[hstate_index(h)];
903                 resv_map->pages_per_hpage = pages_per_huge_page(h);
904                 resv_map->css = &h_cg->css;
905         }
906 #endif
907 }
908
909 struct resv_map *resv_map_alloc(void)
910 {
911         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914         if (!resv_map || !rg) {
915                 kfree(resv_map);
916                 kfree(rg);
917                 return NULL;
918         }
919
920         kref_init(&resv_map->refs);
921         spin_lock_init(&resv_map->lock);
922         INIT_LIST_HEAD(&resv_map->regions);
923
924         resv_map->adds_in_progress = 0;
925         /*
926          * Initialize these to 0. On shared mappings, 0's here indicate these
927          * fields don't do cgroup accounting. On private mappings, these will be
928          * re-initialized to the proper values, to indicate that hugetlb cgroup
929          * reservations are to be un-charged from here.
930          */
931         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932
933         INIT_LIST_HEAD(&resv_map->region_cache);
934         list_add(&rg->link, &resv_map->region_cache);
935         resv_map->region_cache_count = 1;
936
937         return resv_map;
938 }
939
940 void resv_map_release(struct kref *ref)
941 {
942         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943         struct list_head *head = &resv_map->region_cache;
944         struct file_region *rg, *trg;
945
946         /* Clear out any active regions before we release the map. */
947         region_del(resv_map, 0, LONG_MAX);
948
949         /* ... and any entries left in the cache */
950         list_for_each_entry_safe(rg, trg, head, link) {
951                 list_del(&rg->link);
952                 kfree(rg);
953         }
954
955         VM_BUG_ON(resv_map->adds_in_progress);
956
957         kfree(resv_map);
958 }
959
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962         /*
963          * At inode evict time, i_mapping may not point to the original
964          * address space within the inode.  This original address space
965          * contains the pointer to the resv_map.  So, always use the
966          * address space embedded within the inode.
967          * The VERY common case is inode->mapping == &inode->i_data but,
968          * this may not be true for device special inodes.
969          */
970         return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         if (vma->vm_flags & VM_MAYSHARE) {
977                 struct address_space *mapping = vma->vm_file->f_mapping;
978                 struct inode *inode = mapping->host;
979
980                 return inode_resv_map(inode);
981
982         } else {
983                 return (struct resv_map *)(get_vma_private_data(vma) &
984                                                         ~HPAGE_RESV_MASK);
985         }
986 }
987
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992
993         set_vma_private_data(vma, (get_vma_private_data(vma) &
994                                 HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001
1002         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008
1009         return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015         /*
1016          * Clear vm_private_data
1017          * - For shared mappings this is a per-vma semaphore that may be
1018          *   allocated in a subsequent call to hugetlb_vm_op_open.
1019          *   Before clearing, make sure pointer is not associated with vma
1020          *   as this will leak the structure.  This is the case when called
1021          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022          *   been called to allocate a new structure.
1023          * - For MAP_PRIVATE mappings, this is the reserve map which does
1024          *   not apply to children.  Faults generated by the children are
1025          *   not guaranteed to succeed, even if read-only.
1026          */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029
1030                 if (vma_lock && vma_lock->vma != vma)
1031                         vma->vm_private_data = NULL;
1032         } else
1033                 vma->vm_private_data = NULL;
1034 }
1035
1036 /*
1037  * Reset and decrement one ref on hugepage private reservation.
1038  * Called with mm->mmap_sem writer semaphore held.
1039  * This function should be only used by move_vma() and operate on
1040  * same sized vma. It should never come here with last ref on the
1041  * reservation.
1042  */
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044 {
1045         /*
1046          * Clear the old hugetlb private page reservation.
1047          * It has already been transferred to new_vma.
1048          *
1049          * During a mremap() operation of a hugetlb vma we call move_vma()
1050          * which copies vma into new_vma and unmaps vma. After the copy
1051          * operation both new_vma and vma share a reference to the resv_map
1052          * struct, and at that point vma is about to be unmapped. We don't
1053          * want to return the reservation to the pool at unmap of vma because
1054          * the reservation still lives on in new_vma, so simply decrement the
1055          * ref here and remove the resv_map reference from this vma.
1056          */
1057         struct resv_map *reservations = vma_resv_map(vma);
1058
1059         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061                 kref_put(&reservations->refs, resv_map_release);
1062         }
1063
1064         hugetlb_dup_vma_private(vma);
1065 }
1066
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1069 {
1070         if (vma->vm_flags & VM_NORESERVE) {
1071                 /*
1072                  * This address is already reserved by other process(chg == 0),
1073                  * so, we should decrement reserved count. Without decrementing,
1074                  * reserve count remains after releasing inode, because this
1075                  * allocated page will go into page cache and is regarded as
1076                  * coming from reserved pool in releasing step.  Currently, we
1077                  * don't have any other solution to deal with this situation
1078                  * properly, so add work-around here.
1079                  */
1080                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1081                         return true;
1082                 else
1083                         return false;
1084         }
1085
1086         /* Shared mappings always use reserves */
1087         if (vma->vm_flags & VM_MAYSHARE) {
1088                 /*
1089                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1090                  * be a region map for all pages.  The only situation where
1091                  * there is no region map is if a hole was punched via
1092                  * fallocate.  In this case, there really are no reserves to
1093                  * use.  This situation is indicated if chg != 0.
1094                  */
1095                 if (chg)
1096                         return false;
1097                 else
1098                         return true;
1099         }
1100
1101         /*
1102          * Only the process that called mmap() has reserves for
1103          * private mappings.
1104          */
1105         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106                 /*
1107                  * Like the shared case above, a hole punch or truncate
1108                  * could have been performed on the private mapping.
1109                  * Examine the value of chg to determine if reserves
1110                  * actually exist or were previously consumed.
1111                  * Very Subtle - The value of chg comes from a previous
1112                  * call to vma_needs_reserves().  The reserve map for
1113                  * private mappings has different (opposite) semantics
1114                  * than that of shared mappings.  vma_needs_reserves()
1115                  * has already taken this difference in semantics into
1116                  * account.  Therefore, the meaning of chg is the same
1117                  * as in the shared case above.  Code could easily be
1118                  * combined, but keeping it separate draws attention to
1119                  * subtle differences.
1120                  */
1121                 if (chg)
1122                         return false;
1123                 else
1124                         return true;
1125         }
1126
1127         return false;
1128 }
1129
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1131 {
1132         int nid = page_to_nid(page);
1133
1134         lockdep_assert_held(&hugetlb_lock);
1135         VM_BUG_ON_PAGE(page_count(page), page);
1136
1137         list_move(&page->lru, &h->hugepage_freelists[nid]);
1138         h->free_huge_pages++;
1139         h->free_huge_pages_node[nid]++;
1140         SetHPageFreed(page);
1141 }
1142
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1144 {
1145         struct page *page;
1146         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1147
1148         lockdep_assert_held(&hugetlb_lock);
1149         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150                 if (pin && !is_longterm_pinnable_page(page))
1151                         continue;
1152
1153                 if (PageHWPoison(page))
1154                         continue;
1155
1156                 list_move(&page->lru, &h->hugepage_activelist);
1157                 set_page_refcounted(page);
1158                 ClearHPageFreed(page);
1159                 h->free_huge_pages--;
1160                 h->free_huge_pages_node[nid]--;
1161                 return page;
1162         }
1163
1164         return NULL;
1165 }
1166
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168                 nodemask_t *nmask)
1169 {
1170         unsigned int cpuset_mems_cookie;
1171         struct zonelist *zonelist;
1172         struct zone *zone;
1173         struct zoneref *z;
1174         int node = NUMA_NO_NODE;
1175
1176         zonelist = node_zonelist(nid, gfp_mask);
1177
1178 retry_cpuset:
1179         cpuset_mems_cookie = read_mems_allowed_begin();
1180         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181                 struct page *page;
1182
1183                 if (!cpuset_zone_allowed(zone, gfp_mask))
1184                         continue;
1185                 /*
1186                  * no need to ask again on the same node. Pool is node rather than
1187                  * zone aware
1188                  */
1189                 if (zone_to_nid(zone) == node)
1190                         continue;
1191                 node = zone_to_nid(zone);
1192
1193                 page = dequeue_huge_page_node_exact(h, node);
1194                 if (page)
1195                         return page;
1196         }
1197         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198                 goto retry_cpuset;
1199
1200         return NULL;
1201 }
1202
1203 static unsigned long available_huge_pages(struct hstate *h)
1204 {
1205         return h->free_huge_pages - h->resv_huge_pages;
1206 }
1207
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209                                 struct vm_area_struct *vma,
1210                                 unsigned long address, int avoid_reserve,
1211                                 long chg)
1212 {
1213         struct page *page = NULL;
1214         struct mempolicy *mpol;
1215         gfp_t gfp_mask;
1216         nodemask_t *nodemask;
1217         int nid;
1218
1219         /*
1220          * A child process with MAP_PRIVATE mappings created by their parent
1221          * have no page reserves. This check ensures that reservations are
1222          * not "stolen". The child may still get SIGKILLed
1223          */
1224         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1225                 goto err;
1226
1227         /* If reserves cannot be used, ensure enough pages are in the pool */
1228         if (avoid_reserve && !available_huge_pages(h))
1229                 goto err;
1230
1231         gfp_mask = htlb_alloc_mask(h);
1232         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1233
1234         if (mpol_is_preferred_many(mpol)) {
1235                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236
1237                 /* Fallback to all nodes if page==NULL */
1238                 nodemask = NULL;
1239         }
1240
1241         if (!page)
1242                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243
1244         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245                 SetHPageRestoreReserve(page);
1246                 h->resv_huge_pages--;
1247         }
1248
1249         mpol_cond_put(mpol);
1250         return page;
1251
1252 err:
1253         return NULL;
1254 }
1255
1256 /*
1257  * common helper functions for hstate_next_node_to_{alloc|free}.
1258  * We may have allocated or freed a huge page based on a different
1259  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260  * be outside of *nodes_allowed.  Ensure that we use an allowed
1261  * node for alloc or free.
1262  */
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265         nid = next_node_in(nid, *nodes_allowed);
1266         VM_BUG_ON(nid >= MAX_NUMNODES);
1267
1268         return nid;
1269 }
1270
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272 {
1273         if (!node_isset(nid, *nodes_allowed))
1274                 nid = next_node_allowed(nid, nodes_allowed);
1275         return nid;
1276 }
1277
1278 /*
1279  * returns the previously saved node ["this node"] from which to
1280  * allocate a persistent huge page for the pool and advance the
1281  * next node from which to allocate, handling wrap at end of node
1282  * mask.
1283  */
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285                                         nodemask_t *nodes_allowed)
1286 {
1287         int nid;
1288
1289         VM_BUG_ON(!nodes_allowed);
1290
1291         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293
1294         return nid;
1295 }
1296
1297 /*
1298  * helper for remove_pool_huge_page() - return the previously saved
1299  * node ["this node"] from which to free a huge page.  Advance the
1300  * next node id whether or not we find a free huge page to free so
1301  * that the next attempt to free addresses the next node.
1302  */
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304 {
1305         int nid;
1306
1307         VM_BUG_ON(!nodes_allowed);
1308
1309         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311
1312         return nid;
1313 }
1314
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1316         for (nr_nodes = nodes_weight(*mask);                            \
1317                 nr_nodes > 0 &&                                         \
1318                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1319                 nr_nodes--)
1320
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1322         for (nr_nodes = nodes_weight(*mask);                            \
1323                 nr_nodes > 0 &&                                         \
1324                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1325                 nr_nodes--)
1326
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329                                         unsigned int order, bool demote)
1330 {
1331         int i;
1332         int nr_pages = 1 << order;
1333         struct page *p;
1334
1335         atomic_set(compound_mapcount_ptr(page), 0);
1336         atomic_set(compound_pincount_ptr(page), 0);
1337
1338         for (i = 1; i < nr_pages; i++) {
1339                 p = nth_page(page, i);
1340                 p->mapping = NULL;
1341                 clear_compound_head(p);
1342                 if (!demote)
1343                         set_page_refcounted(p);
1344         }
1345
1346         set_compound_order(page, 0);
1347 #ifdef CONFIG_64BIT
1348         page[1].compound_nr = 0;
1349 #endif
1350         __ClearPageHead(page);
1351 }
1352
1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1354                                         unsigned int order)
1355 {
1356         __destroy_compound_gigantic_page(page, order, true);
1357 }
1358
1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1360 static void destroy_compound_gigantic_page(struct page *page,
1361                                         unsigned int order)
1362 {
1363         __destroy_compound_gigantic_page(page, order, false);
1364 }
1365
1366 static void free_gigantic_page(struct page *page, unsigned int order)
1367 {
1368         /*
1369          * If the page isn't allocated using the cma allocator,
1370          * cma_release() returns false.
1371          */
1372 #ifdef CONFIG_CMA
1373         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1374                 return;
1375 #endif
1376
1377         free_contig_range(page_to_pfn(page), 1 << order);
1378 }
1379
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382                 int nid, nodemask_t *nodemask)
1383 {
1384         unsigned long nr_pages = pages_per_huge_page(h);
1385         if (nid == NUMA_NO_NODE)
1386                 nid = numa_mem_id();
1387
1388 #ifdef CONFIG_CMA
1389         {
1390                 struct page *page;
1391                 int node;
1392
1393                 if (hugetlb_cma[nid]) {
1394                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395                                         huge_page_order(h), true);
1396                         if (page)
1397                                 return page;
1398                 }
1399
1400                 if (!(gfp_mask & __GFP_THISNODE)) {
1401                         for_each_node_mask(node, *nodemask) {
1402                                 if (node == nid || !hugetlb_cma[node])
1403                                         continue;
1404
1405                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406                                                 huge_page_order(h), true);
1407                                 if (page)
1408                                         return page;
1409                         }
1410                 }
1411         }
1412 #endif
1413
1414         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1415 }
1416
1417 #else /* !CONFIG_CONTIG_ALLOC */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419                                         int nid, nodemask_t *nodemask)
1420 {
1421         return NULL;
1422 }
1423 #endif /* CONFIG_CONTIG_ALLOC */
1424
1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1427                                         int nid, nodemask_t *nodemask)
1428 {
1429         return NULL;
1430 }
1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1432 static inline void destroy_compound_gigantic_page(struct page *page,
1433                                                 unsigned int order) { }
1434 #endif
1435
1436 /*
1437  * Remove hugetlb page from lists, and update dtor so that page appears
1438  * as just a compound page.
1439  *
1440  * A reference is held on the page, except in the case of demote.
1441  *
1442  * Must be called with hugetlb lock held.
1443  */
1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445                                                         bool adjust_surplus,
1446                                                         bool demote)
1447 {
1448         int nid = page_to_nid(page);
1449
1450         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1452
1453         lockdep_assert_held(&hugetlb_lock);
1454         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1455                 return;
1456
1457         list_del(&page->lru);
1458
1459         if (HPageFreed(page)) {
1460                 h->free_huge_pages--;
1461                 h->free_huge_pages_node[nid]--;
1462         }
1463         if (adjust_surplus) {
1464                 h->surplus_huge_pages--;
1465                 h->surplus_huge_pages_node[nid]--;
1466         }
1467
1468         /*
1469          * Very subtle
1470          *
1471          * For non-gigantic pages set the destructor to the normal compound
1472          * page dtor.  This is needed in case someone takes an additional
1473          * temporary ref to the page, and freeing is delayed until they drop
1474          * their reference.
1475          *
1476          * For gigantic pages set the destructor to the null dtor.  This
1477          * destructor will never be called.  Before freeing the gigantic
1478          * page destroy_compound_gigantic_page will turn the compound page
1479          * into a simple group of pages.  After this the destructor does not
1480          * apply.
1481          *
1482          * This handles the case where more than one ref is held when and
1483          * after update_and_free_page is called.
1484          *
1485          * In the case of demote we do not ref count the page as it will soon
1486          * be turned into a page of smaller size.
1487          */
1488         if (!demote)
1489                 set_page_refcounted(page);
1490         if (hstate_is_gigantic(h))
1491                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1492         else
1493                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1494
1495         h->nr_huge_pages--;
1496         h->nr_huge_pages_node[nid]--;
1497 }
1498
1499 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500                                                         bool adjust_surplus)
1501 {
1502         __remove_hugetlb_page(h, page, adjust_surplus, false);
1503 }
1504
1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506                                                         bool adjust_surplus)
1507 {
1508         __remove_hugetlb_page(h, page, adjust_surplus, true);
1509 }
1510
1511 static void add_hugetlb_page(struct hstate *h, struct page *page,
1512                              bool adjust_surplus)
1513 {
1514         int zeroed;
1515         int nid = page_to_nid(page);
1516
1517         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1518
1519         lockdep_assert_held(&hugetlb_lock);
1520
1521         INIT_LIST_HEAD(&page->lru);
1522         h->nr_huge_pages++;
1523         h->nr_huge_pages_node[nid]++;
1524
1525         if (adjust_surplus) {
1526                 h->surplus_huge_pages++;
1527                 h->surplus_huge_pages_node[nid]++;
1528         }
1529
1530         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531         set_page_private(page, 0);
1532         /*
1533          * We have to set HPageVmemmapOptimized again as above
1534          * set_page_private(page, 0) cleared it.
1535          */
1536         SetHPageVmemmapOptimized(page);
1537
1538         /*
1539          * This page is about to be managed by the hugetlb allocator and
1540          * should have no users.  Drop our reference, and check for others
1541          * just in case.
1542          */
1543         zeroed = put_page_testzero(page);
1544         if (!zeroed)
1545                 /*
1546                  * It is VERY unlikely soneone else has taken a ref on
1547                  * the page.  In this case, we simply return as the
1548                  * hugetlb destructor (free_huge_page) will be called
1549                  * when this other ref is dropped.
1550                  */
1551                 return;
1552
1553         arch_clear_hugepage_flags(page);
1554         enqueue_huge_page(h, page);
1555 }
1556
1557 static void __update_and_free_page(struct hstate *h, struct page *page)
1558 {
1559         int i;
1560         struct page *subpage;
1561
1562         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1563                 return;
1564
1565         /*
1566          * If we don't know which subpages are hwpoisoned, we can't free
1567          * the hugepage, so it's leaked intentionally.
1568          */
1569         if (HPageRawHwpUnreliable(page))
1570                 return;
1571
1572         if (hugetlb_vmemmap_restore(h, page)) {
1573                 spin_lock_irq(&hugetlb_lock);
1574                 /*
1575                  * If we cannot allocate vmemmap pages, just refuse to free the
1576                  * page and put the page back on the hugetlb free list and treat
1577                  * as a surplus page.
1578                  */
1579                 add_hugetlb_page(h, page, true);
1580                 spin_unlock_irq(&hugetlb_lock);
1581                 return;
1582         }
1583
1584         /*
1585          * Move PageHWPoison flag from head page to the raw error pages,
1586          * which makes any healthy subpages reusable.
1587          */
1588         if (unlikely(PageHWPoison(page)))
1589                 hugetlb_clear_page_hwpoison(page);
1590
1591         for (i = 0; i < pages_per_huge_page(h); i++) {
1592                 subpage = nth_page(page, i);
1593                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1594                                 1 << PG_referenced | 1 << PG_dirty |
1595                                 1 << PG_active | 1 << PG_private |
1596                                 1 << PG_writeback);
1597         }
1598
1599         /*
1600          * Non-gigantic pages demoted from CMA allocated gigantic pages
1601          * need to be given back to CMA in free_gigantic_page.
1602          */
1603         if (hstate_is_gigantic(h) ||
1604             hugetlb_cma_page(page, huge_page_order(h))) {
1605                 destroy_compound_gigantic_page(page, huge_page_order(h));
1606                 free_gigantic_page(page, huge_page_order(h));
1607         } else {
1608                 __free_pages(page, huge_page_order(h));
1609         }
1610 }
1611
1612 /*
1613  * As update_and_free_page() can be called under any context, so we cannot
1614  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616  * the vmemmap pages.
1617  *
1618  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619  * freed and frees them one-by-one. As the page->mapping pointer is going
1620  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621  * structure of a lockless linked list of huge pages to be freed.
1622  */
1623 static LLIST_HEAD(hpage_freelist);
1624
1625 static void free_hpage_workfn(struct work_struct *work)
1626 {
1627         struct llist_node *node;
1628
1629         node = llist_del_all(&hpage_freelist);
1630
1631         while (node) {
1632                 struct page *page;
1633                 struct hstate *h;
1634
1635                 page = container_of((struct address_space **)node,
1636                                      struct page, mapping);
1637                 node = node->next;
1638                 page->mapping = NULL;
1639                 /*
1640                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641                  * is going to trigger because a previous call to
1642                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1643                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1644                  */
1645                 h = size_to_hstate(page_size(page));
1646
1647                 __update_and_free_page(h, page);
1648
1649                 cond_resched();
1650         }
1651 }
1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1653
1654 static inline void flush_free_hpage_work(struct hstate *h)
1655 {
1656         if (hugetlb_vmemmap_optimizable(h))
1657                 flush_work(&free_hpage_work);
1658 }
1659
1660 static void update_and_free_page(struct hstate *h, struct page *page,
1661                                  bool atomic)
1662 {
1663         if (!HPageVmemmapOptimized(page) || !atomic) {
1664                 __update_and_free_page(h, page);
1665                 return;
1666         }
1667
1668         /*
1669          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1670          *
1671          * Only call schedule_work() if hpage_freelist is previously
1672          * empty. Otherwise, schedule_work() had been called but the workfn
1673          * hasn't retrieved the list yet.
1674          */
1675         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676                 schedule_work(&free_hpage_work);
1677 }
1678
1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1680 {
1681         struct page *page, *t_page;
1682
1683         list_for_each_entry_safe(page, t_page, list, lru) {
1684                 update_and_free_page(h, page, false);
1685                 cond_resched();
1686         }
1687 }
1688
1689 struct hstate *size_to_hstate(unsigned long size)
1690 {
1691         struct hstate *h;
1692
1693         for_each_hstate(h) {
1694                 if (huge_page_size(h) == size)
1695                         return h;
1696         }
1697         return NULL;
1698 }
1699
1700 void free_huge_page(struct page *page)
1701 {
1702         /*
1703          * Can't pass hstate in here because it is called from the
1704          * compound page destructor.
1705          */
1706         struct hstate *h = page_hstate(page);
1707         int nid = page_to_nid(page);
1708         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1709         bool restore_reserve;
1710         unsigned long flags;
1711
1712         VM_BUG_ON_PAGE(page_count(page), page);
1713         VM_BUG_ON_PAGE(page_mapcount(page), page);
1714
1715         hugetlb_set_page_subpool(page, NULL);
1716         if (PageAnon(page))
1717                 __ClearPageAnonExclusive(page);
1718         page->mapping = NULL;
1719         restore_reserve = HPageRestoreReserve(page);
1720         ClearHPageRestoreReserve(page);
1721
1722         /*
1723          * If HPageRestoreReserve was set on page, page allocation consumed a
1724          * reservation.  If the page was associated with a subpool, there
1725          * would have been a page reserved in the subpool before allocation
1726          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1727          * reservation, do not call hugepage_subpool_put_pages() as this will
1728          * remove the reserved page from the subpool.
1729          */
1730         if (!restore_reserve) {
1731                 /*
1732                  * A return code of zero implies that the subpool will be
1733                  * under its minimum size if the reservation is not restored
1734                  * after page is free.  Therefore, force restore_reserve
1735                  * operation.
1736                  */
1737                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1738                         restore_reserve = true;
1739         }
1740
1741         spin_lock_irqsave(&hugetlb_lock, flags);
1742         ClearHPageMigratable(page);
1743         hugetlb_cgroup_uncharge_page(hstate_index(h),
1744                                      pages_per_huge_page(h), page);
1745         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746                                           pages_per_huge_page(h), page);
1747         if (restore_reserve)
1748                 h->resv_huge_pages++;
1749
1750         if (HPageTemporary(page)) {
1751                 remove_hugetlb_page(h, page, false);
1752                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1753                 update_and_free_page(h, page, true);
1754         } else if (h->surplus_huge_pages_node[nid]) {
1755                 /* remove the page from active list */
1756                 remove_hugetlb_page(h, page, true);
1757                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1758                 update_and_free_page(h, page, true);
1759         } else {
1760                 arch_clear_hugepage_flags(page);
1761                 enqueue_huge_page(h, page);
1762                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1763         }
1764 }
1765
1766 /*
1767  * Must be called with the hugetlb lock held
1768  */
1769 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1770 {
1771         lockdep_assert_held(&hugetlb_lock);
1772         h->nr_huge_pages++;
1773         h->nr_huge_pages_node[nid]++;
1774 }
1775
1776 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1777 {
1778         hugetlb_vmemmap_optimize(h, page);
1779         INIT_LIST_HEAD(&page->lru);
1780         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1781         hugetlb_set_page_subpool(page, NULL);
1782         set_hugetlb_cgroup(page, NULL);
1783         set_hugetlb_cgroup_rsvd(page, NULL);
1784 }
1785
1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1787 {
1788         __prep_new_huge_page(h, page);
1789         spin_lock_irq(&hugetlb_lock);
1790         __prep_account_new_huge_page(h, nid);
1791         spin_unlock_irq(&hugetlb_lock);
1792 }
1793
1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1795                                                                 bool demote)
1796 {
1797         int i, j;
1798         int nr_pages = 1 << order;
1799         struct page *p;
1800
1801         /* we rely on prep_new_huge_page to set the destructor */
1802         set_compound_order(page, order);
1803         __ClearPageReserved(page);
1804         __SetPageHead(page);
1805         for (i = 0; i < nr_pages; i++) {
1806                 p = nth_page(page, i);
1807
1808                 /*
1809                  * For gigantic hugepages allocated through bootmem at
1810                  * boot, it's safer to be consistent with the not-gigantic
1811                  * hugepages and clear the PG_reserved bit from all tail pages
1812                  * too.  Otherwise drivers using get_user_pages() to access tail
1813                  * pages may get the reference counting wrong if they see
1814                  * PG_reserved set on a tail page (despite the head page not
1815                  * having PG_reserved set).  Enforcing this consistency between
1816                  * head and tail pages allows drivers to optimize away a check
1817                  * on the head page when they need know if put_page() is needed
1818                  * after get_user_pages().
1819                  */
1820                 if (i != 0)     /* head page cleared above */
1821                         __ClearPageReserved(p);
1822                 /*
1823                  * Subtle and very unlikely
1824                  *
1825                  * Gigantic 'page allocators' such as memblock or cma will
1826                  * return a set of pages with each page ref counted.  We need
1827                  * to turn this set of pages into a compound page with tail
1828                  * page ref counts set to zero.  Code such as speculative page
1829                  * cache adding could take a ref on a 'to be' tail page.
1830                  * We need to respect any increased ref count, and only set
1831                  * the ref count to zero if count is currently 1.  If count
1832                  * is not 1, we return an error.  An error return indicates
1833                  * the set of pages can not be converted to a gigantic page.
1834                  * The caller who allocated the pages should then discard the
1835                  * pages using the appropriate free interface.
1836                  *
1837                  * In the case of demote, the ref count will be zero.
1838                  */
1839                 if (!demote) {
1840                         if (!page_ref_freeze(p, 1)) {
1841                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1842                                 goto out_error;
1843                         }
1844                 } else {
1845                         VM_BUG_ON_PAGE(page_count(p), p);
1846                 }
1847                 if (i != 0)
1848                         set_compound_head(p, page);
1849         }
1850         atomic_set(compound_mapcount_ptr(page), -1);
1851         atomic_set(compound_pincount_ptr(page), 0);
1852         return true;
1853
1854 out_error:
1855         /* undo page modifications made above */
1856         for (j = 0; j < i; j++) {
1857                 p = nth_page(page, j);
1858                 if (j != 0)
1859                         clear_compound_head(p);
1860                 set_page_refcounted(p);
1861         }
1862         /* need to clear PG_reserved on remaining tail pages  */
1863         for (; j < nr_pages; j++) {
1864                 p = nth_page(page, j);
1865                 __ClearPageReserved(p);
1866         }
1867         set_compound_order(page, 0);
1868 #ifdef CONFIG_64BIT
1869         page[1].compound_nr = 0;
1870 #endif
1871         __ClearPageHead(page);
1872         return false;
1873 }
1874
1875 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1876 {
1877         return __prep_compound_gigantic_page(page, order, false);
1878 }
1879
1880 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1881                                                         unsigned int order)
1882 {
1883         return __prep_compound_gigantic_page(page, order, true);
1884 }
1885
1886 /*
1887  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1888  * transparent huge pages.  See the PageTransHuge() documentation for more
1889  * details.
1890  */
1891 int PageHuge(struct page *page)
1892 {
1893         if (!PageCompound(page))
1894                 return 0;
1895
1896         page = compound_head(page);
1897         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1898 }
1899 EXPORT_SYMBOL_GPL(PageHuge);
1900
1901 /*
1902  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1903  * normal or transparent huge pages.
1904  */
1905 int PageHeadHuge(struct page *page_head)
1906 {
1907         if (!PageHead(page_head))
1908                 return 0;
1909
1910         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1911 }
1912 EXPORT_SYMBOL_GPL(PageHeadHuge);
1913
1914 /*
1915  * Find and lock address space (mapping) in write mode.
1916  *
1917  * Upon entry, the page is locked which means that page_mapping() is
1918  * stable.  Due to locking order, we can only trylock_write.  If we can
1919  * not get the lock, simply return NULL to caller.
1920  */
1921 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1922 {
1923         struct address_space *mapping = page_mapping(hpage);
1924
1925         if (!mapping)
1926                 return mapping;
1927
1928         if (i_mmap_trylock_write(mapping))
1929                 return mapping;
1930
1931         return NULL;
1932 }
1933
1934 pgoff_t hugetlb_basepage_index(struct page *page)
1935 {
1936         struct page *page_head = compound_head(page);
1937         pgoff_t index = page_index(page_head);
1938         unsigned long compound_idx;
1939
1940         if (compound_order(page_head) >= MAX_ORDER)
1941                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1942         else
1943                 compound_idx = page - page_head;
1944
1945         return (index << compound_order(page_head)) + compound_idx;
1946 }
1947
1948 static struct page *alloc_buddy_huge_page(struct hstate *h,
1949                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1950                 nodemask_t *node_alloc_noretry)
1951 {
1952         int order = huge_page_order(h);
1953         struct page *page;
1954         bool alloc_try_hard = true;
1955         bool retry = true;
1956
1957         /*
1958          * By default we always try hard to allocate the page with
1959          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1960          * a loop (to adjust global huge page counts) and previous allocation
1961          * failed, do not continue to try hard on the same node.  Use the
1962          * node_alloc_noretry bitmap to manage this state information.
1963          */
1964         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1965                 alloc_try_hard = false;
1966         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1967         if (alloc_try_hard)
1968                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1969         if (nid == NUMA_NO_NODE)
1970                 nid = numa_mem_id();
1971 retry:
1972         page = __alloc_pages(gfp_mask, order, nid, nmask);
1973
1974         /* Freeze head page */
1975         if (page && !page_ref_freeze(page, 1)) {
1976                 __free_pages(page, order);
1977                 if (retry) {    /* retry once */
1978                         retry = false;
1979                         goto retry;
1980                 }
1981                 /* WOW!  twice in a row. */
1982                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1983                 page = NULL;
1984         }
1985
1986         if (page)
1987                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1988         else
1989                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1990
1991         /*
1992          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1993          * indicates an overall state change.  Clear bit so that we resume
1994          * normal 'try hard' allocations.
1995          */
1996         if (node_alloc_noretry && page && !alloc_try_hard)
1997                 node_clear(nid, *node_alloc_noretry);
1998
1999         /*
2000          * If we tried hard to get a page but failed, set bit so that
2001          * subsequent attempts will not try as hard until there is an
2002          * overall state change.
2003          */
2004         if (node_alloc_noretry && !page && alloc_try_hard)
2005                 node_set(nid, *node_alloc_noretry);
2006
2007         return page;
2008 }
2009
2010 /*
2011  * Common helper to allocate a fresh hugetlb page. All specific allocators
2012  * should use this function to get new hugetlb pages
2013  *
2014  * Note that returned page is 'frozen':  ref count of head page and all tail
2015  * pages is zero.
2016  */
2017 static struct page *alloc_fresh_huge_page(struct hstate *h,
2018                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2019                 nodemask_t *node_alloc_noretry)
2020 {
2021         struct page *page;
2022         bool retry = false;
2023
2024 retry:
2025         if (hstate_is_gigantic(h))
2026                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2027         else
2028                 page = alloc_buddy_huge_page(h, gfp_mask,
2029                                 nid, nmask, node_alloc_noretry);
2030         if (!page)
2031                 return NULL;
2032
2033         if (hstate_is_gigantic(h)) {
2034                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2035                         /*
2036                          * Rare failure to convert pages to compound page.
2037                          * Free pages and try again - ONCE!
2038                          */
2039                         free_gigantic_page(page, huge_page_order(h));
2040                         if (!retry) {
2041                                 retry = true;
2042                                 goto retry;
2043                         }
2044                         return NULL;
2045                 }
2046         }
2047         prep_new_huge_page(h, page, page_to_nid(page));
2048
2049         return page;
2050 }
2051
2052 /*
2053  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2054  * manner.
2055  */
2056 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2057                                 nodemask_t *node_alloc_noretry)
2058 {
2059         struct page *page;
2060         int nr_nodes, node;
2061         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062
2063         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2064                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2065                                                 node_alloc_noretry);
2066                 if (page)
2067                         break;
2068         }
2069
2070         if (!page)
2071                 return 0;
2072
2073         free_huge_page(page); /* free it into the hugepage allocator */
2074
2075         return 1;
2076 }
2077
2078 /*
2079  * Remove huge page from pool from next node to free.  Attempt to keep
2080  * persistent huge pages more or less balanced over allowed nodes.
2081  * This routine only 'removes' the hugetlb page.  The caller must make
2082  * an additional call to free the page to low level allocators.
2083  * Called with hugetlb_lock locked.
2084  */
2085 static struct page *remove_pool_huge_page(struct hstate *h,
2086                                                 nodemask_t *nodes_allowed,
2087                                                  bool acct_surplus)
2088 {
2089         int nr_nodes, node;
2090         struct page *page = NULL;
2091
2092         lockdep_assert_held(&hugetlb_lock);
2093         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2094                 /*
2095                  * If we're returning unused surplus pages, only examine
2096                  * nodes with surplus pages.
2097                  */
2098                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2099                     !list_empty(&h->hugepage_freelists[node])) {
2100                         page = list_entry(h->hugepage_freelists[node].next,
2101                                           struct page, lru);
2102                         remove_hugetlb_page(h, page, acct_surplus);
2103                         break;
2104                 }
2105         }
2106
2107         return page;
2108 }
2109
2110 /*
2111  * Dissolve a given free hugepage into free buddy pages. This function does
2112  * nothing for in-use hugepages and non-hugepages.
2113  * This function returns values like below:
2114  *
2115  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2116  *           when the system is under memory pressure and the feature of
2117  *           freeing unused vmemmap pages associated with each hugetlb page
2118  *           is enabled.
2119  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2120  *           (allocated or reserved.)
2121  *       0:  successfully dissolved free hugepages or the page is not a
2122  *           hugepage (considered as already dissolved)
2123  */
2124 int dissolve_free_huge_page(struct page *page)
2125 {
2126         int rc = -EBUSY;
2127
2128 retry:
2129         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2130         if (!PageHuge(page))
2131                 return 0;
2132
2133         spin_lock_irq(&hugetlb_lock);
2134         if (!PageHuge(page)) {
2135                 rc = 0;
2136                 goto out;
2137         }
2138
2139         if (!page_count(page)) {
2140                 struct page *head = compound_head(page);
2141                 struct hstate *h = page_hstate(head);
2142                 if (!available_huge_pages(h))
2143                         goto out;
2144
2145                 /*
2146                  * We should make sure that the page is already on the free list
2147                  * when it is dissolved.
2148                  */
2149                 if (unlikely(!HPageFreed(head))) {
2150                         spin_unlock_irq(&hugetlb_lock);
2151                         cond_resched();
2152
2153                         /*
2154                          * Theoretically, we should return -EBUSY when we
2155                          * encounter this race. In fact, we have a chance
2156                          * to successfully dissolve the page if we do a
2157                          * retry. Because the race window is quite small.
2158                          * If we seize this opportunity, it is an optimization
2159                          * for increasing the success rate of dissolving page.
2160                          */
2161                         goto retry;
2162                 }
2163
2164                 remove_hugetlb_page(h, head, false);
2165                 h->max_huge_pages--;
2166                 spin_unlock_irq(&hugetlb_lock);
2167
2168                 /*
2169                  * Normally update_and_free_page will allocate required vmemmmap
2170                  * before freeing the page.  update_and_free_page will fail to
2171                  * free the page if it can not allocate required vmemmap.  We
2172                  * need to adjust max_huge_pages if the page is not freed.
2173                  * Attempt to allocate vmemmmap here so that we can take
2174                  * appropriate action on failure.
2175                  */
2176                 rc = hugetlb_vmemmap_restore(h, head);
2177                 if (!rc) {
2178                         update_and_free_page(h, head, false);
2179                 } else {
2180                         spin_lock_irq(&hugetlb_lock);
2181                         add_hugetlb_page(h, head, false);
2182                         h->max_huge_pages++;
2183                         spin_unlock_irq(&hugetlb_lock);
2184                 }
2185
2186                 return rc;
2187         }
2188 out:
2189         spin_unlock_irq(&hugetlb_lock);
2190         return rc;
2191 }
2192
2193 /*
2194  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2195  * make specified memory blocks removable from the system.
2196  * Note that this will dissolve a free gigantic hugepage completely, if any
2197  * part of it lies within the given range.
2198  * Also note that if dissolve_free_huge_page() returns with an error, all
2199  * free hugepages that were dissolved before that error are lost.
2200  */
2201 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2202 {
2203         unsigned long pfn;
2204         struct page *page;
2205         int rc = 0;
2206         unsigned int order;
2207         struct hstate *h;
2208
2209         if (!hugepages_supported())
2210                 return rc;
2211
2212         order = huge_page_order(&default_hstate);
2213         for_each_hstate(h)
2214                 order = min(order, huge_page_order(h));
2215
2216         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2217                 page = pfn_to_page(pfn);
2218                 rc = dissolve_free_huge_page(page);
2219                 if (rc)
2220                         break;
2221         }
2222
2223         return rc;
2224 }
2225
2226 /*
2227  * Allocates a fresh surplus page from the page allocator.
2228  */
2229 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2230                                                 int nid, nodemask_t *nmask)
2231 {
2232         struct page *page = NULL;
2233
2234         if (hstate_is_gigantic(h))
2235                 return NULL;
2236
2237         spin_lock_irq(&hugetlb_lock);
2238         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2239                 goto out_unlock;
2240         spin_unlock_irq(&hugetlb_lock);
2241
2242         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2243         if (!page)
2244                 return NULL;
2245
2246         spin_lock_irq(&hugetlb_lock);
2247         /*
2248          * We could have raced with the pool size change.
2249          * Double check that and simply deallocate the new page
2250          * if we would end up overcommiting the surpluses. Abuse
2251          * temporary page to workaround the nasty free_huge_page
2252          * codeflow
2253          */
2254         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2255                 SetHPageTemporary(page);
2256                 spin_unlock_irq(&hugetlb_lock);
2257                 free_huge_page(page);
2258                 return NULL;
2259         }
2260
2261         h->surplus_huge_pages++;
2262         h->surplus_huge_pages_node[page_to_nid(page)]++;
2263
2264 out_unlock:
2265         spin_unlock_irq(&hugetlb_lock);
2266
2267         return page;
2268 }
2269
2270 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2271                                      int nid, nodemask_t *nmask)
2272 {
2273         struct page *page;
2274
2275         if (hstate_is_gigantic(h))
2276                 return NULL;
2277
2278         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2279         if (!page)
2280                 return NULL;
2281
2282         /* fresh huge pages are frozen */
2283         set_page_refcounted(page);
2284
2285         /*
2286          * We do not account these pages as surplus because they are only
2287          * temporary and will be released properly on the last reference
2288          */
2289         SetHPageTemporary(page);
2290
2291         return page;
2292 }
2293
2294 /*
2295  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2296  */
2297 static
2298 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2299                 struct vm_area_struct *vma, unsigned long addr)
2300 {
2301         struct page *page = NULL;
2302         struct mempolicy *mpol;
2303         gfp_t gfp_mask = htlb_alloc_mask(h);
2304         int nid;
2305         nodemask_t *nodemask;
2306
2307         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2308         if (mpol_is_preferred_many(mpol)) {
2309                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2310
2311                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2312                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2313
2314                 /* Fallback to all nodes if page==NULL */
2315                 nodemask = NULL;
2316         }
2317
2318         if (!page)
2319                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2320         mpol_cond_put(mpol);
2321         return page;
2322 }
2323
2324 /* page migration callback function */
2325 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2326                 nodemask_t *nmask, gfp_t gfp_mask)
2327 {
2328         spin_lock_irq(&hugetlb_lock);
2329         if (available_huge_pages(h)) {
2330                 struct page *page;
2331
2332                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2333                 if (page) {
2334                         spin_unlock_irq(&hugetlb_lock);
2335                         return page;
2336                 }
2337         }
2338         spin_unlock_irq(&hugetlb_lock);
2339
2340         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2341 }
2342
2343 /* mempolicy aware migration callback */
2344 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2345                 unsigned long address)
2346 {
2347         struct mempolicy *mpol;
2348         nodemask_t *nodemask;
2349         struct page *page;
2350         gfp_t gfp_mask;
2351         int node;
2352
2353         gfp_mask = htlb_alloc_mask(h);
2354         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2355         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2356         mpol_cond_put(mpol);
2357
2358         return page;
2359 }
2360
2361 /*
2362  * Increase the hugetlb pool such that it can accommodate a reservation
2363  * of size 'delta'.
2364  */
2365 static int gather_surplus_pages(struct hstate *h, long delta)
2366         __must_hold(&hugetlb_lock)
2367 {
2368         LIST_HEAD(surplus_list);
2369         struct page *page, *tmp;
2370         int ret;
2371         long i;
2372         long needed, allocated;
2373         bool alloc_ok = true;
2374
2375         lockdep_assert_held(&hugetlb_lock);
2376         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2377         if (needed <= 0) {
2378                 h->resv_huge_pages += delta;
2379                 return 0;
2380         }
2381
2382         allocated = 0;
2383
2384         ret = -ENOMEM;
2385 retry:
2386         spin_unlock_irq(&hugetlb_lock);
2387         for (i = 0; i < needed; i++) {
2388                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2389                                 NUMA_NO_NODE, NULL);
2390                 if (!page) {
2391                         alloc_ok = false;
2392                         break;
2393                 }
2394                 list_add(&page->lru, &surplus_list);
2395                 cond_resched();
2396         }
2397         allocated += i;
2398
2399         /*
2400          * After retaking hugetlb_lock, we need to recalculate 'needed'
2401          * because either resv_huge_pages or free_huge_pages may have changed.
2402          */
2403         spin_lock_irq(&hugetlb_lock);
2404         needed = (h->resv_huge_pages + delta) -
2405                         (h->free_huge_pages + allocated);
2406         if (needed > 0) {
2407                 if (alloc_ok)
2408                         goto retry;
2409                 /*
2410                  * We were not able to allocate enough pages to
2411                  * satisfy the entire reservation so we free what
2412                  * we've allocated so far.
2413                  */
2414                 goto free;
2415         }
2416         /*
2417          * The surplus_list now contains _at_least_ the number of extra pages
2418          * needed to accommodate the reservation.  Add the appropriate number
2419          * of pages to the hugetlb pool and free the extras back to the buddy
2420          * allocator.  Commit the entire reservation here to prevent another
2421          * process from stealing the pages as they are added to the pool but
2422          * before they are reserved.
2423          */
2424         needed += allocated;
2425         h->resv_huge_pages += delta;
2426         ret = 0;
2427
2428         /* Free the needed pages to the hugetlb pool */
2429         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2430                 if ((--needed) < 0)
2431                         break;
2432                 /* Add the page to the hugetlb allocator */
2433                 enqueue_huge_page(h, page);
2434         }
2435 free:
2436         spin_unlock_irq(&hugetlb_lock);
2437
2438         /*
2439          * Free unnecessary surplus pages to the buddy allocator.
2440          * Pages have no ref count, call free_huge_page directly.
2441          */
2442         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2443                 free_huge_page(page);
2444         spin_lock_irq(&hugetlb_lock);
2445
2446         return ret;
2447 }
2448
2449 /*
2450  * This routine has two main purposes:
2451  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2452  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2453  *    to the associated reservation map.
2454  * 2) Free any unused surplus pages that may have been allocated to satisfy
2455  *    the reservation.  As many as unused_resv_pages may be freed.
2456  */
2457 static void return_unused_surplus_pages(struct hstate *h,
2458                                         unsigned long unused_resv_pages)
2459 {
2460         unsigned long nr_pages;
2461         struct page *page;
2462         LIST_HEAD(page_list);
2463
2464         lockdep_assert_held(&hugetlb_lock);
2465         /* Uncommit the reservation */
2466         h->resv_huge_pages -= unused_resv_pages;
2467
2468         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2469                 goto out;
2470
2471         /*
2472          * Part (or even all) of the reservation could have been backed
2473          * by pre-allocated pages. Only free surplus pages.
2474          */
2475         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2476
2477         /*
2478          * We want to release as many surplus pages as possible, spread
2479          * evenly across all nodes with memory. Iterate across these nodes
2480          * until we can no longer free unreserved surplus pages. This occurs
2481          * when the nodes with surplus pages have no free pages.
2482          * remove_pool_huge_page() will balance the freed pages across the
2483          * on-line nodes with memory and will handle the hstate accounting.
2484          */
2485         while (nr_pages--) {
2486                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2487                 if (!page)
2488                         goto out;
2489
2490                 list_add(&page->lru, &page_list);
2491         }
2492
2493 out:
2494         spin_unlock_irq(&hugetlb_lock);
2495         update_and_free_pages_bulk(h, &page_list);
2496         spin_lock_irq(&hugetlb_lock);
2497 }
2498
2499
2500 /*
2501  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2502  * are used by the huge page allocation routines to manage reservations.
2503  *
2504  * vma_needs_reservation is called to determine if the huge page at addr
2505  * within the vma has an associated reservation.  If a reservation is
2506  * needed, the value 1 is returned.  The caller is then responsible for
2507  * managing the global reservation and subpool usage counts.  After
2508  * the huge page has been allocated, vma_commit_reservation is called
2509  * to add the page to the reservation map.  If the page allocation fails,
2510  * the reservation must be ended instead of committed.  vma_end_reservation
2511  * is called in such cases.
2512  *
2513  * In the normal case, vma_commit_reservation returns the same value
2514  * as the preceding vma_needs_reservation call.  The only time this
2515  * is not the case is if a reserve map was changed between calls.  It
2516  * is the responsibility of the caller to notice the difference and
2517  * take appropriate action.
2518  *
2519  * vma_add_reservation is used in error paths where a reservation must
2520  * be restored when a newly allocated huge page must be freed.  It is
2521  * to be called after calling vma_needs_reservation to determine if a
2522  * reservation exists.
2523  *
2524  * vma_del_reservation is used in error paths where an entry in the reserve
2525  * map was created during huge page allocation and must be removed.  It is to
2526  * be called after calling vma_needs_reservation to determine if a reservation
2527  * exists.
2528  */
2529 enum vma_resv_mode {
2530         VMA_NEEDS_RESV,
2531         VMA_COMMIT_RESV,
2532         VMA_END_RESV,
2533         VMA_ADD_RESV,
2534         VMA_DEL_RESV,
2535 };
2536 static long __vma_reservation_common(struct hstate *h,
2537                                 struct vm_area_struct *vma, unsigned long addr,
2538                                 enum vma_resv_mode mode)
2539 {
2540         struct resv_map *resv;
2541         pgoff_t idx;
2542         long ret;
2543         long dummy_out_regions_needed;
2544
2545         resv = vma_resv_map(vma);
2546         if (!resv)
2547                 return 1;
2548
2549         idx = vma_hugecache_offset(h, vma, addr);
2550         switch (mode) {
2551         case VMA_NEEDS_RESV:
2552                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2553                 /* We assume that vma_reservation_* routines always operate on
2554                  * 1 page, and that adding to resv map a 1 page entry can only
2555                  * ever require 1 region.
2556                  */
2557                 VM_BUG_ON(dummy_out_regions_needed != 1);
2558                 break;
2559         case VMA_COMMIT_RESV:
2560                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561                 /* region_add calls of range 1 should never fail. */
2562                 VM_BUG_ON(ret < 0);
2563                 break;
2564         case VMA_END_RESV:
2565                 region_abort(resv, idx, idx + 1, 1);
2566                 ret = 0;
2567                 break;
2568         case VMA_ADD_RESV:
2569                 if (vma->vm_flags & VM_MAYSHARE) {
2570                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2571                         /* region_add calls of range 1 should never fail. */
2572                         VM_BUG_ON(ret < 0);
2573                 } else {
2574                         region_abort(resv, idx, idx + 1, 1);
2575                         ret = region_del(resv, idx, idx + 1);
2576                 }
2577                 break;
2578         case VMA_DEL_RESV:
2579                 if (vma->vm_flags & VM_MAYSHARE) {
2580                         region_abort(resv, idx, idx + 1, 1);
2581                         ret = region_del(resv, idx, idx + 1);
2582                 } else {
2583                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2584                         /* region_add calls of range 1 should never fail. */
2585                         VM_BUG_ON(ret < 0);
2586                 }
2587                 break;
2588         default:
2589                 BUG();
2590         }
2591
2592         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2593                 return ret;
2594         /*
2595          * We know private mapping must have HPAGE_RESV_OWNER set.
2596          *
2597          * In most cases, reserves always exist for private mappings.
2598          * However, a file associated with mapping could have been
2599          * hole punched or truncated after reserves were consumed.
2600          * As subsequent fault on such a range will not use reserves.
2601          * Subtle - The reserve map for private mappings has the
2602          * opposite meaning than that of shared mappings.  If NO
2603          * entry is in the reserve map, it means a reservation exists.
2604          * If an entry exists in the reserve map, it means the
2605          * reservation has already been consumed.  As a result, the
2606          * return value of this routine is the opposite of the
2607          * value returned from reserve map manipulation routines above.
2608          */
2609         if (ret > 0)
2610                 return 0;
2611         if (ret == 0)
2612                 return 1;
2613         return ret;
2614 }
2615
2616 static long vma_needs_reservation(struct hstate *h,
2617                         struct vm_area_struct *vma, unsigned long addr)
2618 {
2619         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2620 }
2621
2622 static long vma_commit_reservation(struct hstate *h,
2623                         struct vm_area_struct *vma, unsigned long addr)
2624 {
2625         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2626 }
2627
2628 static void vma_end_reservation(struct hstate *h,
2629                         struct vm_area_struct *vma, unsigned long addr)
2630 {
2631         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2632 }
2633
2634 static long vma_add_reservation(struct hstate *h,
2635                         struct vm_area_struct *vma, unsigned long addr)
2636 {
2637         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2638 }
2639
2640 static long vma_del_reservation(struct hstate *h,
2641                         struct vm_area_struct *vma, unsigned long addr)
2642 {
2643         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2644 }
2645
2646 /*
2647  * This routine is called to restore reservation information on error paths.
2648  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2649  * the hugetlb mutex should remain held when calling this routine.
2650  *
2651  * It handles two specific cases:
2652  * 1) A reservation was in place and the page consumed the reservation.
2653  *    HPageRestoreReserve is set in the page.
2654  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2655  *    not set.  However, alloc_huge_page always updates the reserve map.
2656  *
2657  * In case 1, free_huge_page later in the error path will increment the
2658  * global reserve count.  But, free_huge_page does not have enough context
2659  * to adjust the reservation map.  This case deals primarily with private
2660  * mappings.  Adjust the reserve map here to be consistent with global
2661  * reserve count adjustments to be made by free_huge_page.  Make sure the
2662  * reserve map indicates there is a reservation present.
2663  *
2664  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2665  */
2666 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2667                         unsigned long address, struct page *page)
2668 {
2669         long rc = vma_needs_reservation(h, vma, address);
2670
2671         if (HPageRestoreReserve(page)) {
2672                 if (unlikely(rc < 0))
2673                         /*
2674                          * Rare out of memory condition in reserve map
2675                          * manipulation.  Clear HPageRestoreReserve so that
2676                          * global reserve count will not be incremented
2677                          * by free_huge_page.  This will make it appear
2678                          * as though the reservation for this page was
2679                          * consumed.  This may prevent the task from
2680                          * faulting in the page at a later time.  This
2681                          * is better than inconsistent global huge page
2682                          * accounting of reserve counts.
2683                          */
2684                         ClearHPageRestoreReserve(page);
2685                 else if (rc)
2686                         (void)vma_add_reservation(h, vma, address);
2687                 else
2688                         vma_end_reservation(h, vma, address);
2689         } else {
2690                 if (!rc) {
2691                         /*
2692                          * This indicates there is an entry in the reserve map
2693                          * not added by alloc_huge_page.  We know it was added
2694                          * before the alloc_huge_page call, otherwise
2695                          * HPageRestoreReserve would be set on the page.
2696                          * Remove the entry so that a subsequent allocation
2697                          * does not consume a reservation.
2698                          */
2699                         rc = vma_del_reservation(h, vma, address);
2700                         if (rc < 0)
2701                                 /*
2702                                  * VERY rare out of memory condition.  Since
2703                                  * we can not delete the entry, set
2704                                  * HPageRestoreReserve so that the reserve
2705                                  * count will be incremented when the page
2706                                  * is freed.  This reserve will be consumed
2707                                  * on a subsequent allocation.
2708                                  */
2709                                 SetHPageRestoreReserve(page);
2710                 } else if (rc < 0) {
2711                         /*
2712                          * Rare out of memory condition from
2713                          * vma_needs_reservation call.  Memory allocation is
2714                          * only attempted if a new entry is needed.  Therefore,
2715                          * this implies there is not an entry in the
2716                          * reserve map.
2717                          *
2718                          * For shared mappings, no entry in the map indicates
2719                          * no reservation.  We are done.
2720                          */
2721                         if (!(vma->vm_flags & VM_MAYSHARE))
2722                                 /*
2723                                  * For private mappings, no entry indicates
2724                                  * a reservation is present.  Since we can
2725                                  * not add an entry, set SetHPageRestoreReserve
2726                                  * on the page so reserve count will be
2727                                  * incremented when freed.  This reserve will
2728                                  * be consumed on a subsequent allocation.
2729                                  */
2730                                 SetHPageRestoreReserve(page);
2731                 } else
2732                         /*
2733                          * No reservation present, do nothing
2734                          */
2735                          vma_end_reservation(h, vma, address);
2736         }
2737 }
2738
2739 /*
2740  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2741  * @h: struct hstate old page belongs to
2742  * @old_page: Old page to dissolve
2743  * @list: List to isolate the page in case we need to
2744  * Returns 0 on success, otherwise negated error.
2745  */
2746 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2747                                         struct list_head *list)
2748 {
2749         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2750         int nid = page_to_nid(old_page);
2751         struct page *new_page;
2752         int ret = 0;
2753
2754         /*
2755          * Before dissolving the page, we need to allocate a new one for the
2756          * pool to remain stable.  Here, we allocate the page and 'prep' it
2757          * by doing everything but actually updating counters and adding to
2758          * the pool.  This simplifies and let us do most of the processing
2759          * under the lock.
2760          */
2761         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2762         if (!new_page)
2763                 return -ENOMEM;
2764         __prep_new_huge_page(h, new_page);
2765
2766 retry:
2767         spin_lock_irq(&hugetlb_lock);
2768         if (!PageHuge(old_page)) {
2769                 /*
2770                  * Freed from under us. Drop new_page too.
2771                  */
2772                 goto free_new;
2773         } else if (page_count(old_page)) {
2774                 /*
2775                  * Someone has grabbed the page, try to isolate it here.
2776                  * Fail with -EBUSY if not possible.
2777                  */
2778                 spin_unlock_irq(&hugetlb_lock);
2779                 ret = isolate_hugetlb(old_page, list);
2780                 spin_lock_irq(&hugetlb_lock);
2781                 goto free_new;
2782         } else if (!HPageFreed(old_page)) {
2783                 /*
2784                  * Page's refcount is 0 but it has not been enqueued in the
2785                  * freelist yet. Race window is small, so we can succeed here if
2786                  * we retry.
2787                  */
2788                 spin_unlock_irq(&hugetlb_lock);
2789                 cond_resched();
2790                 goto retry;
2791         } else {
2792                 /*
2793                  * Ok, old_page is still a genuine free hugepage. Remove it from
2794                  * the freelist and decrease the counters. These will be
2795                  * incremented again when calling __prep_account_new_huge_page()
2796                  * and enqueue_huge_page() for new_page. The counters will remain
2797                  * stable since this happens under the lock.
2798                  */
2799                 remove_hugetlb_page(h, old_page, false);
2800
2801                 /*
2802                  * Ref count on new page is already zero as it was dropped
2803                  * earlier.  It can be directly added to the pool free list.
2804                  */
2805                 __prep_account_new_huge_page(h, nid);
2806                 enqueue_huge_page(h, new_page);
2807
2808                 /*
2809                  * Pages have been replaced, we can safely free the old one.
2810                  */
2811                 spin_unlock_irq(&hugetlb_lock);
2812                 update_and_free_page(h, old_page, false);
2813         }
2814
2815         return ret;
2816
2817 free_new:
2818         spin_unlock_irq(&hugetlb_lock);
2819         /* Page has a zero ref count, but needs a ref to be freed */
2820         set_page_refcounted(new_page);
2821         update_and_free_page(h, new_page, false);
2822
2823         return ret;
2824 }
2825
2826 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2827 {
2828         struct hstate *h;
2829         struct page *head;
2830         int ret = -EBUSY;
2831
2832         /*
2833          * The page might have been dissolved from under our feet, so make sure
2834          * to carefully check the state under the lock.
2835          * Return success when racing as if we dissolved the page ourselves.
2836          */
2837         spin_lock_irq(&hugetlb_lock);
2838         if (PageHuge(page)) {
2839                 head = compound_head(page);
2840                 h = page_hstate(head);
2841         } else {
2842                 spin_unlock_irq(&hugetlb_lock);
2843                 return 0;
2844         }
2845         spin_unlock_irq(&hugetlb_lock);
2846
2847         /*
2848          * Fence off gigantic pages as there is a cyclic dependency between
2849          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2850          * of bailing out right away without further retrying.
2851          */
2852         if (hstate_is_gigantic(h))
2853                 return -ENOMEM;
2854
2855         if (page_count(head) && !isolate_hugetlb(head, list))
2856                 ret = 0;
2857         else if (!page_count(head))
2858                 ret = alloc_and_dissolve_huge_page(h, head, list);
2859
2860         return ret;
2861 }
2862
2863 struct page *alloc_huge_page(struct vm_area_struct *vma,
2864                                     unsigned long addr, int avoid_reserve)
2865 {
2866         struct hugepage_subpool *spool = subpool_vma(vma);
2867         struct hstate *h = hstate_vma(vma);
2868         struct page *page;
2869         long map_chg, map_commit;
2870         long gbl_chg;
2871         int ret, idx;
2872         struct hugetlb_cgroup *h_cg;
2873         bool deferred_reserve;
2874
2875         idx = hstate_index(h);
2876         /*
2877          * Examine the region/reserve map to determine if the process
2878          * has a reservation for the page to be allocated.  A return
2879          * code of zero indicates a reservation exists (no change).
2880          */
2881         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2882         if (map_chg < 0)
2883                 return ERR_PTR(-ENOMEM);
2884
2885         /*
2886          * Processes that did not create the mapping will have no
2887          * reserves as indicated by the region/reserve map. Check
2888          * that the allocation will not exceed the subpool limit.
2889          * Allocations for MAP_NORESERVE mappings also need to be
2890          * checked against any subpool limit.
2891          */
2892         if (map_chg || avoid_reserve) {
2893                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2894                 if (gbl_chg < 0) {
2895                         vma_end_reservation(h, vma, addr);
2896                         return ERR_PTR(-ENOSPC);
2897                 }
2898
2899                 /*
2900                  * Even though there was no reservation in the region/reserve
2901                  * map, there could be reservations associated with the
2902                  * subpool that can be used.  This would be indicated if the
2903                  * return value of hugepage_subpool_get_pages() is zero.
2904                  * However, if avoid_reserve is specified we still avoid even
2905                  * the subpool reservations.
2906                  */
2907                 if (avoid_reserve)
2908                         gbl_chg = 1;
2909         }
2910
2911         /* If this allocation is not consuming a reservation, charge it now.
2912          */
2913         deferred_reserve = map_chg || avoid_reserve;
2914         if (deferred_reserve) {
2915                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2916                         idx, pages_per_huge_page(h), &h_cg);
2917                 if (ret)
2918                         goto out_subpool_put;
2919         }
2920
2921         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2922         if (ret)
2923                 goto out_uncharge_cgroup_reservation;
2924
2925         spin_lock_irq(&hugetlb_lock);
2926         /*
2927          * glb_chg is passed to indicate whether or not a page must be taken
2928          * from the global free pool (global change).  gbl_chg == 0 indicates
2929          * a reservation exists for the allocation.
2930          */
2931         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2932         if (!page) {
2933                 spin_unlock_irq(&hugetlb_lock);
2934                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2935                 if (!page)
2936                         goto out_uncharge_cgroup;
2937                 spin_lock_irq(&hugetlb_lock);
2938                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2939                         SetHPageRestoreReserve(page);
2940                         h->resv_huge_pages--;
2941                 }
2942                 list_add(&page->lru, &h->hugepage_activelist);
2943                 set_page_refcounted(page);
2944                 /* Fall through */
2945         }
2946         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2947         /* If allocation is not consuming a reservation, also store the
2948          * hugetlb_cgroup pointer on the page.
2949          */
2950         if (deferred_reserve) {
2951                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2952                                                   h_cg, page);
2953         }
2954
2955         spin_unlock_irq(&hugetlb_lock);
2956
2957         hugetlb_set_page_subpool(page, spool);
2958
2959         map_commit = vma_commit_reservation(h, vma, addr);
2960         if (unlikely(map_chg > map_commit)) {
2961                 /*
2962                  * The page was added to the reservation map between
2963                  * vma_needs_reservation and vma_commit_reservation.
2964                  * This indicates a race with hugetlb_reserve_pages.
2965                  * Adjust for the subpool count incremented above AND
2966                  * in hugetlb_reserve_pages for the same page.  Also,
2967                  * the reservation count added in hugetlb_reserve_pages
2968                  * no longer applies.
2969                  */
2970                 long rsv_adjust;
2971
2972                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2973                 hugetlb_acct_memory(h, -rsv_adjust);
2974                 if (deferred_reserve)
2975                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2976                                         pages_per_huge_page(h), page);
2977         }
2978         return page;
2979
2980 out_uncharge_cgroup:
2981         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2982 out_uncharge_cgroup_reservation:
2983         if (deferred_reserve)
2984                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2985                                                     h_cg);
2986 out_subpool_put:
2987         if (map_chg || avoid_reserve)
2988                 hugepage_subpool_put_pages(spool, 1);
2989         vma_end_reservation(h, vma, addr);
2990         return ERR_PTR(-ENOSPC);
2991 }
2992
2993 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2994         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2995 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2996 {
2997         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2998         int nr_nodes, node;
2999
3000         /* do node specific alloc */
3001         if (nid != NUMA_NO_NODE) {
3002                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3003                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3004                 if (!m)
3005                         return 0;
3006                 goto found;
3007         }
3008         /* allocate from next node when distributing huge pages */
3009         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3010                 m = memblock_alloc_try_nid_raw(
3011                                 huge_page_size(h), huge_page_size(h),
3012                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3013                 /*
3014                  * Use the beginning of the huge page to store the
3015                  * huge_bootmem_page struct (until gather_bootmem
3016                  * puts them into the mem_map).
3017                  */
3018                 if (!m)
3019                         return 0;
3020                 goto found;
3021         }
3022
3023 found:
3024         /* Put them into a private list first because mem_map is not up yet */
3025         INIT_LIST_HEAD(&m->list);
3026         list_add(&m->list, &huge_boot_pages);
3027         m->hstate = h;
3028         return 1;
3029 }
3030
3031 /*
3032  * Put bootmem huge pages into the standard lists after mem_map is up.
3033  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3034  */
3035 static void __init gather_bootmem_prealloc(void)
3036 {
3037         struct huge_bootmem_page *m;
3038
3039         list_for_each_entry(m, &huge_boot_pages, list) {
3040                 struct page *page = virt_to_page(m);
3041                 struct hstate *h = m->hstate;
3042
3043                 VM_BUG_ON(!hstate_is_gigantic(h));
3044                 WARN_ON(page_count(page) != 1);
3045                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3046                         WARN_ON(PageReserved(page));
3047                         prep_new_huge_page(h, page, page_to_nid(page));
3048                         free_huge_page(page); /* add to the hugepage allocator */
3049                 } else {
3050                         /* VERY unlikely inflated ref count on a tail page */
3051                         free_gigantic_page(page, huge_page_order(h));
3052                 }
3053
3054                 /*
3055                  * We need to restore the 'stolen' pages to totalram_pages
3056                  * in order to fix confusing memory reports from free(1) and
3057                  * other side-effects, like CommitLimit going negative.
3058                  */
3059                 adjust_managed_page_count(page, pages_per_huge_page(h));
3060                 cond_resched();
3061         }
3062 }
3063 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3064 {
3065         unsigned long i;
3066         char buf[32];
3067
3068         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3069                 if (hstate_is_gigantic(h)) {
3070                         if (!alloc_bootmem_huge_page(h, nid))
3071                                 break;
3072                 } else {
3073                         struct page *page;
3074                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3075
3076                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3077                                         &node_states[N_MEMORY], NULL);
3078                         if (!page)
3079                                 break;
3080                         free_huge_page(page); /* free it into the hugepage allocator */
3081                 }
3082                 cond_resched();
3083         }
3084         if (i == h->max_huge_pages_node[nid])
3085                 return;
3086
3087         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3088         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3089                 h->max_huge_pages_node[nid], buf, nid, i);
3090         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3091         h->max_huge_pages_node[nid] = i;
3092 }
3093
3094 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3095 {
3096         unsigned long i;
3097         nodemask_t *node_alloc_noretry;
3098         bool node_specific_alloc = false;
3099
3100         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3101         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3102                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3103                 return;
3104         }
3105
3106         /* do node specific alloc */
3107         for_each_online_node(i) {
3108                 if (h->max_huge_pages_node[i] > 0) {
3109                         hugetlb_hstate_alloc_pages_onenode(h, i);
3110                         node_specific_alloc = true;
3111                 }
3112         }
3113
3114         if (node_specific_alloc)
3115                 return;
3116
3117         /* below will do all node balanced alloc */
3118         if (!hstate_is_gigantic(h)) {
3119                 /*
3120                  * Bit mask controlling how hard we retry per-node allocations.
3121                  * Ignore errors as lower level routines can deal with
3122                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3123                  * time, we are likely in bigger trouble.
3124                  */
3125                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3126                                                 GFP_KERNEL);
3127         } else {
3128                 /* allocations done at boot time */
3129                 node_alloc_noretry = NULL;
3130         }
3131
3132         /* bit mask controlling how hard we retry per-node allocations */
3133         if (node_alloc_noretry)
3134                 nodes_clear(*node_alloc_noretry);
3135
3136         for (i = 0; i < h->max_huge_pages; ++i) {
3137                 if (hstate_is_gigantic(h)) {
3138                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3139                                 break;
3140                 } else if (!alloc_pool_huge_page(h,
3141                                          &node_states[N_MEMORY],
3142                                          node_alloc_noretry))
3143                         break;
3144                 cond_resched();
3145         }
3146         if (i < h->max_huge_pages) {
3147                 char buf[32];
3148
3149                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3150                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3151                         h->max_huge_pages, buf, i);
3152                 h->max_huge_pages = i;
3153         }
3154         kfree(node_alloc_noretry);
3155 }
3156
3157 static void __init hugetlb_init_hstates(void)
3158 {
3159         struct hstate *h, *h2;
3160
3161         for_each_hstate(h) {
3162                 /* oversize hugepages were init'ed in early boot */
3163                 if (!hstate_is_gigantic(h))
3164                         hugetlb_hstate_alloc_pages(h);
3165
3166                 /*
3167                  * Set demote order for each hstate.  Note that
3168                  * h->demote_order is initially 0.
3169                  * - We can not demote gigantic pages if runtime freeing
3170                  *   is not supported, so skip this.
3171                  * - If CMA allocation is possible, we can not demote
3172                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3173                  */
3174                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3175                         continue;
3176                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3177                         continue;
3178                 for_each_hstate(h2) {
3179                         if (h2 == h)
3180                                 continue;
3181                         if (h2->order < h->order &&
3182                             h2->order > h->demote_order)
3183                                 h->demote_order = h2->order;
3184                 }
3185         }
3186 }
3187
3188 static void __init report_hugepages(void)
3189 {
3190         struct hstate *h;
3191
3192         for_each_hstate(h) {
3193                 char buf[32];
3194
3195                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3196                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3197                         buf, h->free_huge_pages);
3198                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3199                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3200         }
3201 }
3202
3203 #ifdef CONFIG_HIGHMEM
3204 static void try_to_free_low(struct hstate *h, unsigned long count,
3205                                                 nodemask_t *nodes_allowed)
3206 {
3207         int i;
3208         LIST_HEAD(page_list);
3209
3210         lockdep_assert_held(&hugetlb_lock);
3211         if (hstate_is_gigantic(h))
3212                 return;
3213
3214         /*
3215          * Collect pages to be freed on a list, and free after dropping lock
3216          */
3217         for_each_node_mask(i, *nodes_allowed) {
3218                 struct page *page, *next;
3219                 struct list_head *freel = &h->hugepage_freelists[i];
3220                 list_for_each_entry_safe(page, next, freel, lru) {
3221                         if (count >= h->nr_huge_pages)
3222                                 goto out;
3223                         if (PageHighMem(page))
3224                                 continue;
3225                         remove_hugetlb_page(h, page, false);
3226                         list_add(&page->lru, &page_list);
3227                 }
3228         }
3229
3230 out:
3231         spin_unlock_irq(&hugetlb_lock);
3232         update_and_free_pages_bulk(h, &page_list);
3233         spin_lock_irq(&hugetlb_lock);
3234 }
3235 #else
3236 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3237                                                 nodemask_t *nodes_allowed)
3238 {
3239 }
3240 #endif
3241
3242 /*
3243  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3244  * balanced by operating on them in a round-robin fashion.
3245  * Returns 1 if an adjustment was made.
3246  */
3247 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3248                                 int delta)
3249 {
3250         int nr_nodes, node;
3251
3252         lockdep_assert_held(&hugetlb_lock);
3253         VM_BUG_ON(delta != -1 && delta != 1);
3254
3255         if (delta < 0) {
3256                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3257                         if (h->surplus_huge_pages_node[node])
3258                                 goto found;
3259                 }
3260         } else {
3261                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3262                         if (h->surplus_huge_pages_node[node] <
3263                                         h->nr_huge_pages_node[node])
3264                                 goto found;
3265                 }
3266         }
3267         return 0;
3268
3269 found:
3270         h->surplus_huge_pages += delta;
3271         h->surplus_huge_pages_node[node] += delta;
3272         return 1;
3273 }
3274
3275 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3276 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3277                               nodemask_t *nodes_allowed)
3278 {
3279         unsigned long min_count, ret;
3280         struct page *page;
3281         LIST_HEAD(page_list);
3282         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3283
3284         /*
3285          * Bit mask controlling how hard we retry per-node allocations.
3286          * If we can not allocate the bit mask, do not attempt to allocate
3287          * the requested huge pages.
3288          */
3289         if (node_alloc_noretry)
3290                 nodes_clear(*node_alloc_noretry);
3291         else
3292                 return -ENOMEM;
3293
3294         /*
3295          * resize_lock mutex prevents concurrent adjustments to number of
3296          * pages in hstate via the proc/sysfs interfaces.
3297          */
3298         mutex_lock(&h->resize_lock);
3299         flush_free_hpage_work(h);
3300         spin_lock_irq(&hugetlb_lock);
3301
3302         /*
3303          * Check for a node specific request.
3304          * Changing node specific huge page count may require a corresponding
3305          * change to the global count.  In any case, the passed node mask
3306          * (nodes_allowed) will restrict alloc/free to the specified node.
3307          */
3308         if (nid != NUMA_NO_NODE) {
3309                 unsigned long old_count = count;
3310
3311                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3312                 /*
3313                  * User may have specified a large count value which caused the
3314                  * above calculation to overflow.  In this case, they wanted
3315                  * to allocate as many huge pages as possible.  Set count to
3316                  * largest possible value to align with their intention.
3317                  */
3318                 if (count < old_count)
3319                         count = ULONG_MAX;
3320         }
3321
3322         /*
3323          * Gigantic pages runtime allocation depend on the capability for large
3324          * page range allocation.
3325          * If the system does not provide this feature, return an error when
3326          * the user tries to allocate gigantic pages but let the user free the
3327          * boottime allocated gigantic pages.
3328          */
3329         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3330                 if (count > persistent_huge_pages(h)) {
3331                         spin_unlock_irq(&hugetlb_lock);
3332                         mutex_unlock(&h->resize_lock);
3333                         NODEMASK_FREE(node_alloc_noretry);
3334                         return -EINVAL;
3335                 }
3336                 /* Fall through to decrease pool */
3337         }
3338
3339         /*
3340          * Increase the pool size
3341          * First take pages out of surplus state.  Then make up the
3342          * remaining difference by allocating fresh huge pages.
3343          *
3344          * We might race with alloc_surplus_huge_page() here and be unable
3345          * to convert a surplus huge page to a normal huge page. That is
3346          * not critical, though, it just means the overall size of the
3347          * pool might be one hugepage larger than it needs to be, but
3348          * within all the constraints specified by the sysctls.
3349          */
3350         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3351                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3352                         break;
3353         }
3354
3355         while (count > persistent_huge_pages(h)) {
3356                 /*
3357                  * If this allocation races such that we no longer need the
3358                  * page, free_huge_page will handle it by freeing the page
3359                  * and reducing the surplus.
3360                  */
3361                 spin_unlock_irq(&hugetlb_lock);
3362
3363                 /* yield cpu to avoid soft lockup */
3364                 cond_resched();
3365
3366                 ret = alloc_pool_huge_page(h, nodes_allowed,
3367                                                 node_alloc_noretry);
3368                 spin_lock_irq(&hugetlb_lock);
3369                 if (!ret)
3370                         goto out;
3371
3372                 /* Bail for signals. Probably ctrl-c from user */
3373                 if (signal_pending(current))
3374                         goto out;
3375         }
3376
3377         /*
3378          * Decrease the pool size
3379          * First return free pages to the buddy allocator (being careful
3380          * to keep enough around to satisfy reservations).  Then place
3381          * pages into surplus state as needed so the pool will shrink
3382          * to the desired size as pages become free.
3383          *
3384          * By placing pages into the surplus state independent of the
3385          * overcommit value, we are allowing the surplus pool size to
3386          * exceed overcommit. There are few sane options here. Since
3387          * alloc_surplus_huge_page() is checking the global counter,
3388          * though, we'll note that we're not allowed to exceed surplus
3389          * and won't grow the pool anywhere else. Not until one of the
3390          * sysctls are changed, or the surplus pages go out of use.
3391          */
3392         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3393         min_count = max(count, min_count);
3394         try_to_free_low(h, min_count, nodes_allowed);
3395
3396         /*
3397          * Collect pages to be removed on list without dropping lock
3398          */
3399         while (min_count < persistent_huge_pages(h)) {
3400                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3401                 if (!page)
3402                         break;
3403
3404                 list_add(&page->lru, &page_list);
3405         }
3406         /* free the pages after dropping lock */
3407         spin_unlock_irq(&hugetlb_lock);
3408         update_and_free_pages_bulk(h, &page_list);
3409         flush_free_hpage_work(h);
3410         spin_lock_irq(&hugetlb_lock);
3411
3412         while (count < persistent_huge_pages(h)) {
3413                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3414                         break;
3415         }
3416 out:
3417         h->max_huge_pages = persistent_huge_pages(h);
3418         spin_unlock_irq(&hugetlb_lock);
3419         mutex_unlock(&h->resize_lock);
3420
3421         NODEMASK_FREE(node_alloc_noretry);
3422
3423         return 0;
3424 }
3425
3426 static int demote_free_huge_page(struct hstate *h, struct page *page)
3427 {
3428         int i, nid = page_to_nid(page);
3429         struct hstate *target_hstate;
3430         struct page *subpage;
3431         int rc = 0;
3432
3433         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3434
3435         remove_hugetlb_page_for_demote(h, page, false);
3436         spin_unlock_irq(&hugetlb_lock);
3437
3438         rc = hugetlb_vmemmap_restore(h, page);
3439         if (rc) {
3440                 /* Allocation of vmemmmap failed, we can not demote page */
3441                 spin_lock_irq(&hugetlb_lock);
3442                 set_page_refcounted(page);
3443                 add_hugetlb_page(h, page, false);
3444                 return rc;
3445         }
3446
3447         /*
3448          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3449          * sizes as it will not ref count pages.
3450          */
3451         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3452
3453         /*
3454          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3455          * Without the mutex, pages added to target hstate could be marked
3456          * as surplus.
3457          *
3458          * Note that we already hold h->resize_lock.  To prevent deadlock,
3459          * use the convention of always taking larger size hstate mutex first.
3460          */
3461         mutex_lock(&target_hstate->resize_lock);
3462         for (i = 0; i < pages_per_huge_page(h);
3463                                 i += pages_per_huge_page(target_hstate)) {
3464                 subpage = nth_page(page, i);
3465                 if (hstate_is_gigantic(target_hstate))
3466                         prep_compound_gigantic_page_for_demote(subpage,
3467                                                         target_hstate->order);
3468                 else
3469                         prep_compound_page(subpage, target_hstate->order);
3470                 set_page_private(subpage, 0);
3471                 prep_new_huge_page(target_hstate, subpage, nid);
3472                 free_huge_page(subpage);
3473         }
3474         mutex_unlock(&target_hstate->resize_lock);
3475
3476         spin_lock_irq(&hugetlb_lock);
3477
3478         /*
3479          * Not absolutely necessary, but for consistency update max_huge_pages
3480          * based on pool changes for the demoted page.
3481          */
3482         h->max_huge_pages--;
3483         target_hstate->max_huge_pages +=
3484                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3485
3486         return rc;
3487 }
3488
3489 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3490         __must_hold(&hugetlb_lock)
3491 {
3492         int nr_nodes, node;
3493         struct page *page;
3494
3495         lockdep_assert_held(&hugetlb_lock);
3496
3497         /* We should never get here if no demote order */
3498         if (!h->demote_order) {
3499                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3500                 return -EINVAL;         /* internal error */
3501         }
3502
3503         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3504                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3505                         if (PageHWPoison(page))
3506                                 continue;
3507
3508                         return demote_free_huge_page(h, page);
3509                 }
3510         }
3511
3512         /*
3513          * Only way to get here is if all pages on free lists are poisoned.
3514          * Return -EBUSY so that caller will not retry.
3515          */
3516         return -EBUSY;
3517 }
3518
3519 #define HSTATE_ATTR_RO(_name) \
3520         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3521
3522 #define HSTATE_ATTR_WO(_name) \
3523         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3524
3525 #define HSTATE_ATTR(_name) \
3526         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3527
3528 static struct kobject *hugepages_kobj;
3529 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3530
3531 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3532
3533 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3534 {
3535         int i;
3536
3537         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3538                 if (hstate_kobjs[i] == kobj) {
3539                         if (nidp)
3540                                 *nidp = NUMA_NO_NODE;
3541                         return &hstates[i];
3542                 }
3543
3544         return kobj_to_node_hstate(kobj, nidp);
3545 }
3546
3547 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3548                                         struct kobj_attribute *attr, char *buf)
3549 {
3550         struct hstate *h;
3551         unsigned long nr_huge_pages;
3552         int nid;
3553
3554         h = kobj_to_hstate(kobj, &nid);
3555         if (nid == NUMA_NO_NODE)
3556                 nr_huge_pages = h->nr_huge_pages;
3557         else
3558                 nr_huge_pages = h->nr_huge_pages_node[nid];
3559
3560         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3561 }
3562
3563 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3564                                            struct hstate *h, int nid,
3565                                            unsigned long count, size_t len)
3566 {
3567         int err;
3568         nodemask_t nodes_allowed, *n_mask;
3569
3570         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3571                 return -EINVAL;
3572
3573         if (nid == NUMA_NO_NODE) {
3574                 /*
3575                  * global hstate attribute
3576                  */
3577                 if (!(obey_mempolicy &&
3578                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3579                         n_mask = &node_states[N_MEMORY];
3580                 else
3581                         n_mask = &nodes_allowed;
3582         } else {
3583                 /*
3584                  * Node specific request.  count adjustment happens in
3585                  * set_max_huge_pages() after acquiring hugetlb_lock.
3586                  */
3587                 init_nodemask_of_node(&nodes_allowed, nid);
3588                 n_mask = &nodes_allowed;
3589         }
3590
3591         err = set_max_huge_pages(h, count, nid, n_mask);
3592
3593         return err ? err : len;
3594 }
3595
3596 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3597                                          struct kobject *kobj, const char *buf,
3598                                          size_t len)
3599 {
3600         struct hstate *h;
3601         unsigned long count;
3602         int nid;
3603         int err;
3604
3605         err = kstrtoul(buf, 10, &count);
3606         if (err)
3607                 return err;
3608
3609         h = kobj_to_hstate(kobj, &nid);
3610         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3611 }
3612
3613 static ssize_t nr_hugepages_show(struct kobject *kobj,
3614                                        struct kobj_attribute *attr, char *buf)
3615 {
3616         return nr_hugepages_show_common(kobj, attr, buf);
3617 }
3618
3619 static ssize_t nr_hugepages_store(struct kobject *kobj,
3620                struct kobj_attribute *attr, const char *buf, size_t len)
3621 {
3622         return nr_hugepages_store_common(false, kobj, buf, len);
3623 }
3624 HSTATE_ATTR(nr_hugepages);
3625
3626 #ifdef CONFIG_NUMA
3627
3628 /*
3629  * hstate attribute for optionally mempolicy-based constraint on persistent
3630  * huge page alloc/free.
3631  */
3632 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3633                                            struct kobj_attribute *attr,
3634                                            char *buf)
3635 {
3636         return nr_hugepages_show_common(kobj, attr, buf);
3637 }
3638
3639 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3640                struct kobj_attribute *attr, const char *buf, size_t len)
3641 {
3642         return nr_hugepages_store_common(true, kobj, buf, len);
3643 }
3644 HSTATE_ATTR(nr_hugepages_mempolicy);
3645 #endif
3646
3647
3648 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3649                                         struct kobj_attribute *attr, char *buf)
3650 {
3651         struct hstate *h = kobj_to_hstate(kobj, NULL);
3652         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3653 }
3654
3655 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3656                 struct kobj_attribute *attr, const char *buf, size_t count)
3657 {
3658         int err;
3659         unsigned long input;
3660         struct hstate *h = kobj_to_hstate(kobj, NULL);
3661
3662         if (hstate_is_gigantic(h))
3663                 return -EINVAL;
3664
3665         err = kstrtoul(buf, 10, &input);
3666         if (err)
3667                 return err;
3668
3669         spin_lock_irq(&hugetlb_lock);
3670         h->nr_overcommit_huge_pages = input;
3671         spin_unlock_irq(&hugetlb_lock);
3672
3673         return count;
3674 }
3675 HSTATE_ATTR(nr_overcommit_hugepages);
3676
3677 static ssize_t free_hugepages_show(struct kobject *kobj,
3678                                         struct kobj_attribute *attr, char *buf)
3679 {
3680         struct hstate *h;
3681         unsigned long free_huge_pages;
3682         int nid;
3683
3684         h = kobj_to_hstate(kobj, &nid);
3685         if (nid == NUMA_NO_NODE)
3686                 free_huge_pages = h->free_huge_pages;
3687         else
3688                 free_huge_pages = h->free_huge_pages_node[nid];
3689
3690         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3691 }
3692 HSTATE_ATTR_RO(free_hugepages);
3693
3694 static ssize_t resv_hugepages_show(struct kobject *kobj,
3695                                         struct kobj_attribute *attr, char *buf)
3696 {
3697         struct hstate *h = kobj_to_hstate(kobj, NULL);
3698         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3699 }
3700 HSTATE_ATTR_RO(resv_hugepages);
3701
3702 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3703                                         struct kobj_attribute *attr, char *buf)
3704 {
3705         struct hstate *h;
3706         unsigned long surplus_huge_pages;
3707         int nid;
3708
3709         h = kobj_to_hstate(kobj, &nid);
3710         if (nid == NUMA_NO_NODE)
3711                 surplus_huge_pages = h->surplus_huge_pages;
3712         else
3713                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3714
3715         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3716 }
3717 HSTATE_ATTR_RO(surplus_hugepages);
3718
3719 static ssize_t demote_store(struct kobject *kobj,
3720                struct kobj_attribute *attr, const char *buf, size_t len)
3721 {
3722         unsigned long nr_demote;
3723         unsigned long nr_available;
3724         nodemask_t nodes_allowed, *n_mask;
3725         struct hstate *h;
3726         int err;
3727         int nid;
3728
3729         err = kstrtoul(buf, 10, &nr_demote);
3730         if (err)
3731                 return err;
3732         h = kobj_to_hstate(kobj, &nid);
3733
3734         if (nid != NUMA_NO_NODE) {
3735                 init_nodemask_of_node(&nodes_allowed, nid);
3736                 n_mask = &nodes_allowed;
3737         } else {
3738                 n_mask = &node_states[N_MEMORY];
3739         }
3740
3741         /* Synchronize with other sysfs operations modifying huge pages */
3742         mutex_lock(&h->resize_lock);
3743         spin_lock_irq(&hugetlb_lock);
3744
3745         while (nr_demote) {
3746                 /*
3747                  * Check for available pages to demote each time thorough the
3748                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3749                  */
3750                 if (nid != NUMA_NO_NODE)
3751                         nr_available = h->free_huge_pages_node[nid];
3752                 else
3753                         nr_available = h->free_huge_pages;
3754                 nr_available -= h->resv_huge_pages;
3755                 if (!nr_available)
3756                         break;
3757
3758                 err = demote_pool_huge_page(h, n_mask);
3759                 if (err)
3760                         break;
3761
3762                 nr_demote--;
3763         }
3764
3765         spin_unlock_irq(&hugetlb_lock);
3766         mutex_unlock(&h->resize_lock);
3767
3768         if (err)
3769                 return err;
3770         return len;
3771 }
3772 HSTATE_ATTR_WO(demote);
3773
3774 static ssize_t demote_size_show(struct kobject *kobj,
3775                                         struct kobj_attribute *attr, char *buf)
3776 {
3777         struct hstate *h = kobj_to_hstate(kobj, NULL);
3778         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3779
3780         return sysfs_emit(buf, "%lukB\n", demote_size);
3781 }
3782
3783 static ssize_t demote_size_store(struct kobject *kobj,
3784                                         struct kobj_attribute *attr,
3785                                         const char *buf, size_t count)
3786 {
3787         struct hstate *h, *demote_hstate;
3788         unsigned long demote_size;
3789         unsigned int demote_order;
3790
3791         demote_size = (unsigned long)memparse(buf, NULL);
3792
3793         demote_hstate = size_to_hstate(demote_size);
3794         if (!demote_hstate)
3795                 return -EINVAL;
3796         demote_order = demote_hstate->order;
3797         if (demote_order < HUGETLB_PAGE_ORDER)
3798                 return -EINVAL;
3799
3800         /* demote order must be smaller than hstate order */
3801         h = kobj_to_hstate(kobj, NULL);
3802         if (demote_order >= h->order)
3803                 return -EINVAL;
3804
3805         /* resize_lock synchronizes access to demote size and writes */
3806         mutex_lock(&h->resize_lock);
3807         h->demote_order = demote_order;
3808         mutex_unlock(&h->resize_lock);
3809
3810         return count;
3811 }
3812 HSTATE_ATTR(demote_size);
3813
3814 static struct attribute *hstate_attrs[] = {
3815         &nr_hugepages_attr.attr,
3816         &nr_overcommit_hugepages_attr.attr,
3817         &free_hugepages_attr.attr,
3818         &resv_hugepages_attr.attr,
3819         &surplus_hugepages_attr.attr,
3820 #ifdef CONFIG_NUMA
3821         &nr_hugepages_mempolicy_attr.attr,
3822 #endif
3823         NULL,
3824 };
3825
3826 static const struct attribute_group hstate_attr_group = {
3827         .attrs = hstate_attrs,
3828 };
3829
3830 static struct attribute *hstate_demote_attrs[] = {
3831         &demote_size_attr.attr,
3832         &demote_attr.attr,
3833         NULL,
3834 };
3835
3836 static const struct attribute_group hstate_demote_attr_group = {
3837         .attrs = hstate_demote_attrs,
3838 };
3839
3840 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3841                                     struct kobject **hstate_kobjs,
3842                                     const struct attribute_group *hstate_attr_group)
3843 {
3844         int retval;
3845         int hi = hstate_index(h);
3846
3847         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3848         if (!hstate_kobjs[hi])
3849                 return -ENOMEM;
3850
3851         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3852         if (retval) {
3853                 kobject_put(hstate_kobjs[hi]);
3854                 hstate_kobjs[hi] = NULL;
3855                 return retval;
3856         }
3857
3858         if (h->demote_order) {
3859                 retval = sysfs_create_group(hstate_kobjs[hi],
3860                                             &hstate_demote_attr_group);
3861                 if (retval) {
3862                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3863                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3864                         kobject_put(hstate_kobjs[hi]);
3865                         hstate_kobjs[hi] = NULL;
3866                         return retval;
3867                 }
3868         }
3869
3870         return 0;
3871 }
3872
3873 #ifdef CONFIG_NUMA
3874 static bool hugetlb_sysfs_initialized __ro_after_init;
3875
3876 /*
3877  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878  * with node devices in node_devices[] using a parallel array.  The array
3879  * index of a node device or _hstate == node id.
3880  * This is here to avoid any static dependency of the node device driver, in
3881  * the base kernel, on the hugetlb module.
3882  */
3883 struct node_hstate {
3884         struct kobject          *hugepages_kobj;
3885         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888
3889 /*
3890  * A subset of global hstate attributes for node devices
3891  */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893         &nr_hugepages_attr.attr,
3894         &free_hugepages_attr.attr,
3895         &surplus_hugepages_attr.attr,
3896         NULL,
3897 };
3898
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900         .attrs = per_node_hstate_attrs,
3901 };
3902
3903 /*
3904  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905  * Returns node id via non-NULL nidp.
3906  */
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909         int nid;
3910
3911         for (nid = 0; nid < nr_node_ids; nid++) {
3912                 struct node_hstate *nhs = &node_hstates[nid];
3913                 int i;
3914                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915                         if (nhs->hstate_kobjs[i] == kobj) {
3916                                 if (nidp)
3917                                         *nidp = nid;
3918                                 return &hstates[i];
3919                         }
3920         }
3921
3922         BUG();
3923         return NULL;
3924 }
3925
3926 /*
3927  * Unregister hstate attributes from a single node device.
3928  * No-op if no hstate attributes attached.
3929  */
3930 void hugetlb_unregister_node(struct node *node)
3931 {
3932         struct hstate *h;
3933         struct node_hstate *nhs = &node_hstates[node->dev.id];
3934
3935         if (!nhs->hugepages_kobj)
3936                 return;         /* no hstate attributes */
3937
3938         for_each_hstate(h) {
3939                 int idx = hstate_index(h);
3940                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3941
3942                 if (!hstate_kobj)
3943                         continue;
3944                 if (h->demote_order)
3945                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3946                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3947                 kobject_put(hstate_kobj);
3948                 nhs->hstate_kobjs[idx] = NULL;
3949         }
3950
3951         kobject_put(nhs->hugepages_kobj);
3952         nhs->hugepages_kobj = NULL;
3953 }
3954
3955
3956 /*
3957  * Register hstate attributes for a single node device.
3958  * No-op if attributes already registered.
3959  */
3960 void hugetlb_register_node(struct node *node)
3961 {
3962         struct hstate *h;
3963         struct node_hstate *nhs = &node_hstates[node->dev.id];
3964         int err;
3965
3966         if (!hugetlb_sysfs_initialized)
3967                 return;
3968
3969         if (nhs->hugepages_kobj)
3970                 return;         /* already allocated */
3971
3972         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3973                                                         &node->dev.kobj);
3974         if (!nhs->hugepages_kobj)
3975                 return;
3976
3977         for_each_hstate(h) {
3978                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3979                                                 nhs->hstate_kobjs,
3980                                                 &per_node_hstate_attr_group);
3981                 if (err) {
3982                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3983                                 h->name, node->dev.id);
3984                         hugetlb_unregister_node(node);
3985                         break;
3986                 }
3987         }
3988 }
3989
3990 /*
3991  * hugetlb init time:  register hstate attributes for all registered node
3992  * devices of nodes that have memory.  All on-line nodes should have
3993  * registered their associated device by this time.
3994  */
3995 static void __init hugetlb_register_all_nodes(void)
3996 {
3997         int nid;
3998
3999         for_each_online_node(nid)
4000                 hugetlb_register_node(node_devices[nid]);
4001 }
4002 #else   /* !CONFIG_NUMA */
4003
4004 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4005 {
4006         BUG();
4007         if (nidp)
4008                 *nidp = -1;
4009         return NULL;
4010 }
4011
4012 static void hugetlb_register_all_nodes(void) { }
4013
4014 #endif
4015
4016 #ifdef CONFIG_CMA
4017 static void __init hugetlb_cma_check(void);
4018 #else
4019 static inline __init void hugetlb_cma_check(void)
4020 {
4021 }
4022 #endif
4023
4024 static void __init hugetlb_sysfs_init(void)
4025 {
4026         struct hstate *h;
4027         int err;
4028
4029         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4030         if (!hugepages_kobj)
4031                 return;
4032
4033         for_each_hstate(h) {
4034                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4035                                          hstate_kobjs, &hstate_attr_group);
4036                 if (err)
4037                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4038         }
4039
4040 #ifdef CONFIG_NUMA
4041         hugetlb_sysfs_initialized = true;
4042 #endif
4043         hugetlb_register_all_nodes();
4044 }
4045
4046 static int __init hugetlb_init(void)
4047 {
4048         int i;
4049
4050         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4051                         __NR_HPAGEFLAGS);
4052
4053         if (!hugepages_supported()) {
4054                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4055                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4056                 return 0;
4057         }
4058
4059         /*
4060          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4061          * architectures depend on setup being done here.
4062          */
4063         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4064         if (!parsed_default_hugepagesz) {
4065                 /*
4066                  * If we did not parse a default huge page size, set
4067                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4068                  * number of huge pages for this default size was implicitly
4069                  * specified, set that here as well.
4070                  * Note that the implicit setting will overwrite an explicit
4071                  * setting.  A warning will be printed in this case.
4072                  */
4073                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4074                 if (default_hstate_max_huge_pages) {
4075                         if (default_hstate.max_huge_pages) {
4076                                 char buf[32];
4077
4078                                 string_get_size(huge_page_size(&default_hstate),
4079                                         1, STRING_UNITS_2, buf, 32);
4080                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4081                                         default_hstate.max_huge_pages, buf);
4082                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4083                                         default_hstate_max_huge_pages);
4084                         }
4085                         default_hstate.max_huge_pages =
4086                                 default_hstate_max_huge_pages;
4087
4088                         for_each_online_node(i)
4089                                 default_hstate.max_huge_pages_node[i] =
4090                                         default_hugepages_in_node[i];
4091                 }
4092         }
4093
4094         hugetlb_cma_check();
4095         hugetlb_init_hstates();
4096         gather_bootmem_prealloc();
4097         report_hugepages();
4098
4099         hugetlb_sysfs_init();
4100         hugetlb_cgroup_file_init();
4101
4102 #ifdef CONFIG_SMP
4103         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4104 #else
4105         num_fault_mutexes = 1;
4106 #endif
4107         hugetlb_fault_mutex_table =
4108                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4109                               GFP_KERNEL);
4110         BUG_ON(!hugetlb_fault_mutex_table);
4111
4112         for (i = 0; i < num_fault_mutexes; i++)
4113                 mutex_init(&hugetlb_fault_mutex_table[i]);
4114         return 0;
4115 }
4116 subsys_initcall(hugetlb_init);
4117
4118 /* Overwritten by architectures with more huge page sizes */
4119 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4120 {
4121         return size == HPAGE_SIZE;
4122 }
4123
4124 void __init hugetlb_add_hstate(unsigned int order)
4125 {
4126         struct hstate *h;
4127         unsigned long i;
4128
4129         if (size_to_hstate(PAGE_SIZE << order)) {
4130                 return;
4131         }
4132         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4133         BUG_ON(order == 0);
4134         h = &hstates[hugetlb_max_hstate++];
4135         mutex_init(&h->resize_lock);
4136         h->order = order;
4137         h->mask = ~(huge_page_size(h) - 1);
4138         for (i = 0; i < MAX_NUMNODES; ++i)
4139                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4140         INIT_LIST_HEAD(&h->hugepage_activelist);
4141         h->next_nid_to_alloc = first_memory_node;
4142         h->next_nid_to_free = first_memory_node;
4143         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4144                                         huge_page_size(h)/SZ_1K);
4145
4146         parsed_hstate = h;
4147 }
4148
4149 bool __init __weak hugetlb_node_alloc_supported(void)
4150 {
4151         return true;
4152 }
4153
4154 static void __init hugepages_clear_pages_in_node(void)
4155 {
4156         if (!hugetlb_max_hstate) {
4157                 default_hstate_max_huge_pages = 0;
4158                 memset(default_hugepages_in_node, 0,
4159                         sizeof(default_hugepages_in_node));
4160         } else {
4161                 parsed_hstate->max_huge_pages = 0;
4162                 memset(parsed_hstate->max_huge_pages_node, 0,
4163                         sizeof(parsed_hstate->max_huge_pages_node));
4164         }
4165 }
4166
4167 /*
4168  * hugepages command line processing
4169  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4170  * specification.  If not, ignore the hugepages value.  hugepages can also
4171  * be the first huge page command line  option in which case it implicitly
4172  * specifies the number of huge pages for the default size.
4173  */
4174 static int __init hugepages_setup(char *s)
4175 {
4176         unsigned long *mhp;
4177         static unsigned long *last_mhp;
4178         int node = NUMA_NO_NODE;
4179         int count;
4180         unsigned long tmp;
4181         char *p = s;
4182
4183         if (!parsed_valid_hugepagesz) {
4184                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4185                 parsed_valid_hugepagesz = true;
4186                 return 1;
4187         }
4188
4189         /*
4190          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4191          * yet, so this hugepages= parameter goes to the "default hstate".
4192          * Otherwise, it goes with the previously parsed hugepagesz or
4193          * default_hugepagesz.
4194          */
4195         else if (!hugetlb_max_hstate)
4196                 mhp = &default_hstate_max_huge_pages;
4197         else
4198                 mhp = &parsed_hstate->max_huge_pages;
4199
4200         if (mhp == last_mhp) {
4201                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4202                 return 1;
4203         }
4204
4205         while (*p) {
4206                 count = 0;
4207                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4208                         goto invalid;
4209                 /* Parameter is node format */
4210                 if (p[count] == ':') {
4211                         if (!hugetlb_node_alloc_supported()) {
4212                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4213                                 return 1;
4214                         }
4215                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4216                                 goto invalid;
4217                         node = array_index_nospec(tmp, MAX_NUMNODES);
4218                         p += count + 1;
4219                         /* Parse hugepages */
4220                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4221                                 goto invalid;
4222                         if (!hugetlb_max_hstate)
4223                                 default_hugepages_in_node[node] = tmp;
4224                         else
4225                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4226                         *mhp += tmp;
4227                         /* Go to parse next node*/
4228                         if (p[count] == ',')
4229                                 p += count + 1;
4230                         else
4231                                 break;
4232                 } else {
4233                         if (p != s)
4234                                 goto invalid;
4235                         *mhp = tmp;
4236                         break;
4237                 }
4238         }
4239
4240         /*
4241          * Global state is always initialized later in hugetlb_init.
4242          * But we need to allocate gigantic hstates here early to still
4243          * use the bootmem allocator.
4244          */
4245         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4246                 hugetlb_hstate_alloc_pages(parsed_hstate);
4247
4248         last_mhp = mhp;
4249
4250         return 1;
4251
4252 invalid:
4253         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4254         hugepages_clear_pages_in_node();
4255         return 1;
4256 }
4257 __setup("hugepages=", hugepages_setup);
4258
4259 /*
4260  * hugepagesz command line processing
4261  * A specific huge page size can only be specified once with hugepagesz.
4262  * hugepagesz is followed by hugepages on the command line.  The global
4263  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4264  * hugepagesz argument was valid.
4265  */
4266 static int __init hugepagesz_setup(char *s)
4267 {
4268         unsigned long size;
4269         struct hstate *h;
4270
4271         parsed_valid_hugepagesz = false;
4272         size = (unsigned long)memparse(s, NULL);
4273
4274         if (!arch_hugetlb_valid_size(size)) {
4275                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4276                 return 1;
4277         }
4278
4279         h = size_to_hstate(size);
4280         if (h) {
4281                 /*
4282                  * hstate for this size already exists.  This is normally
4283                  * an error, but is allowed if the existing hstate is the
4284                  * default hstate.  More specifically, it is only allowed if
4285                  * the number of huge pages for the default hstate was not
4286                  * previously specified.
4287                  */
4288                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4289                     default_hstate.max_huge_pages) {
4290                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4291                         return 1;
4292                 }
4293
4294                 /*
4295                  * No need to call hugetlb_add_hstate() as hstate already
4296                  * exists.  But, do set parsed_hstate so that a following
4297                  * hugepages= parameter will be applied to this hstate.
4298                  */
4299                 parsed_hstate = h;
4300                 parsed_valid_hugepagesz = true;
4301                 return 1;
4302         }
4303
4304         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4305         parsed_valid_hugepagesz = true;
4306         return 1;
4307 }
4308 __setup("hugepagesz=", hugepagesz_setup);
4309
4310 /*
4311  * default_hugepagesz command line input
4312  * Only one instance of default_hugepagesz allowed on command line.
4313  */
4314 static int __init default_hugepagesz_setup(char *s)
4315 {
4316         unsigned long size;
4317         int i;
4318
4319         parsed_valid_hugepagesz = false;
4320         if (parsed_default_hugepagesz) {
4321                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4322                 return 1;
4323         }
4324
4325         size = (unsigned long)memparse(s, NULL);
4326
4327         if (!arch_hugetlb_valid_size(size)) {
4328                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4329                 return 1;
4330         }
4331
4332         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4333         parsed_valid_hugepagesz = true;
4334         parsed_default_hugepagesz = true;
4335         default_hstate_idx = hstate_index(size_to_hstate(size));
4336
4337         /*
4338          * The number of default huge pages (for this size) could have been
4339          * specified as the first hugetlb parameter: hugepages=X.  If so,
4340          * then default_hstate_max_huge_pages is set.  If the default huge
4341          * page size is gigantic (>= MAX_ORDER), then the pages must be
4342          * allocated here from bootmem allocator.
4343          */
4344         if (default_hstate_max_huge_pages) {
4345                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4346                 for_each_online_node(i)
4347                         default_hstate.max_huge_pages_node[i] =
4348                                 default_hugepages_in_node[i];
4349                 if (hstate_is_gigantic(&default_hstate))
4350                         hugetlb_hstate_alloc_pages(&default_hstate);
4351                 default_hstate_max_huge_pages = 0;
4352         }
4353
4354         return 1;
4355 }
4356 __setup("default_hugepagesz=", default_hugepagesz_setup);
4357
4358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4359 {
4360 #ifdef CONFIG_NUMA
4361         struct mempolicy *mpol = get_task_policy(current);
4362
4363         /*
4364          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4365          * (from policy_nodemask) specifically for hugetlb case
4366          */
4367         if (mpol->mode == MPOL_BIND &&
4368                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4369                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4370                 return &mpol->nodes;
4371 #endif
4372         return NULL;
4373 }
4374
4375 static unsigned int allowed_mems_nr(struct hstate *h)
4376 {
4377         int node;
4378         unsigned int nr = 0;
4379         nodemask_t *mbind_nodemask;
4380         unsigned int *array = h->free_huge_pages_node;
4381         gfp_t gfp_mask = htlb_alloc_mask(h);
4382
4383         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4384         for_each_node_mask(node, cpuset_current_mems_allowed) {
4385                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4386                         nr += array[node];
4387         }
4388
4389         return nr;
4390 }
4391
4392 #ifdef CONFIG_SYSCTL
4393 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4394                                           void *buffer, size_t *length,
4395                                           loff_t *ppos, unsigned long *out)
4396 {
4397         struct ctl_table dup_table;
4398
4399         /*
4400          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4401          * can duplicate the @table and alter the duplicate of it.
4402          */
4403         dup_table = *table;
4404         dup_table.data = out;
4405
4406         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4407 }
4408
4409 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4410                          struct ctl_table *table, int write,
4411                          void *buffer, size_t *length, loff_t *ppos)
4412 {
4413         struct hstate *h = &default_hstate;
4414         unsigned long tmp = h->max_huge_pages;
4415         int ret;
4416
4417         if (!hugepages_supported())
4418                 return -EOPNOTSUPP;
4419
4420         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4421                                              &tmp);
4422         if (ret)
4423                 goto out;
4424
4425         if (write)
4426                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4427                                                   NUMA_NO_NODE, tmp, *length);
4428 out:
4429         return ret;
4430 }
4431
4432 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4433                           void *buffer, size_t *length, loff_t *ppos)
4434 {
4435
4436         return hugetlb_sysctl_handler_common(false, table, write,
4437                                                         buffer, length, ppos);
4438 }
4439
4440 #ifdef CONFIG_NUMA
4441 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4442                           void *buffer, size_t *length, loff_t *ppos)
4443 {
4444         return hugetlb_sysctl_handler_common(true, table, write,
4445                                                         buffer, length, ppos);
4446 }
4447 #endif /* CONFIG_NUMA */
4448
4449 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4450                 void *buffer, size_t *length, loff_t *ppos)
4451 {
4452         struct hstate *h = &default_hstate;
4453         unsigned long tmp;
4454         int ret;
4455
4456         if (!hugepages_supported())
4457                 return -EOPNOTSUPP;
4458
4459         tmp = h->nr_overcommit_huge_pages;
4460
4461         if (write && hstate_is_gigantic(h))
4462                 return -EINVAL;
4463
4464         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4465                                              &tmp);
4466         if (ret)
4467                 goto out;
4468
4469         if (write) {
4470                 spin_lock_irq(&hugetlb_lock);
4471                 h->nr_overcommit_huge_pages = tmp;
4472                 spin_unlock_irq(&hugetlb_lock);
4473         }
4474 out:
4475         return ret;
4476 }
4477
4478 #endif /* CONFIG_SYSCTL */
4479
4480 void hugetlb_report_meminfo(struct seq_file *m)
4481 {
4482         struct hstate *h;
4483         unsigned long total = 0;
4484
4485         if (!hugepages_supported())
4486                 return;
4487
4488         for_each_hstate(h) {
4489                 unsigned long count = h->nr_huge_pages;
4490
4491                 total += huge_page_size(h) * count;
4492
4493                 if (h == &default_hstate)
4494                         seq_printf(m,
4495                                    "HugePages_Total:   %5lu\n"
4496                                    "HugePages_Free:    %5lu\n"
4497                                    "HugePages_Rsvd:    %5lu\n"
4498                                    "HugePages_Surp:    %5lu\n"
4499                                    "Hugepagesize:   %8lu kB\n",
4500                                    count,
4501                                    h->free_huge_pages,
4502                                    h->resv_huge_pages,
4503                                    h->surplus_huge_pages,
4504                                    huge_page_size(h) / SZ_1K);
4505         }
4506
4507         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4508 }
4509
4510 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4511 {
4512         struct hstate *h = &default_hstate;
4513
4514         if (!hugepages_supported())
4515                 return 0;
4516
4517         return sysfs_emit_at(buf, len,
4518                              "Node %d HugePages_Total: %5u\n"
4519                              "Node %d HugePages_Free:  %5u\n"
4520                              "Node %d HugePages_Surp:  %5u\n",
4521                              nid, h->nr_huge_pages_node[nid],
4522                              nid, h->free_huge_pages_node[nid],
4523                              nid, h->surplus_huge_pages_node[nid]);
4524 }
4525
4526 void hugetlb_show_meminfo_node(int nid)
4527 {
4528         struct hstate *h;
4529
4530         if (!hugepages_supported())
4531                 return;
4532
4533         for_each_hstate(h)
4534                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4535                         nid,
4536                         h->nr_huge_pages_node[nid],
4537                         h->free_huge_pages_node[nid],
4538                         h->surplus_huge_pages_node[nid],
4539                         huge_page_size(h) / SZ_1K);
4540 }
4541
4542 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4543 {
4544         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4545                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4546 }
4547
4548 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4549 unsigned long hugetlb_total_pages(void)
4550 {
4551         struct hstate *h;
4552         unsigned long nr_total_pages = 0;
4553
4554         for_each_hstate(h)
4555                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4556         return nr_total_pages;
4557 }
4558
4559 static int hugetlb_acct_memory(struct hstate *h, long delta)
4560 {
4561         int ret = -ENOMEM;
4562
4563         if (!delta)
4564                 return 0;
4565
4566         spin_lock_irq(&hugetlb_lock);
4567         /*
4568          * When cpuset is configured, it breaks the strict hugetlb page
4569          * reservation as the accounting is done on a global variable. Such
4570          * reservation is completely rubbish in the presence of cpuset because
4571          * the reservation is not checked against page availability for the
4572          * current cpuset. Application can still potentially OOM'ed by kernel
4573          * with lack of free htlb page in cpuset that the task is in.
4574          * Attempt to enforce strict accounting with cpuset is almost
4575          * impossible (or too ugly) because cpuset is too fluid that
4576          * task or memory node can be dynamically moved between cpusets.
4577          *
4578          * The change of semantics for shared hugetlb mapping with cpuset is
4579          * undesirable. However, in order to preserve some of the semantics,
4580          * we fall back to check against current free page availability as
4581          * a best attempt and hopefully to minimize the impact of changing
4582          * semantics that cpuset has.
4583          *
4584          * Apart from cpuset, we also have memory policy mechanism that
4585          * also determines from which node the kernel will allocate memory
4586          * in a NUMA system. So similar to cpuset, we also should consider
4587          * the memory policy of the current task. Similar to the description
4588          * above.
4589          */
4590         if (delta > 0) {
4591                 if (gather_surplus_pages(h, delta) < 0)
4592                         goto out;
4593
4594                 if (delta > allowed_mems_nr(h)) {
4595                         return_unused_surplus_pages(h, delta);
4596                         goto out;
4597                 }
4598         }
4599
4600         ret = 0;
4601         if (delta < 0)
4602                 return_unused_surplus_pages(h, (unsigned long) -delta);
4603
4604 out:
4605         spin_unlock_irq(&hugetlb_lock);
4606         return ret;
4607 }
4608
4609 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4610 {
4611         struct resv_map *resv = vma_resv_map(vma);
4612
4613         /*
4614          * HPAGE_RESV_OWNER indicates a private mapping.
4615          * This new VMA should share its siblings reservation map if present.
4616          * The VMA will only ever have a valid reservation map pointer where
4617          * it is being copied for another still existing VMA.  As that VMA
4618          * has a reference to the reservation map it cannot disappear until
4619          * after this open call completes.  It is therefore safe to take a
4620          * new reference here without additional locking.
4621          */
4622         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4623                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4624                 kref_get(&resv->refs);
4625         }
4626
4627         /*
4628          * vma_lock structure for sharable mappings is vma specific.
4629          * Clear old pointer (if copied via vm_area_dup) and allocate
4630          * new structure.  Before clearing, make sure vma_lock is not
4631          * for this vma.
4632          */
4633         if (vma->vm_flags & VM_MAYSHARE) {
4634                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4635
4636                 if (vma_lock) {
4637                         if (vma_lock->vma != vma) {
4638                                 vma->vm_private_data = NULL;
4639                                 hugetlb_vma_lock_alloc(vma);
4640                         } else
4641                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4642                 } else
4643                         hugetlb_vma_lock_alloc(vma);
4644         }
4645 }
4646
4647 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4648 {
4649         struct hstate *h = hstate_vma(vma);
4650         struct resv_map *resv;
4651         struct hugepage_subpool *spool = subpool_vma(vma);
4652         unsigned long reserve, start, end;
4653         long gbl_reserve;
4654
4655         hugetlb_vma_lock_free(vma);
4656
4657         resv = vma_resv_map(vma);
4658         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4659                 return;
4660
4661         start = vma_hugecache_offset(h, vma, vma->vm_start);
4662         end = vma_hugecache_offset(h, vma, vma->vm_end);
4663
4664         reserve = (end - start) - region_count(resv, start, end);
4665         hugetlb_cgroup_uncharge_counter(resv, start, end);
4666         if (reserve) {
4667                 /*
4668                  * Decrement reserve counts.  The global reserve count may be
4669                  * adjusted if the subpool has a minimum size.
4670                  */
4671                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4672                 hugetlb_acct_memory(h, -gbl_reserve);
4673         }
4674
4675         kref_put(&resv->refs, resv_map_release);
4676 }
4677
4678 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4679 {
4680         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4681                 return -EINVAL;
4682         return 0;
4683 }
4684
4685 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4686 {
4687         return huge_page_size(hstate_vma(vma));
4688 }
4689
4690 /*
4691  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4692  * handle_mm_fault() to try to instantiate regular-sized pages in the
4693  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4694  * this far.
4695  */
4696 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4697 {
4698         BUG();
4699         return 0;
4700 }
4701
4702 /*
4703  * When a new function is introduced to vm_operations_struct and added
4704  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4705  * This is because under System V memory model, mappings created via
4706  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4707  * their original vm_ops are overwritten with shm_vm_ops.
4708  */
4709 const struct vm_operations_struct hugetlb_vm_ops = {
4710         .fault = hugetlb_vm_op_fault,
4711         .open = hugetlb_vm_op_open,
4712         .close = hugetlb_vm_op_close,
4713         .may_split = hugetlb_vm_op_split,
4714         .pagesize = hugetlb_vm_op_pagesize,
4715 };
4716
4717 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4718                                 int writable)
4719 {
4720         pte_t entry;
4721         unsigned int shift = huge_page_shift(hstate_vma(vma));
4722
4723         if (writable) {
4724                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4725                                          vma->vm_page_prot)));
4726         } else {
4727                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4728                                            vma->vm_page_prot));
4729         }
4730         entry = pte_mkyoung(entry);
4731         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4732
4733         return entry;
4734 }
4735
4736 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4737                                    unsigned long address, pte_t *ptep)
4738 {
4739         pte_t entry;
4740
4741         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4742         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4743                 update_mmu_cache(vma, address, ptep);
4744 }
4745
4746 bool is_hugetlb_entry_migration(pte_t pte)
4747 {
4748         swp_entry_t swp;
4749
4750         if (huge_pte_none(pte) || pte_present(pte))
4751                 return false;
4752         swp = pte_to_swp_entry(pte);
4753         if (is_migration_entry(swp))
4754                 return true;
4755         else
4756                 return false;
4757 }
4758
4759 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4760 {
4761         swp_entry_t swp;
4762
4763         if (huge_pte_none(pte) || pte_present(pte))
4764                 return false;
4765         swp = pte_to_swp_entry(pte);
4766         if (is_hwpoison_entry(swp))
4767                 return true;
4768         else
4769                 return false;
4770 }
4771
4772 static void
4773 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4774                      struct page *new_page)
4775 {
4776         __SetPageUptodate(new_page);
4777         hugepage_add_new_anon_rmap(new_page, vma, addr);
4778         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4779         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4780         ClearHPageRestoreReserve(new_page);
4781         SetHPageMigratable(new_page);
4782 }
4783
4784 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4785                             struct vm_area_struct *dst_vma,
4786                             struct vm_area_struct *src_vma)
4787 {
4788         pte_t *src_pte, *dst_pte, entry;
4789         struct page *ptepage;
4790         unsigned long addr;
4791         bool cow = is_cow_mapping(src_vma->vm_flags);
4792         struct hstate *h = hstate_vma(src_vma);
4793         unsigned long sz = huge_page_size(h);
4794         unsigned long npages = pages_per_huge_page(h);
4795         struct mmu_notifier_range range;
4796         unsigned long last_addr_mask;
4797         int ret = 0;
4798
4799         if (cow) {
4800                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4801                                         src_vma->vm_start,
4802                                         src_vma->vm_end);
4803                 mmu_notifier_invalidate_range_start(&range);
4804                 mmap_assert_write_locked(src);
4805                 raw_write_seqcount_begin(&src->write_protect_seq);
4806         } else {
4807                 /*
4808                  * For shared mappings the vma lock must be held before
4809                  * calling huge_pte_offset in the src vma. Otherwise, the
4810                  * returned ptep could go away if part of a shared pmd and
4811                  * another thread calls huge_pmd_unshare.
4812                  */
4813                 hugetlb_vma_lock_read(src_vma);
4814         }
4815
4816         last_addr_mask = hugetlb_mask_last_page(h);
4817         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4818                 spinlock_t *src_ptl, *dst_ptl;
4819                 src_pte = huge_pte_offset(src, addr, sz);
4820                 if (!src_pte) {
4821                         addr |= last_addr_mask;
4822                         continue;
4823                 }
4824                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4825                 if (!dst_pte) {
4826                         ret = -ENOMEM;
4827                         break;
4828                 }
4829
4830                 /*
4831                  * If the pagetables are shared don't copy or take references.
4832                  *
4833                  * dst_pte == src_pte is the common case of src/dest sharing.
4834                  * However, src could have 'unshared' and dst shares with
4835                  * another vma. So page_count of ptep page is checked instead
4836                  * to reliably determine whether pte is shared.
4837                  */
4838                 if (page_count(virt_to_page(dst_pte)) > 1) {
4839                         addr |= last_addr_mask;
4840                         continue;
4841                 }
4842
4843                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4844                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4845                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4846                 entry = huge_ptep_get(src_pte);
4847 again:
4848                 if (huge_pte_none(entry)) {
4849                         /*
4850                          * Skip if src entry none.
4851                          */
4852                         ;
4853                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4854                         bool uffd_wp = huge_pte_uffd_wp(entry);
4855
4856                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4857                                 entry = huge_pte_clear_uffd_wp(entry);
4858                         set_huge_pte_at(dst, addr, dst_pte, entry);
4859                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4860                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4861                         bool uffd_wp = huge_pte_uffd_wp(entry);
4862
4863                         if (!is_readable_migration_entry(swp_entry) && cow) {
4864                                 /*
4865                                  * COW mappings require pages in both
4866                                  * parent and child to be set to read.
4867                                  */
4868                                 swp_entry = make_readable_migration_entry(
4869                                                         swp_offset(swp_entry));
4870                                 entry = swp_entry_to_pte(swp_entry);
4871                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4872                                         entry = huge_pte_mkuffd_wp(entry);
4873                                 set_huge_pte_at(src, addr, src_pte, entry);
4874                         }
4875                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4876                                 entry = huge_pte_clear_uffd_wp(entry);
4877                         set_huge_pte_at(dst, addr, dst_pte, entry);
4878                 } else if (unlikely(is_pte_marker(entry))) {
4879                         /*
4880                          * We copy the pte marker only if the dst vma has
4881                          * uffd-wp enabled.
4882                          */
4883                         if (userfaultfd_wp(dst_vma))
4884                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4885                 } else {
4886                         entry = huge_ptep_get(src_pte);
4887                         ptepage = pte_page(entry);
4888                         get_page(ptepage);
4889
4890                         /*
4891                          * Failing to duplicate the anon rmap is a rare case
4892                          * where we see pinned hugetlb pages while they're
4893                          * prone to COW. We need to do the COW earlier during
4894                          * fork.
4895                          *
4896                          * When pre-allocating the page or copying data, we
4897                          * need to be without the pgtable locks since we could
4898                          * sleep during the process.
4899                          */
4900                         if (!PageAnon(ptepage)) {
4901                                 page_dup_file_rmap(ptepage, true);
4902                         } else if (page_try_dup_anon_rmap(ptepage, true,
4903                                                           src_vma)) {
4904                                 pte_t src_pte_old = entry;
4905                                 struct page *new;
4906
4907                                 spin_unlock(src_ptl);
4908                                 spin_unlock(dst_ptl);
4909                                 /* Do not use reserve as it's private owned */
4910                                 new = alloc_huge_page(dst_vma, addr, 1);
4911                                 if (IS_ERR(new)) {
4912                                         put_page(ptepage);
4913                                         ret = PTR_ERR(new);
4914                                         break;
4915                                 }
4916                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4917                                                     npages);
4918                                 put_page(ptepage);
4919
4920                                 /* Install the new huge page if src pte stable */
4921                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4922                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4923                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4924                                 entry = huge_ptep_get(src_pte);
4925                                 if (!pte_same(src_pte_old, entry)) {
4926                                         restore_reserve_on_error(h, dst_vma, addr,
4927                                                                 new);
4928                                         put_page(new);
4929                                         /* huge_ptep of dst_pte won't change as in child */
4930                                         goto again;
4931                                 }
4932                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4933                                 spin_unlock(src_ptl);
4934                                 spin_unlock(dst_ptl);
4935                                 continue;
4936                         }
4937
4938                         if (cow) {
4939                                 /*
4940                                  * No need to notify as we are downgrading page
4941                                  * table protection not changing it to point
4942                                  * to a new page.
4943                                  *
4944                                  * See Documentation/mm/mmu_notifier.rst
4945                                  */
4946                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4947                                 entry = huge_pte_wrprotect(entry);
4948                         }
4949
4950                         set_huge_pte_at(dst, addr, dst_pte, entry);
4951                         hugetlb_count_add(npages, dst);
4952                 }
4953                 spin_unlock(src_ptl);
4954                 spin_unlock(dst_ptl);
4955         }
4956
4957         if (cow) {
4958                 raw_write_seqcount_end(&src->write_protect_seq);
4959                 mmu_notifier_invalidate_range_end(&range);
4960         } else {
4961                 hugetlb_vma_unlock_read(src_vma);
4962         }
4963
4964         return ret;
4965 }
4966
4967 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4968                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4969 {
4970         struct hstate *h = hstate_vma(vma);
4971         struct mm_struct *mm = vma->vm_mm;
4972         spinlock_t *src_ptl, *dst_ptl;
4973         pte_t pte;
4974
4975         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4976         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4977
4978         /*
4979          * We don't have to worry about the ordering of src and dst ptlocks
4980          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4981          */
4982         if (src_ptl != dst_ptl)
4983                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4984
4985         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4986         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4987
4988         if (src_ptl != dst_ptl)
4989                 spin_unlock(src_ptl);
4990         spin_unlock(dst_ptl);
4991 }
4992
4993 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4994                              struct vm_area_struct *new_vma,
4995                              unsigned long old_addr, unsigned long new_addr,
4996                              unsigned long len)
4997 {
4998         struct hstate *h = hstate_vma(vma);
4999         struct address_space *mapping = vma->vm_file->f_mapping;
5000         unsigned long sz = huge_page_size(h);
5001         struct mm_struct *mm = vma->vm_mm;
5002         unsigned long old_end = old_addr + len;
5003         unsigned long last_addr_mask;
5004         pte_t *src_pte, *dst_pte;
5005         struct mmu_notifier_range range;
5006         bool shared_pmd = false;
5007
5008         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5009                                 old_end);
5010         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5011         /*
5012          * In case of shared PMDs, we should cover the maximum possible
5013          * range.
5014          */
5015         flush_cache_range(vma, range.start, range.end);
5016
5017         mmu_notifier_invalidate_range_start(&range);
5018         last_addr_mask = hugetlb_mask_last_page(h);
5019         /* Prevent race with file truncation */
5020         hugetlb_vma_lock_write(vma);
5021         i_mmap_lock_write(mapping);
5022         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5023                 src_pte = huge_pte_offset(mm, old_addr, sz);
5024                 if (!src_pte) {
5025                         old_addr |= last_addr_mask;
5026                         new_addr |= last_addr_mask;
5027                         continue;
5028                 }
5029                 if (huge_pte_none(huge_ptep_get(src_pte)))
5030                         continue;
5031
5032                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5033                         shared_pmd = true;
5034                         old_addr |= last_addr_mask;
5035                         new_addr |= last_addr_mask;
5036                         continue;
5037                 }
5038
5039                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5040                 if (!dst_pte)
5041                         break;
5042
5043                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5044         }
5045
5046         if (shared_pmd)
5047                 flush_tlb_range(vma, range.start, range.end);
5048         else
5049                 flush_tlb_range(vma, old_end - len, old_end);
5050         mmu_notifier_invalidate_range_end(&range);
5051         i_mmap_unlock_write(mapping);
5052         hugetlb_vma_unlock_write(vma);
5053
5054         return len + old_addr - old_end;
5055 }
5056
5057 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5058                                    unsigned long start, unsigned long end,
5059                                    struct page *ref_page, zap_flags_t zap_flags)
5060 {
5061         struct mm_struct *mm = vma->vm_mm;
5062         unsigned long address;
5063         pte_t *ptep;
5064         pte_t pte;
5065         spinlock_t *ptl;
5066         struct page *page;
5067         struct hstate *h = hstate_vma(vma);
5068         unsigned long sz = huge_page_size(h);
5069         struct mmu_notifier_range range;
5070         unsigned long last_addr_mask;
5071         bool force_flush = false;
5072
5073         WARN_ON(!is_vm_hugetlb_page(vma));
5074         BUG_ON(start & ~huge_page_mask(h));
5075         BUG_ON(end & ~huge_page_mask(h));
5076
5077         /*
5078          * This is a hugetlb vma, all the pte entries should point
5079          * to huge page.
5080          */
5081         tlb_change_page_size(tlb, sz);
5082         tlb_start_vma(tlb, vma);
5083
5084         /*
5085          * If sharing possible, alert mmu notifiers of worst case.
5086          */
5087         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5088                                 end);
5089         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5090         mmu_notifier_invalidate_range_start(&range);
5091         last_addr_mask = hugetlb_mask_last_page(h);
5092         address = start;
5093         for (; address < end; address += sz) {
5094                 ptep = huge_pte_offset(mm, address, sz);
5095                 if (!ptep) {
5096                         address |= last_addr_mask;
5097                         continue;
5098                 }
5099
5100                 ptl = huge_pte_lock(h, mm, ptep);
5101                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5102                         spin_unlock(ptl);
5103                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5104                         force_flush = true;
5105                         address |= last_addr_mask;
5106                         continue;
5107                 }
5108
5109                 pte = huge_ptep_get(ptep);
5110                 if (huge_pte_none(pte)) {
5111                         spin_unlock(ptl);
5112                         continue;
5113                 }
5114
5115                 /*
5116                  * Migrating hugepage or HWPoisoned hugepage is already
5117                  * unmapped and its refcount is dropped, so just clear pte here.
5118                  */
5119                 if (unlikely(!pte_present(pte))) {
5120 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5121                         /*
5122                          * If the pte was wr-protected by uffd-wp in any of the
5123                          * swap forms, meanwhile the caller does not want to
5124                          * drop the uffd-wp bit in this zap, then replace the
5125                          * pte with a marker.
5126                          */
5127                         if (pte_swp_uffd_wp_any(pte) &&
5128                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5129                                 set_huge_pte_at(mm, address, ptep,
5130                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5131                         else
5132 #endif
5133                                 huge_pte_clear(mm, address, ptep, sz);
5134                         spin_unlock(ptl);
5135                         continue;
5136                 }
5137
5138                 page = pte_page(pte);
5139                 /*
5140                  * If a reference page is supplied, it is because a specific
5141                  * page is being unmapped, not a range. Ensure the page we
5142                  * are about to unmap is the actual page of interest.
5143                  */
5144                 if (ref_page) {
5145                         if (page != ref_page) {
5146                                 spin_unlock(ptl);
5147                                 continue;
5148                         }
5149                         /*
5150                          * Mark the VMA as having unmapped its page so that
5151                          * future faults in this VMA will fail rather than
5152                          * looking like data was lost
5153                          */
5154                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5155                 }
5156
5157                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5158                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5159                 if (huge_pte_dirty(pte))
5160                         set_page_dirty(page);
5161 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5162                 /* Leave a uffd-wp pte marker if needed */
5163                 if (huge_pte_uffd_wp(pte) &&
5164                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5165                         set_huge_pte_at(mm, address, ptep,
5166                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5167 #endif
5168                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5169                 page_remove_rmap(page, vma, true);
5170
5171                 spin_unlock(ptl);
5172                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5173                 /*
5174                  * Bail out after unmapping reference page if supplied
5175                  */
5176                 if (ref_page)
5177                         break;
5178         }
5179         mmu_notifier_invalidate_range_end(&range);
5180         tlb_end_vma(tlb, vma);
5181
5182         /*
5183          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5184          * could defer the flush until now, since by holding i_mmap_rwsem we
5185          * guaranteed that the last refernece would not be dropped. But we must
5186          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5187          * dropped and the last reference to the shared PMDs page might be
5188          * dropped as well.
5189          *
5190          * In theory we could defer the freeing of the PMD pages as well, but
5191          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5192          * detect sharing, so we cannot defer the release of the page either.
5193          * Instead, do flush now.
5194          */
5195         if (force_flush)
5196                 tlb_flush_mmu_tlbonly(tlb);
5197 }
5198
5199 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5200                           struct vm_area_struct *vma, unsigned long start,
5201                           unsigned long end, struct page *ref_page,
5202                           zap_flags_t zap_flags)
5203 {
5204         hugetlb_vma_lock_write(vma);
5205         i_mmap_lock_write(vma->vm_file->f_mapping);
5206
5207         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5208
5209         /*
5210          * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5211          * the vma_lock is freed, this makes the vma ineligible for pmd
5212          * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5213          * This is important as page tables for this unmapped range will
5214          * be asynchrously deleted.  If the page tables are shared, there
5215          * will be issues when accessed by someone else.
5216          */
5217         __hugetlb_vma_unlock_write_free(vma);
5218
5219         i_mmap_unlock_write(vma->vm_file->f_mapping);
5220 }
5221
5222 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5223                           unsigned long end, struct page *ref_page,
5224                           zap_flags_t zap_flags)
5225 {
5226         struct mmu_gather tlb;
5227
5228         tlb_gather_mmu(&tlb, vma->vm_mm);
5229         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5230         tlb_finish_mmu(&tlb);
5231 }
5232
5233 /*
5234  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5235  * mapping it owns the reserve page for. The intention is to unmap the page
5236  * from other VMAs and let the children be SIGKILLed if they are faulting the
5237  * same region.
5238  */
5239 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5240                               struct page *page, unsigned long address)
5241 {
5242         struct hstate *h = hstate_vma(vma);
5243         struct vm_area_struct *iter_vma;
5244         struct address_space *mapping;
5245         pgoff_t pgoff;
5246
5247         /*
5248          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5249          * from page cache lookup which is in HPAGE_SIZE units.
5250          */
5251         address = address & huge_page_mask(h);
5252         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5253                         vma->vm_pgoff;
5254         mapping = vma->vm_file->f_mapping;
5255
5256         /*
5257          * Take the mapping lock for the duration of the table walk. As
5258          * this mapping should be shared between all the VMAs,
5259          * __unmap_hugepage_range() is called as the lock is already held
5260          */
5261         i_mmap_lock_write(mapping);
5262         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5263                 /* Do not unmap the current VMA */
5264                 if (iter_vma == vma)
5265                         continue;
5266
5267                 /*
5268                  * Shared VMAs have their own reserves and do not affect
5269                  * MAP_PRIVATE accounting but it is possible that a shared
5270                  * VMA is using the same page so check and skip such VMAs.
5271                  */
5272                 if (iter_vma->vm_flags & VM_MAYSHARE)
5273                         continue;
5274
5275                 /*
5276                  * Unmap the page from other VMAs without their own reserves.
5277                  * They get marked to be SIGKILLed if they fault in these
5278                  * areas. This is because a future no-page fault on this VMA
5279                  * could insert a zeroed page instead of the data existing
5280                  * from the time of fork. This would look like data corruption
5281                  */
5282                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5283                         unmap_hugepage_range(iter_vma, address,
5284                                              address + huge_page_size(h), page, 0);
5285         }
5286         i_mmap_unlock_write(mapping);
5287 }
5288
5289 /*
5290  * hugetlb_wp() should be called with page lock of the original hugepage held.
5291  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5292  * cannot race with other handlers or page migration.
5293  * Keep the pte_same checks anyway to make transition from the mutex easier.
5294  */
5295 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5296                        unsigned long address, pte_t *ptep, unsigned int flags,
5297                        struct page *pagecache_page, spinlock_t *ptl)
5298 {
5299         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5300         pte_t pte;
5301         struct hstate *h = hstate_vma(vma);
5302         struct page *old_page, *new_page;
5303         int outside_reserve = 0;
5304         vm_fault_t ret = 0;
5305         unsigned long haddr = address & huge_page_mask(h);
5306         struct mmu_notifier_range range;
5307
5308         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5309         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5310
5311         /*
5312          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5313          * PTE mapped R/O such as maybe_mkwrite() would do.
5314          */
5315         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5316                 return VM_FAULT_SIGSEGV;
5317
5318         /* Let's take out MAP_SHARED mappings first. */
5319         if (vma->vm_flags & VM_MAYSHARE) {
5320                 if (unlikely(unshare))
5321                         return 0;
5322                 set_huge_ptep_writable(vma, haddr, ptep);
5323                 return 0;
5324         }
5325
5326         pte = huge_ptep_get(ptep);
5327         old_page = pte_page(pte);
5328
5329         delayacct_wpcopy_start();
5330
5331 retry_avoidcopy:
5332         /*
5333          * If no-one else is actually using this page, we're the exclusive
5334          * owner and can reuse this page.
5335          */
5336         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5337                 if (!PageAnonExclusive(old_page))
5338                         page_move_anon_rmap(old_page, vma);
5339                 if (likely(!unshare))
5340                         set_huge_ptep_writable(vma, haddr, ptep);
5341
5342                 delayacct_wpcopy_end();
5343                 return 0;
5344         }
5345         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5346                        old_page);
5347
5348         /*
5349          * If the process that created a MAP_PRIVATE mapping is about to
5350          * perform a COW due to a shared page count, attempt to satisfy
5351          * the allocation without using the existing reserves. The pagecache
5352          * page is used to determine if the reserve at this address was
5353          * consumed or not. If reserves were used, a partial faulted mapping
5354          * at the time of fork() could consume its reserves on COW instead
5355          * of the full address range.
5356          */
5357         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5358                         old_page != pagecache_page)
5359                 outside_reserve = 1;
5360
5361         get_page(old_page);
5362
5363         /*
5364          * Drop page table lock as buddy allocator may be called. It will
5365          * be acquired again before returning to the caller, as expected.
5366          */
5367         spin_unlock(ptl);
5368         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5369
5370         if (IS_ERR(new_page)) {
5371                 /*
5372                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5373                  * it is due to references held by a child and an insufficient
5374                  * huge page pool. To guarantee the original mappers
5375                  * reliability, unmap the page from child processes. The child
5376                  * may get SIGKILLed if it later faults.
5377                  */
5378                 if (outside_reserve) {
5379                         struct address_space *mapping = vma->vm_file->f_mapping;
5380                         pgoff_t idx;
5381                         u32 hash;
5382
5383                         put_page(old_page);
5384                         /*
5385                          * Drop hugetlb_fault_mutex and vma_lock before
5386                          * unmapping.  unmapping needs to hold vma_lock
5387                          * in write mode.  Dropping vma_lock in read mode
5388                          * here is OK as COW mappings do not interact with
5389                          * PMD sharing.
5390                          *
5391                          * Reacquire both after unmap operation.
5392                          */
5393                         idx = vma_hugecache_offset(h, vma, haddr);
5394                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5395                         hugetlb_vma_unlock_read(vma);
5396                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5397
5398                         unmap_ref_private(mm, vma, old_page, haddr);
5399
5400                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5401                         hugetlb_vma_lock_read(vma);
5402                         spin_lock(ptl);
5403                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5404                         if (likely(ptep &&
5405                                    pte_same(huge_ptep_get(ptep), pte)))
5406                                 goto retry_avoidcopy;
5407                         /*
5408                          * race occurs while re-acquiring page table
5409                          * lock, and our job is done.
5410                          */
5411                         delayacct_wpcopy_end();
5412                         return 0;
5413                 }
5414
5415                 ret = vmf_error(PTR_ERR(new_page));
5416                 goto out_release_old;
5417         }
5418
5419         /*
5420          * When the original hugepage is shared one, it does not have
5421          * anon_vma prepared.
5422          */
5423         if (unlikely(anon_vma_prepare(vma))) {
5424                 ret = VM_FAULT_OOM;
5425                 goto out_release_all;
5426         }
5427
5428         copy_user_huge_page(new_page, old_page, address, vma,
5429                             pages_per_huge_page(h));
5430         __SetPageUptodate(new_page);
5431
5432         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5433                                 haddr + huge_page_size(h));
5434         mmu_notifier_invalidate_range_start(&range);
5435
5436         /*
5437          * Retake the page table lock to check for racing updates
5438          * before the page tables are altered
5439          */
5440         spin_lock(ptl);
5441         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5442         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5443                 ClearHPageRestoreReserve(new_page);
5444
5445                 /* Break COW or unshare */
5446                 huge_ptep_clear_flush(vma, haddr, ptep);
5447                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5448                 page_remove_rmap(old_page, vma, true);
5449                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5450                 set_huge_pte_at(mm, haddr, ptep,
5451                                 make_huge_pte(vma, new_page, !unshare));
5452                 SetHPageMigratable(new_page);
5453                 /* Make the old page be freed below */
5454                 new_page = old_page;
5455         }
5456         spin_unlock(ptl);
5457         mmu_notifier_invalidate_range_end(&range);
5458 out_release_all:
5459         /*
5460          * No restore in case of successful pagetable update (Break COW or
5461          * unshare)
5462          */
5463         if (new_page != old_page)
5464                 restore_reserve_on_error(h, vma, haddr, new_page);
5465         put_page(new_page);
5466 out_release_old:
5467         put_page(old_page);
5468
5469         spin_lock(ptl); /* Caller expects lock to be held */
5470
5471         delayacct_wpcopy_end();
5472         return ret;
5473 }
5474
5475 /*
5476  * Return whether there is a pagecache page to back given address within VMA.
5477  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5478  */
5479 static bool hugetlbfs_pagecache_present(struct hstate *h,
5480                         struct vm_area_struct *vma, unsigned long address)
5481 {
5482         struct address_space *mapping;
5483         pgoff_t idx;
5484         struct page *page;
5485
5486         mapping = vma->vm_file->f_mapping;
5487         idx = vma_hugecache_offset(h, vma, address);
5488
5489         page = find_get_page(mapping, idx);
5490         if (page)
5491                 put_page(page);
5492         return page != NULL;
5493 }
5494
5495 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5496                            pgoff_t idx)
5497 {
5498         struct folio *folio = page_folio(page);
5499         struct inode *inode = mapping->host;
5500         struct hstate *h = hstate_inode(inode);
5501         int err;
5502
5503         __folio_set_locked(folio);
5504         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5505
5506         if (unlikely(err)) {
5507                 __folio_clear_locked(folio);
5508                 return err;
5509         }
5510         ClearHPageRestoreReserve(page);
5511
5512         /*
5513          * mark folio dirty so that it will not be removed from cache/file
5514          * by non-hugetlbfs specific code paths.
5515          */
5516         folio_mark_dirty(folio);
5517
5518         spin_lock(&inode->i_lock);
5519         inode->i_blocks += blocks_per_huge_page(h);
5520         spin_unlock(&inode->i_lock);
5521         return 0;
5522 }
5523
5524 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5525                                                   struct address_space *mapping,
5526                                                   pgoff_t idx,
5527                                                   unsigned int flags,
5528                                                   unsigned long haddr,
5529                                                   unsigned long addr,
5530                                                   unsigned long reason)
5531 {
5532         u32 hash;
5533         struct vm_fault vmf = {
5534                 .vma = vma,
5535                 .address = haddr,
5536                 .real_address = addr,
5537                 .flags = flags,
5538
5539                 /*
5540                  * Hard to debug if it ends up being
5541                  * used by a callee that assumes
5542                  * something about the other
5543                  * uninitialized fields... same as in
5544                  * memory.c
5545                  */
5546         };
5547
5548         /*
5549          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5550          * userfault. Also mmap_lock could be dropped due to handling
5551          * userfault, any vma operation should be careful from here.
5552          */
5553         hugetlb_vma_unlock_read(vma);
5554         hash = hugetlb_fault_mutex_hash(mapping, idx);
5555         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5556         return handle_userfault(&vmf, reason);
5557 }
5558
5559 /*
5560  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5561  * false if pte changed or is changing.
5562  */
5563 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5564                                pte_t *ptep, pte_t old_pte)
5565 {
5566         spinlock_t *ptl;
5567         bool same;
5568
5569         ptl = huge_pte_lock(h, mm, ptep);
5570         same = pte_same(huge_ptep_get(ptep), old_pte);
5571         spin_unlock(ptl);
5572
5573         return same;
5574 }
5575
5576 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5577                         struct vm_area_struct *vma,
5578                         struct address_space *mapping, pgoff_t idx,
5579                         unsigned long address, pte_t *ptep,
5580                         pte_t old_pte, unsigned int flags)
5581 {
5582         struct hstate *h = hstate_vma(vma);
5583         vm_fault_t ret = VM_FAULT_SIGBUS;
5584         int anon_rmap = 0;
5585         unsigned long size;
5586         struct page *page;
5587         pte_t new_pte;
5588         spinlock_t *ptl;
5589         unsigned long haddr = address & huge_page_mask(h);
5590         bool new_page, new_pagecache_page = false;
5591         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5592
5593         /*
5594          * Currently, we are forced to kill the process in the event the
5595          * original mapper has unmapped pages from the child due to a failed
5596          * COW/unsharing. Warn that such a situation has occurred as it may not
5597          * be obvious.
5598          */
5599         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5600                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5601                            current->pid);
5602                 goto out;
5603         }
5604
5605         /*
5606          * Use page lock to guard against racing truncation
5607          * before we get page_table_lock.
5608          */
5609         new_page = false;
5610         page = find_lock_page(mapping, idx);
5611         if (!page) {
5612                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5613                 if (idx >= size)
5614                         goto out;
5615                 /* Check for page in userfault range */
5616                 if (userfaultfd_missing(vma)) {
5617                         /*
5618                          * Since hugetlb_no_page() was examining pte
5619                          * without pgtable lock, we need to re-test under
5620                          * lock because the pte may not be stable and could
5621                          * have changed from under us.  Try to detect
5622                          * either changed or during-changing ptes and retry
5623                          * properly when needed.
5624                          *
5625                          * Note that userfaultfd is actually fine with
5626                          * false positives (e.g. caused by pte changed),
5627                          * but not wrong logical events (e.g. caused by
5628                          * reading a pte during changing).  The latter can
5629                          * confuse the userspace, so the strictness is very
5630                          * much preferred.  E.g., MISSING event should
5631                          * never happen on the page after UFFDIO_COPY has
5632                          * correctly installed the page and returned.
5633                          */
5634                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5635                                 ret = 0;
5636                                 goto out;
5637                         }
5638
5639                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5640                                                         haddr, address,
5641                                                         VM_UFFD_MISSING);
5642                 }
5643
5644                 page = alloc_huge_page(vma, haddr, 0);
5645                 if (IS_ERR(page)) {
5646                         /*
5647                          * Returning error will result in faulting task being
5648                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5649                          * tasks from racing to fault in the same page which
5650                          * could result in false unable to allocate errors.
5651                          * Page migration does not take the fault mutex, but
5652                          * does a clear then write of pte's under page table
5653                          * lock.  Page fault code could race with migration,
5654                          * notice the clear pte and try to allocate a page
5655                          * here.  Before returning error, get ptl and make
5656                          * sure there really is no pte entry.
5657                          */
5658                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5659                                 ret = vmf_error(PTR_ERR(page));
5660                         else
5661                                 ret = 0;
5662                         goto out;
5663                 }
5664                 clear_huge_page(page, address, pages_per_huge_page(h));
5665                 __SetPageUptodate(page);
5666                 new_page = true;
5667
5668                 if (vma->vm_flags & VM_MAYSHARE) {
5669                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5670                         if (err) {
5671                                 /*
5672                                  * err can't be -EEXIST which implies someone
5673                                  * else consumed the reservation since hugetlb
5674                                  * fault mutex is held when add a hugetlb page
5675                                  * to the page cache. So it's safe to call
5676                                  * restore_reserve_on_error() here.
5677                                  */
5678                                 restore_reserve_on_error(h, vma, haddr, page);
5679                                 put_page(page);
5680                                 goto out;
5681                         }
5682                         new_pagecache_page = true;
5683                 } else {
5684                         lock_page(page);
5685                         if (unlikely(anon_vma_prepare(vma))) {
5686                                 ret = VM_FAULT_OOM;
5687                                 goto backout_unlocked;
5688                         }
5689                         anon_rmap = 1;
5690                 }
5691         } else {
5692                 /*
5693                  * If memory error occurs between mmap() and fault, some process
5694                  * don't have hwpoisoned swap entry for errored virtual address.
5695                  * So we need to block hugepage fault by PG_hwpoison bit check.
5696                  */
5697                 if (unlikely(PageHWPoison(page))) {
5698                         ret = VM_FAULT_HWPOISON_LARGE |
5699                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5700                         goto backout_unlocked;
5701                 }
5702
5703                 /* Check for page in userfault range. */
5704                 if (userfaultfd_minor(vma)) {
5705                         unlock_page(page);
5706                         put_page(page);
5707                         /* See comment in userfaultfd_missing() block above */
5708                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5709                                 ret = 0;
5710                                 goto out;
5711                         }
5712                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5713                                                         haddr, address,
5714                                                         VM_UFFD_MINOR);
5715                 }
5716         }
5717
5718         /*
5719          * If we are going to COW a private mapping later, we examine the
5720          * pending reservations for this page now. This will ensure that
5721          * any allocations necessary to record that reservation occur outside
5722          * the spinlock.
5723          */
5724         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5725                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5726                         ret = VM_FAULT_OOM;
5727                         goto backout_unlocked;
5728                 }
5729                 /* Just decrements count, does not deallocate */
5730                 vma_end_reservation(h, vma, haddr);
5731         }
5732
5733         ptl = huge_pte_lock(h, mm, ptep);
5734         ret = 0;
5735         /* If pte changed from under us, retry */
5736         if (!pte_same(huge_ptep_get(ptep), old_pte))
5737                 goto backout;
5738
5739         if (anon_rmap) {
5740                 ClearHPageRestoreReserve(page);
5741                 hugepage_add_new_anon_rmap(page, vma, haddr);
5742         } else
5743                 page_dup_file_rmap(page, true);
5744         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5745                                 && (vma->vm_flags & VM_SHARED)));
5746         /*
5747          * If this pte was previously wr-protected, keep it wr-protected even
5748          * if populated.
5749          */
5750         if (unlikely(pte_marker_uffd_wp(old_pte)))
5751                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5752         set_huge_pte_at(mm, haddr, ptep, new_pte);
5753
5754         hugetlb_count_add(pages_per_huge_page(h), mm);
5755         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5756                 /* Optimization, do the COW without a second fault */
5757                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5758         }
5759
5760         spin_unlock(ptl);
5761
5762         /*
5763          * Only set HPageMigratable in newly allocated pages.  Existing pages
5764          * found in the pagecache may not have HPageMigratableset if they have
5765          * been isolated for migration.
5766          */
5767         if (new_page)
5768                 SetHPageMigratable(page);
5769
5770         unlock_page(page);
5771 out:
5772         hugetlb_vma_unlock_read(vma);
5773         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5774         return ret;
5775
5776 backout:
5777         spin_unlock(ptl);
5778 backout_unlocked:
5779         if (new_page && !new_pagecache_page)
5780                 restore_reserve_on_error(h, vma, haddr, page);
5781
5782         unlock_page(page);
5783         put_page(page);
5784         goto out;
5785 }
5786
5787 #ifdef CONFIG_SMP
5788 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5789 {
5790         unsigned long key[2];
5791         u32 hash;
5792
5793         key[0] = (unsigned long) mapping;
5794         key[1] = idx;
5795
5796         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5797
5798         return hash & (num_fault_mutexes - 1);
5799 }
5800 #else
5801 /*
5802  * For uniprocessor systems we always use a single mutex, so just
5803  * return 0 and avoid the hashing overhead.
5804  */
5805 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5806 {
5807         return 0;
5808 }
5809 #endif
5810
5811 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5812                         unsigned long address, unsigned int flags)
5813 {
5814         pte_t *ptep, entry;
5815         spinlock_t *ptl;
5816         vm_fault_t ret;
5817         u32 hash;
5818         pgoff_t idx;
5819         struct page *page = NULL;
5820         struct page *pagecache_page = NULL;
5821         struct hstate *h = hstate_vma(vma);
5822         struct address_space *mapping;
5823         int need_wait_lock = 0;
5824         unsigned long haddr = address & huge_page_mask(h);
5825
5826         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5827         if (ptep) {
5828                 /*
5829                  * Since we hold no locks, ptep could be stale.  That is
5830                  * OK as we are only making decisions based on content and
5831                  * not actually modifying content here.
5832                  */
5833                 entry = huge_ptep_get(ptep);
5834                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5835                         migration_entry_wait_huge(vma, ptep);
5836                         return 0;
5837                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5838                         return VM_FAULT_HWPOISON_LARGE |
5839                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5840         }
5841
5842         /*
5843          * Serialize hugepage allocation and instantiation, so that we don't
5844          * get spurious allocation failures if two CPUs race to instantiate
5845          * the same page in the page cache.
5846          */
5847         mapping = vma->vm_file->f_mapping;
5848         idx = vma_hugecache_offset(h, vma, haddr);
5849         hash = hugetlb_fault_mutex_hash(mapping, idx);
5850         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5851
5852         /*
5853          * Acquire vma lock before calling huge_pte_alloc and hold
5854          * until finished with ptep.  This prevents huge_pmd_unshare from
5855          * being called elsewhere and making the ptep no longer valid.
5856          *
5857          * ptep could have already be assigned via huge_pte_offset.  That
5858          * is OK, as huge_pte_alloc will return the same value unless
5859          * something has changed.
5860          */
5861         hugetlb_vma_lock_read(vma);
5862         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5863         if (!ptep) {
5864                 hugetlb_vma_unlock_read(vma);
5865                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5866                 return VM_FAULT_OOM;
5867         }
5868
5869         entry = huge_ptep_get(ptep);
5870         /* PTE markers should be handled the same way as none pte */
5871         if (huge_pte_none_mostly(entry))
5872                 /*
5873                  * hugetlb_no_page will drop vma lock and hugetlb fault
5874                  * mutex internally, which make us return immediately.
5875                  */
5876                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5877                                       entry, flags);
5878
5879         ret = 0;
5880
5881         /*
5882          * entry could be a migration/hwpoison entry at this point, so this
5883          * check prevents the kernel from going below assuming that we have
5884          * an active hugepage in pagecache. This goto expects the 2nd page
5885          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5886          * properly handle it.
5887          */
5888         if (!pte_present(entry))
5889                 goto out_mutex;
5890
5891         /*
5892          * If we are going to COW/unshare the mapping later, we examine the
5893          * pending reservations for this page now. This will ensure that any
5894          * allocations necessary to record that reservation occur outside the
5895          * spinlock. Also lookup the pagecache page now as it is used to
5896          * determine if a reservation has been consumed.
5897          */
5898         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5899             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5900                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5901                         ret = VM_FAULT_OOM;
5902                         goto out_mutex;
5903                 }
5904                 /* Just decrements count, does not deallocate */
5905                 vma_end_reservation(h, vma, haddr);
5906
5907                 pagecache_page = find_lock_page(mapping, idx);
5908         }
5909
5910         ptl = huge_pte_lock(h, mm, ptep);
5911
5912         /* Check for a racing update before calling hugetlb_wp() */
5913         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5914                 goto out_ptl;
5915
5916         /* Handle userfault-wp first, before trying to lock more pages */
5917         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5918             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5919                 struct vm_fault vmf = {
5920                         .vma = vma,
5921                         .address = haddr,
5922                         .real_address = address,
5923                         .flags = flags,
5924                 };
5925
5926                 spin_unlock(ptl);
5927                 if (pagecache_page) {
5928                         unlock_page(pagecache_page);
5929                         put_page(pagecache_page);
5930                 }
5931                 hugetlb_vma_unlock_read(vma);
5932                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5933                 return handle_userfault(&vmf, VM_UFFD_WP);
5934         }
5935
5936         /*
5937          * hugetlb_wp() requires page locks of pte_page(entry) and
5938          * pagecache_page, so here we need take the former one
5939          * when page != pagecache_page or !pagecache_page.
5940          */
5941         page = pte_page(entry);
5942         if (page != pagecache_page)
5943                 if (!trylock_page(page)) {
5944                         need_wait_lock = 1;
5945                         goto out_ptl;
5946                 }
5947
5948         get_page(page);
5949
5950         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5951                 if (!huge_pte_write(entry)) {
5952                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5953                                          pagecache_page, ptl);
5954                         goto out_put_page;
5955                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5956                         entry = huge_pte_mkdirty(entry);
5957                 }
5958         }
5959         entry = pte_mkyoung(entry);
5960         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5961                                                 flags & FAULT_FLAG_WRITE))
5962                 update_mmu_cache(vma, haddr, ptep);
5963 out_put_page:
5964         if (page != pagecache_page)
5965                 unlock_page(page);
5966         put_page(page);
5967 out_ptl:
5968         spin_unlock(ptl);
5969
5970         if (pagecache_page) {
5971                 unlock_page(pagecache_page);
5972                 put_page(pagecache_page);
5973         }
5974 out_mutex:
5975         hugetlb_vma_unlock_read(vma);
5976         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5977         /*
5978          * Generally it's safe to hold refcount during waiting page lock. But
5979          * here we just wait to defer the next page fault to avoid busy loop and
5980          * the page is not used after unlocked before returning from the current
5981          * page fault. So we are safe from accessing freed page, even if we wait
5982          * here without taking refcount.
5983          */
5984         if (need_wait_lock)
5985                 wait_on_page_locked(page);
5986         return ret;
5987 }
5988
5989 #ifdef CONFIG_USERFAULTFD
5990 /*
5991  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5992  * modifications for huge pages.
5993  */
5994 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5995                             pte_t *dst_pte,
5996                             struct vm_area_struct *dst_vma,
5997                             unsigned long dst_addr,
5998                             unsigned long src_addr,
5999                             enum mcopy_atomic_mode mode,
6000                             struct page **pagep,
6001                             bool wp_copy)
6002 {
6003         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6004         struct hstate *h = hstate_vma(dst_vma);
6005         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6006         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6007         unsigned long size;
6008         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6009         pte_t _dst_pte;
6010         spinlock_t *ptl;
6011         int ret = -ENOMEM;
6012         struct page *page;
6013         int writable;
6014         bool page_in_pagecache = false;
6015
6016         if (is_continue) {
6017                 ret = -EFAULT;
6018                 page = find_lock_page(mapping, idx);
6019                 if (!page)
6020                         goto out;
6021                 page_in_pagecache = true;
6022         } else if (!*pagep) {
6023                 /* If a page already exists, then it's UFFDIO_COPY for
6024                  * a non-missing case. Return -EEXIST.
6025                  */
6026                 if (vm_shared &&
6027                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6028                         ret = -EEXIST;
6029                         goto out;
6030                 }
6031
6032                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6033                 if (IS_ERR(page)) {
6034                         ret = -ENOMEM;
6035                         goto out;
6036                 }
6037
6038                 ret = copy_huge_page_from_user(page,
6039                                                 (const void __user *) src_addr,
6040                                                 pages_per_huge_page(h), false);
6041
6042                 /* fallback to copy_from_user outside mmap_lock */
6043                 if (unlikely(ret)) {
6044                         ret = -ENOENT;
6045                         /* Free the allocated page which may have
6046                          * consumed a reservation.
6047                          */
6048                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6049                         put_page(page);
6050
6051                         /* Allocate a temporary page to hold the copied
6052                          * contents.
6053                          */
6054                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6055                         if (!page) {
6056                                 ret = -ENOMEM;
6057                                 goto out;
6058                         }
6059                         *pagep = page;
6060                         /* Set the outparam pagep and return to the caller to
6061                          * copy the contents outside the lock. Don't free the
6062                          * page.
6063                          */
6064                         goto out;
6065                 }
6066         } else {
6067                 if (vm_shared &&
6068                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6069                         put_page(*pagep);
6070                         ret = -EEXIST;
6071                         *pagep = NULL;
6072                         goto out;
6073                 }
6074
6075                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6076                 if (IS_ERR(page)) {
6077                         put_page(*pagep);
6078                         ret = -ENOMEM;
6079                         *pagep = NULL;
6080                         goto out;
6081                 }
6082                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6083                                     pages_per_huge_page(h));
6084                 put_page(*pagep);
6085                 *pagep = NULL;
6086         }
6087
6088         /*
6089          * The memory barrier inside __SetPageUptodate makes sure that
6090          * preceding stores to the page contents become visible before
6091          * the set_pte_at() write.
6092          */
6093         __SetPageUptodate(page);
6094
6095         /* Add shared, newly allocated pages to the page cache. */
6096         if (vm_shared && !is_continue) {
6097                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6098                 ret = -EFAULT;
6099                 if (idx >= size)
6100                         goto out_release_nounlock;
6101
6102                 /*
6103                  * Serialization between remove_inode_hugepages() and
6104                  * hugetlb_add_to_page_cache() below happens through the
6105                  * hugetlb_fault_mutex_table that here must be hold by
6106                  * the caller.
6107                  */
6108                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6109                 if (ret)
6110                         goto out_release_nounlock;
6111                 page_in_pagecache = true;
6112         }
6113
6114         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6115
6116         ret = -EIO;
6117         if (PageHWPoison(page))
6118                 goto out_release_unlock;
6119
6120         /*
6121          * We allow to overwrite a pte marker: consider when both MISSING|WP
6122          * registered, we firstly wr-protect a none pte which has no page cache
6123          * page backing it, then access the page.
6124          */
6125         ret = -EEXIST;
6126         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6127                 goto out_release_unlock;
6128
6129         if (page_in_pagecache) {
6130                 page_dup_file_rmap(page, true);
6131         } else {
6132                 ClearHPageRestoreReserve(page);
6133                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6134         }
6135
6136         /*
6137          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6138          * with wp flag set, don't set pte write bit.
6139          */
6140         if (wp_copy || (is_continue && !vm_shared))
6141                 writable = 0;
6142         else
6143                 writable = dst_vma->vm_flags & VM_WRITE;
6144
6145         _dst_pte = make_huge_pte(dst_vma, page, writable);
6146         /*
6147          * Always mark UFFDIO_COPY page dirty; note that this may not be
6148          * extremely important for hugetlbfs for now since swapping is not
6149          * supported, but we should still be clear in that this page cannot be
6150          * thrown away at will, even if write bit not set.
6151          */
6152         _dst_pte = huge_pte_mkdirty(_dst_pte);
6153         _dst_pte = pte_mkyoung(_dst_pte);
6154
6155         if (wp_copy)
6156                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6157
6158         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6159
6160         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6161
6162         /* No need to invalidate - it was non-present before */
6163         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6164
6165         spin_unlock(ptl);
6166         if (!is_continue)
6167                 SetHPageMigratable(page);
6168         if (vm_shared || is_continue)
6169                 unlock_page(page);
6170         ret = 0;
6171 out:
6172         return ret;
6173 out_release_unlock:
6174         spin_unlock(ptl);
6175         if (vm_shared || is_continue)
6176                 unlock_page(page);
6177 out_release_nounlock:
6178         if (!page_in_pagecache)
6179                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6180         put_page(page);
6181         goto out;
6182 }
6183 #endif /* CONFIG_USERFAULTFD */
6184
6185 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6186                                  int refs, struct page **pages,
6187                                  struct vm_area_struct **vmas)
6188 {
6189         int nr;
6190
6191         for (nr = 0; nr < refs; nr++) {
6192                 if (likely(pages))
6193                         pages[nr] = nth_page(page, nr);
6194                 if (vmas)
6195                         vmas[nr] = vma;
6196         }
6197 }
6198
6199 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6200                                                bool *unshare)
6201 {
6202         pte_t pteval = huge_ptep_get(pte);
6203
6204         *unshare = false;
6205         if (is_swap_pte(pteval))
6206                 return true;
6207         if (huge_pte_write(pteval))
6208                 return false;
6209         if (flags & FOLL_WRITE)
6210                 return true;
6211         if (gup_must_unshare(flags, pte_page(pteval))) {
6212                 *unshare = true;
6213                 return true;
6214         }
6215         return false;
6216 }
6217
6218 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6219                          struct page **pages, struct vm_area_struct **vmas,
6220                          unsigned long *position, unsigned long *nr_pages,
6221                          long i, unsigned int flags, int *locked)
6222 {
6223         unsigned long pfn_offset;
6224         unsigned long vaddr = *position;
6225         unsigned long remainder = *nr_pages;
6226         struct hstate *h = hstate_vma(vma);
6227         int err = -EFAULT, refs;
6228
6229         while (vaddr < vma->vm_end && remainder) {
6230                 pte_t *pte;
6231                 spinlock_t *ptl = NULL;
6232                 bool unshare = false;
6233                 int absent;
6234                 struct page *page;
6235
6236                 /*
6237                  * If we have a pending SIGKILL, don't keep faulting pages and
6238                  * potentially allocating memory.
6239                  */
6240                 if (fatal_signal_pending(current)) {
6241                         remainder = 0;
6242                         break;
6243                 }
6244
6245                 /*
6246                  * Some archs (sparc64, sh*) have multiple pte_ts to
6247                  * each hugepage.  We have to make sure we get the
6248                  * first, for the page indexing below to work.
6249                  *
6250                  * Note that page table lock is not held when pte is null.
6251                  */
6252                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6253                                       huge_page_size(h));
6254                 if (pte)
6255                         ptl = huge_pte_lock(h, mm, pte);
6256                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6257
6258                 /*
6259                  * When coredumping, it suits get_dump_page if we just return
6260                  * an error where there's an empty slot with no huge pagecache
6261                  * to back it.  This way, we avoid allocating a hugepage, and
6262                  * the sparse dumpfile avoids allocating disk blocks, but its
6263                  * huge holes still show up with zeroes where they need to be.
6264                  */
6265                 if (absent && (flags & FOLL_DUMP) &&
6266                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6267                         if (pte)
6268                                 spin_unlock(ptl);
6269                         remainder = 0;
6270                         break;
6271                 }
6272
6273                 /*
6274                  * We need call hugetlb_fault for both hugepages under migration
6275                  * (in which case hugetlb_fault waits for the migration,) and
6276                  * hwpoisoned hugepages (in which case we need to prevent the
6277                  * caller from accessing to them.) In order to do this, we use
6278                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6279                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6280                  * both cases, and because we can't follow correct pages
6281                  * directly from any kind of swap entries.
6282                  */
6283                 if (absent ||
6284                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6285                         vm_fault_t ret;
6286                         unsigned int fault_flags = 0;
6287
6288                         if (pte)
6289                                 spin_unlock(ptl);
6290                         if (flags & FOLL_WRITE)
6291                                 fault_flags |= FAULT_FLAG_WRITE;
6292                         else if (unshare)
6293                                 fault_flags |= FAULT_FLAG_UNSHARE;
6294                         if (locked)
6295                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6296                                         FAULT_FLAG_KILLABLE;
6297                         if (flags & FOLL_NOWAIT)
6298                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6299                                         FAULT_FLAG_RETRY_NOWAIT;
6300                         if (flags & FOLL_TRIED) {
6301                                 /*
6302                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6303                                  * FAULT_FLAG_TRIED can co-exist
6304                                  */
6305                                 fault_flags |= FAULT_FLAG_TRIED;
6306                         }
6307                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6308                         if (ret & VM_FAULT_ERROR) {
6309                                 err = vm_fault_to_errno(ret, flags);
6310                                 remainder = 0;
6311                                 break;
6312                         }
6313                         if (ret & VM_FAULT_RETRY) {
6314                                 if (locked &&
6315                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6316                                         *locked = 0;
6317                                 *nr_pages = 0;
6318                                 /*
6319                                  * VM_FAULT_RETRY must not return an
6320                                  * error, it will return zero
6321                                  * instead.
6322                                  *
6323                                  * No need to update "position" as the
6324                                  * caller will not check it after
6325                                  * *nr_pages is set to 0.
6326                                  */
6327                                 return i;
6328                         }
6329                         continue;
6330                 }
6331
6332                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6333                 page = pte_page(huge_ptep_get(pte));
6334
6335                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6336                                !PageAnonExclusive(page), page);
6337
6338                 /*
6339                  * If subpage information not requested, update counters
6340                  * and skip the same_page loop below.
6341                  */
6342                 if (!pages && !vmas && !pfn_offset &&
6343                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6344                     (remainder >= pages_per_huge_page(h))) {
6345                         vaddr += huge_page_size(h);
6346                         remainder -= pages_per_huge_page(h);
6347                         i += pages_per_huge_page(h);
6348                         spin_unlock(ptl);
6349                         continue;
6350                 }
6351
6352                 /* vaddr may not be aligned to PAGE_SIZE */
6353                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6354                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6355
6356                 if (pages || vmas)
6357                         record_subpages_vmas(nth_page(page, pfn_offset),
6358                                              vma, refs,
6359                                              likely(pages) ? pages + i : NULL,
6360                                              vmas ? vmas + i : NULL);
6361
6362                 if (pages) {
6363                         /*
6364                          * try_grab_folio() should always succeed here,
6365                          * because: a) we hold the ptl lock, and b) we've just
6366                          * checked that the huge page is present in the page
6367                          * tables. If the huge page is present, then the tail
6368                          * pages must also be present. The ptl prevents the
6369                          * head page and tail pages from being rearranged in
6370                          * any way. So this page must be available at this
6371                          * point, unless the page refcount overflowed:
6372                          */
6373                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6374                                                          flags))) {
6375                                 spin_unlock(ptl);
6376                                 remainder = 0;
6377                                 err = -ENOMEM;
6378                                 break;
6379                         }
6380                 }
6381
6382                 vaddr += (refs << PAGE_SHIFT);
6383                 remainder -= refs;
6384                 i += refs;
6385
6386                 spin_unlock(ptl);
6387         }
6388         *nr_pages = remainder;
6389         /*
6390          * setting position is actually required only if remainder is
6391          * not zero but it's faster not to add a "if (remainder)"
6392          * branch.
6393          */
6394         *position = vaddr;
6395
6396         return i ? i : err;
6397 }
6398
6399 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6400                 unsigned long address, unsigned long end,
6401                 pgprot_t newprot, unsigned long cp_flags)
6402 {
6403         struct mm_struct *mm = vma->vm_mm;
6404         unsigned long start = address;
6405         pte_t *ptep;
6406         pte_t pte;
6407         struct hstate *h = hstate_vma(vma);
6408         unsigned long pages = 0, psize = huge_page_size(h);
6409         bool shared_pmd = false;
6410         struct mmu_notifier_range range;
6411         unsigned long last_addr_mask;
6412         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6413         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6414
6415         /*
6416          * In the case of shared PMDs, the area to flush could be beyond
6417          * start/end.  Set range.start/range.end to cover the maximum possible
6418          * range if PMD sharing is possible.
6419          */
6420         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6421                                 0, vma, mm, start, end);
6422         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6423
6424         BUG_ON(address >= end);
6425         flush_cache_range(vma, range.start, range.end);
6426
6427         mmu_notifier_invalidate_range_start(&range);
6428         hugetlb_vma_lock_write(vma);
6429         i_mmap_lock_write(vma->vm_file->f_mapping);
6430         last_addr_mask = hugetlb_mask_last_page(h);
6431         for (; address < end; address += psize) {
6432                 spinlock_t *ptl;
6433                 ptep = huge_pte_offset(mm, address, psize);
6434                 if (!ptep) {
6435                         address |= last_addr_mask;
6436                         continue;
6437                 }
6438                 ptl = huge_pte_lock(h, mm, ptep);
6439                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6440                         /*
6441                          * When uffd-wp is enabled on the vma, unshare
6442                          * shouldn't happen at all.  Warn about it if it
6443                          * happened due to some reason.
6444                          */
6445                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6446                         pages++;
6447                         spin_unlock(ptl);
6448                         shared_pmd = true;
6449                         address |= last_addr_mask;
6450                         continue;
6451                 }
6452                 pte = huge_ptep_get(ptep);
6453                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6454                         spin_unlock(ptl);
6455                         continue;
6456                 }
6457                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6458                         swp_entry_t entry = pte_to_swp_entry(pte);
6459                         struct page *page = pfn_swap_entry_to_page(entry);
6460
6461                         if (!is_readable_migration_entry(entry)) {
6462                                 pte_t newpte;
6463
6464                                 if (PageAnon(page))
6465                                         entry = make_readable_exclusive_migration_entry(
6466                                                                 swp_offset(entry));
6467                                 else
6468                                         entry = make_readable_migration_entry(
6469                                                                 swp_offset(entry));
6470                                 newpte = swp_entry_to_pte(entry);
6471                                 if (uffd_wp)
6472                                         newpte = pte_swp_mkuffd_wp(newpte);
6473                                 else if (uffd_wp_resolve)
6474                                         newpte = pte_swp_clear_uffd_wp(newpte);
6475                                 set_huge_pte_at(mm, address, ptep, newpte);
6476                                 pages++;
6477                         }
6478                         spin_unlock(ptl);
6479                         continue;
6480                 }
6481                 if (unlikely(pte_marker_uffd_wp(pte))) {
6482                         /*
6483                          * This is changing a non-present pte into a none pte,
6484                          * no need for huge_ptep_modify_prot_start/commit().
6485                          */
6486                         if (uffd_wp_resolve)
6487                                 huge_pte_clear(mm, address, ptep, psize);
6488                 }
6489                 if (!huge_pte_none(pte)) {
6490                         pte_t old_pte;
6491                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6492
6493                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6494                         pte = huge_pte_modify(old_pte, newprot);
6495                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6496                         if (uffd_wp)
6497                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6498                         else if (uffd_wp_resolve)
6499                                 pte = huge_pte_clear_uffd_wp(pte);
6500                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6501                         pages++;
6502                 } else {
6503                         /* None pte */
6504                         if (unlikely(uffd_wp))
6505                                 /* Safe to modify directly (none->non-present). */
6506                                 set_huge_pte_at(mm, address, ptep,
6507                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6508                 }
6509                 spin_unlock(ptl);
6510         }
6511         /*
6512          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6513          * may have cleared our pud entry and done put_page on the page table:
6514          * once we release i_mmap_rwsem, another task can do the final put_page
6515          * and that page table be reused and filled with junk.  If we actually
6516          * did unshare a page of pmds, flush the range corresponding to the pud.
6517          */
6518         if (shared_pmd)
6519                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6520         else
6521                 flush_hugetlb_tlb_range(vma, start, end);
6522         /*
6523          * No need to call mmu_notifier_invalidate_range() we are downgrading
6524          * page table protection not changing it to point to a new page.
6525          *
6526          * See Documentation/mm/mmu_notifier.rst
6527          */
6528         i_mmap_unlock_write(vma->vm_file->f_mapping);
6529         hugetlb_vma_unlock_write(vma);
6530         mmu_notifier_invalidate_range_end(&range);
6531
6532         return pages << h->order;
6533 }
6534
6535 /* Return true if reservation was successful, false otherwise.  */
6536 bool hugetlb_reserve_pages(struct inode *inode,
6537                                         long from, long to,
6538                                         struct vm_area_struct *vma,
6539                                         vm_flags_t vm_flags)
6540 {
6541         long chg, add = -1;
6542         struct hstate *h = hstate_inode(inode);
6543         struct hugepage_subpool *spool = subpool_inode(inode);
6544         struct resv_map *resv_map;
6545         struct hugetlb_cgroup *h_cg = NULL;
6546         long gbl_reserve, regions_needed = 0;
6547
6548         /* This should never happen */
6549         if (from > to) {
6550                 VM_WARN(1, "%s called with a negative range\n", __func__);
6551                 return false;
6552         }
6553
6554         /*
6555          * vma specific semaphore used for pmd sharing synchronization
6556          */
6557         hugetlb_vma_lock_alloc(vma);
6558
6559         /*
6560          * Only apply hugepage reservation if asked. At fault time, an
6561          * attempt will be made for VM_NORESERVE to allocate a page
6562          * without using reserves
6563          */
6564         if (vm_flags & VM_NORESERVE)
6565                 return true;
6566
6567         /*
6568          * Shared mappings base their reservation on the number of pages that
6569          * are already allocated on behalf of the file. Private mappings need
6570          * to reserve the full area even if read-only as mprotect() may be
6571          * called to make the mapping read-write. Assume !vma is a shm mapping
6572          */
6573         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6574                 /*
6575                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6576                  * called for inodes for which resv_maps were created (see
6577                  * hugetlbfs_get_inode).
6578                  */
6579                 resv_map = inode_resv_map(inode);
6580
6581                 chg = region_chg(resv_map, from, to, &regions_needed);
6582         } else {
6583                 /* Private mapping. */
6584                 resv_map = resv_map_alloc();
6585                 if (!resv_map)
6586                         goto out_err;
6587
6588                 chg = to - from;
6589
6590                 set_vma_resv_map(vma, resv_map);
6591                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6592         }
6593
6594         if (chg < 0)
6595                 goto out_err;
6596
6597         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6598                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6599                 goto out_err;
6600
6601         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6602                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6603                  * of the resv_map.
6604                  */
6605                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6606         }
6607
6608         /*
6609          * There must be enough pages in the subpool for the mapping. If
6610          * the subpool has a minimum size, there may be some global
6611          * reservations already in place (gbl_reserve).
6612          */
6613         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6614         if (gbl_reserve < 0)
6615                 goto out_uncharge_cgroup;
6616
6617         /*
6618          * Check enough hugepages are available for the reservation.
6619          * Hand the pages back to the subpool if there are not
6620          */
6621         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6622                 goto out_put_pages;
6623
6624         /*
6625          * Account for the reservations made. Shared mappings record regions
6626          * that have reservations as they are shared by multiple VMAs.
6627          * When the last VMA disappears, the region map says how much
6628          * the reservation was and the page cache tells how much of
6629          * the reservation was consumed. Private mappings are per-VMA and
6630          * only the consumed reservations are tracked. When the VMA
6631          * disappears, the original reservation is the VMA size and the
6632          * consumed reservations are stored in the map. Hence, nothing
6633          * else has to be done for private mappings here
6634          */
6635         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6636                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6637
6638                 if (unlikely(add < 0)) {
6639                         hugetlb_acct_memory(h, -gbl_reserve);
6640                         goto out_put_pages;
6641                 } else if (unlikely(chg > add)) {
6642                         /*
6643                          * pages in this range were added to the reserve
6644                          * map between region_chg and region_add.  This
6645                          * indicates a race with alloc_huge_page.  Adjust
6646                          * the subpool and reserve counts modified above
6647                          * based on the difference.
6648                          */
6649                         long rsv_adjust;
6650
6651                         /*
6652                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6653                          * reference to h_cg->css. See comment below for detail.
6654                          */
6655                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6656                                 hstate_index(h),
6657                                 (chg - add) * pages_per_huge_page(h), h_cg);
6658
6659                         rsv_adjust = hugepage_subpool_put_pages(spool,
6660                                                                 chg - add);
6661                         hugetlb_acct_memory(h, -rsv_adjust);
6662                 } else if (h_cg) {
6663                         /*
6664                          * The file_regions will hold their own reference to
6665                          * h_cg->css. So we should release the reference held
6666                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6667                          * done.
6668                          */
6669                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6670                 }
6671         }
6672         return true;
6673
6674 out_put_pages:
6675         /* put back original number of pages, chg */
6676         (void)hugepage_subpool_put_pages(spool, chg);
6677 out_uncharge_cgroup:
6678         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6679                                             chg * pages_per_huge_page(h), h_cg);
6680 out_err:
6681         hugetlb_vma_lock_free(vma);
6682         if (!vma || vma->vm_flags & VM_MAYSHARE)
6683                 /* Only call region_abort if the region_chg succeeded but the
6684                  * region_add failed or didn't run.
6685                  */
6686                 if (chg >= 0 && add < 0)
6687                         region_abort(resv_map, from, to, regions_needed);
6688         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6689                 kref_put(&resv_map->refs, resv_map_release);
6690         return false;
6691 }
6692
6693 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6694                                                                 long freed)
6695 {
6696         struct hstate *h = hstate_inode(inode);
6697         struct resv_map *resv_map = inode_resv_map(inode);
6698         long chg = 0;
6699         struct hugepage_subpool *spool = subpool_inode(inode);
6700         long gbl_reserve;
6701
6702         /*
6703          * Since this routine can be called in the evict inode path for all
6704          * hugetlbfs inodes, resv_map could be NULL.
6705          */
6706         if (resv_map) {
6707                 chg = region_del(resv_map, start, end);
6708                 /*
6709                  * region_del() can fail in the rare case where a region
6710                  * must be split and another region descriptor can not be
6711                  * allocated.  If end == LONG_MAX, it will not fail.
6712                  */
6713                 if (chg < 0)
6714                         return chg;
6715         }
6716
6717         spin_lock(&inode->i_lock);
6718         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6719         spin_unlock(&inode->i_lock);
6720
6721         /*
6722          * If the subpool has a minimum size, the number of global
6723          * reservations to be released may be adjusted.
6724          *
6725          * Note that !resv_map implies freed == 0. So (chg - freed)
6726          * won't go negative.
6727          */
6728         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6729         hugetlb_acct_memory(h, -gbl_reserve);
6730
6731         return 0;
6732 }
6733
6734 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6735 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6736                                 struct vm_area_struct *vma,
6737                                 unsigned long addr, pgoff_t idx)
6738 {
6739         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6740                                 svma->vm_start;
6741         unsigned long sbase = saddr & PUD_MASK;
6742         unsigned long s_end = sbase + PUD_SIZE;
6743
6744         /* Allow segments to share if only one is marked locked */
6745         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6746         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6747
6748         /*
6749          * match the virtual addresses, permission and the alignment of the
6750          * page table page.
6751          *
6752          * Also, vma_lock (vm_private_data) is required for sharing.
6753          */
6754         if (pmd_index(addr) != pmd_index(saddr) ||
6755             vm_flags != svm_flags ||
6756             !range_in_vma(svma, sbase, s_end) ||
6757             !svma->vm_private_data)
6758                 return 0;
6759
6760         return saddr;
6761 }
6762
6763 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6764 {
6765         unsigned long start = addr & PUD_MASK;
6766         unsigned long end = start + PUD_SIZE;
6767
6768 #ifdef CONFIG_USERFAULTFD
6769         if (uffd_disable_huge_pmd_share(vma))
6770                 return false;
6771 #endif
6772         /*
6773          * check on proper vm_flags and page table alignment
6774          */
6775         if (!(vma->vm_flags & VM_MAYSHARE))
6776                 return false;
6777         if (!vma->vm_private_data)      /* vma lock required for sharing */
6778                 return false;
6779         if (!range_in_vma(vma, start, end))
6780                 return false;
6781         return true;
6782 }
6783
6784 /*
6785  * Determine if start,end range within vma could be mapped by shared pmd.
6786  * If yes, adjust start and end to cover range associated with possible
6787  * shared pmd mappings.
6788  */
6789 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6790                                 unsigned long *start, unsigned long *end)
6791 {
6792         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6793                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6794
6795         /*
6796          * vma needs to span at least one aligned PUD size, and the range
6797          * must be at least partially within in.
6798          */
6799         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6800                 (*end <= v_start) || (*start >= v_end))
6801                 return;
6802
6803         /* Extend the range to be PUD aligned for a worst case scenario */
6804         if (*start > v_start)
6805                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6806
6807         if (*end < v_end)
6808                 *end = ALIGN(*end, PUD_SIZE);
6809 }
6810
6811 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6812 {
6813         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6814                 vma->vm_private_data;
6815 }
6816
6817 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6818 {
6819         if (__vma_shareable_flags_pmd(vma)) {
6820                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6821
6822                 down_read(&vma_lock->rw_sema);
6823         }
6824 }
6825
6826 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6827 {
6828         if (__vma_shareable_flags_pmd(vma)) {
6829                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6830
6831                 up_read(&vma_lock->rw_sema);
6832         }
6833 }
6834
6835 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6836 {
6837         if (__vma_shareable_flags_pmd(vma)) {
6838                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6839
6840                 down_write(&vma_lock->rw_sema);
6841         }
6842 }
6843
6844 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6845 {
6846         if (__vma_shareable_flags_pmd(vma)) {
6847                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6848
6849                 up_write(&vma_lock->rw_sema);
6850         }
6851 }
6852
6853 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6854 {
6855         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6856
6857         if (!__vma_shareable_flags_pmd(vma))
6858                 return 1;
6859
6860         return down_write_trylock(&vma_lock->rw_sema);
6861 }
6862
6863 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6864 {
6865         if (__vma_shareable_flags_pmd(vma)) {
6866                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6867
6868                 lockdep_assert_held(&vma_lock->rw_sema);
6869         }
6870 }
6871
6872 void hugetlb_vma_lock_release(struct kref *kref)
6873 {
6874         struct hugetlb_vma_lock *vma_lock = container_of(kref,
6875                         struct hugetlb_vma_lock, refs);
6876
6877         kfree(vma_lock);
6878 }
6879
6880 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6881 {
6882         struct vm_area_struct *vma = vma_lock->vma;
6883
6884         /*
6885          * vma_lock structure may or not be released as a result of put,
6886          * it certainly will no longer be attached to vma so clear pointer.
6887          * Semaphore synchronizes access to vma_lock->vma field.
6888          */
6889         vma_lock->vma = NULL;
6890         vma->vm_private_data = NULL;
6891         up_write(&vma_lock->rw_sema);
6892         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6893 }
6894
6895 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6896 {
6897         if (__vma_shareable_flags_pmd(vma)) {
6898                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6899
6900                 __hugetlb_vma_unlock_write_put(vma_lock);
6901         }
6902 }
6903
6904 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6905 {
6906         /*
6907          * Only present in sharable vmas.
6908          */
6909         if (!vma || !__vma_shareable_flags_pmd(vma))
6910                 return;
6911
6912         if (vma->vm_private_data) {
6913                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6914
6915                 down_write(&vma_lock->rw_sema);
6916                 __hugetlb_vma_unlock_write_put(vma_lock);
6917         }
6918 }
6919
6920 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6921 {
6922         struct hugetlb_vma_lock *vma_lock;
6923
6924         /* Only establish in (flags) sharable vmas */
6925         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6926                 return;
6927
6928         /* Should never get here with non-NULL vm_private_data */
6929         if (vma->vm_private_data)
6930                 return;
6931
6932         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6933         if (!vma_lock) {
6934                 /*
6935                  * If we can not allocate structure, then vma can not
6936                  * participate in pmd sharing.  This is only a possible
6937                  * performance enhancement and memory saving issue.
6938                  * However, the lock is also used to synchronize page
6939                  * faults with truncation.  If the lock is not present,
6940                  * unlikely races could leave pages in a file past i_size
6941                  * until the file is removed.  Warn in the unlikely case of
6942                  * allocation failure.
6943                  */
6944                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6945                 return;
6946         }
6947
6948         kref_init(&vma_lock->refs);
6949         init_rwsem(&vma_lock->rw_sema);
6950         vma_lock->vma = vma;
6951         vma->vm_private_data = vma_lock;
6952 }
6953
6954 /*
6955  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6956  * and returns the corresponding pte. While this is not necessary for the
6957  * !shared pmd case because we can allocate the pmd later as well, it makes the
6958  * code much cleaner. pmd allocation is essential for the shared case because
6959  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6960  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6961  * bad pmd for sharing.
6962  */
6963 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6964                       unsigned long addr, pud_t *pud)
6965 {
6966         struct address_space *mapping = vma->vm_file->f_mapping;
6967         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6968                         vma->vm_pgoff;
6969         struct vm_area_struct *svma;
6970         unsigned long saddr;
6971         pte_t *spte = NULL;
6972         pte_t *pte;
6973         spinlock_t *ptl;
6974
6975         i_mmap_lock_read(mapping);
6976         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6977                 if (svma == vma)
6978                         continue;
6979
6980                 saddr = page_table_shareable(svma, vma, addr, idx);
6981                 if (saddr) {
6982                         spte = huge_pte_offset(svma->vm_mm, saddr,
6983                                                vma_mmu_pagesize(svma));
6984                         if (spte) {
6985                                 get_page(virt_to_page(spte));
6986                                 break;
6987                         }
6988                 }
6989         }
6990
6991         if (!spte)
6992                 goto out;
6993
6994         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6995         if (pud_none(*pud)) {
6996                 pud_populate(mm, pud,
6997                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6998                 mm_inc_nr_pmds(mm);
6999         } else {
7000                 put_page(virt_to_page(spte));
7001         }
7002         spin_unlock(ptl);
7003 out:
7004         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7005         i_mmap_unlock_read(mapping);
7006         return pte;
7007 }
7008
7009 /*
7010  * unmap huge page backed by shared pte.
7011  *
7012  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7013  * indicated by page_count > 1, unmap is achieved by clearing pud and
7014  * decrementing the ref count. If count == 1, the pte page is not shared.
7015  *
7016  * Called with page table lock held.
7017  *
7018  * returns: 1 successfully unmapped a shared pte page
7019  *          0 the underlying pte page is not shared, or it is the last user
7020  */
7021 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7022                                         unsigned long addr, pte_t *ptep)
7023 {
7024         pgd_t *pgd = pgd_offset(mm, addr);
7025         p4d_t *p4d = p4d_offset(pgd, addr);
7026         pud_t *pud = pud_offset(p4d, addr);
7027
7028         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7029         hugetlb_vma_assert_locked(vma);
7030         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7031         if (page_count(virt_to_page(ptep)) == 1)
7032                 return 0;
7033
7034         pud_clear(pud);
7035         put_page(virt_to_page(ptep));
7036         mm_dec_nr_pmds(mm);
7037         return 1;
7038 }
7039
7040 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7041
7042 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7043 {
7044 }
7045
7046 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7047 {
7048 }
7049
7050 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7051 {
7052 }
7053
7054 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7055 {
7056 }
7057
7058 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7059 {
7060         return 1;
7061 }
7062
7063 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7064 {
7065 }
7066
7067 void hugetlb_vma_lock_release(struct kref *kref)
7068 {
7069 }
7070
7071 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7072 {
7073 }
7074
7075 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7076 {
7077 }
7078
7079 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7080 {
7081 }
7082
7083 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7084                       unsigned long addr, pud_t *pud)
7085 {
7086         return NULL;
7087 }
7088
7089 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7090                                 unsigned long addr, pte_t *ptep)
7091 {
7092         return 0;
7093 }
7094
7095 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7096                                 unsigned long *start, unsigned long *end)
7097 {
7098 }
7099
7100 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7101 {
7102         return false;
7103 }
7104 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7105
7106 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7107 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7108                         unsigned long addr, unsigned long sz)
7109 {
7110         pgd_t *pgd;
7111         p4d_t *p4d;
7112         pud_t *pud;
7113         pte_t *pte = NULL;
7114
7115         pgd = pgd_offset(mm, addr);
7116         p4d = p4d_alloc(mm, pgd, addr);
7117         if (!p4d)
7118                 return NULL;
7119         pud = pud_alloc(mm, p4d, addr);
7120         if (pud) {
7121                 if (sz == PUD_SIZE) {
7122                         pte = (pte_t *)pud;
7123                 } else {
7124                         BUG_ON(sz != PMD_SIZE);
7125                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7126                                 pte = huge_pmd_share(mm, vma, addr, pud);
7127                         else
7128                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7129                 }
7130         }
7131         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7132
7133         return pte;
7134 }
7135
7136 /*
7137  * huge_pte_offset() - Walk the page table to resolve the hugepage
7138  * entry at address @addr
7139  *
7140  * Return: Pointer to page table entry (PUD or PMD) for
7141  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7142  * size @sz doesn't match the hugepage size at this level of the page
7143  * table.
7144  */
7145 pte_t *huge_pte_offset(struct mm_struct *mm,
7146                        unsigned long addr, unsigned long sz)
7147 {
7148         pgd_t *pgd;
7149         p4d_t *p4d;
7150         pud_t *pud;
7151         pmd_t *pmd;
7152
7153         pgd = pgd_offset(mm, addr);
7154         if (!pgd_present(*pgd))
7155                 return NULL;
7156         p4d = p4d_offset(pgd, addr);
7157         if (!p4d_present(*p4d))
7158                 return NULL;
7159
7160         pud = pud_offset(p4d, addr);
7161         if (sz == PUD_SIZE)
7162                 /* must be pud huge, non-present or none */
7163                 return (pte_t *)pud;
7164         if (!pud_present(*pud))
7165                 return NULL;
7166         /* must have a valid entry and size to go further */
7167
7168         pmd = pmd_offset(pud, addr);
7169         /* must be pmd huge, non-present or none */
7170         return (pte_t *)pmd;
7171 }
7172
7173 /*
7174  * Return a mask that can be used to update an address to the last huge
7175  * page in a page table page mapping size.  Used to skip non-present
7176  * page table entries when linearly scanning address ranges.  Architectures
7177  * with unique huge page to page table relationships can define their own
7178  * version of this routine.
7179  */
7180 unsigned long hugetlb_mask_last_page(struct hstate *h)
7181 {
7182         unsigned long hp_size = huge_page_size(h);
7183
7184         if (hp_size == PUD_SIZE)
7185                 return P4D_SIZE - PUD_SIZE;
7186         else if (hp_size == PMD_SIZE)
7187                 return PUD_SIZE - PMD_SIZE;
7188         else
7189                 return 0UL;
7190 }
7191
7192 #else
7193
7194 /* See description above.  Architectures can provide their own version. */
7195 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7196 {
7197 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7198         if (huge_page_size(h) == PMD_SIZE)
7199                 return PUD_SIZE - PMD_SIZE;
7200 #endif
7201         return 0UL;
7202 }
7203
7204 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7205
7206 /*
7207  * These functions are overwritable if your architecture needs its own
7208  * behavior.
7209  */
7210 struct page * __weak
7211 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7212                               int write)
7213 {
7214         return ERR_PTR(-EINVAL);
7215 }
7216
7217 struct page * __weak
7218 follow_huge_pd(struct vm_area_struct *vma,
7219                unsigned long address, hugepd_t hpd, int flags, int pdshift)
7220 {
7221         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7222         return NULL;
7223 }
7224
7225 struct page * __weak
7226 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7227 {
7228         struct hstate *h = hstate_vma(vma);
7229         struct mm_struct *mm = vma->vm_mm;
7230         struct page *page = NULL;
7231         spinlock_t *ptl;
7232         pte_t *ptep, pte;
7233
7234         /*
7235          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7236          * follow_hugetlb_page().
7237          */
7238         if (WARN_ON_ONCE(flags & FOLL_PIN))
7239                 return NULL;
7240
7241 retry:
7242         ptep = huge_pte_offset(mm, address, huge_page_size(h));
7243         if (!ptep)
7244                 return NULL;
7245
7246         ptl = huge_pte_lock(h, mm, ptep);
7247         pte = huge_ptep_get(ptep);
7248         if (pte_present(pte)) {
7249                 page = pte_page(pte) +
7250                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7251                 /*
7252                  * try_grab_page() should always succeed here, because: a) we
7253                  * hold the pmd (ptl) lock, and b) we've just checked that the
7254                  * huge pmd (head) page is present in the page tables. The ptl
7255                  * prevents the head page and tail pages from being rearranged
7256                  * in any way. So this page must be available at this point,
7257                  * unless the page refcount overflowed:
7258                  */
7259                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7260                         page = NULL;
7261                         goto out;
7262                 }
7263         } else {
7264                 if (is_hugetlb_entry_migration(pte)) {
7265                         spin_unlock(ptl);
7266                         __migration_entry_wait_huge(ptep, ptl);
7267                         goto retry;
7268                 }
7269                 /*
7270                  * hwpoisoned entry is treated as no_page_table in
7271                  * follow_page_mask().
7272                  */
7273         }
7274 out:
7275         spin_unlock(ptl);
7276         return page;
7277 }
7278
7279 struct page * __weak
7280 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7281                 pud_t *pud, int flags)
7282 {
7283         struct page *page = NULL;
7284         spinlock_t *ptl;
7285         pte_t pte;
7286
7287         if (WARN_ON_ONCE(flags & FOLL_PIN))
7288                 return NULL;
7289
7290 retry:
7291         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7292         if (!pud_huge(*pud))
7293                 goto out;
7294         pte = huge_ptep_get((pte_t *)pud);
7295         if (pte_present(pte)) {
7296                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7297                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7298                         page = NULL;
7299                         goto out;
7300                 }
7301         } else {
7302                 if (is_hugetlb_entry_migration(pte)) {
7303                         spin_unlock(ptl);
7304                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7305                         goto retry;
7306                 }
7307                 /*
7308                  * hwpoisoned entry is treated as no_page_table in
7309                  * follow_page_mask().
7310                  */
7311         }
7312 out:
7313         spin_unlock(ptl);
7314         return page;
7315 }
7316
7317 struct page * __weak
7318 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7319 {
7320         if (flags & (FOLL_GET | FOLL_PIN))
7321                 return NULL;
7322
7323         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7324 }
7325
7326 int isolate_hugetlb(struct page *page, struct list_head *list)
7327 {
7328         int ret = 0;
7329
7330         spin_lock_irq(&hugetlb_lock);
7331         if (!PageHeadHuge(page) ||
7332             !HPageMigratable(page) ||
7333             !get_page_unless_zero(page)) {
7334                 ret = -EBUSY;
7335                 goto unlock;
7336         }
7337         ClearHPageMigratable(page);
7338         list_move_tail(&page->lru, list);
7339 unlock:
7340         spin_unlock_irq(&hugetlb_lock);
7341         return ret;
7342 }
7343
7344 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7345 {
7346         int ret = 0;
7347
7348         *hugetlb = false;
7349         spin_lock_irq(&hugetlb_lock);
7350         if (PageHeadHuge(page)) {
7351                 *hugetlb = true;
7352                 if (HPageFreed(page))
7353                         ret = 0;
7354                 else if (HPageMigratable(page))
7355                         ret = get_page_unless_zero(page);
7356                 else
7357                         ret = -EBUSY;
7358         }
7359         spin_unlock_irq(&hugetlb_lock);
7360         return ret;
7361 }
7362
7363 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7364 {
7365         int ret;
7366
7367         spin_lock_irq(&hugetlb_lock);
7368         ret = __get_huge_page_for_hwpoison(pfn, flags);
7369         spin_unlock_irq(&hugetlb_lock);
7370         return ret;
7371 }
7372
7373 void putback_active_hugepage(struct page *page)
7374 {
7375         spin_lock_irq(&hugetlb_lock);
7376         SetHPageMigratable(page);
7377         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7378         spin_unlock_irq(&hugetlb_lock);
7379         put_page(page);
7380 }
7381
7382 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7383 {
7384         struct hstate *h = page_hstate(oldpage);
7385
7386         hugetlb_cgroup_migrate(oldpage, newpage);
7387         set_page_owner_migrate_reason(newpage, reason);
7388
7389         /*
7390          * transfer temporary state of the new huge page. This is
7391          * reverse to other transitions because the newpage is going to
7392          * be final while the old one will be freed so it takes over
7393          * the temporary status.
7394          *
7395          * Also note that we have to transfer the per-node surplus state
7396          * here as well otherwise the global surplus count will not match
7397          * the per-node's.
7398          */
7399         if (HPageTemporary(newpage)) {
7400                 int old_nid = page_to_nid(oldpage);
7401                 int new_nid = page_to_nid(newpage);
7402
7403                 SetHPageTemporary(oldpage);
7404                 ClearHPageTemporary(newpage);
7405
7406                 /*
7407                  * There is no need to transfer the per-node surplus state
7408                  * when we do not cross the node.
7409                  */
7410                 if (new_nid == old_nid)
7411                         return;
7412                 spin_lock_irq(&hugetlb_lock);
7413                 if (h->surplus_huge_pages_node[old_nid]) {
7414                         h->surplus_huge_pages_node[old_nid]--;
7415                         h->surplus_huge_pages_node[new_nid]++;
7416                 }
7417                 spin_unlock_irq(&hugetlb_lock);
7418         }
7419 }
7420
7421 /*
7422  * This function will unconditionally remove all the shared pmd pgtable entries
7423  * within the specific vma for a hugetlbfs memory range.
7424  */
7425 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7426 {
7427         struct hstate *h = hstate_vma(vma);
7428         unsigned long sz = huge_page_size(h);
7429         struct mm_struct *mm = vma->vm_mm;
7430         struct mmu_notifier_range range;
7431         unsigned long address, start, end;
7432         spinlock_t *ptl;
7433         pte_t *ptep;
7434
7435         if (!(vma->vm_flags & VM_MAYSHARE))
7436                 return;
7437
7438         start = ALIGN(vma->vm_start, PUD_SIZE);
7439         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7440
7441         if (start >= end)
7442                 return;
7443
7444         flush_cache_range(vma, start, end);
7445         /*
7446          * No need to call adjust_range_if_pmd_sharing_possible(), because
7447          * we have already done the PUD_SIZE alignment.
7448          */
7449         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7450                                 start, end);
7451         mmu_notifier_invalidate_range_start(&range);
7452         hugetlb_vma_lock_write(vma);
7453         i_mmap_lock_write(vma->vm_file->f_mapping);
7454         for (address = start; address < end; address += PUD_SIZE) {
7455                 ptep = huge_pte_offset(mm, address, sz);
7456                 if (!ptep)
7457                         continue;
7458                 ptl = huge_pte_lock(h, mm, ptep);
7459                 huge_pmd_unshare(mm, vma, address, ptep);
7460                 spin_unlock(ptl);
7461         }
7462         flush_hugetlb_tlb_range(vma, start, end);
7463         i_mmap_unlock_write(vma->vm_file->f_mapping);
7464         hugetlb_vma_unlock_write(vma);
7465         /*
7466          * No need to call mmu_notifier_invalidate_range(), see
7467          * Documentation/mm/mmu_notifier.rst.
7468          */
7469         mmu_notifier_invalidate_range_end(&range);
7470 }
7471
7472 #ifdef CONFIG_CMA
7473 static bool cma_reserve_called __initdata;
7474
7475 static int __init cmdline_parse_hugetlb_cma(char *p)
7476 {
7477         int nid, count = 0;
7478         unsigned long tmp;
7479         char *s = p;
7480
7481         while (*s) {
7482                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7483                         break;
7484
7485                 if (s[count] == ':') {
7486                         if (tmp >= MAX_NUMNODES)
7487                                 break;
7488                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7489
7490                         s += count + 1;
7491                         tmp = memparse(s, &s);
7492                         hugetlb_cma_size_in_node[nid] = tmp;
7493                         hugetlb_cma_size += tmp;
7494
7495                         /*
7496                          * Skip the separator if have one, otherwise
7497                          * break the parsing.
7498                          */
7499                         if (*s == ',')
7500                                 s++;
7501                         else
7502                                 break;
7503                 } else {
7504                         hugetlb_cma_size = memparse(p, &p);
7505                         break;
7506                 }
7507         }
7508
7509         return 0;
7510 }
7511
7512 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7513
7514 void __init hugetlb_cma_reserve(int order)
7515 {
7516         unsigned long size, reserved, per_node;
7517         bool node_specific_cma_alloc = false;
7518         int nid;
7519
7520         cma_reserve_called = true;
7521
7522         if (!hugetlb_cma_size)
7523                 return;
7524
7525         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7526                 if (hugetlb_cma_size_in_node[nid] == 0)
7527                         continue;
7528
7529                 if (!node_online(nid)) {
7530                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7531                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7532                         hugetlb_cma_size_in_node[nid] = 0;
7533                         continue;
7534                 }
7535
7536                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7537                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7538                                 nid, (PAGE_SIZE << order) / SZ_1M);
7539                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7540                         hugetlb_cma_size_in_node[nid] = 0;
7541                 } else {
7542                         node_specific_cma_alloc = true;
7543                 }
7544         }
7545
7546         /* Validate the CMA size again in case some invalid nodes specified. */
7547         if (!hugetlb_cma_size)
7548                 return;
7549
7550         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7551                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7552                         (PAGE_SIZE << order) / SZ_1M);
7553                 hugetlb_cma_size = 0;
7554                 return;
7555         }
7556
7557         if (!node_specific_cma_alloc) {
7558                 /*
7559                  * If 3 GB area is requested on a machine with 4 numa nodes,
7560                  * let's allocate 1 GB on first three nodes and ignore the last one.
7561                  */
7562                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7563                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7564                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7565         }
7566
7567         reserved = 0;
7568         for_each_online_node(nid) {
7569                 int res;
7570                 char name[CMA_MAX_NAME];
7571
7572                 if (node_specific_cma_alloc) {
7573                         if (hugetlb_cma_size_in_node[nid] == 0)
7574                                 continue;
7575
7576                         size = hugetlb_cma_size_in_node[nid];
7577                 } else {
7578                         size = min(per_node, hugetlb_cma_size - reserved);
7579                 }
7580
7581                 size = round_up(size, PAGE_SIZE << order);
7582
7583                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7584                 /*
7585                  * Note that 'order per bit' is based on smallest size that
7586                  * may be returned to CMA allocator in the case of
7587                  * huge page demotion.
7588                  */
7589                 res = cma_declare_contiguous_nid(0, size, 0,
7590                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7591                                                  0, false, name,
7592                                                  &hugetlb_cma[nid], nid);
7593                 if (res) {
7594                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7595                                 res, nid);
7596                         continue;
7597                 }
7598
7599                 reserved += size;
7600                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7601                         size / SZ_1M, nid);
7602
7603                 if (reserved >= hugetlb_cma_size)
7604                         break;
7605         }
7606
7607         if (!reserved)
7608                 /*
7609                  * hugetlb_cma_size is used to determine if allocations from
7610                  * cma are possible.  Set to zero if no cma regions are set up.
7611                  */
7612                 hugetlb_cma_size = 0;
7613 }
7614
7615 static void __init hugetlb_cma_check(void)
7616 {
7617         if (!hugetlb_cma_size || cma_reserve_called)
7618                 return;
7619
7620         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7621 }
7622
7623 #endif /* CONFIG_CMA */