signal, x86: Delay calling signals in atomic on RT enabled kernels
[sfrench/cifs-2.6.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66 #include <linux/kprobes.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *tty;
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead)
107                 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110         if (group_dead) {
111                 tty = sig->tty;
112                 sig->tty = NULL;
113         } else {
114                 /*
115                  * If there is any task waiting for the group exit
116                  * then notify it:
117                  */
118                 if (sig->notify_count > 0 && !--sig->notify_count)
119                         wake_up_process(sig->group_exec_task);
120
121                 if (tsk == sig->curr_target)
122                         sig->curr_target = next_thread(tsk);
123         }
124
125         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126                               sizeof(unsigned long long));
127
128         /*
129          * Accumulate here the counters for all threads as they die. We could
130          * skip the group leader because it is the last user of signal_struct,
131          * but we want to avoid the race with thread_group_cputime() which can
132          * see the empty ->thread_head list.
133          */
134         task_cputime(tsk, &utime, &stime);
135         write_seqlock(&sig->stats_lock);
136         sig->utime += utime;
137         sig->stime += stime;
138         sig->gtime += task_gtime(tsk);
139         sig->min_flt += tsk->min_flt;
140         sig->maj_flt += tsk->maj_flt;
141         sig->nvcsw += tsk->nvcsw;
142         sig->nivcsw += tsk->nivcsw;
143         sig->inblock += task_io_get_inblock(tsk);
144         sig->oublock += task_io_get_oublock(tsk);
145         task_io_accounting_add(&sig->ioac, &tsk->ioac);
146         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147         sig->nr_threads--;
148         __unhash_process(tsk, group_dead);
149         write_sequnlock(&sig->stats_lock);
150
151         /*
152          * Do this under ->siglock, we can race with another thread
153          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154          */
155         flush_sigqueue(&tsk->pending);
156         tsk->sighand = NULL;
157         spin_unlock(&sighand->siglock);
158
159         __cleanup_sighand(sighand);
160         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161         if (group_dead) {
162                 flush_sigqueue(&sig->shared_pending);
163                 tty_kref_put(tty);
164         }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171         kprobe_flush_task(tsk);
172         perf_event_delayed_put(tsk);
173         trace_sched_process_free(tsk);
174         put_task_struct(tsk);
175 }
176
177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179         if (refcount_dec_and_test(&task->rcu_users))
180                 call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182
183 void release_task(struct task_struct *p)
184 {
185         struct task_struct *leader;
186         struct pid *thread_pid;
187         int zap_leader;
188 repeat:
189         /* don't need to get the RCU readlock here - the process is dead and
190          * can't be modifying its own credentials. But shut RCU-lockdep up */
191         rcu_read_lock();
192         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
193         rcu_read_unlock();
194
195         cgroup_release(p);
196
197         write_lock_irq(&tasklist_lock);
198         ptrace_release_task(p);
199         thread_pid = get_pid(p->thread_pid);
200         __exit_signal(p);
201
202         /*
203          * If we are the last non-leader member of the thread
204          * group, and the leader is zombie, then notify the
205          * group leader's parent process. (if it wants notification.)
206          */
207         zap_leader = 0;
208         leader = p->group_leader;
209         if (leader != p && thread_group_empty(leader)
210                         && leader->exit_state == EXIT_ZOMBIE) {
211                 /*
212                  * If we were the last child thread and the leader has
213                  * exited already, and the leader's parent ignores SIGCHLD,
214                  * then we are the one who should release the leader.
215                  */
216                 zap_leader = do_notify_parent(leader, leader->exit_signal);
217                 if (zap_leader)
218                         leader->exit_state = EXIT_DEAD;
219         }
220
221         write_unlock_irq(&tasklist_lock);
222         seccomp_filter_release(p);
223         proc_flush_pid(thread_pid);
224         put_pid(thread_pid);
225         release_thread(p);
226         put_task_struct_rcu_user(p);
227
228         p = leader;
229         if (unlikely(zap_leader))
230                 goto repeat;
231 }
232
233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235         int ret = 0;
236         struct task_struct *task;
237
238         rcu_read_lock();
239
240         /*
241          * Order condition vs @task, such that everything prior to the load
242          * of @task is visible. This is the condition as to why the user called
243          * rcuwait_wake() in the first place. Pairs with set_current_state()
244          * barrier (A) in rcuwait_wait_event().
245          *
246          *    WAIT                WAKE
247          *    [S] tsk = current   [S] cond = true
248          *        MB (A)              MB (B)
249          *    [L] cond            [L] tsk
250          */
251         smp_mb(); /* (B) */
252
253         task = rcu_dereference(w->task);
254         if (task)
255                 ret = wake_up_process(task);
256         rcu_read_unlock();
257
258         return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271                                         struct task_struct *ignored_task)
272 {
273         struct task_struct *p;
274
275         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276                 if ((p == ignored_task) ||
277                     (p->exit_state && thread_group_empty(p)) ||
278                     is_global_init(p->real_parent))
279                         continue;
280
281                 if (task_pgrp(p->real_parent) != pgrp &&
282                     task_session(p->real_parent) == task_session(p))
283                         return 0;
284         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286         return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291         int retval;
292
293         read_lock(&tasklist_lock);
294         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295         read_unlock(&tasklist_lock);
296
297         return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302         struct task_struct *p;
303
304         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306                         return true;
307         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309         return false;
310 }
311
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320         struct pid *pgrp = task_pgrp(tsk);
321         struct task_struct *ignored_task = tsk;
322
323         if (!parent)
324                 /* exit: our father is in a different pgrp than
325                  * we are and we were the only connection outside.
326                  */
327                 parent = tsk->real_parent;
328         else
329                 /* reparent: our child is in a different pgrp than
330                  * we are, and it was the only connection outside.
331                  */
332                 ignored_task = NULL;
333
334         if (task_pgrp(parent) != pgrp &&
335             task_session(parent) == task_session(tsk) &&
336             will_become_orphaned_pgrp(pgrp, ignored_task) &&
337             has_stopped_jobs(pgrp)) {
338                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340         }
341 }
342
343 static void coredump_task_exit(struct task_struct *tsk)
344 {
345         struct core_state *core_state;
346
347         /*
348          * Serialize with any possible pending coredump.
349          * We must hold siglock around checking core_state
350          * and setting PF_POSTCOREDUMP.  The core-inducing thread
351          * will increment ->nr_threads for each thread in the
352          * group without PF_POSTCOREDUMP set.
353          */
354         spin_lock_irq(&tsk->sighand->siglock);
355         tsk->flags |= PF_POSTCOREDUMP;
356         core_state = tsk->signal->core_state;
357         spin_unlock_irq(&tsk->sighand->siglock);
358         if (core_state) {
359                 struct core_thread self;
360
361                 self.task = current;
362                 if (self.task->flags & PF_SIGNALED)
363                         self.next = xchg(&core_state->dumper.next, &self);
364                 else
365                         self.task = NULL;
366                 /*
367                  * Implies mb(), the result of xchg() must be visible
368                  * to core_state->dumper.
369                  */
370                 if (atomic_dec_and_test(&core_state->nr_threads))
371                         complete(&core_state->startup);
372
373                 for (;;) {
374                         set_current_state(TASK_UNINTERRUPTIBLE);
375                         if (!self.task) /* see coredump_finish() */
376                                 break;
377                         freezable_schedule();
378                 }
379                 __set_current_state(TASK_RUNNING);
380         }
381 }
382
383 #ifdef CONFIG_MEMCG
384 /*
385  * A task is exiting.   If it owned this mm, find a new owner for the mm.
386  */
387 void mm_update_next_owner(struct mm_struct *mm)
388 {
389         struct task_struct *c, *g, *p = current;
390
391 retry:
392         /*
393          * If the exiting or execing task is not the owner, it's
394          * someone else's problem.
395          */
396         if (mm->owner != p)
397                 return;
398         /*
399          * The current owner is exiting/execing and there are no other
400          * candidates.  Do not leave the mm pointing to a possibly
401          * freed task structure.
402          */
403         if (atomic_read(&mm->mm_users) <= 1) {
404                 WRITE_ONCE(mm->owner, NULL);
405                 return;
406         }
407
408         read_lock(&tasklist_lock);
409         /*
410          * Search in the children
411          */
412         list_for_each_entry(c, &p->children, sibling) {
413                 if (c->mm == mm)
414                         goto assign_new_owner;
415         }
416
417         /*
418          * Search in the siblings
419          */
420         list_for_each_entry(c, &p->real_parent->children, sibling) {
421                 if (c->mm == mm)
422                         goto assign_new_owner;
423         }
424
425         /*
426          * Search through everything else, we should not get here often.
427          */
428         for_each_process(g) {
429                 if (g->flags & PF_KTHREAD)
430                         continue;
431                 for_each_thread(g, c) {
432                         if (c->mm == mm)
433                                 goto assign_new_owner;
434                         if (c->mm)
435                                 break;
436                 }
437         }
438         read_unlock(&tasklist_lock);
439         /*
440          * We found no owner yet mm_users > 1: this implies that we are
441          * most likely racing with swapoff (try_to_unuse()) or /proc or
442          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
443          */
444         WRITE_ONCE(mm->owner, NULL);
445         return;
446
447 assign_new_owner:
448         BUG_ON(c == p);
449         get_task_struct(c);
450         /*
451          * The task_lock protects c->mm from changing.
452          * We always want mm->owner->mm == mm
453          */
454         task_lock(c);
455         /*
456          * Delay read_unlock() till we have the task_lock()
457          * to ensure that c does not slip away underneath us
458          */
459         read_unlock(&tasklist_lock);
460         if (c->mm != mm) {
461                 task_unlock(c);
462                 put_task_struct(c);
463                 goto retry;
464         }
465         WRITE_ONCE(mm->owner, c);
466         task_unlock(c);
467         put_task_struct(c);
468 }
469 #endif /* CONFIG_MEMCG */
470
471 /*
472  * Turn us into a lazy TLB process if we
473  * aren't already..
474  */
475 static void exit_mm(void)
476 {
477         struct mm_struct *mm = current->mm;
478
479         exit_mm_release(current, mm);
480         if (!mm)
481                 return;
482         sync_mm_rss(mm);
483         mmap_read_lock(mm);
484         mmgrab(mm);
485         BUG_ON(mm != current->active_mm);
486         /* more a memory barrier than a real lock */
487         task_lock(current);
488         /*
489          * When a thread stops operating on an address space, the loop
490          * in membarrier_private_expedited() may not observe that
491          * tsk->mm, and the loop in membarrier_global_expedited() may
492          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
493          * rq->membarrier_state, so those would not issue an IPI.
494          * Membarrier requires a memory barrier after accessing
495          * user-space memory, before clearing tsk->mm or the
496          * rq->membarrier_state.
497          */
498         smp_mb__after_spinlock();
499         local_irq_disable();
500         current->mm = NULL;
501         membarrier_update_current_mm(NULL);
502         enter_lazy_tlb(mm, current);
503         local_irq_enable();
504         task_unlock(current);
505         mmap_read_unlock(mm);
506         mm_update_next_owner(mm);
507         mmput(mm);
508         if (test_thread_flag(TIF_MEMDIE))
509                 exit_oom_victim();
510 }
511
512 static struct task_struct *find_alive_thread(struct task_struct *p)
513 {
514         struct task_struct *t;
515
516         for_each_thread(p, t) {
517                 if (!(t->flags & PF_EXITING))
518                         return t;
519         }
520         return NULL;
521 }
522
523 static struct task_struct *find_child_reaper(struct task_struct *father,
524                                                 struct list_head *dead)
525         __releases(&tasklist_lock)
526         __acquires(&tasklist_lock)
527 {
528         struct pid_namespace *pid_ns = task_active_pid_ns(father);
529         struct task_struct *reaper = pid_ns->child_reaper;
530         struct task_struct *p, *n;
531
532         if (likely(reaper != father))
533                 return reaper;
534
535         reaper = find_alive_thread(father);
536         if (reaper) {
537                 pid_ns->child_reaper = reaper;
538                 return reaper;
539         }
540
541         write_unlock_irq(&tasklist_lock);
542
543         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
544                 list_del_init(&p->ptrace_entry);
545                 release_task(p);
546         }
547
548         zap_pid_ns_processes(pid_ns);
549         write_lock_irq(&tasklist_lock);
550
551         return father;
552 }
553
554 /*
555  * When we die, we re-parent all our children, and try to:
556  * 1. give them to another thread in our thread group, if such a member exists
557  * 2. give it to the first ancestor process which prctl'd itself as a
558  *    child_subreaper for its children (like a service manager)
559  * 3. give it to the init process (PID 1) in our pid namespace
560  */
561 static struct task_struct *find_new_reaper(struct task_struct *father,
562                                            struct task_struct *child_reaper)
563 {
564         struct task_struct *thread, *reaper;
565
566         thread = find_alive_thread(father);
567         if (thread)
568                 return thread;
569
570         if (father->signal->has_child_subreaper) {
571                 unsigned int ns_level = task_pid(father)->level;
572                 /*
573                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
574                  * We can't check reaper != child_reaper to ensure we do not
575                  * cross the namespaces, the exiting parent could be injected
576                  * by setns() + fork().
577                  * We check pid->level, this is slightly more efficient than
578                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
579                  */
580                 for (reaper = father->real_parent;
581                      task_pid(reaper)->level == ns_level;
582                      reaper = reaper->real_parent) {
583                         if (reaper == &init_task)
584                                 break;
585                         if (!reaper->signal->is_child_subreaper)
586                                 continue;
587                         thread = find_alive_thread(reaper);
588                         if (thread)
589                                 return thread;
590                 }
591         }
592
593         return child_reaper;
594 }
595
596 /*
597 * Any that need to be release_task'd are put on the @dead list.
598  */
599 static void reparent_leader(struct task_struct *father, struct task_struct *p,
600                                 struct list_head *dead)
601 {
602         if (unlikely(p->exit_state == EXIT_DEAD))
603                 return;
604
605         /* We don't want people slaying init. */
606         p->exit_signal = SIGCHLD;
607
608         /* If it has exited notify the new parent about this child's death. */
609         if (!p->ptrace &&
610             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
611                 if (do_notify_parent(p, p->exit_signal)) {
612                         p->exit_state = EXIT_DEAD;
613                         list_add(&p->ptrace_entry, dead);
614                 }
615         }
616
617         kill_orphaned_pgrp(p, father);
618 }
619
620 /*
621  * This does two things:
622  *
623  * A.  Make init inherit all the child processes
624  * B.  Check to see if any process groups have become orphaned
625  *      as a result of our exiting, and if they have any stopped
626  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
627  */
628 static void forget_original_parent(struct task_struct *father,
629                                         struct list_head *dead)
630 {
631         struct task_struct *p, *t, *reaper;
632
633         if (unlikely(!list_empty(&father->ptraced)))
634                 exit_ptrace(father, dead);
635
636         /* Can drop and reacquire tasklist_lock */
637         reaper = find_child_reaper(father, dead);
638         if (list_empty(&father->children))
639                 return;
640
641         reaper = find_new_reaper(father, reaper);
642         list_for_each_entry(p, &father->children, sibling) {
643                 for_each_thread(p, t) {
644                         RCU_INIT_POINTER(t->real_parent, reaper);
645                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
646                         if (likely(!t->ptrace))
647                                 t->parent = t->real_parent;
648                         if (t->pdeath_signal)
649                                 group_send_sig_info(t->pdeath_signal,
650                                                     SEND_SIG_NOINFO, t,
651                                                     PIDTYPE_TGID);
652                 }
653                 /*
654                  * If this is a threaded reparent there is no need to
655                  * notify anyone anything has happened.
656                  */
657                 if (!same_thread_group(reaper, father))
658                         reparent_leader(father, p, dead);
659         }
660         list_splice_tail_init(&father->children, &reaper->children);
661 }
662
663 /*
664  * Send signals to all our closest relatives so that they know
665  * to properly mourn us..
666  */
667 static void exit_notify(struct task_struct *tsk, int group_dead)
668 {
669         bool autoreap;
670         struct task_struct *p, *n;
671         LIST_HEAD(dead);
672
673         write_lock_irq(&tasklist_lock);
674         forget_original_parent(tsk, &dead);
675
676         if (group_dead)
677                 kill_orphaned_pgrp(tsk->group_leader, NULL);
678
679         tsk->exit_state = EXIT_ZOMBIE;
680         if (unlikely(tsk->ptrace)) {
681                 int sig = thread_group_leader(tsk) &&
682                                 thread_group_empty(tsk) &&
683                                 !ptrace_reparented(tsk) ?
684                         tsk->exit_signal : SIGCHLD;
685                 autoreap = do_notify_parent(tsk, sig);
686         } else if (thread_group_leader(tsk)) {
687                 autoreap = thread_group_empty(tsk) &&
688                         do_notify_parent(tsk, tsk->exit_signal);
689         } else {
690                 autoreap = true;
691         }
692
693         if (autoreap) {
694                 tsk->exit_state = EXIT_DEAD;
695                 list_add(&tsk->ptrace_entry, &dead);
696         }
697
698         /* mt-exec, de_thread() is waiting for group leader */
699         if (unlikely(tsk->signal->notify_count < 0))
700                 wake_up_process(tsk->signal->group_exec_task);
701         write_unlock_irq(&tasklist_lock);
702
703         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
704                 list_del_init(&p->ptrace_entry);
705                 release_task(p);
706         }
707 }
708
709 #ifdef CONFIG_DEBUG_STACK_USAGE
710 static void check_stack_usage(void)
711 {
712         static DEFINE_SPINLOCK(low_water_lock);
713         static int lowest_to_date = THREAD_SIZE;
714         unsigned long free;
715
716         free = stack_not_used(current);
717
718         if (free >= lowest_to_date)
719                 return;
720
721         spin_lock(&low_water_lock);
722         if (free < lowest_to_date) {
723                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
724                         current->comm, task_pid_nr(current), free);
725                 lowest_to_date = free;
726         }
727         spin_unlock(&low_water_lock);
728 }
729 #else
730 static inline void check_stack_usage(void) {}
731 #endif
732
733 void __noreturn do_exit(long code)
734 {
735         struct task_struct *tsk = current;
736         int group_dead;
737
738         WARN_ON(blk_needs_flush_plug(tsk));
739
740         /*
741          * If do_dead is called because this processes oopsed, it's possible
742          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
743          * continuing. Amongst other possible reasons, this is to prevent
744          * mm_release()->clear_child_tid() from writing to a user-controlled
745          * kernel address.
746          *
747          * On uptodate architectures force_uaccess_begin is a noop.  On
748          * architectures that still have set_fs/get_fs in addition to handling
749          * oopses handles kernel threads that run as set_fs(KERNEL_DS) by
750          * default.
751          */
752         force_uaccess_begin();
753
754         kcov_task_exit(tsk);
755
756         coredump_task_exit(tsk);
757         ptrace_event(PTRACE_EVENT_EXIT, code);
758
759         validate_creds_for_do_exit(tsk);
760
761         io_uring_files_cancel();
762         exit_signals(tsk);  /* sets PF_EXITING */
763
764         /* sync mm's RSS info before statistics gathering */
765         if (tsk->mm)
766                 sync_mm_rss(tsk->mm);
767         acct_update_integrals(tsk);
768         group_dead = atomic_dec_and_test(&tsk->signal->live);
769         if (group_dead) {
770                 /*
771                  * If the last thread of global init has exited, panic
772                  * immediately to get a useable coredump.
773                  */
774                 if (unlikely(is_global_init(tsk)))
775                         panic("Attempted to kill init! exitcode=0x%08x\n",
776                                 tsk->signal->group_exit_code ?: (int)code);
777
778 #ifdef CONFIG_POSIX_TIMERS
779                 hrtimer_cancel(&tsk->signal->real_timer);
780                 exit_itimers(tsk->signal);
781 #endif
782                 if (tsk->mm)
783                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
784         }
785         acct_collect(code, group_dead);
786         if (group_dead)
787                 tty_audit_exit();
788         audit_free(tsk);
789
790         tsk->exit_code = code;
791         taskstats_exit(tsk, group_dead);
792
793         exit_mm();
794
795         if (group_dead)
796                 acct_process();
797         trace_sched_process_exit(tsk);
798
799         exit_sem(tsk);
800         exit_shm(tsk);
801         exit_files(tsk);
802         exit_fs(tsk);
803         if (group_dead)
804                 disassociate_ctty(1);
805         exit_task_namespaces(tsk);
806         exit_task_work(tsk);
807         exit_thread(tsk);
808
809         /*
810          * Flush inherited counters to the parent - before the parent
811          * gets woken up by child-exit notifications.
812          *
813          * because of cgroup mode, must be called before cgroup_exit()
814          */
815         perf_event_exit_task(tsk);
816
817         sched_autogroup_exit_task(tsk);
818         cgroup_exit(tsk);
819
820         /*
821          * FIXME: do that only when needed, using sched_exit tracepoint
822          */
823         flush_ptrace_hw_breakpoint(tsk);
824
825         exit_tasks_rcu_start();
826         exit_notify(tsk, group_dead);
827         proc_exit_connector(tsk);
828         mpol_put_task_policy(tsk);
829 #ifdef CONFIG_FUTEX
830         if (unlikely(current->pi_state_cache))
831                 kfree(current->pi_state_cache);
832 #endif
833         /*
834          * Make sure we are holding no locks:
835          */
836         debug_check_no_locks_held();
837
838         if (tsk->io_context)
839                 exit_io_context(tsk);
840
841         if (tsk->splice_pipe)
842                 free_pipe_info(tsk->splice_pipe);
843
844         if (tsk->task_frag.page)
845                 put_page(tsk->task_frag.page);
846
847         validate_creds_for_do_exit(tsk);
848         exit_task_stack_account(tsk);
849
850         check_stack_usage();
851         preempt_disable();
852         if (tsk->nr_dirtied)
853                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
854         exit_rcu();
855         exit_tasks_rcu_finish();
856
857         lockdep_free_task(tsk);
858         do_task_dead();
859 }
860
861 void __noreturn make_task_dead(int signr)
862 {
863         /*
864          * Take the task off the cpu after something catastrophic has
865          * happened.
866          *
867          * We can get here from a kernel oops, sometimes with preemption off.
868          * Start by checking for critical errors.
869          * Then fix up important state like USER_DS and preemption.
870          * Then do everything else.
871          */
872         struct task_struct *tsk = current;
873
874         if (unlikely(in_interrupt()))
875                 panic("Aiee, killing interrupt handler!");
876         if (unlikely(!tsk->pid))
877                 panic("Attempted to kill the idle task!");
878
879         if (unlikely(in_atomic())) {
880                 pr_info("note: %s[%d] exited with preempt_count %d\n",
881                         current->comm, task_pid_nr(current),
882                         preempt_count());
883                 preempt_count_set(PREEMPT_ENABLED);
884         }
885
886         /*
887          * We're taking recursive faults here in make_task_dead. Safest is to just
888          * leave this task alone and wait for reboot.
889          */
890         if (unlikely(tsk->flags & PF_EXITING)) {
891                 pr_alert("Fixing recursive fault but reboot is needed!\n");
892                 futex_exit_recursive(tsk);
893                 tsk->exit_state = EXIT_DEAD;
894                 refcount_inc(&tsk->rcu_users);
895                 do_task_dead();
896         }
897
898         do_exit(signr);
899 }
900
901 SYSCALL_DEFINE1(exit, int, error_code)
902 {
903         do_exit((error_code&0xff)<<8);
904 }
905
906 /*
907  * Take down every thread in the group.  This is called by fatal signals
908  * as well as by sys_exit_group (below).
909  */
910 void
911 do_group_exit(int exit_code)
912 {
913         struct signal_struct *sig = current->signal;
914
915         if (sig->flags & SIGNAL_GROUP_EXIT)
916                 exit_code = sig->group_exit_code;
917         else if (sig->group_exec_task)
918                 exit_code = 0;
919         else if (!thread_group_empty(current)) {
920                 struct sighand_struct *const sighand = current->sighand;
921
922                 spin_lock_irq(&sighand->siglock);
923                 if (sig->flags & SIGNAL_GROUP_EXIT)
924                         /* Another thread got here before we took the lock.  */
925                         exit_code = sig->group_exit_code;
926                 else if (sig->group_exec_task)
927                         exit_code = 0;
928                 else {
929                         sig->group_exit_code = exit_code;
930                         sig->flags = SIGNAL_GROUP_EXIT;
931                         zap_other_threads(current);
932                 }
933                 spin_unlock_irq(&sighand->siglock);
934         }
935
936         do_exit(exit_code);
937         /* NOTREACHED */
938 }
939
940 /*
941  * this kills every thread in the thread group. Note that any externally
942  * wait4()-ing process will get the correct exit code - even if this
943  * thread is not the thread group leader.
944  */
945 SYSCALL_DEFINE1(exit_group, int, error_code)
946 {
947         do_group_exit((error_code & 0xff) << 8);
948         /* NOTREACHED */
949         return 0;
950 }
951
952 struct waitid_info {
953         pid_t pid;
954         uid_t uid;
955         int status;
956         int cause;
957 };
958
959 struct wait_opts {
960         enum pid_type           wo_type;
961         int                     wo_flags;
962         struct pid              *wo_pid;
963
964         struct waitid_info      *wo_info;
965         int                     wo_stat;
966         struct rusage           *wo_rusage;
967
968         wait_queue_entry_t              child_wait;
969         int                     notask_error;
970 };
971
972 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
973 {
974         return  wo->wo_type == PIDTYPE_MAX ||
975                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
976 }
977
978 static int
979 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
980 {
981         if (!eligible_pid(wo, p))
982                 return 0;
983
984         /*
985          * Wait for all children (clone and not) if __WALL is set or
986          * if it is traced by us.
987          */
988         if (ptrace || (wo->wo_flags & __WALL))
989                 return 1;
990
991         /*
992          * Otherwise, wait for clone children *only* if __WCLONE is set;
993          * otherwise, wait for non-clone children *only*.
994          *
995          * Note: a "clone" child here is one that reports to its parent
996          * using a signal other than SIGCHLD, or a non-leader thread which
997          * we can only see if it is traced by us.
998          */
999         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1000                 return 0;
1001
1002         return 1;
1003 }
1004
1005 /*
1006  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1007  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1008  * the lock and this task is uninteresting.  If we return nonzero, we have
1009  * released the lock and the system call should return.
1010  */
1011 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1012 {
1013         int state, status;
1014         pid_t pid = task_pid_vnr(p);
1015         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1016         struct waitid_info *infop;
1017
1018         if (!likely(wo->wo_flags & WEXITED))
1019                 return 0;
1020
1021         if (unlikely(wo->wo_flags & WNOWAIT)) {
1022                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1023                         ? p->signal->group_exit_code : p->exit_code;
1024                 get_task_struct(p);
1025                 read_unlock(&tasklist_lock);
1026                 sched_annotate_sleep();
1027                 if (wo->wo_rusage)
1028                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1029                 put_task_struct(p);
1030                 goto out_info;
1031         }
1032         /*
1033          * Move the task's state to DEAD/TRACE, only one thread can do this.
1034          */
1035         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1036                 EXIT_TRACE : EXIT_DEAD;
1037         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1038                 return 0;
1039         /*
1040          * We own this thread, nobody else can reap it.
1041          */
1042         read_unlock(&tasklist_lock);
1043         sched_annotate_sleep();
1044
1045         /*
1046          * Check thread_group_leader() to exclude the traced sub-threads.
1047          */
1048         if (state == EXIT_DEAD && thread_group_leader(p)) {
1049                 struct signal_struct *sig = p->signal;
1050                 struct signal_struct *psig = current->signal;
1051                 unsigned long maxrss;
1052                 u64 tgutime, tgstime;
1053
1054                 /*
1055                  * The resource counters for the group leader are in its
1056                  * own task_struct.  Those for dead threads in the group
1057                  * are in its signal_struct, as are those for the child
1058                  * processes it has previously reaped.  All these
1059                  * accumulate in the parent's signal_struct c* fields.
1060                  *
1061                  * We don't bother to take a lock here to protect these
1062                  * p->signal fields because the whole thread group is dead
1063                  * and nobody can change them.
1064                  *
1065                  * psig->stats_lock also protects us from our sub-theads
1066                  * which can reap other children at the same time. Until
1067                  * we change k_getrusage()-like users to rely on this lock
1068                  * we have to take ->siglock as well.
1069                  *
1070                  * We use thread_group_cputime_adjusted() to get times for
1071                  * the thread group, which consolidates times for all threads
1072                  * in the group including the group leader.
1073                  */
1074                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1075                 spin_lock_irq(&current->sighand->siglock);
1076                 write_seqlock(&psig->stats_lock);
1077                 psig->cutime += tgutime + sig->cutime;
1078                 psig->cstime += tgstime + sig->cstime;
1079                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1080                 psig->cmin_flt +=
1081                         p->min_flt + sig->min_flt + sig->cmin_flt;
1082                 psig->cmaj_flt +=
1083                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1084                 psig->cnvcsw +=
1085                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1086                 psig->cnivcsw +=
1087                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1088                 psig->cinblock +=
1089                         task_io_get_inblock(p) +
1090                         sig->inblock + sig->cinblock;
1091                 psig->coublock +=
1092                         task_io_get_oublock(p) +
1093                         sig->oublock + sig->coublock;
1094                 maxrss = max(sig->maxrss, sig->cmaxrss);
1095                 if (psig->cmaxrss < maxrss)
1096                         psig->cmaxrss = maxrss;
1097                 task_io_accounting_add(&psig->ioac, &p->ioac);
1098                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1099                 write_sequnlock(&psig->stats_lock);
1100                 spin_unlock_irq(&current->sighand->siglock);
1101         }
1102
1103         if (wo->wo_rusage)
1104                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1105         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1106                 ? p->signal->group_exit_code : p->exit_code;
1107         wo->wo_stat = status;
1108
1109         if (state == EXIT_TRACE) {
1110                 write_lock_irq(&tasklist_lock);
1111                 /* We dropped tasklist, ptracer could die and untrace */
1112                 ptrace_unlink(p);
1113
1114                 /* If parent wants a zombie, don't release it now */
1115                 state = EXIT_ZOMBIE;
1116                 if (do_notify_parent(p, p->exit_signal))
1117                         state = EXIT_DEAD;
1118                 p->exit_state = state;
1119                 write_unlock_irq(&tasklist_lock);
1120         }
1121         if (state == EXIT_DEAD)
1122                 release_task(p);
1123
1124 out_info:
1125         infop = wo->wo_info;
1126         if (infop) {
1127                 if ((status & 0x7f) == 0) {
1128                         infop->cause = CLD_EXITED;
1129                         infop->status = status >> 8;
1130                 } else {
1131                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1132                         infop->status = status & 0x7f;
1133                 }
1134                 infop->pid = pid;
1135                 infop->uid = uid;
1136         }
1137
1138         return pid;
1139 }
1140
1141 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1142 {
1143         if (ptrace) {
1144                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1145                         return &p->exit_code;
1146         } else {
1147                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1148                         return &p->signal->group_exit_code;
1149         }
1150         return NULL;
1151 }
1152
1153 /**
1154  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1155  * @wo: wait options
1156  * @ptrace: is the wait for ptrace
1157  * @p: task to wait for
1158  *
1159  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1160  *
1161  * CONTEXT:
1162  * read_lock(&tasklist_lock), which is released if return value is
1163  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1164  *
1165  * RETURNS:
1166  * 0 if wait condition didn't exist and search for other wait conditions
1167  * should continue.  Non-zero return, -errno on failure and @p's pid on
1168  * success, implies that tasklist_lock is released and wait condition
1169  * search should terminate.
1170  */
1171 static int wait_task_stopped(struct wait_opts *wo,
1172                                 int ptrace, struct task_struct *p)
1173 {
1174         struct waitid_info *infop;
1175         int exit_code, *p_code, why;
1176         uid_t uid = 0; /* unneeded, required by compiler */
1177         pid_t pid;
1178
1179         /*
1180          * Traditionally we see ptrace'd stopped tasks regardless of options.
1181          */
1182         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1183                 return 0;
1184
1185         if (!task_stopped_code(p, ptrace))
1186                 return 0;
1187
1188         exit_code = 0;
1189         spin_lock_irq(&p->sighand->siglock);
1190
1191         p_code = task_stopped_code(p, ptrace);
1192         if (unlikely(!p_code))
1193                 goto unlock_sig;
1194
1195         exit_code = *p_code;
1196         if (!exit_code)
1197                 goto unlock_sig;
1198
1199         if (!unlikely(wo->wo_flags & WNOWAIT))
1200                 *p_code = 0;
1201
1202         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1203 unlock_sig:
1204         spin_unlock_irq(&p->sighand->siglock);
1205         if (!exit_code)
1206                 return 0;
1207
1208         /*
1209          * Now we are pretty sure this task is interesting.
1210          * Make sure it doesn't get reaped out from under us while we
1211          * give up the lock and then examine it below.  We don't want to
1212          * keep holding onto the tasklist_lock while we call getrusage and
1213          * possibly take page faults for user memory.
1214          */
1215         get_task_struct(p);
1216         pid = task_pid_vnr(p);
1217         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1218         read_unlock(&tasklist_lock);
1219         sched_annotate_sleep();
1220         if (wo->wo_rusage)
1221                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1222         put_task_struct(p);
1223
1224         if (likely(!(wo->wo_flags & WNOWAIT)))
1225                 wo->wo_stat = (exit_code << 8) | 0x7f;
1226
1227         infop = wo->wo_info;
1228         if (infop) {
1229                 infop->cause = why;
1230                 infop->status = exit_code;
1231                 infop->pid = pid;
1232                 infop->uid = uid;
1233         }
1234         return pid;
1235 }
1236
1237 /*
1238  * Handle do_wait work for one task in a live, non-stopped state.
1239  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240  * the lock and this task is uninteresting.  If we return nonzero, we have
1241  * released the lock and the system call should return.
1242  */
1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244 {
1245         struct waitid_info *infop;
1246         pid_t pid;
1247         uid_t uid;
1248
1249         if (!unlikely(wo->wo_flags & WCONTINUED))
1250                 return 0;
1251
1252         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253                 return 0;
1254
1255         spin_lock_irq(&p->sighand->siglock);
1256         /* Re-check with the lock held.  */
1257         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258                 spin_unlock_irq(&p->sighand->siglock);
1259                 return 0;
1260         }
1261         if (!unlikely(wo->wo_flags & WNOWAIT))
1262                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264         spin_unlock_irq(&p->sighand->siglock);
1265
1266         pid = task_pid_vnr(p);
1267         get_task_struct(p);
1268         read_unlock(&tasklist_lock);
1269         sched_annotate_sleep();
1270         if (wo->wo_rusage)
1271                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1272         put_task_struct(p);
1273
1274         infop = wo->wo_info;
1275         if (!infop) {
1276                 wo->wo_stat = 0xffff;
1277         } else {
1278                 infop->cause = CLD_CONTINUED;
1279                 infop->pid = pid;
1280                 infop->uid = uid;
1281                 infop->status = SIGCONT;
1282         }
1283         return pid;
1284 }
1285
1286 /*
1287  * Consider @p for a wait by @parent.
1288  *
1289  * -ECHILD should be in ->notask_error before the first call.
1290  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1291  * Returns zero if the search for a child should continue;
1292  * then ->notask_error is 0 if @p is an eligible child,
1293  * or still -ECHILD.
1294  */
1295 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1296                                 struct task_struct *p)
1297 {
1298         /*
1299          * We can race with wait_task_zombie() from another thread.
1300          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1301          * can't confuse the checks below.
1302          */
1303         int exit_state = READ_ONCE(p->exit_state);
1304         int ret;
1305
1306         if (unlikely(exit_state == EXIT_DEAD))
1307                 return 0;
1308
1309         ret = eligible_child(wo, ptrace, p);
1310         if (!ret)
1311                 return ret;
1312
1313         if (unlikely(exit_state == EXIT_TRACE)) {
1314                 /*
1315                  * ptrace == 0 means we are the natural parent. In this case
1316                  * we should clear notask_error, debugger will notify us.
1317                  */
1318                 if (likely(!ptrace))
1319                         wo->notask_error = 0;
1320                 return 0;
1321         }
1322
1323         if (likely(!ptrace) && unlikely(p->ptrace)) {
1324                 /*
1325                  * If it is traced by its real parent's group, just pretend
1326                  * the caller is ptrace_do_wait() and reap this child if it
1327                  * is zombie.
1328                  *
1329                  * This also hides group stop state from real parent; otherwise
1330                  * a single stop can be reported twice as group and ptrace stop.
1331                  * If a ptracer wants to distinguish these two events for its
1332                  * own children it should create a separate process which takes
1333                  * the role of real parent.
1334                  */
1335                 if (!ptrace_reparented(p))
1336                         ptrace = 1;
1337         }
1338
1339         /* slay zombie? */
1340         if (exit_state == EXIT_ZOMBIE) {
1341                 /* we don't reap group leaders with subthreads */
1342                 if (!delay_group_leader(p)) {
1343                         /*
1344                          * A zombie ptracee is only visible to its ptracer.
1345                          * Notification and reaping will be cascaded to the
1346                          * real parent when the ptracer detaches.
1347                          */
1348                         if (unlikely(ptrace) || likely(!p->ptrace))
1349                                 return wait_task_zombie(wo, p);
1350                 }
1351
1352                 /*
1353                  * Allow access to stopped/continued state via zombie by
1354                  * falling through.  Clearing of notask_error is complex.
1355                  *
1356                  * When !@ptrace:
1357                  *
1358                  * If WEXITED is set, notask_error should naturally be
1359                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1360                  * so, if there are live subthreads, there are events to
1361                  * wait for.  If all subthreads are dead, it's still safe
1362                  * to clear - this function will be called again in finite
1363                  * amount time once all the subthreads are released and
1364                  * will then return without clearing.
1365                  *
1366                  * When @ptrace:
1367                  *
1368                  * Stopped state is per-task and thus can't change once the
1369                  * target task dies.  Only continued and exited can happen.
1370                  * Clear notask_error if WCONTINUED | WEXITED.
1371                  */
1372                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1373                         wo->notask_error = 0;
1374         } else {
1375                 /*
1376                  * @p is alive and it's gonna stop, continue or exit, so
1377                  * there always is something to wait for.
1378                  */
1379                 wo->notask_error = 0;
1380         }
1381
1382         /*
1383          * Wait for stopped.  Depending on @ptrace, different stopped state
1384          * is used and the two don't interact with each other.
1385          */
1386         ret = wait_task_stopped(wo, ptrace, p);
1387         if (ret)
1388                 return ret;
1389
1390         /*
1391          * Wait for continued.  There's only one continued state and the
1392          * ptracer can consume it which can confuse the real parent.  Don't
1393          * use WCONTINUED from ptracer.  You don't need or want it.
1394          */
1395         return wait_task_continued(wo, p);
1396 }
1397
1398 /*
1399  * Do the work of do_wait() for one thread in the group, @tsk.
1400  *
1401  * -ECHILD should be in ->notask_error before the first call.
1402  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1403  * Returns zero if the search for a child should continue; then
1404  * ->notask_error is 0 if there were any eligible children,
1405  * or still -ECHILD.
1406  */
1407 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1408 {
1409         struct task_struct *p;
1410
1411         list_for_each_entry(p, &tsk->children, sibling) {
1412                 int ret = wait_consider_task(wo, 0, p);
1413
1414                 if (ret)
1415                         return ret;
1416         }
1417
1418         return 0;
1419 }
1420
1421 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1422 {
1423         struct task_struct *p;
1424
1425         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1426                 int ret = wait_consider_task(wo, 1, p);
1427
1428                 if (ret)
1429                         return ret;
1430         }
1431
1432         return 0;
1433 }
1434
1435 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1436                                 int sync, void *key)
1437 {
1438         struct wait_opts *wo = container_of(wait, struct wait_opts,
1439                                                 child_wait);
1440         struct task_struct *p = key;
1441
1442         if (!eligible_pid(wo, p))
1443                 return 0;
1444
1445         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1446                 return 0;
1447
1448         return default_wake_function(wait, mode, sync, key);
1449 }
1450
1451 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1452 {
1453         __wake_up_sync_key(&parent->signal->wait_chldexit,
1454                            TASK_INTERRUPTIBLE, p);
1455 }
1456
1457 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1458                                  struct task_struct *target)
1459 {
1460         struct task_struct *parent =
1461                 !ptrace ? target->real_parent : target->parent;
1462
1463         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1464                                      same_thread_group(current, parent));
1465 }
1466
1467 /*
1468  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1469  * and tracee lists to find the target task.
1470  */
1471 static int do_wait_pid(struct wait_opts *wo)
1472 {
1473         bool ptrace;
1474         struct task_struct *target;
1475         int retval;
1476
1477         ptrace = false;
1478         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1479         if (target && is_effectively_child(wo, ptrace, target)) {
1480                 retval = wait_consider_task(wo, ptrace, target);
1481                 if (retval)
1482                         return retval;
1483         }
1484
1485         ptrace = true;
1486         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1487         if (target && target->ptrace &&
1488             is_effectively_child(wo, ptrace, target)) {
1489                 retval = wait_consider_task(wo, ptrace, target);
1490                 if (retval)
1491                         return retval;
1492         }
1493
1494         return 0;
1495 }
1496
1497 static long do_wait(struct wait_opts *wo)
1498 {
1499         int retval;
1500
1501         trace_sched_process_wait(wo->wo_pid);
1502
1503         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504         wo->child_wait.private = current;
1505         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506 repeat:
1507         /*
1508          * If there is nothing that can match our criteria, just get out.
1509          * We will clear ->notask_error to zero if we see any child that
1510          * might later match our criteria, even if we are not able to reap
1511          * it yet.
1512          */
1513         wo->notask_error = -ECHILD;
1514         if ((wo->wo_type < PIDTYPE_MAX) &&
1515            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1516                 goto notask;
1517
1518         set_current_state(TASK_INTERRUPTIBLE);
1519         read_lock(&tasklist_lock);
1520
1521         if (wo->wo_type == PIDTYPE_PID) {
1522                 retval = do_wait_pid(wo);
1523                 if (retval)
1524                         goto end;
1525         } else {
1526                 struct task_struct *tsk = current;
1527
1528                 do {
1529                         retval = do_wait_thread(wo, tsk);
1530                         if (retval)
1531                                 goto end;
1532
1533                         retval = ptrace_do_wait(wo, tsk);
1534                         if (retval)
1535                                 goto end;
1536
1537                         if (wo->wo_flags & __WNOTHREAD)
1538                                 break;
1539                 } while_each_thread(current, tsk);
1540         }
1541         read_unlock(&tasklist_lock);
1542
1543 notask:
1544         retval = wo->notask_error;
1545         if (!retval && !(wo->wo_flags & WNOHANG)) {
1546                 retval = -ERESTARTSYS;
1547                 if (!signal_pending(current)) {
1548                         schedule();
1549                         goto repeat;
1550                 }
1551         }
1552 end:
1553         __set_current_state(TASK_RUNNING);
1554         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1555         return retval;
1556 }
1557
1558 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1559                           int options, struct rusage *ru)
1560 {
1561         struct wait_opts wo;
1562         struct pid *pid = NULL;
1563         enum pid_type type;
1564         long ret;
1565         unsigned int f_flags = 0;
1566
1567         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1568                         __WNOTHREAD|__WCLONE|__WALL))
1569                 return -EINVAL;
1570         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1571                 return -EINVAL;
1572
1573         switch (which) {
1574         case P_ALL:
1575                 type = PIDTYPE_MAX;
1576                 break;
1577         case P_PID:
1578                 type = PIDTYPE_PID;
1579                 if (upid <= 0)
1580                         return -EINVAL;
1581
1582                 pid = find_get_pid(upid);
1583                 break;
1584         case P_PGID:
1585                 type = PIDTYPE_PGID;
1586                 if (upid < 0)
1587                         return -EINVAL;
1588
1589                 if (upid)
1590                         pid = find_get_pid(upid);
1591                 else
1592                         pid = get_task_pid(current, PIDTYPE_PGID);
1593                 break;
1594         case P_PIDFD:
1595                 type = PIDTYPE_PID;
1596                 if (upid < 0)
1597                         return -EINVAL;
1598
1599                 pid = pidfd_get_pid(upid, &f_flags);
1600                 if (IS_ERR(pid))
1601                         return PTR_ERR(pid);
1602
1603                 break;
1604         default:
1605                 return -EINVAL;
1606         }
1607
1608         wo.wo_type      = type;
1609         wo.wo_pid       = pid;
1610         wo.wo_flags     = options;
1611         wo.wo_info      = infop;
1612         wo.wo_rusage    = ru;
1613         if (f_flags & O_NONBLOCK)
1614                 wo.wo_flags |= WNOHANG;
1615
1616         ret = do_wait(&wo);
1617         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1618                 ret = -EAGAIN;
1619
1620         put_pid(pid);
1621         return ret;
1622 }
1623
1624 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1625                 infop, int, options, struct rusage __user *, ru)
1626 {
1627         struct rusage r;
1628         struct waitid_info info = {.status = 0};
1629         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1630         int signo = 0;
1631
1632         if (err > 0) {
1633                 signo = SIGCHLD;
1634                 err = 0;
1635                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1636                         return -EFAULT;
1637         }
1638         if (!infop)
1639                 return err;
1640
1641         if (!user_write_access_begin(infop, sizeof(*infop)))
1642                 return -EFAULT;
1643
1644         unsafe_put_user(signo, &infop->si_signo, Efault);
1645         unsafe_put_user(0, &infop->si_errno, Efault);
1646         unsafe_put_user(info.cause, &infop->si_code, Efault);
1647         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1648         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1649         unsafe_put_user(info.status, &infop->si_status, Efault);
1650         user_write_access_end();
1651         return err;
1652 Efault:
1653         user_write_access_end();
1654         return -EFAULT;
1655 }
1656
1657 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1658                   struct rusage *ru)
1659 {
1660         struct wait_opts wo;
1661         struct pid *pid = NULL;
1662         enum pid_type type;
1663         long ret;
1664
1665         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1666                         __WNOTHREAD|__WCLONE|__WALL))
1667                 return -EINVAL;
1668
1669         /* -INT_MIN is not defined */
1670         if (upid == INT_MIN)
1671                 return -ESRCH;
1672
1673         if (upid == -1)
1674                 type = PIDTYPE_MAX;
1675         else if (upid < 0) {
1676                 type = PIDTYPE_PGID;
1677                 pid = find_get_pid(-upid);
1678         } else if (upid == 0) {
1679                 type = PIDTYPE_PGID;
1680                 pid = get_task_pid(current, PIDTYPE_PGID);
1681         } else /* upid > 0 */ {
1682                 type = PIDTYPE_PID;
1683                 pid = find_get_pid(upid);
1684         }
1685
1686         wo.wo_type      = type;
1687         wo.wo_pid       = pid;
1688         wo.wo_flags     = options | WEXITED;
1689         wo.wo_info      = NULL;
1690         wo.wo_stat      = 0;
1691         wo.wo_rusage    = ru;
1692         ret = do_wait(&wo);
1693         put_pid(pid);
1694         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1695                 ret = -EFAULT;
1696
1697         return ret;
1698 }
1699
1700 int kernel_wait(pid_t pid, int *stat)
1701 {
1702         struct wait_opts wo = {
1703                 .wo_type        = PIDTYPE_PID,
1704                 .wo_pid         = find_get_pid(pid),
1705                 .wo_flags       = WEXITED,
1706         };
1707         int ret;
1708
1709         ret = do_wait(&wo);
1710         if (ret > 0 && wo.wo_stat)
1711                 *stat = wo.wo_stat;
1712         put_pid(wo.wo_pid);
1713         return ret;
1714 }
1715
1716 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1717                 int, options, struct rusage __user *, ru)
1718 {
1719         struct rusage r;
1720         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1721
1722         if (err > 0) {
1723                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724                         return -EFAULT;
1725         }
1726         return err;
1727 }
1728
1729 #ifdef __ARCH_WANT_SYS_WAITPID
1730
1731 /*
1732  * sys_waitpid() remains for compatibility. waitpid() should be
1733  * implemented by calling sys_wait4() from libc.a.
1734  */
1735 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1736 {
1737         return kernel_wait4(pid, stat_addr, options, NULL);
1738 }
1739
1740 #endif
1741
1742 #ifdef CONFIG_COMPAT
1743 COMPAT_SYSCALL_DEFINE4(wait4,
1744         compat_pid_t, pid,
1745         compat_uint_t __user *, stat_addr,
1746         int, options,
1747         struct compat_rusage __user *, ru)
1748 {
1749         struct rusage r;
1750         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1751         if (err > 0) {
1752                 if (ru && put_compat_rusage(&r, ru))
1753                         return -EFAULT;
1754         }
1755         return err;
1756 }
1757
1758 COMPAT_SYSCALL_DEFINE5(waitid,
1759                 int, which, compat_pid_t, pid,
1760                 struct compat_siginfo __user *, infop, int, options,
1761                 struct compat_rusage __user *, uru)
1762 {
1763         struct rusage ru;
1764         struct waitid_info info = {.status = 0};
1765         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1766         int signo = 0;
1767         if (err > 0) {
1768                 signo = SIGCHLD;
1769                 err = 0;
1770                 if (uru) {
1771                         /* kernel_waitid() overwrites everything in ru */
1772                         if (COMPAT_USE_64BIT_TIME)
1773                                 err = copy_to_user(uru, &ru, sizeof(ru));
1774                         else
1775                                 err = put_compat_rusage(&ru, uru);
1776                         if (err)
1777                                 return -EFAULT;
1778                 }
1779         }
1780
1781         if (!infop)
1782                 return err;
1783
1784         if (!user_write_access_begin(infop, sizeof(*infop)))
1785                 return -EFAULT;
1786
1787         unsafe_put_user(signo, &infop->si_signo, Efault);
1788         unsafe_put_user(0, &infop->si_errno, Efault);
1789         unsafe_put_user(info.cause, &infop->si_code, Efault);
1790         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1791         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1792         unsafe_put_user(info.status, &infop->si_status, Efault);
1793         user_write_access_end();
1794         return err;
1795 Efault:
1796         user_write_access_end();
1797         return -EFAULT;
1798 }
1799 #endif
1800
1801 /**
1802  * thread_group_exited - check that a thread group has exited
1803  * @pid: tgid of thread group to be checked.
1804  *
1805  * Test if the thread group represented by tgid has exited (all
1806  * threads are zombies, dead or completely gone).
1807  *
1808  * Return: true if the thread group has exited. false otherwise.
1809  */
1810 bool thread_group_exited(struct pid *pid)
1811 {
1812         struct task_struct *task;
1813         bool exited;
1814
1815         rcu_read_lock();
1816         task = pid_task(pid, PIDTYPE_PID);
1817         exited = !task ||
1818                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1819         rcu_read_unlock();
1820
1821         return exited;
1822 }
1823 EXPORT_SYMBOL(thread_group_exited);
1824
1825 __weak void abort(void)
1826 {
1827         BUG();
1828
1829         /* if that doesn't kill us, halt */
1830         panic("Oops failed to kill thread");
1831 }
1832 EXPORT_SYMBOL(abort);