ext4: do not iput inode under running transaction in ext4_rename()
[sfrench/cifs-2.6.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
30  * - EXT4_FC_TAG_LINK           - records directory entry link
31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
41  *                                during recovery. Note that iblocks field is
42  *                                not replayed and instead derived during
43  *                                replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185         BUFFER_TRACE(bh, "");
186         if (uptodate) {
187                 ext4_debug("%s: Block %lld up-to-date",
188                            __func__, bh->b_blocknr);
189                 set_buffer_uptodate(bh);
190         } else {
191                 ext4_debug("%s: Block %lld not up-to-date",
192                            __func__, bh->b_blocknr);
193                 clear_buffer_uptodate(bh);
194         }
195
196         unlock_buffer(bh);
197 }
198
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201         struct ext4_inode_info *ei = EXT4_I(inode);
202
203         ei->i_fc_lblk_start = 0;
204         ei->i_fc_lblk_len = 0;
205 }
206
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209         struct ext4_inode_info *ei = EXT4_I(inode);
210
211         ext4_fc_reset_inode(inode);
212         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213         INIT_LIST_HEAD(&ei->i_fc_list);
214         init_waitqueue_head(&ei->i_fc_wait);
215         atomic_set(&ei->i_fc_updates, 0);
216 }
217
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222         wait_queue_head_t *wq;
223         struct ext4_inode_info *ei = EXT4_I(inode);
224
225 #if (BITS_PER_LONG < 64)
226         DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227                         EXT4_STATE_FC_COMMITTING);
228         wq = bit_waitqueue(&ei->i_state_flags,
229                                 EXT4_STATE_FC_COMMITTING);
230 #else
231         DEFINE_WAIT_BIT(wait, &ei->i_flags,
232                         EXT4_STATE_FC_COMMITTING);
233         wq = bit_waitqueue(&ei->i_flags,
234                                 EXT4_STATE_FC_COMMITTING);
235 #endif
236         lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239         schedule();
240         finish_wait(wq, &wait.wq_entry);
241 }
242
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252         struct ext4_inode_info *ei = EXT4_I(inode);
253
254         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256                 return;
257
258 restart:
259         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260         if (list_empty(&ei->i_fc_list))
261                 goto out;
262
263         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264                 ext4_fc_wait_committing_inode(inode);
265                 goto restart;
266         }
267 out:
268         atomic_inc(&ei->i_fc_updates);
269         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277         struct ext4_inode_info *ei = EXT4_I(inode);
278
279         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281                 return;
282
283         if (atomic_dec_and_test(&ei->i_fc_updates))
284                 wake_up_all(&ei->i_fc_wait);
285 }
286
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293         struct ext4_inode_info *ei = EXT4_I(inode);
294
295         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297                 return;
298
299 restart:
300         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301         if (list_empty(&ei->i_fc_list)) {
302                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303                 return;
304         }
305
306         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307                 ext4_fc_wait_committing_inode(inode);
308                 goto restart;
309         }
310         list_del_init(&ei->i_fc_list);
311         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320         struct ext4_sb_info *sbi = EXT4_SB(sb);
321
322         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324                 return;
325
326         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327         WARN_ON(reason >= EXT4_FC_REASON_MAX);
328         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337         struct ext4_sb_info *sbi = EXT4_SB(sb);
338
339         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341                 return;
342
343         WARN_ON(reason >= EXT4_FC_REASON_MAX);
344         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345         atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357                 return;
358
359         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360         atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365         return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366                 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380         handle_t *handle, struct inode *inode,
381         int (*__fc_track_fn)(struct inode *, void *, bool),
382         void *args, int enqueue)
383 {
384         bool update = false;
385         struct ext4_inode_info *ei = EXT4_I(inode);
386         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387         tid_t tid = 0;
388         int ret;
389
390         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391             (sbi->s_mount_state & EXT4_FC_REPLAY))
392                 return -EOPNOTSUPP;
393
394         if (ext4_fc_is_ineligible(inode->i_sb))
395                 return -EINVAL;
396
397         tid = handle->h_transaction->t_tid;
398         mutex_lock(&ei->i_fc_lock);
399         if (tid == ei->i_sync_tid) {
400                 update = true;
401         } else {
402                 ext4_fc_reset_inode(inode);
403                 ei->i_sync_tid = tid;
404         }
405         ret = __fc_track_fn(inode, args, update);
406         mutex_unlock(&ei->i_fc_lock);
407
408         if (!enqueue)
409                 return ret;
410
411         spin_lock(&sbi->s_fc_lock);
412         if (list_empty(&EXT4_I(inode)->i_fc_list))
413                 list_add_tail(&EXT4_I(inode)->i_fc_list,
414                                 (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415                                 &sbi->s_fc_q[FC_Q_STAGING] :
416                                 &sbi->s_fc_q[FC_Q_MAIN]);
417         spin_unlock(&sbi->s_fc_lock);
418
419         return ret;
420 }
421
422 struct __track_dentry_update_args {
423         struct dentry *dentry;
424         int op;
425 };
426
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430         struct ext4_fc_dentry_update *node;
431         struct ext4_inode_info *ei = EXT4_I(inode);
432         struct __track_dentry_update_args *dentry_update =
433                 (struct __track_dentry_update_args *)arg;
434         struct dentry *dentry = dentry_update->dentry;
435         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436
437         mutex_unlock(&ei->i_fc_lock);
438         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439         if (!node) {
440                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441                 mutex_lock(&ei->i_fc_lock);
442                 return -ENOMEM;
443         }
444
445         node->fcd_op = dentry_update->op;
446         node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447         node->fcd_ino = inode->i_ino;
448         if (dentry->d_name.len > DNAME_INLINE_LEN) {
449                 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450                 if (!node->fcd_name.name) {
451                         kmem_cache_free(ext4_fc_dentry_cachep, node);
452                         ext4_fc_mark_ineligible(inode->i_sb,
453                                 EXT4_FC_REASON_NOMEM);
454                         mutex_lock(&ei->i_fc_lock);
455                         return -ENOMEM;
456                 }
457                 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458                         dentry->d_name.len);
459         } else {
460                 memcpy(node->fcd_iname, dentry->d_name.name,
461                         dentry->d_name.len);
462                 node->fcd_name.name = node->fcd_iname;
463         }
464         node->fcd_name.len = dentry->d_name.len;
465
466         spin_lock(&sbi->s_fc_lock);
467         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468                 list_add_tail(&node->fcd_list,
469                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
470         else
471                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472         spin_unlock(&sbi->s_fc_lock);
473         mutex_lock(&ei->i_fc_lock);
474
475         return 0;
476 }
477
478 void __ext4_fc_track_unlink(handle_t *handle,
479                 struct inode *inode, struct dentry *dentry)
480 {
481         struct __track_dentry_update_args args;
482         int ret;
483
484         args.dentry = dentry;
485         args.op = EXT4_FC_TAG_UNLINK;
486
487         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488                                         (void *)&args, 0);
489         trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494         __ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496
497 void __ext4_fc_track_link(handle_t *handle,
498         struct inode *inode, struct dentry *dentry)
499 {
500         struct __track_dentry_update_args args;
501         int ret;
502
503         args.dentry = dentry;
504         args.op = EXT4_FC_TAG_LINK;
505
506         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507                                         (void *)&args, 0);
508         trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513         __ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515
516 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
517 {
518         struct __track_dentry_update_args args;
519         struct inode *inode = d_inode(dentry);
520         int ret;
521
522         args.dentry = dentry;
523         args.op = EXT4_FC_TAG_CREAT;
524
525         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526                                         (void *)&args, 0);
527         trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529
530 /* __track_fn for inode tracking */
531 static int __track_inode(struct inode *inode, void *arg, bool update)
532 {
533         if (update)
534                 return -EEXIST;
535
536         EXT4_I(inode)->i_fc_lblk_len = 0;
537
538         return 0;
539 }
540
541 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
542 {
543         int ret;
544
545         if (S_ISDIR(inode->i_mode))
546                 return;
547
548         if (ext4_should_journal_data(inode)) {
549                 ext4_fc_mark_ineligible(inode->i_sb,
550                                         EXT4_FC_REASON_INODE_JOURNAL_DATA);
551                 return;
552         }
553
554         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
555         trace_ext4_fc_track_inode(inode, ret);
556 }
557
558 struct __track_range_args {
559         ext4_lblk_t start, end;
560 };
561
562 /* __track_fn for tracking data updates */
563 static int __track_range(struct inode *inode, void *arg, bool update)
564 {
565         struct ext4_inode_info *ei = EXT4_I(inode);
566         ext4_lblk_t oldstart;
567         struct __track_range_args *__arg =
568                 (struct __track_range_args *)arg;
569
570         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
571                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
572                 return -ECANCELED;
573         }
574
575         oldstart = ei->i_fc_lblk_start;
576
577         if (update && ei->i_fc_lblk_len > 0) {
578                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
579                 ei->i_fc_lblk_len =
580                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
581                                 ei->i_fc_lblk_start + 1;
582         } else {
583                 ei->i_fc_lblk_start = __arg->start;
584                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
585         }
586
587         return 0;
588 }
589
590 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
591                          ext4_lblk_t end)
592 {
593         struct __track_range_args args;
594         int ret;
595
596         if (S_ISDIR(inode->i_mode))
597                 return;
598
599         args.start = start;
600         args.end = end;
601
602         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
603
604         trace_ext4_fc_track_range(inode, start, end, ret);
605 }
606
607 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
608 {
609         int write_flags = REQ_SYNC;
610         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
611
612         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
613         if (test_opt(sb, BARRIER) && is_tail)
614                 write_flags |= REQ_FUA | REQ_PREFLUSH;
615         lock_buffer(bh);
616         set_buffer_dirty(bh);
617         set_buffer_uptodate(bh);
618         bh->b_end_io = ext4_end_buffer_io_sync;
619         submit_bh(REQ_OP_WRITE, write_flags, bh);
620         EXT4_SB(sb)->s_fc_bh = NULL;
621 }
622
623 /* Ext4 commit path routines */
624
625 /* memzero and update CRC */
626 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
627                                 u32 *crc)
628 {
629         void *ret;
630
631         ret = memset(dst, 0, len);
632         if (crc)
633                 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
634         return ret;
635 }
636
637 /*
638  * Allocate len bytes on a fast commit buffer.
639  *
640  * During the commit time this function is used to manage fast commit
641  * block space. We don't split a fast commit log onto different
642  * blocks. So this function makes sure that if there's not enough space
643  * on the current block, the remaining space in the current block is
644  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
645  * new block is from jbd2 and CRC is updated to reflect the padding
646  * we added.
647  */
648 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
649 {
650         struct ext4_fc_tl *tl;
651         struct ext4_sb_info *sbi = EXT4_SB(sb);
652         struct buffer_head *bh;
653         int bsize = sbi->s_journal->j_blocksize;
654         int ret, off = sbi->s_fc_bytes % bsize;
655         int pad_len;
656
657         /*
658          * After allocating len, we should have space at least for a 0 byte
659          * padding.
660          */
661         if (len + sizeof(struct ext4_fc_tl) > bsize)
662                 return NULL;
663
664         if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
665                 /*
666                  * Only allocate from current buffer if we have enough space for
667                  * this request AND we have space to add a zero byte padding.
668                  */
669                 if (!sbi->s_fc_bh) {
670                         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
671                         if (ret)
672                                 return NULL;
673                         sbi->s_fc_bh = bh;
674                 }
675                 sbi->s_fc_bytes += len;
676                 return sbi->s_fc_bh->b_data + off;
677         }
678         /* Need to add PAD tag */
679         tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
680         tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
681         pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
682         tl->fc_len = cpu_to_le16(pad_len);
683         if (crc)
684                 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
685         if (pad_len > 0)
686                 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
687         ext4_fc_submit_bh(sb, false);
688
689         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
690         if (ret)
691                 return NULL;
692         sbi->s_fc_bh = bh;
693         sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
694         return sbi->s_fc_bh->b_data;
695 }
696
697 /* memcpy to fc reserved space and update CRC */
698 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
699                                 int len, u32 *crc)
700 {
701         if (crc)
702                 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
703         return memcpy(dst, src, len);
704 }
705
706 /*
707  * Complete a fast commit by writing tail tag.
708  *
709  * Writing tail tag marks the end of a fast commit. In order to guarantee
710  * atomicity, after writing tail tag, even if there's space remaining
711  * in the block, next commit shouldn't use it. That's why tail tag
712  * has the length as that of the remaining space on the block.
713  */
714 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
715 {
716         struct ext4_sb_info *sbi = EXT4_SB(sb);
717         struct ext4_fc_tl tl;
718         struct ext4_fc_tail tail;
719         int off, bsize = sbi->s_journal->j_blocksize;
720         u8 *dst;
721
722         /*
723          * ext4_fc_reserve_space takes care of allocating an extra block if
724          * there's no enough space on this block for accommodating this tail.
725          */
726         dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
727         if (!dst)
728                 return -ENOSPC;
729
730         off = sbi->s_fc_bytes % bsize;
731
732         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
733         tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
734         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
735
736         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
737         dst += sizeof(tl);
738         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
739         ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
740         dst += sizeof(tail.fc_tid);
741         tail.fc_crc = cpu_to_le32(crc);
742         ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
743
744         ext4_fc_submit_bh(sb, true);
745
746         return 0;
747 }
748
749 /*
750  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
751  * Returns false if there's not enough space.
752  */
753 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
754                            u32 *crc)
755 {
756         struct ext4_fc_tl tl;
757         u8 *dst;
758
759         dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
760         if (!dst)
761                 return false;
762
763         tl.fc_tag = cpu_to_le16(tag);
764         tl.fc_len = cpu_to_le16(len);
765
766         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
767         ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
768
769         return true;
770 }
771
772 /* Same as above, but adds dentry tlv. */
773 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
774                                         int parent_ino, int ino, int dlen,
775                                         const unsigned char *dname,
776                                         u32 *crc)
777 {
778         struct ext4_fc_dentry_info fcd;
779         struct ext4_fc_tl tl;
780         u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
781                                         crc);
782
783         if (!dst)
784                 return false;
785
786         fcd.fc_parent_ino = cpu_to_le32(parent_ino);
787         fcd.fc_ino = cpu_to_le32(ino);
788         tl.fc_tag = cpu_to_le16(tag);
789         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
790         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
791         dst += sizeof(tl);
792         ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
793         dst += sizeof(fcd);
794         ext4_fc_memcpy(sb, dst, dname, dlen, crc);
795         dst += dlen;
796
797         return true;
798 }
799
800 /*
801  * Writes inode in the fast commit space under TLV with tag @tag.
802  * Returns 0 on success, error on failure.
803  */
804 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
805 {
806         struct ext4_inode_info *ei = EXT4_I(inode);
807         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
808         int ret;
809         struct ext4_iloc iloc;
810         struct ext4_fc_inode fc_inode;
811         struct ext4_fc_tl tl;
812         u8 *dst;
813
814         ret = ext4_get_inode_loc(inode, &iloc);
815         if (ret)
816                 return ret;
817
818         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
819                 inode_len += ei->i_extra_isize;
820
821         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
822         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
823         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
824
825         dst = ext4_fc_reserve_space(inode->i_sb,
826                         sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
827         if (!dst)
828                 return -ECANCELED;
829
830         if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
831                 return -ECANCELED;
832         dst += sizeof(tl);
833         if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
834                 return -ECANCELED;
835         dst += sizeof(fc_inode);
836         if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
837                                         inode_len, crc))
838                 return -ECANCELED;
839
840         return 0;
841 }
842
843 /*
844  * Writes updated data ranges for the inode in question. Updates CRC.
845  * Returns 0 on success, error otherwise.
846  */
847 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
848 {
849         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
850         struct ext4_inode_info *ei = EXT4_I(inode);
851         struct ext4_map_blocks map;
852         struct ext4_fc_add_range fc_ext;
853         struct ext4_fc_del_range lrange;
854         struct ext4_extent *ex;
855         int ret;
856
857         mutex_lock(&ei->i_fc_lock);
858         if (ei->i_fc_lblk_len == 0) {
859                 mutex_unlock(&ei->i_fc_lock);
860                 return 0;
861         }
862         old_blk_size = ei->i_fc_lblk_start;
863         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
864         ei->i_fc_lblk_len = 0;
865         mutex_unlock(&ei->i_fc_lock);
866
867         cur_lblk_off = old_blk_size;
868         jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
869                   __func__, cur_lblk_off, new_blk_size, inode->i_ino);
870
871         while (cur_lblk_off <= new_blk_size) {
872                 map.m_lblk = cur_lblk_off;
873                 map.m_len = new_blk_size - cur_lblk_off + 1;
874                 ret = ext4_map_blocks(NULL, inode, &map, 0);
875                 if (ret < 0)
876                         return -ECANCELED;
877
878                 if (map.m_len == 0) {
879                         cur_lblk_off++;
880                         continue;
881                 }
882
883                 if (ret == 0) {
884                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
885                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
886                         lrange.fc_len = cpu_to_le32(map.m_len);
887                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
888                                             sizeof(lrange), (u8 *)&lrange, crc))
889                                 return -ENOSPC;
890                 } else {
891                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
892                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
893                         ex->ee_block = cpu_to_le32(map.m_lblk);
894                         ex->ee_len = cpu_to_le16(map.m_len);
895                         ext4_ext_store_pblock(ex, map.m_pblk);
896                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
897                                 ext4_ext_mark_unwritten(ex);
898                         else
899                                 ext4_ext_mark_initialized(ex);
900                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
901                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
902                                 return -ENOSPC;
903                 }
904
905                 cur_lblk_off += map.m_len;
906         }
907
908         return 0;
909 }
910
911
912 /* Submit data for all the fast commit inodes */
913 static int ext4_fc_submit_inode_data_all(journal_t *journal)
914 {
915         struct super_block *sb = (struct super_block *)(journal->j_private);
916         struct ext4_sb_info *sbi = EXT4_SB(sb);
917         struct ext4_inode_info *ei;
918         int ret = 0;
919
920         spin_lock(&sbi->s_fc_lock);
921         ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
922         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
923                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
924                 while (atomic_read(&ei->i_fc_updates)) {
925                         DEFINE_WAIT(wait);
926
927                         prepare_to_wait(&ei->i_fc_wait, &wait,
928                                                 TASK_UNINTERRUPTIBLE);
929                         if (atomic_read(&ei->i_fc_updates)) {
930                                 spin_unlock(&sbi->s_fc_lock);
931                                 schedule();
932                                 spin_lock(&sbi->s_fc_lock);
933                         }
934                         finish_wait(&ei->i_fc_wait, &wait);
935                 }
936                 spin_unlock(&sbi->s_fc_lock);
937                 ret = jbd2_submit_inode_data(ei->jinode);
938                 if (ret)
939                         return ret;
940                 spin_lock(&sbi->s_fc_lock);
941         }
942         spin_unlock(&sbi->s_fc_lock);
943
944         return ret;
945 }
946
947 /* Wait for completion of data for all the fast commit inodes */
948 static int ext4_fc_wait_inode_data_all(journal_t *journal)
949 {
950         struct super_block *sb = (struct super_block *)(journal->j_private);
951         struct ext4_sb_info *sbi = EXT4_SB(sb);
952         struct ext4_inode_info *pos, *n;
953         int ret = 0;
954
955         spin_lock(&sbi->s_fc_lock);
956         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
957                 if (!ext4_test_inode_state(&pos->vfs_inode,
958                                            EXT4_STATE_FC_COMMITTING))
959                         continue;
960                 spin_unlock(&sbi->s_fc_lock);
961
962                 ret = jbd2_wait_inode_data(journal, pos->jinode);
963                 if (ret)
964                         return ret;
965                 spin_lock(&sbi->s_fc_lock);
966         }
967         spin_unlock(&sbi->s_fc_lock);
968
969         return 0;
970 }
971
972 /* Commit all the directory entry updates */
973 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
974 __acquires(&sbi->s_fc_lock)
975 __releases(&sbi->s_fc_lock)
976 {
977         struct super_block *sb = (struct super_block *)(journal->j_private);
978         struct ext4_sb_info *sbi = EXT4_SB(sb);
979         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
980         struct inode *inode;
981         struct ext4_inode_info *ei, *ei_n;
982         int ret;
983
984         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
985                 return 0;
986         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
987                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
988                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
989                         spin_unlock(&sbi->s_fc_lock);
990                         if (!ext4_fc_add_dentry_tlv(
991                                 sb, fc_dentry->fcd_op,
992                                 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
993                                 fc_dentry->fcd_name.len,
994                                 fc_dentry->fcd_name.name, crc)) {
995                                 ret = -ENOSPC;
996                                 goto lock_and_exit;
997                         }
998                         spin_lock(&sbi->s_fc_lock);
999                         continue;
1000                 }
1001
1002                 inode = NULL;
1003                 list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1004                                          i_fc_list) {
1005                         if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1006                                 inode = &ei->vfs_inode;
1007                                 break;
1008                         }
1009                 }
1010                 /*
1011                  * If we don't find inode in our list, then it was deleted,
1012                  * in which case, we don't need to record it's create tag.
1013                  */
1014                 if (!inode)
1015                         continue;
1016                 spin_unlock(&sbi->s_fc_lock);
1017
1018                 /*
1019                  * We first write the inode and then the create dirent. This
1020                  * allows the recovery code to create an unnamed inode first
1021                  * and then link it to a directory entry. This allows us
1022                  * to use namei.c routines almost as is and simplifies
1023                  * the recovery code.
1024                  */
1025                 ret = ext4_fc_write_inode(inode, crc);
1026                 if (ret)
1027                         goto lock_and_exit;
1028
1029                 ret = ext4_fc_write_inode_data(inode, crc);
1030                 if (ret)
1031                         goto lock_and_exit;
1032
1033                 if (!ext4_fc_add_dentry_tlv(
1034                         sb, fc_dentry->fcd_op,
1035                         fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1036                         fc_dentry->fcd_name.len,
1037                         fc_dentry->fcd_name.name, crc)) {
1038                         ret = -ENOSPC;
1039                         goto lock_and_exit;
1040                 }
1041
1042                 spin_lock(&sbi->s_fc_lock);
1043         }
1044         return 0;
1045 lock_and_exit:
1046         spin_lock(&sbi->s_fc_lock);
1047         return ret;
1048 }
1049
1050 static int ext4_fc_perform_commit(journal_t *journal)
1051 {
1052         struct super_block *sb = (struct super_block *)(journal->j_private);
1053         struct ext4_sb_info *sbi = EXT4_SB(sb);
1054         struct ext4_inode_info *iter;
1055         struct ext4_fc_head head;
1056         struct inode *inode;
1057         struct blk_plug plug;
1058         int ret = 0;
1059         u32 crc = 0;
1060
1061         ret = ext4_fc_submit_inode_data_all(journal);
1062         if (ret)
1063                 return ret;
1064
1065         ret = ext4_fc_wait_inode_data_all(journal);
1066         if (ret)
1067                 return ret;
1068
1069         /*
1070          * If file system device is different from journal device, issue a cache
1071          * flush before we start writing fast commit blocks.
1072          */
1073         if (journal->j_fs_dev != journal->j_dev)
1074                 blkdev_issue_flush(journal->j_fs_dev);
1075
1076         blk_start_plug(&plug);
1077         if (sbi->s_fc_bytes == 0) {
1078                 /*
1079                  * Add a head tag only if this is the first fast commit
1080                  * in this TID.
1081                  */
1082                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1083                 head.fc_tid = cpu_to_le32(
1084                         sbi->s_journal->j_running_transaction->t_tid);
1085                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1086                         (u8 *)&head, &crc))
1087                         goto out;
1088         }
1089
1090         spin_lock(&sbi->s_fc_lock);
1091         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1092         if (ret) {
1093                 spin_unlock(&sbi->s_fc_lock);
1094                 goto out;
1095         }
1096
1097         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1098                 inode = &iter->vfs_inode;
1099                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1100                         continue;
1101
1102                 spin_unlock(&sbi->s_fc_lock);
1103                 ret = ext4_fc_write_inode_data(inode, &crc);
1104                 if (ret)
1105                         goto out;
1106                 ret = ext4_fc_write_inode(inode, &crc);
1107                 if (ret)
1108                         goto out;
1109                 spin_lock(&sbi->s_fc_lock);
1110         }
1111         spin_unlock(&sbi->s_fc_lock);
1112
1113         ret = ext4_fc_write_tail(sb, crc);
1114
1115 out:
1116         blk_finish_plug(&plug);
1117         return ret;
1118 }
1119
1120 /*
1121  * The main commit entry point. Performs a fast commit for transaction
1122  * commit_tid if needed. If it's not possible to perform a fast commit
1123  * due to various reasons, we fall back to full commit. Returns 0
1124  * on success, error otherwise.
1125  */
1126 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1127 {
1128         struct super_block *sb = (struct super_block *)(journal->j_private);
1129         struct ext4_sb_info *sbi = EXT4_SB(sb);
1130         int nblks = 0, ret, bsize = journal->j_blocksize;
1131         int subtid = atomic_read(&sbi->s_fc_subtid);
1132         int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1133         ktime_t start_time, commit_time;
1134
1135         trace_ext4_fc_commit_start(sb);
1136
1137         start_time = ktime_get();
1138
1139         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1140                 (ext4_fc_is_ineligible(sb))) {
1141                 reason = EXT4_FC_REASON_INELIGIBLE;
1142                 goto out;
1143         }
1144
1145 restart_fc:
1146         ret = jbd2_fc_begin_commit(journal, commit_tid);
1147         if (ret == -EALREADY) {
1148                 /* There was an ongoing commit, check if we need to restart */
1149                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1150                         commit_tid > journal->j_commit_sequence)
1151                         goto restart_fc;
1152                 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1153                 goto out;
1154         } else if (ret) {
1155                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1156                 reason = EXT4_FC_REASON_FC_START_FAILED;
1157                 goto out;
1158         }
1159
1160         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1161         ret = ext4_fc_perform_commit(journal);
1162         if (ret < 0) {
1163                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1164                 reason = EXT4_FC_REASON_FC_FAILED;
1165                 goto out;
1166         }
1167         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1168         ret = jbd2_fc_wait_bufs(journal, nblks);
1169         if (ret < 0) {
1170                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1171                 reason = EXT4_FC_REASON_FC_FAILED;
1172                 goto out;
1173         }
1174         atomic_inc(&sbi->s_fc_subtid);
1175         jbd2_fc_end_commit(journal);
1176 out:
1177         /* Has any ineligible update happened since we started? */
1178         if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1179                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1180                 reason = EXT4_FC_REASON_INELIGIBLE;
1181         }
1182
1183         spin_lock(&sbi->s_fc_lock);
1184         if (reason != EXT4_FC_REASON_OK &&
1185                 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1186                 sbi->s_fc_stats.fc_ineligible_commits++;
1187         } else {
1188                 sbi->s_fc_stats.fc_num_commits++;
1189                 sbi->s_fc_stats.fc_numblks += nblks;
1190         }
1191         spin_unlock(&sbi->s_fc_lock);
1192         nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1193         trace_ext4_fc_commit_stop(sb, nblks, reason);
1194         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1195         /*
1196          * weight the commit time higher than the average time so we don't
1197          * react too strongly to vast changes in the commit time
1198          */
1199         if (likely(sbi->s_fc_avg_commit_time))
1200                 sbi->s_fc_avg_commit_time = (commit_time +
1201                                 sbi->s_fc_avg_commit_time * 3) / 4;
1202         else
1203                 sbi->s_fc_avg_commit_time = commit_time;
1204         jbd_debug(1,
1205                 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1206                 nblks, reason, subtid);
1207         if (reason == EXT4_FC_REASON_FC_FAILED)
1208                 return jbd2_fc_end_commit_fallback(journal);
1209         if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1210                 reason == EXT4_FC_REASON_INELIGIBLE)
1211                 return jbd2_complete_transaction(journal, commit_tid);
1212         return 0;
1213 }
1214
1215 /*
1216  * Fast commit cleanup routine. This is called after every fast commit and
1217  * full commit. full is true if we are called after a full commit.
1218  */
1219 static void ext4_fc_cleanup(journal_t *journal, int full)
1220 {
1221         struct super_block *sb = journal->j_private;
1222         struct ext4_sb_info *sbi = EXT4_SB(sb);
1223         struct ext4_inode_info *iter, *iter_n;
1224         struct ext4_fc_dentry_update *fc_dentry;
1225
1226         if (full && sbi->s_fc_bh)
1227                 sbi->s_fc_bh = NULL;
1228
1229         jbd2_fc_release_bufs(journal);
1230
1231         spin_lock(&sbi->s_fc_lock);
1232         list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1233                                  i_fc_list) {
1234                 list_del_init(&iter->i_fc_list);
1235                 ext4_clear_inode_state(&iter->vfs_inode,
1236                                        EXT4_STATE_FC_COMMITTING);
1237                 ext4_fc_reset_inode(&iter->vfs_inode);
1238                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1239                 smp_mb();
1240 #if (BITS_PER_LONG < 64)
1241                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1242 #else
1243                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1244 #endif
1245         }
1246
1247         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1248                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1249                                              struct ext4_fc_dentry_update,
1250                                              fcd_list);
1251                 list_del_init(&fc_dentry->fcd_list);
1252                 spin_unlock(&sbi->s_fc_lock);
1253
1254                 if (fc_dentry->fcd_name.name &&
1255                         fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1256                         kfree(fc_dentry->fcd_name.name);
1257                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1258                 spin_lock(&sbi->s_fc_lock);
1259         }
1260
1261         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1262                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1263         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1264                                 &sbi->s_fc_q[FC_Q_MAIN]);
1265
1266         ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1267         ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1268
1269         if (full)
1270                 sbi->s_fc_bytes = 0;
1271         spin_unlock(&sbi->s_fc_lock);
1272         trace_ext4_fc_stats(sb);
1273 }
1274
1275 /* Ext4 Replay Path Routines */
1276
1277 /* Helper struct for dentry replay routines */
1278 struct dentry_info_args {
1279         int parent_ino, dname_len, ino, inode_len;
1280         char *dname;
1281 };
1282
1283 static inline void tl_to_darg(struct dentry_info_args *darg,
1284                                 struct  ext4_fc_tl *tl)
1285 {
1286         struct ext4_fc_dentry_info *fcd;
1287
1288         fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1289
1290         darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1291         darg->ino = le32_to_cpu(fcd->fc_ino);
1292         darg->dname = fcd->fc_dname;
1293         darg->dname_len = ext4_fc_tag_len(tl) -
1294                         sizeof(struct ext4_fc_dentry_info);
1295 }
1296
1297 /* Unlink replay function */
1298 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1299 {
1300         struct inode *inode, *old_parent;
1301         struct qstr entry;
1302         struct dentry_info_args darg;
1303         int ret = 0;
1304
1305         tl_to_darg(&darg, tl);
1306
1307         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1308                         darg.parent_ino, darg.dname_len);
1309
1310         entry.name = darg.dname;
1311         entry.len = darg.dname_len;
1312         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1313
1314         if (IS_ERR(inode)) {
1315                 jbd_debug(1, "Inode %d not found", darg.ino);
1316                 return 0;
1317         }
1318
1319         old_parent = ext4_iget(sb, darg.parent_ino,
1320                                 EXT4_IGET_NORMAL);
1321         if (IS_ERR(old_parent)) {
1322                 jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1323                 iput(inode);
1324                 return 0;
1325         }
1326
1327         ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1328         /* -ENOENT ok coz it might not exist anymore. */
1329         if (ret == -ENOENT)
1330                 ret = 0;
1331         iput(old_parent);
1332         iput(inode);
1333         return ret;
1334 }
1335
1336 static int ext4_fc_replay_link_internal(struct super_block *sb,
1337                                 struct dentry_info_args *darg,
1338                                 struct inode *inode)
1339 {
1340         struct inode *dir = NULL;
1341         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1342         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1343         int ret = 0;
1344
1345         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1346         if (IS_ERR(dir)) {
1347                 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1348                 dir = NULL;
1349                 goto out;
1350         }
1351
1352         dentry_dir = d_obtain_alias(dir);
1353         if (IS_ERR(dentry_dir)) {
1354                 jbd_debug(1, "Failed to obtain dentry");
1355                 dentry_dir = NULL;
1356                 goto out;
1357         }
1358
1359         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1360         if (!dentry_inode) {
1361                 jbd_debug(1, "Inode dentry not created.");
1362                 ret = -ENOMEM;
1363                 goto out;
1364         }
1365
1366         ret = __ext4_link(dir, inode, dentry_inode);
1367         /*
1368          * It's possible that link already existed since data blocks
1369          * for the dir in question got persisted before we crashed OR
1370          * we replayed this tag and crashed before the entire replay
1371          * could complete.
1372          */
1373         if (ret && ret != -EEXIST) {
1374                 jbd_debug(1, "Failed to link\n");
1375                 goto out;
1376         }
1377
1378         ret = 0;
1379 out:
1380         if (dentry_dir) {
1381                 d_drop(dentry_dir);
1382                 dput(dentry_dir);
1383         } else if (dir) {
1384                 iput(dir);
1385         }
1386         if (dentry_inode) {
1387                 d_drop(dentry_inode);
1388                 dput(dentry_inode);
1389         }
1390
1391         return ret;
1392 }
1393
1394 /* Link replay function */
1395 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1396 {
1397         struct inode *inode;
1398         struct dentry_info_args darg;
1399         int ret = 0;
1400
1401         tl_to_darg(&darg, tl);
1402         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1403                         darg.parent_ino, darg.dname_len);
1404
1405         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1406         if (IS_ERR(inode)) {
1407                 jbd_debug(1, "Inode not found.");
1408                 return 0;
1409         }
1410
1411         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1412         iput(inode);
1413         return ret;
1414 }
1415
1416 /*
1417  * Record all the modified inodes during replay. We use this later to setup
1418  * block bitmaps correctly.
1419  */
1420 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1421 {
1422         struct ext4_fc_replay_state *state;
1423         int i;
1424
1425         state = &EXT4_SB(sb)->s_fc_replay_state;
1426         for (i = 0; i < state->fc_modified_inodes_used; i++)
1427                 if (state->fc_modified_inodes[i] == ino)
1428                         return 0;
1429         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1430                 state->fc_modified_inodes_size +=
1431                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1432                 state->fc_modified_inodes = krealloc(
1433                                         state->fc_modified_inodes, sizeof(int) *
1434                                         state->fc_modified_inodes_size,
1435                                         GFP_KERNEL);
1436                 if (!state->fc_modified_inodes)
1437                         return -ENOMEM;
1438         }
1439         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1440         return 0;
1441 }
1442
1443 /*
1444  * Inode replay function
1445  */
1446 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1447 {
1448         struct ext4_fc_inode *fc_inode;
1449         struct ext4_inode *raw_inode;
1450         struct ext4_inode *raw_fc_inode;
1451         struct inode *inode = NULL;
1452         struct ext4_iloc iloc;
1453         int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1454         struct ext4_extent_header *eh;
1455
1456         fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1457
1458         ino = le32_to_cpu(fc_inode->fc_ino);
1459         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1460
1461         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1462         if (!IS_ERR(inode)) {
1463                 ext4_ext_clear_bb(inode);
1464                 iput(inode);
1465         }
1466         inode = NULL;
1467
1468         ext4_fc_record_modified_inode(sb, ino);
1469
1470         raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1471         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1472         if (ret)
1473                 goto out;
1474
1475         inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1476         raw_inode = ext4_raw_inode(&iloc);
1477
1478         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1479         memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1480                 inode_len - offsetof(struct ext4_inode, i_generation));
1481         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1482                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1483                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1484                         memset(eh, 0, sizeof(*eh));
1485                         eh->eh_magic = EXT4_EXT_MAGIC;
1486                         eh->eh_max = cpu_to_le16(
1487                                 (sizeof(raw_inode->i_block) -
1488                                  sizeof(struct ext4_extent_header))
1489                                  / sizeof(struct ext4_extent));
1490                 }
1491         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1492                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1493                         sizeof(raw_inode->i_block));
1494         }
1495
1496         /* Immediately update the inode on disk. */
1497         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1498         if (ret)
1499                 goto out;
1500         ret = sync_dirty_buffer(iloc.bh);
1501         if (ret)
1502                 goto out;
1503         ret = ext4_mark_inode_used(sb, ino);
1504         if (ret)
1505                 goto out;
1506
1507         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1508         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1509         if (IS_ERR(inode)) {
1510                 jbd_debug(1, "Inode not found.");
1511                 return -EFSCORRUPTED;
1512         }
1513
1514         /*
1515          * Our allocator could have made different decisions than before
1516          * crashing. This should be fixed but until then, we calculate
1517          * the number of blocks the inode.
1518          */
1519         ext4_ext_replay_set_iblocks(inode);
1520
1521         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1522         ext4_reset_inode_seed(inode);
1523
1524         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1525         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1526         sync_dirty_buffer(iloc.bh);
1527         brelse(iloc.bh);
1528 out:
1529         iput(inode);
1530         if (!ret)
1531                 blkdev_issue_flush(sb->s_bdev);
1532
1533         return 0;
1534 }
1535
1536 /*
1537  * Dentry create replay function.
1538  *
1539  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1540  * inode for which we are trying to create a dentry here, should already have
1541  * been replayed before we start here.
1542  */
1543 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1544 {
1545         int ret = 0;
1546         struct inode *inode = NULL;
1547         struct inode *dir = NULL;
1548         struct dentry_info_args darg;
1549
1550         tl_to_darg(&darg, tl);
1551
1552         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1553                         darg.parent_ino, darg.dname_len);
1554
1555         /* This takes care of update group descriptor and other metadata */
1556         ret = ext4_mark_inode_used(sb, darg.ino);
1557         if (ret)
1558                 goto out;
1559
1560         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1561         if (IS_ERR(inode)) {
1562                 jbd_debug(1, "inode %d not found.", darg.ino);
1563                 inode = NULL;
1564                 ret = -EINVAL;
1565                 goto out;
1566         }
1567
1568         if (S_ISDIR(inode->i_mode)) {
1569                 /*
1570                  * If we are creating a directory, we need to make sure that the
1571                  * dot and dot dot dirents are setup properly.
1572                  */
1573                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1574                 if (IS_ERR(dir)) {
1575                         jbd_debug(1, "Dir %d not found.", darg.ino);
1576                         goto out;
1577                 }
1578                 ret = ext4_init_new_dir(NULL, dir, inode);
1579                 iput(dir);
1580                 if (ret) {
1581                         ret = 0;
1582                         goto out;
1583                 }
1584         }
1585         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1586         if (ret)
1587                 goto out;
1588         set_nlink(inode, 1);
1589         ext4_mark_inode_dirty(NULL, inode);
1590 out:
1591         if (inode)
1592                 iput(inode);
1593         return ret;
1594 }
1595
1596 /*
1597  * Record physical disk regions which are in use as per fast commit area. Our
1598  * simple replay phase allocator excludes these regions from allocation.
1599  */
1600 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1601                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1602 {
1603         struct ext4_fc_replay_state *state;
1604         struct ext4_fc_alloc_region *region;
1605
1606         state = &EXT4_SB(sb)->s_fc_replay_state;
1607         if (state->fc_regions_used == state->fc_regions_size) {
1608                 state->fc_regions_size +=
1609                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1610                 state->fc_regions = krealloc(
1611                                         state->fc_regions,
1612                                         state->fc_regions_size *
1613                                         sizeof(struct ext4_fc_alloc_region),
1614                                         GFP_KERNEL);
1615                 if (!state->fc_regions)
1616                         return -ENOMEM;
1617         }
1618         region = &state->fc_regions[state->fc_regions_used++];
1619         region->ino = ino;
1620         region->lblk = lblk;
1621         region->pblk = pblk;
1622         region->len = len;
1623
1624         return 0;
1625 }
1626
1627 /* Replay add range tag */
1628 static int ext4_fc_replay_add_range(struct super_block *sb,
1629                                 struct ext4_fc_tl *tl)
1630 {
1631         struct ext4_fc_add_range *fc_add_ex;
1632         struct ext4_extent newex, *ex;
1633         struct inode *inode;
1634         ext4_lblk_t start, cur;
1635         int remaining, len;
1636         ext4_fsblk_t start_pblk;
1637         struct ext4_map_blocks map;
1638         struct ext4_ext_path *path = NULL;
1639         int ret;
1640
1641         fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1642         ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1643
1644         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1645                 le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1646                 ext4_ext_get_actual_len(ex));
1647
1648         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1649                                 EXT4_IGET_NORMAL);
1650         if (IS_ERR(inode)) {
1651                 jbd_debug(1, "Inode not found.");
1652                 return 0;
1653         }
1654
1655         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1656
1657         start = le32_to_cpu(ex->ee_block);
1658         start_pblk = ext4_ext_pblock(ex);
1659         len = ext4_ext_get_actual_len(ex);
1660
1661         cur = start;
1662         remaining = len;
1663         jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1664                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1665                   inode->i_ino);
1666
1667         while (remaining > 0) {
1668                 map.m_lblk = cur;
1669                 map.m_len = remaining;
1670                 map.m_pblk = 0;
1671                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1672
1673                 if (ret < 0) {
1674                         iput(inode);
1675                         return 0;
1676                 }
1677
1678                 if (ret == 0) {
1679                         /* Range is not mapped */
1680                         path = ext4_find_extent(inode, cur, NULL, 0);
1681                         if (IS_ERR(path)) {
1682                                 iput(inode);
1683                                 return 0;
1684                         }
1685                         memset(&newex, 0, sizeof(newex));
1686                         newex.ee_block = cpu_to_le32(cur);
1687                         ext4_ext_store_pblock(
1688                                 &newex, start_pblk + cur - start);
1689                         newex.ee_len = cpu_to_le16(map.m_len);
1690                         if (ext4_ext_is_unwritten(ex))
1691                                 ext4_ext_mark_unwritten(&newex);
1692                         down_write(&EXT4_I(inode)->i_data_sem);
1693                         ret = ext4_ext_insert_extent(
1694                                 NULL, inode, &path, &newex, 0);
1695                         up_write((&EXT4_I(inode)->i_data_sem));
1696                         ext4_ext_drop_refs(path);
1697                         kfree(path);
1698                         if (ret) {
1699                                 iput(inode);
1700                                 return 0;
1701                         }
1702                         goto next;
1703                 }
1704
1705                 if (start_pblk + cur - start != map.m_pblk) {
1706                         /*
1707                          * Logical to physical mapping changed. This can happen
1708                          * if this range was removed and then reallocated to
1709                          * map to new physical blocks during a fast commit.
1710                          */
1711                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1712                                         ext4_ext_is_unwritten(ex),
1713                                         start_pblk + cur - start);
1714                         if (ret) {
1715                                 iput(inode);
1716                                 return 0;
1717                         }
1718                         /*
1719                          * Mark the old blocks as free since they aren't used
1720                          * anymore. We maintain an array of all the modified
1721                          * inodes. In case these blocks are still used at either
1722                          * a different logical range in the same inode or in
1723                          * some different inode, we will mark them as allocated
1724                          * at the end of the FC replay using our array of
1725                          * modified inodes.
1726                          */
1727                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1728                         goto next;
1729                 }
1730
1731                 /* Range is mapped and needs a state change */
1732                 jbd_debug(1, "Converting from %d to %d %lld",
1733                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1734                         ext4_ext_is_unwritten(ex), map.m_pblk);
1735                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1736                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1737                 if (ret) {
1738                         iput(inode);
1739                         return 0;
1740                 }
1741                 /*
1742                  * We may have split the extent tree while toggling the state.
1743                  * Try to shrink the extent tree now.
1744                  */
1745                 ext4_ext_replay_shrink_inode(inode, start + len);
1746 next:
1747                 cur += map.m_len;
1748                 remaining -= map.m_len;
1749         }
1750         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1751                                         sb->s_blocksize_bits);
1752         iput(inode);
1753         return 0;
1754 }
1755
1756 /* Replay DEL_RANGE tag */
1757 static int
1758 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1759 {
1760         struct inode *inode;
1761         struct ext4_fc_del_range *lrange;
1762         struct ext4_map_blocks map;
1763         ext4_lblk_t cur, remaining;
1764         int ret;
1765
1766         lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1767         cur = le32_to_cpu(lrange->fc_lblk);
1768         remaining = le32_to_cpu(lrange->fc_len);
1769
1770         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1771                 le32_to_cpu(lrange->fc_ino), cur, remaining);
1772
1773         inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1774         if (IS_ERR(inode)) {
1775                 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1776                 return 0;
1777         }
1778
1779         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1780
1781         jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1782                         inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1783                         le32_to_cpu(lrange->fc_len));
1784         while (remaining > 0) {
1785                 map.m_lblk = cur;
1786                 map.m_len = remaining;
1787
1788                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1789                 if (ret < 0) {
1790                         iput(inode);
1791                         return 0;
1792                 }
1793                 if (ret > 0) {
1794                         remaining -= ret;
1795                         cur += ret;
1796                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1797                 } else {
1798                         remaining -= map.m_len;
1799                         cur += map.m_len;
1800                 }
1801         }
1802
1803         ret = ext4_punch_hole(inode,
1804                 le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1805                 le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1806         if (ret)
1807                 jbd_debug(1, "ext4_punch_hole returned %d", ret);
1808         ext4_ext_replay_shrink_inode(inode,
1809                 i_size_read(inode) >> sb->s_blocksize_bits);
1810         ext4_mark_inode_dirty(NULL, inode);
1811         iput(inode);
1812
1813         return 0;
1814 }
1815
1816 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1817 {
1818         struct ext4_fc_replay_state *state;
1819         struct inode *inode;
1820         struct ext4_ext_path *path = NULL;
1821         struct ext4_map_blocks map;
1822         int i, ret, j;
1823         ext4_lblk_t cur, end;
1824
1825         state = &EXT4_SB(sb)->s_fc_replay_state;
1826         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1827                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1828                         EXT4_IGET_NORMAL);
1829                 if (IS_ERR(inode)) {
1830                         jbd_debug(1, "Inode %d not found.",
1831                                 state->fc_modified_inodes[i]);
1832                         continue;
1833                 }
1834                 cur = 0;
1835                 end = EXT_MAX_BLOCKS;
1836                 while (cur < end) {
1837                         map.m_lblk = cur;
1838                         map.m_len = end - cur;
1839
1840                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1841                         if (ret < 0)
1842                                 break;
1843
1844                         if (ret > 0) {
1845                                 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1846                                 if (!IS_ERR(path)) {
1847                                         for (j = 0; j < path->p_depth; j++)
1848                                                 ext4_mb_mark_bb(inode->i_sb,
1849                                                         path[j].p_block, 1, 1);
1850                                         ext4_ext_drop_refs(path);
1851                                         kfree(path);
1852                                 }
1853                                 cur += ret;
1854                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1855                                                         map.m_len, 1);
1856                         } else {
1857                                 cur = cur + (map.m_len ? map.m_len : 1);
1858                         }
1859                 }
1860                 iput(inode);
1861         }
1862 }
1863
1864 /*
1865  * Check if block is in excluded regions for block allocation. The simple
1866  * allocator that runs during replay phase is calls this function to see
1867  * if it is okay to use a block.
1868  */
1869 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1870 {
1871         int i;
1872         struct ext4_fc_replay_state *state;
1873
1874         state = &EXT4_SB(sb)->s_fc_replay_state;
1875         for (i = 0; i < state->fc_regions_valid; i++) {
1876                 if (state->fc_regions[i].ino == 0 ||
1877                         state->fc_regions[i].len == 0)
1878                         continue;
1879                 if (blk >= state->fc_regions[i].pblk &&
1880                     blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1881                         return true;
1882         }
1883         return false;
1884 }
1885
1886 /* Cleanup function called after replay */
1887 void ext4_fc_replay_cleanup(struct super_block *sb)
1888 {
1889         struct ext4_sb_info *sbi = EXT4_SB(sb);
1890
1891         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1892         kfree(sbi->s_fc_replay_state.fc_regions);
1893         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1894 }
1895
1896 /*
1897  * Recovery Scan phase handler
1898  *
1899  * This function is called during the scan phase and is responsible
1900  * for doing following things:
1901  * - Make sure the fast commit area has valid tags for replay
1902  * - Count number of tags that need to be replayed by the replay handler
1903  * - Verify CRC
1904  * - Create a list of excluded blocks for allocation during replay phase
1905  *
1906  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1907  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1908  * to indicate that scan has finished and JBD2 can now start replay phase.
1909  * It returns a negative error to indicate that there was an error. At the end
1910  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1911  * to indicate the number of tags that need to replayed during the replay phase.
1912  */
1913 static int ext4_fc_replay_scan(journal_t *journal,
1914                                 struct buffer_head *bh, int off,
1915                                 tid_t expected_tid)
1916 {
1917         struct super_block *sb = journal->j_private;
1918         struct ext4_sb_info *sbi = EXT4_SB(sb);
1919         struct ext4_fc_replay_state *state;
1920         int ret = JBD2_FC_REPLAY_CONTINUE;
1921         struct ext4_fc_add_range *ext;
1922         struct ext4_fc_tl *tl;
1923         struct ext4_fc_tail *tail;
1924         __u8 *start, *end;
1925         struct ext4_fc_head *head;
1926         struct ext4_extent *ex;
1927
1928         state = &sbi->s_fc_replay_state;
1929
1930         start = (u8 *)bh->b_data;
1931         end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1932
1933         if (state->fc_replay_expected_off == 0) {
1934                 state->fc_cur_tag = 0;
1935                 state->fc_replay_num_tags = 0;
1936                 state->fc_crc = 0;
1937                 state->fc_regions = NULL;
1938                 state->fc_regions_valid = state->fc_regions_used =
1939                         state->fc_regions_size = 0;
1940                 /* Check if we can stop early */
1941                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1942                         != EXT4_FC_TAG_HEAD)
1943                         return 0;
1944         }
1945
1946         if (off != state->fc_replay_expected_off) {
1947                 ret = -EFSCORRUPTED;
1948                 goto out_err;
1949         }
1950
1951         state->fc_replay_expected_off++;
1952         fc_for_each_tl(start, end, tl) {
1953                 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1954                           tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1955                 switch (le16_to_cpu(tl->fc_tag)) {
1956                 case EXT4_FC_TAG_ADD_RANGE:
1957                         ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1958                         ex = (struct ext4_extent *)&ext->fc_ex;
1959                         ret = ext4_fc_record_regions(sb,
1960                                 le32_to_cpu(ext->fc_ino),
1961                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1962                                 ext4_ext_get_actual_len(ex));
1963                         if (ret < 0)
1964                                 break;
1965                         ret = JBD2_FC_REPLAY_CONTINUE;
1966                         fallthrough;
1967                 case EXT4_FC_TAG_DEL_RANGE:
1968                 case EXT4_FC_TAG_LINK:
1969                 case EXT4_FC_TAG_UNLINK:
1970                 case EXT4_FC_TAG_CREAT:
1971                 case EXT4_FC_TAG_INODE:
1972                 case EXT4_FC_TAG_PAD:
1973                         state->fc_cur_tag++;
1974                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1975                                         sizeof(*tl) + ext4_fc_tag_len(tl));
1976                         break;
1977                 case EXT4_FC_TAG_TAIL:
1978                         state->fc_cur_tag++;
1979                         tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1980                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1981                                                 sizeof(*tl) +
1982                                                 offsetof(struct ext4_fc_tail,
1983                                                 fc_crc));
1984                         if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1985                                 le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1986                                 state->fc_replay_num_tags = state->fc_cur_tag;
1987                                 state->fc_regions_valid =
1988                                         state->fc_regions_used;
1989                         } else {
1990                                 ret = state->fc_replay_num_tags ?
1991                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1992                         }
1993                         state->fc_crc = 0;
1994                         break;
1995                 case EXT4_FC_TAG_HEAD:
1996                         head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
1997                         if (le32_to_cpu(head->fc_features) &
1998                                 ~EXT4_FC_SUPPORTED_FEATURES) {
1999                                 ret = -EOPNOTSUPP;
2000                                 break;
2001                         }
2002                         if (le32_to_cpu(head->fc_tid) != expected_tid) {
2003                                 ret = JBD2_FC_REPLAY_STOP;
2004                                 break;
2005                         }
2006                         state->fc_cur_tag++;
2007                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2008                                         sizeof(*tl) + ext4_fc_tag_len(tl));
2009                         break;
2010                 default:
2011                         ret = state->fc_replay_num_tags ?
2012                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2013                 }
2014                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2015                         break;
2016         }
2017
2018 out_err:
2019         trace_ext4_fc_replay_scan(sb, ret, off);
2020         return ret;
2021 }
2022
2023 /*
2024  * Main recovery path entry point.
2025  * The meaning of return codes is similar as above.
2026  */
2027 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2028                                 enum passtype pass, int off, tid_t expected_tid)
2029 {
2030         struct super_block *sb = journal->j_private;
2031         struct ext4_sb_info *sbi = EXT4_SB(sb);
2032         struct ext4_fc_tl *tl;
2033         __u8 *start, *end;
2034         int ret = JBD2_FC_REPLAY_CONTINUE;
2035         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2036         struct ext4_fc_tail *tail;
2037
2038         if (pass == PASS_SCAN) {
2039                 state->fc_current_pass = PASS_SCAN;
2040                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2041         }
2042
2043         if (state->fc_current_pass != pass) {
2044                 state->fc_current_pass = pass;
2045                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2046         }
2047         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2048                 jbd_debug(1, "Replay stops\n");
2049                 ext4_fc_set_bitmaps_and_counters(sb);
2050                 return 0;
2051         }
2052
2053 #ifdef CONFIG_EXT4_DEBUG
2054         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2055                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2056                 return JBD2_FC_REPLAY_STOP;
2057         }
2058 #endif
2059
2060         start = (u8 *)bh->b_data;
2061         end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2062
2063         fc_for_each_tl(start, end, tl) {
2064                 if (state->fc_replay_num_tags == 0) {
2065                         ret = JBD2_FC_REPLAY_STOP;
2066                         ext4_fc_set_bitmaps_and_counters(sb);
2067                         break;
2068                 }
2069                 jbd_debug(3, "Replay phase, tag:%s\n",
2070                                 tag2str(le16_to_cpu(tl->fc_tag)));
2071                 state->fc_replay_num_tags--;
2072                 switch (le16_to_cpu(tl->fc_tag)) {
2073                 case EXT4_FC_TAG_LINK:
2074                         ret = ext4_fc_replay_link(sb, tl);
2075                         break;
2076                 case EXT4_FC_TAG_UNLINK:
2077                         ret = ext4_fc_replay_unlink(sb, tl);
2078                         break;
2079                 case EXT4_FC_TAG_ADD_RANGE:
2080                         ret = ext4_fc_replay_add_range(sb, tl);
2081                         break;
2082                 case EXT4_FC_TAG_CREAT:
2083                         ret = ext4_fc_replay_create(sb, tl);
2084                         break;
2085                 case EXT4_FC_TAG_DEL_RANGE:
2086                         ret = ext4_fc_replay_del_range(sb, tl);
2087                         break;
2088                 case EXT4_FC_TAG_INODE:
2089                         ret = ext4_fc_replay_inode(sb, tl);
2090                         break;
2091                 case EXT4_FC_TAG_PAD:
2092                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2093                                 ext4_fc_tag_len(tl), 0);
2094                         break;
2095                 case EXT4_FC_TAG_TAIL:
2096                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2097                                 ext4_fc_tag_len(tl), 0);
2098                         tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2099                         WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2100                         break;
2101                 case EXT4_FC_TAG_HEAD:
2102                         break;
2103                 default:
2104                         trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2105                                 ext4_fc_tag_len(tl), 0);
2106                         ret = -ECANCELED;
2107                         break;
2108                 }
2109                 if (ret < 0)
2110                         break;
2111                 ret = JBD2_FC_REPLAY_CONTINUE;
2112         }
2113         return ret;
2114 }
2115
2116 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2117 {
2118         /*
2119          * We set replay callback even if fast commit disabled because we may
2120          * could still have fast commit blocks that need to be replayed even if
2121          * fast commit has now been turned off.
2122          */
2123         journal->j_fc_replay_callback = ext4_fc_replay;
2124         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2125                 return;
2126         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2127 }
2128
2129 static const char *fc_ineligible_reasons[] = {
2130         "Extended attributes changed",
2131         "Cross rename",
2132         "Journal flag changed",
2133         "Insufficient memory",
2134         "Swap boot",
2135         "Resize",
2136         "Dir renamed",
2137         "Falloc range op",
2138         "Data journalling",
2139         "FC Commit Failed"
2140 };
2141
2142 int ext4_fc_info_show(struct seq_file *seq, void *v)
2143 {
2144         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2145         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2146         int i;
2147
2148         if (v != SEQ_START_TOKEN)
2149                 return 0;
2150
2151         seq_printf(seq,
2152                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2153                    stats->fc_num_commits, stats->fc_ineligible_commits,
2154                    stats->fc_numblks,
2155                    div_u64(sbi->s_fc_avg_commit_time, 1000));
2156         seq_puts(seq, "Ineligible reasons:\n");
2157         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2158                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2159                         stats->fc_ineligible_reason_count[i]);
2160
2161         return 0;
2162 }
2163
2164 int __init ext4_fc_init_dentry_cache(void)
2165 {
2166         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2167                                            SLAB_RECLAIM_ACCOUNT);
2168
2169         if (ext4_fc_dentry_cachep == NULL)
2170                 return -ENOMEM;
2171
2172         return 0;
2173 }