fs: make helpers idmap mount aware
[sfrench/cifs-2.6.git] / fs / ocfs2 / file.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c
6  *
7  * File open, close, extend, truncate
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27
28 #include <cluster/masklog.h>
29
30 #include "ocfs2.h"
31
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51
52 #include "buffer_head_io.h"
53
54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56         struct ocfs2_file_private *fp;
57
58         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59         if (!fp)
60                 return -ENOMEM;
61
62         fp->fp_file = file;
63         mutex_init(&fp->fp_mutex);
64         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65         file->private_data = fp;
66
67         return 0;
68 }
69
70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72         struct ocfs2_file_private *fp = file->private_data;
73         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74
75         if (fp) {
76                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77                 ocfs2_lock_res_free(&fp->fp_flock);
78                 kfree(fp);
79                 file->private_data = NULL;
80         }
81 }
82
83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85         int status;
86         int mode = file->f_flags;
87         struct ocfs2_inode_info *oi = OCFS2_I(inode);
88
89         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90                               (unsigned long long)oi->ip_blkno,
91                               file->f_path.dentry->d_name.len,
92                               file->f_path.dentry->d_name.name, mode);
93
94         if (file->f_mode & FMODE_WRITE) {
95                 status = dquot_initialize(inode);
96                 if (status)
97                         goto leave;
98         }
99
100         spin_lock(&oi->ip_lock);
101
102         /* Check that the inode hasn't been wiped from disk by another
103          * node. If it hasn't then we're safe as long as we hold the
104          * spin lock until our increment of open count. */
105         if (oi->ip_flags & OCFS2_INODE_DELETED) {
106                 spin_unlock(&oi->ip_lock);
107
108                 status = -ENOENT;
109                 goto leave;
110         }
111
112         if (mode & O_DIRECT)
113                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114
115         oi->ip_open_count++;
116         spin_unlock(&oi->ip_lock);
117
118         status = ocfs2_init_file_private(inode, file);
119         if (status) {
120                 /*
121                  * We want to set open count back if we're failing the
122                  * open.
123                  */
124                 spin_lock(&oi->ip_lock);
125                 oi->ip_open_count--;
126                 spin_unlock(&oi->ip_lock);
127         }
128
129         file->f_mode |= FMODE_NOWAIT;
130
131 leave:
132         return status;
133 }
134
135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137         struct ocfs2_inode_info *oi = OCFS2_I(inode);
138
139         spin_lock(&oi->ip_lock);
140         if (!--oi->ip_open_count)
141                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142
143         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144                                  oi->ip_blkno,
145                                  file->f_path.dentry->d_name.len,
146                                  file->f_path.dentry->d_name.name,
147                                  oi->ip_open_count);
148         spin_unlock(&oi->ip_lock);
149
150         ocfs2_free_file_private(inode, file);
151
152         return 0;
153 }
154
155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157         return ocfs2_init_file_private(inode, file);
158 }
159
160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162         ocfs2_free_file_private(inode, file);
163         return 0;
164 }
165
166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167                            int datasync)
168 {
169         int err = 0;
170         struct inode *inode = file->f_mapping->host;
171         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172         struct ocfs2_inode_info *oi = OCFS2_I(inode);
173         journal_t *journal = osb->journal->j_journal;
174         int ret;
175         tid_t commit_tid;
176         bool needs_barrier = false;
177
178         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179                               oi->ip_blkno,
180                               file->f_path.dentry->d_name.len,
181                               file->f_path.dentry->d_name.name,
182                               (unsigned long long)datasync);
183
184         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185                 return -EROFS;
186
187         err = file_write_and_wait_range(file, start, end);
188         if (err)
189                 return err;
190
191         commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192         if (journal->j_flags & JBD2_BARRIER &&
193             !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194                 needs_barrier = true;
195         err = jbd2_complete_transaction(journal, commit_tid);
196         if (needs_barrier) {
197                 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
198                 if (!err)
199                         err = ret;
200         }
201
202         if (err)
203                 mlog_errno(err);
204
205         return (err < 0) ? -EIO : 0;
206 }
207
208 int ocfs2_should_update_atime(struct inode *inode,
209                               struct vfsmount *vfsmnt)
210 {
211         struct timespec64 now;
212         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213
214         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215                 return 0;
216
217         if ((inode->i_flags & S_NOATIME) ||
218             ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219                 return 0;
220
221         /*
222          * We can be called with no vfsmnt structure - NFSD will
223          * sometimes do this.
224          *
225          * Note that our action here is different than touch_atime() -
226          * if we can't tell whether this is a noatime mount, then we
227          * don't know whether to trust the value of s_atime_quantum.
228          */
229         if (vfsmnt == NULL)
230                 return 0;
231
232         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234                 return 0;
235
236         if (vfsmnt->mnt_flags & MNT_RELATIME) {
237                 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238                     (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239                         return 1;
240
241                 return 0;
242         }
243
244         now = current_time(inode);
245         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246                 return 0;
247         else
248                 return 1;
249 }
250
251 int ocfs2_update_inode_atime(struct inode *inode,
252                              struct buffer_head *bh)
253 {
254         int ret;
255         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256         handle_t *handle;
257         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258
259         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260         if (IS_ERR(handle)) {
261                 ret = PTR_ERR(handle);
262                 mlog_errno(ret);
263                 goto out;
264         }
265
266         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267                                       OCFS2_JOURNAL_ACCESS_WRITE);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out_commit;
271         }
272
273         /*
274          * Don't use ocfs2_mark_inode_dirty() here as we don't always
275          * have i_mutex to guard against concurrent changes to other
276          * inode fields.
277          */
278         inode->i_atime = current_time(inode);
279         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281         ocfs2_update_inode_fsync_trans(handle, inode, 0);
282         ocfs2_journal_dirty(handle, bh);
283
284 out_commit:
285         ocfs2_commit_trans(osb, handle);
286 out:
287         return ret;
288 }
289
290 int ocfs2_set_inode_size(handle_t *handle,
291                                 struct inode *inode,
292                                 struct buffer_head *fe_bh,
293                                 u64 new_i_size)
294 {
295         int status;
296
297         i_size_write(inode, new_i_size);
298         inode->i_blocks = ocfs2_inode_sector_count(inode);
299         inode->i_ctime = inode->i_mtime = current_time(inode);
300
301         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302         if (status < 0) {
303                 mlog_errno(status);
304                 goto bail;
305         }
306
307 bail:
308         return status;
309 }
310
311 int ocfs2_simple_size_update(struct inode *inode,
312                              struct buffer_head *di_bh,
313                              u64 new_i_size)
314 {
315         int ret;
316         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317         handle_t *handle = NULL;
318
319         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320         if (IS_ERR(handle)) {
321                 ret = PTR_ERR(handle);
322                 mlog_errno(ret);
323                 goto out;
324         }
325
326         ret = ocfs2_set_inode_size(handle, inode, di_bh,
327                                    new_i_size);
328         if (ret < 0)
329                 mlog_errno(ret);
330
331         ocfs2_update_inode_fsync_trans(handle, inode, 0);
332         ocfs2_commit_trans(osb, handle);
333 out:
334         return ret;
335 }
336
337 static int ocfs2_cow_file_pos(struct inode *inode,
338                               struct buffer_head *fe_bh,
339                               u64 offset)
340 {
341         int status;
342         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343         unsigned int num_clusters = 0;
344         unsigned int ext_flags = 0;
345
346         /*
347          * If the new offset is aligned to the range of the cluster, there is
348          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349          * CoW either.
350          */
351         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352                 return 0;
353
354         status = ocfs2_get_clusters(inode, cpos, &phys,
355                                     &num_clusters, &ext_flags);
356         if (status) {
357                 mlog_errno(status);
358                 goto out;
359         }
360
361         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362                 goto out;
363
364         return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365
366 out:
367         return status;
368 }
369
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371                                      struct inode *inode,
372                                      struct buffer_head *fe_bh,
373                                      u64 new_i_size)
374 {
375         int status;
376         handle_t *handle;
377         struct ocfs2_dinode *di;
378         u64 cluster_bytes;
379
380         /*
381          * We need to CoW the cluster contains the offset if it is reflinked
382          * since we will call ocfs2_zero_range_for_truncate later which will
383          * write "0" from offset to the end of the cluster.
384          */
385         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386         if (status) {
387                 mlog_errno(status);
388                 return status;
389         }
390
391         /* TODO: This needs to actually orphan the inode in this
392          * transaction. */
393
394         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395         if (IS_ERR(handle)) {
396                 status = PTR_ERR(handle);
397                 mlog_errno(status);
398                 goto out;
399         }
400
401         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402                                          OCFS2_JOURNAL_ACCESS_WRITE);
403         if (status < 0) {
404                 mlog_errno(status);
405                 goto out_commit;
406         }
407
408         /*
409          * Do this before setting i_size.
410          */
411         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413                                                cluster_bytes);
414         if (status) {
415                 mlog_errno(status);
416                 goto out_commit;
417         }
418
419         i_size_write(inode, new_i_size);
420         inode->i_ctime = inode->i_mtime = current_time(inode);
421
422         di = (struct ocfs2_dinode *) fe_bh->b_data;
423         di->i_size = cpu_to_le64(new_i_size);
424         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426         ocfs2_update_inode_fsync_trans(handle, inode, 0);
427
428         ocfs2_journal_dirty(handle, fe_bh);
429
430 out_commit:
431         ocfs2_commit_trans(osb, handle);
432 out:
433         return status;
434 }
435
436 int ocfs2_truncate_file(struct inode *inode,
437                                struct buffer_head *di_bh,
438                                u64 new_i_size)
439 {
440         int status = 0;
441         struct ocfs2_dinode *fe = NULL;
442         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443
444         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
445          * already validated it */
446         fe = (struct ocfs2_dinode *) di_bh->b_data;
447
448         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449                                   (unsigned long long)le64_to_cpu(fe->i_size),
450                                   (unsigned long long)new_i_size);
451
452         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453                         "Inode %llu, inode i_size = %lld != di "
454                         "i_size = %llu, i_flags = 0x%x\n",
455                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
456                         i_size_read(inode),
457                         (unsigned long long)le64_to_cpu(fe->i_size),
458                         le32_to_cpu(fe->i_flags));
459
460         if (new_i_size > le64_to_cpu(fe->i_size)) {
461                 trace_ocfs2_truncate_file_error(
462                         (unsigned long long)le64_to_cpu(fe->i_size),
463                         (unsigned long long)new_i_size);
464                 status = -EINVAL;
465                 mlog_errno(status);
466                 goto bail;
467         }
468
469         down_write(&OCFS2_I(inode)->ip_alloc_sem);
470
471         ocfs2_resv_discard(&osb->osb_la_resmap,
472                            &OCFS2_I(inode)->ip_la_data_resv);
473
474         /*
475          * The inode lock forced other nodes to sync and drop their
476          * pages, which (correctly) happens even if we have a truncate
477          * without allocation change - ocfs2 cluster sizes can be much
478          * greater than page size, so we have to truncate them
479          * anyway.
480          */
481         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482         truncate_inode_pages(inode->i_mapping, new_i_size);
483
484         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486                                                i_size_read(inode), 1);
487                 if (status)
488                         mlog_errno(status);
489
490                 goto bail_unlock_sem;
491         }
492
493         /* alright, we're going to need to do a full blown alloc size
494          * change. Orphan the inode so that recovery can complete the
495          * truncate if necessary. This does the task of marking
496          * i_size. */
497         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498         if (status < 0) {
499                 mlog_errno(status);
500                 goto bail_unlock_sem;
501         }
502
503         status = ocfs2_commit_truncate(osb, inode, di_bh);
504         if (status < 0) {
505                 mlog_errno(status);
506                 goto bail_unlock_sem;
507         }
508
509         /* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511         up_write(&OCFS2_I(inode)->ip_alloc_sem);
512
513 bail:
514         if (!status && OCFS2_I(inode)->ip_clusters == 0)
515                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516
517         return status;
518 }
519
520 /*
521  * extend file allocation only here.
522  * we'll update all the disk stuff, and oip->alloc_size
523  *
524  * expect stuff to be locked, a transaction started and enough data /
525  * metadata reservations in the contexts.
526  *
527  * Will return -EAGAIN, and a reason if a restart is needed.
528  * If passed in, *reason will always be set, even in error.
529  */
530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531                          struct inode *inode,
532                          u32 *logical_offset,
533                          u32 clusters_to_add,
534                          int mark_unwritten,
535                          struct buffer_head *fe_bh,
536                          handle_t *handle,
537                          struct ocfs2_alloc_context *data_ac,
538                          struct ocfs2_alloc_context *meta_ac,
539                          enum ocfs2_alloc_restarted *reason_ret)
540 {
541         int ret;
542         struct ocfs2_extent_tree et;
543
544         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545         ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546                                           clusters_to_add, mark_unwritten,
547                                           data_ac, meta_ac, reason_ret);
548
549         return ret;
550 }
551
552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553                                    u32 clusters_to_add, int mark_unwritten)
554 {
555         int status = 0;
556         int restart_func = 0;
557         int credits;
558         u32 prev_clusters;
559         struct buffer_head *bh = NULL;
560         struct ocfs2_dinode *fe = NULL;
561         handle_t *handle = NULL;
562         struct ocfs2_alloc_context *data_ac = NULL;
563         struct ocfs2_alloc_context *meta_ac = NULL;
564         enum ocfs2_alloc_restarted why = RESTART_NONE;
565         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566         struct ocfs2_extent_tree et;
567         int did_quota = 0;
568
569         /*
570          * Unwritten extent only exists for file systems which
571          * support holes.
572          */
573         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574
575         status = ocfs2_read_inode_block(inode, &bh);
576         if (status < 0) {
577                 mlog_errno(status);
578                 goto leave;
579         }
580         fe = (struct ocfs2_dinode *) bh->b_data;
581
582 restart_all:
583         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584
585         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587                                        &data_ac, &meta_ac);
588         if (status) {
589                 mlog_errno(status);
590                 goto leave;
591         }
592
593         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594         handle = ocfs2_start_trans(osb, credits);
595         if (IS_ERR(handle)) {
596                 status = PTR_ERR(handle);
597                 handle = NULL;
598                 mlog_errno(status);
599                 goto leave;
600         }
601
602 restarted_transaction:
603         trace_ocfs2_extend_allocation(
604                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
605                 (unsigned long long)i_size_read(inode),
606                 le32_to_cpu(fe->i_clusters), clusters_to_add,
607                 why, restart_func);
608
609         status = dquot_alloc_space_nodirty(inode,
610                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611         if (status)
612                 goto leave;
613         did_quota = 1;
614
615         /* reserve a write to the file entry early on - that we if we
616          * run out of credits in the allocation path, we can still
617          * update i_size. */
618         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619                                          OCFS2_JOURNAL_ACCESS_WRITE);
620         if (status < 0) {
621                 mlog_errno(status);
622                 goto leave;
623         }
624
625         prev_clusters = OCFS2_I(inode)->ip_clusters;
626
627         status = ocfs2_add_inode_data(osb,
628                                       inode,
629                                       &logical_start,
630                                       clusters_to_add,
631                                       mark_unwritten,
632                                       bh,
633                                       handle,
634                                       data_ac,
635                                       meta_ac,
636                                       &why);
637         if ((status < 0) && (status != -EAGAIN)) {
638                 if (status != -ENOSPC)
639                         mlog_errno(status);
640                 goto leave;
641         }
642         ocfs2_update_inode_fsync_trans(handle, inode, 1);
643         ocfs2_journal_dirty(handle, bh);
644
645         spin_lock(&OCFS2_I(inode)->ip_lock);
646         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647         spin_unlock(&OCFS2_I(inode)->ip_lock);
648         /* Release unused quota reservation */
649         dquot_free_space(inode,
650                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651         did_quota = 0;
652
653         if (why != RESTART_NONE && clusters_to_add) {
654                 if (why == RESTART_META) {
655                         restart_func = 1;
656                         status = 0;
657                 } else {
658                         BUG_ON(why != RESTART_TRANS);
659
660                         status = ocfs2_allocate_extend_trans(handle, 1);
661                         if (status < 0) {
662                                 /* handle still has to be committed at
663                                  * this point. */
664                                 status = -ENOMEM;
665                                 mlog_errno(status);
666                                 goto leave;
667                         }
668                         goto restarted_transaction;
669                 }
670         }
671
672         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673              le32_to_cpu(fe->i_clusters),
674              (unsigned long long)le64_to_cpu(fe->i_size),
675              OCFS2_I(inode)->ip_clusters,
676              (unsigned long long)i_size_read(inode));
677
678 leave:
679         if (status < 0 && did_quota)
680                 dquot_free_space(inode,
681                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682         if (handle) {
683                 ocfs2_commit_trans(osb, handle);
684                 handle = NULL;
685         }
686         if (data_ac) {
687                 ocfs2_free_alloc_context(data_ac);
688                 data_ac = NULL;
689         }
690         if (meta_ac) {
691                 ocfs2_free_alloc_context(meta_ac);
692                 meta_ac = NULL;
693         }
694         if ((!status) && restart_func) {
695                 restart_func = 0;
696                 goto restart_all;
697         }
698         brelse(bh);
699         bh = NULL;
700
701         return status;
702 }
703
704 /*
705  * While a write will already be ordering the data, a truncate will not.
706  * Thus, we need to explicitly order the zeroed pages.
707  */
708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709                                                       struct buffer_head *di_bh,
710                                                       loff_t start_byte,
711                                                       loff_t length)
712 {
713         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714         handle_t *handle = NULL;
715         int ret = 0;
716
717         if (!ocfs2_should_order_data(inode))
718                 goto out;
719
720         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721         if (IS_ERR(handle)) {
722                 ret = -ENOMEM;
723                 mlog_errno(ret);
724                 goto out;
725         }
726
727         ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728         if (ret < 0) {
729                 mlog_errno(ret);
730                 goto out;
731         }
732
733         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734                                       OCFS2_JOURNAL_ACCESS_WRITE);
735         if (ret)
736                 mlog_errno(ret);
737         ocfs2_update_inode_fsync_trans(handle, inode, 1);
738
739 out:
740         if (ret) {
741                 if (!IS_ERR(handle))
742                         ocfs2_commit_trans(osb, handle);
743                 handle = ERR_PTR(ret);
744         }
745         return handle;
746 }
747
748 /* Some parts of this taken from generic_cont_expand, which turned out
749  * to be too fragile to do exactly what we need without us having to
750  * worry about recursive locking in ->write_begin() and ->write_end(). */
751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752                                  u64 abs_to, struct buffer_head *di_bh)
753 {
754         struct address_space *mapping = inode->i_mapping;
755         struct page *page;
756         unsigned long index = abs_from >> PAGE_SHIFT;
757         handle_t *handle;
758         int ret = 0;
759         unsigned zero_from, zero_to, block_start, block_end;
760         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761
762         BUG_ON(abs_from >= abs_to);
763         BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764         BUG_ON(abs_from & (inode->i_blkbits - 1));
765
766         handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767                                                       abs_from,
768                                                       abs_to - abs_from);
769         if (IS_ERR(handle)) {
770                 ret = PTR_ERR(handle);
771                 goto out;
772         }
773
774         page = find_or_create_page(mapping, index, GFP_NOFS);
775         if (!page) {
776                 ret = -ENOMEM;
777                 mlog_errno(ret);
778                 goto out_commit_trans;
779         }
780
781         /* Get the offsets within the page that we want to zero */
782         zero_from = abs_from & (PAGE_SIZE - 1);
783         zero_to = abs_to & (PAGE_SIZE - 1);
784         if (!zero_to)
785                 zero_to = PAGE_SIZE;
786
787         trace_ocfs2_write_zero_page(
788                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
789                         (unsigned long long)abs_from,
790                         (unsigned long long)abs_to,
791                         index, zero_from, zero_to);
792
793         /* We know that zero_from is block aligned */
794         for (block_start = zero_from; block_start < zero_to;
795              block_start = block_end) {
796                 block_end = block_start + i_blocksize(inode);
797
798                 /*
799                  * block_start is block-aligned.  Bump it by one to force
800                  * __block_write_begin and block_commit_write to zero the
801                  * whole block.
802                  */
803                 ret = __block_write_begin(page, block_start + 1, 0,
804                                           ocfs2_get_block);
805                 if (ret < 0) {
806                         mlog_errno(ret);
807                         goto out_unlock;
808                 }
809
810
811                 /* must not update i_size! */
812                 ret = block_commit_write(page, block_start + 1,
813                                          block_start + 1);
814                 if (ret < 0)
815                         mlog_errno(ret);
816                 else
817                         ret = 0;
818         }
819
820         /*
821          * fs-writeback will release the dirty pages without page lock
822          * whose offset are over inode size, the release happens at
823          * block_write_full_page().
824          */
825         i_size_write(inode, abs_to);
826         inode->i_blocks = ocfs2_inode_sector_count(inode);
827         di->i_size = cpu_to_le64((u64)i_size_read(inode));
828         inode->i_mtime = inode->i_ctime = current_time(inode);
829         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830         di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831         di->i_mtime_nsec = di->i_ctime_nsec;
832         if (handle) {
833                 ocfs2_journal_dirty(handle, di_bh);
834                 ocfs2_update_inode_fsync_trans(handle, inode, 1);
835         }
836
837 out_unlock:
838         unlock_page(page);
839         put_page(page);
840 out_commit_trans:
841         if (handle)
842                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 out:
844         return ret;
845 }
846
847 /*
848  * Find the next range to zero.  We do this in terms of bytes because
849  * that's what ocfs2_zero_extend() wants, and it is dealing with the
850  * pagecache.  We may return multiple extents.
851  *
852  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853  * needs to be zeroed.  range_start and range_end return the next zeroing
854  * range.  A subsequent call should pass the previous range_end as its
855  * zero_start.  If range_end is 0, there's nothing to do.
856  *
857  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
858  */
859 static int ocfs2_zero_extend_get_range(struct inode *inode,
860                                        struct buffer_head *di_bh,
861                                        u64 zero_start, u64 zero_end,
862                                        u64 *range_start, u64 *range_end)
863 {
864         int rc = 0, needs_cow = 0;
865         u32 p_cpos, zero_clusters = 0;
866         u32 zero_cpos =
867                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869         unsigned int num_clusters = 0;
870         unsigned int ext_flags = 0;
871
872         while (zero_cpos < last_cpos) {
873                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874                                         &num_clusters, &ext_flags);
875                 if (rc) {
876                         mlog_errno(rc);
877                         goto out;
878                 }
879
880                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881                         zero_clusters = num_clusters;
882                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
883                                 needs_cow = 1;
884                         break;
885                 }
886
887                 zero_cpos += num_clusters;
888         }
889         if (!zero_clusters) {
890                 *range_end = 0;
891                 goto out;
892         }
893
894         while ((zero_cpos + zero_clusters) < last_cpos) {
895                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896                                         &p_cpos, &num_clusters,
897                                         &ext_flags);
898                 if (rc) {
899                         mlog_errno(rc);
900                         goto out;
901                 }
902
903                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904                         break;
905                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
906                         needs_cow = 1;
907                 zero_clusters += num_clusters;
908         }
909         if ((zero_cpos + zero_clusters) > last_cpos)
910                 zero_clusters = last_cpos - zero_cpos;
911
912         if (needs_cow) {
913                 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914                                         zero_clusters, UINT_MAX);
915                 if (rc) {
916                         mlog_errno(rc);
917                         goto out;
918                 }
919         }
920
921         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923                                              zero_cpos + zero_clusters);
924
925 out:
926         return rc;
927 }
928
929 /*
930  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
931  * has made sure that the entire range needs zeroing.
932  */
933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934                                    u64 range_end, struct buffer_head *di_bh)
935 {
936         int rc = 0;
937         u64 next_pos;
938         u64 zero_pos = range_start;
939
940         trace_ocfs2_zero_extend_range(
941                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
942                         (unsigned long long)range_start,
943                         (unsigned long long)range_end);
944         BUG_ON(range_start >= range_end);
945
946         while (zero_pos < range_end) {
947                 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948                 if (next_pos > range_end)
949                         next_pos = range_end;
950                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951                 if (rc < 0) {
952                         mlog_errno(rc);
953                         break;
954                 }
955                 zero_pos = next_pos;
956
957                 /*
958                  * Very large extends have the potential to lock up
959                  * the cpu for extended periods of time.
960                  */
961                 cond_resched();
962         }
963
964         return rc;
965 }
966
967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968                       loff_t zero_to_size)
969 {
970         int ret = 0;
971         u64 zero_start, range_start = 0, range_end = 0;
972         struct super_block *sb = inode->i_sb;
973
974         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976                                 (unsigned long long)zero_start,
977                                 (unsigned long long)i_size_read(inode));
978         while (zero_start < zero_to_size) {
979                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980                                                   zero_to_size,
981                                                   &range_start,
982                                                   &range_end);
983                 if (ret) {
984                         mlog_errno(ret);
985                         break;
986                 }
987                 if (!range_end)
988                         break;
989                 /* Trim the ends */
990                 if (range_start < zero_start)
991                         range_start = zero_start;
992                 if (range_end > zero_to_size)
993                         range_end = zero_to_size;
994
995                 ret = ocfs2_zero_extend_range(inode, range_start,
996                                               range_end, di_bh);
997                 if (ret) {
998                         mlog_errno(ret);
999                         break;
1000                 }
1001                 zero_start = range_end;
1002         }
1003
1004         return ret;
1005 }
1006
1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008                           u64 new_i_size, u64 zero_to)
1009 {
1010         int ret;
1011         u32 clusters_to_add;
1012         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013
1014         /*
1015          * Only quota files call this without a bh, and they can't be
1016          * refcounted.
1017          */
1018         BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020
1021         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022         if (clusters_to_add < oi->ip_clusters)
1023                 clusters_to_add = 0;
1024         else
1025                 clusters_to_add -= oi->ip_clusters;
1026
1027         if (clusters_to_add) {
1028                 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029                                               clusters_to_add, 0);
1030                 if (ret) {
1031                         mlog_errno(ret);
1032                         goto out;
1033                 }
1034         }
1035
1036         /*
1037          * Call this even if we don't add any clusters to the tree. We
1038          * still need to zero the area between the old i_size and the
1039          * new i_size.
1040          */
1041         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042         if (ret < 0)
1043                 mlog_errno(ret);
1044
1045 out:
1046         return ret;
1047 }
1048
1049 static int ocfs2_extend_file(struct inode *inode,
1050                              struct buffer_head *di_bh,
1051                              u64 new_i_size)
1052 {
1053         int ret = 0;
1054         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055
1056         BUG_ON(!di_bh);
1057
1058         /* setattr sometimes calls us like this. */
1059         if (new_i_size == 0)
1060                 goto out;
1061
1062         if (i_size_read(inode) == new_i_size)
1063                 goto out;
1064         BUG_ON(new_i_size < i_size_read(inode));
1065
1066         /*
1067          * The alloc sem blocks people in read/write from reading our
1068          * allocation until we're done changing it. We depend on
1069          * i_mutex to block other extend/truncate calls while we're
1070          * here.  We even have to hold it for sparse files because there
1071          * might be some tail zeroing.
1072          */
1073         down_write(&oi->ip_alloc_sem);
1074
1075         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076                 /*
1077                  * We can optimize small extends by keeping the inodes
1078                  * inline data.
1079                  */
1080                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081                         up_write(&oi->ip_alloc_sem);
1082                         goto out_update_size;
1083                 }
1084
1085                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086                 if (ret) {
1087                         up_write(&oi->ip_alloc_sem);
1088                         mlog_errno(ret);
1089                         goto out;
1090                 }
1091         }
1092
1093         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095         else
1096                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097                                             new_i_size);
1098
1099         up_write(&oi->ip_alloc_sem);
1100
1101         if (ret < 0) {
1102                 mlog_errno(ret);
1103                 goto out;
1104         }
1105
1106 out_update_size:
1107         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108         if (ret < 0)
1109                 mlog_errno(ret);
1110
1111 out:
1112         return ret;
1113 }
1114
1115 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1116                   struct iattr *attr)
1117 {
1118         int status = 0, size_change;
1119         int inode_locked = 0;
1120         struct inode *inode = d_inode(dentry);
1121         struct super_block *sb = inode->i_sb;
1122         struct ocfs2_super *osb = OCFS2_SB(sb);
1123         struct buffer_head *bh = NULL;
1124         handle_t *handle = NULL;
1125         struct dquot *transfer_to[MAXQUOTAS] = { };
1126         int qtype;
1127         int had_lock;
1128         struct ocfs2_lock_holder oh;
1129
1130         trace_ocfs2_setattr(inode, dentry,
1131                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1132                             dentry->d_name.len, dentry->d_name.name,
1133                             attr->ia_valid, attr->ia_mode,
1134                             from_kuid(&init_user_ns, attr->ia_uid),
1135                             from_kgid(&init_user_ns, attr->ia_gid));
1136
1137         /* ensuring we don't even attempt to truncate a symlink */
1138         if (S_ISLNK(inode->i_mode))
1139                 attr->ia_valid &= ~ATTR_SIZE;
1140
1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1142                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1143         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1144                 return 0;
1145
1146         status = setattr_prepare(&init_user_ns, dentry, attr);
1147         if (status)
1148                 return status;
1149
1150         if (is_quota_modification(inode, attr)) {
1151                 status = dquot_initialize(inode);
1152                 if (status)
1153                         return status;
1154         }
1155         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1156         if (size_change) {
1157                 /*
1158                  * Here we should wait dio to finish before inode lock
1159                  * to avoid a deadlock between ocfs2_setattr() and
1160                  * ocfs2_dio_end_io_write()
1161                  */
1162                 inode_dio_wait(inode);
1163
1164                 status = ocfs2_rw_lock(inode, 1);
1165                 if (status < 0) {
1166                         mlog_errno(status);
1167                         goto bail;
1168                 }
1169         }
1170
1171         had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1172         if (had_lock < 0) {
1173                 status = had_lock;
1174                 goto bail_unlock_rw;
1175         } else if (had_lock) {
1176                 /*
1177                  * As far as we know, ocfs2_setattr() could only be the first
1178                  * VFS entry point in the call chain of recursive cluster
1179                  * locking issue.
1180                  *
1181                  * For instance:
1182                  * chmod_common()
1183                  *  notify_change()
1184                  *   ocfs2_setattr()
1185                  *    posix_acl_chmod()
1186                  *     ocfs2_iop_get_acl()
1187                  *
1188                  * But, we're not 100% sure if it's always true, because the
1189                  * ordering of the VFS entry points in the call chain is out
1190                  * of our control. So, we'd better dump the stack here to
1191                  * catch the other cases of recursive locking.
1192                  */
1193                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1194                 dump_stack();
1195         }
1196         inode_locked = 1;
1197
1198         if (size_change) {
1199                 status = inode_newsize_ok(inode, attr->ia_size);
1200                 if (status)
1201                         goto bail_unlock;
1202
1203                 if (i_size_read(inode) >= attr->ia_size) {
1204                         if (ocfs2_should_order_data(inode)) {
1205                                 status = ocfs2_begin_ordered_truncate(inode,
1206                                                                       attr->ia_size);
1207                                 if (status)
1208                                         goto bail_unlock;
1209                         }
1210                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1211                 } else
1212                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1213                 if (status < 0) {
1214                         if (status != -ENOSPC)
1215                                 mlog_errno(status);
1216                         status = -ENOSPC;
1217                         goto bail_unlock;
1218                 }
1219         }
1220
1221         if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1222             (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1223                 /*
1224                  * Gather pointers to quota structures so that allocation /
1225                  * freeing of quota structures happens here and not inside
1226                  * dquot_transfer() where we have problems with lock ordering
1227                  */
1228                 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1229                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1230                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1231                         transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1232                         if (IS_ERR(transfer_to[USRQUOTA])) {
1233                                 status = PTR_ERR(transfer_to[USRQUOTA]);
1234                                 transfer_to[USRQUOTA] = NULL;
1235                                 goto bail_unlock;
1236                         }
1237                 }
1238                 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1239                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1240                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1241                         transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1242                         if (IS_ERR(transfer_to[GRPQUOTA])) {
1243                                 status = PTR_ERR(transfer_to[GRPQUOTA]);
1244                                 transfer_to[GRPQUOTA] = NULL;
1245                                 goto bail_unlock;
1246                         }
1247                 }
1248                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1249                                            2 * ocfs2_quota_trans_credits(sb));
1250                 if (IS_ERR(handle)) {
1251                         status = PTR_ERR(handle);
1252                         mlog_errno(status);
1253                         goto bail_unlock;
1254                 }
1255                 status = __dquot_transfer(inode, transfer_to);
1256                 if (status < 0)
1257                         goto bail_commit;
1258         } else {
1259                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260                 if (IS_ERR(handle)) {
1261                         status = PTR_ERR(handle);
1262                         mlog_errno(status);
1263                         goto bail_unlock;
1264                 }
1265         }
1266
1267         setattr_copy(&init_user_ns, inode, attr);
1268         mark_inode_dirty(inode);
1269
1270         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271         if (status < 0)
1272                 mlog_errno(status);
1273
1274 bail_commit:
1275         ocfs2_commit_trans(osb, handle);
1276 bail_unlock:
1277         if (status && inode_locked) {
1278                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1279                 inode_locked = 0;
1280         }
1281 bail_unlock_rw:
1282         if (size_change)
1283                 ocfs2_rw_unlock(inode, 1);
1284 bail:
1285
1286         /* Release quota pointers in case we acquired them */
1287         for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1288                 dqput(transfer_to[qtype]);
1289
1290         if (!status && attr->ia_valid & ATTR_MODE) {
1291                 status = ocfs2_acl_chmod(inode, bh);
1292                 if (status < 0)
1293                         mlog_errno(status);
1294         }
1295         if (inode_locked)
1296                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1297
1298         brelse(bh);
1299         return status;
1300 }
1301
1302 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1303                   struct kstat *stat, u32 request_mask, unsigned int flags)
1304 {
1305         struct inode *inode = d_inode(path->dentry);
1306         struct super_block *sb = path->dentry->d_sb;
1307         struct ocfs2_super *osb = sb->s_fs_info;
1308         int err;
1309
1310         err = ocfs2_inode_revalidate(path->dentry);
1311         if (err) {
1312                 if (err != -ENOENT)
1313                         mlog_errno(err);
1314                 goto bail;
1315         }
1316
1317         generic_fillattr(&init_user_ns, inode, stat);
1318         /*
1319          * If there is inline data in the inode, the inode will normally not
1320          * have data blocks allocated (it may have an external xattr block).
1321          * Report at least one sector for such files, so tools like tar, rsync,
1322          * others don't incorrectly think the file is completely sparse.
1323          */
1324         if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1325                 stat->blocks += (stat->size + 511)>>9;
1326
1327         /* We set the blksize from the cluster size for performance */
1328         stat->blksize = osb->s_clustersize;
1329
1330 bail:
1331         return err;
1332 }
1333
1334 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1335                      int mask)
1336 {
1337         int ret, had_lock;
1338         struct ocfs2_lock_holder oh;
1339
1340         if (mask & MAY_NOT_BLOCK)
1341                 return -ECHILD;
1342
1343         had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1344         if (had_lock < 0) {
1345                 ret = had_lock;
1346                 goto out;
1347         } else if (had_lock) {
1348                 /* See comments in ocfs2_setattr() for details.
1349                  * The call chain of this case could be:
1350                  * do_sys_open()
1351                  *  may_open()
1352                  *   inode_permission()
1353                  *    ocfs2_permission()
1354                  *     ocfs2_iop_get_acl()
1355                  */
1356                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1357                 dump_stack();
1358         }
1359
1360         ret = generic_permission(&init_user_ns, inode, mask);
1361
1362         ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1363 out:
1364         return ret;
1365 }
1366
1367 static int __ocfs2_write_remove_suid(struct inode *inode,
1368                                      struct buffer_head *bh)
1369 {
1370         int ret;
1371         handle_t *handle;
1372         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1373         struct ocfs2_dinode *di;
1374
1375         trace_ocfs2_write_remove_suid(
1376                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1377                         inode->i_mode);
1378
1379         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1380         if (IS_ERR(handle)) {
1381                 ret = PTR_ERR(handle);
1382                 mlog_errno(ret);
1383                 goto out;
1384         }
1385
1386         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1387                                       OCFS2_JOURNAL_ACCESS_WRITE);
1388         if (ret < 0) {
1389                 mlog_errno(ret);
1390                 goto out_trans;
1391         }
1392
1393         inode->i_mode &= ~S_ISUID;
1394         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1395                 inode->i_mode &= ~S_ISGID;
1396
1397         di = (struct ocfs2_dinode *) bh->b_data;
1398         di->i_mode = cpu_to_le16(inode->i_mode);
1399         ocfs2_update_inode_fsync_trans(handle, inode, 0);
1400
1401         ocfs2_journal_dirty(handle, bh);
1402
1403 out_trans:
1404         ocfs2_commit_trans(osb, handle);
1405 out:
1406         return ret;
1407 }
1408
1409 static int ocfs2_write_remove_suid(struct inode *inode)
1410 {
1411         int ret;
1412         struct buffer_head *bh = NULL;
1413
1414         ret = ocfs2_read_inode_block(inode, &bh);
1415         if (ret < 0) {
1416                 mlog_errno(ret);
1417                 goto out;
1418         }
1419
1420         ret =  __ocfs2_write_remove_suid(inode, bh);
1421 out:
1422         brelse(bh);
1423         return ret;
1424 }
1425
1426 /*
1427  * Allocate enough extents to cover the region starting at byte offset
1428  * start for len bytes. Existing extents are skipped, any extents
1429  * added are marked as "unwritten".
1430  */
1431 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1432                                             u64 start, u64 len)
1433 {
1434         int ret;
1435         u32 cpos, phys_cpos, clusters, alloc_size;
1436         u64 end = start + len;
1437         struct buffer_head *di_bh = NULL;
1438
1439         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1440                 ret = ocfs2_read_inode_block(inode, &di_bh);
1441                 if (ret) {
1442                         mlog_errno(ret);
1443                         goto out;
1444                 }
1445
1446                 /*
1447                  * Nothing to do if the requested reservation range
1448                  * fits within the inode.
1449                  */
1450                 if (ocfs2_size_fits_inline_data(di_bh, end))
1451                         goto out;
1452
1453                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1454                 if (ret) {
1455                         mlog_errno(ret);
1456                         goto out;
1457                 }
1458         }
1459
1460         /*
1461          * We consider both start and len to be inclusive.
1462          */
1463         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1464         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1465         clusters -= cpos;
1466
1467         while (clusters) {
1468                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1469                                          &alloc_size, NULL);
1470                 if (ret) {
1471                         mlog_errno(ret);
1472                         goto out;
1473                 }
1474
1475                 /*
1476                  * Hole or existing extent len can be arbitrary, so
1477                  * cap it to our own allocation request.
1478                  */
1479                 if (alloc_size > clusters)
1480                         alloc_size = clusters;
1481
1482                 if (phys_cpos) {
1483                         /*
1484                          * We already have an allocation at this
1485                          * region so we can safely skip it.
1486                          */
1487                         goto next;
1488                 }
1489
1490                 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1491                 if (ret) {
1492                         if (ret != -ENOSPC)
1493                                 mlog_errno(ret);
1494                         goto out;
1495                 }
1496
1497 next:
1498                 cpos += alloc_size;
1499                 clusters -= alloc_size;
1500         }
1501
1502         ret = 0;
1503 out:
1504
1505         brelse(di_bh);
1506         return ret;
1507 }
1508
1509 /*
1510  * Truncate a byte range, avoiding pages within partial clusters. This
1511  * preserves those pages for the zeroing code to write to.
1512  */
1513 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1514                                          u64 byte_len)
1515 {
1516         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1517         loff_t start, end;
1518         struct address_space *mapping = inode->i_mapping;
1519
1520         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1521         end = byte_start + byte_len;
1522         end = end & ~(osb->s_clustersize - 1);
1523
1524         if (start < end) {
1525                 unmap_mapping_range(mapping, start, end - start, 0);
1526                 truncate_inode_pages_range(mapping, start, end - 1);
1527         }
1528 }
1529
1530 static int ocfs2_zero_partial_clusters(struct inode *inode,
1531                                        u64 start, u64 len)
1532 {
1533         int ret = 0;
1534         u64 tmpend = 0;
1535         u64 end = start + len;
1536         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1537         unsigned int csize = osb->s_clustersize;
1538         handle_t *handle;
1539
1540         /*
1541          * The "start" and "end" values are NOT necessarily part of
1542          * the range whose allocation is being deleted. Rather, this
1543          * is what the user passed in with the request. We must zero
1544          * partial clusters here. There's no need to worry about
1545          * physical allocation - the zeroing code knows to skip holes.
1546          */
1547         trace_ocfs2_zero_partial_clusters(
1548                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1549                 (unsigned long long)start, (unsigned long long)end);
1550
1551         /*
1552          * If both edges are on a cluster boundary then there's no
1553          * zeroing required as the region is part of the allocation to
1554          * be truncated.
1555          */
1556         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1557                 goto out;
1558
1559         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1560         if (IS_ERR(handle)) {
1561                 ret = PTR_ERR(handle);
1562                 mlog_errno(ret);
1563                 goto out;
1564         }
1565
1566         /*
1567          * If start is on a cluster boundary and end is somewhere in another
1568          * cluster, we have not COWed the cluster starting at start, unless
1569          * end is also within the same cluster. So, in this case, we skip this
1570          * first call to ocfs2_zero_range_for_truncate() truncate and move on
1571          * to the next one.
1572          */
1573         if ((start & (csize - 1)) != 0) {
1574                 /*
1575                  * We want to get the byte offset of the end of the 1st
1576                  * cluster.
1577                  */
1578                 tmpend = (u64)osb->s_clustersize +
1579                         (start & ~(osb->s_clustersize - 1));
1580                 if (tmpend > end)
1581                         tmpend = end;
1582
1583                 trace_ocfs2_zero_partial_clusters_range1(
1584                         (unsigned long long)start,
1585                         (unsigned long long)tmpend);
1586
1587                 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1588                                                     tmpend);
1589                 if (ret)
1590                         mlog_errno(ret);
1591         }
1592
1593         if (tmpend < end) {
1594                 /*
1595                  * This may make start and end equal, but the zeroing
1596                  * code will skip any work in that case so there's no
1597                  * need to catch it up here.
1598                  */
1599                 start = end & ~(osb->s_clustersize - 1);
1600
1601                 trace_ocfs2_zero_partial_clusters_range2(
1602                         (unsigned long long)start, (unsigned long long)end);
1603
1604                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1605                 if (ret)
1606                         mlog_errno(ret);
1607         }
1608         ocfs2_update_inode_fsync_trans(handle, inode, 1);
1609
1610         ocfs2_commit_trans(osb, handle);
1611 out:
1612         return ret;
1613 }
1614
1615 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1616 {
1617         int i;
1618         struct ocfs2_extent_rec *rec = NULL;
1619
1620         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1621
1622                 rec = &el->l_recs[i];
1623
1624                 if (le32_to_cpu(rec->e_cpos) < pos)
1625                         break;
1626         }
1627
1628         return i;
1629 }
1630
1631 /*
1632  * Helper to calculate the punching pos and length in one run, we handle the
1633  * following three cases in order:
1634  *
1635  * - remove the entire record
1636  * - remove a partial record
1637  * - no record needs to be removed (hole-punching completed)
1638 */
1639 static void ocfs2_calc_trunc_pos(struct inode *inode,
1640                                  struct ocfs2_extent_list *el,
1641                                  struct ocfs2_extent_rec *rec,
1642                                  u32 trunc_start, u32 *trunc_cpos,
1643                                  u32 *trunc_len, u32 *trunc_end,
1644                                  u64 *blkno, int *done)
1645 {
1646         int ret = 0;
1647         u32 coff, range;
1648
1649         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1650
1651         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1652                 /*
1653                  * remove an entire extent record.
1654                  */
1655                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1656                 /*
1657                  * Skip holes if any.
1658                  */
1659                 if (range < *trunc_end)
1660                         *trunc_end = range;
1661                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1662                 *blkno = le64_to_cpu(rec->e_blkno);
1663                 *trunc_end = le32_to_cpu(rec->e_cpos);
1664         } else if (range > trunc_start) {
1665                 /*
1666                  * remove a partial extent record, which means we're
1667                  * removing the last extent record.
1668                  */
1669                 *trunc_cpos = trunc_start;
1670                 /*
1671                  * skip hole if any.
1672                  */
1673                 if (range < *trunc_end)
1674                         *trunc_end = range;
1675                 *trunc_len = *trunc_end - trunc_start;
1676                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1677                 *blkno = le64_to_cpu(rec->e_blkno) +
1678                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1679                 *trunc_end = trunc_start;
1680         } else {
1681                 /*
1682                  * It may have two following possibilities:
1683                  *
1684                  * - last record has been removed
1685                  * - trunc_start was within a hole
1686                  *
1687                  * both two cases mean the completion of hole punching.
1688                  */
1689                 ret = 1;
1690         }
1691
1692         *done = ret;
1693 }
1694
1695 int ocfs2_remove_inode_range(struct inode *inode,
1696                              struct buffer_head *di_bh, u64 byte_start,
1697                              u64 byte_len)
1698 {
1699         int ret = 0, flags = 0, done = 0, i;
1700         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1701         u32 cluster_in_el;
1702         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1703         struct ocfs2_cached_dealloc_ctxt dealloc;
1704         struct address_space *mapping = inode->i_mapping;
1705         struct ocfs2_extent_tree et;
1706         struct ocfs2_path *path = NULL;
1707         struct ocfs2_extent_list *el = NULL;
1708         struct ocfs2_extent_rec *rec = NULL;
1709         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1710         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1711
1712         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1713         ocfs2_init_dealloc_ctxt(&dealloc);
1714
1715         trace_ocfs2_remove_inode_range(
1716                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1717                         (unsigned long long)byte_start,
1718                         (unsigned long long)byte_len);
1719
1720         if (byte_len == 0)
1721                 return 0;
1722
1723         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1724                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1725                                             byte_start + byte_len, 0);
1726                 if (ret) {
1727                         mlog_errno(ret);
1728                         goto out;
1729                 }
1730                 /*
1731                  * There's no need to get fancy with the page cache
1732                  * truncate of an inline-data inode. We're talking
1733                  * about less than a page here, which will be cached
1734                  * in the dinode buffer anyway.
1735                  */
1736                 unmap_mapping_range(mapping, 0, 0, 0);
1737                 truncate_inode_pages(mapping, 0);
1738                 goto out;
1739         }
1740
1741         /*
1742          * For reflinks, we may need to CoW 2 clusters which might be
1743          * partially zero'd later, if hole's start and end offset were
1744          * within one cluster(means is not exactly aligned to clustersize).
1745          */
1746
1747         if (ocfs2_is_refcount_inode(inode)) {
1748                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1749                 if (ret) {
1750                         mlog_errno(ret);
1751                         goto out;
1752                 }
1753
1754                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1755                 if (ret) {
1756                         mlog_errno(ret);
1757                         goto out;
1758                 }
1759         }
1760
1761         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1762         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1763         cluster_in_el = trunc_end;
1764
1765         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1766         if (ret) {
1767                 mlog_errno(ret);
1768                 goto out;
1769         }
1770
1771         path = ocfs2_new_path_from_et(&et);
1772         if (!path) {
1773                 ret = -ENOMEM;
1774                 mlog_errno(ret);
1775                 goto out;
1776         }
1777
1778         while (trunc_end > trunc_start) {
1779
1780                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1781                                       cluster_in_el);
1782                 if (ret) {
1783                         mlog_errno(ret);
1784                         goto out;
1785                 }
1786
1787                 el = path_leaf_el(path);
1788
1789                 i = ocfs2_find_rec(el, trunc_end);
1790                 /*
1791                  * Need to go to previous extent block.
1792                  */
1793                 if (i < 0) {
1794                         if (path->p_tree_depth == 0)
1795                                 break;
1796
1797                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1798                                                             path,
1799                                                             &cluster_in_el);
1800                         if (ret) {
1801                                 mlog_errno(ret);
1802                                 goto out;
1803                         }
1804
1805                         /*
1806                          * We've reached the leftmost extent block,
1807                          * it's safe to leave.
1808                          */
1809                         if (cluster_in_el == 0)
1810                                 break;
1811
1812                         /*
1813                          * The 'pos' searched for previous extent block is
1814                          * always one cluster less than actual trunc_end.
1815                          */
1816                         trunc_end = cluster_in_el + 1;
1817
1818                         ocfs2_reinit_path(path, 1);
1819
1820                         continue;
1821
1822                 } else
1823                         rec = &el->l_recs[i];
1824
1825                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1826                                      &trunc_len, &trunc_end, &blkno, &done);
1827                 if (done)
1828                         break;
1829
1830                 flags = rec->e_flags;
1831                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1832
1833                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1834                                                phys_cpos, trunc_len, flags,
1835                                                &dealloc, refcount_loc, false);
1836                 if (ret < 0) {
1837                         mlog_errno(ret);
1838                         goto out;
1839                 }
1840
1841                 cluster_in_el = trunc_end;
1842
1843                 ocfs2_reinit_path(path, 1);
1844         }
1845
1846         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1847
1848 out:
1849         ocfs2_free_path(path);
1850         ocfs2_schedule_truncate_log_flush(osb, 1);
1851         ocfs2_run_deallocs(osb, &dealloc);
1852
1853         return ret;
1854 }
1855
1856 /*
1857  * Parts of this function taken from xfs_change_file_space()
1858  */
1859 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1860                                      loff_t f_pos, unsigned int cmd,
1861                                      struct ocfs2_space_resv *sr,
1862                                      int change_size)
1863 {
1864         int ret;
1865         s64 llen;
1866         loff_t size;
1867         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1868         struct buffer_head *di_bh = NULL;
1869         handle_t *handle;
1870         unsigned long long max_off = inode->i_sb->s_maxbytes;
1871
1872         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1873                 return -EROFS;
1874
1875         inode_lock(inode);
1876
1877         /*
1878          * This prevents concurrent writes on other nodes
1879          */
1880         ret = ocfs2_rw_lock(inode, 1);
1881         if (ret) {
1882                 mlog_errno(ret);
1883                 goto out;
1884         }
1885
1886         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1887         if (ret) {
1888                 mlog_errno(ret);
1889                 goto out_rw_unlock;
1890         }
1891
1892         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1893                 ret = -EPERM;
1894                 goto out_inode_unlock;
1895         }
1896
1897         switch (sr->l_whence) {
1898         case 0: /*SEEK_SET*/
1899                 break;
1900         case 1: /*SEEK_CUR*/
1901                 sr->l_start += f_pos;
1902                 break;
1903         case 2: /*SEEK_END*/
1904                 sr->l_start += i_size_read(inode);
1905                 break;
1906         default:
1907                 ret = -EINVAL;
1908                 goto out_inode_unlock;
1909         }
1910         sr->l_whence = 0;
1911
1912         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1913
1914         if (sr->l_start < 0
1915             || sr->l_start > max_off
1916             || (sr->l_start + llen) < 0
1917             || (sr->l_start + llen) > max_off) {
1918                 ret = -EINVAL;
1919                 goto out_inode_unlock;
1920         }
1921         size = sr->l_start + sr->l_len;
1922
1923         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1924             cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1925                 if (sr->l_len <= 0) {
1926                         ret = -EINVAL;
1927                         goto out_inode_unlock;
1928                 }
1929         }
1930
1931         if (file && should_remove_suid(file->f_path.dentry)) {
1932                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1933                 if (ret) {
1934                         mlog_errno(ret);
1935                         goto out_inode_unlock;
1936                 }
1937         }
1938
1939         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1940         switch (cmd) {
1941         case OCFS2_IOC_RESVSP:
1942         case OCFS2_IOC_RESVSP64:
1943                 /*
1944                  * This takes unsigned offsets, but the signed ones we
1945                  * pass have been checked against overflow above.
1946                  */
1947                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1948                                                        sr->l_len);
1949                 break;
1950         case OCFS2_IOC_UNRESVSP:
1951         case OCFS2_IOC_UNRESVSP64:
1952                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1953                                                sr->l_len);
1954                 break;
1955         default:
1956                 ret = -EINVAL;
1957         }
1958         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959         if (ret) {
1960                 mlog_errno(ret);
1961                 goto out_inode_unlock;
1962         }
1963
1964         /*
1965          * We update c/mtime for these changes
1966          */
1967         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1968         if (IS_ERR(handle)) {
1969                 ret = PTR_ERR(handle);
1970                 mlog_errno(ret);
1971                 goto out_inode_unlock;
1972         }
1973
1974         if (change_size && i_size_read(inode) < size)
1975                 i_size_write(inode, size);
1976
1977         inode->i_ctime = inode->i_mtime = current_time(inode);
1978         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1979         if (ret < 0)
1980                 mlog_errno(ret);
1981
1982         if (file && (file->f_flags & O_SYNC))
1983                 handle->h_sync = 1;
1984
1985         ocfs2_commit_trans(osb, handle);
1986
1987 out_inode_unlock:
1988         brelse(di_bh);
1989         ocfs2_inode_unlock(inode, 1);
1990 out_rw_unlock:
1991         ocfs2_rw_unlock(inode, 1);
1992
1993 out:
1994         inode_unlock(inode);
1995         return ret;
1996 }
1997
1998 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1999                             struct ocfs2_space_resv *sr)
2000 {
2001         struct inode *inode = file_inode(file);
2002         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003         int ret;
2004
2005         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2006             !ocfs2_writes_unwritten_extents(osb))
2007                 return -ENOTTY;
2008         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2009                  !ocfs2_sparse_alloc(osb))
2010                 return -ENOTTY;
2011
2012         if (!S_ISREG(inode->i_mode))
2013                 return -EINVAL;
2014
2015         if (!(file->f_mode & FMODE_WRITE))
2016                 return -EBADF;
2017
2018         ret = mnt_want_write_file(file);
2019         if (ret)
2020                 return ret;
2021         ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2022         mnt_drop_write_file(file);
2023         return ret;
2024 }
2025
2026 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2027                             loff_t len)
2028 {
2029         struct inode *inode = file_inode(file);
2030         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2031         struct ocfs2_space_resv sr;
2032         int change_size = 1;
2033         int cmd = OCFS2_IOC_RESVSP64;
2034
2035         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2036                 return -EOPNOTSUPP;
2037         if (!ocfs2_writes_unwritten_extents(osb))
2038                 return -EOPNOTSUPP;
2039
2040         if (mode & FALLOC_FL_KEEP_SIZE)
2041                 change_size = 0;
2042
2043         if (mode & FALLOC_FL_PUNCH_HOLE)
2044                 cmd = OCFS2_IOC_UNRESVSP64;
2045
2046         sr.l_whence = 0;
2047         sr.l_start = (s64)offset;
2048         sr.l_len = (s64)len;
2049
2050         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2051                                          change_size);
2052 }
2053
2054 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2055                                    size_t count)
2056 {
2057         int ret = 0;
2058         unsigned int extent_flags;
2059         u32 cpos, clusters, extent_len, phys_cpos;
2060         struct super_block *sb = inode->i_sb;
2061
2062         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2063             !ocfs2_is_refcount_inode(inode) ||
2064             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2065                 return 0;
2066
2067         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2068         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2069
2070         while (clusters) {
2071                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2072                                          &extent_flags);
2073                 if (ret < 0) {
2074                         mlog_errno(ret);
2075                         goto out;
2076                 }
2077
2078                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2079                         ret = 1;
2080                         break;
2081                 }
2082
2083                 if (extent_len > clusters)
2084                         extent_len = clusters;
2085
2086                 clusters -= extent_len;
2087                 cpos += extent_len;
2088         }
2089 out:
2090         return ret;
2091 }
2092
2093 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2094 {
2095         int blockmask = inode->i_sb->s_blocksize - 1;
2096         loff_t final_size = pos + count;
2097
2098         if ((pos & blockmask) || (final_size & blockmask))
2099                 return 1;
2100         return 0;
2101 }
2102
2103 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2104                                             struct buffer_head **di_bh,
2105                                             int meta_level,
2106                                             int write_sem,
2107                                             int wait)
2108 {
2109         int ret = 0;
2110
2111         if (wait)
2112                 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2113         else
2114                 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2115         if (ret < 0)
2116                 goto out;
2117
2118         if (wait) {
2119                 if (write_sem)
2120                         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2121                 else
2122                         down_read(&OCFS2_I(inode)->ip_alloc_sem);
2123         } else {
2124                 if (write_sem)
2125                         ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2126                 else
2127                         ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2128
2129                 if (!ret) {
2130                         ret = -EAGAIN;
2131                         goto out_unlock;
2132                 }
2133         }
2134
2135         return ret;
2136
2137 out_unlock:
2138         brelse(*di_bh);
2139         *di_bh = NULL;
2140         ocfs2_inode_unlock(inode, meta_level);
2141 out:
2142         return ret;
2143 }
2144
2145 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2146                                                struct buffer_head **di_bh,
2147                                                int meta_level,
2148                                                int write_sem)
2149 {
2150         if (write_sem)
2151                 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2152         else
2153                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2154
2155         brelse(*di_bh);
2156         *di_bh = NULL;
2157
2158         if (meta_level >= 0)
2159                 ocfs2_inode_unlock(inode, meta_level);
2160 }
2161
2162 static int ocfs2_prepare_inode_for_write(struct file *file,
2163                                          loff_t pos, size_t count, int wait)
2164 {
2165         int ret = 0, meta_level = 0, overwrite_io = 0;
2166         int write_sem = 0;
2167         struct dentry *dentry = file->f_path.dentry;
2168         struct inode *inode = d_inode(dentry);
2169         struct buffer_head *di_bh = NULL;
2170         u32 cpos;
2171         u32 clusters;
2172
2173         /*
2174          * We start with a read level meta lock and only jump to an ex
2175          * if we need to make modifications here.
2176          */
2177         for(;;) {
2178                 ret = ocfs2_inode_lock_for_extent_tree(inode,
2179                                                        &di_bh,
2180                                                        meta_level,
2181                                                        write_sem,
2182                                                        wait);
2183                 if (ret < 0) {
2184                         if (ret != -EAGAIN)
2185                                 mlog_errno(ret);
2186                         goto out;
2187                 }
2188
2189                 /*
2190                  * Check if IO will overwrite allocated blocks in case
2191                  * IOCB_NOWAIT flag is set.
2192                  */
2193                 if (!wait && !overwrite_io) {
2194                         overwrite_io = 1;
2195
2196                         ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2197                         if (ret < 0) {
2198                                 if (ret != -EAGAIN)
2199                                         mlog_errno(ret);
2200                                 goto out_unlock;
2201                         }
2202                 }
2203
2204                 /* Clear suid / sgid if necessary. We do this here
2205                  * instead of later in the write path because
2206                  * remove_suid() calls ->setattr without any hint that
2207                  * we may have already done our cluster locking. Since
2208                  * ocfs2_setattr() *must* take cluster locks to
2209                  * proceed, this will lead us to recursively lock the
2210                  * inode. There's also the dinode i_size state which
2211                  * can be lost via setattr during extending writes (we
2212                  * set inode->i_size at the end of a write. */
2213                 if (should_remove_suid(dentry)) {
2214                         if (meta_level == 0) {
2215                                 ocfs2_inode_unlock_for_extent_tree(inode,
2216                                                                    &di_bh,
2217                                                                    meta_level,
2218                                                                    write_sem);
2219                                 meta_level = 1;
2220                                 continue;
2221                         }
2222
2223                         ret = ocfs2_write_remove_suid(inode);
2224                         if (ret < 0) {
2225                                 mlog_errno(ret);
2226                                 goto out_unlock;
2227                         }
2228                 }
2229
2230                 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2231                 if (ret == 1) {
2232                         ocfs2_inode_unlock_for_extent_tree(inode,
2233                                                            &di_bh,
2234                                                            meta_level,
2235                                                            write_sem);
2236                         meta_level = 1;
2237                         write_sem = 1;
2238                         ret = ocfs2_inode_lock_for_extent_tree(inode,
2239                                                                &di_bh,
2240                                                                meta_level,
2241                                                                write_sem,
2242                                                                wait);
2243                         if (ret < 0) {
2244                                 if (ret != -EAGAIN)
2245                                         mlog_errno(ret);
2246                                 goto out;
2247                         }
2248
2249                         cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2250                         clusters =
2251                                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2252                         ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2253                 }
2254
2255                 if (ret < 0) {
2256                         if (ret != -EAGAIN)
2257                                 mlog_errno(ret);
2258                         goto out_unlock;
2259                 }
2260
2261                 break;
2262         }
2263
2264 out_unlock:
2265         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2266                                             pos, count, wait);
2267
2268         ocfs2_inode_unlock_for_extent_tree(inode,
2269                                            &di_bh,
2270                                            meta_level,
2271                                            write_sem);
2272
2273 out:
2274         return ret;
2275 }
2276
2277 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2278                                     struct iov_iter *from)
2279 {
2280         int rw_level;
2281         ssize_t written = 0;
2282         ssize_t ret;
2283         size_t count = iov_iter_count(from);
2284         struct file *file = iocb->ki_filp;
2285         struct inode *inode = file_inode(file);
2286         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2287         int full_coherency = !(osb->s_mount_opt &
2288                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2289         void *saved_ki_complete = NULL;
2290         int append_write = ((iocb->ki_pos + count) >=
2291                         i_size_read(inode) ? 1 : 0);
2292         int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2293         int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2294
2295         trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2296                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2297                 file->f_path.dentry->d_name.len,
2298                 file->f_path.dentry->d_name.name,
2299                 (unsigned int)from->nr_segs);   /* GRRRRR */
2300
2301         if (!direct_io && nowait)
2302                 return -EOPNOTSUPP;
2303
2304         if (count == 0)
2305                 return 0;
2306
2307         if (nowait) {
2308                 if (!inode_trylock(inode))
2309                         return -EAGAIN;
2310         } else
2311                 inode_lock(inode);
2312
2313         /*
2314          * Concurrent O_DIRECT writes are allowed with
2315          * mount_option "coherency=buffered".
2316          * For append write, we must take rw EX.
2317          */
2318         rw_level = (!direct_io || full_coherency || append_write);
2319
2320         if (nowait)
2321                 ret = ocfs2_try_rw_lock(inode, rw_level);
2322         else
2323                 ret = ocfs2_rw_lock(inode, rw_level);
2324         if (ret < 0) {
2325                 if (ret != -EAGAIN)
2326                         mlog_errno(ret);
2327                 goto out_mutex;
2328         }
2329
2330         /*
2331          * O_DIRECT writes with "coherency=full" need to take EX cluster
2332          * inode_lock to guarantee coherency.
2333          */
2334         if (direct_io && full_coherency) {
2335                 /*
2336                  * We need to take and drop the inode lock to force
2337                  * other nodes to drop their caches.  Buffered I/O
2338                  * already does this in write_begin().
2339                  */
2340                 if (nowait)
2341                         ret = ocfs2_try_inode_lock(inode, NULL, 1);
2342                 else
2343                         ret = ocfs2_inode_lock(inode, NULL, 1);
2344                 if (ret < 0) {
2345                         if (ret != -EAGAIN)
2346                                 mlog_errno(ret);
2347                         goto out;
2348                 }
2349
2350                 ocfs2_inode_unlock(inode, 1);
2351         }
2352
2353         ret = generic_write_checks(iocb, from);
2354         if (ret <= 0) {
2355                 if (ret)
2356                         mlog_errno(ret);
2357                 goto out;
2358         }
2359         count = ret;
2360
2361         ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2362         if (ret < 0) {
2363                 if (ret != -EAGAIN)
2364                         mlog_errno(ret);
2365                 goto out;
2366         }
2367
2368         if (direct_io && !is_sync_kiocb(iocb) &&
2369             ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2370                 /*
2371                  * Make it a sync io if it's an unaligned aio.
2372                  */
2373                 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2374         }
2375
2376         /* communicate with ocfs2_dio_end_io */
2377         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2378
2379         written = __generic_file_write_iter(iocb, from);
2380         /* buffered aio wouldn't have proper lock coverage today */
2381         BUG_ON(written == -EIOCBQUEUED && !direct_io);
2382
2383         /*
2384          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2385          * function pointer which is called when o_direct io completes so that
2386          * it can unlock our rw lock.
2387          * Unfortunately there are error cases which call end_io and others
2388          * that don't.  so we don't have to unlock the rw_lock if either an
2389          * async dio is going to do it in the future or an end_io after an
2390          * error has already done it.
2391          */
2392         if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2393                 rw_level = -1;
2394         }
2395
2396         if (unlikely(written <= 0))
2397                 goto out;
2398
2399         if (((file->f_flags & O_DSYNC) && !direct_io) ||
2400             IS_SYNC(inode)) {
2401                 ret = filemap_fdatawrite_range(file->f_mapping,
2402                                                iocb->ki_pos - written,
2403                                                iocb->ki_pos - 1);
2404                 if (ret < 0)
2405                         written = ret;
2406
2407                 if (!ret) {
2408                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2409                         if (ret < 0)
2410                                 written = ret;
2411                 }
2412
2413                 if (!ret)
2414                         ret = filemap_fdatawait_range(file->f_mapping,
2415                                                       iocb->ki_pos - written,
2416                                                       iocb->ki_pos - 1);
2417         }
2418
2419 out:
2420         if (saved_ki_complete)
2421                 xchg(&iocb->ki_complete, saved_ki_complete);
2422
2423         if (rw_level != -1)
2424                 ocfs2_rw_unlock(inode, rw_level);
2425
2426 out_mutex:
2427         inode_unlock(inode);
2428
2429         if (written)
2430                 ret = written;
2431         return ret;
2432 }
2433
2434 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2435                                    struct iov_iter *to)
2436 {
2437         int ret = 0, rw_level = -1, lock_level = 0;
2438         struct file *filp = iocb->ki_filp;
2439         struct inode *inode = file_inode(filp);
2440         int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2441         int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2442
2443         trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2444                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2445                         filp->f_path.dentry->d_name.len,
2446                         filp->f_path.dentry->d_name.name,
2447                         to->nr_segs);   /* GRRRRR */
2448
2449
2450         if (!inode) {
2451                 ret = -EINVAL;
2452                 mlog_errno(ret);
2453                 goto bail;
2454         }
2455
2456         if (!direct_io && nowait)
2457                 return -EOPNOTSUPP;
2458
2459         /*
2460          * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2461          * need locks to protect pending reads from racing with truncate.
2462          */
2463         if (direct_io) {
2464                 if (nowait)
2465                         ret = ocfs2_try_rw_lock(inode, 0);
2466                 else
2467                         ret = ocfs2_rw_lock(inode, 0);
2468
2469                 if (ret < 0) {
2470                         if (ret != -EAGAIN)
2471                                 mlog_errno(ret);
2472                         goto bail;
2473                 }
2474                 rw_level = 0;
2475                 /* communicate with ocfs2_dio_end_io */
2476                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2477         }
2478
2479         /*
2480          * We're fine letting folks race truncates and extending
2481          * writes with read across the cluster, just like they can
2482          * locally. Hence no rw_lock during read.
2483          *
2484          * Take and drop the meta data lock to update inode fields
2485          * like i_size. This allows the checks down below
2486          * generic_file_read_iter() a chance of actually working.
2487          */
2488         ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2489                                      !nowait);
2490         if (ret < 0) {
2491                 if (ret != -EAGAIN)
2492                         mlog_errno(ret);
2493                 goto bail;
2494         }
2495         ocfs2_inode_unlock(inode, lock_level);
2496
2497         ret = generic_file_read_iter(iocb, to);
2498         trace_generic_file_read_iter_ret(ret);
2499
2500         /* buffered aio wouldn't have proper lock coverage today */
2501         BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2502
2503         /* see ocfs2_file_write_iter */
2504         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2505                 rw_level = -1;
2506         }
2507
2508 bail:
2509         if (rw_level != -1)
2510                 ocfs2_rw_unlock(inode, rw_level);
2511
2512         return ret;
2513 }
2514
2515 /* Refer generic_file_llseek_unlocked() */
2516 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2517 {
2518         struct inode *inode = file->f_mapping->host;
2519         int ret = 0;
2520
2521         inode_lock(inode);
2522
2523         switch (whence) {
2524         case SEEK_SET:
2525                 break;
2526         case SEEK_END:
2527                 /* SEEK_END requires the OCFS2 inode lock for the file
2528                  * because it references the file's size.
2529                  */
2530                 ret = ocfs2_inode_lock(inode, NULL, 0);
2531                 if (ret < 0) {
2532                         mlog_errno(ret);
2533                         goto out;
2534                 }
2535                 offset += i_size_read(inode);
2536                 ocfs2_inode_unlock(inode, 0);
2537                 break;
2538         case SEEK_CUR:
2539                 if (offset == 0) {
2540                         offset = file->f_pos;
2541                         goto out;
2542                 }
2543                 offset += file->f_pos;
2544                 break;
2545         case SEEK_DATA:
2546         case SEEK_HOLE:
2547                 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2548                 if (ret)
2549                         goto out;
2550                 break;
2551         default:
2552                 ret = -EINVAL;
2553                 goto out;
2554         }
2555
2556         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2557
2558 out:
2559         inode_unlock(inode);
2560         if (ret)
2561                 return ret;
2562         return offset;
2563 }
2564
2565 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2566                                      struct file *file_out, loff_t pos_out,
2567                                      loff_t len, unsigned int remap_flags)
2568 {
2569         struct inode *inode_in = file_inode(file_in);
2570         struct inode *inode_out = file_inode(file_out);
2571         struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2572         struct buffer_head *in_bh = NULL, *out_bh = NULL;
2573         bool same_inode = (inode_in == inode_out);
2574         loff_t remapped = 0;
2575         ssize_t ret;
2576
2577         if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2578                 return -EINVAL;
2579         if (!ocfs2_refcount_tree(osb))
2580                 return -EOPNOTSUPP;
2581         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2582                 return -EROFS;
2583
2584         /* Lock both files against IO */
2585         ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2586         if (ret)
2587                 return ret;
2588
2589         /* Check file eligibility and prepare for block sharing. */
2590         ret = -EINVAL;
2591         if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2592             (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2593                 goto out_unlock;
2594
2595         ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2596                         &len, remap_flags);
2597         if (ret < 0 || len == 0)
2598                 goto out_unlock;
2599
2600         /* Lock out changes to the allocation maps and remap. */
2601         down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2602         if (!same_inode)
2603                 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2604                                   SINGLE_DEPTH_NESTING);
2605
2606         /* Zap any page cache for the destination file's range. */
2607         truncate_inode_pages_range(&inode_out->i_data,
2608                                    round_down(pos_out, PAGE_SIZE),
2609                                    round_up(pos_out + len, PAGE_SIZE) - 1);
2610
2611         remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2612                         inode_out, out_bh, pos_out, len);
2613         up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2614         if (!same_inode)
2615                 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2616         if (remapped < 0) {
2617                 ret = remapped;
2618                 mlog_errno(ret);
2619                 goto out_unlock;
2620         }
2621
2622         /*
2623          * Empty the extent map so that we may get the right extent
2624          * record from the disk.
2625          */
2626         ocfs2_extent_map_trunc(inode_in, 0);
2627         ocfs2_extent_map_trunc(inode_out, 0);
2628
2629         ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2630         if (ret) {
2631                 mlog_errno(ret);
2632                 goto out_unlock;
2633         }
2634
2635 out_unlock:
2636         ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2637         return remapped > 0 ? remapped : ret;
2638 }
2639
2640 const struct inode_operations ocfs2_file_iops = {
2641         .setattr        = ocfs2_setattr,
2642         .getattr        = ocfs2_getattr,
2643         .permission     = ocfs2_permission,
2644         .listxattr      = ocfs2_listxattr,
2645         .fiemap         = ocfs2_fiemap,
2646         .get_acl        = ocfs2_iop_get_acl,
2647         .set_acl        = ocfs2_iop_set_acl,
2648 };
2649
2650 const struct inode_operations ocfs2_special_file_iops = {
2651         .setattr        = ocfs2_setattr,
2652         .getattr        = ocfs2_getattr,
2653         .permission     = ocfs2_permission,
2654         .get_acl        = ocfs2_iop_get_acl,
2655         .set_acl        = ocfs2_iop_set_acl,
2656 };
2657
2658 /*
2659  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2660  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2661  */
2662 const struct file_operations ocfs2_fops = {
2663         .llseek         = ocfs2_file_llseek,
2664         .mmap           = ocfs2_mmap,
2665         .fsync          = ocfs2_sync_file,
2666         .release        = ocfs2_file_release,
2667         .open           = ocfs2_file_open,
2668         .read_iter      = ocfs2_file_read_iter,
2669         .write_iter     = ocfs2_file_write_iter,
2670         .unlocked_ioctl = ocfs2_ioctl,
2671 #ifdef CONFIG_COMPAT
2672         .compat_ioctl   = ocfs2_compat_ioctl,
2673 #endif
2674         .lock           = ocfs2_lock,
2675         .flock          = ocfs2_flock,
2676         .splice_read    = generic_file_splice_read,
2677         .splice_write   = iter_file_splice_write,
2678         .fallocate      = ocfs2_fallocate,
2679         .remap_file_range = ocfs2_remap_file_range,
2680 };
2681
2682 const struct file_operations ocfs2_dops = {
2683         .llseek         = generic_file_llseek,
2684         .read           = generic_read_dir,
2685         .iterate        = ocfs2_readdir,
2686         .fsync          = ocfs2_sync_file,
2687         .release        = ocfs2_dir_release,
2688         .open           = ocfs2_dir_open,
2689         .unlocked_ioctl = ocfs2_ioctl,
2690 #ifdef CONFIG_COMPAT
2691         .compat_ioctl   = ocfs2_compat_ioctl,
2692 #endif
2693         .lock           = ocfs2_lock,
2694         .flock          = ocfs2_flock,
2695 };
2696
2697 /*
2698  * POSIX-lockless variants of our file_operations.
2699  *
2700  * These will be used if the underlying cluster stack does not support
2701  * posix file locking, if the user passes the "localflocks" mount
2702  * option, or if we have a local-only fs.
2703  *
2704  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2705  * so we still want it in the case of no stack support for
2706  * plocks. Internally, it will do the right thing when asked to ignore
2707  * the cluster.
2708  */
2709 const struct file_operations ocfs2_fops_no_plocks = {
2710         .llseek         = ocfs2_file_llseek,
2711         .mmap           = ocfs2_mmap,
2712         .fsync          = ocfs2_sync_file,
2713         .release        = ocfs2_file_release,
2714         .open           = ocfs2_file_open,
2715         .read_iter      = ocfs2_file_read_iter,
2716         .write_iter     = ocfs2_file_write_iter,
2717         .unlocked_ioctl = ocfs2_ioctl,
2718 #ifdef CONFIG_COMPAT
2719         .compat_ioctl   = ocfs2_compat_ioctl,
2720 #endif
2721         .flock          = ocfs2_flock,
2722         .splice_read    = generic_file_splice_read,
2723         .splice_write   = iter_file_splice_write,
2724         .fallocate      = ocfs2_fallocate,
2725         .remap_file_range = ocfs2_remap_file_range,
2726 };
2727
2728 const struct file_operations ocfs2_dops_no_plocks = {
2729         .llseek         = generic_file_llseek,
2730         .read           = generic_read_dir,
2731         .iterate        = ocfs2_readdir,
2732         .fsync          = ocfs2_sync_file,
2733         .release        = ocfs2_dir_release,
2734         .open           = ocfs2_dir_open,
2735         .unlocked_ioctl = ocfs2_ioctl,
2736 #ifdef CONFIG_COMPAT
2737         .compat_ioctl   = ocfs2_compat_ioctl,
2738 #endif
2739         .flock          = ocfs2_flock,
2740 };