Merge tag 'for-6.9-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90         {
91                 .procname       = "oops_limit",
92                 .data           = &oops_limit,
93                 .maxlen         = sizeof(oops_limit),
94                 .mode           = 0644,
95                 .proc_handler   = proc_douintvec,
96         },
97         { }
98 };
99
100 static __init int kernel_exit_sysctls_init(void)
101 {
102         register_sysctl_init("kernel", kern_exit_table);
103         return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107
108 static atomic_t oops_count = ATOMIC_INIT(0);
109
110 #ifdef CONFIG_SYSFS
111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112                                char *page)
113 {
114         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
119 static __init int kernel_exit_sysfs_init(void)
120 {
121         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122         return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126
127 static void __unhash_process(struct task_struct *p, bool group_dead)
128 {
129         nr_threads--;
130         detach_pid(p, PIDTYPE_PID);
131         if (group_dead) {
132                 detach_pid(p, PIDTYPE_TGID);
133                 detach_pid(p, PIDTYPE_PGID);
134                 detach_pid(p, PIDTYPE_SID);
135
136                 list_del_rcu(&p->tasks);
137                 list_del_init(&p->sibling);
138                 __this_cpu_dec(process_counts);
139         }
140         list_del_rcu(&p->thread_node);
141 }
142
143 /*
144  * This function expects the tasklist_lock write-locked.
145  */
146 static void __exit_signal(struct task_struct *tsk)
147 {
148         struct signal_struct *sig = tsk->signal;
149         bool group_dead = thread_group_leader(tsk);
150         struct sighand_struct *sighand;
151         struct tty_struct *tty;
152         u64 utime, stime;
153
154         sighand = rcu_dereference_check(tsk->sighand,
155                                         lockdep_tasklist_lock_is_held());
156         spin_lock(&sighand->siglock);
157
158 #ifdef CONFIG_POSIX_TIMERS
159         posix_cpu_timers_exit(tsk);
160         if (group_dead)
161                 posix_cpu_timers_exit_group(tsk);
162 #endif
163
164         if (group_dead) {
165                 tty = sig->tty;
166                 sig->tty = NULL;
167         } else {
168                 /*
169                  * If there is any task waiting for the group exit
170                  * then notify it:
171                  */
172                 if (sig->notify_count > 0 && !--sig->notify_count)
173                         wake_up_process(sig->group_exec_task);
174
175                 if (tsk == sig->curr_target)
176                         sig->curr_target = next_thread(tsk);
177         }
178
179         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180                               sizeof(unsigned long long));
181
182         /*
183          * Accumulate here the counters for all threads as they die. We could
184          * skip the group leader because it is the last user of signal_struct,
185          * but we want to avoid the race with thread_group_cputime() which can
186          * see the empty ->thread_head list.
187          */
188         task_cputime(tsk, &utime, &stime);
189         write_seqlock(&sig->stats_lock);
190         sig->utime += utime;
191         sig->stime += stime;
192         sig->gtime += task_gtime(tsk);
193         sig->min_flt += tsk->min_flt;
194         sig->maj_flt += tsk->maj_flt;
195         sig->nvcsw += tsk->nvcsw;
196         sig->nivcsw += tsk->nivcsw;
197         sig->inblock += task_io_get_inblock(tsk);
198         sig->oublock += task_io_get_oublock(tsk);
199         task_io_accounting_add(&sig->ioac, &tsk->ioac);
200         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201         sig->nr_threads--;
202         __unhash_process(tsk, group_dead);
203         write_sequnlock(&sig->stats_lock);
204
205         /*
206          * Do this under ->siglock, we can race with another thread
207          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208          */
209         flush_sigqueue(&tsk->pending);
210         tsk->sighand = NULL;
211         spin_unlock(&sighand->siglock);
212
213         __cleanup_sighand(sighand);
214         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215         if (group_dead) {
216                 flush_sigqueue(&sig->shared_pending);
217                 tty_kref_put(tty);
218         }
219 }
220
221 static void delayed_put_task_struct(struct rcu_head *rhp)
222 {
223         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224
225         kprobe_flush_task(tsk);
226         rethook_flush_task(tsk);
227         perf_event_delayed_put(tsk);
228         trace_sched_process_free(tsk);
229         put_task_struct(tsk);
230 }
231
232 void put_task_struct_rcu_user(struct task_struct *task)
233 {
234         if (refcount_dec_and_test(&task->rcu_users))
235                 call_rcu(&task->rcu, delayed_put_task_struct);
236 }
237
238 void __weak release_thread(struct task_struct *dead_task)
239 {
240 }
241
242 void release_task(struct task_struct *p)
243 {
244         struct task_struct *leader;
245         struct pid *thread_pid;
246         int zap_leader;
247 repeat:
248         /* don't need to get the RCU readlock here - the process is dead and
249          * can't be modifying its own credentials. But shut RCU-lockdep up */
250         rcu_read_lock();
251         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
252         rcu_read_unlock();
253
254         cgroup_release(p);
255
256         write_lock_irq(&tasklist_lock);
257         ptrace_release_task(p);
258         thread_pid = get_pid(p->thread_pid);
259         __exit_signal(p);
260
261         /*
262          * If we are the last non-leader member of the thread
263          * group, and the leader is zombie, then notify the
264          * group leader's parent process. (if it wants notification.)
265          */
266         zap_leader = 0;
267         leader = p->group_leader;
268         if (leader != p && thread_group_empty(leader)
269                         && leader->exit_state == EXIT_ZOMBIE) {
270                 /*
271                  * If we were the last child thread and the leader has
272                  * exited already, and the leader's parent ignores SIGCHLD,
273                  * then we are the one who should release the leader.
274                  */
275                 zap_leader = do_notify_parent(leader, leader->exit_signal);
276                 if (zap_leader)
277                         leader->exit_state = EXIT_DEAD;
278         }
279
280         write_unlock_irq(&tasklist_lock);
281         seccomp_filter_release(p);
282         proc_flush_pid(thread_pid);
283         put_pid(thread_pid);
284         release_thread(p);
285         put_task_struct_rcu_user(p);
286
287         p = leader;
288         if (unlikely(zap_leader))
289                 goto repeat;
290 }
291
292 int rcuwait_wake_up(struct rcuwait *w)
293 {
294         int ret = 0;
295         struct task_struct *task;
296
297         rcu_read_lock();
298
299         /*
300          * Order condition vs @task, such that everything prior to the load
301          * of @task is visible. This is the condition as to why the user called
302          * rcuwait_wake() in the first place. Pairs with set_current_state()
303          * barrier (A) in rcuwait_wait_event().
304          *
305          *    WAIT                WAKE
306          *    [S] tsk = current   [S] cond = true
307          *        MB (A)              MB (B)
308          *    [L] cond            [L] tsk
309          */
310         smp_mb(); /* (B) */
311
312         task = rcu_dereference(w->task);
313         if (task)
314                 ret = wake_up_process(task);
315         rcu_read_unlock();
316
317         return ret;
318 }
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330                                         struct task_struct *ignored_task)
331 {
332         struct task_struct *p;
333
334         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335                 if ((p == ignored_task) ||
336                     (p->exit_state && thread_group_empty(p)) ||
337                     is_global_init(p->real_parent))
338                         continue;
339
340                 if (task_pgrp(p->real_parent) != pgrp &&
341                     task_session(p->real_parent) == task_session(p))
342                         return 0;
343         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344
345         return 1;
346 }
347
348 int is_current_pgrp_orphaned(void)
349 {
350         int retval;
351
352         read_lock(&tasklist_lock);
353         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354         read_unlock(&tasklist_lock);
355
356         return retval;
357 }
358
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361         struct task_struct *p;
362
363         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
365                         return true;
366         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368         return false;
369 }
370
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379         struct pid *pgrp = task_pgrp(tsk);
380         struct task_struct *ignored_task = tsk;
381
382         if (!parent)
383                 /* exit: our father is in a different pgrp than
384                  * we are and we were the only connection outside.
385                  */
386                 parent = tsk->real_parent;
387         else
388                 /* reparent: our child is in a different pgrp than
389                  * we are, and it was the only connection outside.
390                  */
391                 ignored_task = NULL;
392
393         if (task_pgrp(parent) != pgrp &&
394             task_session(parent) == task_session(tsk) &&
395             will_become_orphaned_pgrp(pgrp, ignored_task) &&
396             has_stopped_jobs(pgrp)) {
397                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399         }
400 }
401
402 static void coredump_task_exit(struct task_struct *tsk)
403 {
404         struct core_state *core_state;
405
406         /*
407          * Serialize with any possible pending coredump.
408          * We must hold siglock around checking core_state
409          * and setting PF_POSTCOREDUMP.  The core-inducing thread
410          * will increment ->nr_threads for each thread in the
411          * group without PF_POSTCOREDUMP set.
412          */
413         spin_lock_irq(&tsk->sighand->siglock);
414         tsk->flags |= PF_POSTCOREDUMP;
415         core_state = tsk->signal->core_state;
416         spin_unlock_irq(&tsk->sighand->siglock);
417
418         /* The vhost_worker does not particpate in coredumps */
419         if (core_state &&
420             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421                 struct core_thread self;
422
423                 self.task = current;
424                 if (self.task->flags & PF_SIGNALED)
425                         self.next = xchg(&core_state->dumper.next, &self);
426                 else
427                         self.task = NULL;
428                 /*
429                  * Implies mb(), the result of xchg() must be visible
430                  * to core_state->dumper.
431                  */
432                 if (atomic_dec_and_test(&core_state->nr_threads))
433                         complete(&core_state->startup);
434
435                 for (;;) {
436                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437                         if (!self.task) /* see coredump_finish() */
438                                 break;
439                         schedule();
440                 }
441                 __set_current_state(TASK_RUNNING);
442         }
443 }
444
445 #ifdef CONFIG_MEMCG
446 /*
447  * A task is exiting.   If it owned this mm, find a new owner for the mm.
448  */
449 void mm_update_next_owner(struct mm_struct *mm)
450 {
451         struct task_struct *c, *g, *p = current;
452
453 retry:
454         /*
455          * If the exiting or execing task is not the owner, it's
456          * someone else's problem.
457          */
458         if (mm->owner != p)
459                 return;
460         /*
461          * The current owner is exiting/execing and there are no other
462          * candidates.  Do not leave the mm pointing to a possibly
463          * freed task structure.
464          */
465         if (atomic_read(&mm->mm_users) <= 1) {
466                 WRITE_ONCE(mm->owner, NULL);
467                 return;
468         }
469
470         read_lock(&tasklist_lock);
471         /*
472          * Search in the children
473          */
474         list_for_each_entry(c, &p->children, sibling) {
475                 if (c->mm == mm)
476                         goto assign_new_owner;
477         }
478
479         /*
480          * Search in the siblings
481          */
482         list_for_each_entry(c, &p->real_parent->children, sibling) {
483                 if (c->mm == mm)
484                         goto assign_new_owner;
485         }
486
487         /*
488          * Search through everything else, we should not get here often.
489          */
490         for_each_process(g) {
491                 if (g->flags & PF_KTHREAD)
492                         continue;
493                 for_each_thread(g, c) {
494                         if (c->mm == mm)
495                                 goto assign_new_owner;
496                         if (c->mm)
497                                 break;
498                 }
499         }
500         read_unlock(&tasklist_lock);
501         /*
502          * We found no owner yet mm_users > 1: this implies that we are
503          * most likely racing with swapoff (try_to_unuse()) or /proc or
504          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
505          */
506         WRITE_ONCE(mm->owner, NULL);
507         return;
508
509 assign_new_owner:
510         BUG_ON(c == p);
511         get_task_struct(c);
512         /*
513          * The task_lock protects c->mm from changing.
514          * We always want mm->owner->mm == mm
515          */
516         task_lock(c);
517         /*
518          * Delay read_unlock() till we have the task_lock()
519          * to ensure that c does not slip away underneath us
520          */
521         read_unlock(&tasklist_lock);
522         if (c->mm != mm) {
523                 task_unlock(c);
524                 put_task_struct(c);
525                 goto retry;
526         }
527         WRITE_ONCE(mm->owner, c);
528         lru_gen_migrate_mm(mm);
529         task_unlock(c);
530         put_task_struct(c);
531 }
532 #endif /* CONFIG_MEMCG */
533
534 /*
535  * Turn us into a lazy TLB process if we
536  * aren't already..
537  */
538 static void exit_mm(void)
539 {
540         struct mm_struct *mm = current->mm;
541
542         exit_mm_release(current, mm);
543         if (!mm)
544                 return;
545         mmap_read_lock(mm);
546         mmgrab_lazy_tlb(mm);
547         BUG_ON(mm != current->active_mm);
548         /* more a memory barrier than a real lock */
549         task_lock(current);
550         /*
551          * When a thread stops operating on an address space, the loop
552          * in membarrier_private_expedited() may not observe that
553          * tsk->mm, and the loop in membarrier_global_expedited() may
554          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555          * rq->membarrier_state, so those would not issue an IPI.
556          * Membarrier requires a memory barrier after accessing
557          * user-space memory, before clearing tsk->mm or the
558          * rq->membarrier_state.
559          */
560         smp_mb__after_spinlock();
561         local_irq_disable();
562         current->mm = NULL;
563         membarrier_update_current_mm(NULL);
564         enter_lazy_tlb(mm, current);
565         local_irq_enable();
566         task_unlock(current);
567         mmap_read_unlock(mm);
568         mm_update_next_owner(mm);
569         mmput(mm);
570         if (test_thread_flag(TIF_MEMDIE))
571                 exit_oom_victim();
572 }
573
574 static struct task_struct *find_alive_thread(struct task_struct *p)
575 {
576         struct task_struct *t;
577
578         for_each_thread(p, t) {
579                 if (!(t->flags & PF_EXITING))
580                         return t;
581         }
582         return NULL;
583 }
584
585 static struct task_struct *find_child_reaper(struct task_struct *father,
586                                                 struct list_head *dead)
587         __releases(&tasklist_lock)
588         __acquires(&tasklist_lock)
589 {
590         struct pid_namespace *pid_ns = task_active_pid_ns(father);
591         struct task_struct *reaper = pid_ns->child_reaper;
592         struct task_struct *p, *n;
593
594         if (likely(reaper != father))
595                 return reaper;
596
597         reaper = find_alive_thread(father);
598         if (reaper) {
599                 pid_ns->child_reaper = reaper;
600                 return reaper;
601         }
602
603         write_unlock_irq(&tasklist_lock);
604
605         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606                 list_del_init(&p->ptrace_entry);
607                 release_task(p);
608         }
609
610         zap_pid_ns_processes(pid_ns);
611         write_lock_irq(&tasklist_lock);
612
613         return father;
614 }
615
616 /*
617  * When we die, we re-parent all our children, and try to:
618  * 1. give them to another thread in our thread group, if such a member exists
619  * 2. give it to the first ancestor process which prctl'd itself as a
620  *    child_subreaper for its children (like a service manager)
621  * 3. give it to the init process (PID 1) in our pid namespace
622  */
623 static struct task_struct *find_new_reaper(struct task_struct *father,
624                                            struct task_struct *child_reaper)
625 {
626         struct task_struct *thread, *reaper;
627
628         thread = find_alive_thread(father);
629         if (thread)
630                 return thread;
631
632         if (father->signal->has_child_subreaper) {
633                 unsigned int ns_level = task_pid(father)->level;
634                 /*
635                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
636                  * We can't check reaper != child_reaper to ensure we do not
637                  * cross the namespaces, the exiting parent could be injected
638                  * by setns() + fork().
639                  * We check pid->level, this is slightly more efficient than
640                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641                  */
642                 for (reaper = father->real_parent;
643                      task_pid(reaper)->level == ns_level;
644                      reaper = reaper->real_parent) {
645                         if (reaper == &init_task)
646                                 break;
647                         if (!reaper->signal->is_child_subreaper)
648                                 continue;
649                         thread = find_alive_thread(reaper);
650                         if (thread)
651                                 return thread;
652                 }
653         }
654
655         return child_reaper;
656 }
657
658 /*
659 * Any that need to be release_task'd are put on the @dead list.
660  */
661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662                                 struct list_head *dead)
663 {
664         if (unlikely(p->exit_state == EXIT_DEAD))
665                 return;
666
667         /* We don't want people slaying init. */
668         p->exit_signal = SIGCHLD;
669
670         /* If it has exited notify the new parent about this child's death. */
671         if (!p->ptrace &&
672             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673                 if (do_notify_parent(p, p->exit_signal)) {
674                         p->exit_state = EXIT_DEAD;
675                         list_add(&p->ptrace_entry, dead);
676                 }
677         }
678
679         kill_orphaned_pgrp(p, father);
680 }
681
682 /*
683  * This does two things:
684  *
685  * A.  Make init inherit all the child processes
686  * B.  Check to see if any process groups have become orphaned
687  *      as a result of our exiting, and if they have any stopped
688  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
689  */
690 static void forget_original_parent(struct task_struct *father,
691                                         struct list_head *dead)
692 {
693         struct task_struct *p, *t, *reaper;
694
695         if (unlikely(!list_empty(&father->ptraced)))
696                 exit_ptrace(father, dead);
697
698         /* Can drop and reacquire tasklist_lock */
699         reaper = find_child_reaper(father, dead);
700         if (list_empty(&father->children))
701                 return;
702
703         reaper = find_new_reaper(father, reaper);
704         list_for_each_entry(p, &father->children, sibling) {
705                 for_each_thread(p, t) {
706                         RCU_INIT_POINTER(t->real_parent, reaper);
707                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708                         if (likely(!t->ptrace))
709                                 t->parent = t->real_parent;
710                         if (t->pdeath_signal)
711                                 group_send_sig_info(t->pdeath_signal,
712                                                     SEND_SIG_NOINFO, t,
713                                                     PIDTYPE_TGID);
714                 }
715                 /*
716                  * If this is a threaded reparent there is no need to
717                  * notify anyone anything has happened.
718                  */
719                 if (!same_thread_group(reaper, father))
720                         reparent_leader(father, p, dead);
721         }
722         list_splice_tail_init(&father->children, &reaper->children);
723 }
724
725 /*
726  * Send signals to all our closest relatives so that they know
727  * to properly mourn us..
728  */
729 static void exit_notify(struct task_struct *tsk, int group_dead)
730 {
731         bool autoreap;
732         struct task_struct *p, *n;
733         LIST_HEAD(dead);
734
735         write_lock_irq(&tasklist_lock);
736         forget_original_parent(tsk, &dead);
737
738         if (group_dead)
739                 kill_orphaned_pgrp(tsk->group_leader, NULL);
740
741         tsk->exit_state = EXIT_ZOMBIE;
742         /*
743          * sub-thread or delay_group_leader(), wake up the
744          * PIDFD_THREAD waiters.
745          */
746         if (!thread_group_empty(tsk))
747                 do_notify_pidfd(tsk);
748
749         if (unlikely(tsk->ptrace)) {
750                 int sig = thread_group_leader(tsk) &&
751                                 thread_group_empty(tsk) &&
752                                 !ptrace_reparented(tsk) ?
753                         tsk->exit_signal : SIGCHLD;
754                 autoreap = do_notify_parent(tsk, sig);
755         } else if (thread_group_leader(tsk)) {
756                 autoreap = thread_group_empty(tsk) &&
757                         do_notify_parent(tsk, tsk->exit_signal);
758         } else {
759                 autoreap = true;
760         }
761
762         if (autoreap) {
763                 tsk->exit_state = EXIT_DEAD;
764                 list_add(&tsk->ptrace_entry, &dead);
765         }
766
767         /* mt-exec, de_thread() is waiting for group leader */
768         if (unlikely(tsk->signal->notify_count < 0))
769                 wake_up_process(tsk->signal->group_exec_task);
770         write_unlock_irq(&tasklist_lock);
771
772         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
773                 list_del_init(&p->ptrace_entry);
774                 release_task(p);
775         }
776 }
777
778 #ifdef CONFIG_DEBUG_STACK_USAGE
779 static void check_stack_usage(void)
780 {
781         static DEFINE_SPINLOCK(low_water_lock);
782         static int lowest_to_date = THREAD_SIZE;
783         unsigned long free;
784
785         free = stack_not_used(current);
786
787         if (free >= lowest_to_date)
788                 return;
789
790         spin_lock(&low_water_lock);
791         if (free < lowest_to_date) {
792                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
793                         current->comm, task_pid_nr(current), free);
794                 lowest_to_date = free;
795         }
796         spin_unlock(&low_water_lock);
797 }
798 #else
799 static inline void check_stack_usage(void) {}
800 #endif
801
802 static void synchronize_group_exit(struct task_struct *tsk, long code)
803 {
804         struct sighand_struct *sighand = tsk->sighand;
805         struct signal_struct *signal = tsk->signal;
806
807         spin_lock_irq(&sighand->siglock);
808         signal->quick_threads--;
809         if ((signal->quick_threads == 0) &&
810             !(signal->flags & SIGNAL_GROUP_EXIT)) {
811                 signal->flags = SIGNAL_GROUP_EXIT;
812                 signal->group_exit_code = code;
813                 signal->group_stop_count = 0;
814         }
815         spin_unlock_irq(&sighand->siglock);
816 }
817
818 void __noreturn do_exit(long code)
819 {
820         struct task_struct *tsk = current;
821         int group_dead;
822
823         WARN_ON(irqs_disabled());
824
825         synchronize_group_exit(tsk, code);
826
827         WARN_ON(tsk->plug);
828
829         kcov_task_exit(tsk);
830         kmsan_task_exit(tsk);
831
832         coredump_task_exit(tsk);
833         ptrace_event(PTRACE_EVENT_EXIT, code);
834         user_events_exit(tsk);
835
836         io_uring_files_cancel();
837         exit_signals(tsk);  /* sets PF_EXITING */
838
839         acct_update_integrals(tsk);
840         group_dead = atomic_dec_and_test(&tsk->signal->live);
841         if (group_dead) {
842                 /*
843                  * If the last thread of global init has exited, panic
844                  * immediately to get a useable coredump.
845                  */
846                 if (unlikely(is_global_init(tsk)))
847                         panic("Attempted to kill init! exitcode=0x%08x\n",
848                                 tsk->signal->group_exit_code ?: (int)code);
849
850 #ifdef CONFIG_POSIX_TIMERS
851                 hrtimer_cancel(&tsk->signal->real_timer);
852                 exit_itimers(tsk);
853 #endif
854                 if (tsk->mm)
855                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856         }
857         acct_collect(code, group_dead);
858         if (group_dead)
859                 tty_audit_exit();
860         audit_free(tsk);
861
862         tsk->exit_code = code;
863         taskstats_exit(tsk, group_dead);
864
865         exit_mm();
866
867         if (group_dead)
868                 acct_process();
869         trace_sched_process_exit(tsk);
870
871         exit_sem(tsk);
872         exit_shm(tsk);
873         exit_files(tsk);
874         exit_fs(tsk);
875         if (group_dead)
876                 disassociate_ctty(1);
877         exit_task_namespaces(tsk);
878         exit_task_work(tsk);
879         exit_thread(tsk);
880
881         /*
882          * Flush inherited counters to the parent - before the parent
883          * gets woken up by child-exit notifications.
884          *
885          * because of cgroup mode, must be called before cgroup_exit()
886          */
887         perf_event_exit_task(tsk);
888
889         sched_autogroup_exit_task(tsk);
890         cgroup_exit(tsk);
891
892         /*
893          * FIXME: do that only when needed, using sched_exit tracepoint
894          */
895         flush_ptrace_hw_breakpoint(tsk);
896
897         exit_tasks_rcu_start();
898         exit_notify(tsk, group_dead);
899         proc_exit_connector(tsk);
900         mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902         if (unlikely(current->pi_state_cache))
903                 kfree(current->pi_state_cache);
904 #endif
905         /*
906          * Make sure we are holding no locks:
907          */
908         debug_check_no_locks_held();
909
910         if (tsk->io_context)
911                 exit_io_context(tsk);
912
913         if (tsk->splice_pipe)
914                 free_pipe_info(tsk->splice_pipe);
915
916         if (tsk->task_frag.page)
917                 put_page(tsk->task_frag.page);
918
919         exit_task_stack_account(tsk);
920
921         check_stack_usage();
922         preempt_disable();
923         if (tsk->nr_dirtied)
924                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
925         exit_rcu();
926         exit_tasks_rcu_finish();
927
928         lockdep_free_task(tsk);
929         do_task_dead();
930 }
931
932 void __noreturn make_task_dead(int signr)
933 {
934         /*
935          * Take the task off the cpu after something catastrophic has
936          * happened.
937          *
938          * We can get here from a kernel oops, sometimes with preemption off.
939          * Start by checking for critical errors.
940          * Then fix up important state like USER_DS and preemption.
941          * Then do everything else.
942          */
943         struct task_struct *tsk = current;
944         unsigned int limit;
945
946         if (unlikely(in_interrupt()))
947                 panic("Aiee, killing interrupt handler!");
948         if (unlikely(!tsk->pid))
949                 panic("Attempted to kill the idle task!");
950
951         if (unlikely(irqs_disabled())) {
952                 pr_info("note: %s[%d] exited with irqs disabled\n",
953                         current->comm, task_pid_nr(current));
954                 local_irq_enable();
955         }
956         if (unlikely(in_atomic())) {
957                 pr_info("note: %s[%d] exited with preempt_count %d\n",
958                         current->comm, task_pid_nr(current),
959                         preempt_count());
960                 preempt_count_set(PREEMPT_ENABLED);
961         }
962
963         /*
964          * Every time the system oopses, if the oops happens while a reference
965          * to an object was held, the reference leaks.
966          * If the oops doesn't also leak memory, repeated oopsing can cause
967          * reference counters to wrap around (if they're not using refcount_t).
968          * This means that repeated oopsing can make unexploitable-looking bugs
969          * exploitable through repeated oopsing.
970          * To make sure this can't happen, place an upper bound on how often the
971          * kernel may oops without panic().
972          */
973         limit = READ_ONCE(oops_limit);
974         if (atomic_inc_return(&oops_count) >= limit && limit)
975                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
976
977         /*
978          * We're taking recursive faults here in make_task_dead. Safest is to just
979          * leave this task alone and wait for reboot.
980          */
981         if (unlikely(tsk->flags & PF_EXITING)) {
982                 pr_alert("Fixing recursive fault but reboot is needed!\n");
983                 futex_exit_recursive(tsk);
984                 tsk->exit_state = EXIT_DEAD;
985                 refcount_inc(&tsk->rcu_users);
986                 do_task_dead();
987         }
988
989         do_exit(signr);
990 }
991
992 SYSCALL_DEFINE1(exit, int, error_code)
993 {
994         do_exit((error_code&0xff)<<8);
995 }
996
997 /*
998  * Take down every thread in the group.  This is called by fatal signals
999  * as well as by sys_exit_group (below).
1000  */
1001 void __noreturn
1002 do_group_exit(int exit_code)
1003 {
1004         struct signal_struct *sig = current->signal;
1005
1006         if (sig->flags & SIGNAL_GROUP_EXIT)
1007                 exit_code = sig->group_exit_code;
1008         else if (sig->group_exec_task)
1009                 exit_code = 0;
1010         else {
1011                 struct sighand_struct *const sighand = current->sighand;
1012
1013                 spin_lock_irq(&sighand->siglock);
1014                 if (sig->flags & SIGNAL_GROUP_EXIT)
1015                         /* Another thread got here before we took the lock.  */
1016                         exit_code = sig->group_exit_code;
1017                 else if (sig->group_exec_task)
1018                         exit_code = 0;
1019                 else {
1020                         sig->group_exit_code = exit_code;
1021                         sig->flags = SIGNAL_GROUP_EXIT;
1022                         zap_other_threads(current);
1023                 }
1024                 spin_unlock_irq(&sighand->siglock);
1025         }
1026
1027         do_exit(exit_code);
1028         /* NOTREACHED */
1029 }
1030
1031 /*
1032  * this kills every thread in the thread group. Note that any externally
1033  * wait4()-ing process will get the correct exit code - even if this
1034  * thread is not the thread group leader.
1035  */
1036 SYSCALL_DEFINE1(exit_group, int, error_code)
1037 {
1038         do_group_exit((error_code & 0xff) << 8);
1039         /* NOTREACHED */
1040         return 0;
1041 }
1042
1043 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1044 {
1045         return  wo->wo_type == PIDTYPE_MAX ||
1046                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1047 }
1048
1049 static int
1050 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1051 {
1052         if (!eligible_pid(wo, p))
1053                 return 0;
1054
1055         /*
1056          * Wait for all children (clone and not) if __WALL is set or
1057          * if it is traced by us.
1058          */
1059         if (ptrace || (wo->wo_flags & __WALL))
1060                 return 1;
1061
1062         /*
1063          * Otherwise, wait for clone children *only* if __WCLONE is set;
1064          * otherwise, wait for non-clone children *only*.
1065          *
1066          * Note: a "clone" child here is one that reports to its parent
1067          * using a signal other than SIGCHLD, or a non-leader thread which
1068          * we can only see if it is traced by us.
1069          */
1070         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1071                 return 0;
1072
1073         return 1;
1074 }
1075
1076 /*
1077  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1078  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1079  * the lock and this task is uninteresting.  If we return nonzero, we have
1080  * released the lock and the system call should return.
1081  */
1082 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1083 {
1084         int state, status;
1085         pid_t pid = task_pid_vnr(p);
1086         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1087         struct waitid_info *infop;
1088
1089         if (!likely(wo->wo_flags & WEXITED))
1090                 return 0;
1091
1092         if (unlikely(wo->wo_flags & WNOWAIT)) {
1093                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1094                         ? p->signal->group_exit_code : p->exit_code;
1095                 get_task_struct(p);
1096                 read_unlock(&tasklist_lock);
1097                 sched_annotate_sleep();
1098                 if (wo->wo_rusage)
1099                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1100                 put_task_struct(p);
1101                 goto out_info;
1102         }
1103         /*
1104          * Move the task's state to DEAD/TRACE, only one thread can do this.
1105          */
1106         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1107                 EXIT_TRACE : EXIT_DEAD;
1108         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1109                 return 0;
1110         /*
1111          * We own this thread, nobody else can reap it.
1112          */
1113         read_unlock(&tasklist_lock);
1114         sched_annotate_sleep();
1115
1116         /*
1117          * Check thread_group_leader() to exclude the traced sub-threads.
1118          */
1119         if (state == EXIT_DEAD && thread_group_leader(p)) {
1120                 struct signal_struct *sig = p->signal;
1121                 struct signal_struct *psig = current->signal;
1122                 unsigned long maxrss;
1123                 u64 tgutime, tgstime;
1124
1125                 /*
1126                  * The resource counters for the group leader are in its
1127                  * own task_struct.  Those for dead threads in the group
1128                  * are in its signal_struct, as are those for the child
1129                  * processes it has previously reaped.  All these
1130                  * accumulate in the parent's signal_struct c* fields.
1131                  *
1132                  * We don't bother to take a lock here to protect these
1133                  * p->signal fields because the whole thread group is dead
1134                  * and nobody can change them.
1135                  *
1136                  * psig->stats_lock also protects us from our sub-threads
1137                  * which can reap other children at the same time.
1138                  *
1139                  * We use thread_group_cputime_adjusted() to get times for
1140                  * the thread group, which consolidates times for all threads
1141                  * in the group including the group leader.
1142                  */
1143                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1144                 write_seqlock_irq(&psig->stats_lock);
1145                 psig->cutime += tgutime + sig->cutime;
1146                 psig->cstime += tgstime + sig->cstime;
1147                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1148                 psig->cmin_flt +=
1149                         p->min_flt + sig->min_flt + sig->cmin_flt;
1150                 psig->cmaj_flt +=
1151                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1152                 psig->cnvcsw +=
1153                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1154                 psig->cnivcsw +=
1155                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1156                 psig->cinblock +=
1157                         task_io_get_inblock(p) +
1158                         sig->inblock + sig->cinblock;
1159                 psig->coublock +=
1160                         task_io_get_oublock(p) +
1161                         sig->oublock + sig->coublock;
1162                 maxrss = max(sig->maxrss, sig->cmaxrss);
1163                 if (psig->cmaxrss < maxrss)
1164                         psig->cmaxrss = maxrss;
1165                 task_io_accounting_add(&psig->ioac, &p->ioac);
1166                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1167                 write_sequnlock_irq(&psig->stats_lock);
1168         }
1169
1170         if (wo->wo_rusage)
1171                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1172         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1173                 ? p->signal->group_exit_code : p->exit_code;
1174         wo->wo_stat = status;
1175
1176         if (state == EXIT_TRACE) {
1177                 write_lock_irq(&tasklist_lock);
1178                 /* We dropped tasklist, ptracer could die and untrace */
1179                 ptrace_unlink(p);
1180
1181                 /* If parent wants a zombie, don't release it now */
1182                 state = EXIT_ZOMBIE;
1183                 if (do_notify_parent(p, p->exit_signal))
1184                         state = EXIT_DEAD;
1185                 p->exit_state = state;
1186                 write_unlock_irq(&tasklist_lock);
1187         }
1188         if (state == EXIT_DEAD)
1189                 release_task(p);
1190
1191 out_info:
1192         infop = wo->wo_info;
1193         if (infop) {
1194                 if ((status & 0x7f) == 0) {
1195                         infop->cause = CLD_EXITED;
1196                         infop->status = status >> 8;
1197                 } else {
1198                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199                         infop->status = status & 0x7f;
1200                 }
1201                 infop->pid = pid;
1202                 infop->uid = uid;
1203         }
1204
1205         return pid;
1206 }
1207
1208 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1209 {
1210         if (ptrace) {
1211                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1212                         return &p->exit_code;
1213         } else {
1214                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1215                         return &p->signal->group_exit_code;
1216         }
1217         return NULL;
1218 }
1219
1220 /**
1221  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1222  * @wo: wait options
1223  * @ptrace: is the wait for ptrace
1224  * @p: task to wait for
1225  *
1226  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1227  *
1228  * CONTEXT:
1229  * read_lock(&tasklist_lock), which is released if return value is
1230  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1231  *
1232  * RETURNS:
1233  * 0 if wait condition didn't exist and search for other wait conditions
1234  * should continue.  Non-zero return, -errno on failure and @p's pid on
1235  * success, implies that tasklist_lock is released and wait condition
1236  * search should terminate.
1237  */
1238 static int wait_task_stopped(struct wait_opts *wo,
1239                                 int ptrace, struct task_struct *p)
1240 {
1241         struct waitid_info *infop;
1242         int exit_code, *p_code, why;
1243         uid_t uid = 0; /* unneeded, required by compiler */
1244         pid_t pid;
1245
1246         /*
1247          * Traditionally we see ptrace'd stopped tasks regardless of options.
1248          */
1249         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1250                 return 0;
1251
1252         if (!task_stopped_code(p, ptrace))
1253                 return 0;
1254
1255         exit_code = 0;
1256         spin_lock_irq(&p->sighand->siglock);
1257
1258         p_code = task_stopped_code(p, ptrace);
1259         if (unlikely(!p_code))
1260                 goto unlock_sig;
1261
1262         exit_code = *p_code;
1263         if (!exit_code)
1264                 goto unlock_sig;
1265
1266         if (!unlikely(wo->wo_flags & WNOWAIT))
1267                 *p_code = 0;
1268
1269         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270 unlock_sig:
1271         spin_unlock_irq(&p->sighand->siglock);
1272         if (!exit_code)
1273                 return 0;
1274
1275         /*
1276          * Now we are pretty sure this task is interesting.
1277          * Make sure it doesn't get reaped out from under us while we
1278          * give up the lock and then examine it below.  We don't want to
1279          * keep holding onto the tasklist_lock while we call getrusage and
1280          * possibly take page faults for user memory.
1281          */
1282         get_task_struct(p);
1283         pid = task_pid_vnr(p);
1284         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1285         read_unlock(&tasklist_lock);
1286         sched_annotate_sleep();
1287         if (wo->wo_rusage)
1288                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1289         put_task_struct(p);
1290
1291         if (likely(!(wo->wo_flags & WNOWAIT)))
1292                 wo->wo_stat = (exit_code << 8) | 0x7f;
1293
1294         infop = wo->wo_info;
1295         if (infop) {
1296                 infop->cause = why;
1297                 infop->status = exit_code;
1298                 infop->pid = pid;
1299                 infop->uid = uid;
1300         }
1301         return pid;
1302 }
1303
1304 /*
1305  * Handle do_wait work for one task in a live, non-stopped state.
1306  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1307  * the lock and this task is uninteresting.  If we return nonzero, we have
1308  * released the lock and the system call should return.
1309  */
1310 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1311 {
1312         struct waitid_info *infop;
1313         pid_t pid;
1314         uid_t uid;
1315
1316         if (!unlikely(wo->wo_flags & WCONTINUED))
1317                 return 0;
1318
1319         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1320                 return 0;
1321
1322         spin_lock_irq(&p->sighand->siglock);
1323         /* Re-check with the lock held.  */
1324         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1325                 spin_unlock_irq(&p->sighand->siglock);
1326                 return 0;
1327         }
1328         if (!unlikely(wo->wo_flags & WNOWAIT))
1329                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1330         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1331         spin_unlock_irq(&p->sighand->siglock);
1332
1333         pid = task_pid_vnr(p);
1334         get_task_struct(p);
1335         read_unlock(&tasklist_lock);
1336         sched_annotate_sleep();
1337         if (wo->wo_rusage)
1338                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1339         put_task_struct(p);
1340
1341         infop = wo->wo_info;
1342         if (!infop) {
1343                 wo->wo_stat = 0xffff;
1344         } else {
1345                 infop->cause = CLD_CONTINUED;
1346                 infop->pid = pid;
1347                 infop->uid = uid;
1348                 infop->status = SIGCONT;
1349         }
1350         return pid;
1351 }
1352
1353 /*
1354  * Consider @p for a wait by @parent.
1355  *
1356  * -ECHILD should be in ->notask_error before the first call.
1357  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1358  * Returns zero if the search for a child should continue;
1359  * then ->notask_error is 0 if @p is an eligible child,
1360  * or still -ECHILD.
1361  */
1362 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1363                                 struct task_struct *p)
1364 {
1365         /*
1366          * We can race with wait_task_zombie() from another thread.
1367          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1368          * can't confuse the checks below.
1369          */
1370         int exit_state = READ_ONCE(p->exit_state);
1371         int ret;
1372
1373         if (unlikely(exit_state == EXIT_DEAD))
1374                 return 0;
1375
1376         ret = eligible_child(wo, ptrace, p);
1377         if (!ret)
1378                 return ret;
1379
1380         if (unlikely(exit_state == EXIT_TRACE)) {
1381                 /*
1382                  * ptrace == 0 means we are the natural parent. In this case
1383                  * we should clear notask_error, debugger will notify us.
1384                  */
1385                 if (likely(!ptrace))
1386                         wo->notask_error = 0;
1387                 return 0;
1388         }
1389
1390         if (likely(!ptrace) && unlikely(p->ptrace)) {
1391                 /*
1392                  * If it is traced by its real parent's group, just pretend
1393                  * the caller is ptrace_do_wait() and reap this child if it
1394                  * is zombie.
1395                  *
1396                  * This also hides group stop state from real parent; otherwise
1397                  * a single stop can be reported twice as group and ptrace stop.
1398                  * If a ptracer wants to distinguish these two events for its
1399                  * own children it should create a separate process which takes
1400                  * the role of real parent.
1401                  */
1402                 if (!ptrace_reparented(p))
1403                         ptrace = 1;
1404         }
1405
1406         /* slay zombie? */
1407         if (exit_state == EXIT_ZOMBIE) {
1408                 /* we don't reap group leaders with subthreads */
1409                 if (!delay_group_leader(p)) {
1410                         /*
1411                          * A zombie ptracee is only visible to its ptracer.
1412                          * Notification and reaping will be cascaded to the
1413                          * real parent when the ptracer detaches.
1414                          */
1415                         if (unlikely(ptrace) || likely(!p->ptrace))
1416                                 return wait_task_zombie(wo, p);
1417                 }
1418
1419                 /*
1420                  * Allow access to stopped/continued state via zombie by
1421                  * falling through.  Clearing of notask_error is complex.
1422                  *
1423                  * When !@ptrace:
1424                  *
1425                  * If WEXITED is set, notask_error should naturally be
1426                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1427                  * so, if there are live subthreads, there are events to
1428                  * wait for.  If all subthreads are dead, it's still safe
1429                  * to clear - this function will be called again in finite
1430                  * amount time once all the subthreads are released and
1431                  * will then return without clearing.
1432                  *
1433                  * When @ptrace:
1434                  *
1435                  * Stopped state is per-task and thus can't change once the
1436                  * target task dies.  Only continued and exited can happen.
1437                  * Clear notask_error if WCONTINUED | WEXITED.
1438                  */
1439                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1440                         wo->notask_error = 0;
1441         } else {
1442                 /*
1443                  * @p is alive and it's gonna stop, continue or exit, so
1444                  * there always is something to wait for.
1445                  */
1446                 wo->notask_error = 0;
1447         }
1448
1449         /*
1450          * Wait for stopped.  Depending on @ptrace, different stopped state
1451          * is used and the two don't interact with each other.
1452          */
1453         ret = wait_task_stopped(wo, ptrace, p);
1454         if (ret)
1455                 return ret;
1456
1457         /*
1458          * Wait for continued.  There's only one continued state and the
1459          * ptracer can consume it which can confuse the real parent.  Don't
1460          * use WCONTINUED from ptracer.  You don't need or want it.
1461          */
1462         return wait_task_continued(wo, p);
1463 }
1464
1465 /*
1466  * Do the work of do_wait() for one thread in the group, @tsk.
1467  *
1468  * -ECHILD should be in ->notask_error before the first call.
1469  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1470  * Returns zero if the search for a child should continue; then
1471  * ->notask_error is 0 if there were any eligible children,
1472  * or still -ECHILD.
1473  */
1474 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1475 {
1476         struct task_struct *p;
1477
1478         list_for_each_entry(p, &tsk->children, sibling) {
1479                 int ret = wait_consider_task(wo, 0, p);
1480
1481                 if (ret)
1482                         return ret;
1483         }
1484
1485         return 0;
1486 }
1487
1488 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1489 {
1490         struct task_struct *p;
1491
1492         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1493                 int ret = wait_consider_task(wo, 1, p);
1494
1495                 if (ret)
1496                         return ret;
1497         }
1498
1499         return 0;
1500 }
1501
1502 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1503 {
1504         if (!eligible_pid(wo, p))
1505                 return false;
1506
1507         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1508                 return false;
1509
1510         return true;
1511 }
1512
1513 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1514                                 int sync, void *key)
1515 {
1516         struct wait_opts *wo = container_of(wait, struct wait_opts,
1517                                                 child_wait);
1518         struct task_struct *p = key;
1519
1520         if (pid_child_should_wake(wo, p))
1521                 return default_wake_function(wait, mode, sync, key);
1522
1523         return 0;
1524 }
1525
1526 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1527 {
1528         __wake_up_sync_key(&parent->signal->wait_chldexit,
1529                            TASK_INTERRUPTIBLE, p);
1530 }
1531
1532 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1533                                  struct task_struct *target)
1534 {
1535         struct task_struct *parent =
1536                 !ptrace ? target->real_parent : target->parent;
1537
1538         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1539                                      same_thread_group(current, parent));
1540 }
1541
1542 /*
1543  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1544  * and tracee lists to find the target task.
1545  */
1546 static int do_wait_pid(struct wait_opts *wo)
1547 {
1548         bool ptrace;
1549         struct task_struct *target;
1550         int retval;
1551
1552         ptrace = false;
1553         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1554         if (target && is_effectively_child(wo, ptrace, target)) {
1555                 retval = wait_consider_task(wo, ptrace, target);
1556                 if (retval)
1557                         return retval;
1558         }
1559
1560         ptrace = true;
1561         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1562         if (target && target->ptrace &&
1563             is_effectively_child(wo, ptrace, target)) {
1564                 retval = wait_consider_task(wo, ptrace, target);
1565                 if (retval)
1566                         return retval;
1567         }
1568
1569         return 0;
1570 }
1571
1572 long __do_wait(struct wait_opts *wo)
1573 {
1574         long retval;
1575
1576         /*
1577          * If there is nothing that can match our criteria, just get out.
1578          * We will clear ->notask_error to zero if we see any child that
1579          * might later match our criteria, even if we are not able to reap
1580          * it yet.
1581          */
1582         wo->notask_error = -ECHILD;
1583         if ((wo->wo_type < PIDTYPE_MAX) &&
1584            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1585                 goto notask;
1586
1587         read_lock(&tasklist_lock);
1588
1589         if (wo->wo_type == PIDTYPE_PID) {
1590                 retval = do_wait_pid(wo);
1591                 if (retval)
1592                         return retval;
1593         } else {
1594                 struct task_struct *tsk = current;
1595
1596                 do {
1597                         retval = do_wait_thread(wo, tsk);
1598                         if (retval)
1599                                 return retval;
1600
1601                         retval = ptrace_do_wait(wo, tsk);
1602                         if (retval)
1603                                 return retval;
1604
1605                         if (wo->wo_flags & __WNOTHREAD)
1606                                 break;
1607                 } while_each_thread(current, tsk);
1608         }
1609         read_unlock(&tasklist_lock);
1610
1611 notask:
1612         retval = wo->notask_error;
1613         if (!retval && !(wo->wo_flags & WNOHANG))
1614                 return -ERESTARTSYS;
1615
1616         return retval;
1617 }
1618
1619 static long do_wait(struct wait_opts *wo)
1620 {
1621         int retval;
1622
1623         trace_sched_process_wait(wo->wo_pid);
1624
1625         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1626         wo->child_wait.private = current;
1627         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1628
1629         do {
1630                 set_current_state(TASK_INTERRUPTIBLE);
1631                 retval = __do_wait(wo);
1632                 if (retval != -ERESTARTSYS)
1633                         break;
1634                 if (signal_pending(current))
1635                         break;
1636                 schedule();
1637         } while (1);
1638
1639         __set_current_state(TASK_RUNNING);
1640         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1641         return retval;
1642 }
1643
1644 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1645                           struct waitid_info *infop, int options,
1646                           struct rusage *ru)
1647 {
1648         unsigned int f_flags = 0;
1649         struct pid *pid = NULL;
1650         enum pid_type type;
1651
1652         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1653                         __WNOTHREAD|__WCLONE|__WALL))
1654                 return -EINVAL;
1655         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656                 return -EINVAL;
1657
1658         switch (which) {
1659         case P_ALL:
1660                 type = PIDTYPE_MAX;
1661                 break;
1662         case P_PID:
1663                 type = PIDTYPE_PID;
1664                 if (upid <= 0)
1665                         return -EINVAL;
1666
1667                 pid = find_get_pid(upid);
1668                 break;
1669         case P_PGID:
1670                 type = PIDTYPE_PGID;
1671                 if (upid < 0)
1672                         return -EINVAL;
1673
1674                 if (upid)
1675                         pid = find_get_pid(upid);
1676                 else
1677                         pid = get_task_pid(current, PIDTYPE_PGID);
1678                 break;
1679         case P_PIDFD:
1680                 type = PIDTYPE_PID;
1681                 if (upid < 0)
1682                         return -EINVAL;
1683
1684                 pid = pidfd_get_pid(upid, &f_flags);
1685                 if (IS_ERR(pid))
1686                         return PTR_ERR(pid);
1687
1688                 break;
1689         default:
1690                 return -EINVAL;
1691         }
1692
1693         wo->wo_type     = type;
1694         wo->wo_pid      = pid;
1695         wo->wo_flags    = options;
1696         wo->wo_info     = infop;
1697         wo->wo_rusage   = ru;
1698         if (f_flags & O_NONBLOCK)
1699                 wo->wo_flags |= WNOHANG;
1700
1701         return 0;
1702 }
1703
1704 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1705                           int options, struct rusage *ru)
1706 {
1707         struct wait_opts wo;
1708         long ret;
1709
1710         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1711         if (ret)
1712                 return ret;
1713
1714         ret = do_wait(&wo);
1715         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1716                 ret = -EAGAIN;
1717
1718         put_pid(wo.wo_pid);
1719         return ret;
1720 }
1721
1722 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1723                 infop, int, options, struct rusage __user *, ru)
1724 {
1725         struct rusage r;
1726         struct waitid_info info = {.status = 0};
1727         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1728         int signo = 0;
1729
1730         if (err > 0) {
1731                 signo = SIGCHLD;
1732                 err = 0;
1733                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1734                         return -EFAULT;
1735         }
1736         if (!infop)
1737                 return err;
1738
1739         if (!user_write_access_begin(infop, sizeof(*infop)))
1740                 return -EFAULT;
1741
1742         unsafe_put_user(signo, &infop->si_signo, Efault);
1743         unsafe_put_user(0, &infop->si_errno, Efault);
1744         unsafe_put_user(info.cause, &infop->si_code, Efault);
1745         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1746         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1747         unsafe_put_user(info.status, &infop->si_status, Efault);
1748         user_write_access_end();
1749         return err;
1750 Efault:
1751         user_write_access_end();
1752         return -EFAULT;
1753 }
1754
1755 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1756                   struct rusage *ru)
1757 {
1758         struct wait_opts wo;
1759         struct pid *pid = NULL;
1760         enum pid_type type;
1761         long ret;
1762
1763         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1764                         __WNOTHREAD|__WCLONE|__WALL))
1765                 return -EINVAL;
1766
1767         /* -INT_MIN is not defined */
1768         if (upid == INT_MIN)
1769                 return -ESRCH;
1770
1771         if (upid == -1)
1772                 type = PIDTYPE_MAX;
1773         else if (upid < 0) {
1774                 type = PIDTYPE_PGID;
1775                 pid = find_get_pid(-upid);
1776         } else if (upid == 0) {
1777                 type = PIDTYPE_PGID;
1778                 pid = get_task_pid(current, PIDTYPE_PGID);
1779         } else /* upid > 0 */ {
1780                 type = PIDTYPE_PID;
1781                 pid = find_get_pid(upid);
1782         }
1783
1784         wo.wo_type      = type;
1785         wo.wo_pid       = pid;
1786         wo.wo_flags     = options | WEXITED;
1787         wo.wo_info      = NULL;
1788         wo.wo_stat      = 0;
1789         wo.wo_rusage    = ru;
1790         ret = do_wait(&wo);
1791         put_pid(pid);
1792         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1793                 ret = -EFAULT;
1794
1795         return ret;
1796 }
1797
1798 int kernel_wait(pid_t pid, int *stat)
1799 {
1800         struct wait_opts wo = {
1801                 .wo_type        = PIDTYPE_PID,
1802                 .wo_pid         = find_get_pid(pid),
1803                 .wo_flags       = WEXITED,
1804         };
1805         int ret;
1806
1807         ret = do_wait(&wo);
1808         if (ret > 0 && wo.wo_stat)
1809                 *stat = wo.wo_stat;
1810         put_pid(wo.wo_pid);
1811         return ret;
1812 }
1813
1814 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1815                 int, options, struct rusage __user *, ru)
1816 {
1817         struct rusage r;
1818         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1819
1820         if (err > 0) {
1821                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1822                         return -EFAULT;
1823         }
1824         return err;
1825 }
1826
1827 #ifdef __ARCH_WANT_SYS_WAITPID
1828
1829 /*
1830  * sys_waitpid() remains for compatibility. waitpid() should be
1831  * implemented by calling sys_wait4() from libc.a.
1832  */
1833 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1834 {
1835         return kernel_wait4(pid, stat_addr, options, NULL);
1836 }
1837
1838 #endif
1839
1840 #ifdef CONFIG_COMPAT
1841 COMPAT_SYSCALL_DEFINE4(wait4,
1842         compat_pid_t, pid,
1843         compat_uint_t __user *, stat_addr,
1844         int, options,
1845         struct compat_rusage __user *, ru)
1846 {
1847         struct rusage r;
1848         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1849         if (err > 0) {
1850                 if (ru && put_compat_rusage(&r, ru))
1851                         return -EFAULT;
1852         }
1853         return err;
1854 }
1855
1856 COMPAT_SYSCALL_DEFINE5(waitid,
1857                 int, which, compat_pid_t, pid,
1858                 struct compat_siginfo __user *, infop, int, options,
1859                 struct compat_rusage __user *, uru)
1860 {
1861         struct rusage ru;
1862         struct waitid_info info = {.status = 0};
1863         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1864         int signo = 0;
1865         if (err > 0) {
1866                 signo = SIGCHLD;
1867                 err = 0;
1868                 if (uru) {
1869                         /* kernel_waitid() overwrites everything in ru */
1870                         if (COMPAT_USE_64BIT_TIME)
1871                                 err = copy_to_user(uru, &ru, sizeof(ru));
1872                         else
1873                                 err = put_compat_rusage(&ru, uru);
1874                         if (err)
1875                                 return -EFAULT;
1876                 }
1877         }
1878
1879         if (!infop)
1880                 return err;
1881
1882         if (!user_write_access_begin(infop, sizeof(*infop)))
1883                 return -EFAULT;
1884
1885         unsafe_put_user(signo, &infop->si_signo, Efault);
1886         unsafe_put_user(0, &infop->si_errno, Efault);
1887         unsafe_put_user(info.cause, &infop->si_code, Efault);
1888         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1889         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1890         unsafe_put_user(info.status, &infop->si_status, Efault);
1891         user_write_access_end();
1892         return err;
1893 Efault:
1894         user_write_access_end();
1895         return -EFAULT;
1896 }
1897 #endif
1898
1899 /*
1900  * This needs to be __function_aligned as GCC implicitly makes any
1901  * implementation of abort() cold and drops alignment specified by
1902  * -falign-functions=N.
1903  *
1904  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1905  */
1906 __weak __function_aligned void abort(void)
1907 {
1908         BUG();
1909
1910         /* if that doesn't kill us, halt */
1911         panic("Oops failed to kill thread");
1912 }
1913 EXPORT_SYMBOL(abort);