HID: lenovo: Add middleclick_workaround sysfs knob for cptkbd
[sfrench/cifs-2.6.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68 static struct shrinker *deferred_split_shrinker;
69 static unsigned long deferred_split_count(struct shrinker *shrink,
70                                           struct shrink_control *sc);
71 static unsigned long deferred_split_scan(struct shrinker *shrink,
72                                          struct shrink_control *sc);
73
74 static atomic_t huge_zero_refcount;
75 struct page *huge_zero_page __read_mostly;
76 unsigned long huge_zero_pfn __read_mostly = ~0UL;
77 unsigned long huge_anon_orders_always __read_mostly;
78 unsigned long huge_anon_orders_madvise __read_mostly;
79 unsigned long huge_anon_orders_inherit __read_mostly;
80
81 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
82                                          unsigned long vm_flags, bool smaps,
83                                          bool in_pf, bool enforce_sysfs,
84                                          unsigned long orders)
85 {
86         /* Check the intersection of requested and supported orders. */
87         orders &= vma_is_anonymous(vma) ?
88                         THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
89         if (!orders)
90                 return 0;
91
92         if (!vma->vm_mm)                /* vdso */
93                 return 0;
94
95         /*
96          * Explicitly disabled through madvise or prctl, or some
97          * architectures may disable THP for some mappings, for
98          * example, s390 kvm.
99          * */
100         if ((vm_flags & VM_NOHUGEPAGE) ||
101             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
102                 return 0;
103         /*
104          * If the hardware/firmware marked hugepage support disabled.
105          */
106         if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
107                 return 0;
108
109         /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
110         if (vma_is_dax(vma))
111                 return in_pf ? orders : 0;
112
113         /*
114          * khugepaged special VMA and hugetlb VMA.
115          * Must be checked after dax since some dax mappings may have
116          * VM_MIXEDMAP set.
117          */
118         if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
119                 return 0;
120
121         /*
122          * Check alignment for file vma and size for both file and anon vma by
123          * filtering out the unsuitable orders.
124          *
125          * Skip the check for page fault. Huge fault does the check in fault
126          * handlers.
127          */
128         if (!in_pf) {
129                 int order = highest_order(orders);
130                 unsigned long addr;
131
132                 while (orders) {
133                         addr = vma->vm_end - (PAGE_SIZE << order);
134                         if (thp_vma_suitable_order(vma, addr, order))
135                                 break;
136                         order = next_order(&orders, order);
137                 }
138
139                 if (!orders)
140                         return 0;
141         }
142
143         /*
144          * Enabled via shmem mount options or sysfs settings.
145          * Must be done before hugepage flags check since shmem has its
146          * own flags.
147          */
148         if (!in_pf && shmem_file(vma->vm_file))
149                 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
150                                      !enforce_sysfs, vma->vm_mm, vm_flags)
151                         ? orders : 0;
152
153         if (!vma_is_anonymous(vma)) {
154                 /*
155                  * Enforce sysfs THP requirements as necessary. Anonymous vmas
156                  * were already handled in thp_vma_allowable_orders().
157                  */
158                 if (enforce_sysfs &&
159                     (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
160                                                     !hugepage_global_always())))
161                         return 0;
162
163                 /*
164                  * Trust that ->huge_fault() handlers know what they are doing
165                  * in fault path.
166                  */
167                 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
168                         return orders;
169                 /* Only regular file is valid in collapse path */
170                 if (((!in_pf || smaps)) && file_thp_enabled(vma))
171                         return orders;
172                 return 0;
173         }
174
175         if (vma_is_temporary_stack(vma))
176                 return 0;
177
178         /*
179          * THPeligible bit of smaps should show 1 for proper VMAs even
180          * though anon_vma is not initialized yet.
181          *
182          * Allow page fault since anon_vma may be not initialized until
183          * the first page fault.
184          */
185         if (!vma->anon_vma)
186                 return (smaps || in_pf) ? orders : 0;
187
188         return orders;
189 }
190
191 static bool get_huge_zero_page(void)
192 {
193         struct page *zero_page;
194 retry:
195         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
196                 return true;
197
198         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
199                         HPAGE_PMD_ORDER);
200         if (!zero_page) {
201                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
202                 return false;
203         }
204         preempt_disable();
205         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
206                 preempt_enable();
207                 __free_pages(zero_page, compound_order(zero_page));
208                 goto retry;
209         }
210         WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
211
212         /* We take additional reference here. It will be put back by shrinker */
213         atomic_set(&huge_zero_refcount, 2);
214         preempt_enable();
215         count_vm_event(THP_ZERO_PAGE_ALLOC);
216         return true;
217 }
218
219 static void put_huge_zero_page(void)
220 {
221         /*
222          * Counter should never go to zero here. Only shrinker can put
223          * last reference.
224          */
225         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
226 }
227
228 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
229 {
230         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
231                 return READ_ONCE(huge_zero_page);
232
233         if (!get_huge_zero_page())
234                 return NULL;
235
236         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
237                 put_huge_zero_page();
238
239         return READ_ONCE(huge_zero_page);
240 }
241
242 void mm_put_huge_zero_page(struct mm_struct *mm)
243 {
244         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
245                 put_huge_zero_page();
246 }
247
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249                                         struct shrink_control *sc)
250 {
251         /* we can free zero page only if last reference remains */
252         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256                                        struct shrink_control *sc)
257 {
258         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259                 struct page *zero_page = xchg(&huge_zero_page, NULL);
260                 BUG_ON(zero_page == NULL);
261                 WRITE_ONCE(huge_zero_pfn, ~0UL);
262                 __free_pages(zero_page, compound_order(zero_page));
263                 return HPAGE_PMD_NR;
264         }
265
266         return 0;
267 }
268
269 static struct shrinker *huge_zero_page_shrinker;
270
271 #ifdef CONFIG_SYSFS
272 static ssize_t enabled_show(struct kobject *kobj,
273                             struct kobj_attribute *attr, char *buf)
274 {
275         const char *output;
276
277         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
278                 output = "[always] madvise never";
279         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
280                           &transparent_hugepage_flags))
281                 output = "always [madvise] never";
282         else
283                 output = "always madvise [never]";
284
285         return sysfs_emit(buf, "%s\n", output);
286 }
287
288 static ssize_t enabled_store(struct kobject *kobj,
289                              struct kobj_attribute *attr,
290                              const char *buf, size_t count)
291 {
292         ssize_t ret = count;
293
294         if (sysfs_streq(buf, "always")) {
295                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
296                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
297         } else if (sysfs_streq(buf, "madvise")) {
298                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
299                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
300         } else if (sysfs_streq(buf, "never")) {
301                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
302                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
303         } else
304                 ret = -EINVAL;
305
306         if (ret > 0) {
307                 int err = start_stop_khugepaged();
308                 if (err)
309                         ret = err;
310         }
311         return ret;
312 }
313
314 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
315
316 ssize_t single_hugepage_flag_show(struct kobject *kobj,
317                                   struct kobj_attribute *attr, char *buf,
318                                   enum transparent_hugepage_flag flag)
319 {
320         return sysfs_emit(buf, "%d\n",
321                           !!test_bit(flag, &transparent_hugepage_flags));
322 }
323
324 ssize_t single_hugepage_flag_store(struct kobject *kobj,
325                                  struct kobj_attribute *attr,
326                                  const char *buf, size_t count,
327                                  enum transparent_hugepage_flag flag)
328 {
329         unsigned long value;
330         int ret;
331
332         ret = kstrtoul(buf, 10, &value);
333         if (ret < 0)
334                 return ret;
335         if (value > 1)
336                 return -EINVAL;
337
338         if (value)
339                 set_bit(flag, &transparent_hugepage_flags);
340         else
341                 clear_bit(flag, &transparent_hugepage_flags);
342
343         return count;
344 }
345
346 static ssize_t defrag_show(struct kobject *kobj,
347                            struct kobj_attribute *attr, char *buf)
348 {
349         const char *output;
350
351         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
352                      &transparent_hugepage_flags))
353                 output = "[always] defer defer+madvise madvise never";
354         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
355                           &transparent_hugepage_flags))
356                 output = "always [defer] defer+madvise madvise never";
357         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
358                           &transparent_hugepage_flags))
359                 output = "always defer [defer+madvise] madvise never";
360         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
361                           &transparent_hugepage_flags))
362                 output = "always defer defer+madvise [madvise] never";
363         else
364                 output = "always defer defer+madvise madvise [never]";
365
366         return sysfs_emit(buf, "%s\n", output);
367 }
368
369 static ssize_t defrag_store(struct kobject *kobj,
370                             struct kobj_attribute *attr,
371                             const char *buf, size_t count)
372 {
373         if (sysfs_streq(buf, "always")) {
374                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
375                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
376                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
377                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
378         } else if (sysfs_streq(buf, "defer+madvise")) {
379                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
380                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
381                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
382                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
383         } else if (sysfs_streq(buf, "defer")) {
384                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
385                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
386                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
387                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
388         } else if (sysfs_streq(buf, "madvise")) {
389                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
390                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
391                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
392                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
393         } else if (sysfs_streq(buf, "never")) {
394                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
395                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
397                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
398         } else
399                 return -EINVAL;
400
401         return count;
402 }
403 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
404
405 static ssize_t use_zero_page_show(struct kobject *kobj,
406                                   struct kobj_attribute *attr, char *buf)
407 {
408         return single_hugepage_flag_show(kobj, attr, buf,
409                                          TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410 }
411 static ssize_t use_zero_page_store(struct kobject *kobj,
412                 struct kobj_attribute *attr, const char *buf, size_t count)
413 {
414         return single_hugepage_flag_store(kobj, attr, buf, count,
415                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
416 }
417 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
418
419 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
420                                    struct kobj_attribute *attr, char *buf)
421 {
422         return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
423 }
424 static struct kobj_attribute hpage_pmd_size_attr =
425         __ATTR_RO(hpage_pmd_size);
426
427 static struct attribute *hugepage_attr[] = {
428         &enabled_attr.attr,
429         &defrag_attr.attr,
430         &use_zero_page_attr.attr,
431         &hpage_pmd_size_attr.attr,
432 #ifdef CONFIG_SHMEM
433         &shmem_enabled_attr.attr,
434 #endif
435         NULL,
436 };
437
438 static const struct attribute_group hugepage_attr_group = {
439         .attrs = hugepage_attr,
440 };
441
442 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
443 static void thpsize_release(struct kobject *kobj);
444 static DEFINE_SPINLOCK(huge_anon_orders_lock);
445 static LIST_HEAD(thpsize_list);
446
447 struct thpsize {
448         struct kobject kobj;
449         struct list_head node;
450         int order;
451 };
452
453 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
454
455 static ssize_t thpsize_enabled_show(struct kobject *kobj,
456                                     struct kobj_attribute *attr, char *buf)
457 {
458         int order = to_thpsize(kobj)->order;
459         const char *output;
460
461         if (test_bit(order, &huge_anon_orders_always))
462                 output = "[always] inherit madvise never";
463         else if (test_bit(order, &huge_anon_orders_inherit))
464                 output = "always [inherit] madvise never";
465         else if (test_bit(order, &huge_anon_orders_madvise))
466                 output = "always inherit [madvise] never";
467         else
468                 output = "always inherit madvise [never]";
469
470         return sysfs_emit(buf, "%s\n", output);
471 }
472
473 static ssize_t thpsize_enabled_store(struct kobject *kobj,
474                                      struct kobj_attribute *attr,
475                                      const char *buf, size_t count)
476 {
477         int order = to_thpsize(kobj)->order;
478         ssize_t ret = count;
479
480         if (sysfs_streq(buf, "always")) {
481                 spin_lock(&huge_anon_orders_lock);
482                 clear_bit(order, &huge_anon_orders_inherit);
483                 clear_bit(order, &huge_anon_orders_madvise);
484                 set_bit(order, &huge_anon_orders_always);
485                 spin_unlock(&huge_anon_orders_lock);
486         } else if (sysfs_streq(buf, "inherit")) {
487                 spin_lock(&huge_anon_orders_lock);
488                 clear_bit(order, &huge_anon_orders_always);
489                 clear_bit(order, &huge_anon_orders_madvise);
490                 set_bit(order, &huge_anon_orders_inherit);
491                 spin_unlock(&huge_anon_orders_lock);
492         } else if (sysfs_streq(buf, "madvise")) {
493                 spin_lock(&huge_anon_orders_lock);
494                 clear_bit(order, &huge_anon_orders_always);
495                 clear_bit(order, &huge_anon_orders_inherit);
496                 set_bit(order, &huge_anon_orders_madvise);
497                 spin_unlock(&huge_anon_orders_lock);
498         } else if (sysfs_streq(buf, "never")) {
499                 spin_lock(&huge_anon_orders_lock);
500                 clear_bit(order, &huge_anon_orders_always);
501                 clear_bit(order, &huge_anon_orders_inherit);
502                 clear_bit(order, &huge_anon_orders_madvise);
503                 spin_unlock(&huge_anon_orders_lock);
504         } else
505                 ret = -EINVAL;
506
507         return ret;
508 }
509
510 static struct kobj_attribute thpsize_enabled_attr =
511         __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
512
513 static struct attribute *thpsize_attrs[] = {
514         &thpsize_enabled_attr.attr,
515         NULL,
516 };
517
518 static const struct attribute_group thpsize_attr_group = {
519         .attrs = thpsize_attrs,
520 };
521
522 static const struct kobj_type thpsize_ktype = {
523         .release = &thpsize_release,
524         .sysfs_ops = &kobj_sysfs_ops,
525 };
526
527 static struct thpsize *thpsize_create(int order, struct kobject *parent)
528 {
529         unsigned long size = (PAGE_SIZE << order) / SZ_1K;
530         struct thpsize *thpsize;
531         int ret;
532
533         thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
534         if (!thpsize)
535                 return ERR_PTR(-ENOMEM);
536
537         ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
538                                    "hugepages-%lukB", size);
539         if (ret) {
540                 kfree(thpsize);
541                 return ERR_PTR(ret);
542         }
543
544         ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
545         if (ret) {
546                 kobject_put(&thpsize->kobj);
547                 return ERR_PTR(ret);
548         }
549
550         thpsize->order = order;
551         return thpsize;
552 }
553
554 static void thpsize_release(struct kobject *kobj)
555 {
556         kfree(to_thpsize(kobj));
557 }
558
559 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
560 {
561         int err;
562         struct thpsize *thpsize;
563         unsigned long orders;
564         int order;
565
566         /*
567          * Default to setting PMD-sized THP to inherit the global setting and
568          * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
569          * constant so we have to do this here.
570          */
571         huge_anon_orders_inherit = BIT(PMD_ORDER);
572
573         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
574         if (unlikely(!*hugepage_kobj)) {
575                 pr_err("failed to create transparent hugepage kobject\n");
576                 return -ENOMEM;
577         }
578
579         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
580         if (err) {
581                 pr_err("failed to register transparent hugepage group\n");
582                 goto delete_obj;
583         }
584
585         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
586         if (err) {
587                 pr_err("failed to register transparent hugepage group\n");
588                 goto remove_hp_group;
589         }
590
591         orders = THP_ORDERS_ALL_ANON;
592         order = highest_order(orders);
593         while (orders) {
594                 thpsize = thpsize_create(order, *hugepage_kobj);
595                 if (IS_ERR(thpsize)) {
596                         pr_err("failed to create thpsize for order %d\n", order);
597                         err = PTR_ERR(thpsize);
598                         goto remove_all;
599                 }
600                 list_add(&thpsize->node, &thpsize_list);
601                 order = next_order(&orders, order);
602         }
603
604         return 0;
605
606 remove_all:
607         hugepage_exit_sysfs(*hugepage_kobj);
608         return err;
609 remove_hp_group:
610         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
611 delete_obj:
612         kobject_put(*hugepage_kobj);
613         return err;
614 }
615
616 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
617 {
618         struct thpsize *thpsize, *tmp;
619
620         list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
621                 list_del(&thpsize->node);
622                 kobject_put(&thpsize->kobj);
623         }
624
625         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
626         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
627         kobject_put(hugepage_kobj);
628 }
629 #else
630 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
631 {
632         return 0;
633 }
634
635 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
636 {
637 }
638 #endif /* CONFIG_SYSFS */
639
640 static int __init thp_shrinker_init(void)
641 {
642         huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
643         if (!huge_zero_page_shrinker)
644                 return -ENOMEM;
645
646         deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
647                                                  SHRINKER_MEMCG_AWARE |
648                                                  SHRINKER_NONSLAB,
649                                                  "thp-deferred_split");
650         if (!deferred_split_shrinker) {
651                 shrinker_free(huge_zero_page_shrinker);
652                 return -ENOMEM;
653         }
654
655         huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
656         huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
657         shrinker_register(huge_zero_page_shrinker);
658
659         deferred_split_shrinker->count_objects = deferred_split_count;
660         deferred_split_shrinker->scan_objects = deferred_split_scan;
661         shrinker_register(deferred_split_shrinker);
662
663         return 0;
664 }
665
666 static void __init thp_shrinker_exit(void)
667 {
668         shrinker_free(huge_zero_page_shrinker);
669         shrinker_free(deferred_split_shrinker);
670 }
671
672 static int __init hugepage_init(void)
673 {
674         int err;
675         struct kobject *hugepage_kobj;
676
677         if (!has_transparent_hugepage()) {
678                 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
679                 return -EINVAL;
680         }
681
682         /*
683          * hugepages can't be allocated by the buddy allocator
684          */
685         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
686         /*
687          * we use page->mapping and page->index in second tail page
688          * as list_head: assuming THP order >= 2
689          */
690         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
691
692         err = hugepage_init_sysfs(&hugepage_kobj);
693         if (err)
694                 goto err_sysfs;
695
696         err = khugepaged_init();
697         if (err)
698                 goto err_slab;
699
700         err = thp_shrinker_init();
701         if (err)
702                 goto err_shrinker;
703
704         /*
705          * By default disable transparent hugepages on smaller systems,
706          * where the extra memory used could hurt more than TLB overhead
707          * is likely to save.  The admin can still enable it through /sys.
708          */
709         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
710                 transparent_hugepage_flags = 0;
711                 return 0;
712         }
713
714         err = start_stop_khugepaged();
715         if (err)
716                 goto err_khugepaged;
717
718         return 0;
719 err_khugepaged:
720         thp_shrinker_exit();
721 err_shrinker:
722         khugepaged_destroy();
723 err_slab:
724         hugepage_exit_sysfs(hugepage_kobj);
725 err_sysfs:
726         return err;
727 }
728 subsys_initcall(hugepage_init);
729
730 static int __init setup_transparent_hugepage(char *str)
731 {
732         int ret = 0;
733         if (!str)
734                 goto out;
735         if (!strcmp(str, "always")) {
736                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
737                         &transparent_hugepage_flags);
738                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739                           &transparent_hugepage_flags);
740                 ret = 1;
741         } else if (!strcmp(str, "madvise")) {
742                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
743                           &transparent_hugepage_flags);
744                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
745                         &transparent_hugepage_flags);
746                 ret = 1;
747         } else if (!strcmp(str, "never")) {
748                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
749                           &transparent_hugepage_flags);
750                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
751                           &transparent_hugepage_flags);
752                 ret = 1;
753         }
754 out:
755         if (!ret)
756                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
757         return ret;
758 }
759 __setup("transparent_hugepage=", setup_transparent_hugepage);
760
761 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
762 {
763         if (likely(vma->vm_flags & VM_WRITE))
764                 pmd = pmd_mkwrite(pmd, vma);
765         return pmd;
766 }
767
768 #ifdef CONFIG_MEMCG
769 static inline
770 struct deferred_split *get_deferred_split_queue(struct folio *folio)
771 {
772         struct mem_cgroup *memcg = folio_memcg(folio);
773         struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
774
775         if (memcg)
776                 return &memcg->deferred_split_queue;
777         else
778                 return &pgdat->deferred_split_queue;
779 }
780 #else
781 static inline
782 struct deferred_split *get_deferred_split_queue(struct folio *folio)
783 {
784         struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
785
786         return &pgdat->deferred_split_queue;
787 }
788 #endif
789
790 void folio_prep_large_rmappable(struct folio *folio)
791 {
792         VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
793         INIT_LIST_HEAD(&folio->_deferred_list);
794         folio_set_large_rmappable(folio);
795 }
796
797 static inline bool is_transparent_hugepage(struct folio *folio)
798 {
799         if (!folio_test_large(folio))
800                 return false;
801
802         return is_huge_zero_page(&folio->page) ||
803                 folio_test_large_rmappable(folio);
804 }
805
806 static unsigned long __thp_get_unmapped_area(struct file *filp,
807                 unsigned long addr, unsigned long len,
808                 loff_t off, unsigned long flags, unsigned long size)
809 {
810         loff_t off_end = off + len;
811         loff_t off_align = round_up(off, size);
812         unsigned long len_pad, ret;
813
814         if (off_end <= off_align || (off_end - off_align) < size)
815                 return 0;
816
817         len_pad = len + size;
818         if (len_pad < len || (off + len_pad) < off)
819                 return 0;
820
821         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
822                                               off >> PAGE_SHIFT, flags);
823
824         /*
825          * The failure might be due to length padding. The caller will retry
826          * without the padding.
827          */
828         if (IS_ERR_VALUE(ret))
829                 return 0;
830
831         /*
832          * Do not try to align to THP boundary if allocation at the address
833          * hint succeeds.
834          */
835         if (ret == addr)
836                 return addr;
837
838         ret += (off - ret) & (size - 1);
839         return ret;
840 }
841
842 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
843                 unsigned long len, unsigned long pgoff, unsigned long flags)
844 {
845         unsigned long ret;
846         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
847
848         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
849         if (ret)
850                 return ret;
851
852         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
853 }
854 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
855
856 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
857                         struct page *page, gfp_t gfp)
858 {
859         struct vm_area_struct *vma = vmf->vma;
860         struct folio *folio = page_folio(page);
861         pgtable_t pgtable;
862         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
863         vm_fault_t ret = 0;
864
865         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
866
867         if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
868                 folio_put(folio);
869                 count_vm_event(THP_FAULT_FALLBACK);
870                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
871                 return VM_FAULT_FALLBACK;
872         }
873         folio_throttle_swaprate(folio, gfp);
874
875         pgtable = pte_alloc_one(vma->vm_mm);
876         if (unlikely(!pgtable)) {
877                 ret = VM_FAULT_OOM;
878                 goto release;
879         }
880
881         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
882         /*
883          * The memory barrier inside __folio_mark_uptodate makes sure that
884          * clear_huge_page writes become visible before the set_pmd_at()
885          * write.
886          */
887         __folio_mark_uptodate(folio);
888
889         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
890         if (unlikely(!pmd_none(*vmf->pmd))) {
891                 goto unlock_release;
892         } else {
893                 pmd_t entry;
894
895                 ret = check_stable_address_space(vma->vm_mm);
896                 if (ret)
897                         goto unlock_release;
898
899                 /* Deliver the page fault to userland */
900                 if (userfaultfd_missing(vma)) {
901                         spin_unlock(vmf->ptl);
902                         folio_put(folio);
903                         pte_free(vma->vm_mm, pgtable);
904                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
905                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
906                         return ret;
907                 }
908
909                 entry = mk_huge_pmd(page, vma->vm_page_prot);
910                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
911                 folio_add_new_anon_rmap(folio, vma, haddr);
912                 folio_add_lru_vma(folio, vma);
913                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
914                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
915                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
916                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
917                 mm_inc_nr_ptes(vma->vm_mm);
918                 spin_unlock(vmf->ptl);
919                 count_vm_event(THP_FAULT_ALLOC);
920                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
921         }
922
923         return 0;
924 unlock_release:
925         spin_unlock(vmf->ptl);
926 release:
927         if (pgtable)
928                 pte_free(vma->vm_mm, pgtable);
929         folio_put(folio);
930         return ret;
931
932 }
933
934 /*
935  * always: directly stall for all thp allocations
936  * defer: wake kswapd and fail if not immediately available
937  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
938  *                fail if not immediately available
939  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
940  *          available
941  * never: never stall for any thp allocation
942  */
943 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
944 {
945         const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
946
947         /* Always do synchronous compaction */
948         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
949                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
950
951         /* Kick kcompactd and fail quickly */
952         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
953                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
954
955         /* Synchronous compaction if madvised, otherwise kick kcompactd */
956         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
957                 return GFP_TRANSHUGE_LIGHT |
958                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
959                                         __GFP_KSWAPD_RECLAIM);
960
961         /* Only do synchronous compaction if madvised */
962         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
963                 return GFP_TRANSHUGE_LIGHT |
964                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
965
966         return GFP_TRANSHUGE_LIGHT;
967 }
968
969 /* Caller must hold page table lock. */
970 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
971                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
972                 struct page *zero_page)
973 {
974         pmd_t entry;
975         if (!pmd_none(*pmd))
976                 return;
977         entry = mk_pmd(zero_page, vma->vm_page_prot);
978         entry = pmd_mkhuge(entry);
979         pgtable_trans_huge_deposit(mm, pmd, pgtable);
980         set_pmd_at(mm, haddr, pmd, entry);
981         mm_inc_nr_ptes(mm);
982 }
983
984 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
985 {
986         struct vm_area_struct *vma = vmf->vma;
987         gfp_t gfp;
988         struct folio *folio;
989         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
990
991         if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
992                 return VM_FAULT_FALLBACK;
993         if (unlikely(anon_vma_prepare(vma)))
994                 return VM_FAULT_OOM;
995         khugepaged_enter_vma(vma, vma->vm_flags);
996
997         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
998                         !mm_forbids_zeropage(vma->vm_mm) &&
999                         transparent_hugepage_use_zero_page()) {
1000                 pgtable_t pgtable;
1001                 struct page *zero_page;
1002                 vm_fault_t ret;
1003                 pgtable = pte_alloc_one(vma->vm_mm);
1004                 if (unlikely(!pgtable))
1005                         return VM_FAULT_OOM;
1006                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
1007                 if (unlikely(!zero_page)) {
1008                         pte_free(vma->vm_mm, pgtable);
1009                         count_vm_event(THP_FAULT_FALLBACK);
1010                         return VM_FAULT_FALLBACK;
1011                 }
1012                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1013                 ret = 0;
1014                 if (pmd_none(*vmf->pmd)) {
1015                         ret = check_stable_address_space(vma->vm_mm);
1016                         if (ret) {
1017                                 spin_unlock(vmf->ptl);
1018                                 pte_free(vma->vm_mm, pgtable);
1019                         } else if (userfaultfd_missing(vma)) {
1020                                 spin_unlock(vmf->ptl);
1021                                 pte_free(vma->vm_mm, pgtable);
1022                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1023                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1024                         } else {
1025                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
1026                                                    haddr, vmf->pmd, zero_page);
1027                                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1028                                 spin_unlock(vmf->ptl);
1029                         }
1030                 } else {
1031                         spin_unlock(vmf->ptl);
1032                         pte_free(vma->vm_mm, pgtable);
1033                 }
1034                 return ret;
1035         }
1036         gfp = vma_thp_gfp_mask(vma);
1037         folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1038         if (unlikely(!folio)) {
1039                 count_vm_event(THP_FAULT_FALLBACK);
1040                 return VM_FAULT_FALLBACK;
1041         }
1042         return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1043 }
1044
1045 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1046                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1047                 pgtable_t pgtable)
1048 {
1049         struct mm_struct *mm = vma->vm_mm;
1050         pmd_t entry;
1051         spinlock_t *ptl;
1052
1053         ptl = pmd_lock(mm, pmd);
1054         if (!pmd_none(*pmd)) {
1055                 if (write) {
1056                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1057                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1058                                 goto out_unlock;
1059                         }
1060                         entry = pmd_mkyoung(*pmd);
1061                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1062                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1063                                 update_mmu_cache_pmd(vma, addr, pmd);
1064                 }
1065
1066                 goto out_unlock;
1067         }
1068
1069         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1070         if (pfn_t_devmap(pfn))
1071                 entry = pmd_mkdevmap(entry);
1072         if (write) {
1073                 entry = pmd_mkyoung(pmd_mkdirty(entry));
1074                 entry = maybe_pmd_mkwrite(entry, vma);
1075         }
1076
1077         if (pgtable) {
1078                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1079                 mm_inc_nr_ptes(mm);
1080                 pgtable = NULL;
1081         }
1082
1083         set_pmd_at(mm, addr, pmd, entry);
1084         update_mmu_cache_pmd(vma, addr, pmd);
1085
1086 out_unlock:
1087         spin_unlock(ptl);
1088         if (pgtable)
1089                 pte_free(mm, pgtable);
1090 }
1091
1092 /**
1093  * vmf_insert_pfn_pmd - insert a pmd size pfn
1094  * @vmf: Structure describing the fault
1095  * @pfn: pfn to insert
1096  * @write: whether it's a write fault
1097  *
1098  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1099  *
1100  * Return: vm_fault_t value.
1101  */
1102 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1103 {
1104         unsigned long addr = vmf->address & PMD_MASK;
1105         struct vm_area_struct *vma = vmf->vma;
1106         pgprot_t pgprot = vma->vm_page_prot;
1107         pgtable_t pgtable = NULL;
1108
1109         /*
1110          * If we had pmd_special, we could avoid all these restrictions,
1111          * but we need to be consistent with PTEs and architectures that
1112          * can't support a 'special' bit.
1113          */
1114         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1115                         !pfn_t_devmap(pfn));
1116         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1117                                                 (VM_PFNMAP|VM_MIXEDMAP));
1118         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1119
1120         if (addr < vma->vm_start || addr >= vma->vm_end)
1121                 return VM_FAULT_SIGBUS;
1122
1123         if (arch_needs_pgtable_deposit()) {
1124                 pgtable = pte_alloc_one(vma->vm_mm);
1125                 if (!pgtable)
1126                         return VM_FAULT_OOM;
1127         }
1128
1129         track_pfn_insert(vma, &pgprot, pfn);
1130
1131         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1132         return VM_FAULT_NOPAGE;
1133 }
1134 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1135
1136 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1137 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1138 {
1139         if (likely(vma->vm_flags & VM_WRITE))
1140                 pud = pud_mkwrite(pud);
1141         return pud;
1142 }
1143
1144 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1145                 pud_t *pud, pfn_t pfn, bool write)
1146 {
1147         struct mm_struct *mm = vma->vm_mm;
1148         pgprot_t prot = vma->vm_page_prot;
1149         pud_t entry;
1150         spinlock_t *ptl;
1151
1152         ptl = pud_lock(mm, pud);
1153         if (!pud_none(*pud)) {
1154                 if (write) {
1155                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1156                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1157                                 goto out_unlock;
1158                         }
1159                         entry = pud_mkyoung(*pud);
1160                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1161                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1162                                 update_mmu_cache_pud(vma, addr, pud);
1163                 }
1164                 goto out_unlock;
1165         }
1166
1167         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1168         if (pfn_t_devmap(pfn))
1169                 entry = pud_mkdevmap(entry);
1170         if (write) {
1171                 entry = pud_mkyoung(pud_mkdirty(entry));
1172                 entry = maybe_pud_mkwrite(entry, vma);
1173         }
1174         set_pud_at(mm, addr, pud, entry);
1175         update_mmu_cache_pud(vma, addr, pud);
1176
1177 out_unlock:
1178         spin_unlock(ptl);
1179 }
1180
1181 /**
1182  * vmf_insert_pfn_pud - insert a pud size pfn
1183  * @vmf: Structure describing the fault
1184  * @pfn: pfn to insert
1185  * @write: whether it's a write fault
1186  *
1187  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1188  *
1189  * Return: vm_fault_t value.
1190  */
1191 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1192 {
1193         unsigned long addr = vmf->address & PUD_MASK;
1194         struct vm_area_struct *vma = vmf->vma;
1195         pgprot_t pgprot = vma->vm_page_prot;
1196
1197         /*
1198          * If we had pud_special, we could avoid all these restrictions,
1199          * but we need to be consistent with PTEs and architectures that
1200          * can't support a 'special' bit.
1201          */
1202         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1203                         !pfn_t_devmap(pfn));
1204         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1205                                                 (VM_PFNMAP|VM_MIXEDMAP));
1206         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1207
1208         if (addr < vma->vm_start || addr >= vma->vm_end)
1209                 return VM_FAULT_SIGBUS;
1210
1211         track_pfn_insert(vma, &pgprot, pfn);
1212
1213         insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1214         return VM_FAULT_NOPAGE;
1215 }
1216 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1217 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1218
1219 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1220                       pmd_t *pmd, bool write)
1221 {
1222         pmd_t _pmd;
1223
1224         _pmd = pmd_mkyoung(*pmd);
1225         if (write)
1226                 _pmd = pmd_mkdirty(_pmd);
1227         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1228                                   pmd, _pmd, write))
1229                 update_mmu_cache_pmd(vma, addr, pmd);
1230 }
1231
1232 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1233                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1234 {
1235         unsigned long pfn = pmd_pfn(*pmd);
1236         struct mm_struct *mm = vma->vm_mm;
1237         struct page *page;
1238         int ret;
1239
1240         assert_spin_locked(pmd_lockptr(mm, pmd));
1241
1242         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1243                 return NULL;
1244
1245         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1246                 /* pass */;
1247         else
1248                 return NULL;
1249
1250         if (flags & FOLL_TOUCH)
1251                 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1252
1253         /*
1254          * device mapped pages can only be returned if the
1255          * caller will manage the page reference count.
1256          */
1257         if (!(flags & (FOLL_GET | FOLL_PIN)))
1258                 return ERR_PTR(-EEXIST);
1259
1260         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1261         *pgmap = get_dev_pagemap(pfn, *pgmap);
1262         if (!*pgmap)
1263                 return ERR_PTR(-EFAULT);
1264         page = pfn_to_page(pfn);
1265         ret = try_grab_page(page, flags);
1266         if (ret)
1267                 page = ERR_PTR(ret);
1268
1269         return page;
1270 }
1271
1272 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1273                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1274                   struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1275 {
1276         spinlock_t *dst_ptl, *src_ptl;
1277         struct page *src_page;
1278         struct folio *src_folio;
1279         pmd_t pmd;
1280         pgtable_t pgtable = NULL;
1281         int ret = -ENOMEM;
1282
1283         /* Skip if can be re-fill on fault */
1284         if (!vma_is_anonymous(dst_vma))
1285                 return 0;
1286
1287         pgtable = pte_alloc_one(dst_mm);
1288         if (unlikely(!pgtable))
1289                 goto out;
1290
1291         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1292         src_ptl = pmd_lockptr(src_mm, src_pmd);
1293         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1294
1295         ret = -EAGAIN;
1296         pmd = *src_pmd;
1297
1298 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1299         if (unlikely(is_swap_pmd(pmd))) {
1300                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1301
1302                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1303                 if (!is_readable_migration_entry(entry)) {
1304                         entry = make_readable_migration_entry(
1305                                                         swp_offset(entry));
1306                         pmd = swp_entry_to_pmd(entry);
1307                         if (pmd_swp_soft_dirty(*src_pmd))
1308                                 pmd = pmd_swp_mksoft_dirty(pmd);
1309                         if (pmd_swp_uffd_wp(*src_pmd))
1310                                 pmd = pmd_swp_mkuffd_wp(pmd);
1311                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1312                 }
1313                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1314                 mm_inc_nr_ptes(dst_mm);
1315                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1316                 if (!userfaultfd_wp(dst_vma))
1317                         pmd = pmd_swp_clear_uffd_wp(pmd);
1318                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1319                 ret = 0;
1320                 goto out_unlock;
1321         }
1322 #endif
1323
1324         if (unlikely(!pmd_trans_huge(pmd))) {
1325                 pte_free(dst_mm, pgtable);
1326                 goto out_unlock;
1327         }
1328         /*
1329          * When page table lock is held, the huge zero pmd should not be
1330          * under splitting since we don't split the page itself, only pmd to
1331          * a page table.
1332          */
1333         if (is_huge_zero_pmd(pmd)) {
1334                 /*
1335                  * get_huge_zero_page() will never allocate a new page here,
1336                  * since we already have a zero page to copy. It just takes a
1337                  * reference.
1338                  */
1339                 mm_get_huge_zero_page(dst_mm);
1340                 goto out_zero_page;
1341         }
1342
1343         src_page = pmd_page(pmd);
1344         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1345         src_folio = page_folio(src_page);
1346
1347         folio_get(src_folio);
1348         if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1349                 /* Page maybe pinned: split and retry the fault on PTEs. */
1350                 folio_put(src_folio);
1351                 pte_free(dst_mm, pgtable);
1352                 spin_unlock(src_ptl);
1353                 spin_unlock(dst_ptl);
1354                 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1355                 return -EAGAIN;
1356         }
1357         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1358 out_zero_page:
1359         mm_inc_nr_ptes(dst_mm);
1360         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1361         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1362         if (!userfaultfd_wp(dst_vma))
1363                 pmd = pmd_clear_uffd_wp(pmd);
1364         pmd = pmd_mkold(pmd_wrprotect(pmd));
1365         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1366
1367         ret = 0;
1368 out_unlock:
1369         spin_unlock(src_ptl);
1370         spin_unlock(dst_ptl);
1371 out:
1372         return ret;
1373 }
1374
1375 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1376 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1377                       pud_t *pud, bool write)
1378 {
1379         pud_t _pud;
1380
1381         _pud = pud_mkyoung(*pud);
1382         if (write)
1383                 _pud = pud_mkdirty(_pud);
1384         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1385                                   pud, _pud, write))
1386                 update_mmu_cache_pud(vma, addr, pud);
1387 }
1388
1389 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1390                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1391 {
1392         unsigned long pfn = pud_pfn(*pud);
1393         struct mm_struct *mm = vma->vm_mm;
1394         struct page *page;
1395         int ret;
1396
1397         assert_spin_locked(pud_lockptr(mm, pud));
1398
1399         if (flags & FOLL_WRITE && !pud_write(*pud))
1400                 return NULL;
1401
1402         if (pud_present(*pud) && pud_devmap(*pud))
1403                 /* pass */;
1404         else
1405                 return NULL;
1406
1407         if (flags & FOLL_TOUCH)
1408                 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1409
1410         /*
1411          * device mapped pages can only be returned if the
1412          * caller will manage the page reference count.
1413          *
1414          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1415          */
1416         if (!(flags & (FOLL_GET | FOLL_PIN)))
1417                 return ERR_PTR(-EEXIST);
1418
1419         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1420         *pgmap = get_dev_pagemap(pfn, *pgmap);
1421         if (!*pgmap)
1422                 return ERR_PTR(-EFAULT);
1423         page = pfn_to_page(pfn);
1424
1425         ret = try_grab_page(page, flags);
1426         if (ret)
1427                 page = ERR_PTR(ret);
1428
1429         return page;
1430 }
1431
1432 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1433                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1434                   struct vm_area_struct *vma)
1435 {
1436         spinlock_t *dst_ptl, *src_ptl;
1437         pud_t pud;
1438         int ret;
1439
1440         dst_ptl = pud_lock(dst_mm, dst_pud);
1441         src_ptl = pud_lockptr(src_mm, src_pud);
1442         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1443
1444         ret = -EAGAIN;
1445         pud = *src_pud;
1446         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1447                 goto out_unlock;
1448
1449         /*
1450          * When page table lock is held, the huge zero pud should not be
1451          * under splitting since we don't split the page itself, only pud to
1452          * a page table.
1453          */
1454         if (is_huge_zero_pud(pud)) {
1455                 /* No huge zero pud yet */
1456         }
1457
1458         /*
1459          * TODO: once we support anonymous pages, use
1460          * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1461          */
1462         pudp_set_wrprotect(src_mm, addr, src_pud);
1463         pud = pud_mkold(pud_wrprotect(pud));
1464         set_pud_at(dst_mm, addr, dst_pud, pud);
1465
1466         ret = 0;
1467 out_unlock:
1468         spin_unlock(src_ptl);
1469         spin_unlock(dst_ptl);
1470         return ret;
1471 }
1472
1473 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1474 {
1475         bool write = vmf->flags & FAULT_FLAG_WRITE;
1476
1477         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1478         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1479                 goto unlock;
1480
1481         touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1482 unlock:
1483         spin_unlock(vmf->ptl);
1484 }
1485 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1486
1487 void huge_pmd_set_accessed(struct vm_fault *vmf)
1488 {
1489         bool write = vmf->flags & FAULT_FLAG_WRITE;
1490
1491         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1492         if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1493                 goto unlock;
1494
1495         touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1496
1497 unlock:
1498         spin_unlock(vmf->ptl);
1499 }
1500
1501 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1502 {
1503         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1504         struct vm_area_struct *vma = vmf->vma;
1505         struct folio *folio;
1506         struct page *page;
1507         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1508         pmd_t orig_pmd = vmf->orig_pmd;
1509
1510         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1511         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1512
1513         if (is_huge_zero_pmd(orig_pmd))
1514                 goto fallback;
1515
1516         spin_lock(vmf->ptl);
1517
1518         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1519                 spin_unlock(vmf->ptl);
1520                 return 0;
1521         }
1522
1523         page = pmd_page(orig_pmd);
1524         folio = page_folio(page);
1525         VM_BUG_ON_PAGE(!PageHead(page), page);
1526
1527         /* Early check when only holding the PT lock. */
1528         if (PageAnonExclusive(page))
1529                 goto reuse;
1530
1531         if (!folio_trylock(folio)) {
1532                 folio_get(folio);
1533                 spin_unlock(vmf->ptl);
1534                 folio_lock(folio);
1535                 spin_lock(vmf->ptl);
1536                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1537                         spin_unlock(vmf->ptl);
1538                         folio_unlock(folio);
1539                         folio_put(folio);
1540                         return 0;
1541                 }
1542                 folio_put(folio);
1543         }
1544
1545         /* Recheck after temporarily dropping the PT lock. */
1546         if (PageAnonExclusive(page)) {
1547                 folio_unlock(folio);
1548                 goto reuse;
1549         }
1550
1551         /*
1552          * See do_wp_page(): we can only reuse the folio exclusively if
1553          * there are no additional references. Note that we always drain
1554          * the LRU cache immediately after adding a THP.
1555          */
1556         if (folio_ref_count(folio) >
1557                         1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1558                 goto unlock_fallback;
1559         if (folio_test_swapcache(folio))
1560                 folio_free_swap(folio);
1561         if (folio_ref_count(folio) == 1) {
1562                 pmd_t entry;
1563
1564                 folio_move_anon_rmap(folio, vma);
1565                 SetPageAnonExclusive(page);
1566                 folio_unlock(folio);
1567 reuse:
1568                 if (unlikely(unshare)) {
1569                         spin_unlock(vmf->ptl);
1570                         return 0;
1571                 }
1572                 entry = pmd_mkyoung(orig_pmd);
1573                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1574                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1575                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1576                 spin_unlock(vmf->ptl);
1577                 return 0;
1578         }
1579
1580 unlock_fallback:
1581         folio_unlock(folio);
1582         spin_unlock(vmf->ptl);
1583 fallback:
1584         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1585         return VM_FAULT_FALLBACK;
1586 }
1587
1588 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1589                                            unsigned long addr, pmd_t pmd)
1590 {
1591         struct page *page;
1592
1593         if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1594                 return false;
1595
1596         /* Don't touch entries that are not even readable (NUMA hinting). */
1597         if (pmd_protnone(pmd))
1598                 return false;
1599
1600         /* Do we need write faults for softdirty tracking? */
1601         if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1602                 return false;
1603
1604         /* Do we need write faults for uffd-wp tracking? */
1605         if (userfaultfd_huge_pmd_wp(vma, pmd))
1606                 return false;
1607
1608         if (!(vma->vm_flags & VM_SHARED)) {
1609                 /* See can_change_pte_writable(). */
1610                 page = vm_normal_page_pmd(vma, addr, pmd);
1611                 return page && PageAnon(page) && PageAnonExclusive(page);
1612         }
1613
1614         /* See can_change_pte_writable(). */
1615         return pmd_dirty(pmd);
1616 }
1617
1618 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1619 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1620                                         struct vm_area_struct *vma,
1621                                         unsigned int flags)
1622 {
1623         /* If the pmd is writable, we can write to the page. */
1624         if (pmd_write(pmd))
1625                 return true;
1626
1627         /* Maybe FOLL_FORCE is set to override it? */
1628         if (!(flags & FOLL_FORCE))
1629                 return false;
1630
1631         /* But FOLL_FORCE has no effect on shared mappings */
1632         if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1633                 return false;
1634
1635         /* ... or read-only private ones */
1636         if (!(vma->vm_flags & VM_MAYWRITE))
1637                 return false;
1638
1639         /* ... or already writable ones that just need to take a write fault */
1640         if (vma->vm_flags & VM_WRITE)
1641                 return false;
1642
1643         /*
1644          * See can_change_pte_writable(): we broke COW and could map the page
1645          * writable if we have an exclusive anonymous page ...
1646          */
1647         if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1648                 return false;
1649
1650         /* ... and a write-fault isn't required for other reasons. */
1651         if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1652                 return false;
1653         return !userfaultfd_huge_pmd_wp(vma, pmd);
1654 }
1655
1656 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1657                                    unsigned long addr,
1658                                    pmd_t *pmd,
1659                                    unsigned int flags)
1660 {
1661         struct mm_struct *mm = vma->vm_mm;
1662         struct page *page;
1663         int ret;
1664
1665         assert_spin_locked(pmd_lockptr(mm, pmd));
1666
1667         page = pmd_page(*pmd);
1668         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1669
1670         if ((flags & FOLL_WRITE) &&
1671             !can_follow_write_pmd(*pmd, page, vma, flags))
1672                 return NULL;
1673
1674         /* Avoid dumping huge zero page */
1675         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1676                 return ERR_PTR(-EFAULT);
1677
1678         if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1679                 return NULL;
1680
1681         if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1682                 return ERR_PTR(-EMLINK);
1683
1684         VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1685                         !PageAnonExclusive(page), page);
1686
1687         ret = try_grab_page(page, flags);
1688         if (ret)
1689                 return ERR_PTR(ret);
1690
1691         if (flags & FOLL_TOUCH)
1692                 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1693
1694         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1695         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1696
1697         return page;
1698 }
1699
1700 /* NUMA hinting page fault entry point for trans huge pmds */
1701 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1702 {
1703         struct vm_area_struct *vma = vmf->vma;
1704         pmd_t oldpmd = vmf->orig_pmd;
1705         pmd_t pmd;
1706         struct folio *folio;
1707         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1708         int nid = NUMA_NO_NODE;
1709         int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1710         bool migrated = false, writable = false;
1711         int flags = 0;
1712
1713         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1714         if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1715                 spin_unlock(vmf->ptl);
1716                 goto out;
1717         }
1718
1719         pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1720
1721         /*
1722          * Detect now whether the PMD could be writable; this information
1723          * is only valid while holding the PT lock.
1724          */
1725         writable = pmd_write(pmd);
1726         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1727             can_change_pmd_writable(vma, vmf->address, pmd))
1728                 writable = true;
1729
1730         folio = vm_normal_folio_pmd(vma, haddr, pmd);
1731         if (!folio)
1732                 goto out_map;
1733
1734         /* See similar comment in do_numa_page for explanation */
1735         if (!writable)
1736                 flags |= TNF_NO_GROUP;
1737
1738         nid = folio_nid(folio);
1739         /*
1740          * For memory tiering mode, cpupid of slow memory page is used
1741          * to record page access time.  So use default value.
1742          */
1743         if (node_is_toptier(nid))
1744                 last_cpupid = folio_last_cpupid(folio);
1745         target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1746         if (target_nid == NUMA_NO_NODE) {
1747                 folio_put(folio);
1748                 goto out_map;
1749         }
1750
1751         spin_unlock(vmf->ptl);
1752         writable = false;
1753
1754         migrated = migrate_misplaced_folio(folio, vma, target_nid);
1755         if (migrated) {
1756                 flags |= TNF_MIGRATED;
1757                 nid = target_nid;
1758         } else {
1759                 flags |= TNF_MIGRATE_FAIL;
1760                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1761                 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1762                         spin_unlock(vmf->ptl);
1763                         goto out;
1764                 }
1765                 goto out_map;
1766         }
1767
1768 out:
1769         if (nid != NUMA_NO_NODE)
1770                 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1771
1772         return 0;
1773
1774 out_map:
1775         /* Restore the PMD */
1776         pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1777         pmd = pmd_mkyoung(pmd);
1778         if (writable)
1779                 pmd = pmd_mkwrite(pmd, vma);
1780         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1781         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1782         spin_unlock(vmf->ptl);
1783         goto out;
1784 }
1785
1786 /*
1787  * Return true if we do MADV_FREE successfully on entire pmd page.
1788  * Otherwise, return false.
1789  */
1790 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1791                 pmd_t *pmd, unsigned long addr, unsigned long next)
1792 {
1793         spinlock_t *ptl;
1794         pmd_t orig_pmd;
1795         struct folio *folio;
1796         struct mm_struct *mm = tlb->mm;
1797         bool ret = false;
1798
1799         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1800
1801         ptl = pmd_trans_huge_lock(pmd, vma);
1802         if (!ptl)
1803                 goto out_unlocked;
1804
1805         orig_pmd = *pmd;
1806         if (is_huge_zero_pmd(orig_pmd))
1807                 goto out;
1808
1809         if (unlikely(!pmd_present(orig_pmd))) {
1810                 VM_BUG_ON(thp_migration_supported() &&
1811                                   !is_pmd_migration_entry(orig_pmd));
1812                 goto out;
1813         }
1814
1815         folio = pfn_folio(pmd_pfn(orig_pmd));
1816         /*
1817          * If other processes are mapping this folio, we couldn't discard
1818          * the folio unless they all do MADV_FREE so let's skip the folio.
1819          */
1820         if (folio_estimated_sharers(folio) != 1)
1821                 goto out;
1822
1823         if (!folio_trylock(folio))
1824                 goto out;
1825
1826         /*
1827          * If user want to discard part-pages of THP, split it so MADV_FREE
1828          * will deactivate only them.
1829          */
1830         if (next - addr != HPAGE_PMD_SIZE) {
1831                 folio_get(folio);
1832                 spin_unlock(ptl);
1833                 split_folio(folio);
1834                 folio_unlock(folio);
1835                 folio_put(folio);
1836                 goto out_unlocked;
1837         }
1838
1839         if (folio_test_dirty(folio))
1840                 folio_clear_dirty(folio);
1841         folio_unlock(folio);
1842
1843         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1844                 pmdp_invalidate(vma, addr, pmd);
1845                 orig_pmd = pmd_mkold(orig_pmd);
1846                 orig_pmd = pmd_mkclean(orig_pmd);
1847
1848                 set_pmd_at(mm, addr, pmd, orig_pmd);
1849                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1850         }
1851
1852         folio_mark_lazyfree(folio);
1853         ret = true;
1854 out:
1855         spin_unlock(ptl);
1856 out_unlocked:
1857         return ret;
1858 }
1859
1860 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1861 {
1862         pgtable_t pgtable;
1863
1864         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1865         pte_free(mm, pgtable);
1866         mm_dec_nr_ptes(mm);
1867 }
1868
1869 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1870                  pmd_t *pmd, unsigned long addr)
1871 {
1872         pmd_t orig_pmd;
1873         spinlock_t *ptl;
1874
1875         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1876
1877         ptl = __pmd_trans_huge_lock(pmd, vma);
1878         if (!ptl)
1879                 return 0;
1880         /*
1881          * For architectures like ppc64 we look at deposited pgtable
1882          * when calling pmdp_huge_get_and_clear. So do the
1883          * pgtable_trans_huge_withdraw after finishing pmdp related
1884          * operations.
1885          */
1886         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1887                                                 tlb->fullmm);
1888         arch_check_zapped_pmd(vma, orig_pmd);
1889         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1890         if (vma_is_special_huge(vma)) {
1891                 if (arch_needs_pgtable_deposit())
1892                         zap_deposited_table(tlb->mm, pmd);
1893                 spin_unlock(ptl);
1894         } else if (is_huge_zero_pmd(orig_pmd)) {
1895                 zap_deposited_table(tlb->mm, pmd);
1896                 spin_unlock(ptl);
1897         } else {
1898                 struct page *page = NULL;
1899                 int flush_needed = 1;
1900
1901                 if (pmd_present(orig_pmd)) {
1902                         page = pmd_page(orig_pmd);
1903                         folio_remove_rmap_pmd(page_folio(page), page, vma);
1904                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1905                         VM_BUG_ON_PAGE(!PageHead(page), page);
1906                 } else if (thp_migration_supported()) {
1907                         swp_entry_t entry;
1908
1909                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1910                         entry = pmd_to_swp_entry(orig_pmd);
1911                         page = pfn_swap_entry_to_page(entry);
1912                         flush_needed = 0;
1913                 } else
1914                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1915
1916                 if (PageAnon(page)) {
1917                         zap_deposited_table(tlb->mm, pmd);
1918                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1919                 } else {
1920                         if (arch_needs_pgtable_deposit())
1921                                 zap_deposited_table(tlb->mm, pmd);
1922                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1923                 }
1924
1925                 spin_unlock(ptl);
1926                 if (flush_needed)
1927                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1928         }
1929         return 1;
1930 }
1931
1932 #ifndef pmd_move_must_withdraw
1933 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1934                                          spinlock_t *old_pmd_ptl,
1935                                          struct vm_area_struct *vma)
1936 {
1937         /*
1938          * With split pmd lock we also need to move preallocated
1939          * PTE page table if new_pmd is on different PMD page table.
1940          *
1941          * We also don't deposit and withdraw tables for file pages.
1942          */
1943         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1944 }
1945 #endif
1946
1947 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1948 {
1949 #ifdef CONFIG_MEM_SOFT_DIRTY
1950         if (unlikely(is_pmd_migration_entry(pmd)))
1951                 pmd = pmd_swp_mksoft_dirty(pmd);
1952         else if (pmd_present(pmd))
1953                 pmd = pmd_mksoft_dirty(pmd);
1954 #endif
1955         return pmd;
1956 }
1957
1958 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1959                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1960 {
1961         spinlock_t *old_ptl, *new_ptl;
1962         pmd_t pmd;
1963         struct mm_struct *mm = vma->vm_mm;
1964         bool force_flush = false;
1965
1966         /*
1967          * The destination pmd shouldn't be established, free_pgtables()
1968          * should have released it; but move_page_tables() might have already
1969          * inserted a page table, if racing against shmem/file collapse.
1970          */
1971         if (!pmd_none(*new_pmd)) {
1972                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1973                 return false;
1974         }
1975
1976         /*
1977          * We don't have to worry about the ordering of src and dst
1978          * ptlocks because exclusive mmap_lock prevents deadlock.
1979          */
1980         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1981         if (old_ptl) {
1982                 new_ptl = pmd_lockptr(mm, new_pmd);
1983                 if (new_ptl != old_ptl)
1984                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1985                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1986                 if (pmd_present(pmd))
1987                         force_flush = true;
1988                 VM_BUG_ON(!pmd_none(*new_pmd));
1989
1990                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1991                         pgtable_t pgtable;
1992                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1993                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1994                 }
1995                 pmd = move_soft_dirty_pmd(pmd);
1996                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1997                 if (force_flush)
1998                         flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1999                 if (new_ptl != old_ptl)
2000                         spin_unlock(new_ptl);
2001                 spin_unlock(old_ptl);
2002                 return true;
2003         }
2004         return false;
2005 }
2006
2007 /*
2008  * Returns
2009  *  - 0 if PMD could not be locked
2010  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2011  *      or if prot_numa but THP migration is not supported
2012  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2013  */
2014 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2015                     pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2016                     unsigned long cp_flags)
2017 {
2018         struct mm_struct *mm = vma->vm_mm;
2019         spinlock_t *ptl;
2020         pmd_t oldpmd, entry;
2021         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2022         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2023         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2024         int ret = 1;
2025
2026         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2027
2028         if (prot_numa && !thp_migration_supported())
2029                 return 1;
2030
2031         ptl = __pmd_trans_huge_lock(pmd, vma);
2032         if (!ptl)
2033                 return 0;
2034
2035 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2036         if (is_swap_pmd(*pmd)) {
2037                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2038                 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2039                 pmd_t newpmd;
2040
2041                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2042                 if (is_writable_migration_entry(entry)) {
2043                         /*
2044                          * A protection check is difficult so
2045                          * just be safe and disable write
2046                          */
2047                         if (folio_test_anon(folio))
2048                                 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2049                         else
2050                                 entry = make_readable_migration_entry(swp_offset(entry));
2051                         newpmd = swp_entry_to_pmd(entry);
2052                         if (pmd_swp_soft_dirty(*pmd))
2053                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
2054                 } else {
2055                         newpmd = *pmd;
2056                 }
2057
2058                 if (uffd_wp)
2059                         newpmd = pmd_swp_mkuffd_wp(newpmd);
2060                 else if (uffd_wp_resolve)
2061                         newpmd = pmd_swp_clear_uffd_wp(newpmd);
2062                 if (!pmd_same(*pmd, newpmd))
2063                         set_pmd_at(mm, addr, pmd, newpmd);
2064                 goto unlock;
2065         }
2066 #endif
2067
2068         if (prot_numa) {
2069                 struct folio *folio;
2070                 bool toptier;
2071                 /*
2072                  * Avoid trapping faults against the zero page. The read-only
2073                  * data is likely to be read-cached on the local CPU and
2074                  * local/remote hits to the zero page are not interesting.
2075                  */
2076                 if (is_huge_zero_pmd(*pmd))
2077                         goto unlock;
2078
2079                 if (pmd_protnone(*pmd))
2080                         goto unlock;
2081
2082                 folio = page_folio(pmd_page(*pmd));
2083                 toptier = node_is_toptier(folio_nid(folio));
2084                 /*
2085                  * Skip scanning top tier node if normal numa
2086                  * balancing is disabled
2087                  */
2088                 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2089                     toptier)
2090                         goto unlock;
2091
2092                 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2093                     !toptier)
2094                         folio_xchg_access_time(folio,
2095                                                jiffies_to_msecs(jiffies));
2096         }
2097         /*
2098          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2099          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2100          * which is also under mmap_read_lock(mm):
2101          *
2102          *      CPU0:                           CPU1:
2103          *                              change_huge_pmd(prot_numa=1)
2104          *                               pmdp_huge_get_and_clear_notify()
2105          * madvise_dontneed()
2106          *  zap_pmd_range()
2107          *   pmd_trans_huge(*pmd) == 0 (without ptl)
2108          *   // skip the pmd
2109          *                               set_pmd_at();
2110          *                               // pmd is re-established
2111          *
2112          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2113          * which may break userspace.
2114          *
2115          * pmdp_invalidate_ad() is required to make sure we don't miss
2116          * dirty/young flags set by hardware.
2117          */
2118         oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2119
2120         entry = pmd_modify(oldpmd, newprot);
2121         if (uffd_wp)
2122                 entry = pmd_mkuffd_wp(entry);
2123         else if (uffd_wp_resolve)
2124                 /*
2125                  * Leave the write bit to be handled by PF interrupt
2126                  * handler, then things like COW could be properly
2127                  * handled.
2128                  */
2129                 entry = pmd_clear_uffd_wp(entry);
2130
2131         /* See change_pte_range(). */
2132         if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2133             can_change_pmd_writable(vma, addr, entry))
2134                 entry = pmd_mkwrite(entry, vma);
2135
2136         ret = HPAGE_PMD_NR;
2137         set_pmd_at(mm, addr, pmd, entry);
2138
2139         if (huge_pmd_needs_flush(oldpmd, entry))
2140                 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2141 unlock:
2142         spin_unlock(ptl);
2143         return ret;
2144 }
2145
2146 #ifdef CONFIG_USERFAULTFD
2147 /*
2148  * The PT lock for src_pmd and the mmap_lock for reading are held by
2149  * the caller, but it must return after releasing the page_table_lock.
2150  * Just move the page from src_pmd to dst_pmd if possible.
2151  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2152  * repeated by the caller, or other errors in case of failure.
2153  */
2154 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2155                         struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2156                         unsigned long dst_addr, unsigned long src_addr)
2157 {
2158         pmd_t _dst_pmd, src_pmdval;
2159         struct page *src_page;
2160         struct folio *src_folio;
2161         struct anon_vma *src_anon_vma;
2162         spinlock_t *src_ptl, *dst_ptl;
2163         pgtable_t src_pgtable;
2164         struct mmu_notifier_range range;
2165         int err = 0;
2166
2167         src_pmdval = *src_pmd;
2168         src_ptl = pmd_lockptr(mm, src_pmd);
2169
2170         lockdep_assert_held(src_ptl);
2171         mmap_assert_locked(mm);
2172
2173         /* Sanity checks before the operation */
2174         if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2175             WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2176                 spin_unlock(src_ptl);
2177                 return -EINVAL;
2178         }
2179
2180         if (!pmd_trans_huge(src_pmdval)) {
2181                 spin_unlock(src_ptl);
2182                 if (is_pmd_migration_entry(src_pmdval)) {
2183                         pmd_migration_entry_wait(mm, &src_pmdval);
2184                         return -EAGAIN;
2185                 }
2186                 return -ENOENT;
2187         }
2188
2189         src_page = pmd_page(src_pmdval);
2190         if (unlikely(!PageAnonExclusive(src_page))) {
2191                 spin_unlock(src_ptl);
2192                 return -EBUSY;
2193         }
2194
2195         src_folio = page_folio(src_page);
2196         folio_get(src_folio);
2197         spin_unlock(src_ptl);
2198
2199         flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2200         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2201                                 src_addr + HPAGE_PMD_SIZE);
2202         mmu_notifier_invalidate_range_start(&range);
2203
2204         folio_lock(src_folio);
2205
2206         /*
2207          * split_huge_page walks the anon_vma chain without the page
2208          * lock. Serialize against it with the anon_vma lock, the page
2209          * lock is not enough.
2210          */
2211         src_anon_vma = folio_get_anon_vma(src_folio);
2212         if (!src_anon_vma) {
2213                 err = -EAGAIN;
2214                 goto unlock_folio;
2215         }
2216         anon_vma_lock_write(src_anon_vma);
2217
2218         dst_ptl = pmd_lockptr(mm, dst_pmd);
2219         double_pt_lock(src_ptl, dst_ptl);
2220         if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2221                      !pmd_same(*dst_pmd, dst_pmdval))) {
2222                 err = -EAGAIN;
2223                 goto unlock_ptls;
2224         }
2225         if (folio_maybe_dma_pinned(src_folio) ||
2226             !PageAnonExclusive(&src_folio->page)) {
2227                 err = -EBUSY;
2228                 goto unlock_ptls;
2229         }
2230
2231         if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2232             WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2233                 err = -EBUSY;
2234                 goto unlock_ptls;
2235         }
2236
2237         folio_move_anon_rmap(src_folio, dst_vma);
2238         WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2239
2240         src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2241         /* Folio got pinned from under us. Put it back and fail the move. */
2242         if (folio_maybe_dma_pinned(src_folio)) {
2243                 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2244                 err = -EBUSY;
2245                 goto unlock_ptls;
2246         }
2247
2248         _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2249         /* Follow mremap() behavior and treat the entry dirty after the move */
2250         _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2251         set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2252
2253         src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2254         pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2255 unlock_ptls:
2256         double_pt_unlock(src_ptl, dst_ptl);
2257         anon_vma_unlock_write(src_anon_vma);
2258         put_anon_vma(src_anon_vma);
2259 unlock_folio:
2260         /* unblock rmap walks */
2261         folio_unlock(src_folio);
2262         mmu_notifier_invalidate_range_end(&range);
2263         folio_put(src_folio);
2264         return err;
2265 }
2266 #endif /* CONFIG_USERFAULTFD */
2267
2268 /*
2269  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2270  *
2271  * Note that if it returns page table lock pointer, this routine returns without
2272  * unlocking page table lock. So callers must unlock it.
2273  */
2274 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2275 {
2276         spinlock_t *ptl;
2277         ptl = pmd_lock(vma->vm_mm, pmd);
2278         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2279                         pmd_devmap(*pmd)))
2280                 return ptl;
2281         spin_unlock(ptl);
2282         return NULL;
2283 }
2284
2285 /*
2286  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2287  *
2288  * Note that if it returns page table lock pointer, this routine returns without
2289  * unlocking page table lock. So callers must unlock it.
2290  */
2291 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2292 {
2293         spinlock_t *ptl;
2294
2295         ptl = pud_lock(vma->vm_mm, pud);
2296         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2297                 return ptl;
2298         spin_unlock(ptl);
2299         return NULL;
2300 }
2301
2302 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2303 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2304                  pud_t *pud, unsigned long addr)
2305 {
2306         spinlock_t *ptl;
2307
2308         ptl = __pud_trans_huge_lock(pud, vma);
2309         if (!ptl)
2310                 return 0;
2311
2312         pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2313         tlb_remove_pud_tlb_entry(tlb, pud, addr);
2314         if (vma_is_special_huge(vma)) {
2315                 spin_unlock(ptl);
2316                 /* No zero page support yet */
2317         } else {
2318                 /* No support for anonymous PUD pages yet */
2319                 BUG();
2320         }
2321         return 1;
2322 }
2323
2324 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2325                 unsigned long haddr)
2326 {
2327         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2328         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2329         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2330         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2331
2332         count_vm_event(THP_SPLIT_PUD);
2333
2334         pudp_huge_clear_flush(vma, haddr, pud);
2335 }
2336
2337 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2338                 unsigned long address)
2339 {
2340         spinlock_t *ptl;
2341         struct mmu_notifier_range range;
2342
2343         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2344                                 address & HPAGE_PUD_MASK,
2345                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2346         mmu_notifier_invalidate_range_start(&range);
2347         ptl = pud_lock(vma->vm_mm, pud);
2348         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2349                 goto out;
2350         __split_huge_pud_locked(vma, pud, range.start);
2351
2352 out:
2353         spin_unlock(ptl);
2354         mmu_notifier_invalidate_range_end(&range);
2355 }
2356 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2357
2358 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2359                 unsigned long haddr, pmd_t *pmd)
2360 {
2361         struct mm_struct *mm = vma->vm_mm;
2362         pgtable_t pgtable;
2363         pmd_t _pmd, old_pmd;
2364         unsigned long addr;
2365         pte_t *pte;
2366         int i;
2367
2368         /*
2369          * Leave pmd empty until pte is filled note that it is fine to delay
2370          * notification until mmu_notifier_invalidate_range_end() as we are
2371          * replacing a zero pmd write protected page with a zero pte write
2372          * protected page.
2373          *
2374          * See Documentation/mm/mmu_notifier.rst
2375          */
2376         old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2377
2378         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2379         pmd_populate(mm, &_pmd, pgtable);
2380
2381         pte = pte_offset_map(&_pmd, haddr);
2382         VM_BUG_ON(!pte);
2383         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2384                 pte_t entry;
2385
2386                 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2387                 entry = pte_mkspecial(entry);
2388                 if (pmd_uffd_wp(old_pmd))
2389                         entry = pte_mkuffd_wp(entry);
2390                 VM_BUG_ON(!pte_none(ptep_get(pte)));
2391                 set_pte_at(mm, addr, pte, entry);
2392                 pte++;
2393         }
2394         pte_unmap(pte - 1);
2395         smp_wmb(); /* make pte visible before pmd */
2396         pmd_populate(mm, pmd, pgtable);
2397 }
2398
2399 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2400                 unsigned long haddr, bool freeze)
2401 {
2402         struct mm_struct *mm = vma->vm_mm;
2403         struct folio *folio;
2404         struct page *page;
2405         pgtable_t pgtable;
2406         pmd_t old_pmd, _pmd;
2407         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2408         bool anon_exclusive = false, dirty = false;
2409         unsigned long addr;
2410         pte_t *pte;
2411         int i;
2412
2413         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2414         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2415         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2416         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2417                                 && !pmd_devmap(*pmd));
2418
2419         count_vm_event(THP_SPLIT_PMD);
2420
2421         if (!vma_is_anonymous(vma)) {
2422                 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2423                 /*
2424                  * We are going to unmap this huge page. So
2425                  * just go ahead and zap it
2426                  */
2427                 if (arch_needs_pgtable_deposit())
2428                         zap_deposited_table(mm, pmd);
2429                 if (vma_is_special_huge(vma))
2430                         return;
2431                 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2432                         swp_entry_t entry;
2433
2434                         entry = pmd_to_swp_entry(old_pmd);
2435                         page = pfn_swap_entry_to_page(entry);
2436                 } else {
2437                         page = pmd_page(old_pmd);
2438                         folio = page_folio(page);
2439                         if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2440                                 folio_set_dirty(folio);
2441                         if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2442                                 folio_set_referenced(folio);
2443                         folio_remove_rmap_pmd(folio, page, vma);
2444                         folio_put(folio);
2445                 }
2446                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2447                 return;
2448         }
2449
2450         if (is_huge_zero_pmd(*pmd)) {
2451                 /*
2452                  * FIXME: Do we want to invalidate secondary mmu by calling
2453                  * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2454                  * inside __split_huge_pmd() ?
2455                  *
2456                  * We are going from a zero huge page write protected to zero
2457                  * small page also write protected so it does not seems useful
2458                  * to invalidate secondary mmu at this time.
2459                  */
2460                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2461         }
2462
2463         /*
2464          * Up to this point the pmd is present and huge and userland has the
2465          * whole access to the hugepage during the split (which happens in
2466          * place). If we overwrite the pmd with the not-huge version pointing
2467          * to the pte here (which of course we could if all CPUs were bug
2468          * free), userland could trigger a small page size TLB miss on the
2469          * small sized TLB while the hugepage TLB entry is still established in
2470          * the huge TLB. Some CPU doesn't like that.
2471          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2472          * 383 on page 105. Intel should be safe but is also warns that it's
2473          * only safe if the permission and cache attributes of the two entries
2474          * loaded in the two TLB is identical (which should be the case here).
2475          * But it is generally safer to never allow small and huge TLB entries
2476          * for the same virtual address to be loaded simultaneously. So instead
2477          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2478          * current pmd notpresent (atomically because here the pmd_trans_huge
2479          * must remain set at all times on the pmd until the split is complete
2480          * for this pmd), then we flush the SMP TLB and finally we write the
2481          * non-huge version of the pmd entry with pmd_populate.
2482          */
2483         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2484
2485         pmd_migration = is_pmd_migration_entry(old_pmd);
2486         if (unlikely(pmd_migration)) {
2487                 swp_entry_t entry;
2488
2489                 entry = pmd_to_swp_entry(old_pmd);
2490                 page = pfn_swap_entry_to_page(entry);
2491                 write = is_writable_migration_entry(entry);
2492                 if (PageAnon(page))
2493                         anon_exclusive = is_readable_exclusive_migration_entry(entry);
2494                 young = is_migration_entry_young(entry);
2495                 dirty = is_migration_entry_dirty(entry);
2496                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2497                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2498         } else {
2499                 page = pmd_page(old_pmd);
2500                 folio = page_folio(page);
2501                 if (pmd_dirty(old_pmd)) {
2502                         dirty = true;
2503                         folio_set_dirty(folio);
2504                 }
2505                 write = pmd_write(old_pmd);
2506                 young = pmd_young(old_pmd);
2507                 soft_dirty = pmd_soft_dirty(old_pmd);
2508                 uffd_wp = pmd_uffd_wp(old_pmd);
2509
2510                 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2511                 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2512
2513                 /*
2514                  * Without "freeze", we'll simply split the PMD, propagating the
2515                  * PageAnonExclusive() flag for each PTE by setting it for
2516                  * each subpage -- no need to (temporarily) clear.
2517                  *
2518                  * With "freeze" we want to replace mapped pages by
2519                  * migration entries right away. This is only possible if we
2520                  * managed to clear PageAnonExclusive() -- see
2521                  * set_pmd_migration_entry().
2522                  *
2523                  * In case we cannot clear PageAnonExclusive(), split the PMD
2524                  * only and let try_to_migrate_one() fail later.
2525                  *
2526                  * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2527                  */
2528                 anon_exclusive = PageAnonExclusive(page);
2529                 if (freeze && anon_exclusive &&
2530                     folio_try_share_anon_rmap_pmd(folio, page))
2531                         freeze = false;
2532                 if (!freeze) {
2533                         rmap_t rmap_flags = RMAP_NONE;
2534
2535                         folio_ref_add(folio, HPAGE_PMD_NR - 1);
2536                         if (anon_exclusive)
2537                                 rmap_flags |= RMAP_EXCLUSIVE;
2538                         folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2539                                                  vma, haddr, rmap_flags);
2540                 }
2541         }
2542
2543         /*
2544          * Withdraw the table only after we mark the pmd entry invalid.
2545          * This's critical for some architectures (Power).
2546          */
2547         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2548         pmd_populate(mm, &_pmd, pgtable);
2549
2550         pte = pte_offset_map(&_pmd, haddr);
2551         VM_BUG_ON(!pte);
2552         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2553                 pte_t entry;
2554                 /*
2555                  * Note that NUMA hinting access restrictions are not
2556                  * transferred to avoid any possibility of altering
2557                  * permissions across VMAs.
2558                  */
2559                 if (freeze || pmd_migration) {
2560                         swp_entry_t swp_entry;
2561                         if (write)
2562                                 swp_entry = make_writable_migration_entry(
2563                                                         page_to_pfn(page + i));
2564                         else if (anon_exclusive)
2565                                 swp_entry = make_readable_exclusive_migration_entry(
2566                                                         page_to_pfn(page + i));
2567                         else
2568                                 swp_entry = make_readable_migration_entry(
2569                                                         page_to_pfn(page + i));
2570                         if (young)
2571                                 swp_entry = make_migration_entry_young(swp_entry);
2572                         if (dirty)
2573                                 swp_entry = make_migration_entry_dirty(swp_entry);
2574                         entry = swp_entry_to_pte(swp_entry);
2575                         if (soft_dirty)
2576                                 entry = pte_swp_mksoft_dirty(entry);
2577                         if (uffd_wp)
2578                                 entry = pte_swp_mkuffd_wp(entry);
2579                 } else {
2580                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2581                         if (write)
2582                                 entry = pte_mkwrite(entry, vma);
2583                         if (!young)
2584                                 entry = pte_mkold(entry);
2585                         /* NOTE: this may set soft-dirty too on some archs */
2586                         if (dirty)
2587                                 entry = pte_mkdirty(entry);
2588                         if (soft_dirty)
2589                                 entry = pte_mksoft_dirty(entry);
2590                         if (uffd_wp)
2591                                 entry = pte_mkuffd_wp(entry);
2592                 }
2593                 VM_BUG_ON(!pte_none(ptep_get(pte)));
2594                 set_pte_at(mm, addr, pte, entry);
2595                 pte++;
2596         }
2597         pte_unmap(pte - 1);
2598
2599         if (!pmd_migration)
2600                 folio_remove_rmap_pmd(folio, page, vma);
2601         if (freeze)
2602                 put_page(page);
2603
2604         smp_wmb(); /* make pte visible before pmd */
2605         pmd_populate(mm, pmd, pgtable);
2606 }
2607
2608 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2609                 unsigned long address, bool freeze, struct folio *folio)
2610 {
2611         spinlock_t *ptl;
2612         struct mmu_notifier_range range;
2613
2614         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2615                                 address & HPAGE_PMD_MASK,
2616                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2617         mmu_notifier_invalidate_range_start(&range);
2618         ptl = pmd_lock(vma->vm_mm, pmd);
2619
2620         /*
2621          * If caller asks to setup a migration entry, we need a folio to check
2622          * pmd against. Otherwise we can end up replacing wrong folio.
2623          */
2624         VM_BUG_ON(freeze && !folio);
2625         VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2626
2627         if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2628             is_pmd_migration_entry(*pmd)) {
2629                 /*
2630                  * It's safe to call pmd_page when folio is set because it's
2631                  * guaranteed that pmd is present.
2632                  */
2633                 if (folio && folio != page_folio(pmd_page(*pmd)))
2634                         goto out;
2635                 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2636         }
2637
2638 out:
2639         spin_unlock(ptl);
2640         mmu_notifier_invalidate_range_end(&range);
2641 }
2642
2643 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2644                 bool freeze, struct folio *folio)
2645 {
2646         pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2647
2648         if (!pmd)
2649                 return;
2650
2651         __split_huge_pmd(vma, pmd, address, freeze, folio);
2652 }
2653
2654 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2655 {
2656         /*
2657          * If the new address isn't hpage aligned and it could previously
2658          * contain an hugepage: check if we need to split an huge pmd.
2659          */
2660         if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2661             range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2662                          ALIGN(address, HPAGE_PMD_SIZE)))
2663                 split_huge_pmd_address(vma, address, false, NULL);
2664 }
2665
2666 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2667                              unsigned long start,
2668                              unsigned long end,
2669                              long adjust_next)
2670 {
2671         /* Check if we need to split start first. */
2672         split_huge_pmd_if_needed(vma, start);
2673
2674         /* Check if we need to split end next. */
2675         split_huge_pmd_if_needed(vma, end);
2676
2677         /*
2678          * If we're also updating the next vma vm_start,
2679          * check if we need to split it.
2680          */
2681         if (adjust_next > 0) {
2682                 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2683                 unsigned long nstart = next->vm_start;
2684                 nstart += adjust_next;
2685                 split_huge_pmd_if_needed(next, nstart);
2686         }
2687 }
2688
2689 static void unmap_folio(struct folio *folio)
2690 {
2691         enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2692                 TTU_SYNC | TTU_BATCH_FLUSH;
2693
2694         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2695
2696         /*
2697          * Anon pages need migration entries to preserve them, but file
2698          * pages can simply be left unmapped, then faulted back on demand.
2699          * If that is ever changed (perhaps for mlock), update remap_page().
2700          */
2701         if (folio_test_anon(folio))
2702                 try_to_migrate(folio, ttu_flags);
2703         else
2704                 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2705
2706         try_to_unmap_flush();
2707 }
2708
2709 static void remap_page(struct folio *folio, unsigned long nr)
2710 {
2711         int i = 0;
2712
2713         /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2714         if (!folio_test_anon(folio))
2715                 return;
2716         for (;;) {
2717                 remove_migration_ptes(folio, folio, true);
2718                 i += folio_nr_pages(folio);
2719                 if (i >= nr)
2720                         break;
2721                 folio = folio_next(folio);
2722         }
2723 }
2724
2725 static void lru_add_page_tail(struct page *head, struct page *tail,
2726                 struct lruvec *lruvec, struct list_head *list)
2727 {
2728         VM_BUG_ON_PAGE(!PageHead(head), head);
2729         VM_BUG_ON_PAGE(PageCompound(tail), head);
2730         VM_BUG_ON_PAGE(PageLRU(tail), head);
2731         lockdep_assert_held(&lruvec->lru_lock);
2732
2733         if (list) {
2734                 /* page reclaim is reclaiming a huge page */
2735                 VM_WARN_ON(PageLRU(head));
2736                 get_page(tail);
2737                 list_add_tail(&tail->lru, list);
2738         } else {
2739                 /* head is still on lru (and we have it frozen) */
2740                 VM_WARN_ON(!PageLRU(head));
2741                 if (PageUnevictable(tail))
2742                         tail->mlock_count = 0;
2743                 else
2744                         list_add_tail(&tail->lru, &head->lru);
2745                 SetPageLRU(tail);
2746         }
2747 }
2748
2749 static void __split_huge_page_tail(struct folio *folio, int tail,
2750                 struct lruvec *lruvec, struct list_head *list)
2751 {
2752         struct page *head = &folio->page;
2753         struct page *page_tail = head + tail;
2754         /*
2755          * Careful: new_folio is not a "real" folio before we cleared PageTail.
2756          * Don't pass it around before clear_compound_head().
2757          */
2758         struct folio *new_folio = (struct folio *)page_tail;
2759
2760         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2761
2762         /*
2763          * Clone page flags before unfreezing refcount.
2764          *
2765          * After successful get_page_unless_zero() might follow flags change,
2766          * for example lock_page() which set PG_waiters.
2767          *
2768          * Note that for mapped sub-pages of an anonymous THP,
2769          * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2770          * the migration entry instead from where remap_page() will restore it.
2771          * We can still have PG_anon_exclusive set on effectively unmapped and
2772          * unreferenced sub-pages of an anonymous THP: we can simply drop
2773          * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2774          */
2775         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2776         page_tail->flags |= (head->flags &
2777                         ((1L << PG_referenced) |
2778                          (1L << PG_swapbacked) |
2779                          (1L << PG_swapcache) |
2780                          (1L << PG_mlocked) |
2781                          (1L << PG_uptodate) |
2782                          (1L << PG_active) |
2783                          (1L << PG_workingset) |
2784                          (1L << PG_locked) |
2785                          (1L << PG_unevictable) |
2786 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2787                          (1L << PG_arch_2) |
2788                          (1L << PG_arch_3) |
2789 #endif
2790                          (1L << PG_dirty) |
2791                          LRU_GEN_MASK | LRU_REFS_MASK));
2792
2793         /* ->mapping in first and second tail page is replaced by other uses */
2794         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2795                         page_tail);
2796         page_tail->mapping = head->mapping;
2797         page_tail->index = head->index + tail;
2798
2799         /*
2800          * page->private should not be set in tail pages. Fix up and warn once
2801          * if private is unexpectedly set.
2802          */
2803         if (unlikely(page_tail->private)) {
2804                 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2805                 page_tail->private = 0;
2806         }
2807         if (folio_test_swapcache(folio))
2808                 new_folio->swap.val = folio->swap.val + tail;
2809
2810         /* Page flags must be visible before we make the page non-compound. */
2811         smp_wmb();
2812
2813         /*
2814          * Clear PageTail before unfreezing page refcount.
2815          *
2816          * After successful get_page_unless_zero() might follow put_page()
2817          * which needs correct compound_head().
2818          */
2819         clear_compound_head(page_tail);
2820
2821         /* Finally unfreeze refcount. Additional reference from page cache. */
2822         page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2823                                           folio_test_swapcache(folio)));
2824
2825         if (folio_test_young(folio))
2826                 folio_set_young(new_folio);
2827         if (folio_test_idle(folio))
2828                 folio_set_idle(new_folio);
2829
2830         folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2831
2832         /*
2833          * always add to the tail because some iterators expect new
2834          * pages to show after the currently processed elements - e.g.
2835          * migrate_pages
2836          */
2837         lru_add_page_tail(head, page_tail, lruvec, list);
2838 }
2839
2840 static void __split_huge_page(struct page *page, struct list_head *list,
2841                 pgoff_t end)
2842 {
2843         struct folio *folio = page_folio(page);
2844         struct page *head = &folio->page;
2845         struct lruvec *lruvec;
2846         struct address_space *swap_cache = NULL;
2847         unsigned long offset = 0;
2848         unsigned int nr = thp_nr_pages(head);
2849         int i, nr_dropped = 0;
2850
2851         /* complete memcg works before add pages to LRU */
2852         split_page_memcg(head, nr);
2853
2854         if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2855                 offset = swp_offset(folio->swap);
2856                 swap_cache = swap_address_space(folio->swap);
2857                 xa_lock(&swap_cache->i_pages);
2858         }
2859
2860         /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2861         lruvec = folio_lruvec_lock(folio);
2862
2863         ClearPageHasHWPoisoned(head);
2864
2865         for (i = nr - 1; i >= 1; i--) {
2866                 __split_huge_page_tail(folio, i, lruvec, list);
2867                 /* Some pages can be beyond EOF: drop them from page cache */
2868                 if (head[i].index >= end) {
2869                         struct folio *tail = page_folio(head + i);
2870
2871                         if (shmem_mapping(head->mapping))
2872                                 nr_dropped++;
2873                         else if (folio_test_clear_dirty(tail))
2874                                 folio_account_cleaned(tail,
2875                                         inode_to_wb(folio->mapping->host));
2876                         __filemap_remove_folio(tail, NULL);
2877                         folio_put(tail);
2878                 } else if (!PageAnon(page)) {
2879                         __xa_store(&head->mapping->i_pages, head[i].index,
2880                                         head + i, 0);
2881                 } else if (swap_cache) {
2882                         __xa_store(&swap_cache->i_pages, offset + i,
2883                                         head + i, 0);
2884                 }
2885         }
2886
2887         ClearPageCompound(head);
2888         unlock_page_lruvec(lruvec);
2889         /* Caller disabled irqs, so they are still disabled here */
2890
2891         split_page_owner(head, nr);
2892
2893         /* See comment in __split_huge_page_tail() */
2894         if (PageAnon(head)) {
2895                 /* Additional pin to swap cache */
2896                 if (PageSwapCache(head)) {
2897                         page_ref_add(head, 2);
2898                         xa_unlock(&swap_cache->i_pages);
2899                 } else {
2900                         page_ref_inc(head);
2901                 }
2902         } else {
2903                 /* Additional pin to page cache */
2904                 page_ref_add(head, 2);
2905                 xa_unlock(&head->mapping->i_pages);
2906         }
2907         local_irq_enable();
2908
2909         if (nr_dropped)
2910                 shmem_uncharge(head->mapping->host, nr_dropped);
2911         remap_page(folio, nr);
2912
2913         if (folio_test_swapcache(folio))
2914                 split_swap_cluster(folio->swap);
2915
2916         for (i = 0; i < nr; i++) {
2917                 struct page *subpage = head + i;
2918                 if (subpage == page)
2919                         continue;
2920                 unlock_page(subpage);
2921
2922                 /*
2923                  * Subpages may be freed if there wasn't any mapping
2924                  * like if add_to_swap() is running on a lru page that
2925                  * had its mapping zapped. And freeing these pages
2926                  * requires taking the lru_lock so we do the put_page
2927                  * of the tail pages after the split is complete.
2928                  */
2929                 free_page_and_swap_cache(subpage);
2930         }
2931 }
2932
2933 /* Racy check whether the huge page can be split */
2934 bool can_split_folio(struct folio *folio, int *pextra_pins)
2935 {
2936         int extra_pins;
2937
2938         /* Additional pins from page cache */
2939         if (folio_test_anon(folio))
2940                 extra_pins = folio_test_swapcache(folio) ?
2941                                 folio_nr_pages(folio) : 0;
2942         else
2943                 extra_pins = folio_nr_pages(folio);
2944         if (pextra_pins)
2945                 *pextra_pins = extra_pins;
2946         return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2947 }
2948
2949 /*
2950  * This function splits huge page into normal pages. @page can point to any
2951  * subpage of huge page to split. Split doesn't change the position of @page.
2952  *
2953  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2954  * The huge page must be locked.
2955  *
2956  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2957  *
2958  * Both head page and tail pages will inherit mapping, flags, and so on from
2959  * the hugepage.
2960  *
2961  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2962  * they are not mapped.
2963  *
2964  * Returns 0 if the hugepage is split successfully.
2965  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2966  * us.
2967  */
2968 int split_huge_page_to_list(struct page *page, struct list_head *list)
2969 {
2970         struct folio *folio = page_folio(page);
2971         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2972         XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2973         struct anon_vma *anon_vma = NULL;
2974         struct address_space *mapping = NULL;
2975         int extra_pins, ret;
2976         pgoff_t end;
2977         bool is_hzp;
2978
2979         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2980         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2981
2982         is_hzp = is_huge_zero_page(&folio->page);
2983         if (is_hzp) {
2984                 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2985                 return -EBUSY;
2986         }
2987
2988         if (folio_test_writeback(folio))
2989                 return -EBUSY;
2990
2991         if (folio_test_anon(folio)) {
2992                 /*
2993                  * The caller does not necessarily hold an mmap_lock that would
2994                  * prevent the anon_vma disappearing so we first we take a
2995                  * reference to it and then lock the anon_vma for write. This
2996                  * is similar to folio_lock_anon_vma_read except the write lock
2997                  * is taken to serialise against parallel split or collapse
2998                  * operations.
2999                  */
3000                 anon_vma = folio_get_anon_vma(folio);
3001                 if (!anon_vma) {
3002                         ret = -EBUSY;
3003                         goto out;
3004                 }
3005                 end = -1;
3006                 mapping = NULL;
3007                 anon_vma_lock_write(anon_vma);
3008         } else {
3009                 gfp_t gfp;
3010
3011                 mapping = folio->mapping;
3012
3013                 /* Truncated ? */
3014                 if (!mapping) {
3015                         ret = -EBUSY;
3016                         goto out;
3017                 }
3018
3019                 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3020                                                         GFP_RECLAIM_MASK);
3021
3022                 if (!filemap_release_folio(folio, gfp)) {
3023                         ret = -EBUSY;
3024                         goto out;
3025                 }
3026
3027                 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3028                 if (xas_error(&xas)) {
3029                         ret = xas_error(&xas);
3030                         goto out;
3031                 }
3032
3033                 anon_vma = NULL;
3034                 i_mmap_lock_read(mapping);
3035
3036                 /*
3037                  *__split_huge_page() may need to trim off pages beyond EOF:
3038                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3039                  * which cannot be nested inside the page tree lock. So note
3040                  * end now: i_size itself may be changed at any moment, but
3041                  * folio lock is good enough to serialize the trimming.
3042                  */
3043                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3044                 if (shmem_mapping(mapping))
3045                         end = shmem_fallocend(mapping->host, end);
3046         }
3047
3048         /*
3049          * Racy check if we can split the page, before unmap_folio() will
3050          * split PMDs
3051          */
3052         if (!can_split_folio(folio, &extra_pins)) {
3053                 ret = -EAGAIN;
3054                 goto out_unlock;
3055         }
3056
3057         unmap_folio(folio);
3058
3059         /* block interrupt reentry in xa_lock and spinlock */
3060         local_irq_disable();
3061         if (mapping) {
3062                 /*
3063                  * Check if the folio is present in page cache.
3064                  * We assume all tail are present too, if folio is there.
3065                  */
3066                 xas_lock(&xas);
3067                 xas_reset(&xas);
3068                 if (xas_load(&xas) != folio)
3069                         goto fail;
3070         }
3071
3072         /* Prevent deferred_split_scan() touching ->_refcount */
3073         spin_lock(&ds_queue->split_queue_lock);
3074         if (folio_ref_freeze(folio, 1 + extra_pins)) {
3075                 if (!list_empty(&folio->_deferred_list)) {
3076                         ds_queue->split_queue_len--;
3077                         list_del(&folio->_deferred_list);
3078                 }
3079                 spin_unlock(&ds_queue->split_queue_lock);
3080                 if (mapping) {
3081                         int nr = folio_nr_pages(folio);
3082
3083                         xas_split(&xas, folio, folio_order(folio));
3084                         if (folio_test_pmd_mappable(folio)) {
3085                                 if (folio_test_swapbacked(folio)) {
3086                                         __lruvec_stat_mod_folio(folio,
3087                                                         NR_SHMEM_THPS, -nr);
3088                                 } else {
3089                                         __lruvec_stat_mod_folio(folio,
3090                                                         NR_FILE_THPS, -nr);
3091                                         filemap_nr_thps_dec(mapping);
3092                                 }
3093                         }
3094                 }
3095
3096                 __split_huge_page(page, list, end);
3097                 ret = 0;
3098         } else {
3099                 spin_unlock(&ds_queue->split_queue_lock);
3100 fail:
3101                 if (mapping)
3102                         xas_unlock(&xas);
3103                 local_irq_enable();
3104                 remap_page(folio, folio_nr_pages(folio));
3105                 ret = -EAGAIN;
3106         }
3107
3108 out_unlock:
3109         if (anon_vma) {
3110                 anon_vma_unlock_write(anon_vma);
3111                 put_anon_vma(anon_vma);
3112         }
3113         if (mapping)
3114                 i_mmap_unlock_read(mapping);
3115 out:
3116         xas_destroy(&xas);
3117         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3118         return ret;
3119 }
3120
3121 void folio_undo_large_rmappable(struct folio *folio)
3122 {
3123         struct deferred_split *ds_queue;
3124         unsigned long flags;
3125
3126         /*
3127          * At this point, there is no one trying to add the folio to
3128          * deferred_list. If folio is not in deferred_list, it's safe
3129          * to check without acquiring the split_queue_lock.
3130          */
3131         if (data_race(list_empty(&folio->_deferred_list)))
3132                 return;
3133
3134         ds_queue = get_deferred_split_queue(folio);
3135         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3136         if (!list_empty(&folio->_deferred_list)) {
3137                 ds_queue->split_queue_len--;
3138                 list_del_init(&folio->_deferred_list);
3139         }
3140         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3141 }
3142
3143 void deferred_split_folio(struct folio *folio)
3144 {
3145         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3146 #ifdef CONFIG_MEMCG
3147         struct mem_cgroup *memcg = folio_memcg(folio);
3148 #endif
3149         unsigned long flags;
3150
3151         VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3152
3153         /*
3154          * The try_to_unmap() in page reclaim path might reach here too,
3155          * this may cause a race condition to corrupt deferred split queue.
3156          * And, if page reclaim is already handling the same folio, it is
3157          * unnecessary to handle it again in shrinker.
3158          *
3159          * Check the swapcache flag to determine if the folio is being
3160          * handled by page reclaim since THP swap would add the folio into
3161          * swap cache before calling try_to_unmap().
3162          */
3163         if (folio_test_swapcache(folio))
3164                 return;
3165
3166         if (!list_empty(&folio->_deferred_list))
3167                 return;
3168
3169         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3170         if (list_empty(&folio->_deferred_list)) {
3171                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3172                 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3173                 ds_queue->split_queue_len++;
3174 #ifdef CONFIG_MEMCG
3175                 if (memcg)
3176                         set_shrinker_bit(memcg, folio_nid(folio),
3177                                          deferred_split_shrinker->id);
3178 #endif
3179         }
3180         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3181 }
3182
3183 static unsigned long deferred_split_count(struct shrinker *shrink,
3184                 struct shrink_control *sc)
3185 {
3186         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3187         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3188
3189 #ifdef CONFIG_MEMCG
3190         if (sc->memcg)
3191                 ds_queue = &sc->memcg->deferred_split_queue;
3192 #endif
3193         return READ_ONCE(ds_queue->split_queue_len);
3194 }
3195
3196 static unsigned long deferred_split_scan(struct shrinker *shrink,
3197                 struct shrink_control *sc)
3198 {
3199         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3200         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3201         unsigned long flags;
3202         LIST_HEAD(list);
3203         struct folio *folio, *next;
3204         int split = 0;
3205
3206 #ifdef CONFIG_MEMCG
3207         if (sc->memcg)
3208                 ds_queue = &sc->memcg->deferred_split_queue;
3209 #endif
3210
3211         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3212         /* Take pin on all head pages to avoid freeing them under us */
3213         list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3214                                                         _deferred_list) {
3215                 if (folio_try_get(folio)) {
3216                         list_move(&folio->_deferred_list, &list);
3217                 } else {
3218                         /* We lost race with folio_put() */
3219                         list_del_init(&folio->_deferred_list);
3220                         ds_queue->split_queue_len--;
3221                 }
3222                 if (!--sc->nr_to_scan)
3223                         break;
3224         }
3225         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3226
3227         list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3228                 if (!folio_trylock(folio))
3229                         goto next;
3230                 /* split_huge_page() removes page from list on success */
3231                 if (!split_folio(folio))
3232                         split++;
3233                 folio_unlock(folio);
3234 next:
3235                 folio_put(folio);
3236         }
3237
3238         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3239         list_splice_tail(&list, &ds_queue->split_queue);
3240         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3241
3242         /*
3243          * Stop shrinker if we didn't split any page, but the queue is empty.
3244          * This can happen if pages were freed under us.
3245          */
3246         if (!split && list_empty(&ds_queue->split_queue))
3247                 return SHRINK_STOP;
3248         return split;
3249 }
3250
3251 #ifdef CONFIG_DEBUG_FS
3252 static void split_huge_pages_all(void)
3253 {
3254         struct zone *zone;
3255         struct page *page;
3256         struct folio *folio;
3257         unsigned long pfn, max_zone_pfn;
3258         unsigned long total = 0, split = 0;
3259
3260         pr_debug("Split all THPs\n");
3261         for_each_zone(zone) {
3262                 if (!managed_zone(zone))
3263                         continue;
3264                 max_zone_pfn = zone_end_pfn(zone);
3265                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3266                         int nr_pages;
3267
3268                         page = pfn_to_online_page(pfn);
3269                         if (!page || PageTail(page))
3270                                 continue;
3271                         folio = page_folio(page);
3272                         if (!folio_try_get(folio))
3273                                 continue;
3274
3275                         if (unlikely(page_folio(page) != folio))
3276                                 goto next;
3277
3278                         if (zone != folio_zone(folio))
3279                                 goto next;
3280
3281                         if (!folio_test_large(folio)
3282                                 || folio_test_hugetlb(folio)
3283                                 || !folio_test_lru(folio))
3284                                 goto next;
3285
3286                         total++;
3287                         folio_lock(folio);
3288                         nr_pages = folio_nr_pages(folio);
3289                         if (!split_folio(folio))
3290                                 split++;
3291                         pfn += nr_pages - 1;
3292                         folio_unlock(folio);
3293 next:
3294                         folio_put(folio);
3295                         cond_resched();
3296                 }
3297         }
3298
3299         pr_debug("%lu of %lu THP split\n", split, total);
3300 }
3301
3302 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3303 {
3304         return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3305                     is_vm_hugetlb_page(vma);
3306 }
3307
3308 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3309                                 unsigned long vaddr_end)
3310 {
3311         int ret = 0;
3312         struct task_struct *task;
3313         struct mm_struct *mm;
3314         unsigned long total = 0, split = 0;
3315         unsigned long addr;
3316
3317         vaddr_start &= PAGE_MASK;
3318         vaddr_end &= PAGE_MASK;
3319
3320         /* Find the task_struct from pid */
3321         rcu_read_lock();
3322         task = find_task_by_vpid(pid);
3323         if (!task) {
3324                 rcu_read_unlock();
3325                 ret = -ESRCH;
3326                 goto out;
3327         }
3328         get_task_struct(task);
3329         rcu_read_unlock();
3330
3331         /* Find the mm_struct */
3332         mm = get_task_mm(task);
3333         put_task_struct(task);
3334
3335         if (!mm) {
3336                 ret = -EINVAL;
3337                 goto out;
3338         }
3339
3340         pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3341                  pid, vaddr_start, vaddr_end);
3342
3343         mmap_read_lock(mm);
3344         /*
3345          * always increase addr by PAGE_SIZE, since we could have a PTE page
3346          * table filled with PTE-mapped THPs, each of which is distinct.
3347          */
3348         for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3349                 struct vm_area_struct *vma = vma_lookup(mm, addr);
3350                 struct page *page;
3351                 struct folio *folio;
3352
3353                 if (!vma)
3354                         break;
3355
3356                 /* skip special VMA and hugetlb VMA */
3357                 if (vma_not_suitable_for_thp_split(vma)) {
3358                         addr = vma->vm_end;
3359                         continue;
3360                 }
3361
3362                 /* FOLL_DUMP to ignore special (like zero) pages */
3363                 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3364
3365                 if (IS_ERR_OR_NULL(page))
3366                         continue;
3367
3368                 folio = page_folio(page);
3369                 if (!is_transparent_hugepage(folio))
3370                         goto next;
3371
3372                 total++;
3373                 if (!can_split_folio(folio, NULL))
3374                         goto next;
3375
3376                 if (!folio_trylock(folio))
3377                         goto next;
3378
3379                 if (!split_folio(folio))
3380                         split++;
3381
3382                 folio_unlock(folio);
3383 next:
3384                 folio_put(folio);
3385                 cond_resched();
3386         }
3387         mmap_read_unlock(mm);
3388         mmput(mm);
3389
3390         pr_debug("%lu of %lu THP split\n", split, total);
3391
3392 out:
3393         return ret;
3394 }
3395
3396 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3397                                 pgoff_t off_end)
3398 {
3399         struct filename *file;
3400         struct file *candidate;
3401         struct address_space *mapping;
3402         int ret = -EINVAL;
3403         pgoff_t index;
3404         int nr_pages = 1;
3405         unsigned long total = 0, split = 0;
3406
3407         file = getname_kernel(file_path);
3408         if (IS_ERR(file))
3409                 return ret;
3410
3411         candidate = file_open_name(file, O_RDONLY, 0);
3412         if (IS_ERR(candidate))
3413                 goto out;
3414
3415         pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3416                  file_path, off_start, off_end);
3417
3418         mapping = candidate->f_mapping;
3419
3420         for (index = off_start; index < off_end; index += nr_pages) {
3421                 struct folio *folio = filemap_get_folio(mapping, index);
3422
3423                 nr_pages = 1;
3424                 if (IS_ERR(folio))
3425                         continue;
3426
3427                 if (!folio_test_large(folio))
3428                         goto next;
3429
3430                 total++;
3431                 nr_pages = folio_nr_pages(folio);
3432
3433                 if (!folio_trylock(folio))
3434                         goto next;
3435
3436                 if (!split_folio(folio))
3437                         split++;
3438
3439                 folio_unlock(folio);
3440 next:
3441                 folio_put(folio);
3442                 cond_resched();
3443         }
3444
3445         filp_close(candidate, NULL);
3446         ret = 0;
3447
3448         pr_debug("%lu of %lu file-backed THP split\n", split, total);
3449 out:
3450         putname(file);
3451         return ret;
3452 }
3453
3454 #define MAX_INPUT_BUF_SZ 255
3455
3456 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3457                                 size_t count, loff_t *ppops)
3458 {
3459         static DEFINE_MUTEX(split_debug_mutex);
3460         ssize_t ret;
3461         /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3462         char input_buf[MAX_INPUT_BUF_SZ];
3463         int pid;
3464         unsigned long vaddr_start, vaddr_end;
3465
3466         ret = mutex_lock_interruptible(&split_debug_mutex);
3467         if (ret)
3468                 return ret;
3469
3470         ret = -EFAULT;
3471
3472         memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3473         if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3474                 goto out;
3475
3476         input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3477
3478         if (input_buf[0] == '/') {
3479                 char *tok;
3480                 char *buf = input_buf;
3481                 char file_path[MAX_INPUT_BUF_SZ];
3482                 pgoff_t off_start = 0, off_end = 0;
3483                 size_t input_len = strlen(input_buf);
3484
3485                 tok = strsep(&buf, ",");
3486                 if (tok) {
3487                         strcpy(file_path, tok);
3488                 } else {
3489                         ret = -EINVAL;
3490                         goto out;
3491                 }
3492
3493                 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3494                 if (ret != 2) {
3495                         ret = -EINVAL;
3496                         goto out;
3497                 }
3498                 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3499                 if (!ret)
3500                         ret = input_len;
3501
3502                 goto out;
3503         }
3504
3505         ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3506         if (ret == 1 && pid == 1) {
3507                 split_huge_pages_all();
3508                 ret = strlen(input_buf);
3509                 goto out;
3510         } else if (ret != 3) {
3511                 ret = -EINVAL;
3512                 goto out;
3513         }
3514
3515         ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3516         if (!ret)
3517                 ret = strlen(input_buf);
3518 out:
3519         mutex_unlock(&split_debug_mutex);
3520         return ret;
3521
3522 }
3523
3524 static const struct file_operations split_huge_pages_fops = {
3525         .owner   = THIS_MODULE,
3526         .write   = split_huge_pages_write,
3527         .llseek  = no_llseek,
3528 };
3529
3530 static int __init split_huge_pages_debugfs(void)
3531 {
3532         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3533                             &split_huge_pages_fops);
3534         return 0;
3535 }
3536 late_initcall(split_huge_pages_debugfs);
3537 #endif
3538
3539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3540 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3541                 struct page *page)
3542 {
3543         struct folio *folio = page_folio(page);
3544         struct vm_area_struct *vma = pvmw->vma;
3545         struct mm_struct *mm = vma->vm_mm;
3546         unsigned long address = pvmw->address;
3547         bool anon_exclusive;
3548         pmd_t pmdval;
3549         swp_entry_t entry;
3550         pmd_t pmdswp;
3551
3552         if (!(pvmw->pmd && !pvmw->pte))
3553                 return 0;
3554
3555         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3556         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3557
3558         /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3559         anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3560         if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3561                 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3562                 return -EBUSY;
3563         }
3564
3565         if (pmd_dirty(pmdval))
3566                 folio_set_dirty(folio);
3567         if (pmd_write(pmdval))
3568                 entry = make_writable_migration_entry(page_to_pfn(page));
3569         else if (anon_exclusive)
3570                 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3571         else
3572                 entry = make_readable_migration_entry(page_to_pfn(page));
3573         if (pmd_young(pmdval))
3574                 entry = make_migration_entry_young(entry);
3575         if (pmd_dirty(pmdval))
3576                 entry = make_migration_entry_dirty(entry);
3577         pmdswp = swp_entry_to_pmd(entry);
3578         if (pmd_soft_dirty(pmdval))
3579                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3580         if (pmd_uffd_wp(pmdval))
3581                 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3582         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3583         folio_remove_rmap_pmd(folio, page, vma);
3584         folio_put(folio);
3585         trace_set_migration_pmd(address, pmd_val(pmdswp));
3586
3587         return 0;
3588 }
3589
3590 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3591 {
3592         struct folio *folio = page_folio(new);
3593         struct vm_area_struct *vma = pvmw->vma;
3594         struct mm_struct *mm = vma->vm_mm;
3595         unsigned long address = pvmw->address;
3596         unsigned long haddr = address & HPAGE_PMD_MASK;
3597         pmd_t pmde;
3598         swp_entry_t entry;
3599
3600         if (!(pvmw->pmd && !pvmw->pte))
3601                 return;
3602
3603         entry = pmd_to_swp_entry(*pvmw->pmd);
3604         folio_get(folio);
3605         pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3606         if (pmd_swp_soft_dirty(*pvmw->pmd))
3607                 pmde = pmd_mksoft_dirty(pmde);
3608         if (is_writable_migration_entry(entry))
3609                 pmde = pmd_mkwrite(pmde, vma);
3610         if (pmd_swp_uffd_wp(*pvmw->pmd))
3611                 pmde = pmd_mkuffd_wp(pmde);
3612         if (!is_migration_entry_young(entry))
3613                 pmde = pmd_mkold(pmde);
3614         /* NOTE: this may contain setting soft-dirty on some archs */
3615         if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3616                 pmde = pmd_mkdirty(pmde);
3617
3618         if (folio_test_anon(folio)) {
3619                 rmap_t rmap_flags = RMAP_NONE;
3620
3621                 if (!is_readable_migration_entry(entry))
3622                         rmap_flags |= RMAP_EXCLUSIVE;
3623
3624                 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3625         } else {
3626                 folio_add_file_rmap_pmd(folio, new, vma);
3627         }
3628         VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3629         set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3630
3631         /* No need to invalidate - it was non-present before */
3632         update_mmu_cache_pmd(vma, address, pvmw->pmd);
3633         trace_remove_migration_pmd(address, pmd_val(pmde));
3634 }
3635 #endif