fe5e33810cd444b1dd40ee659aaa6de5bf43a568
[sfrench/cifs-2.6.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/fs_dax.h>
33
34 static inline unsigned int pe_order(enum page_entry_size pe_size)
35 {
36         if (pe_size == PE_SIZE_PTE)
37                 return PAGE_SHIFT - PAGE_SHIFT;
38         if (pe_size == PE_SIZE_PMD)
39                 return PMD_SHIFT - PAGE_SHIFT;
40         if (pe_size == PE_SIZE_PUD)
41                 return PUD_SHIFT - PAGE_SHIFT;
42         return ~0;
43 }
44
45 /* We choose 4096 entries - same as per-zone page wait tables */
46 #define DAX_WAIT_TABLE_BITS 12
47 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48
49 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
50 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
51 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
52
53 /* The order of a PMD entry */
54 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
55
56 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
57
58 static int __init init_dax_wait_table(void)
59 {
60         int i;
61
62         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63                 init_waitqueue_head(wait_table + i);
64         return 0;
65 }
66 fs_initcall(init_dax_wait_table);
67
68 /*
69  * DAX pagecache entries use XArray value entries so they can't be mistaken
70  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
71  * and two more to tell us if the entry is a zero page or an empty entry that
72  * is just used for locking.  In total four special bits.
73  *
74  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
76  * block allocation.
77  */
78 #define DAX_SHIFT       (4)
79 #define DAX_LOCKED      (1UL << 0)
80 #define DAX_PMD         (1UL << 1)
81 #define DAX_ZERO_PAGE   (1UL << 2)
82 #define DAX_EMPTY       (1UL << 3)
83
84 static unsigned long dax_to_pfn(void *entry)
85 {
86         return xa_to_value(entry) >> DAX_SHIFT;
87 }
88
89 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90 {
91         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
92 }
93
94 static bool dax_is_locked(void *entry)
95 {
96         return xa_to_value(entry) & DAX_LOCKED;
97 }
98
99 static unsigned int dax_entry_order(void *entry)
100 {
101         if (xa_to_value(entry) & DAX_PMD)
102                 return PMD_ORDER;
103         return 0;
104 }
105
106 static unsigned long dax_is_pmd_entry(void *entry)
107 {
108         return xa_to_value(entry) & DAX_PMD;
109 }
110
111 static bool dax_is_pte_entry(void *entry)
112 {
113         return !(xa_to_value(entry) & DAX_PMD);
114 }
115
116 static int dax_is_zero_entry(void *entry)
117 {
118         return xa_to_value(entry) & DAX_ZERO_PAGE;
119 }
120
121 static int dax_is_empty_entry(void *entry)
122 {
123         return xa_to_value(entry) & DAX_EMPTY;
124 }
125
126 /*
127  * DAX page cache entry locking
128  */
129 struct exceptional_entry_key {
130         struct xarray *xa;
131         pgoff_t entry_start;
132 };
133
134 struct wait_exceptional_entry_queue {
135         wait_queue_entry_t wait;
136         struct exceptional_entry_key key;
137 };
138
139 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140                 void *entry, struct exceptional_entry_key *key)
141 {
142         unsigned long hash;
143         unsigned long index = xas->xa_index;
144
145         /*
146          * If 'entry' is a PMD, align the 'index' that we use for the wait
147          * queue to the start of that PMD.  This ensures that all offsets in
148          * the range covered by the PMD map to the same bit lock.
149          */
150         if (dax_is_pmd_entry(entry))
151                 index &= ~PG_PMD_COLOUR;
152         key->xa = xas->xa;
153         key->entry_start = index;
154
155         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
156         return wait_table + hash;
157 }
158
159 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160                 unsigned int mode, int sync, void *keyp)
161 {
162         struct exceptional_entry_key *key = keyp;
163         struct wait_exceptional_entry_queue *ewait =
164                 container_of(wait, struct wait_exceptional_entry_queue, wait);
165
166         if (key->xa != ewait->key.xa ||
167             key->entry_start != ewait->key.entry_start)
168                 return 0;
169         return autoremove_wake_function(wait, mode, sync, NULL);
170 }
171
172 /*
173  * @entry may no longer be the entry at the index in the mapping.
174  * The important information it's conveying is whether the entry at
175  * this index used to be a PMD entry.
176  */
177 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
178 {
179         struct exceptional_entry_key key;
180         wait_queue_head_t *wq;
181
182         wq = dax_entry_waitqueue(xas, entry, &key);
183
184         /*
185          * Checking for locked entry and prepare_to_wait_exclusive() happens
186          * under the i_pages lock, ditto for entry handling in our callers.
187          * So at this point all tasks that could have seen our entry locked
188          * must be in the waitqueue and the following check will see them.
189          */
190         if (waitqueue_active(wq))
191                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
192 }
193
194 /*
195  * Look up entry in page cache, wait for it to become unlocked if it
196  * is a DAX entry and return it.  The caller must subsequently call
197  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
198  * if it did.
199  *
200  * Must be called with the i_pages lock held.
201  */
202 static void *get_unlocked_entry(struct xa_state *xas)
203 {
204         void *entry;
205         struct wait_exceptional_entry_queue ewait;
206         wait_queue_head_t *wq;
207
208         init_wait(&ewait.wait);
209         ewait.wait.func = wake_exceptional_entry_func;
210
211         for (;;) {
212                 entry = xas_find_conflict(xas);
213                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
214                                 !dax_is_locked(entry))
215                         return entry;
216
217                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
218                 prepare_to_wait_exclusive(wq, &ewait.wait,
219                                           TASK_UNINTERRUPTIBLE);
220                 xas_unlock_irq(xas);
221                 xas_reset(xas);
222                 schedule();
223                 finish_wait(wq, &ewait.wait);
224                 xas_lock_irq(xas);
225         }
226 }
227
228 /*
229  * The only thing keeping the address space around is the i_pages lock
230  * (it's cycled in clear_inode() after removing the entries from i_pages)
231  * After we call xas_unlock_irq(), we cannot touch xas->xa.
232  */
233 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
234 {
235         struct wait_exceptional_entry_queue ewait;
236         wait_queue_head_t *wq;
237
238         init_wait(&ewait.wait);
239         ewait.wait.func = wake_exceptional_entry_func;
240
241         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242         /*
243          * Unlike get_unlocked_entry() there is no guarantee that this
244          * path ever successfully retrieves an unlocked entry before an
245          * inode dies. Perform a non-exclusive wait in case this path
246          * never successfully performs its own wake up.
247          */
248         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
249         xas_unlock_irq(xas);
250         schedule();
251         finish_wait(wq, &ewait.wait);
252 }
253
254 static void put_unlocked_entry(struct xa_state *xas, void *entry)
255 {
256         /* If we were the only waiter woken, wake the next one */
257         if (entry)
258                 dax_wake_entry(xas, entry, false);
259 }
260
261 /*
262  * We used the xa_state to get the entry, but then we locked the entry and
263  * dropped the xa_lock, so we know the xa_state is stale and must be reset
264  * before use.
265  */
266 static void dax_unlock_entry(struct xa_state *xas, void *entry)
267 {
268         void *old;
269
270         BUG_ON(dax_is_locked(entry));
271         xas_reset(xas);
272         xas_lock_irq(xas);
273         old = xas_store(xas, entry);
274         xas_unlock_irq(xas);
275         BUG_ON(!dax_is_locked(old));
276         dax_wake_entry(xas, entry, false);
277 }
278
279 /*
280  * Return: The entry stored at this location before it was locked.
281  */
282 static void *dax_lock_entry(struct xa_state *xas, void *entry)
283 {
284         unsigned long v = xa_to_value(entry);
285         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
286 }
287
288 static unsigned long dax_entry_size(void *entry)
289 {
290         if (dax_is_zero_entry(entry))
291                 return 0;
292         else if (dax_is_empty_entry(entry))
293                 return 0;
294         else if (dax_is_pmd_entry(entry))
295                 return PMD_SIZE;
296         else
297                 return PAGE_SIZE;
298 }
299
300 static unsigned long dax_end_pfn(void *entry)
301 {
302         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
303 }
304
305 /*
306  * Iterate through all mapped pfns represented by an entry, i.e. skip
307  * 'empty' and 'zero' entries.
308  */
309 #define for_each_mapped_pfn(entry, pfn) \
310         for (pfn = dax_to_pfn(entry); \
311                         pfn < dax_end_pfn(entry); pfn++)
312
313 /*
314  * TODO: for reflink+dax we need a way to associate a single page with
315  * multiple address_space instances at different linear_page_index()
316  * offsets.
317  */
318 static void dax_associate_entry(void *entry, struct address_space *mapping,
319                 struct vm_area_struct *vma, unsigned long address)
320 {
321         unsigned long size = dax_entry_size(entry), pfn, index;
322         int i = 0;
323
324         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
325                 return;
326
327         index = linear_page_index(vma, address & ~(size - 1));
328         for_each_mapped_pfn(entry, pfn) {
329                 struct page *page = pfn_to_page(pfn);
330
331                 WARN_ON_ONCE(page->mapping);
332                 page->mapping = mapping;
333                 page->index = index + i++;
334         }
335 }
336
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338                 bool trunc)
339 {
340         unsigned long pfn;
341
342         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343                 return;
344
345         for_each_mapped_pfn(entry, pfn) {
346                 struct page *page = pfn_to_page(pfn);
347
348                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350                 page->mapping = NULL;
351                 page->index = 0;
352         }
353 }
354
355 static struct page *dax_busy_page(void *entry)
356 {
357         unsigned long pfn;
358
359         for_each_mapped_pfn(entry, pfn) {
360                 struct page *page = pfn_to_page(pfn);
361
362                 if (page_ref_count(page) > 1)
363                         return page;
364         }
365         return NULL;
366 }
367
368 /*
369  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370  * @page: The page whose entry we want to lock
371  *
372  * Context: Process context.
373  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
374  * not be locked.
375  */
376 dax_entry_t dax_lock_page(struct page *page)
377 {
378         XA_STATE(xas, NULL, 0);
379         void *entry;
380
381         /* Ensure page->mapping isn't freed while we look at it */
382         rcu_read_lock();
383         for (;;) {
384                 struct address_space *mapping = READ_ONCE(page->mapping);
385
386                 entry = NULL;
387                 if (!mapping || !dax_mapping(mapping))
388                         break;
389
390                 /*
391                  * In the device-dax case there's no need to lock, a
392                  * struct dev_pagemap pin is sufficient to keep the
393                  * inode alive, and we assume we have dev_pagemap pin
394                  * otherwise we would not have a valid pfn_to_page()
395                  * translation.
396                  */
397                 entry = (void *)~0UL;
398                 if (S_ISCHR(mapping->host->i_mode))
399                         break;
400
401                 xas.xa = &mapping->i_pages;
402                 xas_lock_irq(&xas);
403                 if (mapping != page->mapping) {
404                         xas_unlock_irq(&xas);
405                         continue;
406                 }
407                 xas_set(&xas, page->index);
408                 entry = xas_load(&xas);
409                 if (dax_is_locked(entry)) {
410                         rcu_read_unlock();
411                         wait_entry_unlocked(&xas, entry);
412                         rcu_read_lock();
413                         continue;
414                 }
415                 dax_lock_entry(&xas, entry);
416                 xas_unlock_irq(&xas);
417                 break;
418         }
419         rcu_read_unlock();
420         return (dax_entry_t)entry;
421 }
422
423 void dax_unlock_page(struct page *page, dax_entry_t cookie)
424 {
425         struct address_space *mapping = page->mapping;
426         XA_STATE(xas, &mapping->i_pages, page->index);
427
428         if (S_ISCHR(mapping->host->i_mode))
429                 return;
430
431         dax_unlock_entry(&xas, (void *)cookie);
432 }
433
434 /*
435  * Find page cache entry at given index. If it is a DAX entry, return it
436  * with the entry locked. If the page cache doesn't contain an entry at
437  * that index, add a locked empty entry.
438  *
439  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
440  * either return that locked entry or will return VM_FAULT_FALLBACK.
441  * This will happen if there are any PTE entries within the PMD range
442  * that we are requesting.
443  *
444  * We always favor PTE entries over PMD entries. There isn't a flow where we
445  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
446  * insertion will fail if it finds any PTE entries already in the tree, and a
447  * PTE insertion will cause an existing PMD entry to be unmapped and
448  * downgraded to PTE entries.  This happens for both PMD zero pages as
449  * well as PMD empty entries.
450  *
451  * The exception to this downgrade path is for PMD entries that have
452  * real storage backing them.  We will leave these real PMD entries in
453  * the tree, and PTE writes will simply dirty the entire PMD entry.
454  *
455  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456  * persistent memory the benefit is doubtful. We can add that later if we can
457  * show it helps.
458  *
459  * On error, this function does not return an ERR_PTR.  Instead it returns
460  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
461  * overlap with xarray value entries.
462  */
463 static void *grab_mapping_entry(struct xa_state *xas,
464                 struct address_space *mapping, unsigned long size_flag)
465 {
466         unsigned long index = xas->xa_index;
467         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
468         void *entry;
469
470 retry:
471         xas_lock_irq(xas);
472         entry = get_unlocked_entry(xas);
473
474         if (entry) {
475                 if (!xa_is_value(entry)) {
476                         xas_set_err(xas, EIO);
477                         goto out_unlock;
478                 }
479
480                 if (size_flag & DAX_PMD) {
481                         if (dax_is_pte_entry(entry)) {
482                                 put_unlocked_entry(xas, entry);
483                                 goto fallback;
484                         }
485                 } else { /* trying to grab a PTE entry */
486                         if (dax_is_pmd_entry(entry) &&
487                             (dax_is_zero_entry(entry) ||
488                              dax_is_empty_entry(entry))) {
489                                 pmd_downgrade = true;
490                         }
491                 }
492         }
493
494         if (pmd_downgrade) {
495                 /*
496                  * Make sure 'entry' remains valid while we drop
497                  * the i_pages lock.
498                  */
499                 dax_lock_entry(xas, entry);
500
501                 /*
502                  * Besides huge zero pages the only other thing that gets
503                  * downgraded are empty entries which don't need to be
504                  * unmapped.
505                  */
506                 if (dax_is_zero_entry(entry)) {
507                         xas_unlock_irq(xas);
508                         unmap_mapping_pages(mapping,
509                                         xas->xa_index & ~PG_PMD_COLOUR,
510                                         PG_PMD_NR, false);
511                         xas_reset(xas);
512                         xas_lock_irq(xas);
513                 }
514
515                 dax_disassociate_entry(entry, mapping, false);
516                 xas_store(xas, NULL);   /* undo the PMD join */
517                 dax_wake_entry(xas, entry, true);
518                 mapping->nrexceptional--;
519                 entry = NULL;
520                 xas_set(xas, index);
521         }
522
523         if (entry) {
524                 dax_lock_entry(xas, entry);
525         } else {
526                 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527                 dax_lock_entry(xas, entry);
528                 if (xas_error(xas))
529                         goto out_unlock;
530                 mapping->nrexceptional++;
531         }
532
533 out_unlock:
534         xas_unlock_irq(xas);
535         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
536                 goto retry;
537         if (xas->xa_node == XA_ERROR(-ENOMEM))
538                 return xa_mk_internal(VM_FAULT_OOM);
539         if (xas_error(xas))
540                 return xa_mk_internal(VM_FAULT_SIGBUS);
541         return entry;
542 fallback:
543         xas_unlock_irq(xas);
544         return xa_mk_internal(VM_FAULT_FALLBACK);
545 }
546
547 /**
548  * dax_layout_busy_page - find first pinned page in @mapping
549  * @mapping: address space to scan for a page with ref count > 1
550  *
551  * DAX requires ZONE_DEVICE mapped pages. These pages are never
552  * 'onlined' to the page allocator so they are considered idle when
553  * page->count == 1. A filesystem uses this interface to determine if
554  * any page in the mapping is busy, i.e. for DMA, or other
555  * get_user_pages() usages.
556  *
557  * It is expected that the filesystem is holding locks to block the
558  * establishment of new mappings in this address_space. I.e. it expects
559  * to be able to run unmap_mapping_range() and subsequently not race
560  * mapping_mapped() becoming true.
561  */
562 struct page *dax_layout_busy_page(struct address_space *mapping)
563 {
564         XA_STATE(xas, &mapping->i_pages, 0);
565         void *entry;
566         unsigned int scanned = 0;
567         struct page *page = NULL;
568
569         /*
570          * In the 'limited' case get_user_pages() for dax is disabled.
571          */
572         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
573                 return NULL;
574
575         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
576                 return NULL;
577
578         /*
579          * If we race get_user_pages_fast() here either we'll see the
580          * elevated page count in the iteration and wait, or
581          * get_user_pages_fast() will see that the page it took a reference
582          * against is no longer mapped in the page tables and bail to the
583          * get_user_pages() slow path.  The slow path is protected by
584          * pte_lock() and pmd_lock(). New references are not taken without
585          * holding those locks, and unmap_mapping_range() will not zero the
586          * pte or pmd without holding the respective lock, so we are
587          * guaranteed to either see new references or prevent new
588          * references from being established.
589          */
590         unmap_mapping_range(mapping, 0, 0, 1);
591
592         xas_lock_irq(&xas);
593         xas_for_each(&xas, entry, ULONG_MAX) {
594                 if (WARN_ON_ONCE(!xa_is_value(entry)))
595                         continue;
596                 if (unlikely(dax_is_locked(entry)))
597                         entry = get_unlocked_entry(&xas);
598                 if (entry)
599                         page = dax_busy_page(entry);
600                 put_unlocked_entry(&xas, entry);
601                 if (page)
602                         break;
603                 if (++scanned % XA_CHECK_SCHED)
604                         continue;
605
606                 xas_pause(&xas);
607                 xas_unlock_irq(&xas);
608                 cond_resched();
609                 xas_lock_irq(&xas);
610         }
611         xas_unlock_irq(&xas);
612         return page;
613 }
614 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
615
616 static int __dax_invalidate_entry(struct address_space *mapping,
617                                           pgoff_t index, bool trunc)
618 {
619         XA_STATE(xas, &mapping->i_pages, index);
620         int ret = 0;
621         void *entry;
622
623         xas_lock_irq(&xas);
624         entry = get_unlocked_entry(&xas);
625         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
626                 goto out;
627         if (!trunc &&
628             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
630                 goto out;
631         dax_disassociate_entry(entry, mapping, trunc);
632         xas_store(&xas, NULL);
633         mapping->nrexceptional--;
634         ret = 1;
635 out:
636         put_unlocked_entry(&xas, entry);
637         xas_unlock_irq(&xas);
638         return ret;
639 }
640
641 /*
642  * Delete DAX entry at @index from @mapping.  Wait for it
643  * to be unlocked before deleting it.
644  */
645 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
646 {
647         int ret = __dax_invalidate_entry(mapping, index, true);
648
649         /*
650          * This gets called from truncate / punch_hole path. As such, the caller
651          * must hold locks protecting against concurrent modifications of the
652          * page cache (usually fs-private i_mmap_sem for writing). Since the
653          * caller has seen a DAX entry for this index, we better find it
654          * at that index as well...
655          */
656         WARN_ON_ONCE(!ret);
657         return ret;
658 }
659
660 /*
661  * Invalidate DAX entry if it is clean.
662  */
663 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
664                                       pgoff_t index)
665 {
666         return __dax_invalidate_entry(mapping, index, false);
667 }
668
669 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670                 sector_t sector, size_t size, struct page *to,
671                 unsigned long vaddr)
672 {
673         void *vto, *kaddr;
674         pgoff_t pgoff;
675         long rc;
676         int id;
677
678         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
679         if (rc)
680                 return rc;
681
682         id = dax_read_lock();
683         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
684         if (rc < 0) {
685                 dax_read_unlock(id);
686                 return rc;
687         }
688         vto = kmap_atomic(to);
689         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
690         kunmap_atomic(vto);
691         dax_read_unlock(id);
692         return 0;
693 }
694
695 /*
696  * By this point grab_mapping_entry() has ensured that we have a locked entry
697  * of the appropriate size so we don't have to worry about downgrading PMDs to
698  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
699  * already in the tree, we will skip the insertion and just dirty the PMD as
700  * appropriate.
701  */
702 static void *dax_insert_entry(struct xa_state *xas,
703                 struct address_space *mapping, struct vm_fault *vmf,
704                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
705 {
706         void *new_entry = dax_make_entry(pfn, flags);
707
708         if (dirty)
709                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
710
711         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
712                 unsigned long index = xas->xa_index;
713                 /* we are replacing a zero page with block mapping */
714                 if (dax_is_pmd_entry(entry))
715                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
716                                         PG_PMD_NR, false);
717                 else /* pte entry */
718                         unmap_mapping_pages(mapping, index, 1, false);
719         }
720
721         xas_reset(xas);
722         xas_lock_irq(xas);
723         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
724                 void *old;
725
726                 dax_disassociate_entry(entry, mapping, false);
727                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
728                 /*
729                  * Only swap our new entry into the page cache if the current
730                  * entry is a zero page or an empty entry.  If a normal PTE or
731                  * PMD entry is already in the cache, we leave it alone.  This
732                  * means that if we are trying to insert a PTE and the
733                  * existing entry is a PMD, we will just leave the PMD in the
734                  * tree and dirty it if necessary.
735                  */
736                 old = dax_lock_entry(xas, new_entry);
737                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
738                                         DAX_LOCKED));
739                 entry = new_entry;
740         } else {
741                 xas_load(xas);  /* Walk the xa_state */
742         }
743
744         if (dirty)
745                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
746
747         xas_unlock_irq(xas);
748         return entry;
749 }
750
751 static inline
752 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
753 {
754         unsigned long address;
755
756         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
757         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
758         return address;
759 }
760
761 /* Walk all mappings of a given index of a file and writeprotect them */
762 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
763                 unsigned long pfn)
764 {
765         struct vm_area_struct *vma;
766         pte_t pte, *ptep = NULL;
767         pmd_t *pmdp = NULL;
768         spinlock_t *ptl;
769
770         i_mmap_lock_read(mapping);
771         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
772                 struct mmu_notifier_range range;
773                 unsigned long address;
774
775                 cond_resched();
776
777                 if (!(vma->vm_flags & VM_SHARED))
778                         continue;
779
780                 address = pgoff_address(index, vma);
781
782                 /*
783                  * Note because we provide range to follow_pte_pmd it will
784                  * call mmu_notifier_invalidate_range_start() on our behalf
785                  * before taking any lock.
786                  */
787                 if (follow_pte_pmd(vma->vm_mm, address, &range,
788                                    &ptep, &pmdp, &ptl))
789                         continue;
790
791                 /*
792                  * No need to call mmu_notifier_invalidate_range() as we are
793                  * downgrading page table protection not changing it to point
794                  * to a new page.
795                  *
796                  * See Documentation/vm/mmu_notifier.rst
797                  */
798                 if (pmdp) {
799 #ifdef CONFIG_FS_DAX_PMD
800                         pmd_t pmd;
801
802                         if (pfn != pmd_pfn(*pmdp))
803                                 goto unlock_pmd;
804                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
805                                 goto unlock_pmd;
806
807                         flush_cache_page(vma, address, pfn);
808                         pmd = pmdp_invalidate(vma, address, pmdp);
809                         pmd = pmd_wrprotect(pmd);
810                         pmd = pmd_mkclean(pmd);
811                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
812 unlock_pmd:
813 #endif
814                         spin_unlock(ptl);
815                 } else {
816                         if (pfn != pte_pfn(*ptep))
817                                 goto unlock_pte;
818                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
819                                 goto unlock_pte;
820
821                         flush_cache_page(vma, address, pfn);
822                         pte = ptep_clear_flush(vma, address, ptep);
823                         pte = pte_wrprotect(pte);
824                         pte = pte_mkclean(pte);
825                         set_pte_at(vma->vm_mm, address, ptep, pte);
826 unlock_pte:
827                         pte_unmap_unlock(ptep, ptl);
828                 }
829
830                 mmu_notifier_invalidate_range_end(&range);
831         }
832         i_mmap_unlock_read(mapping);
833 }
834
835 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
836                 struct address_space *mapping, void *entry)
837 {
838         unsigned long pfn, index, count;
839         long ret = 0;
840
841         /*
842          * A page got tagged dirty in DAX mapping? Something is seriously
843          * wrong.
844          */
845         if (WARN_ON(!xa_is_value(entry)))
846                 return -EIO;
847
848         if (unlikely(dax_is_locked(entry))) {
849                 void *old_entry = entry;
850
851                 entry = get_unlocked_entry(xas);
852
853                 /* Entry got punched out / reallocated? */
854                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
855                         goto put_unlocked;
856                 /*
857                  * Entry got reallocated elsewhere? No need to writeback.
858                  * We have to compare pfns as we must not bail out due to
859                  * difference in lockbit or entry type.
860                  */
861                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
862                         goto put_unlocked;
863                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
864                                         dax_is_zero_entry(entry))) {
865                         ret = -EIO;
866                         goto put_unlocked;
867                 }
868
869                 /* Another fsync thread may have already done this entry */
870                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
871                         goto put_unlocked;
872         }
873
874         /* Lock the entry to serialize with page faults */
875         dax_lock_entry(xas, entry);
876
877         /*
878          * We can clear the tag now but we have to be careful so that concurrent
879          * dax_writeback_one() calls for the same index cannot finish before we
880          * actually flush the caches. This is achieved as the calls will look
881          * at the entry only under the i_pages lock and once they do that
882          * they will see the entry locked and wait for it to unlock.
883          */
884         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
885         xas_unlock_irq(xas);
886
887         /*
888          * If dax_writeback_mapping_range() was given a wbc->range_start
889          * in the middle of a PMD, the 'index' we use needs to be
890          * aligned to the start of the PMD.
891          * This allows us to flush for PMD_SIZE and not have to worry about
892          * partial PMD writebacks.
893          */
894         pfn = dax_to_pfn(entry);
895         count = 1UL << dax_entry_order(entry);
896         index = xas->xa_index & ~(count - 1);
897
898         dax_entry_mkclean(mapping, index, pfn);
899         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
900         /*
901          * After we have flushed the cache, we can clear the dirty tag. There
902          * cannot be new dirty data in the pfn after the flush has completed as
903          * the pfn mappings are writeprotected and fault waits for mapping
904          * entry lock.
905          */
906         xas_reset(xas);
907         xas_lock_irq(xas);
908         xas_store(xas, entry);
909         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
910         dax_wake_entry(xas, entry, false);
911
912         trace_dax_writeback_one(mapping->host, index, count);
913         return ret;
914
915  put_unlocked:
916         put_unlocked_entry(xas, entry);
917         return ret;
918 }
919
920 /*
921  * Flush the mapping to the persistent domain within the byte range of [start,
922  * end]. This is required by data integrity operations to ensure file data is
923  * on persistent storage prior to completion of the operation.
924  */
925 int dax_writeback_mapping_range(struct address_space *mapping,
926                 struct block_device *bdev, struct writeback_control *wbc)
927 {
928         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
929         struct inode *inode = mapping->host;
930         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
931         struct dax_device *dax_dev;
932         void *entry;
933         int ret = 0;
934         unsigned int scanned = 0;
935
936         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
937                 return -EIO;
938
939         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
940                 return 0;
941
942         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
943         if (!dax_dev)
944                 return -EIO;
945
946         trace_dax_writeback_range(inode, xas.xa_index, end_index);
947
948         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
949
950         xas_lock_irq(&xas);
951         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
952                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
953                 if (ret < 0) {
954                         mapping_set_error(mapping, ret);
955                         break;
956                 }
957                 if (++scanned % XA_CHECK_SCHED)
958                         continue;
959
960                 xas_pause(&xas);
961                 xas_unlock_irq(&xas);
962                 cond_resched();
963                 xas_lock_irq(&xas);
964         }
965         xas_unlock_irq(&xas);
966         put_dax(dax_dev);
967         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
968         return ret;
969 }
970 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
971
972 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
973 {
974         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
975 }
976
977 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
978                          pfn_t *pfnp)
979 {
980         const sector_t sector = dax_iomap_sector(iomap, pos);
981         pgoff_t pgoff;
982         int id, rc;
983         long length;
984
985         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
986         if (rc)
987                 return rc;
988         id = dax_read_lock();
989         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
990                                    NULL, pfnp);
991         if (length < 0) {
992                 rc = length;
993                 goto out;
994         }
995         rc = -EINVAL;
996         if (PFN_PHYS(length) < size)
997                 goto out;
998         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
999                 goto out;
1000         /* For larger pages we need devmap */
1001         if (length > 1 && !pfn_t_devmap(*pfnp))
1002                 goto out;
1003         rc = 0;
1004 out:
1005         dax_read_unlock(id);
1006         return rc;
1007 }
1008
1009 /*
1010  * The user has performed a load from a hole in the file.  Allocating a new
1011  * page in the file would cause excessive storage usage for workloads with
1012  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1013  * If this page is ever written to we will re-fault and change the mapping to
1014  * point to real DAX storage instead.
1015  */
1016 static vm_fault_t dax_load_hole(struct xa_state *xas,
1017                 struct address_space *mapping, void **entry,
1018                 struct vm_fault *vmf)
1019 {
1020         struct inode *inode = mapping->host;
1021         unsigned long vaddr = vmf->address;
1022         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1023         vm_fault_t ret;
1024
1025         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1026                         DAX_ZERO_PAGE, false);
1027
1028         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1029         trace_dax_load_hole(inode, vmf, ret);
1030         return ret;
1031 }
1032
1033 static bool dax_range_is_aligned(struct block_device *bdev,
1034                                  unsigned int offset, unsigned int length)
1035 {
1036         unsigned short sector_size = bdev_logical_block_size(bdev);
1037
1038         if (!IS_ALIGNED(offset, sector_size))
1039                 return false;
1040         if (!IS_ALIGNED(length, sector_size))
1041                 return false;
1042
1043         return true;
1044 }
1045
1046 int __dax_zero_page_range(struct block_device *bdev,
1047                 struct dax_device *dax_dev, sector_t sector,
1048                 unsigned int offset, unsigned int size)
1049 {
1050         if (dax_range_is_aligned(bdev, offset, size)) {
1051                 sector_t start_sector = sector + (offset >> 9);
1052
1053                 return blkdev_issue_zeroout(bdev, start_sector,
1054                                 size >> 9, GFP_NOFS, 0);
1055         } else {
1056                 pgoff_t pgoff;
1057                 long rc, id;
1058                 void *kaddr;
1059
1060                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1061                 if (rc)
1062                         return rc;
1063
1064                 id = dax_read_lock();
1065                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1066                 if (rc < 0) {
1067                         dax_read_unlock(id);
1068                         return rc;
1069                 }
1070                 memset(kaddr + offset, 0, size);
1071                 dax_flush(dax_dev, kaddr + offset, size);
1072                 dax_read_unlock(id);
1073         }
1074         return 0;
1075 }
1076 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1077
1078 static loff_t
1079 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1080                 struct iomap *iomap)
1081 {
1082         struct block_device *bdev = iomap->bdev;
1083         struct dax_device *dax_dev = iomap->dax_dev;
1084         struct iov_iter *iter = data;
1085         loff_t end = pos + length, done = 0;
1086         ssize_t ret = 0;
1087         size_t xfer;
1088         int id;
1089
1090         if (iov_iter_rw(iter) == READ) {
1091                 end = min(end, i_size_read(inode));
1092                 if (pos >= end)
1093                         return 0;
1094
1095                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1096                         return iov_iter_zero(min(length, end - pos), iter);
1097         }
1098
1099         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1100                 return -EIO;
1101
1102         /*
1103          * Write can allocate block for an area which has a hole page mapped
1104          * into page tables. We have to tear down these mappings so that data
1105          * written by write(2) is visible in mmap.
1106          */
1107         if (iomap->flags & IOMAP_F_NEW) {
1108                 invalidate_inode_pages2_range(inode->i_mapping,
1109                                               pos >> PAGE_SHIFT,
1110                                               (end - 1) >> PAGE_SHIFT);
1111         }
1112
1113         id = dax_read_lock();
1114         while (pos < end) {
1115                 unsigned offset = pos & (PAGE_SIZE - 1);
1116                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1117                 const sector_t sector = dax_iomap_sector(iomap, pos);
1118                 ssize_t map_len;
1119                 pgoff_t pgoff;
1120                 void *kaddr;
1121
1122                 if (fatal_signal_pending(current)) {
1123                         ret = -EINTR;
1124                         break;
1125                 }
1126
1127                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1128                 if (ret)
1129                         break;
1130
1131                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1132                                 &kaddr, NULL);
1133                 if (map_len < 0) {
1134                         ret = map_len;
1135                         break;
1136                 }
1137
1138                 map_len = PFN_PHYS(map_len);
1139                 kaddr += offset;
1140                 map_len -= offset;
1141                 if (map_len > end - pos)
1142                         map_len = end - pos;
1143
1144                 /*
1145                  * The userspace address for the memory copy has already been
1146                  * validated via access_ok() in either vfs_read() or
1147                  * vfs_write(), depending on which operation we are doing.
1148                  */
1149                 if (iov_iter_rw(iter) == WRITE)
1150                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1151                                         map_len, iter);
1152                 else
1153                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1154                                         map_len, iter);
1155
1156                 pos += xfer;
1157                 length -= xfer;
1158                 done += xfer;
1159
1160                 if (xfer == 0)
1161                         ret = -EFAULT;
1162                 if (xfer < map_len)
1163                         break;
1164         }
1165         dax_read_unlock(id);
1166
1167         return done ? done : ret;
1168 }
1169
1170 /**
1171  * dax_iomap_rw - Perform I/O to a DAX file
1172  * @iocb:       The control block for this I/O
1173  * @iter:       The addresses to do I/O from or to
1174  * @ops:        iomap ops passed from the file system
1175  *
1176  * This function performs read and write operations to directly mapped
1177  * persistent memory.  The callers needs to take care of read/write exclusion
1178  * and evicting any page cache pages in the region under I/O.
1179  */
1180 ssize_t
1181 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1182                 const struct iomap_ops *ops)
1183 {
1184         struct address_space *mapping = iocb->ki_filp->f_mapping;
1185         struct inode *inode = mapping->host;
1186         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1187         unsigned flags = 0;
1188
1189         if (iov_iter_rw(iter) == WRITE) {
1190                 lockdep_assert_held_write(&inode->i_rwsem);
1191                 flags |= IOMAP_WRITE;
1192         } else {
1193                 lockdep_assert_held(&inode->i_rwsem);
1194         }
1195
1196         while (iov_iter_count(iter)) {
1197                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1198                                 iter, dax_iomap_actor);
1199                 if (ret <= 0)
1200                         break;
1201                 pos += ret;
1202                 done += ret;
1203         }
1204
1205         iocb->ki_pos += done;
1206         return done ? done : ret;
1207 }
1208 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1209
1210 static vm_fault_t dax_fault_return(int error)
1211 {
1212         if (error == 0)
1213                 return VM_FAULT_NOPAGE;
1214         return vmf_error(error);
1215 }
1216
1217 /*
1218  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1219  * flushed on write-faults (non-cow), but not read-faults.
1220  */
1221 static bool dax_fault_is_synchronous(unsigned long flags,
1222                 struct vm_area_struct *vma, struct iomap *iomap)
1223 {
1224         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1225                 && (iomap->flags & IOMAP_F_DIRTY);
1226 }
1227
1228 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1229                                int *iomap_errp, const struct iomap_ops *ops)
1230 {
1231         struct vm_area_struct *vma = vmf->vma;
1232         struct address_space *mapping = vma->vm_file->f_mapping;
1233         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1234         struct inode *inode = mapping->host;
1235         unsigned long vaddr = vmf->address;
1236         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1237         struct iomap iomap = { 0 };
1238         unsigned flags = IOMAP_FAULT;
1239         int error, major = 0;
1240         bool write = vmf->flags & FAULT_FLAG_WRITE;
1241         bool sync;
1242         vm_fault_t ret = 0;
1243         void *entry;
1244         pfn_t pfn;
1245
1246         trace_dax_pte_fault(inode, vmf, ret);
1247         /*
1248          * Check whether offset isn't beyond end of file now. Caller is supposed
1249          * to hold locks serializing us with truncate / punch hole so this is
1250          * a reliable test.
1251          */
1252         if (pos >= i_size_read(inode)) {
1253                 ret = VM_FAULT_SIGBUS;
1254                 goto out;
1255         }
1256
1257         if (write && !vmf->cow_page)
1258                 flags |= IOMAP_WRITE;
1259
1260         entry = grab_mapping_entry(&xas, mapping, 0);
1261         if (xa_is_internal(entry)) {
1262                 ret = xa_to_internal(entry);
1263                 goto out;
1264         }
1265
1266         /*
1267          * It is possible, particularly with mixed reads & writes to private
1268          * mappings, that we have raced with a PMD fault that overlaps with
1269          * the PTE we need to set up.  If so just return and the fault will be
1270          * retried.
1271          */
1272         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1273                 ret = VM_FAULT_NOPAGE;
1274                 goto unlock_entry;
1275         }
1276
1277         /*
1278          * Note that we don't bother to use iomap_apply here: DAX required
1279          * the file system block size to be equal the page size, which means
1280          * that we never have to deal with more than a single extent here.
1281          */
1282         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1283         if (iomap_errp)
1284                 *iomap_errp = error;
1285         if (error) {
1286                 ret = dax_fault_return(error);
1287                 goto unlock_entry;
1288         }
1289         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1290                 error = -EIO;   /* fs corruption? */
1291                 goto error_finish_iomap;
1292         }
1293
1294         if (vmf->cow_page) {
1295                 sector_t sector = dax_iomap_sector(&iomap, pos);
1296
1297                 switch (iomap.type) {
1298                 case IOMAP_HOLE:
1299                 case IOMAP_UNWRITTEN:
1300                         clear_user_highpage(vmf->cow_page, vaddr);
1301                         break;
1302                 case IOMAP_MAPPED:
1303                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1304                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1305                         break;
1306                 default:
1307                         WARN_ON_ONCE(1);
1308                         error = -EIO;
1309                         break;
1310                 }
1311
1312                 if (error)
1313                         goto error_finish_iomap;
1314
1315                 __SetPageUptodate(vmf->cow_page);
1316                 ret = finish_fault(vmf);
1317                 if (!ret)
1318                         ret = VM_FAULT_DONE_COW;
1319                 goto finish_iomap;
1320         }
1321
1322         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1323
1324         switch (iomap.type) {
1325         case IOMAP_MAPPED:
1326                 if (iomap.flags & IOMAP_F_NEW) {
1327                         count_vm_event(PGMAJFAULT);
1328                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1329                         major = VM_FAULT_MAJOR;
1330                 }
1331                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1332                 if (error < 0)
1333                         goto error_finish_iomap;
1334
1335                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1336                                                  0, write && !sync);
1337
1338                 /*
1339                  * If we are doing synchronous page fault and inode needs fsync,
1340                  * we can insert PTE into page tables only after that happens.
1341                  * Skip insertion for now and return the pfn so that caller can
1342                  * insert it after fsync is done.
1343                  */
1344                 if (sync) {
1345                         if (WARN_ON_ONCE(!pfnp)) {
1346                                 error = -EIO;
1347                                 goto error_finish_iomap;
1348                         }
1349                         *pfnp = pfn;
1350                         ret = VM_FAULT_NEEDDSYNC | major;
1351                         goto finish_iomap;
1352                 }
1353                 trace_dax_insert_mapping(inode, vmf, entry);
1354                 if (write)
1355                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1356                 else
1357                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1358
1359                 goto finish_iomap;
1360         case IOMAP_UNWRITTEN:
1361         case IOMAP_HOLE:
1362                 if (!write) {
1363                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1364                         goto finish_iomap;
1365                 }
1366                 /*FALLTHRU*/
1367         default:
1368                 WARN_ON_ONCE(1);
1369                 error = -EIO;
1370                 break;
1371         }
1372
1373  error_finish_iomap:
1374         ret = dax_fault_return(error);
1375  finish_iomap:
1376         if (ops->iomap_end) {
1377                 int copied = PAGE_SIZE;
1378
1379                 if (ret & VM_FAULT_ERROR)
1380                         copied = 0;
1381                 /*
1382                  * The fault is done by now and there's no way back (other
1383                  * thread may be already happily using PTE we have installed).
1384                  * Just ignore error from ->iomap_end since we cannot do much
1385                  * with it.
1386                  */
1387                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1388         }
1389  unlock_entry:
1390         dax_unlock_entry(&xas, entry);
1391  out:
1392         trace_dax_pte_fault_done(inode, vmf, ret);
1393         return ret | major;
1394 }
1395
1396 #ifdef CONFIG_FS_DAX_PMD
1397 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1398                 struct iomap *iomap, void **entry)
1399 {
1400         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401         unsigned long pmd_addr = vmf->address & PMD_MASK;
1402         struct vm_area_struct *vma = vmf->vma;
1403         struct inode *inode = mapping->host;
1404         pgtable_t pgtable = NULL;
1405         struct page *zero_page;
1406         spinlock_t *ptl;
1407         pmd_t pmd_entry;
1408         pfn_t pfn;
1409
1410         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1411
1412         if (unlikely(!zero_page))
1413                 goto fallback;
1414
1415         pfn = page_to_pfn_t(zero_page);
1416         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1417                         DAX_PMD | DAX_ZERO_PAGE, false);
1418
1419         if (arch_needs_pgtable_deposit()) {
1420                 pgtable = pte_alloc_one(vma->vm_mm);
1421                 if (!pgtable)
1422                         return VM_FAULT_OOM;
1423         }
1424
1425         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1426         if (!pmd_none(*(vmf->pmd))) {
1427                 spin_unlock(ptl);
1428                 goto fallback;
1429         }
1430
1431         if (pgtable) {
1432                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1433                 mm_inc_nr_ptes(vma->vm_mm);
1434         }
1435         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1436         pmd_entry = pmd_mkhuge(pmd_entry);
1437         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1438         spin_unlock(ptl);
1439         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1440         return VM_FAULT_NOPAGE;
1441
1442 fallback:
1443         if (pgtable)
1444                 pte_free(vma->vm_mm, pgtable);
1445         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1446         return VM_FAULT_FALLBACK;
1447 }
1448
1449 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1450                                const struct iomap_ops *ops)
1451 {
1452         struct vm_area_struct *vma = vmf->vma;
1453         struct address_space *mapping = vma->vm_file->f_mapping;
1454         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1455         unsigned long pmd_addr = vmf->address & PMD_MASK;
1456         bool write = vmf->flags & FAULT_FLAG_WRITE;
1457         bool sync;
1458         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1459         struct inode *inode = mapping->host;
1460         vm_fault_t result = VM_FAULT_FALLBACK;
1461         struct iomap iomap = { 0 };
1462         pgoff_t max_pgoff;
1463         void *entry;
1464         loff_t pos;
1465         int error;
1466         pfn_t pfn;
1467
1468         /*
1469          * Check whether offset isn't beyond end of file now. Caller is
1470          * supposed to hold locks serializing us with truncate / punch hole so
1471          * this is a reliable test.
1472          */
1473         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1474
1475         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1476
1477         /*
1478          * Make sure that the faulting address's PMD offset (color) matches
1479          * the PMD offset from the start of the file.  This is necessary so
1480          * that a PMD range in the page table overlaps exactly with a PMD
1481          * range in the page cache.
1482          */
1483         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1484             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1485                 goto fallback;
1486
1487         /* Fall back to PTEs if we're going to COW */
1488         if (write && !(vma->vm_flags & VM_SHARED))
1489                 goto fallback;
1490
1491         /* If the PMD would extend outside the VMA */
1492         if (pmd_addr < vma->vm_start)
1493                 goto fallback;
1494         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1495                 goto fallback;
1496
1497         if (xas.xa_index >= max_pgoff) {
1498                 result = VM_FAULT_SIGBUS;
1499                 goto out;
1500         }
1501
1502         /* If the PMD would extend beyond the file size */
1503         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1504                 goto fallback;
1505
1506         /*
1507          * grab_mapping_entry() will make sure we get an empty PMD entry,
1508          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1509          * entry is already in the array, for instance), it will return
1510          * VM_FAULT_FALLBACK.
1511          */
1512         entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1513         if (xa_is_internal(entry)) {
1514                 result = xa_to_internal(entry);
1515                 goto fallback;
1516         }
1517
1518         /*
1519          * It is possible, particularly with mixed reads & writes to private
1520          * mappings, that we have raced with a PTE fault that overlaps with
1521          * the PMD we need to set up.  If so just return and the fault will be
1522          * retried.
1523          */
1524         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1525                         !pmd_devmap(*vmf->pmd)) {
1526                 result = 0;
1527                 goto unlock_entry;
1528         }
1529
1530         /*
1531          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1532          * setting up a mapping, so really we're using iomap_begin() as a way
1533          * to look up our filesystem block.
1534          */
1535         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1536         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1537         if (error)
1538                 goto unlock_entry;
1539
1540         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1541                 goto finish_iomap;
1542
1543         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1544
1545         switch (iomap.type) {
1546         case IOMAP_MAPPED:
1547                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1548                 if (error < 0)
1549                         goto finish_iomap;
1550
1551                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1552                                                 DAX_PMD, write && !sync);
1553
1554                 /*
1555                  * If we are doing synchronous page fault and inode needs fsync,
1556                  * we can insert PMD into page tables only after that happens.
1557                  * Skip insertion for now and return the pfn so that caller can
1558                  * insert it after fsync is done.
1559                  */
1560                 if (sync) {
1561                         if (WARN_ON_ONCE(!pfnp))
1562                                 goto finish_iomap;
1563                         *pfnp = pfn;
1564                         result = VM_FAULT_NEEDDSYNC;
1565                         goto finish_iomap;
1566                 }
1567
1568                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1569                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1570                 break;
1571         case IOMAP_UNWRITTEN:
1572         case IOMAP_HOLE:
1573                 if (WARN_ON_ONCE(write))
1574                         break;
1575                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1576                 break;
1577         default:
1578                 WARN_ON_ONCE(1);
1579                 break;
1580         }
1581
1582  finish_iomap:
1583         if (ops->iomap_end) {
1584                 int copied = PMD_SIZE;
1585
1586                 if (result == VM_FAULT_FALLBACK)
1587                         copied = 0;
1588                 /*
1589                  * The fault is done by now and there's no way back (other
1590                  * thread may be already happily using PMD we have installed).
1591                  * Just ignore error from ->iomap_end since we cannot do much
1592                  * with it.
1593                  */
1594                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1595                                 &iomap);
1596         }
1597  unlock_entry:
1598         dax_unlock_entry(&xas, entry);
1599  fallback:
1600         if (result == VM_FAULT_FALLBACK) {
1601                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1602                 count_vm_event(THP_FAULT_FALLBACK);
1603         }
1604 out:
1605         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1606         return result;
1607 }
1608 #else
1609 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1610                                const struct iomap_ops *ops)
1611 {
1612         return VM_FAULT_FALLBACK;
1613 }
1614 #endif /* CONFIG_FS_DAX_PMD */
1615
1616 /**
1617  * dax_iomap_fault - handle a page fault on a DAX file
1618  * @vmf: The description of the fault
1619  * @pe_size: Size of the page to fault in
1620  * @pfnp: PFN to insert for synchronous faults if fsync is required
1621  * @iomap_errp: Storage for detailed error code in case of error
1622  * @ops: Iomap ops passed from the file system
1623  *
1624  * When a page fault occurs, filesystems may call this helper in
1625  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1626  * has done all the necessary locking for page fault to proceed
1627  * successfully.
1628  */
1629 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1630                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1631 {
1632         switch (pe_size) {
1633         case PE_SIZE_PTE:
1634                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1635         case PE_SIZE_PMD:
1636                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1637         default:
1638                 return VM_FAULT_FALLBACK;
1639         }
1640 }
1641 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1642
1643 /*
1644  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1645  * @vmf: The description of the fault
1646  * @pfn: PFN to insert
1647  * @order: Order of entry to insert.
1648  *
1649  * This function inserts a writeable PTE or PMD entry into the page tables
1650  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1651  */
1652 static vm_fault_t
1653 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1654 {
1655         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1656         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1657         void *entry;
1658         vm_fault_t ret;
1659
1660         xas_lock_irq(&xas);
1661         entry = get_unlocked_entry(&xas);
1662         /* Did we race with someone splitting entry or so? */
1663         if (!entry ||
1664             (order == 0 && !dax_is_pte_entry(entry)) ||
1665             (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1666                 put_unlocked_entry(&xas, entry);
1667                 xas_unlock_irq(&xas);
1668                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1669                                                       VM_FAULT_NOPAGE);
1670                 return VM_FAULT_NOPAGE;
1671         }
1672         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1673         dax_lock_entry(&xas, entry);
1674         xas_unlock_irq(&xas);
1675         if (order == 0)
1676                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1677 #ifdef CONFIG_FS_DAX_PMD
1678         else if (order == PMD_ORDER)
1679                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1680 #endif
1681         else
1682                 ret = VM_FAULT_FALLBACK;
1683         dax_unlock_entry(&xas, entry);
1684         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1685         return ret;
1686 }
1687
1688 /**
1689  * dax_finish_sync_fault - finish synchronous page fault
1690  * @vmf: The description of the fault
1691  * @pe_size: Size of entry to be inserted
1692  * @pfn: PFN to insert
1693  *
1694  * This function ensures that the file range touched by the page fault is
1695  * stored persistently on the media and handles inserting of appropriate page
1696  * table entry.
1697  */
1698 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1699                 enum page_entry_size pe_size, pfn_t pfn)
1700 {
1701         int err;
1702         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1703         unsigned int order = pe_order(pe_size);
1704         size_t len = PAGE_SIZE << order;
1705
1706         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1707         if (err)
1708                 return VM_FAULT_SIGBUS;
1709         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1710 }
1711 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);