1997a7d67f22faa407162771143e111c091d6d7c
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36         [BTRFS_RAID_RAID10] = {
37                 .sub_stripes    = 2,
38                 .dev_stripes    = 1,
39                 .devs_max       = 0,    /* 0 == as many as possible */
40                 .devs_min       = 4,
41                 .tolerated_failures = 1,
42                 .devs_increment = 2,
43                 .ncopies        = 2,
44                 .nparity        = 0,
45                 .raid_name      = "raid10",
46                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
47                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48         },
49         [BTRFS_RAID_RAID1] = {
50                 .sub_stripes    = 1,
51                 .dev_stripes    = 1,
52                 .devs_max       = 2,
53                 .devs_min       = 2,
54                 .tolerated_failures = 1,
55                 .devs_increment = 2,
56                 .ncopies        = 2,
57                 .nparity        = 0,
58                 .raid_name      = "raid1",
59                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
60                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61         },
62         [BTRFS_RAID_RAID1C3] = {
63                 .sub_stripes    = 1,
64                 .dev_stripes    = 1,
65                 .devs_max       = 3,
66                 .devs_min       = 3,
67                 .tolerated_failures = 2,
68                 .devs_increment = 3,
69                 .ncopies        = 3,
70                 .nparity        = 0,
71                 .raid_name      = "raid1c3",
72                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
73                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74         },
75         [BTRFS_RAID_RAID1C4] = {
76                 .sub_stripes    = 1,
77                 .dev_stripes    = 1,
78                 .devs_max       = 4,
79                 .devs_min       = 4,
80                 .tolerated_failures = 3,
81                 .devs_increment = 4,
82                 .ncopies        = 4,
83                 .nparity        = 0,
84                 .raid_name      = "raid1c4",
85                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
86                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87         },
88         [BTRFS_RAID_DUP] = {
89                 .sub_stripes    = 1,
90                 .dev_stripes    = 2,
91                 .devs_max       = 1,
92                 .devs_min       = 1,
93                 .tolerated_failures = 0,
94                 .devs_increment = 1,
95                 .ncopies        = 2,
96                 .nparity        = 0,
97                 .raid_name      = "dup",
98                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
99                 .mindev_error   = 0,
100         },
101         [BTRFS_RAID_RAID0] = {
102                 .sub_stripes    = 1,
103                 .dev_stripes    = 1,
104                 .devs_max       = 0,
105                 .devs_min       = 2,
106                 .tolerated_failures = 0,
107                 .devs_increment = 1,
108                 .ncopies        = 1,
109                 .nparity        = 0,
110                 .raid_name      = "raid0",
111                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
112                 .mindev_error   = 0,
113         },
114         [BTRFS_RAID_SINGLE] = {
115                 .sub_stripes    = 1,
116                 .dev_stripes    = 1,
117                 .devs_max       = 1,
118                 .devs_min       = 1,
119                 .tolerated_failures = 0,
120                 .devs_increment = 1,
121                 .ncopies        = 1,
122                 .nparity        = 0,
123                 .raid_name      = "single",
124                 .bg_flag        = 0,
125                 .mindev_error   = 0,
126         },
127         [BTRFS_RAID_RAID5] = {
128                 .sub_stripes    = 1,
129                 .dev_stripes    = 1,
130                 .devs_max       = 0,
131                 .devs_min       = 2,
132                 .tolerated_failures = 1,
133                 .devs_increment = 1,
134                 .ncopies        = 1,
135                 .nparity        = 1,
136                 .raid_name      = "raid5",
137                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
138                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139         },
140         [BTRFS_RAID_RAID6] = {
141                 .sub_stripes    = 1,
142                 .dev_stripes    = 1,
143                 .devs_max       = 0,
144                 .devs_min       = 3,
145                 .tolerated_failures = 2,
146                 .devs_increment = 1,
147                 .ncopies        = 1,
148                 .nparity        = 2,
149                 .raid_name      = "raid6",
150                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
151                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152         },
153 };
154
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157         const int index = btrfs_bg_flags_to_raid_index(flags);
158
159         if (index >= BTRFS_NR_RAID_TYPES)
160                 return NULL;
161
162         return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171         int i;
172         int ret;
173         char *bp = buf;
174         u64 flags = bg_flags;
175         u32 size_bp = size_buf;
176
177         if (!flags) {
178                 strcpy(bp, "NONE");
179                 return;
180         }
181
182 #define DESCRIBE_FLAG(flag, desc)                                               \
183         do {                                                            \
184                 if (flags & (flag)) {                                   \
185                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
186                         if (ret < 0 || ret >= size_bp)                  \
187                                 goto out_overflow;                      \
188                         size_bp -= ret;                                 \
189                         bp += ret;                                      \
190                         flags &= ~(flag);                               \
191                 }                                                       \
192         } while (0)
193
194         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201                               btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204         if (flags) {
205                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206                 size_bp -= ret;
207         }
208
209         if (size_bp < size_buf)
210                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212         /*
213          * The text is trimmed, it's up to the caller to provide sufficiently
214          * large buffer
215          */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224                              enum btrfs_map_op op,
225                              u64 logical, u64 *length,
226                              struct btrfs_bio **bbio_ret,
227                              int mirror_num, int need_raid_map);
228
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations, BTRFS_FS_EXCL_OP
295  * ======================================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
322  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
326  * completed.
327  */
328
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333         return &fs_uuids;
334 }
335
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346                                                  const u8 *metadata_fsid)
347 {
348         struct btrfs_fs_devices *fs_devs;
349
350         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351         if (!fs_devs)
352                 return ERR_PTR(-ENOMEM);
353
354         mutex_init(&fs_devs->device_list_mutex);
355
356         INIT_LIST_HEAD(&fs_devs->devices);
357         INIT_LIST_HEAD(&fs_devs->alloc_list);
358         INIT_LIST_HEAD(&fs_devs->fs_list);
359         if (fsid)
360                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
361
362         if (metadata_fsid)
363                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
364         else if (fsid)
365                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
366
367         return fs_devs;
368 }
369
370 void btrfs_free_device(struct btrfs_device *device)
371 {
372         WARN_ON(!list_empty(&device->post_commit_list));
373         rcu_string_free(device->name);
374         extent_io_tree_release(&device->alloc_state);
375         bio_put(device->flush_bio);
376         kfree(device);
377 }
378
379 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
380 {
381         struct btrfs_device *device;
382         WARN_ON(fs_devices->opened);
383         while (!list_empty(&fs_devices->devices)) {
384                 device = list_entry(fs_devices->devices.next,
385                                     struct btrfs_device, dev_list);
386                 list_del(&device->dev_list);
387                 btrfs_free_device(device);
388         }
389         kfree(fs_devices);
390 }
391
392 void __exit btrfs_cleanup_fs_uuids(void)
393 {
394         struct btrfs_fs_devices *fs_devices;
395
396         while (!list_empty(&fs_uuids)) {
397                 fs_devices = list_entry(fs_uuids.next,
398                                         struct btrfs_fs_devices, fs_list);
399                 list_del(&fs_devices->fs_list);
400                 free_fs_devices(fs_devices);
401         }
402 }
403
404 /*
405  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
406  * Returned struct is not linked onto any lists and must be destroyed using
407  * btrfs_free_device.
408  */
409 static struct btrfs_device *__alloc_device(void)
410 {
411         struct btrfs_device *dev;
412
413         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
414         if (!dev)
415                 return ERR_PTR(-ENOMEM);
416
417         /*
418          * Preallocate a bio that's always going to be used for flushing device
419          * barriers and matches the device lifespan
420          */
421         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
422         if (!dev->flush_bio) {
423                 kfree(dev);
424                 return ERR_PTR(-ENOMEM);
425         }
426
427         INIT_LIST_HEAD(&dev->dev_list);
428         INIT_LIST_HEAD(&dev->dev_alloc_list);
429         INIT_LIST_HEAD(&dev->post_commit_list);
430
431         atomic_set(&dev->reada_in_flight, 0);
432         atomic_set(&dev->dev_stats_ccnt, 0);
433         btrfs_device_data_ordered_init(dev);
434         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
435         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
437
438         return dev;
439 }
440
441 static noinline struct btrfs_fs_devices *find_fsid(
442                 const u8 *fsid, const u8 *metadata_fsid)
443 {
444         struct btrfs_fs_devices *fs_devices;
445
446         ASSERT(fsid);
447
448         /* Handle non-split brain cases */
449         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450                 if (metadata_fsid) {
451                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
452                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
453                                       BTRFS_FSID_SIZE) == 0)
454                                 return fs_devices;
455                 } else {
456                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
457                                 return fs_devices;
458                 }
459         }
460         return NULL;
461 }
462
463 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
464                                 struct btrfs_super_block *disk_super)
465 {
466
467         struct btrfs_fs_devices *fs_devices;
468
469         /*
470          * Handle scanned device having completed its fsid change but
471          * belonging to a fs_devices that was created by first scanning
472          * a device which didn't have its fsid/metadata_uuid changed
473          * at all and the CHANGING_FSID_V2 flag set.
474          */
475         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
476                 if (fs_devices->fsid_change &&
477                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
478                            BTRFS_FSID_SIZE) == 0 &&
479                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
480                            BTRFS_FSID_SIZE) == 0) {
481                         return fs_devices;
482                 }
483         }
484         /*
485          * Handle scanned device having completed its fsid change but
486          * belonging to a fs_devices that was created by a device that
487          * has an outdated pair of fsid/metadata_uuid and
488          * CHANGING_FSID_V2 flag set.
489          */
490         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
491                 if (fs_devices->fsid_change &&
492                     memcmp(fs_devices->metadata_uuid,
493                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
494                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
495                            BTRFS_FSID_SIZE) == 0) {
496                         return fs_devices;
497                 }
498         }
499
500         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
501 }
502
503
504 static int
505 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
506                       int flush, struct block_device **bdev,
507                       struct btrfs_super_block **disk_super)
508 {
509         int ret;
510
511         *bdev = blkdev_get_by_path(device_path, flags, holder);
512
513         if (IS_ERR(*bdev)) {
514                 ret = PTR_ERR(*bdev);
515                 goto error;
516         }
517
518         if (flush)
519                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
520         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
521         if (ret) {
522                 blkdev_put(*bdev, flags);
523                 goto error;
524         }
525         invalidate_bdev(*bdev);
526         *disk_super = btrfs_read_dev_super(*bdev);
527         if (IS_ERR(*disk_super)) {
528                 ret = PTR_ERR(*disk_super);
529                 blkdev_put(*bdev, flags);
530                 goto error;
531         }
532
533         return 0;
534
535 error:
536         *bdev = NULL;
537         return ret;
538 }
539
540 static bool device_path_matched(const char *path, struct btrfs_device *device)
541 {
542         int found;
543
544         rcu_read_lock();
545         found = strcmp(rcu_str_deref(device->name), path);
546         rcu_read_unlock();
547
548         return found == 0;
549 }
550
551 /*
552  *  Search and remove all stale (devices which are not mounted) devices.
553  *  When both inputs are NULL, it will search and release all stale devices.
554  *  path:       Optional. When provided will it release all unmounted devices
555  *              matching this path only.
556  *  skip_dev:   Optional. Will skip this device when searching for the stale
557  *              devices.
558  *  Return:     0 for success or if @path is NULL.
559  *              -EBUSY if @path is a mounted device.
560  *              -ENOENT if @path does not match any device in the list.
561  */
562 static int btrfs_free_stale_devices(const char *path,
563                                      struct btrfs_device *skip_device)
564 {
565         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
566         struct btrfs_device *device, *tmp_device;
567         int ret = 0;
568
569         if (path)
570                 ret = -ENOENT;
571
572         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574                 mutex_lock(&fs_devices->device_list_mutex);
575                 list_for_each_entry_safe(device, tmp_device,
576                                          &fs_devices->devices, dev_list) {
577                         if (skip_device && skip_device == device)
578                                 continue;
579                         if (path && !device->name)
580                                 continue;
581                         if (path && !device_path_matched(path, device))
582                                 continue;
583                         if (fs_devices->opened) {
584                                 /* for an already deleted device return 0 */
585                                 if (path && ret != 0)
586                                         ret = -EBUSY;
587                                 break;
588                         }
589
590                         /* delete the stale device */
591                         fs_devices->num_devices--;
592                         list_del(&device->dev_list);
593                         btrfs_free_device(device);
594
595                         ret = 0;
596                         if (fs_devices->num_devices == 0)
597                                 break;
598                 }
599                 mutex_unlock(&fs_devices->device_list_mutex);
600
601                 if (fs_devices->num_devices == 0) {
602                         btrfs_sysfs_remove_fsid(fs_devices);
603                         list_del(&fs_devices->fs_list);
604                         free_fs_devices(fs_devices);
605                 }
606         }
607
608         return ret;
609 }
610
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617                         struct btrfs_device *device, fmode_t flags,
618                         void *holder)
619 {
620         struct request_queue *q;
621         struct block_device *bdev;
622         struct btrfs_super_block *disk_super;
623         u64 devid;
624         int ret;
625
626         if (device->bdev)
627                 return -EINVAL;
628         if (!device->name)
629                 return -EINVAL;
630
631         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632                                     &bdev, &disk_super);
633         if (ret)
634                 return ret;
635
636         devid = btrfs_stack_device_id(&disk_super->dev_item);
637         if (devid != device->devid)
638                 goto error_free_page;
639
640         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641                 goto error_free_page;
642
643         device->generation = btrfs_super_generation(disk_super);
644
645         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646                 if (btrfs_super_incompat_flags(disk_super) &
647                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648                         pr_err(
649                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
650                         goto error_free_page;
651                 }
652
653                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654                 fs_devices->seeding = true;
655         } else {
656                 if (bdev_read_only(bdev))
657                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658                 else
659                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660         }
661
662         q = bdev_get_queue(bdev);
663         if (!blk_queue_nonrot(q))
664                 fs_devices->rotating = true;
665
666         device->bdev = bdev;
667         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668         device->mode = flags;
669
670         fs_devices->open_devices++;
671         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672             device->devid != BTRFS_DEV_REPLACE_DEVID) {
673                 fs_devices->rw_devices++;
674                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675         }
676         btrfs_release_disk_super(disk_super);
677
678         return 0;
679
680 error_free_page:
681         btrfs_release_disk_super(disk_super);
682         blkdev_put(bdev, flags);
683
684         return -EINVAL;
685 }
686
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694                                         struct btrfs_super_block *disk_super)
695 {
696         struct btrfs_fs_devices *fs_devices;
697
698         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700                            BTRFS_FSID_SIZE) != 0 &&
701                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703                         return fs_devices;
704                 }
705         }
706
707         return find_fsid(disk_super->fsid, NULL);
708 }
709
710
711 static struct btrfs_fs_devices *find_fsid_changed(
712                                         struct btrfs_super_block *disk_super)
713 {
714         struct btrfs_fs_devices *fs_devices;
715
716         /*
717          * Handles the case where scanned device is part of an fs that had
718          * multiple successful changes of FSID but curently device didn't
719          * observe it. Meaning our fsid will be different than theirs. We need
720          * to handle two subcases :
721          *  1 - The fs still continues to have different METADATA/FSID uuids.
722          *  2 - The fs is switched back to its original FSID (METADATA/FSID
723          *  are equal).
724          */
725         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726                 /* Changed UUIDs */
727                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728                            BTRFS_FSID_SIZE) != 0 &&
729                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730                            BTRFS_FSID_SIZE) == 0 &&
731                     memcmp(fs_devices->fsid, disk_super->fsid,
732                            BTRFS_FSID_SIZE) != 0)
733                         return fs_devices;
734
735                 /* Unchanged UUIDs */
736                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737                            BTRFS_FSID_SIZE) == 0 &&
738                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739                            BTRFS_FSID_SIZE) == 0)
740                         return fs_devices;
741         }
742
743         return NULL;
744 }
745
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747                                 struct btrfs_super_block *disk_super)
748 {
749         struct btrfs_fs_devices *fs_devices;
750
751         /*
752          * Handle the case where the scanned device is part of an fs whose last
753          * metadata UUID change reverted it to the original FSID. At the same
754          * time * fs_devices was first created by another constitutent device
755          * which didn't fully observe the operation. This results in an
756          * btrfs_fs_devices created with metadata/fsid different AND
757          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758          * fs_devices equal to the FSID of the disk.
759          */
760         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762                            BTRFS_FSID_SIZE) != 0 &&
763                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764                            BTRFS_FSID_SIZE) == 0 &&
765                     fs_devices->fsid_change)
766                         return fs_devices;
767         }
768
769         return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779                            struct btrfs_super_block *disk_super,
780                            bool *new_device_added)
781 {
782         struct btrfs_device *device;
783         struct btrfs_fs_devices *fs_devices = NULL;
784         struct rcu_string *name;
785         u64 found_transid = btrfs_super_generation(disk_super);
786         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791
792         if (fsid_change_in_progress) {
793                 if (!has_metadata_uuid)
794                         fs_devices = find_fsid_inprogress(disk_super);
795                 else
796                         fs_devices = find_fsid_changed(disk_super);
797         } else if (has_metadata_uuid) {
798                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
799         } else {
800                 fs_devices = find_fsid_reverted_metadata(disk_super);
801                 if (!fs_devices)
802                         fs_devices = find_fsid(disk_super->fsid, NULL);
803         }
804
805
806         if (!fs_devices) {
807                 if (has_metadata_uuid)
808                         fs_devices = alloc_fs_devices(disk_super->fsid,
809                                                       disk_super->metadata_uuid);
810                 else
811                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812
813                 if (IS_ERR(fs_devices))
814                         return ERR_CAST(fs_devices);
815
816                 fs_devices->fsid_change = fsid_change_in_progress;
817
818                 mutex_lock(&fs_devices->device_list_mutex);
819                 list_add(&fs_devices->fs_list, &fs_uuids);
820
821                 device = NULL;
822         } else {
823                 mutex_lock(&fs_devices->device_list_mutex);
824                 device = btrfs_find_device(fs_devices, devid,
825                                 disk_super->dev_item.uuid, NULL, false);
826
827                 /*
828                  * If this disk has been pulled into an fs devices created by
829                  * a device which had the CHANGING_FSID_V2 flag then replace the
830                  * metadata_uuid/fsid values of the fs_devices.
831                  */
832                 if (fs_devices->fsid_change &&
833                     found_transid > fs_devices->latest_generation) {
834                         memcpy(fs_devices->fsid, disk_super->fsid,
835                                         BTRFS_FSID_SIZE);
836
837                         if (has_metadata_uuid)
838                                 memcpy(fs_devices->metadata_uuid,
839                                        disk_super->metadata_uuid,
840                                        BTRFS_FSID_SIZE);
841                         else
842                                 memcpy(fs_devices->metadata_uuid,
843                                        disk_super->fsid, BTRFS_FSID_SIZE);
844
845                         fs_devices->fsid_change = false;
846                 }
847         }
848
849         if (!device) {
850                 if (fs_devices->opened) {
851                         mutex_unlock(&fs_devices->device_list_mutex);
852                         return ERR_PTR(-EBUSY);
853                 }
854
855                 device = btrfs_alloc_device(NULL, &devid,
856                                             disk_super->dev_item.uuid);
857                 if (IS_ERR(device)) {
858                         mutex_unlock(&fs_devices->device_list_mutex);
859                         /* we can safely leave the fs_devices entry around */
860                         return device;
861                 }
862
863                 name = rcu_string_strdup(path, GFP_NOFS);
864                 if (!name) {
865                         btrfs_free_device(device);
866                         mutex_unlock(&fs_devices->device_list_mutex);
867                         return ERR_PTR(-ENOMEM);
868                 }
869                 rcu_assign_pointer(device->name, name);
870
871                 list_add_rcu(&device->dev_list, &fs_devices->devices);
872                 fs_devices->num_devices++;
873
874                 device->fs_devices = fs_devices;
875                 *new_device_added = true;
876
877                 if (disk_super->label[0])
878                         pr_info(
879         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880                                 disk_super->label, devid, found_transid, path,
881                                 current->comm, task_pid_nr(current));
882                 else
883                         pr_info(
884         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885                                 disk_super->fsid, devid, found_transid, path,
886                                 current->comm, task_pid_nr(current));
887
888         } else if (!device->name || strcmp(device->name->str, path)) {
889                 /*
890                  * When FS is already mounted.
891                  * 1. If you are here and if the device->name is NULL that
892                  *    means this device was missing at time of FS mount.
893                  * 2. If you are here and if the device->name is different
894                  *    from 'path' that means either
895                  *      a. The same device disappeared and reappeared with
896                  *         different name. or
897                  *      b. The missing-disk-which-was-replaced, has
898                  *         reappeared now.
899                  *
900                  * We must allow 1 and 2a above. But 2b would be a spurious
901                  * and unintentional.
902                  *
903                  * Further in case of 1 and 2a above, the disk at 'path'
904                  * would have missed some transaction when it was away and
905                  * in case of 2a the stale bdev has to be updated as well.
906                  * 2b must not be allowed at all time.
907                  */
908
909                 /*
910                  * For now, we do allow update to btrfs_fs_device through the
911                  * btrfs dev scan cli after FS has been mounted.  We're still
912                  * tracking a problem where systems fail mount by subvolume id
913                  * when we reject replacement on a mounted FS.
914                  */
915                 if (!fs_devices->opened && found_transid < device->generation) {
916                         /*
917                          * That is if the FS is _not_ mounted and if you
918                          * are here, that means there is more than one
919                          * disk with same uuid and devid.We keep the one
920                          * with larger generation number or the last-in if
921                          * generation are equal.
922                          */
923                         mutex_unlock(&fs_devices->device_list_mutex);
924                         return ERR_PTR(-EEXIST);
925                 }
926
927                 /*
928                  * We are going to replace the device path for a given devid,
929                  * make sure it's the same device if the device is mounted
930                  */
931                 if (device->bdev) {
932                         struct block_device *path_bdev;
933
934                         path_bdev = lookup_bdev(path);
935                         if (IS_ERR(path_bdev)) {
936                                 mutex_unlock(&fs_devices->device_list_mutex);
937                                 return ERR_CAST(path_bdev);
938                         }
939
940                         if (device->bdev != path_bdev) {
941                                 bdput(path_bdev);
942                                 mutex_unlock(&fs_devices->device_list_mutex);
943                                 btrfs_warn_in_rcu(device->fs_info,
944                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
945                                         disk_super->fsid, devid,
946                                         rcu_str_deref(device->name), path);
947                                 return ERR_PTR(-EEXIST);
948                         }
949                         bdput(path_bdev);
950                         btrfs_info_in_rcu(device->fs_info,
951                                 "device fsid %pU devid %llu moved old:%s new:%s",
952                                 disk_super->fsid, devid,
953                                 rcu_str_deref(device->name), path);
954                 }
955
956                 name = rcu_string_strdup(path, GFP_NOFS);
957                 if (!name) {
958                         mutex_unlock(&fs_devices->device_list_mutex);
959                         return ERR_PTR(-ENOMEM);
960                 }
961                 rcu_string_free(device->name);
962                 rcu_assign_pointer(device->name, name);
963                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964                         fs_devices->missing_devices--;
965                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966                 }
967         }
968
969         /*
970          * Unmount does not free the btrfs_device struct but would zero
971          * generation along with most of the other members. So just update
972          * it back. We need it to pick the disk with largest generation
973          * (as above).
974          */
975         if (!fs_devices->opened) {
976                 device->generation = found_transid;
977                 fs_devices->latest_generation = max_t(u64, found_transid,
978                                                 fs_devices->latest_generation);
979         }
980
981         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982
983         mutex_unlock(&fs_devices->device_list_mutex);
984         return device;
985 }
986
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989         struct btrfs_fs_devices *fs_devices;
990         struct btrfs_device *device;
991         struct btrfs_device *orig_dev;
992         int ret = 0;
993
994         fs_devices = alloc_fs_devices(orig->fsid, NULL);
995         if (IS_ERR(fs_devices))
996                 return fs_devices;
997
998         mutex_lock(&orig->device_list_mutex);
999         fs_devices->total_devices = orig->total_devices;
1000
1001         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002                 struct rcu_string *name;
1003
1004                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005                                             orig_dev->uuid);
1006                 if (IS_ERR(device)) {
1007                         ret = PTR_ERR(device);
1008                         goto error;
1009                 }
1010
1011                 /*
1012                  * This is ok to do without rcu read locked because we hold the
1013                  * uuid mutex so nothing we touch in here is going to disappear.
1014                  */
1015                 if (orig_dev->name) {
1016                         name = rcu_string_strdup(orig_dev->name->str,
1017                                         GFP_KERNEL);
1018                         if (!name) {
1019                                 btrfs_free_device(device);
1020                                 ret = -ENOMEM;
1021                                 goto error;
1022                         }
1023                         rcu_assign_pointer(device->name, name);
1024                 }
1025
1026                 list_add(&device->dev_list, &fs_devices->devices);
1027                 device->fs_devices = fs_devices;
1028                 fs_devices->num_devices++;
1029         }
1030         mutex_unlock(&orig->device_list_mutex);
1031         return fs_devices;
1032 error:
1033         mutex_unlock(&orig->device_list_mutex);
1034         free_fs_devices(fs_devices);
1035         return ERR_PTR(ret);
1036 }
1037
1038 /*
1039  * After we have read the system tree and know devids belonging to
1040  * this filesystem, remove the device which does not belong there.
1041  */
1042 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1043 {
1044         struct btrfs_device *device, *next;
1045         struct btrfs_device *latest_dev = NULL;
1046
1047         mutex_lock(&uuid_mutex);
1048 again:
1049         /* This is the initialized path, it is safe to release the devices. */
1050         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1051                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1052                                                         &device->dev_state)) {
1053                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054                              &device->dev_state) &&
1055                             !test_bit(BTRFS_DEV_STATE_MISSING,
1056                                       &device->dev_state) &&
1057                              (!latest_dev ||
1058                               device->generation > latest_dev->generation)) {
1059                                 latest_dev = device;
1060                         }
1061                         continue;
1062                 }
1063
1064                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1065                         /*
1066                          * In the first step, keep the device which has
1067                          * the correct fsid and the devid that is used
1068                          * for the dev_replace procedure.
1069                          * In the second step, the dev_replace state is
1070                          * read from the device tree and it is known
1071                          * whether the procedure is really active or
1072                          * not, which means whether this device is
1073                          * used or whether it should be removed.
1074                          */
1075                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1076                                                   &device->dev_state)) {
1077                                 continue;
1078                         }
1079                 }
1080                 if (device->bdev) {
1081                         blkdev_put(device->bdev, device->mode);
1082                         device->bdev = NULL;
1083                         fs_devices->open_devices--;
1084                 }
1085                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1086                         list_del_init(&device->dev_alloc_list);
1087                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1088                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1089                                       &device->dev_state))
1090                                 fs_devices->rw_devices--;
1091                 }
1092                 list_del_init(&device->dev_list);
1093                 fs_devices->num_devices--;
1094                 btrfs_free_device(device);
1095         }
1096
1097         if (fs_devices->seed) {
1098                 fs_devices = fs_devices->seed;
1099                 goto again;
1100         }
1101
1102         fs_devices->latest_bdev = latest_dev->bdev;
1103
1104         mutex_unlock(&uuid_mutex);
1105 }
1106
1107 static void btrfs_close_bdev(struct btrfs_device *device)
1108 {
1109         if (!device->bdev)
1110                 return;
1111
1112         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1113                 sync_blockdev(device->bdev);
1114                 invalidate_bdev(device->bdev);
1115         }
1116
1117         blkdev_put(device->bdev, device->mode);
1118 }
1119
1120 static void btrfs_close_one_device(struct btrfs_device *device)
1121 {
1122         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1123
1124         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1125             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1126                 list_del_init(&device->dev_alloc_list);
1127                 fs_devices->rw_devices--;
1128         }
1129
1130         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1131                 fs_devices->missing_devices--;
1132
1133         btrfs_close_bdev(device);
1134         if (device->bdev) {
1135                 fs_devices->open_devices--;
1136                 device->bdev = NULL;
1137         }
1138         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1139
1140         device->fs_info = NULL;
1141         atomic_set(&device->dev_stats_ccnt, 0);
1142         extent_io_tree_release(&device->alloc_state);
1143
1144         /* Verify the device is back in a pristine state  */
1145         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1146         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1147         ASSERT(list_empty(&device->dev_alloc_list));
1148         ASSERT(list_empty(&device->post_commit_list));
1149         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1150 }
1151
1152 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1153 {
1154         struct btrfs_device *device, *tmp;
1155
1156         if (--fs_devices->opened > 0)
1157                 return 0;
1158
1159         mutex_lock(&fs_devices->device_list_mutex);
1160         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1161                 btrfs_close_one_device(device);
1162         }
1163         mutex_unlock(&fs_devices->device_list_mutex);
1164
1165         WARN_ON(fs_devices->open_devices);
1166         WARN_ON(fs_devices->rw_devices);
1167         fs_devices->opened = 0;
1168         fs_devices->seeding = false;
1169
1170         return 0;
1171 }
1172
1173 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1174 {
1175         struct btrfs_fs_devices *seed_devices = NULL;
1176         int ret;
1177
1178         mutex_lock(&uuid_mutex);
1179         ret = close_fs_devices(fs_devices);
1180         if (!fs_devices->opened) {
1181                 seed_devices = fs_devices->seed;
1182                 fs_devices->seed = NULL;
1183         }
1184         mutex_unlock(&uuid_mutex);
1185
1186         while (seed_devices) {
1187                 fs_devices = seed_devices;
1188                 seed_devices = fs_devices->seed;
1189                 close_fs_devices(fs_devices);
1190                 free_fs_devices(fs_devices);
1191         }
1192         return ret;
1193 }
1194
1195 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1196                                 fmode_t flags, void *holder)
1197 {
1198         struct btrfs_device *device;
1199         struct btrfs_device *latest_dev = NULL;
1200
1201         flags |= FMODE_EXCL;
1202
1203         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1204                 /* Just open everything we can; ignore failures here */
1205                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1206                         continue;
1207
1208                 if (!latest_dev ||
1209                     device->generation > latest_dev->generation)
1210                         latest_dev = device;
1211         }
1212         if (fs_devices->open_devices == 0)
1213                 return -EINVAL;
1214
1215         fs_devices->opened = 1;
1216         fs_devices->latest_bdev = latest_dev->bdev;
1217         fs_devices->total_rw_bytes = 0;
1218         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219
1220         return 0;
1221 }
1222
1223 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1224 {
1225         struct btrfs_device *dev1, *dev2;
1226
1227         dev1 = list_entry(a, struct btrfs_device, dev_list);
1228         dev2 = list_entry(b, struct btrfs_device, dev_list);
1229
1230         if (dev1->devid < dev2->devid)
1231                 return -1;
1232         else if (dev1->devid > dev2->devid)
1233                 return 1;
1234         return 0;
1235 }
1236
1237 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1238                        fmode_t flags, void *holder)
1239 {
1240         int ret;
1241
1242         lockdep_assert_held(&uuid_mutex);
1243         /*
1244          * The device_list_mutex cannot be taken here in case opening the
1245          * underlying device takes further locks like bd_mutex.
1246          *
1247          * We also don't need the lock here as this is called during mount and
1248          * exclusion is provided by uuid_mutex
1249          */
1250
1251         if (fs_devices->opened) {
1252                 fs_devices->opened++;
1253                 ret = 0;
1254         } else {
1255                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1256                 ret = open_fs_devices(fs_devices, flags, holder);
1257         }
1258
1259         return ret;
1260 }
1261
1262 void btrfs_release_disk_super(struct btrfs_super_block *super)
1263 {
1264         struct page *page = virt_to_page(super);
1265
1266         put_page(page);
1267 }
1268
1269 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1270                                                        u64 bytenr)
1271 {
1272         struct btrfs_super_block *disk_super;
1273         struct page *page;
1274         void *p;
1275         pgoff_t index;
1276
1277         /* make sure our super fits in the device */
1278         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1279                 return ERR_PTR(-EINVAL);
1280
1281         /* make sure our super fits in the page */
1282         if (sizeof(*disk_super) > PAGE_SIZE)
1283                 return ERR_PTR(-EINVAL);
1284
1285         /* make sure our super doesn't straddle pages on disk */
1286         index = bytenr >> PAGE_SHIFT;
1287         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1288                 return ERR_PTR(-EINVAL);
1289
1290         /* pull in the page with our super */
1291         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1292
1293         if (IS_ERR(page))
1294                 return ERR_CAST(page);
1295
1296         p = page_address(page);
1297
1298         /* align our pointer to the offset of the super block */
1299         disk_super = p + offset_in_page(bytenr);
1300
1301         if (btrfs_super_bytenr(disk_super) != bytenr ||
1302             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1303                 btrfs_release_disk_super(p);
1304                 return ERR_PTR(-EINVAL);
1305         }
1306
1307         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1308                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1309
1310         return disk_super;
1311 }
1312
1313 int btrfs_forget_devices(const char *path)
1314 {
1315         int ret;
1316
1317         mutex_lock(&uuid_mutex);
1318         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1319         mutex_unlock(&uuid_mutex);
1320
1321         return ret;
1322 }
1323
1324 /*
1325  * Look for a btrfs signature on a device. This may be called out of the mount path
1326  * and we are not allowed to call set_blocksize during the scan. The superblock
1327  * is read via pagecache
1328  */
1329 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1330                                            void *holder)
1331 {
1332         struct btrfs_super_block *disk_super;
1333         bool new_device_added = false;
1334         struct btrfs_device *device = NULL;
1335         struct block_device *bdev;
1336         u64 bytenr;
1337
1338         lockdep_assert_held(&uuid_mutex);
1339
1340         /*
1341          * we would like to check all the supers, but that would make
1342          * a btrfs mount succeed after a mkfs from a different FS.
1343          * So, we need to add a special mount option to scan for
1344          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1345          */
1346         bytenr = btrfs_sb_offset(0);
1347         flags |= FMODE_EXCL;
1348
1349         bdev = blkdev_get_by_path(path, flags, holder);
1350         if (IS_ERR(bdev))
1351                 return ERR_CAST(bdev);
1352
1353         disk_super = btrfs_read_disk_super(bdev, bytenr);
1354         if (IS_ERR(disk_super)) {
1355                 device = ERR_CAST(disk_super);
1356                 goto error_bdev_put;
1357         }
1358
1359         device = device_list_add(path, disk_super, &new_device_added);
1360         if (!IS_ERR(device)) {
1361                 if (new_device_added)
1362                         btrfs_free_stale_devices(path, device);
1363         }
1364
1365         btrfs_release_disk_super(disk_super);
1366
1367 error_bdev_put:
1368         blkdev_put(bdev, flags);
1369
1370         return device;
1371 }
1372
1373 /*
1374  * Try to find a chunk that intersects [start, start + len] range and when one
1375  * such is found, record the end of it in *start
1376  */
1377 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1378                                     u64 len)
1379 {
1380         u64 physical_start, physical_end;
1381
1382         lockdep_assert_held(&device->fs_info->chunk_mutex);
1383
1384         if (!find_first_extent_bit(&device->alloc_state, *start,
1385                                    &physical_start, &physical_end,
1386                                    CHUNK_ALLOCATED, NULL)) {
1387
1388                 if (in_range(physical_start, *start, len) ||
1389                     in_range(*start, physical_start,
1390                              physical_end - physical_start)) {
1391                         *start = physical_end + 1;
1392                         return true;
1393                 }
1394         }
1395         return false;
1396 }
1397
1398 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1399 {
1400         switch (device->fs_devices->chunk_alloc_policy) {
1401         case BTRFS_CHUNK_ALLOC_REGULAR:
1402                 /*
1403                  * We don't want to overwrite the superblock on the drive nor
1404                  * any area used by the boot loader (grub for example), so we
1405                  * make sure to start at an offset of at least 1MB.
1406                  */
1407                 return max_t(u64, start, SZ_1M);
1408         default:
1409                 BUG();
1410         }
1411 }
1412
1413 /**
1414  * dev_extent_hole_check - check if specified hole is suitable for allocation
1415  * @device:     the device which we have the hole
1416  * @hole_start: starting position of the hole
1417  * @hole_size:  the size of the hole
1418  * @num_bytes:  the size of the free space that we need
1419  *
1420  * This function may modify @hole_start and @hole_end to reflect the suitable
1421  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1422  */
1423 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1424                                   u64 *hole_size, u64 num_bytes)
1425 {
1426         bool changed = false;
1427         u64 hole_end = *hole_start + *hole_size;
1428
1429         /*
1430          * Check before we set max_hole_start, otherwise we could end up
1431          * sending back this offset anyway.
1432          */
1433         if (contains_pending_extent(device, hole_start, *hole_size)) {
1434                 if (hole_end >= *hole_start)
1435                         *hole_size = hole_end - *hole_start;
1436                 else
1437                         *hole_size = 0;
1438                 changed = true;
1439         }
1440
1441         switch (device->fs_devices->chunk_alloc_policy) {
1442         case BTRFS_CHUNK_ALLOC_REGULAR:
1443                 /* No extra check */
1444                 break;
1445         default:
1446                 BUG();
1447         }
1448
1449         return changed;
1450 }
1451
1452 /*
1453  * find_free_dev_extent_start - find free space in the specified device
1454  * @device:       the device which we search the free space in
1455  * @num_bytes:    the size of the free space that we need
1456  * @search_start: the position from which to begin the search
1457  * @start:        store the start of the free space.
1458  * @len:          the size of the free space. that we find, or the size
1459  *                of the max free space if we don't find suitable free space
1460  *
1461  * this uses a pretty simple search, the expectation is that it is
1462  * called very infrequently and that a given device has a small number
1463  * of extents
1464  *
1465  * @start is used to store the start of the free space if we find. But if we
1466  * don't find suitable free space, it will be used to store the start position
1467  * of the max free space.
1468  *
1469  * @len is used to store the size of the free space that we find.
1470  * But if we don't find suitable free space, it is used to store the size of
1471  * the max free space.
1472  *
1473  * NOTE: This function will search *commit* root of device tree, and does extra
1474  * check to ensure dev extents are not double allocated.
1475  * This makes the function safe to allocate dev extents but may not report
1476  * correct usable device space, as device extent freed in current transaction
1477  * is not reported as avaiable.
1478  */
1479 static int find_free_dev_extent_start(struct btrfs_device *device,
1480                                 u64 num_bytes, u64 search_start, u64 *start,
1481                                 u64 *len)
1482 {
1483         struct btrfs_fs_info *fs_info = device->fs_info;
1484         struct btrfs_root *root = fs_info->dev_root;
1485         struct btrfs_key key;
1486         struct btrfs_dev_extent *dev_extent;
1487         struct btrfs_path *path;
1488         u64 hole_size;
1489         u64 max_hole_start;
1490         u64 max_hole_size;
1491         u64 extent_end;
1492         u64 search_end = device->total_bytes;
1493         int ret;
1494         int slot;
1495         struct extent_buffer *l;
1496
1497         search_start = dev_extent_search_start(device, search_start);
1498
1499         path = btrfs_alloc_path();
1500         if (!path)
1501                 return -ENOMEM;
1502
1503         max_hole_start = search_start;
1504         max_hole_size = 0;
1505
1506 again:
1507         if (search_start >= search_end ||
1508                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1509                 ret = -ENOSPC;
1510                 goto out;
1511         }
1512
1513         path->reada = READA_FORWARD;
1514         path->search_commit_root = 1;
1515         path->skip_locking = 1;
1516
1517         key.objectid = device->devid;
1518         key.offset = search_start;
1519         key.type = BTRFS_DEV_EXTENT_KEY;
1520
1521         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1522         if (ret < 0)
1523                 goto out;
1524         if (ret > 0) {
1525                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1526                 if (ret < 0)
1527                         goto out;
1528         }
1529
1530         while (1) {
1531                 l = path->nodes[0];
1532                 slot = path->slots[0];
1533                 if (slot >= btrfs_header_nritems(l)) {
1534                         ret = btrfs_next_leaf(root, path);
1535                         if (ret == 0)
1536                                 continue;
1537                         if (ret < 0)
1538                                 goto out;
1539
1540                         break;
1541                 }
1542                 btrfs_item_key_to_cpu(l, &key, slot);
1543
1544                 if (key.objectid < device->devid)
1545                         goto next;
1546
1547                 if (key.objectid > device->devid)
1548                         break;
1549
1550                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1551                         goto next;
1552
1553                 if (key.offset > search_start) {
1554                         hole_size = key.offset - search_start;
1555                         dev_extent_hole_check(device, &search_start, &hole_size,
1556                                               num_bytes);
1557
1558                         if (hole_size > max_hole_size) {
1559                                 max_hole_start = search_start;
1560                                 max_hole_size = hole_size;
1561                         }
1562
1563                         /*
1564                          * If this free space is greater than which we need,
1565                          * it must be the max free space that we have found
1566                          * until now, so max_hole_start must point to the start
1567                          * of this free space and the length of this free space
1568                          * is stored in max_hole_size. Thus, we return
1569                          * max_hole_start and max_hole_size and go back to the
1570                          * caller.
1571                          */
1572                         if (hole_size >= num_bytes) {
1573                                 ret = 0;
1574                                 goto out;
1575                         }
1576                 }
1577
1578                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1579                 extent_end = key.offset + btrfs_dev_extent_length(l,
1580                                                                   dev_extent);
1581                 if (extent_end > search_start)
1582                         search_start = extent_end;
1583 next:
1584                 path->slots[0]++;
1585                 cond_resched();
1586         }
1587
1588         /*
1589          * At this point, search_start should be the end of
1590          * allocated dev extents, and when shrinking the device,
1591          * search_end may be smaller than search_start.
1592          */
1593         if (search_end > search_start) {
1594                 hole_size = search_end - search_start;
1595                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1596                                           num_bytes)) {
1597                         btrfs_release_path(path);
1598                         goto again;
1599                 }
1600
1601                 if (hole_size > max_hole_size) {
1602                         max_hole_start = search_start;
1603                         max_hole_size = hole_size;
1604                 }
1605         }
1606
1607         /* See above. */
1608         if (max_hole_size < num_bytes)
1609                 ret = -ENOSPC;
1610         else
1611                 ret = 0;
1612
1613 out:
1614         btrfs_free_path(path);
1615         *start = max_hole_start;
1616         if (len)
1617                 *len = max_hole_size;
1618         return ret;
1619 }
1620
1621 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1622                          u64 *start, u64 *len)
1623 {
1624         /* FIXME use last free of some kind */
1625         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1626 }
1627
1628 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1629                           struct btrfs_device *device,
1630                           u64 start, u64 *dev_extent_len)
1631 {
1632         struct btrfs_fs_info *fs_info = device->fs_info;
1633         struct btrfs_root *root = fs_info->dev_root;
1634         int ret;
1635         struct btrfs_path *path;
1636         struct btrfs_key key;
1637         struct btrfs_key found_key;
1638         struct extent_buffer *leaf = NULL;
1639         struct btrfs_dev_extent *extent = NULL;
1640
1641         path = btrfs_alloc_path();
1642         if (!path)
1643                 return -ENOMEM;
1644
1645         key.objectid = device->devid;
1646         key.offset = start;
1647         key.type = BTRFS_DEV_EXTENT_KEY;
1648 again:
1649         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1650         if (ret > 0) {
1651                 ret = btrfs_previous_item(root, path, key.objectid,
1652                                           BTRFS_DEV_EXTENT_KEY);
1653                 if (ret)
1654                         goto out;
1655                 leaf = path->nodes[0];
1656                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1657                 extent = btrfs_item_ptr(leaf, path->slots[0],
1658                                         struct btrfs_dev_extent);
1659                 BUG_ON(found_key.offset > start || found_key.offset +
1660                        btrfs_dev_extent_length(leaf, extent) < start);
1661                 key = found_key;
1662                 btrfs_release_path(path);
1663                 goto again;
1664         } else if (ret == 0) {
1665                 leaf = path->nodes[0];
1666                 extent = btrfs_item_ptr(leaf, path->slots[0],
1667                                         struct btrfs_dev_extent);
1668         } else {
1669                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1670                 goto out;
1671         }
1672
1673         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1674
1675         ret = btrfs_del_item(trans, root, path);
1676         if (ret) {
1677                 btrfs_handle_fs_error(fs_info, ret,
1678                                       "Failed to remove dev extent item");
1679         } else {
1680                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1681         }
1682 out:
1683         btrfs_free_path(path);
1684         return ret;
1685 }
1686
1687 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1688                                   struct btrfs_device *device,
1689                                   u64 chunk_offset, u64 start, u64 num_bytes)
1690 {
1691         int ret;
1692         struct btrfs_path *path;
1693         struct btrfs_fs_info *fs_info = device->fs_info;
1694         struct btrfs_root *root = fs_info->dev_root;
1695         struct btrfs_dev_extent *extent;
1696         struct extent_buffer *leaf;
1697         struct btrfs_key key;
1698
1699         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1700         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1701         path = btrfs_alloc_path();
1702         if (!path)
1703                 return -ENOMEM;
1704
1705         key.objectid = device->devid;
1706         key.offset = start;
1707         key.type = BTRFS_DEV_EXTENT_KEY;
1708         ret = btrfs_insert_empty_item(trans, root, path, &key,
1709                                       sizeof(*extent));
1710         if (ret)
1711                 goto out;
1712
1713         leaf = path->nodes[0];
1714         extent = btrfs_item_ptr(leaf, path->slots[0],
1715                                 struct btrfs_dev_extent);
1716         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1717                                         BTRFS_CHUNK_TREE_OBJECTID);
1718         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1719                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1720         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1721
1722         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1723         btrfs_mark_buffer_dirty(leaf);
1724 out:
1725         btrfs_free_path(path);
1726         return ret;
1727 }
1728
1729 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1730 {
1731         struct extent_map_tree *em_tree;
1732         struct extent_map *em;
1733         struct rb_node *n;
1734         u64 ret = 0;
1735
1736         em_tree = &fs_info->mapping_tree;
1737         read_lock(&em_tree->lock);
1738         n = rb_last(&em_tree->map.rb_root);
1739         if (n) {
1740                 em = rb_entry(n, struct extent_map, rb_node);
1741                 ret = em->start + em->len;
1742         }
1743         read_unlock(&em_tree->lock);
1744
1745         return ret;
1746 }
1747
1748 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1749                                     u64 *devid_ret)
1750 {
1751         int ret;
1752         struct btrfs_key key;
1753         struct btrfs_key found_key;
1754         struct btrfs_path *path;
1755
1756         path = btrfs_alloc_path();
1757         if (!path)
1758                 return -ENOMEM;
1759
1760         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761         key.type = BTRFS_DEV_ITEM_KEY;
1762         key.offset = (u64)-1;
1763
1764         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1765         if (ret < 0)
1766                 goto error;
1767
1768         if (ret == 0) {
1769                 /* Corruption */
1770                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1771                 ret = -EUCLEAN;
1772                 goto error;
1773         }
1774
1775         ret = btrfs_previous_item(fs_info->chunk_root, path,
1776                                   BTRFS_DEV_ITEMS_OBJECTID,
1777                                   BTRFS_DEV_ITEM_KEY);
1778         if (ret) {
1779                 *devid_ret = 1;
1780         } else {
1781                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1782                                       path->slots[0]);
1783                 *devid_ret = found_key.offset + 1;
1784         }
1785         ret = 0;
1786 error:
1787         btrfs_free_path(path);
1788         return ret;
1789 }
1790
1791 /*
1792  * the device information is stored in the chunk root
1793  * the btrfs_device struct should be fully filled in
1794  */
1795 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1796                             struct btrfs_device *device)
1797 {
1798         int ret;
1799         struct btrfs_path *path;
1800         struct btrfs_dev_item *dev_item;
1801         struct extent_buffer *leaf;
1802         struct btrfs_key key;
1803         unsigned long ptr;
1804
1805         path = btrfs_alloc_path();
1806         if (!path)
1807                 return -ENOMEM;
1808
1809         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1810         key.type = BTRFS_DEV_ITEM_KEY;
1811         key.offset = device->devid;
1812
1813         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1814                                       &key, sizeof(*dev_item));
1815         if (ret)
1816                 goto out;
1817
1818         leaf = path->nodes[0];
1819         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1820
1821         btrfs_set_device_id(leaf, dev_item, device->devid);
1822         btrfs_set_device_generation(leaf, dev_item, 0);
1823         btrfs_set_device_type(leaf, dev_item, device->type);
1824         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1825         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1826         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1827         btrfs_set_device_total_bytes(leaf, dev_item,
1828                                      btrfs_device_get_disk_total_bytes(device));
1829         btrfs_set_device_bytes_used(leaf, dev_item,
1830                                     btrfs_device_get_bytes_used(device));
1831         btrfs_set_device_group(leaf, dev_item, 0);
1832         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1833         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1834         btrfs_set_device_start_offset(leaf, dev_item, 0);
1835
1836         ptr = btrfs_device_uuid(dev_item);
1837         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1838         ptr = btrfs_device_fsid(dev_item);
1839         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1840                             ptr, BTRFS_FSID_SIZE);
1841         btrfs_mark_buffer_dirty(leaf);
1842
1843         ret = 0;
1844 out:
1845         btrfs_free_path(path);
1846         return ret;
1847 }
1848
1849 /*
1850  * Function to update ctime/mtime for a given device path.
1851  * Mainly used for ctime/mtime based probe like libblkid.
1852  */
1853 static void update_dev_time(const char *path_name)
1854 {
1855         struct file *filp;
1856
1857         filp = filp_open(path_name, O_RDWR, 0);
1858         if (IS_ERR(filp))
1859                 return;
1860         file_update_time(filp);
1861         filp_close(filp, NULL);
1862 }
1863
1864 static int btrfs_rm_dev_item(struct btrfs_device *device)
1865 {
1866         struct btrfs_root *root = device->fs_info->chunk_root;
1867         int ret;
1868         struct btrfs_path *path;
1869         struct btrfs_key key;
1870         struct btrfs_trans_handle *trans;
1871
1872         path = btrfs_alloc_path();
1873         if (!path)
1874                 return -ENOMEM;
1875
1876         trans = btrfs_start_transaction(root, 0);
1877         if (IS_ERR(trans)) {
1878                 btrfs_free_path(path);
1879                 return PTR_ERR(trans);
1880         }
1881         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882         key.type = BTRFS_DEV_ITEM_KEY;
1883         key.offset = device->devid;
1884
1885         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1886         if (ret) {
1887                 if (ret > 0)
1888                         ret = -ENOENT;
1889                 btrfs_abort_transaction(trans, ret);
1890                 btrfs_end_transaction(trans);
1891                 goto out;
1892         }
1893
1894         ret = btrfs_del_item(trans, root, path);
1895         if (ret) {
1896                 btrfs_abort_transaction(trans, ret);
1897                 btrfs_end_transaction(trans);
1898         }
1899
1900 out:
1901         btrfs_free_path(path);
1902         if (!ret)
1903                 ret = btrfs_commit_transaction(trans);
1904         return ret;
1905 }
1906
1907 /*
1908  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1909  * filesystem. It's up to the caller to adjust that number regarding eg. device
1910  * replace.
1911  */
1912 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1913                 u64 num_devices)
1914 {
1915         u64 all_avail;
1916         unsigned seq;
1917         int i;
1918
1919         do {
1920                 seq = read_seqbegin(&fs_info->profiles_lock);
1921
1922                 all_avail = fs_info->avail_data_alloc_bits |
1923                             fs_info->avail_system_alloc_bits |
1924                             fs_info->avail_metadata_alloc_bits;
1925         } while (read_seqretry(&fs_info->profiles_lock, seq));
1926
1927         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1928                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1929                         continue;
1930
1931                 if (num_devices < btrfs_raid_array[i].devs_min) {
1932                         int ret = btrfs_raid_array[i].mindev_error;
1933
1934                         if (ret)
1935                                 return ret;
1936                 }
1937         }
1938
1939         return 0;
1940 }
1941
1942 static struct btrfs_device * btrfs_find_next_active_device(
1943                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1944 {
1945         struct btrfs_device *next_device;
1946
1947         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1948                 if (next_device != device &&
1949                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1950                     && next_device->bdev)
1951                         return next_device;
1952         }
1953
1954         return NULL;
1955 }
1956
1957 /*
1958  * Helper function to check if the given device is part of s_bdev / latest_bdev
1959  * and replace it with the provided or the next active device, in the context
1960  * where this function called, there should be always be another device (or
1961  * this_dev) which is active.
1962  */
1963 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1964                                      struct btrfs_device *this_dev)
1965 {
1966         struct btrfs_fs_info *fs_info = device->fs_info;
1967         struct btrfs_device *next_device;
1968
1969         if (this_dev)
1970                 next_device = this_dev;
1971         else
1972                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1973                                                                 device);
1974         ASSERT(next_device);
1975
1976         if (fs_info->sb->s_bdev &&
1977                         (fs_info->sb->s_bdev == device->bdev))
1978                 fs_info->sb->s_bdev = next_device->bdev;
1979
1980         if (fs_info->fs_devices->latest_bdev == device->bdev)
1981                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1982 }
1983
1984 /*
1985  * Return btrfs_fs_devices::num_devices excluding the device that's being
1986  * currently replaced.
1987  */
1988 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1989 {
1990         u64 num_devices = fs_info->fs_devices->num_devices;
1991
1992         down_read(&fs_info->dev_replace.rwsem);
1993         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1994                 ASSERT(num_devices > 1);
1995                 num_devices--;
1996         }
1997         up_read(&fs_info->dev_replace.rwsem);
1998
1999         return num_devices;
2000 }
2001
2002 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2003                                struct block_device *bdev,
2004                                const char *device_path)
2005 {
2006         struct btrfs_super_block *disk_super;
2007         int copy_num;
2008
2009         if (!bdev)
2010                 return;
2011
2012         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2013                 struct page *page;
2014                 int ret;
2015
2016                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2017                 if (IS_ERR(disk_super))
2018                         continue;
2019
2020                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2021
2022                 page = virt_to_page(disk_super);
2023                 set_page_dirty(page);
2024                 lock_page(page);
2025                 /* write_on_page() unlocks the page */
2026                 ret = write_one_page(page);
2027                 if (ret)
2028                         btrfs_warn(fs_info,
2029                                 "error clearing superblock number %d (%d)",
2030                                 copy_num, ret);
2031                 btrfs_release_disk_super(disk_super);
2032
2033         }
2034
2035         /* Notify udev that device has changed */
2036         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2037
2038         /* Update ctime/mtime for device path for libblkid */
2039         update_dev_time(device_path);
2040 }
2041
2042 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2043                 u64 devid)
2044 {
2045         struct btrfs_device *device;
2046         struct btrfs_fs_devices *cur_devices;
2047         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2048         u64 num_devices;
2049         int ret = 0;
2050
2051         mutex_lock(&uuid_mutex);
2052
2053         num_devices = btrfs_num_devices(fs_info);
2054
2055         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2056         if (ret)
2057                 goto out;
2058
2059         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2060
2061         if (IS_ERR(device)) {
2062                 if (PTR_ERR(device) == -ENOENT &&
2063                     strcmp(device_path, "missing") == 0)
2064                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2065                 else
2066                         ret = PTR_ERR(device);
2067                 goto out;
2068         }
2069
2070         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2071                 btrfs_warn_in_rcu(fs_info,
2072                   "cannot remove device %s (devid %llu) due to active swapfile",
2073                                   rcu_str_deref(device->name), device->devid);
2074                 ret = -ETXTBSY;
2075                 goto out;
2076         }
2077
2078         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2079                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2080                 goto out;
2081         }
2082
2083         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2084             fs_info->fs_devices->rw_devices == 1) {
2085                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2086                 goto out;
2087         }
2088
2089         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2090                 mutex_lock(&fs_info->chunk_mutex);
2091                 list_del_init(&device->dev_alloc_list);
2092                 device->fs_devices->rw_devices--;
2093                 mutex_unlock(&fs_info->chunk_mutex);
2094         }
2095
2096         mutex_unlock(&uuid_mutex);
2097         ret = btrfs_shrink_device(device, 0);
2098         mutex_lock(&uuid_mutex);
2099         if (ret)
2100                 goto error_undo;
2101
2102         /*
2103          * TODO: the superblock still includes this device in its num_devices
2104          * counter although write_all_supers() is not locked out. This
2105          * could give a filesystem state which requires a degraded mount.
2106          */
2107         ret = btrfs_rm_dev_item(device);
2108         if (ret)
2109                 goto error_undo;
2110
2111         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112         btrfs_scrub_cancel_dev(device);
2113
2114         /*
2115          * the device list mutex makes sure that we don't change
2116          * the device list while someone else is writing out all
2117          * the device supers. Whoever is writing all supers, should
2118          * lock the device list mutex before getting the number of
2119          * devices in the super block (super_copy). Conversely,
2120          * whoever updates the number of devices in the super block
2121          * (super_copy) should hold the device list mutex.
2122          */
2123
2124         /*
2125          * In normal cases the cur_devices == fs_devices. But in case
2126          * of deleting a seed device, the cur_devices should point to
2127          * its own fs_devices listed under the fs_devices->seed.
2128          */
2129         cur_devices = device->fs_devices;
2130         mutex_lock(&fs_devices->device_list_mutex);
2131         list_del_rcu(&device->dev_list);
2132
2133         cur_devices->num_devices--;
2134         cur_devices->total_devices--;
2135         /* Update total_devices of the parent fs_devices if it's seed */
2136         if (cur_devices != fs_devices)
2137                 fs_devices->total_devices--;
2138
2139         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140                 cur_devices->missing_devices--;
2141
2142         btrfs_assign_next_active_device(device, NULL);
2143
2144         if (device->bdev) {
2145                 cur_devices->open_devices--;
2146                 /* remove sysfs entry */
2147                 btrfs_sysfs_remove_devices_dir(fs_devices, device);
2148         }
2149
2150         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2151         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152         mutex_unlock(&fs_devices->device_list_mutex);
2153
2154         /*
2155          * at this point, the device is zero sized and detached from
2156          * the devices list.  All that's left is to zero out the old
2157          * supers and free the device.
2158          */
2159         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160                 btrfs_scratch_superblocks(fs_info, device->bdev,
2161                                           device->name->str);
2162
2163         btrfs_close_bdev(device);
2164         synchronize_rcu();
2165         btrfs_free_device(device);
2166
2167         if (cur_devices->open_devices == 0) {
2168                 while (fs_devices) {
2169                         if (fs_devices->seed == cur_devices) {
2170                                 fs_devices->seed = cur_devices->seed;
2171                                 break;
2172                         }
2173                         fs_devices = fs_devices->seed;
2174                 }
2175                 cur_devices->seed = NULL;
2176                 close_fs_devices(cur_devices);
2177                 free_fs_devices(cur_devices);
2178         }
2179
2180 out:
2181         mutex_unlock(&uuid_mutex);
2182         return ret;
2183
2184 error_undo:
2185         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186                 mutex_lock(&fs_info->chunk_mutex);
2187                 list_add(&device->dev_alloc_list,
2188                          &fs_devices->alloc_list);
2189                 device->fs_devices->rw_devices++;
2190                 mutex_unlock(&fs_info->chunk_mutex);
2191         }
2192         goto out;
2193 }
2194
2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196 {
2197         struct btrfs_fs_devices *fs_devices;
2198
2199         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200
2201         /*
2202          * in case of fs with no seed, srcdev->fs_devices will point
2203          * to fs_devices of fs_info. However when the dev being replaced is
2204          * a seed dev it will point to the seed's local fs_devices. In short
2205          * srcdev will have its correct fs_devices in both the cases.
2206          */
2207         fs_devices = srcdev->fs_devices;
2208
2209         list_del_rcu(&srcdev->dev_list);
2210         list_del(&srcdev->dev_alloc_list);
2211         fs_devices->num_devices--;
2212         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213                 fs_devices->missing_devices--;
2214
2215         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216                 fs_devices->rw_devices--;
2217
2218         if (srcdev->bdev)
2219                 fs_devices->open_devices--;
2220 }
2221
2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223 {
2224         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2225         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2226
2227         mutex_lock(&uuid_mutex);
2228
2229         btrfs_close_bdev(srcdev);
2230         synchronize_rcu();
2231         btrfs_free_device(srcdev);
2232
2233         /* if this is no devs we rather delete the fs_devices */
2234         if (!fs_devices->num_devices) {
2235                 struct btrfs_fs_devices *tmp_fs_devices;
2236
2237                 /*
2238                  * On a mounted FS, num_devices can't be zero unless it's a
2239                  * seed. In case of a seed device being replaced, the replace
2240                  * target added to the sprout FS, so there will be no more
2241                  * device left under the seed FS.
2242                  */
2243                 ASSERT(fs_devices->seeding);
2244
2245                 tmp_fs_devices = fs_info->fs_devices;
2246                 while (tmp_fs_devices) {
2247                         if (tmp_fs_devices->seed == fs_devices) {
2248                                 tmp_fs_devices->seed = fs_devices->seed;
2249                                 break;
2250                         }
2251                         tmp_fs_devices = tmp_fs_devices->seed;
2252                 }
2253                 fs_devices->seed = NULL;
2254                 close_fs_devices(fs_devices);
2255                 free_fs_devices(fs_devices);
2256         }
2257         mutex_unlock(&uuid_mutex);
2258 }
2259
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261 {
2262         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263
2264         mutex_lock(&fs_devices->device_list_mutex);
2265
2266         btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2267
2268         if (tgtdev->bdev)
2269                 fs_devices->open_devices--;
2270
2271         fs_devices->num_devices--;
2272
2273         btrfs_assign_next_active_device(tgtdev, NULL);
2274
2275         list_del_rcu(&tgtdev->dev_list);
2276
2277         mutex_unlock(&fs_devices->device_list_mutex);
2278
2279         /*
2280          * The update_dev_time() with in btrfs_scratch_superblocks()
2281          * may lead to a call to btrfs_show_devname() which will try
2282          * to hold device_list_mutex. And here this device
2283          * is already out of device list, so we don't have to hold
2284          * the device_list_mutex lock.
2285          */
2286         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2287                                   tgtdev->name->str);
2288
2289         btrfs_close_bdev(tgtdev);
2290         synchronize_rcu();
2291         btrfs_free_device(tgtdev);
2292 }
2293
2294 static struct btrfs_device *btrfs_find_device_by_path(
2295                 struct btrfs_fs_info *fs_info, const char *device_path)
2296 {
2297         int ret = 0;
2298         struct btrfs_super_block *disk_super;
2299         u64 devid;
2300         u8 *dev_uuid;
2301         struct block_device *bdev;
2302         struct btrfs_device *device;
2303
2304         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2306         if (ret)
2307                 return ERR_PTR(ret);
2308
2309         devid = btrfs_stack_device_id(&disk_super->dev_item);
2310         dev_uuid = disk_super->dev_item.uuid;
2311         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313                                            disk_super->metadata_uuid, true);
2314         else
2315                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316                                            disk_super->fsid, true);
2317
2318         btrfs_release_disk_super(disk_super);
2319         if (!device)
2320                 device = ERR_PTR(-ENOENT);
2321         blkdev_put(bdev, FMODE_READ);
2322         return device;
2323 }
2324
2325 /*
2326  * Lookup a device given by device id, or the path if the id is 0.
2327  */
2328 struct btrfs_device *btrfs_find_device_by_devspec(
2329                 struct btrfs_fs_info *fs_info, u64 devid,
2330                 const char *device_path)
2331 {
2332         struct btrfs_device *device;
2333
2334         if (devid) {
2335                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336                                            NULL, true);
2337                 if (!device)
2338                         return ERR_PTR(-ENOENT);
2339                 return device;
2340         }
2341
2342         if (!device_path || !device_path[0])
2343                 return ERR_PTR(-EINVAL);
2344
2345         if (strcmp(device_path, "missing") == 0) {
2346                 /* Find first missing device */
2347                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2348                                     dev_list) {
2349                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2350                                      &device->dev_state) && !device->bdev)
2351                                 return device;
2352                 }
2353                 return ERR_PTR(-ENOENT);
2354         }
2355
2356         return btrfs_find_device_by_path(fs_info, device_path);
2357 }
2358
2359 /*
2360  * does all the dirty work required for changing file system's UUID.
2361  */
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2363 {
2364         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2365         struct btrfs_fs_devices *old_devices;
2366         struct btrfs_fs_devices *seed_devices;
2367         struct btrfs_super_block *disk_super = fs_info->super_copy;
2368         struct btrfs_device *device;
2369         u64 super_flags;
2370
2371         lockdep_assert_held(&uuid_mutex);
2372         if (!fs_devices->seeding)
2373                 return -EINVAL;
2374
2375         seed_devices = alloc_fs_devices(NULL, NULL);
2376         if (IS_ERR(seed_devices))
2377                 return PTR_ERR(seed_devices);
2378
2379         old_devices = clone_fs_devices(fs_devices);
2380         if (IS_ERR(old_devices)) {
2381                 kfree(seed_devices);
2382                 return PTR_ERR(old_devices);
2383         }
2384
2385         list_add(&old_devices->fs_list, &fs_uuids);
2386
2387         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2388         seed_devices->opened = 1;
2389         INIT_LIST_HEAD(&seed_devices->devices);
2390         INIT_LIST_HEAD(&seed_devices->alloc_list);
2391         mutex_init(&seed_devices->device_list_mutex);
2392
2393         mutex_lock(&fs_devices->device_list_mutex);
2394         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2395                               synchronize_rcu);
2396         list_for_each_entry(device, &seed_devices->devices, dev_list)
2397                 device->fs_devices = seed_devices;
2398
2399         mutex_lock(&fs_info->chunk_mutex);
2400         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2401         mutex_unlock(&fs_info->chunk_mutex);
2402
2403         fs_devices->seeding = false;
2404         fs_devices->num_devices = 0;
2405         fs_devices->open_devices = 0;
2406         fs_devices->missing_devices = 0;
2407         fs_devices->rotating = false;
2408         fs_devices->seed = seed_devices;
2409
2410         generate_random_uuid(fs_devices->fsid);
2411         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2412         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2413         mutex_unlock(&fs_devices->device_list_mutex);
2414
2415         super_flags = btrfs_super_flags(disk_super) &
2416                       ~BTRFS_SUPER_FLAG_SEEDING;
2417         btrfs_set_super_flags(disk_super, super_flags);
2418
2419         return 0;
2420 }
2421
2422 /*
2423  * Store the expected generation for seed devices in device items.
2424  */
2425 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2426 {
2427         struct btrfs_fs_info *fs_info = trans->fs_info;
2428         struct btrfs_root *root = fs_info->chunk_root;
2429         struct btrfs_path *path;
2430         struct extent_buffer *leaf;
2431         struct btrfs_dev_item *dev_item;
2432         struct btrfs_device *device;
2433         struct btrfs_key key;
2434         u8 fs_uuid[BTRFS_FSID_SIZE];
2435         u8 dev_uuid[BTRFS_UUID_SIZE];
2436         u64 devid;
2437         int ret;
2438
2439         path = btrfs_alloc_path();
2440         if (!path)
2441                 return -ENOMEM;
2442
2443         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2444         key.offset = 0;
2445         key.type = BTRFS_DEV_ITEM_KEY;
2446
2447         while (1) {
2448                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2449                 if (ret < 0)
2450                         goto error;
2451
2452                 leaf = path->nodes[0];
2453 next_slot:
2454                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2455                         ret = btrfs_next_leaf(root, path);
2456                         if (ret > 0)
2457                                 break;
2458                         if (ret < 0)
2459                                 goto error;
2460                         leaf = path->nodes[0];
2461                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2462                         btrfs_release_path(path);
2463                         continue;
2464                 }
2465
2466                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2467                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2468                     key.type != BTRFS_DEV_ITEM_KEY)
2469                         break;
2470
2471                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2472                                           struct btrfs_dev_item);
2473                 devid = btrfs_device_id(leaf, dev_item);
2474                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2475                                    BTRFS_UUID_SIZE);
2476                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2477                                    BTRFS_FSID_SIZE);
2478                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2479                                            fs_uuid, true);
2480                 BUG_ON(!device); /* Logic error */
2481
2482                 if (device->fs_devices->seeding) {
2483                         btrfs_set_device_generation(leaf, dev_item,
2484                                                     device->generation);
2485                         btrfs_mark_buffer_dirty(leaf);
2486                 }
2487
2488                 path->slots[0]++;
2489                 goto next_slot;
2490         }
2491         ret = 0;
2492 error:
2493         btrfs_free_path(path);
2494         return ret;
2495 }
2496
2497 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2498 {
2499         struct btrfs_root *root = fs_info->dev_root;
2500         struct request_queue *q;
2501         struct btrfs_trans_handle *trans;
2502         struct btrfs_device *device;
2503         struct block_device *bdev;
2504         struct super_block *sb = fs_info->sb;
2505         struct rcu_string *name;
2506         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2507         u64 orig_super_total_bytes;
2508         u64 orig_super_num_devices;
2509         int seeding_dev = 0;
2510         int ret = 0;
2511         bool unlocked = false;
2512
2513         if (sb_rdonly(sb) && !fs_devices->seeding)
2514                 return -EROFS;
2515
2516         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2517                                   fs_info->bdev_holder);
2518         if (IS_ERR(bdev))
2519                 return PTR_ERR(bdev);
2520
2521         if (fs_devices->seeding) {
2522                 seeding_dev = 1;
2523                 down_write(&sb->s_umount);
2524                 mutex_lock(&uuid_mutex);
2525         }
2526
2527         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2528
2529         mutex_lock(&fs_devices->device_list_mutex);
2530         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2531                 if (device->bdev == bdev) {
2532                         ret = -EEXIST;
2533                         mutex_unlock(
2534                                 &fs_devices->device_list_mutex);
2535                         goto error;
2536                 }
2537         }
2538         mutex_unlock(&fs_devices->device_list_mutex);
2539
2540         device = btrfs_alloc_device(fs_info, NULL, NULL);
2541         if (IS_ERR(device)) {
2542                 /* we can safely leave the fs_devices entry around */
2543                 ret = PTR_ERR(device);
2544                 goto error;
2545         }
2546
2547         name = rcu_string_strdup(device_path, GFP_KERNEL);
2548         if (!name) {
2549                 ret = -ENOMEM;
2550                 goto error_free_device;
2551         }
2552         rcu_assign_pointer(device->name, name);
2553
2554         trans = btrfs_start_transaction(root, 0);
2555         if (IS_ERR(trans)) {
2556                 ret = PTR_ERR(trans);
2557                 goto error_free_device;
2558         }
2559
2560         q = bdev_get_queue(bdev);
2561         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2562         device->generation = trans->transid;
2563         device->io_width = fs_info->sectorsize;
2564         device->io_align = fs_info->sectorsize;
2565         device->sector_size = fs_info->sectorsize;
2566         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2567                                          fs_info->sectorsize);
2568         device->disk_total_bytes = device->total_bytes;
2569         device->commit_total_bytes = device->total_bytes;
2570         device->fs_info = fs_info;
2571         device->bdev = bdev;
2572         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2573         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2574         device->mode = FMODE_EXCL;
2575         device->dev_stats_valid = 1;
2576         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2577
2578         if (seeding_dev) {
2579                 sb->s_flags &= ~SB_RDONLY;
2580                 ret = btrfs_prepare_sprout(fs_info);
2581                 if (ret) {
2582                         btrfs_abort_transaction(trans, ret);
2583                         goto error_trans;
2584                 }
2585         }
2586
2587         device->fs_devices = fs_devices;
2588
2589         mutex_lock(&fs_devices->device_list_mutex);
2590         mutex_lock(&fs_info->chunk_mutex);
2591         list_add_rcu(&device->dev_list, &fs_devices->devices);
2592         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2593         fs_devices->num_devices++;
2594         fs_devices->open_devices++;
2595         fs_devices->rw_devices++;
2596         fs_devices->total_devices++;
2597         fs_devices->total_rw_bytes += device->total_bytes;
2598
2599         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2600
2601         if (!blk_queue_nonrot(q))
2602                 fs_devices->rotating = true;
2603
2604         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2605         btrfs_set_super_total_bytes(fs_info->super_copy,
2606                 round_down(orig_super_total_bytes + device->total_bytes,
2607                            fs_info->sectorsize));
2608
2609         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2610         btrfs_set_super_num_devices(fs_info->super_copy,
2611                                     orig_super_num_devices + 1);
2612
2613         /* add sysfs device entry */
2614         btrfs_sysfs_add_devices_dir(fs_devices, device);
2615
2616         /*
2617          * we've got more storage, clear any full flags on the space
2618          * infos
2619          */
2620         btrfs_clear_space_info_full(fs_info);
2621
2622         mutex_unlock(&fs_info->chunk_mutex);
2623         mutex_unlock(&fs_devices->device_list_mutex);
2624
2625         if (seeding_dev) {
2626                 mutex_lock(&fs_info->chunk_mutex);
2627                 ret = init_first_rw_device(trans);
2628                 mutex_unlock(&fs_info->chunk_mutex);
2629                 if (ret) {
2630                         btrfs_abort_transaction(trans, ret);
2631                         goto error_sysfs;
2632                 }
2633         }
2634
2635         ret = btrfs_add_dev_item(trans, device);
2636         if (ret) {
2637                 btrfs_abort_transaction(trans, ret);
2638                 goto error_sysfs;
2639         }
2640
2641         if (seeding_dev) {
2642                 ret = btrfs_finish_sprout(trans);
2643                 if (ret) {
2644                         btrfs_abort_transaction(trans, ret);
2645                         goto error_sysfs;
2646                 }
2647
2648                 btrfs_sysfs_update_sprout_fsid(fs_devices,
2649                                 fs_info->fs_devices->fsid);
2650         }
2651
2652         ret = btrfs_commit_transaction(trans);
2653
2654         if (seeding_dev) {
2655                 mutex_unlock(&uuid_mutex);
2656                 up_write(&sb->s_umount);
2657                 unlocked = true;
2658
2659                 if (ret) /* transaction commit */
2660                         return ret;
2661
2662                 ret = btrfs_relocate_sys_chunks(fs_info);
2663                 if (ret < 0)
2664                         btrfs_handle_fs_error(fs_info, ret,
2665                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2666                 trans = btrfs_attach_transaction(root);
2667                 if (IS_ERR(trans)) {
2668                         if (PTR_ERR(trans) == -ENOENT)
2669                                 return 0;
2670                         ret = PTR_ERR(trans);
2671                         trans = NULL;
2672                         goto error_sysfs;
2673                 }
2674                 ret = btrfs_commit_transaction(trans);
2675         }
2676
2677         /*
2678          * Now that we have written a new super block to this device, check all
2679          * other fs_devices list if device_path alienates any other scanned
2680          * device.
2681          * We can ignore the return value as it typically returns -EINVAL and
2682          * only succeeds if the device was an alien.
2683          */
2684         btrfs_forget_devices(device_path);
2685
2686         /* Update ctime/mtime for blkid or udev */
2687         update_dev_time(device_path);
2688
2689         return ret;
2690
2691 error_sysfs:
2692         btrfs_sysfs_remove_devices_dir(fs_devices, device);
2693         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2694         mutex_lock(&fs_info->chunk_mutex);
2695         list_del_rcu(&device->dev_list);
2696         list_del(&device->dev_alloc_list);
2697         fs_info->fs_devices->num_devices--;
2698         fs_info->fs_devices->open_devices--;
2699         fs_info->fs_devices->rw_devices--;
2700         fs_info->fs_devices->total_devices--;
2701         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2702         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2703         btrfs_set_super_total_bytes(fs_info->super_copy,
2704                                     orig_super_total_bytes);
2705         btrfs_set_super_num_devices(fs_info->super_copy,
2706                                     orig_super_num_devices);
2707         mutex_unlock(&fs_info->chunk_mutex);
2708         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2709 error_trans:
2710         if (seeding_dev)
2711                 sb->s_flags |= SB_RDONLY;
2712         if (trans)
2713                 btrfs_end_transaction(trans);
2714 error_free_device:
2715         btrfs_free_device(device);
2716 error:
2717         blkdev_put(bdev, FMODE_EXCL);
2718         if (seeding_dev && !unlocked) {
2719                 mutex_unlock(&uuid_mutex);
2720                 up_write(&sb->s_umount);
2721         }
2722         return ret;
2723 }
2724
2725 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2726                                         struct btrfs_device *device)
2727 {
2728         int ret;
2729         struct btrfs_path *path;
2730         struct btrfs_root *root = device->fs_info->chunk_root;
2731         struct btrfs_dev_item *dev_item;
2732         struct extent_buffer *leaf;
2733         struct btrfs_key key;
2734
2735         path = btrfs_alloc_path();
2736         if (!path)
2737                 return -ENOMEM;
2738
2739         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2740         key.type = BTRFS_DEV_ITEM_KEY;
2741         key.offset = device->devid;
2742
2743         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2744         if (ret < 0)
2745                 goto out;
2746
2747         if (ret > 0) {
2748                 ret = -ENOENT;
2749                 goto out;
2750         }
2751
2752         leaf = path->nodes[0];
2753         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2754
2755         btrfs_set_device_id(leaf, dev_item, device->devid);
2756         btrfs_set_device_type(leaf, dev_item, device->type);
2757         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2758         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2759         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2760         btrfs_set_device_total_bytes(leaf, dev_item,
2761                                      btrfs_device_get_disk_total_bytes(device));
2762         btrfs_set_device_bytes_used(leaf, dev_item,
2763                                     btrfs_device_get_bytes_used(device));
2764         btrfs_mark_buffer_dirty(leaf);
2765
2766 out:
2767         btrfs_free_path(path);
2768         return ret;
2769 }
2770
2771 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2772                       struct btrfs_device *device, u64 new_size)
2773 {
2774         struct btrfs_fs_info *fs_info = device->fs_info;
2775         struct btrfs_super_block *super_copy = fs_info->super_copy;
2776         u64 old_total;
2777         u64 diff;
2778
2779         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2780                 return -EACCES;
2781
2782         new_size = round_down(new_size, fs_info->sectorsize);
2783
2784         mutex_lock(&fs_info->chunk_mutex);
2785         old_total = btrfs_super_total_bytes(super_copy);
2786         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2787
2788         if (new_size <= device->total_bytes ||
2789             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2790                 mutex_unlock(&fs_info->chunk_mutex);
2791                 return -EINVAL;
2792         }
2793
2794         btrfs_set_super_total_bytes(super_copy,
2795                         round_down(old_total + diff, fs_info->sectorsize));
2796         device->fs_devices->total_rw_bytes += diff;
2797
2798         btrfs_device_set_total_bytes(device, new_size);
2799         btrfs_device_set_disk_total_bytes(device, new_size);
2800         btrfs_clear_space_info_full(device->fs_info);
2801         if (list_empty(&device->post_commit_list))
2802                 list_add_tail(&device->post_commit_list,
2803                               &trans->transaction->dev_update_list);
2804         mutex_unlock(&fs_info->chunk_mutex);
2805
2806         return btrfs_update_device(trans, device);
2807 }
2808
2809 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2810 {
2811         struct btrfs_fs_info *fs_info = trans->fs_info;
2812         struct btrfs_root *root = fs_info->chunk_root;
2813         int ret;
2814         struct btrfs_path *path;
2815         struct btrfs_key key;
2816
2817         path = btrfs_alloc_path();
2818         if (!path)
2819                 return -ENOMEM;
2820
2821         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2822         key.offset = chunk_offset;
2823         key.type = BTRFS_CHUNK_ITEM_KEY;
2824
2825         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2826         if (ret < 0)
2827                 goto out;
2828         else if (ret > 0) { /* Logic error or corruption */
2829                 btrfs_handle_fs_error(fs_info, -ENOENT,
2830                                       "Failed lookup while freeing chunk.");
2831                 ret = -ENOENT;
2832                 goto out;
2833         }
2834
2835         ret = btrfs_del_item(trans, root, path);
2836         if (ret < 0)
2837                 btrfs_handle_fs_error(fs_info, ret,
2838                                       "Failed to delete chunk item.");
2839 out:
2840         btrfs_free_path(path);
2841         return ret;
2842 }
2843
2844 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2845 {
2846         struct btrfs_super_block *super_copy = fs_info->super_copy;
2847         struct btrfs_disk_key *disk_key;
2848         struct btrfs_chunk *chunk;
2849         u8 *ptr;
2850         int ret = 0;
2851         u32 num_stripes;
2852         u32 array_size;
2853         u32 len = 0;
2854         u32 cur;
2855         struct btrfs_key key;
2856
2857         mutex_lock(&fs_info->chunk_mutex);
2858         array_size = btrfs_super_sys_array_size(super_copy);
2859
2860         ptr = super_copy->sys_chunk_array;
2861         cur = 0;
2862
2863         while (cur < array_size) {
2864                 disk_key = (struct btrfs_disk_key *)ptr;
2865                 btrfs_disk_key_to_cpu(&key, disk_key);
2866
2867                 len = sizeof(*disk_key);
2868
2869                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2870                         chunk = (struct btrfs_chunk *)(ptr + len);
2871                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2872                         len += btrfs_chunk_item_size(num_stripes);
2873                 } else {
2874                         ret = -EIO;
2875                         break;
2876                 }
2877                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2878                     key.offset == chunk_offset) {
2879                         memmove(ptr, ptr + len, array_size - (cur + len));
2880                         array_size -= len;
2881                         btrfs_set_super_sys_array_size(super_copy, array_size);
2882                 } else {
2883                         ptr += len;
2884                         cur += len;
2885                 }
2886         }
2887         mutex_unlock(&fs_info->chunk_mutex);
2888         return ret;
2889 }
2890
2891 /*
2892  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2893  * @logical: Logical block offset in bytes.
2894  * @length: Length of extent in bytes.
2895  *
2896  * Return: Chunk mapping or ERR_PTR.
2897  */
2898 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2899                                        u64 logical, u64 length)
2900 {
2901         struct extent_map_tree *em_tree;
2902         struct extent_map *em;
2903
2904         em_tree = &fs_info->mapping_tree;
2905         read_lock(&em_tree->lock);
2906         em = lookup_extent_mapping(em_tree, logical, length);
2907         read_unlock(&em_tree->lock);
2908
2909         if (!em) {
2910                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2911                            logical, length);
2912                 return ERR_PTR(-EINVAL);
2913         }
2914
2915         if (em->start > logical || em->start + em->len < logical) {
2916                 btrfs_crit(fs_info,
2917                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2918                            logical, length, em->start, em->start + em->len);
2919                 free_extent_map(em);
2920                 return ERR_PTR(-EINVAL);
2921         }
2922
2923         /* callers are responsible for dropping em's ref. */
2924         return em;
2925 }
2926
2927 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2928 {
2929         struct btrfs_fs_info *fs_info = trans->fs_info;
2930         struct extent_map *em;
2931         struct map_lookup *map;
2932         u64 dev_extent_len = 0;
2933         int i, ret = 0;
2934         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2935
2936         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2937         if (IS_ERR(em)) {
2938                 /*
2939                  * This is a logic error, but we don't want to just rely on the
2940                  * user having built with ASSERT enabled, so if ASSERT doesn't
2941                  * do anything we still error out.
2942                  */
2943                 ASSERT(0);
2944                 return PTR_ERR(em);
2945         }
2946         map = em->map_lookup;
2947         mutex_lock(&fs_info->chunk_mutex);
2948         check_system_chunk(trans, map->type);
2949         mutex_unlock(&fs_info->chunk_mutex);
2950
2951         /*
2952          * Take the device list mutex to prevent races with the final phase of
2953          * a device replace operation that replaces the device object associated
2954          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2955          */
2956         mutex_lock(&fs_devices->device_list_mutex);
2957         for (i = 0; i < map->num_stripes; i++) {
2958                 struct btrfs_device *device = map->stripes[i].dev;
2959                 ret = btrfs_free_dev_extent(trans, device,
2960                                             map->stripes[i].physical,
2961                                             &dev_extent_len);
2962                 if (ret) {
2963                         mutex_unlock(&fs_devices->device_list_mutex);
2964                         btrfs_abort_transaction(trans, ret);
2965                         goto out;
2966                 }
2967
2968                 if (device->bytes_used > 0) {
2969                         mutex_lock(&fs_info->chunk_mutex);
2970                         btrfs_device_set_bytes_used(device,
2971                                         device->bytes_used - dev_extent_len);
2972                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2973                         btrfs_clear_space_info_full(fs_info);
2974                         mutex_unlock(&fs_info->chunk_mutex);
2975                 }
2976
2977                 ret = btrfs_update_device(trans, device);
2978                 if (ret) {
2979                         mutex_unlock(&fs_devices->device_list_mutex);
2980                         btrfs_abort_transaction(trans, ret);
2981                         goto out;
2982                 }
2983         }
2984         mutex_unlock(&fs_devices->device_list_mutex);
2985
2986         ret = btrfs_free_chunk(trans, chunk_offset);
2987         if (ret) {
2988                 btrfs_abort_transaction(trans, ret);
2989                 goto out;
2990         }
2991
2992         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2993
2994         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2995                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2996                 if (ret) {
2997                         btrfs_abort_transaction(trans, ret);
2998                         goto out;
2999                 }
3000         }
3001
3002         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3003         if (ret) {
3004                 btrfs_abort_transaction(trans, ret);
3005                 goto out;
3006         }
3007
3008 out:
3009         /* once for us */
3010         free_extent_map(em);
3011         return ret;
3012 }
3013
3014 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3015 {
3016         struct btrfs_root *root = fs_info->chunk_root;
3017         struct btrfs_trans_handle *trans;
3018         struct btrfs_block_group *block_group;
3019         int ret;
3020
3021         /*
3022          * Prevent races with automatic removal of unused block groups.
3023          * After we relocate and before we remove the chunk with offset
3024          * chunk_offset, automatic removal of the block group can kick in,
3025          * resulting in a failure when calling btrfs_remove_chunk() below.
3026          *
3027          * Make sure to acquire this mutex before doing a tree search (dev
3028          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3029          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3030          * we release the path used to search the chunk/dev tree and before
3031          * the current task acquires this mutex and calls us.
3032          */
3033         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3034
3035         /* step one, relocate all the extents inside this chunk */
3036         btrfs_scrub_pause(fs_info);
3037         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3038         btrfs_scrub_continue(fs_info);
3039         if (ret)
3040                 return ret;
3041
3042         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3043         if (!block_group)
3044                 return -ENOENT;
3045         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3046         btrfs_put_block_group(block_group);
3047
3048         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3049                                                      chunk_offset);
3050         if (IS_ERR(trans)) {
3051                 ret = PTR_ERR(trans);
3052                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3053                 return ret;
3054         }
3055
3056         /*
3057          * step two, delete the device extents and the
3058          * chunk tree entries
3059          */
3060         ret = btrfs_remove_chunk(trans, chunk_offset);
3061         btrfs_end_transaction(trans);
3062         return ret;
3063 }
3064
3065 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3066 {
3067         struct btrfs_root *chunk_root = fs_info->chunk_root;
3068         struct btrfs_path *path;
3069         struct extent_buffer *leaf;
3070         struct btrfs_chunk *chunk;
3071         struct btrfs_key key;
3072         struct btrfs_key found_key;
3073         u64 chunk_type;
3074         bool retried = false;
3075         int failed = 0;
3076         int ret;
3077
3078         path = btrfs_alloc_path();
3079         if (!path)
3080                 return -ENOMEM;
3081
3082 again:
3083         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3084         key.offset = (u64)-1;
3085         key.type = BTRFS_CHUNK_ITEM_KEY;
3086
3087         while (1) {
3088                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3089                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3090                 if (ret < 0) {
3091                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3092                         goto error;
3093                 }
3094                 BUG_ON(ret == 0); /* Corruption */
3095
3096                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3097                                           key.type);
3098                 if (ret)
3099                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3100                 if (ret < 0)
3101                         goto error;
3102                 if (ret > 0)
3103                         break;
3104
3105                 leaf = path->nodes[0];
3106                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3107
3108                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3109                                        struct btrfs_chunk);
3110                 chunk_type = btrfs_chunk_type(leaf, chunk);
3111                 btrfs_release_path(path);
3112
3113                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3114                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3115                         if (ret == -ENOSPC)
3116                                 failed++;
3117                         else
3118                                 BUG_ON(ret);
3119                 }
3120                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3121
3122                 if (found_key.offset == 0)
3123                         break;
3124                 key.offset = found_key.offset - 1;
3125         }
3126         ret = 0;
3127         if (failed && !retried) {
3128                 failed = 0;
3129                 retried = true;
3130                 goto again;
3131         } else if (WARN_ON(failed && retried)) {
3132                 ret = -ENOSPC;
3133         }
3134 error:
3135         btrfs_free_path(path);
3136         return ret;
3137 }
3138
3139 /*
3140  * return 1 : allocate a data chunk successfully,
3141  * return <0: errors during allocating a data chunk,
3142  * return 0 : no need to allocate a data chunk.
3143  */
3144 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3145                                       u64 chunk_offset)
3146 {
3147         struct btrfs_block_group *cache;
3148         u64 bytes_used;
3149         u64 chunk_type;
3150
3151         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3152         ASSERT(cache);
3153         chunk_type = cache->flags;
3154         btrfs_put_block_group(cache);
3155
3156         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3157                 return 0;
3158
3159         spin_lock(&fs_info->data_sinfo->lock);
3160         bytes_used = fs_info->data_sinfo->bytes_used;
3161         spin_unlock(&fs_info->data_sinfo->lock);
3162
3163         if (!bytes_used) {
3164                 struct btrfs_trans_handle *trans;
3165                 int ret;
3166
3167                 trans = btrfs_join_transaction(fs_info->tree_root);
3168                 if (IS_ERR(trans))
3169                         return PTR_ERR(trans);
3170
3171                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3172                 btrfs_end_transaction(trans);
3173                 if (ret < 0)
3174                         return ret;
3175                 return 1;
3176         }
3177
3178         return 0;
3179 }
3180
3181 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3182                                struct btrfs_balance_control *bctl)
3183 {
3184         struct btrfs_root *root = fs_info->tree_root;
3185         struct btrfs_trans_handle *trans;
3186         struct btrfs_balance_item *item;
3187         struct btrfs_disk_balance_args disk_bargs;
3188         struct btrfs_path *path;
3189         struct extent_buffer *leaf;
3190         struct btrfs_key key;
3191         int ret, err;
3192
3193         path = btrfs_alloc_path();
3194         if (!path)
3195                 return -ENOMEM;
3196
3197         trans = btrfs_start_transaction(root, 0);
3198         if (IS_ERR(trans)) {
3199                 btrfs_free_path(path);
3200                 return PTR_ERR(trans);
3201         }
3202
3203         key.objectid = BTRFS_BALANCE_OBJECTID;
3204         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3205         key.offset = 0;
3206
3207         ret = btrfs_insert_empty_item(trans, root, path, &key,
3208                                       sizeof(*item));
3209         if (ret)
3210                 goto out;
3211
3212         leaf = path->nodes[0];
3213         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3214
3215         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3216
3217         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3218         btrfs_set_balance_data(leaf, item, &disk_bargs);
3219         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3220         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3221         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3222         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3223
3224         btrfs_set_balance_flags(leaf, item, bctl->flags);
3225
3226         btrfs_mark_buffer_dirty(leaf);
3227 out:
3228         btrfs_free_path(path);
3229         err = btrfs_commit_transaction(trans);
3230         if (err && !ret)
3231                 ret = err;
3232         return ret;
3233 }
3234
3235 static int del_balance_item(struct btrfs_fs_info *fs_info)
3236 {
3237         struct btrfs_root *root = fs_info->tree_root;
3238         struct btrfs_trans_handle *trans;
3239         struct btrfs_path *path;
3240         struct btrfs_key key;
3241         int ret, err;
3242
3243         path = btrfs_alloc_path();
3244         if (!path)
3245                 return -ENOMEM;
3246
3247         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3248         if (IS_ERR(trans)) {
3249                 btrfs_free_path(path);
3250                 return PTR_ERR(trans);
3251         }
3252
3253         key.objectid = BTRFS_BALANCE_OBJECTID;
3254         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3255         key.offset = 0;
3256
3257         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3258         if (ret < 0)
3259                 goto out;
3260         if (ret > 0) {
3261                 ret = -ENOENT;
3262                 goto out;
3263         }
3264
3265         ret = btrfs_del_item(trans, root, path);
3266 out:
3267         btrfs_free_path(path);
3268         err = btrfs_commit_transaction(trans);
3269         if (err && !ret)
3270                 ret = err;
3271         return ret;
3272 }
3273
3274 /*
3275  * This is a heuristic used to reduce the number of chunks balanced on
3276  * resume after balance was interrupted.
3277  */
3278 static void update_balance_args(struct btrfs_balance_control *bctl)
3279 {
3280         /*
3281          * Turn on soft mode for chunk types that were being converted.
3282          */
3283         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3284                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3285         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3286                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3287         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3288                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3289
3290         /*
3291          * Turn on usage filter if is not already used.  The idea is
3292          * that chunks that we have already balanced should be
3293          * reasonably full.  Don't do it for chunks that are being
3294          * converted - that will keep us from relocating unconverted
3295          * (albeit full) chunks.
3296          */
3297         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3298             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3299             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3300                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3301                 bctl->data.usage = 90;
3302         }
3303         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3304             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3305             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3306                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3307                 bctl->sys.usage = 90;
3308         }
3309         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3310             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3311             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3312                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3313                 bctl->meta.usage = 90;
3314         }
3315 }
3316
3317 /*
3318  * Clear the balance status in fs_info and delete the balance item from disk.
3319  */
3320 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3321 {
3322         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3323         int ret;
3324
3325         BUG_ON(!fs_info->balance_ctl);
3326
3327         spin_lock(&fs_info->balance_lock);
3328         fs_info->balance_ctl = NULL;
3329         spin_unlock(&fs_info->balance_lock);
3330
3331         kfree(bctl);
3332         ret = del_balance_item(fs_info);
3333         if (ret)
3334                 btrfs_handle_fs_error(fs_info, ret, NULL);
3335 }
3336
3337 /*
3338  * Balance filters.  Return 1 if chunk should be filtered out
3339  * (should not be balanced).
3340  */
3341 static int chunk_profiles_filter(u64 chunk_type,
3342                                  struct btrfs_balance_args *bargs)
3343 {
3344         chunk_type = chunk_to_extended(chunk_type) &
3345                                 BTRFS_EXTENDED_PROFILE_MASK;
3346
3347         if (bargs->profiles & chunk_type)
3348                 return 0;
3349
3350         return 1;
3351 }
3352
3353 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3354                               struct btrfs_balance_args *bargs)
3355 {
3356         struct btrfs_block_group *cache;
3357         u64 chunk_used;
3358         u64 user_thresh_min;
3359         u64 user_thresh_max;
3360         int ret = 1;
3361
3362         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3363         chunk_used = cache->used;
3364
3365         if (bargs->usage_min == 0)
3366                 user_thresh_min = 0;
3367         else
3368                 user_thresh_min = div_factor_fine(cache->length,
3369                                                   bargs->usage_min);
3370
3371         if (bargs->usage_max == 0)
3372                 user_thresh_max = 1;
3373         else if (bargs->usage_max > 100)
3374                 user_thresh_max = cache->length;
3375         else
3376                 user_thresh_max = div_factor_fine(cache->length,
3377                                                   bargs->usage_max);
3378
3379         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3380                 ret = 0;
3381
3382         btrfs_put_block_group(cache);
3383         return ret;
3384 }
3385
3386 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3387                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3388 {
3389         struct btrfs_block_group *cache;
3390         u64 chunk_used, user_thresh;
3391         int ret = 1;
3392
3393         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3394         chunk_used = cache->used;
3395
3396         if (bargs->usage_min == 0)
3397                 user_thresh = 1;
3398         else if (bargs->usage > 100)
3399                 user_thresh = cache->length;
3400         else
3401                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3402
3403         if (chunk_used < user_thresh)
3404                 ret = 0;
3405
3406         btrfs_put_block_group(cache);
3407         return ret;
3408 }
3409
3410 static int chunk_devid_filter(struct extent_buffer *leaf,
3411                               struct btrfs_chunk *chunk,
3412                               struct btrfs_balance_args *bargs)
3413 {
3414         struct btrfs_stripe *stripe;
3415         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3416         int i;
3417
3418         for (i = 0; i < num_stripes; i++) {
3419                 stripe = btrfs_stripe_nr(chunk, i);
3420                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3421                         return 0;
3422         }
3423
3424         return 1;
3425 }
3426
3427 static u64 calc_data_stripes(u64 type, int num_stripes)
3428 {
3429         const int index = btrfs_bg_flags_to_raid_index(type);
3430         const int ncopies = btrfs_raid_array[index].ncopies;
3431         const int nparity = btrfs_raid_array[index].nparity;
3432
3433         if (nparity)
3434                 return num_stripes - nparity;
3435         else
3436                 return num_stripes / ncopies;
3437 }
3438
3439 /* [pstart, pend) */
3440 static int chunk_drange_filter(struct extent_buffer *leaf,
3441                                struct btrfs_chunk *chunk,
3442                                struct btrfs_balance_args *bargs)
3443 {
3444         struct btrfs_stripe *stripe;
3445         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446         u64 stripe_offset;
3447         u64 stripe_length;
3448         u64 type;
3449         int factor;
3450         int i;
3451
3452         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3453                 return 0;
3454
3455         type = btrfs_chunk_type(leaf, chunk);
3456         factor = calc_data_stripes(type, num_stripes);
3457
3458         for (i = 0; i < num_stripes; i++) {
3459                 stripe = btrfs_stripe_nr(chunk, i);
3460                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3461                         continue;
3462
3463                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3464                 stripe_length = btrfs_chunk_length(leaf, chunk);
3465                 stripe_length = div_u64(stripe_length, factor);
3466
3467                 if (stripe_offset < bargs->pend &&
3468                     stripe_offset + stripe_length > bargs->pstart)
3469                         return 0;
3470         }
3471
3472         return 1;
3473 }
3474
3475 /* [vstart, vend) */
3476 static int chunk_vrange_filter(struct extent_buffer *leaf,
3477                                struct btrfs_chunk *chunk,
3478                                u64 chunk_offset,
3479                                struct btrfs_balance_args *bargs)
3480 {
3481         if (chunk_offset < bargs->vend &&
3482             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3483                 /* at least part of the chunk is inside this vrange */
3484                 return 0;
3485
3486         return 1;
3487 }
3488
3489 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3490                                struct btrfs_chunk *chunk,
3491                                struct btrfs_balance_args *bargs)
3492 {
3493         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3494
3495         if (bargs->stripes_min <= num_stripes
3496                         && num_stripes <= bargs->stripes_max)
3497                 return 0;
3498
3499         return 1;
3500 }
3501
3502 static int chunk_soft_convert_filter(u64 chunk_type,
3503                                      struct btrfs_balance_args *bargs)
3504 {
3505         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3506                 return 0;
3507
3508         chunk_type = chunk_to_extended(chunk_type) &
3509                                 BTRFS_EXTENDED_PROFILE_MASK;
3510
3511         if (bargs->target == chunk_type)
3512                 return 1;
3513
3514         return 0;
3515 }
3516
3517 static int should_balance_chunk(struct extent_buffer *leaf,
3518                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3519 {
3520         struct btrfs_fs_info *fs_info = leaf->fs_info;
3521         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3522         struct btrfs_balance_args *bargs = NULL;
3523         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3524
3525         /* type filter */
3526         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3527               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3528                 return 0;
3529         }
3530
3531         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3532                 bargs = &bctl->data;
3533         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3534                 bargs = &bctl->sys;
3535         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3536                 bargs = &bctl->meta;
3537
3538         /* profiles filter */
3539         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3540             chunk_profiles_filter(chunk_type, bargs)) {
3541                 return 0;
3542         }
3543
3544         /* usage filter */
3545         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3546             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3547                 return 0;
3548         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3549             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3550                 return 0;
3551         }
3552
3553         /* devid filter */
3554         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3555             chunk_devid_filter(leaf, chunk, bargs)) {
3556                 return 0;
3557         }
3558
3559         /* drange filter, makes sense only with devid filter */
3560         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3561             chunk_drange_filter(leaf, chunk, bargs)) {
3562                 return 0;
3563         }
3564
3565         /* vrange filter */
3566         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3567             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3568                 return 0;
3569         }
3570
3571         /* stripes filter */
3572         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3573             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3574                 return 0;
3575         }
3576
3577         /* soft profile changing mode */
3578         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3579             chunk_soft_convert_filter(chunk_type, bargs)) {
3580                 return 0;
3581         }
3582
3583         /*
3584          * limited by count, must be the last filter
3585          */
3586         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3587                 if (bargs->limit == 0)
3588                         return 0;
3589                 else
3590                         bargs->limit--;
3591         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3592                 /*
3593                  * Same logic as the 'limit' filter; the minimum cannot be
3594                  * determined here because we do not have the global information
3595                  * about the count of all chunks that satisfy the filters.
3596                  */
3597                 if (bargs->limit_max == 0)
3598                         return 0;
3599                 else
3600                         bargs->limit_max--;
3601         }
3602
3603         return 1;
3604 }
3605
3606 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3607 {
3608         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3609         struct btrfs_root *chunk_root = fs_info->chunk_root;
3610         u64 chunk_type;
3611         struct btrfs_chunk *chunk;
3612         struct btrfs_path *path = NULL;
3613         struct btrfs_key key;
3614         struct btrfs_key found_key;
3615         struct extent_buffer *leaf;
3616         int slot;
3617         int ret;
3618         int enospc_errors = 0;
3619         bool counting = true;
3620         /* The single value limit and min/max limits use the same bytes in the */
3621         u64 limit_data = bctl->data.limit;
3622         u64 limit_meta = bctl->meta.limit;
3623         u64 limit_sys = bctl->sys.limit;
3624         u32 count_data = 0;
3625         u32 count_meta = 0;
3626         u32 count_sys = 0;
3627         int chunk_reserved = 0;
3628
3629         path = btrfs_alloc_path();
3630         if (!path) {
3631                 ret = -ENOMEM;
3632                 goto error;
3633         }
3634
3635         /* zero out stat counters */
3636         spin_lock(&fs_info->balance_lock);
3637         memset(&bctl->stat, 0, sizeof(bctl->stat));
3638         spin_unlock(&fs_info->balance_lock);
3639 again:
3640         if (!counting) {
3641                 /*
3642                  * The single value limit and min/max limits use the same bytes
3643                  * in the
3644                  */
3645                 bctl->data.limit = limit_data;
3646                 bctl->meta.limit = limit_meta;
3647                 bctl->sys.limit = limit_sys;
3648         }
3649         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3650         key.offset = (u64)-1;
3651         key.type = BTRFS_CHUNK_ITEM_KEY;
3652
3653         while (1) {
3654                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3655                     atomic_read(&fs_info->balance_cancel_req)) {
3656                         ret = -ECANCELED;
3657                         goto error;
3658                 }
3659
3660                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3661                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3662                 if (ret < 0) {
3663                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664                         goto error;
3665                 }
3666
3667                 /*
3668                  * this shouldn't happen, it means the last relocate
3669                  * failed
3670                  */
3671                 if (ret == 0)
3672                         BUG(); /* FIXME break ? */
3673
3674                 ret = btrfs_previous_item(chunk_root, path, 0,
3675                                           BTRFS_CHUNK_ITEM_KEY);
3676                 if (ret) {
3677                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3678                         ret = 0;
3679                         break;
3680                 }
3681
3682                 leaf = path->nodes[0];
3683                 slot = path->slots[0];
3684                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3685
3686                 if (found_key.objectid != key.objectid) {
3687                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3688                         break;
3689                 }
3690
3691                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3692                 chunk_type = btrfs_chunk_type(leaf, chunk);
3693
3694                 if (!counting) {
3695                         spin_lock(&fs_info->balance_lock);
3696                         bctl->stat.considered++;
3697                         spin_unlock(&fs_info->balance_lock);
3698                 }
3699
3700                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3701
3702                 btrfs_release_path(path);
3703                 if (!ret) {
3704                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3705                         goto loop;
3706                 }
3707
3708                 if (counting) {
3709                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3710                         spin_lock(&fs_info->balance_lock);
3711                         bctl->stat.expected++;
3712                         spin_unlock(&fs_info->balance_lock);
3713
3714                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3715                                 count_data++;
3716                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3717                                 count_sys++;
3718                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3719                                 count_meta++;
3720
3721                         goto loop;
3722                 }
3723
3724                 /*
3725                  * Apply limit_min filter, no need to check if the LIMITS
3726                  * filter is used, limit_min is 0 by default
3727                  */
3728                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3729                                         count_data < bctl->data.limit_min)
3730                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3731                                         count_meta < bctl->meta.limit_min)
3732                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3733                                         count_sys < bctl->sys.limit_min)) {
3734                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3735                         goto loop;
3736                 }
3737
3738                 if (!chunk_reserved) {
3739                         /*
3740                          * We may be relocating the only data chunk we have,
3741                          * which could potentially end up with losing data's
3742                          * raid profile, so lets allocate an empty one in
3743                          * advance.
3744                          */
3745                         ret = btrfs_may_alloc_data_chunk(fs_info,
3746                                                          found_key.offset);
3747                         if (ret < 0) {
3748                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3749                                 goto error;
3750                         } else if (ret == 1) {
3751                                 chunk_reserved = 1;
3752                         }
3753                 }
3754
3755                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3756                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757                 if (ret == -ENOSPC) {
3758                         enospc_errors++;
3759                 } else if (ret == -ETXTBSY) {
3760                         btrfs_info(fs_info,
3761            "skipping relocation of block group %llu due to active swapfile",
3762                                    found_key.offset);
3763                         ret = 0;
3764                 } else if (ret) {
3765                         goto error;
3766                 } else {
3767                         spin_lock(&fs_info->balance_lock);
3768                         bctl->stat.completed++;
3769                         spin_unlock(&fs_info->balance_lock);
3770                 }
3771 loop:
3772                 if (found_key.offset == 0)
3773                         break;
3774                 key.offset = found_key.offset - 1;
3775         }
3776
3777         if (counting) {
3778                 btrfs_release_path(path);
3779                 counting = false;
3780                 goto again;
3781         }
3782 error:
3783         btrfs_free_path(path);
3784         if (enospc_errors) {
3785                 btrfs_info(fs_info, "%d enospc errors during balance",
3786                            enospc_errors);
3787                 if (!ret)
3788                         ret = -ENOSPC;
3789         }
3790
3791         return ret;
3792 }
3793
3794 /**
3795  * alloc_profile_is_valid - see if a given profile is valid and reduced
3796  * @flags: profile to validate
3797  * @extended: if true @flags is treated as an extended profile
3798  */
3799 static int alloc_profile_is_valid(u64 flags, int extended)
3800 {
3801         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3802                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3803
3804         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3805
3806         /* 1) check that all other bits are zeroed */
3807         if (flags & ~mask)
3808                 return 0;
3809
3810         /* 2) see if profile is reduced */
3811         if (flags == 0)
3812                 return !extended; /* "0" is valid for usual profiles */
3813
3814         return has_single_bit_set(flags);
3815 }
3816
3817 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3818 {
3819         /* cancel requested || normal exit path */
3820         return atomic_read(&fs_info->balance_cancel_req) ||
3821                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3822                  atomic_read(&fs_info->balance_cancel_req) == 0);
3823 }
3824
3825 /*
3826  * Validate target profile against allowed profiles and return true if it's OK.
3827  * Otherwise print the error message and return false.
3828  */
3829 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3830                 const struct btrfs_balance_args *bargs,
3831                 u64 allowed, const char *type)
3832 {
3833         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3834                 return true;
3835
3836         /* Profile is valid and does not have bits outside of the allowed set */
3837         if (alloc_profile_is_valid(bargs->target, 1) &&
3838             (bargs->target & ~allowed) == 0)
3839                 return true;
3840
3841         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3842                         type, btrfs_bg_type_to_raid_name(bargs->target));
3843         return false;
3844 }
3845
3846 /*
3847  * Fill @buf with textual description of balance filter flags @bargs, up to
3848  * @size_buf including the terminating null. The output may be trimmed if it
3849  * does not fit into the provided buffer.
3850  */
3851 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3852                                  u32 size_buf)
3853 {
3854         int ret;
3855         u32 size_bp = size_buf;
3856         char *bp = buf;
3857         u64 flags = bargs->flags;
3858         char tmp_buf[128] = {'\0'};
3859
3860         if (!flags)
3861                 return;
3862
3863 #define CHECK_APPEND_NOARG(a)                                           \
3864         do {                                                            \
3865                 ret = snprintf(bp, size_bp, (a));                       \
3866                 if (ret < 0 || ret >= size_bp)                          \
3867                         goto out_overflow;                              \
3868                 size_bp -= ret;                                         \
3869                 bp += ret;                                              \
3870         } while (0)
3871
3872 #define CHECK_APPEND_1ARG(a, v1)                                        \
3873         do {                                                            \
3874                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3875                 if (ret < 0 || ret >= size_bp)                          \
3876                         goto out_overflow;                              \
3877                 size_bp -= ret;                                         \
3878                 bp += ret;                                              \
3879         } while (0)
3880
3881 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3882         do {                                                            \
3883                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3884                 if (ret < 0 || ret >= size_bp)                          \
3885                         goto out_overflow;                              \
3886                 size_bp -= ret;                                         \
3887                 bp += ret;                                              \
3888         } while (0)
3889
3890         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3891                 CHECK_APPEND_1ARG("convert=%s,",
3892                                   btrfs_bg_type_to_raid_name(bargs->target));
3893
3894         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3895                 CHECK_APPEND_NOARG("soft,");
3896
3897         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3898                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3899                                             sizeof(tmp_buf));
3900                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3901         }
3902
3903         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3904                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3905
3906         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3907                 CHECK_APPEND_2ARG("usage=%u..%u,",
3908                                   bargs->usage_min, bargs->usage_max);
3909
3910         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3911                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3912
3913         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3914                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3915                                   bargs->pstart, bargs->pend);
3916
3917         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3918                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3919                                   bargs->vstart, bargs->vend);
3920
3921         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3922                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3923
3924         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3925                 CHECK_APPEND_2ARG("limit=%u..%u,",
3926                                 bargs->limit_min, bargs->limit_max);
3927
3928         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3929                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3930                                   bargs->stripes_min, bargs->stripes_max);
3931
3932 #undef CHECK_APPEND_2ARG
3933 #undef CHECK_APPEND_1ARG
3934 #undef CHECK_APPEND_NOARG
3935
3936 out_overflow:
3937
3938         if (size_bp < size_buf)
3939                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3940         else
3941                 buf[0] = '\0';
3942 }
3943
3944 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3945 {
3946         u32 size_buf = 1024;
3947         char tmp_buf[192] = {'\0'};
3948         char *buf;
3949         char *bp;
3950         u32 size_bp = size_buf;
3951         int ret;
3952         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3953
3954         buf = kzalloc(size_buf, GFP_KERNEL);
3955         if (!buf)
3956                 return;
3957
3958         bp = buf;
3959
3960 #define CHECK_APPEND_1ARG(a, v1)                                        \
3961         do {                                                            \
3962                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3963                 if (ret < 0 || ret >= size_bp)                          \
3964                         goto out_overflow;                              \
3965                 size_bp -= ret;                                         \
3966                 bp += ret;                                              \
3967         } while (0)
3968
3969         if (bctl->flags & BTRFS_BALANCE_FORCE)
3970                 CHECK_APPEND_1ARG("%s", "-f ");
3971
3972         if (bctl->flags & BTRFS_BALANCE_DATA) {
3973                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3974                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3975         }
3976
3977         if (bctl->flags & BTRFS_BALANCE_METADATA) {
3978                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3979                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3980         }
3981
3982         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3983                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3984                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3985         }
3986
3987 #undef CHECK_APPEND_1ARG
3988
3989 out_overflow:
3990
3991         if (size_bp < size_buf)
3992                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3993         btrfs_info(fs_info, "balance: %s %s",
3994                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
3995                    "resume" : "start", buf);
3996
3997         kfree(buf);
3998 }
3999
4000 /*
4001  * Should be called with balance mutexe held
4002  */
4003 int btrfs_balance(struct btrfs_fs_info *fs_info,
4004                   struct btrfs_balance_control *bctl,
4005                   struct btrfs_ioctl_balance_args *bargs)
4006 {
4007         u64 meta_target, data_target;
4008         u64 allowed;
4009         int mixed = 0;
4010         int ret;
4011         u64 num_devices;
4012         unsigned seq;
4013         bool reducing_redundancy;
4014         int i;
4015
4016         if (btrfs_fs_closing(fs_info) ||
4017             atomic_read(&fs_info->balance_pause_req) ||
4018             btrfs_should_cancel_balance(fs_info)) {
4019                 ret = -EINVAL;
4020                 goto out;
4021         }
4022
4023         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4024         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4025                 mixed = 1;
4026
4027         /*
4028          * In case of mixed groups both data and meta should be picked,
4029          * and identical options should be given for both of them.
4030          */
4031         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4032         if (mixed && (bctl->flags & allowed)) {
4033                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4034                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4035                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4036                         btrfs_err(fs_info,
4037           "balance: mixed groups data and metadata options must be the same");
4038                         ret = -EINVAL;
4039                         goto out;
4040                 }
4041         }
4042
4043         /*
4044          * rw_devices will not change at the moment, device add/delete/replace
4045          * are excluded by EXCL_OP
4046          */
4047         num_devices = fs_info->fs_devices->rw_devices;
4048
4049         /*
4050          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4051          * special bit for it, to make it easier to distinguish.  Thus we need
4052          * to set it manually, or balance would refuse the profile.
4053          */
4054         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4055         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4056                 if (num_devices >= btrfs_raid_array[i].devs_min)
4057                         allowed |= btrfs_raid_array[i].bg_flag;
4058
4059         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4060             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4061             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4062                 ret = -EINVAL;
4063                 goto out;
4064         }
4065
4066         /*
4067          * Allow to reduce metadata or system integrity only if force set for
4068          * profiles with redundancy (copies, parity)
4069          */
4070         allowed = 0;
4071         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4072                 if (btrfs_raid_array[i].ncopies >= 2 ||
4073                     btrfs_raid_array[i].tolerated_failures >= 1)
4074                         allowed |= btrfs_raid_array[i].bg_flag;
4075         }
4076         do {
4077                 seq = read_seqbegin(&fs_info->profiles_lock);
4078
4079                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4080                      (fs_info->avail_system_alloc_bits & allowed) &&
4081                      !(bctl->sys.target & allowed)) ||
4082                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4083                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4084                      !(bctl->meta.target & allowed)))
4085                         reducing_redundancy = true;
4086                 else
4087                         reducing_redundancy = false;
4088
4089                 /* if we're not converting, the target field is uninitialized */
4090                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4091                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4092                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4093                         bctl->data.target : fs_info->avail_data_alloc_bits;
4094         } while (read_seqretry(&fs_info->profiles_lock, seq));
4095
4096         if (reducing_redundancy) {
4097                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4098                         btrfs_info(fs_info,
4099                            "balance: force reducing metadata redundancy");
4100                 } else {
4101                         btrfs_err(fs_info,
4102         "balance: reduces metadata redundancy, use --force if you want this");
4103                         ret = -EINVAL;
4104                         goto out;
4105                 }
4106         }
4107
4108         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4109                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4110                 btrfs_warn(fs_info,
4111         "balance: metadata profile %s has lower redundancy than data profile %s",
4112                                 btrfs_bg_type_to_raid_name(meta_target),
4113                                 btrfs_bg_type_to_raid_name(data_target));
4114         }
4115
4116         if (fs_info->send_in_progress) {
4117                 btrfs_warn_rl(fs_info,
4118 "cannot run balance while send operations are in progress (%d in progress)",
4119                               fs_info->send_in_progress);
4120                 ret = -EAGAIN;
4121                 goto out;
4122         }
4123
4124         ret = insert_balance_item(fs_info, bctl);
4125         if (ret && ret != -EEXIST)
4126                 goto out;
4127
4128         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4129                 BUG_ON(ret == -EEXIST);
4130                 BUG_ON(fs_info->balance_ctl);
4131                 spin_lock(&fs_info->balance_lock);
4132                 fs_info->balance_ctl = bctl;
4133                 spin_unlock(&fs_info->balance_lock);
4134         } else {
4135                 BUG_ON(ret != -EEXIST);
4136                 spin_lock(&fs_info->balance_lock);
4137                 update_balance_args(bctl);
4138                 spin_unlock(&fs_info->balance_lock);
4139         }
4140
4141         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4142         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4143         describe_balance_start_or_resume(fs_info);
4144         mutex_unlock(&fs_info->balance_mutex);
4145
4146         ret = __btrfs_balance(fs_info);
4147
4148         mutex_lock(&fs_info->balance_mutex);
4149         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4150                 btrfs_info(fs_info, "balance: paused");
4151         /*
4152          * Balance can be canceled by:
4153          *
4154          * - Regular cancel request
4155          *   Then ret == -ECANCELED and balance_cancel_req > 0
4156          *
4157          * - Fatal signal to "btrfs" process
4158          *   Either the signal caught by wait_reserve_ticket() and callers
4159          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4160          *   got -ECANCELED.
4161          *   Either way, in this case balance_cancel_req = 0, and
4162          *   ret == -EINTR or ret == -ECANCELED.
4163          *
4164          * So here we only check the return value to catch canceled balance.
4165          */
4166         else if (ret == -ECANCELED || ret == -EINTR)
4167                 btrfs_info(fs_info, "balance: canceled");
4168         else
4169                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4170
4171         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4172
4173         if (bargs) {
4174                 memset(bargs, 0, sizeof(*bargs));
4175                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4176         }
4177
4178         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4179             balance_need_close(fs_info)) {
4180                 reset_balance_state(fs_info);
4181                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4182         }
4183
4184         wake_up(&fs_info->balance_wait_q);
4185
4186         return ret;
4187 out:
4188         if (bctl->flags & BTRFS_BALANCE_RESUME)
4189                 reset_balance_state(fs_info);
4190         else
4191                 kfree(bctl);
4192         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4193
4194         return ret;
4195 }
4196
4197 static int balance_kthread(void *data)
4198 {
4199         struct btrfs_fs_info *fs_info = data;
4200         int ret = 0;
4201
4202         mutex_lock(&fs_info->balance_mutex);
4203         if (fs_info->balance_ctl)
4204                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4205         mutex_unlock(&fs_info->balance_mutex);
4206
4207         return ret;
4208 }
4209
4210 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4211 {
4212         struct task_struct *tsk;
4213
4214         mutex_lock(&fs_info->balance_mutex);
4215         if (!fs_info->balance_ctl) {
4216                 mutex_unlock(&fs_info->balance_mutex);
4217                 return 0;
4218         }
4219         mutex_unlock(&fs_info->balance_mutex);
4220
4221         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4222                 btrfs_info(fs_info, "balance: resume skipped");
4223                 return 0;
4224         }
4225
4226         /*
4227          * A ro->rw remount sequence should continue with the paused balance
4228          * regardless of who pauses it, system or the user as of now, so set
4229          * the resume flag.
4230          */
4231         spin_lock(&fs_info->balance_lock);
4232         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4233         spin_unlock(&fs_info->balance_lock);
4234
4235         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4236         return PTR_ERR_OR_ZERO(tsk);
4237 }
4238
4239 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4240 {
4241         struct btrfs_balance_control *bctl;
4242         struct btrfs_balance_item *item;
4243         struct btrfs_disk_balance_args disk_bargs;
4244         struct btrfs_path *path;
4245         struct extent_buffer *leaf;
4246         struct btrfs_key key;
4247         int ret;
4248
4249         path = btrfs_alloc_path();
4250         if (!path)
4251                 return -ENOMEM;
4252
4253         key.objectid = BTRFS_BALANCE_OBJECTID;
4254         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4255         key.offset = 0;
4256
4257         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4258         if (ret < 0)
4259                 goto out;
4260         if (ret > 0) { /* ret = -ENOENT; */
4261                 ret = 0;
4262                 goto out;
4263         }
4264
4265         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4266         if (!bctl) {
4267                 ret = -ENOMEM;
4268                 goto out;
4269         }
4270
4271         leaf = path->nodes[0];
4272         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4273
4274         bctl->flags = btrfs_balance_flags(leaf, item);
4275         bctl->flags |= BTRFS_BALANCE_RESUME;
4276
4277         btrfs_balance_data(leaf, item, &disk_bargs);
4278         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4279         btrfs_balance_meta(leaf, item, &disk_bargs);
4280         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4281         btrfs_balance_sys(leaf, item, &disk_bargs);
4282         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4283
4284         /*
4285          * This should never happen, as the paused balance state is recovered
4286          * during mount without any chance of other exclusive ops to collide.
4287          *
4288          * This gives the exclusive op status to balance and keeps in paused
4289          * state until user intervention (cancel or umount). If the ownership
4290          * cannot be assigned, show a message but do not fail. The balance
4291          * is in a paused state and must have fs_info::balance_ctl properly
4292          * set up.
4293          */
4294         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4295                 btrfs_warn(fs_info,
4296         "balance: cannot set exclusive op status, resume manually");
4297
4298         mutex_lock(&fs_info->balance_mutex);
4299         BUG_ON(fs_info->balance_ctl);
4300         spin_lock(&fs_info->balance_lock);
4301         fs_info->balance_ctl = bctl;
4302         spin_unlock(&fs_info->balance_lock);
4303         mutex_unlock(&fs_info->balance_mutex);
4304 out:
4305         btrfs_free_path(path);
4306         return ret;
4307 }
4308
4309 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4310 {
4311         int ret = 0;
4312
4313         mutex_lock(&fs_info->balance_mutex);
4314         if (!fs_info->balance_ctl) {
4315                 mutex_unlock(&fs_info->balance_mutex);
4316                 return -ENOTCONN;
4317         }
4318
4319         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4320                 atomic_inc(&fs_info->balance_pause_req);
4321                 mutex_unlock(&fs_info->balance_mutex);
4322
4323                 wait_event(fs_info->balance_wait_q,
4324                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4325
4326                 mutex_lock(&fs_info->balance_mutex);
4327                 /* we are good with balance_ctl ripped off from under us */
4328                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4329                 atomic_dec(&fs_info->balance_pause_req);
4330         } else {
4331                 ret = -ENOTCONN;
4332         }
4333
4334         mutex_unlock(&fs_info->balance_mutex);
4335         return ret;
4336 }
4337
4338 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4339 {
4340         mutex_lock(&fs_info->balance_mutex);
4341         if (!fs_info->balance_ctl) {
4342                 mutex_unlock(&fs_info->balance_mutex);
4343                 return -ENOTCONN;
4344         }
4345
4346         /*
4347          * A paused balance with the item stored on disk can be resumed at
4348          * mount time if the mount is read-write. Otherwise it's still paused
4349          * and we must not allow cancelling as it deletes the item.
4350          */
4351         if (sb_rdonly(fs_info->sb)) {
4352                 mutex_unlock(&fs_info->balance_mutex);
4353                 return -EROFS;
4354         }
4355
4356         atomic_inc(&fs_info->balance_cancel_req);
4357         /*
4358          * if we are running just wait and return, balance item is
4359          * deleted in btrfs_balance in this case
4360          */
4361         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4362                 mutex_unlock(&fs_info->balance_mutex);
4363                 wait_event(fs_info->balance_wait_q,
4364                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4365                 mutex_lock(&fs_info->balance_mutex);
4366         } else {
4367                 mutex_unlock(&fs_info->balance_mutex);
4368                 /*
4369                  * Lock released to allow other waiters to continue, we'll
4370                  * reexamine the status again.
4371                  */
4372                 mutex_lock(&fs_info->balance_mutex);
4373
4374                 if (fs_info->balance_ctl) {
4375                         reset_balance_state(fs_info);
4376                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4377                         btrfs_info(fs_info, "balance: canceled");
4378                 }
4379         }
4380
4381         BUG_ON(fs_info->balance_ctl ||
4382                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4383         atomic_dec(&fs_info->balance_cancel_req);
4384         mutex_unlock(&fs_info->balance_mutex);
4385         return 0;
4386 }
4387
4388 int btrfs_uuid_scan_kthread(void *data)
4389 {
4390         struct btrfs_fs_info *fs_info = data;
4391         struct btrfs_root *root = fs_info->tree_root;
4392         struct btrfs_key key;
4393         struct btrfs_path *path = NULL;
4394         int ret = 0;
4395         struct extent_buffer *eb;
4396         int slot;
4397         struct btrfs_root_item root_item;
4398         u32 item_size;
4399         struct btrfs_trans_handle *trans = NULL;
4400         bool closing = false;
4401
4402         path = btrfs_alloc_path();
4403         if (!path) {
4404                 ret = -ENOMEM;
4405                 goto out;
4406         }
4407
4408         key.objectid = 0;
4409         key.type = BTRFS_ROOT_ITEM_KEY;
4410         key.offset = 0;
4411
4412         while (1) {
4413                 if (btrfs_fs_closing(fs_info)) {
4414                         closing = true;
4415                         break;
4416                 }
4417                 ret = btrfs_search_forward(root, &key, path,
4418                                 BTRFS_OLDEST_GENERATION);
4419                 if (ret) {
4420                         if (ret > 0)
4421                                 ret = 0;
4422                         break;
4423                 }
4424
4425                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4426                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4427                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4428                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4429                         goto skip;
4430
4431                 eb = path->nodes[0];
4432                 slot = path->slots[0];
4433                 item_size = btrfs_item_size_nr(eb, slot);
4434                 if (item_size < sizeof(root_item))
4435                         goto skip;
4436
4437                 read_extent_buffer(eb, &root_item,
4438                                    btrfs_item_ptr_offset(eb, slot),
4439                                    (int)sizeof(root_item));
4440                 if (btrfs_root_refs(&root_item) == 0)
4441                         goto skip;
4442
4443                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4444                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4445                         if (trans)
4446                                 goto update_tree;
4447
4448                         btrfs_release_path(path);
4449                         /*
4450                          * 1 - subvol uuid item
4451                          * 1 - received_subvol uuid item
4452                          */
4453                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4454                         if (IS_ERR(trans)) {
4455                                 ret = PTR_ERR(trans);
4456                                 break;
4457                         }
4458                         continue;
4459                 } else {
4460                         goto skip;
4461                 }
4462 update_tree:
4463                 btrfs_release_path(path);
4464                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4465                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4466                                                   BTRFS_UUID_KEY_SUBVOL,
4467                                                   key.objectid);
4468                         if (ret < 0) {
4469                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4470                                         ret);
4471                                 break;
4472                         }
4473                 }
4474
4475                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4476                         ret = btrfs_uuid_tree_add(trans,
4477                                                   root_item.received_uuid,
4478                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4479                                                   key.objectid);
4480                         if (ret < 0) {
4481                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4482                                         ret);
4483                                 break;
4484                         }
4485                 }
4486
4487 skip:
4488                 btrfs_release_path(path);
4489                 if (trans) {
4490                         ret = btrfs_end_transaction(trans);
4491                         trans = NULL;
4492                         if (ret)
4493                                 break;
4494                 }
4495
4496                 if (key.offset < (u64)-1) {
4497                         key.offset++;
4498                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4499                         key.offset = 0;
4500                         key.type = BTRFS_ROOT_ITEM_KEY;
4501                 } else if (key.objectid < (u64)-1) {
4502                         key.offset = 0;
4503                         key.type = BTRFS_ROOT_ITEM_KEY;
4504                         key.objectid++;
4505                 } else {
4506                         break;
4507                 }
4508                 cond_resched();
4509         }
4510
4511 out:
4512         btrfs_free_path(path);
4513         if (trans && !IS_ERR(trans))
4514                 btrfs_end_transaction(trans);
4515         if (ret)
4516                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4517         else if (!closing)
4518                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4519         up(&fs_info->uuid_tree_rescan_sem);
4520         return 0;
4521 }
4522
4523 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4524 {
4525         struct btrfs_trans_handle *trans;
4526         struct btrfs_root *tree_root = fs_info->tree_root;
4527         struct btrfs_root *uuid_root;
4528         struct task_struct *task;
4529         int ret;
4530
4531         /*
4532          * 1 - root node
4533          * 1 - root item
4534          */
4535         trans = btrfs_start_transaction(tree_root, 2);
4536         if (IS_ERR(trans))
4537                 return PTR_ERR(trans);
4538
4539         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4540         if (IS_ERR(uuid_root)) {
4541                 ret = PTR_ERR(uuid_root);
4542                 btrfs_abort_transaction(trans, ret);
4543                 btrfs_end_transaction(trans);
4544                 return ret;
4545         }
4546
4547         fs_info->uuid_root = uuid_root;
4548
4549         ret = btrfs_commit_transaction(trans);
4550         if (ret)
4551                 return ret;
4552
4553         down(&fs_info->uuid_tree_rescan_sem);
4554         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4555         if (IS_ERR(task)) {
4556                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4557                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4558                 up(&fs_info->uuid_tree_rescan_sem);
4559                 return PTR_ERR(task);
4560         }
4561
4562         return 0;
4563 }
4564
4565 /*
4566  * shrinking a device means finding all of the device extents past
4567  * the new size, and then following the back refs to the chunks.
4568  * The chunk relocation code actually frees the device extent
4569  */
4570 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4571 {
4572         struct btrfs_fs_info *fs_info = device->fs_info;
4573         struct btrfs_root *root = fs_info->dev_root;
4574         struct btrfs_trans_handle *trans;
4575         struct btrfs_dev_extent *dev_extent = NULL;
4576         struct btrfs_path *path;
4577         u64 length;
4578         u64 chunk_offset;
4579         int ret;
4580         int slot;
4581         int failed = 0;
4582         bool retried = false;
4583         struct extent_buffer *l;
4584         struct btrfs_key key;
4585         struct btrfs_super_block *super_copy = fs_info->super_copy;
4586         u64 old_total = btrfs_super_total_bytes(super_copy);
4587         u64 old_size = btrfs_device_get_total_bytes(device);
4588         u64 diff;
4589         u64 start;
4590
4591         new_size = round_down(new_size, fs_info->sectorsize);
4592         start = new_size;
4593         diff = round_down(old_size - new_size, fs_info->sectorsize);
4594
4595         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4596                 return -EINVAL;
4597
4598         path = btrfs_alloc_path();
4599         if (!path)
4600                 return -ENOMEM;
4601
4602         path->reada = READA_BACK;
4603
4604         trans = btrfs_start_transaction(root, 0);
4605         if (IS_ERR(trans)) {
4606                 btrfs_free_path(path);
4607                 return PTR_ERR(trans);
4608         }
4609
4610         mutex_lock(&fs_info->chunk_mutex);
4611
4612         btrfs_device_set_total_bytes(device, new_size);
4613         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4614                 device->fs_devices->total_rw_bytes -= diff;
4615                 atomic64_sub(diff, &fs_info->free_chunk_space);
4616         }
4617
4618         /*
4619          * Once the device's size has been set to the new size, ensure all
4620          * in-memory chunks are synced to disk so that the loop below sees them
4621          * and relocates them accordingly.
4622          */
4623         if (contains_pending_extent(device, &start, diff)) {
4624                 mutex_unlock(&fs_info->chunk_mutex);
4625                 ret = btrfs_commit_transaction(trans);
4626                 if (ret)
4627                         goto done;
4628         } else {
4629                 mutex_unlock(&fs_info->chunk_mutex);
4630                 btrfs_end_transaction(trans);
4631         }
4632
4633 again:
4634         key.objectid = device->devid;
4635         key.offset = (u64)-1;
4636         key.type = BTRFS_DEV_EXTENT_KEY;
4637
4638         do {
4639                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4640                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4641                 if (ret < 0) {
4642                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4643                         goto done;
4644                 }
4645
4646                 ret = btrfs_previous_item(root, path, 0, key.type);
4647                 if (ret)
4648                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4649                 if (ret < 0)
4650                         goto done;
4651                 if (ret) {
4652                         ret = 0;
4653                         btrfs_release_path(path);
4654                         break;
4655                 }
4656
4657                 l = path->nodes[0];
4658                 slot = path->slots[0];
4659                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4660
4661                 if (key.objectid != device->devid) {
4662                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4663                         btrfs_release_path(path);
4664                         break;
4665                 }
4666
4667                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4668                 length = btrfs_dev_extent_length(l, dev_extent);
4669
4670                 if (key.offset + length <= new_size) {
4671                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4672                         btrfs_release_path(path);
4673                         break;
4674                 }
4675
4676                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4677                 btrfs_release_path(path);
4678
4679                 /*
4680                  * We may be relocating the only data chunk we have,
4681                  * which could potentially end up with losing data's
4682                  * raid profile, so lets allocate an empty one in
4683                  * advance.
4684                  */
4685                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4686                 if (ret < 0) {
4687                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4688                         goto done;
4689                 }
4690
4691                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4692                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4693                 if (ret == -ENOSPC) {
4694                         failed++;
4695                 } else if (ret) {
4696                         if (ret == -ETXTBSY) {
4697                                 btrfs_warn(fs_info,
4698                    "could not shrink block group %llu due to active swapfile",
4699                                            chunk_offset);
4700                         }
4701                         goto done;
4702                 }
4703         } while (key.offset-- > 0);
4704
4705         if (failed && !retried) {
4706                 failed = 0;
4707                 retried = true;
4708                 goto again;
4709         } else if (failed && retried) {
4710                 ret = -ENOSPC;
4711                 goto done;
4712         }
4713
4714         /* Shrinking succeeded, else we would be at "done". */
4715         trans = btrfs_start_transaction(root, 0);
4716         if (IS_ERR(trans)) {
4717                 ret = PTR_ERR(trans);
4718                 goto done;
4719         }
4720
4721         mutex_lock(&fs_info->chunk_mutex);
4722         /* Clear all state bits beyond the shrunk device size */
4723         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4724                           CHUNK_STATE_MASK);
4725
4726         btrfs_device_set_disk_total_bytes(device, new_size);
4727         if (list_empty(&device->post_commit_list))
4728                 list_add_tail(&device->post_commit_list,
4729                               &trans->transaction->dev_update_list);
4730
4731         WARN_ON(diff > old_total);
4732         btrfs_set_super_total_bytes(super_copy,
4733                         round_down(old_total - diff, fs_info->sectorsize));
4734         mutex_unlock(&fs_info->chunk_mutex);
4735
4736         /* Now btrfs_update_device() will change the on-disk size. */
4737         ret = btrfs_update_device(trans, device);
4738         if (ret < 0) {
4739                 btrfs_abort_transaction(trans, ret);
4740                 btrfs_end_transaction(trans);
4741         } else {
4742                 ret = btrfs_commit_transaction(trans);
4743         }
4744 done:
4745         btrfs_free_path(path);
4746         if (ret) {
4747                 mutex_lock(&fs_info->chunk_mutex);
4748                 btrfs_device_set_total_bytes(device, old_size);
4749                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4750                         device->fs_devices->total_rw_bytes += diff;
4751                 atomic64_add(diff, &fs_info->free_chunk_space);
4752                 mutex_unlock(&fs_info->chunk_mutex);
4753         }
4754         return ret;
4755 }
4756
4757 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4758                            struct btrfs_key *key,
4759                            struct btrfs_chunk *chunk, int item_size)
4760 {
4761         struct btrfs_super_block *super_copy = fs_info->super_copy;
4762         struct btrfs_disk_key disk_key;
4763         u32 array_size;
4764         u8 *ptr;
4765
4766         mutex_lock(&fs_info->chunk_mutex);
4767         array_size = btrfs_super_sys_array_size(super_copy);
4768         if (array_size + item_size + sizeof(disk_key)
4769                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4770                 mutex_unlock(&fs_info->chunk_mutex);
4771                 return -EFBIG;
4772         }
4773
4774         ptr = super_copy->sys_chunk_array + array_size;
4775         btrfs_cpu_key_to_disk(&disk_key, key);
4776         memcpy(ptr, &disk_key, sizeof(disk_key));
4777         ptr += sizeof(disk_key);
4778         memcpy(ptr, chunk, item_size);
4779         item_size += sizeof(disk_key);
4780         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4781         mutex_unlock(&fs_info->chunk_mutex);
4782
4783         return 0;
4784 }
4785
4786 /*
4787  * sort the devices in descending order by max_avail, total_avail
4788  */
4789 static int btrfs_cmp_device_info(const void *a, const void *b)
4790 {
4791         const struct btrfs_device_info *di_a = a;
4792         const struct btrfs_device_info *di_b = b;
4793
4794         if (di_a->max_avail > di_b->max_avail)
4795                 return -1;
4796         if (di_a->max_avail < di_b->max_avail)
4797                 return 1;
4798         if (di_a->total_avail > di_b->total_avail)
4799                 return -1;
4800         if (di_a->total_avail < di_b->total_avail)
4801                 return 1;
4802         return 0;
4803 }
4804
4805 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4806 {
4807         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4808                 return;
4809
4810         btrfs_set_fs_incompat(info, RAID56);
4811 }
4812
4813 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4814 {
4815         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4816                 return;
4817
4818         btrfs_set_fs_incompat(info, RAID1C34);
4819 }
4820
4821 /*
4822  * Structure used internally for __btrfs_alloc_chunk() function.
4823  * Wraps needed parameters.
4824  */
4825 struct alloc_chunk_ctl {
4826         u64 start;
4827         u64 type;
4828         /* Total number of stripes to allocate */
4829         int num_stripes;
4830         /* sub_stripes info for map */
4831         int sub_stripes;
4832         /* Stripes per device */
4833         int dev_stripes;
4834         /* Maximum number of devices to use */
4835         int devs_max;
4836         /* Minimum number of devices to use */
4837         int devs_min;
4838         /* ndevs has to be a multiple of this */
4839         int devs_increment;
4840         /* Number of copies */
4841         int ncopies;
4842         /* Number of stripes worth of bytes to store parity information */
4843         int nparity;
4844         u64 max_stripe_size;
4845         u64 max_chunk_size;
4846         u64 dev_extent_min;
4847         u64 stripe_size;
4848         u64 chunk_size;
4849         int ndevs;
4850 };
4851
4852 static void init_alloc_chunk_ctl_policy_regular(
4853                                 struct btrfs_fs_devices *fs_devices,
4854                                 struct alloc_chunk_ctl *ctl)
4855 {
4856         u64 type = ctl->type;
4857
4858         if (type & BTRFS_BLOCK_GROUP_DATA) {
4859                 ctl->max_stripe_size = SZ_1G;
4860                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4861         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4862                 /* For larger filesystems, use larger metadata chunks */
4863                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4864                         ctl->max_stripe_size = SZ_1G;
4865                 else
4866                         ctl->max_stripe_size = SZ_256M;
4867                 ctl->max_chunk_size = ctl->max_stripe_size;
4868         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4869                 ctl->max_stripe_size = SZ_32M;
4870                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4871                 ctl->devs_max = min_t(int, ctl->devs_max,
4872                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4873         } else {
4874                 BUG();
4875         }
4876
4877         /* We don't want a chunk larger than 10% of writable space */
4878         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4879                                   ctl->max_chunk_size);
4880         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4881 }
4882
4883 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4884                                  struct alloc_chunk_ctl *ctl)
4885 {
4886         int index = btrfs_bg_flags_to_raid_index(ctl->type);
4887
4888         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4889         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4890         ctl->devs_max = btrfs_raid_array[index].devs_max;
4891         if (!ctl->devs_max)
4892                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4893         ctl->devs_min = btrfs_raid_array[index].devs_min;
4894         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4895         ctl->ncopies = btrfs_raid_array[index].ncopies;
4896         ctl->nparity = btrfs_raid_array[index].nparity;
4897         ctl->ndevs = 0;
4898
4899         switch (fs_devices->chunk_alloc_policy) {
4900         case BTRFS_CHUNK_ALLOC_REGULAR:
4901                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4902                 break;
4903         default:
4904                 BUG();
4905         }
4906 }
4907
4908 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4909                               struct alloc_chunk_ctl *ctl,
4910                               struct btrfs_device_info *devices_info)
4911 {
4912         struct btrfs_fs_info *info = fs_devices->fs_info;
4913         struct btrfs_device *device;
4914         u64 total_avail;
4915         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4916         int ret;
4917         int ndevs = 0;
4918         u64 max_avail;
4919         u64 dev_offset;
4920
4921         /*
4922          * in the first pass through the devices list, we gather information
4923          * about the available holes on each device.
4924          */
4925         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4926                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4927                         WARN(1, KERN_ERR
4928                                "BTRFS: read-only device in alloc_list\n");
4929                         continue;
4930                 }
4931
4932                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4933                                         &device->dev_state) ||
4934                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4935                         continue;
4936
4937                 if (device->total_bytes > device->bytes_used)
4938                         total_avail = device->total_bytes - device->bytes_used;
4939                 else
4940                         total_avail = 0;
4941
4942                 /* If there is no space on this device, skip it. */
4943                 if (total_avail < ctl->dev_extent_min)
4944                         continue;
4945
4946                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4947                                            &max_avail);
4948                 if (ret && ret != -ENOSPC)
4949                         return ret;
4950
4951                 if (ret == 0)
4952                         max_avail = dev_extent_want;
4953
4954                 if (max_avail < ctl->dev_extent_min) {
4955                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4956                                 btrfs_debug(info,
4957                         "%s: devid %llu has no free space, have=%llu want=%llu",
4958                                             __func__, device->devid, max_avail,
4959                                             ctl->dev_extent_min);
4960                         continue;
4961                 }
4962
4963                 if (ndevs == fs_devices->rw_devices) {
4964                         WARN(1, "%s: found more than %llu devices\n",
4965                              __func__, fs_devices->rw_devices);
4966                         break;
4967                 }
4968                 devices_info[ndevs].dev_offset = dev_offset;
4969                 devices_info[ndevs].max_avail = max_avail;
4970                 devices_info[ndevs].total_avail = total_avail;
4971                 devices_info[ndevs].dev = device;
4972                 ++ndevs;
4973         }
4974         ctl->ndevs = ndevs;
4975
4976         /*
4977          * now sort the devices by hole size / available space
4978          */
4979         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4980              btrfs_cmp_device_info, NULL);
4981
4982         return 0;
4983 }
4984
4985 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4986                                       struct btrfs_device_info *devices_info)
4987 {
4988         /* Number of stripes that count for block group size */
4989         int data_stripes;
4990
4991         /*
4992          * The primary goal is to maximize the number of stripes, so use as
4993          * many devices as possible, even if the stripes are not maximum sized.
4994          *
4995          * The DUP profile stores more than one stripe per device, the
4996          * max_avail is the total size so we have to adjust.
4997          */
4998         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4999                                    ctl->dev_stripes);
5000         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5001
5002         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5003         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5004
5005         /*
5006          * Use the number of data stripes to figure out how big this chunk is
5007          * really going to be in terms of logical address space, and compare
5008          * that answer with the max chunk size. If it's higher, we try to
5009          * reduce stripe_size.
5010          */
5011         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5012                 /*
5013                  * Reduce stripe_size, round it up to a 16MB boundary again and
5014                  * then use it, unless it ends up being even bigger than the
5015                  * previous value we had already.
5016                  */
5017                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5018                                                         data_stripes), SZ_16M),
5019                                        ctl->stripe_size);
5020         }
5021
5022         /* Align to BTRFS_STRIPE_LEN */
5023         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5024         ctl->chunk_size = ctl->stripe_size * data_stripes;
5025
5026         return 0;
5027 }
5028
5029 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5030                               struct alloc_chunk_ctl *ctl,
5031                               struct btrfs_device_info *devices_info)
5032 {
5033         struct btrfs_fs_info *info = fs_devices->fs_info;
5034
5035         /*
5036          * Round down to number of usable stripes, devs_increment can be any
5037          * number so we can't use round_down() that requires power of 2, while
5038          * rounddown is safe.
5039          */
5040         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5041
5042         if (ctl->ndevs < ctl->devs_min) {
5043                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5044                         btrfs_debug(info,
5045         "%s: not enough devices with free space: have=%d minimum required=%d",
5046                                     __func__, ctl->ndevs, ctl->devs_min);
5047                 }
5048                 return -ENOSPC;
5049         }
5050
5051         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5052
5053         switch (fs_devices->chunk_alloc_policy) {
5054         case BTRFS_CHUNK_ALLOC_REGULAR:
5055                 return decide_stripe_size_regular(ctl, devices_info);
5056         default:
5057                 BUG();
5058         }
5059 }
5060
5061 static int create_chunk(struct btrfs_trans_handle *trans,
5062                         struct alloc_chunk_ctl *ctl,
5063                         struct btrfs_device_info *devices_info)
5064 {
5065         struct btrfs_fs_info *info = trans->fs_info;
5066         struct map_lookup *map = NULL;
5067         struct extent_map_tree *em_tree;
5068         struct extent_map *em;
5069         u64 start = ctl->start;
5070         u64 type = ctl->type;
5071         int ret;
5072         int i;
5073         int j;
5074
5075         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5076         if (!map)
5077                 return -ENOMEM;
5078         map->num_stripes = ctl->num_stripes;
5079
5080         for (i = 0; i < ctl->ndevs; ++i) {
5081                 for (j = 0; j < ctl->dev_stripes; ++j) {
5082                         int s = i * ctl->dev_stripes + j;
5083                         map->stripes[s].dev = devices_info[i].dev;
5084                         map->stripes[s].physical = devices_info[i].dev_offset +
5085                                                    j * ctl->stripe_size;
5086                 }
5087         }
5088         map->stripe_len = BTRFS_STRIPE_LEN;
5089         map->io_align = BTRFS_STRIPE_LEN;
5090         map->io_width = BTRFS_STRIPE_LEN;
5091         map->type = type;
5092         map->sub_stripes = ctl->sub_stripes;
5093
5094         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5095
5096         em = alloc_extent_map();
5097         if (!em) {
5098                 kfree(map);
5099                 return -ENOMEM;
5100         }
5101         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5102         em->map_lookup = map;
5103         em->start = start;
5104         em->len = ctl->chunk_size;
5105         em->block_start = 0;
5106         em->block_len = em->len;
5107         em->orig_block_len = ctl->stripe_size;
5108
5109         em_tree = &info->mapping_tree;
5110         write_lock(&em_tree->lock);
5111         ret = add_extent_mapping(em_tree, em, 0);
5112         if (ret) {
5113                 write_unlock(&em_tree->lock);
5114                 free_extent_map(em);
5115                 return ret;
5116         }
5117         write_unlock(&em_tree->lock);
5118
5119         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5120         if (ret)
5121                 goto error_del_extent;
5122
5123         for (i = 0; i < map->num_stripes; i++) {
5124                 struct btrfs_device *dev = map->stripes[i].dev;
5125
5126                 btrfs_device_set_bytes_used(dev,
5127                                             dev->bytes_used + ctl->stripe_size);
5128                 if (list_empty(&dev->post_commit_list))
5129                         list_add_tail(&dev->post_commit_list,
5130                                       &trans->transaction->dev_update_list);
5131         }
5132
5133         atomic64_sub(ctl->stripe_size * map->num_stripes,
5134                      &info->free_chunk_space);
5135
5136         free_extent_map(em);
5137         check_raid56_incompat_flag(info, type);
5138         check_raid1c34_incompat_flag(info, type);
5139
5140         return 0;
5141
5142 error_del_extent:
5143         write_lock(&em_tree->lock);
5144         remove_extent_mapping(em_tree, em);
5145         write_unlock(&em_tree->lock);
5146
5147         /* One for our allocation */
5148         free_extent_map(em);
5149         /* One for the tree reference */
5150         free_extent_map(em);
5151
5152         return ret;
5153 }
5154
5155 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5156 {
5157         struct btrfs_fs_info *info = trans->fs_info;
5158         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5159         struct btrfs_device_info *devices_info = NULL;
5160         struct alloc_chunk_ctl ctl;
5161         int ret;
5162
5163         lockdep_assert_held(&info->chunk_mutex);
5164
5165         if (!alloc_profile_is_valid(type, 0)) {
5166                 ASSERT(0);
5167                 return -EINVAL;
5168         }
5169
5170         if (list_empty(&fs_devices->alloc_list)) {
5171                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5172                         btrfs_debug(info, "%s: no writable device", __func__);
5173                 return -ENOSPC;
5174         }
5175
5176         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5177                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5178                 ASSERT(0);
5179                 return -EINVAL;
5180         }
5181
5182         ctl.start = find_next_chunk(info);
5183         ctl.type = type;
5184         init_alloc_chunk_ctl(fs_devices, &ctl);
5185
5186         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5187                                GFP_NOFS);
5188         if (!devices_info)
5189                 return -ENOMEM;
5190
5191         ret = gather_device_info(fs_devices, &ctl, devices_info);
5192         if (ret < 0)
5193                 goto out;
5194
5195         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5196         if (ret < 0)
5197                 goto out;
5198
5199         ret = create_chunk(trans, &ctl, devices_info);
5200
5201 out:
5202         kfree(devices_info);
5203         return ret;
5204 }
5205
5206 /*
5207  * Chunk allocation falls into two parts. The first part does work
5208  * that makes the new allocated chunk usable, but does not do any operation
5209  * that modifies the chunk tree. The second part does the work that
5210  * requires modifying the chunk tree. This division is important for the
5211  * bootstrap process of adding storage to a seed btrfs.
5212  */
5213 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5214                              u64 chunk_offset, u64 chunk_size)
5215 {
5216         struct btrfs_fs_info *fs_info = trans->fs_info;
5217         struct btrfs_root *extent_root = fs_info->extent_root;
5218         struct btrfs_root *chunk_root = fs_info->chunk_root;
5219         struct btrfs_key key;
5220         struct btrfs_device *device;
5221         struct btrfs_chunk *chunk;
5222         struct btrfs_stripe *stripe;
5223         struct extent_map *em;
5224         struct map_lookup *map;
5225         size_t item_size;
5226         u64 dev_offset;
5227         u64 stripe_size;
5228         int i = 0;
5229         int ret = 0;
5230
5231         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5232         if (IS_ERR(em))
5233                 return PTR_ERR(em);
5234
5235         map = em->map_lookup;
5236         item_size = btrfs_chunk_item_size(map->num_stripes);
5237         stripe_size = em->orig_block_len;
5238
5239         chunk = kzalloc(item_size, GFP_NOFS);
5240         if (!chunk) {
5241                 ret = -ENOMEM;
5242                 goto out;
5243         }
5244
5245         /*
5246          * Take the device list mutex to prevent races with the final phase of
5247          * a device replace operation that replaces the device object associated
5248          * with the map's stripes, because the device object's id can change
5249          * at any time during that final phase of the device replace operation
5250          * (dev-replace.c:btrfs_dev_replace_finishing()).
5251          */
5252         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5253         for (i = 0; i < map->num_stripes; i++) {
5254                 device = map->stripes[i].dev;
5255                 dev_offset = map->stripes[i].physical;
5256
5257                 ret = btrfs_update_device(trans, device);
5258                 if (ret)
5259                         break;
5260                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5261                                              dev_offset, stripe_size);
5262                 if (ret)
5263                         break;
5264         }
5265         if (ret) {
5266                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5267                 goto out;
5268         }
5269
5270         stripe = &chunk->stripe;
5271         for (i = 0; i < map->num_stripes; i++) {
5272                 device = map->stripes[i].dev;
5273                 dev_offset = map->stripes[i].physical;
5274
5275                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5276                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5277                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5278                 stripe++;
5279         }
5280         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5281
5282         btrfs_set_stack_chunk_length(chunk, chunk_size);
5283         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5284         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5285         btrfs_set_stack_chunk_type(chunk, map->type);
5286         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5287         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5288         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5289         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5290         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5291
5292         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5293         key.type = BTRFS_CHUNK_ITEM_KEY;
5294         key.offset = chunk_offset;
5295
5296         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5297         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5298                 /*
5299                  * TODO: Cleanup of inserted chunk root in case of
5300                  * failure.
5301                  */
5302                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5303         }
5304
5305 out:
5306         kfree(chunk);
5307         free_extent_map(em);
5308         return ret;
5309 }
5310
5311 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5312 {
5313         struct btrfs_fs_info *fs_info = trans->fs_info;
5314         u64 alloc_profile;
5315         int ret;
5316
5317         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5318         ret = btrfs_alloc_chunk(trans, alloc_profile);
5319         if (ret)
5320                 return ret;
5321
5322         alloc_profile = btrfs_system_alloc_profile(fs_info);
5323         ret = btrfs_alloc_chunk(trans, alloc_profile);
5324         return ret;
5325 }
5326
5327 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5328 {
5329         const int index = btrfs_bg_flags_to_raid_index(map->type);
5330
5331         return btrfs_raid_array[index].tolerated_failures;
5332 }
5333
5334 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5335 {
5336         struct extent_map *em;
5337         struct map_lookup *map;
5338         int readonly = 0;
5339         int miss_ndevs = 0;
5340         int i;
5341
5342         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5343         if (IS_ERR(em))
5344                 return 1;
5345
5346         map = em->map_lookup;
5347         for (i = 0; i < map->num_stripes; i++) {
5348                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5349                                         &map->stripes[i].dev->dev_state)) {
5350                         miss_ndevs++;
5351                         continue;
5352                 }
5353                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5354                                         &map->stripes[i].dev->dev_state)) {
5355                         readonly = 1;
5356                         goto end;
5357                 }
5358         }
5359
5360         /*
5361          * If the number of missing devices is larger than max errors,
5362          * we can not write the data into that chunk successfully, so
5363          * set it readonly.
5364          */
5365         if (miss_ndevs > btrfs_chunk_max_errors(map))
5366                 readonly = 1;
5367 end:
5368         free_extent_map(em);
5369         return readonly;
5370 }
5371
5372 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5373 {
5374         struct extent_map *em;
5375
5376         while (1) {
5377                 write_lock(&tree->lock);
5378                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5379                 if (em)
5380                         remove_extent_mapping(tree, em);
5381                 write_unlock(&tree->lock);
5382                 if (!em)
5383                         break;
5384                 /* once for us */
5385                 free_extent_map(em);
5386                 /* once for the tree */
5387                 free_extent_map(em);
5388         }
5389 }
5390
5391 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5392 {
5393         struct extent_map *em;
5394         struct map_lookup *map;
5395         int ret;
5396
5397         em = btrfs_get_chunk_map(fs_info, logical, len);
5398         if (IS_ERR(em))
5399                 /*
5400                  * We could return errors for these cases, but that could get
5401                  * ugly and we'd probably do the same thing which is just not do
5402                  * anything else and exit, so return 1 so the callers don't try
5403                  * to use other copies.
5404                  */
5405                 return 1;
5406
5407         map = em->map_lookup;
5408         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5409                 ret = map->num_stripes;
5410         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5411                 ret = map->sub_stripes;
5412         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5413                 ret = 2;
5414         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5415                 /*
5416                  * There could be two corrupted data stripes, we need
5417                  * to loop retry in order to rebuild the correct data.
5418                  *
5419                  * Fail a stripe at a time on every retry except the
5420                  * stripe under reconstruction.
5421                  */
5422                 ret = map->num_stripes;
5423         else
5424                 ret = 1;
5425         free_extent_map(em);
5426
5427         down_read(&fs_info->dev_replace.rwsem);
5428         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5429             fs_info->dev_replace.tgtdev)
5430                 ret++;
5431         up_read(&fs_info->dev_replace.rwsem);
5432
5433         return ret;
5434 }
5435
5436 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5437                                     u64 logical)
5438 {
5439         struct extent_map *em;
5440         struct map_lookup *map;
5441         unsigned long len = fs_info->sectorsize;
5442
5443         em = btrfs_get_chunk_map(fs_info, logical, len);
5444
5445         if (!WARN_ON(IS_ERR(em))) {
5446                 map = em->map_lookup;
5447                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5448                         len = map->stripe_len * nr_data_stripes(map);
5449                 free_extent_map(em);
5450         }
5451         return len;
5452 }
5453
5454 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5455 {
5456         struct extent_map *em;
5457         struct map_lookup *map;
5458         int ret = 0;
5459
5460         em = btrfs_get_chunk_map(fs_info, logical, len);
5461
5462         if(!WARN_ON(IS_ERR(em))) {
5463                 map = em->map_lookup;
5464                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5465                         ret = 1;
5466                 free_extent_map(em);
5467         }
5468         return ret;
5469 }
5470
5471 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5472                             struct map_lookup *map, int first,
5473                             int dev_replace_is_ongoing)
5474 {
5475         int i;
5476         int num_stripes;
5477         int preferred_mirror;
5478         int tolerance;
5479         struct btrfs_device *srcdev;
5480
5481         ASSERT((map->type &
5482                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5483
5484         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5485                 num_stripes = map->sub_stripes;
5486         else
5487                 num_stripes = map->num_stripes;
5488
5489         preferred_mirror = first + current->pid % num_stripes;
5490
5491         if (dev_replace_is_ongoing &&
5492             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5493              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5494                 srcdev = fs_info->dev_replace.srcdev;
5495         else
5496                 srcdev = NULL;
5497
5498         /*
5499          * try to avoid the drive that is the source drive for a
5500          * dev-replace procedure, only choose it if no other non-missing
5501          * mirror is available
5502          */
5503         for (tolerance = 0; tolerance < 2; tolerance++) {
5504                 if (map->stripes[preferred_mirror].dev->bdev &&
5505                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5506                         return preferred_mirror;
5507                 for (i = first; i < first + num_stripes; i++) {
5508                         if (map->stripes[i].dev->bdev &&
5509                             (tolerance || map->stripes[i].dev != srcdev))
5510                                 return i;
5511                 }
5512         }
5513
5514         /* we couldn't find one that doesn't fail.  Just return something
5515          * and the io error handling code will clean up eventually
5516          */
5517         return preferred_mirror;
5518 }
5519
5520 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5521 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5522 {
5523         int i;
5524         int again = 1;
5525
5526         while (again) {
5527                 again = 0;
5528                 for (i = 0; i < num_stripes - 1; i++) {
5529                         /* Swap if parity is on a smaller index */
5530                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5531                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5532                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5533                                 again = 1;
5534                         }
5535                 }
5536         }
5537 }
5538
5539 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5540 {
5541         struct btrfs_bio *bbio = kzalloc(
5542                  /* the size of the btrfs_bio */
5543                 sizeof(struct btrfs_bio) +
5544                 /* plus the variable array for the stripes */
5545                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5546                 /* plus the variable array for the tgt dev */
5547                 sizeof(int) * (real_stripes) +
5548                 /*
5549                  * plus the raid_map, which includes both the tgt dev
5550                  * and the stripes
5551                  */
5552                 sizeof(u64) * (total_stripes),
5553                 GFP_NOFS|__GFP_NOFAIL);
5554
5555         atomic_set(&bbio->error, 0);
5556         refcount_set(&bbio->refs, 1);
5557
5558         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5559         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5560
5561         return bbio;
5562 }
5563
5564 void btrfs_get_bbio(struct btrfs_bio *bbio)
5565 {
5566         WARN_ON(!refcount_read(&bbio->refs));
5567         refcount_inc(&bbio->refs);
5568 }
5569
5570 void btrfs_put_bbio(struct btrfs_bio *bbio)
5571 {
5572         if (!bbio)
5573                 return;
5574         if (refcount_dec_and_test(&bbio->refs))
5575                 kfree(bbio);
5576 }
5577
5578 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5579 /*
5580  * Please note that, discard won't be sent to target device of device
5581  * replace.
5582  */
5583 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5584                                          u64 logical, u64 *length_ret,
5585                                          struct btrfs_bio **bbio_ret)
5586 {
5587         struct extent_map *em;
5588         struct map_lookup *map;
5589         struct btrfs_bio *bbio;
5590         u64 length = *length_ret;
5591         u64 offset;
5592         u64 stripe_nr;
5593         u64 stripe_nr_end;
5594         u64 stripe_end_offset;
5595         u64 stripe_cnt;
5596         u64 stripe_len;
5597         u64 stripe_offset;
5598         u64 num_stripes;
5599         u32 stripe_index;
5600         u32 factor = 0;
5601         u32 sub_stripes = 0;
5602         u64 stripes_per_dev = 0;
5603         u32 remaining_stripes = 0;
5604         u32 last_stripe = 0;
5605         int ret = 0;
5606         int i;
5607
5608         /* discard always return a bbio */
5609         ASSERT(bbio_ret);
5610
5611         em = btrfs_get_chunk_map(fs_info, logical, length);
5612         if (IS_ERR(em))
5613                 return PTR_ERR(em);
5614
5615         map = em->map_lookup;
5616         /* we don't discard raid56 yet */
5617         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5618                 ret = -EOPNOTSUPP;
5619                 goto out;
5620         }
5621
5622         offset = logical - em->start;
5623         length = min_t(u64, em->start + em->len - logical, length);
5624         *length_ret = length;
5625
5626         stripe_len = map->stripe_len;
5627         /*
5628          * stripe_nr counts the total number of stripes we have to stride
5629          * to get to this block
5630          */
5631         stripe_nr = div64_u64(offset, stripe_len);
5632
5633         /* stripe_offset is the offset of this block in its stripe */
5634         stripe_offset = offset - stripe_nr * stripe_len;
5635
5636         stripe_nr_end = round_up(offset + length, map->stripe_len);
5637         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5638         stripe_cnt = stripe_nr_end - stripe_nr;
5639         stripe_end_offset = stripe_nr_end * map->stripe_len -
5640                             (offset + length);
5641         /*
5642          * after this, stripe_nr is the number of stripes on this
5643          * device we have to walk to find the data, and stripe_index is
5644          * the number of our device in the stripe array
5645          */
5646         num_stripes = 1;
5647         stripe_index = 0;
5648         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5649                          BTRFS_BLOCK_GROUP_RAID10)) {
5650                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5651                         sub_stripes = 1;
5652                 else
5653                         sub_stripes = map->sub_stripes;
5654
5655                 factor = map->num_stripes / sub_stripes;
5656                 num_stripes = min_t(u64, map->num_stripes,
5657                                     sub_stripes * stripe_cnt);
5658                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5659                 stripe_index *= sub_stripes;
5660                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5661                                               &remaining_stripes);
5662                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5663                 last_stripe *= sub_stripes;
5664         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5665                                 BTRFS_BLOCK_GROUP_DUP)) {
5666                 num_stripes = map->num_stripes;
5667         } else {
5668                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5669                                         &stripe_index);
5670         }
5671
5672         bbio = alloc_btrfs_bio(num_stripes, 0);
5673         if (!bbio) {
5674                 ret = -ENOMEM;
5675                 goto out;
5676         }
5677
5678         for (i = 0; i < num_stripes; i++) {
5679                 bbio->stripes[i].physical =
5680                         map->stripes[stripe_index].physical +
5681                         stripe_offset + stripe_nr * map->stripe_len;
5682                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5683
5684                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5685                                  BTRFS_BLOCK_GROUP_RAID10)) {
5686                         bbio->stripes[i].length = stripes_per_dev *
5687                                 map->stripe_len;
5688
5689                         if (i / sub_stripes < remaining_stripes)
5690                                 bbio->stripes[i].length +=
5691                                         map->stripe_len;
5692
5693                         /*
5694                          * Special for the first stripe and
5695                          * the last stripe:
5696                          *
5697                          * |-------|...|-------|
5698                          *     |----------|
5699                          *    off     end_off
5700                          */
5701                         if (i < sub_stripes)
5702                                 bbio->stripes[i].length -=
5703                                         stripe_offset;
5704
5705                         if (stripe_index >= last_stripe &&
5706                             stripe_index <= (last_stripe +
5707                                              sub_stripes - 1))
5708                                 bbio->stripes[i].length -=
5709                                         stripe_end_offset;
5710
5711                         if (i == sub_stripes - 1)
5712                                 stripe_offset = 0;
5713                 } else {
5714                         bbio->stripes[i].length = length;
5715                 }
5716
5717                 stripe_index++;
5718                 if (stripe_index == map->num_stripes) {
5719                         stripe_index = 0;
5720                         stripe_nr++;
5721                 }
5722         }
5723
5724         *bbio_ret = bbio;
5725         bbio->map_type = map->type;
5726         bbio->num_stripes = num_stripes;
5727 out:
5728         free_extent_map(em);
5729         return ret;
5730 }
5731
5732 /*
5733  * In dev-replace case, for repair case (that's the only case where the mirror
5734  * is selected explicitly when calling btrfs_map_block), blocks left of the
5735  * left cursor can also be read from the target drive.
5736  *
5737  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5738  * array of stripes.
5739  * For READ, it also needs to be supported using the same mirror number.
5740  *
5741  * If the requested block is not left of the left cursor, EIO is returned. This
5742  * can happen because btrfs_num_copies() returns one more in the dev-replace
5743  * case.
5744  */
5745 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5746                                          u64 logical, u64 length,
5747                                          u64 srcdev_devid, int *mirror_num,
5748                                          u64 *physical)
5749 {
5750         struct btrfs_bio *bbio = NULL;
5751         int num_stripes;
5752         int index_srcdev = 0;
5753         int found = 0;
5754         u64 physical_of_found = 0;
5755         int i;
5756         int ret = 0;
5757
5758         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5759                                 logical, &length, &bbio, 0, 0);
5760         if (ret) {
5761                 ASSERT(bbio == NULL);
5762                 return ret;
5763         }
5764
5765         num_stripes = bbio->num_stripes;
5766         if (*mirror_num > num_stripes) {
5767                 /*
5768                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5769                  * that means that the requested area is not left of the left
5770                  * cursor
5771                  */
5772                 btrfs_put_bbio(bbio);
5773                 return -EIO;
5774         }
5775
5776         /*
5777          * process the rest of the function using the mirror_num of the source
5778          * drive. Therefore look it up first.  At the end, patch the device
5779          * pointer to the one of the target drive.
5780          */
5781         for (i = 0; i < num_stripes; i++) {
5782                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5783                         continue;
5784
5785                 /*
5786                  * In case of DUP, in order to keep it simple, only add the
5787                  * mirror with the lowest physical address
5788                  */
5789                 if (found &&
5790                     physical_of_found <= bbio->stripes[i].physical)
5791                         continue;
5792
5793                 index_srcdev = i;
5794                 found = 1;
5795                 physical_of_found = bbio->stripes[i].physical;
5796         }
5797
5798         btrfs_put_bbio(bbio);
5799
5800         ASSERT(found);
5801         if (!found)
5802                 return -EIO;
5803
5804         *mirror_num = index_srcdev + 1;
5805         *physical = physical_of_found;
5806         return ret;
5807 }
5808
5809 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5810                                       struct btrfs_bio **bbio_ret,
5811                                       struct btrfs_dev_replace *dev_replace,
5812                                       int *num_stripes_ret, int *max_errors_ret)
5813 {
5814         struct btrfs_bio *bbio = *bbio_ret;
5815         u64 srcdev_devid = dev_replace->srcdev->devid;
5816         int tgtdev_indexes = 0;
5817         int num_stripes = *num_stripes_ret;
5818         int max_errors = *max_errors_ret;
5819         int i;
5820
5821         if (op == BTRFS_MAP_WRITE) {
5822                 int index_where_to_add;
5823
5824                 /*
5825                  * duplicate the write operations while the dev replace
5826                  * procedure is running. Since the copying of the old disk to
5827                  * the new disk takes place at run time while the filesystem is
5828                  * mounted writable, the regular write operations to the old
5829                  * disk have to be duplicated to go to the new disk as well.
5830                  *
5831                  * Note that device->missing is handled by the caller, and that
5832                  * the write to the old disk is already set up in the stripes
5833                  * array.
5834                  */
5835                 index_where_to_add = num_stripes;
5836                 for (i = 0; i < num_stripes; i++) {
5837                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5838                                 /* write to new disk, too */
5839                                 struct btrfs_bio_stripe *new =
5840                                         bbio->stripes + index_where_to_add;
5841                                 struct btrfs_bio_stripe *old =
5842                                         bbio->stripes + i;
5843
5844                                 new->physical = old->physical;
5845                                 new->length = old->length;
5846                                 new->dev = dev_replace->tgtdev;
5847                                 bbio->tgtdev_map[i] = index_where_to_add;
5848                                 index_where_to_add++;
5849                                 max_errors++;
5850                                 tgtdev_indexes++;
5851                         }
5852                 }
5853                 num_stripes = index_where_to_add;
5854         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5855                 int index_srcdev = 0;
5856                 int found = 0;
5857                 u64 physical_of_found = 0;
5858
5859                 /*
5860                  * During the dev-replace procedure, the target drive can also
5861                  * be used to read data in case it is needed to repair a corrupt
5862                  * block elsewhere. This is possible if the requested area is
5863                  * left of the left cursor. In this area, the target drive is a
5864                  * full copy of the source drive.
5865                  */
5866                 for (i = 0; i < num_stripes; i++) {
5867                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5868                                 /*
5869                                  * In case of DUP, in order to keep it simple,
5870                                  * only add the mirror with the lowest physical
5871                                  * address
5872                                  */
5873                                 if (found &&
5874                                     physical_of_found <=
5875                                      bbio->stripes[i].physical)
5876                                         continue;
5877                                 index_srcdev = i;
5878                                 found = 1;
5879                                 physical_of_found = bbio->stripes[i].physical;
5880                         }
5881                 }
5882                 if (found) {
5883                         struct btrfs_bio_stripe *tgtdev_stripe =
5884                                 bbio->stripes + num_stripes;
5885
5886                         tgtdev_stripe->physical = physical_of_found;
5887                         tgtdev_stripe->length =
5888                                 bbio->stripes[index_srcdev].length;
5889                         tgtdev_stripe->dev = dev_replace->tgtdev;
5890                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5891
5892                         tgtdev_indexes++;
5893                         num_stripes++;
5894                 }
5895         }
5896
5897         *num_stripes_ret = num_stripes;
5898         *max_errors_ret = max_errors;
5899         bbio->num_tgtdevs = tgtdev_indexes;
5900         *bbio_ret = bbio;
5901 }
5902
5903 static bool need_full_stripe(enum btrfs_map_op op)
5904 {
5905         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5906 }
5907
5908 /*
5909  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5910  *                     tuple. This information is used to calculate how big a
5911  *                     particular bio can get before it straddles a stripe.
5912  *
5913  * @fs_info - the filesystem
5914  * @logical - address that we want to figure out the geometry of
5915  * @len     - the length of IO we are going to perform, starting at @logical
5916  * @op      - type of operation - write or read
5917  * @io_geom - pointer used to return values
5918  *
5919  * Returns < 0 in case a chunk for the given logical address cannot be found,
5920  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5921  */
5922 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5923                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5924 {
5925         struct extent_map *em;
5926         struct map_lookup *map;
5927         u64 offset;
5928         u64 stripe_offset;
5929         u64 stripe_nr;
5930         u64 stripe_len;
5931         u64 raid56_full_stripe_start = (u64)-1;
5932         int data_stripes;
5933         int ret = 0;
5934
5935         ASSERT(op != BTRFS_MAP_DISCARD);
5936
5937         em = btrfs_get_chunk_map(fs_info, logical, len);
5938         if (IS_ERR(em))
5939                 return PTR_ERR(em);
5940
5941         map = em->map_lookup;
5942         /* Offset of this logical address in the chunk */
5943         offset = logical - em->start;
5944         /* Len of a stripe in a chunk */
5945         stripe_len = map->stripe_len;
5946         /* Stripe wher this block falls in */
5947         stripe_nr = div64_u64(offset, stripe_len);
5948         /* Offset of stripe in the chunk */
5949         stripe_offset = stripe_nr * stripe_len;
5950         if (offset < stripe_offset) {
5951                 btrfs_crit(fs_info,
5952 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5953                         stripe_offset, offset, em->start, logical, stripe_len);
5954                 ret = -EINVAL;
5955                 goto out;
5956         }
5957
5958         /* stripe_offset is the offset of this block in its stripe */
5959         stripe_offset = offset - stripe_offset;
5960         data_stripes = nr_data_stripes(map);
5961
5962         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5963                 u64 max_len = stripe_len - stripe_offset;
5964
5965                 /*
5966                  * In case of raid56, we need to know the stripe aligned start
5967                  */
5968                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5969                         unsigned long full_stripe_len = stripe_len * data_stripes;
5970                         raid56_full_stripe_start = offset;
5971
5972                         /*
5973                          * Allow a write of a full stripe, but make sure we
5974                          * don't allow straddling of stripes
5975                          */
5976                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5977                                         full_stripe_len);
5978                         raid56_full_stripe_start *= full_stripe_len;
5979
5980                         /*
5981                          * For writes to RAID[56], allow a full stripeset across
5982                          * all disks. For other RAID types and for RAID[56]
5983                          * reads, just allow a single stripe (on a single disk).
5984                          */
5985                         if (op == BTRFS_MAP_WRITE) {
5986                                 max_len = stripe_len * data_stripes -
5987                                           (offset - raid56_full_stripe_start);
5988                         }
5989                 }
5990                 len = min_t(u64, em->len - offset, max_len);
5991         } else {
5992                 len = em->len - offset;
5993         }
5994
5995         io_geom->len = len;
5996         io_geom->offset = offset;
5997         io_geom->stripe_len = stripe_len;
5998         io_geom->stripe_nr = stripe_nr;
5999         io_geom->stripe_offset = stripe_offset;
6000         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6001
6002 out:
6003         /* once for us */
6004         free_extent_map(em);
6005         return ret;
6006 }
6007
6008 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6009                              enum btrfs_map_op op,
6010                              u64 logical, u64 *length,
6011                              struct btrfs_bio **bbio_ret,
6012                              int mirror_num, int need_raid_map)
6013 {
6014         struct extent_map *em;
6015         struct map_lookup *map;
6016         u64 stripe_offset;
6017         u64 stripe_nr;
6018         u64 stripe_len;
6019         u32 stripe_index;
6020         int data_stripes;
6021         int i;
6022         int ret = 0;
6023         int num_stripes;
6024         int max_errors = 0;
6025         int tgtdev_indexes = 0;
6026         struct btrfs_bio *bbio = NULL;
6027         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6028         int dev_replace_is_ongoing = 0;
6029         int num_alloc_stripes;
6030         int patch_the_first_stripe_for_dev_replace = 0;
6031         u64 physical_to_patch_in_first_stripe = 0;
6032         u64 raid56_full_stripe_start = (u64)-1;
6033         struct btrfs_io_geometry geom;
6034
6035         ASSERT(bbio_ret);
6036         ASSERT(op != BTRFS_MAP_DISCARD);
6037
6038         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6039         if (ret < 0)
6040                 return ret;
6041
6042         em = btrfs_get_chunk_map(fs_info, logical, *length);
6043         ASSERT(!IS_ERR(em));
6044         map = em->map_lookup;
6045
6046         *length = geom.len;
6047         stripe_len = geom.stripe_len;
6048         stripe_nr = geom.stripe_nr;
6049         stripe_offset = geom.stripe_offset;
6050         raid56_full_stripe_start = geom.raid56_stripe_offset;
6051         data_stripes = nr_data_stripes(map);
6052
6053         down_read(&dev_replace->rwsem);
6054         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6055         /*
6056          * Hold the semaphore for read during the whole operation, write is
6057          * requested at commit time but must wait.
6058          */
6059         if (!dev_replace_is_ongoing)
6060                 up_read(&dev_replace->rwsem);
6061
6062         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6063             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6064                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6065                                                     dev_replace->srcdev->devid,
6066                                                     &mirror_num,
6067                                             &physical_to_patch_in_first_stripe);
6068                 if (ret)
6069                         goto out;
6070                 else
6071                         patch_the_first_stripe_for_dev_replace = 1;
6072         } else if (mirror_num > map->num_stripes) {
6073                 mirror_num = 0;
6074         }
6075
6076         num_stripes = 1;
6077         stripe_index = 0;
6078         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6079                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6080                                 &stripe_index);
6081                 if (!need_full_stripe(op))
6082                         mirror_num = 1;
6083         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6084                 if (need_full_stripe(op))
6085                         num_stripes = map->num_stripes;
6086                 else if (mirror_num)
6087                         stripe_index = mirror_num - 1;
6088                 else {
6089                         stripe_index = find_live_mirror(fs_info, map, 0,
6090                                             dev_replace_is_ongoing);
6091                         mirror_num = stripe_index + 1;
6092                 }
6093
6094         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6095                 if (need_full_stripe(op)) {
6096                         num_stripes = map->num_stripes;
6097                 } else if (mirror_num) {
6098                         stripe_index = mirror_num - 1;
6099                 } else {
6100                         mirror_num = 1;
6101                 }
6102
6103         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6104                 u32 factor = map->num_stripes / map->sub_stripes;
6105
6106                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6107                 stripe_index *= map->sub_stripes;
6108
6109                 if (need_full_stripe(op))
6110                         num_stripes = map->sub_stripes;
6111                 else if (mirror_num)
6112                         stripe_index += mirror_num - 1;
6113                 else {
6114                         int old_stripe_index = stripe_index;
6115                         stripe_index = find_live_mirror(fs_info, map,
6116                                               stripe_index,
6117                                               dev_replace_is_ongoing);
6118                         mirror_num = stripe_index - old_stripe_index + 1;
6119                 }
6120
6121         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6122                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6123                         /* push stripe_nr back to the start of the full stripe */
6124                         stripe_nr = div64_u64(raid56_full_stripe_start,
6125                                         stripe_len * data_stripes);
6126
6127                         /* RAID[56] write or recovery. Return all stripes */
6128                         num_stripes = map->num_stripes;
6129                         max_errors = nr_parity_stripes(map);
6130
6131                         *length = map->stripe_len;
6132                         stripe_index = 0;
6133                         stripe_offset = 0;
6134                 } else {
6135                         /*
6136                          * Mirror #0 or #1 means the original data block.
6137                          * Mirror #2 is RAID5 parity block.
6138                          * Mirror #3 is RAID6 Q block.
6139                          */
6140                         stripe_nr = div_u64_rem(stripe_nr,
6141                                         data_stripes, &stripe_index);
6142                         if (mirror_num > 1)
6143                                 stripe_index = data_stripes + mirror_num - 2;
6144
6145                         /* We distribute the parity blocks across stripes */
6146                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6147                                         &stripe_index);
6148                         if (!need_full_stripe(op) && mirror_num <= 1)
6149                                 mirror_num = 1;
6150                 }
6151         } else {
6152                 /*
6153                  * after this, stripe_nr is the number of stripes on this
6154                  * device we have to walk to find the data, and stripe_index is
6155                  * the number of our device in the stripe array
6156                  */
6157                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6158                                 &stripe_index);
6159                 mirror_num = stripe_index + 1;
6160         }
6161         if (stripe_index >= map->num_stripes) {
6162                 btrfs_crit(fs_info,
6163                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6164                            stripe_index, map->num_stripes);
6165                 ret = -EINVAL;
6166                 goto out;
6167         }
6168
6169         num_alloc_stripes = num_stripes;
6170         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6171                 if (op == BTRFS_MAP_WRITE)
6172                         num_alloc_stripes <<= 1;
6173                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6174                         num_alloc_stripes++;
6175                 tgtdev_indexes = num_stripes;
6176         }
6177
6178         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6179         if (!bbio) {
6180                 ret = -ENOMEM;
6181                 goto out;
6182         }
6183
6184         for (i = 0; i < num_stripes; i++) {
6185                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6186                         stripe_offset + stripe_nr * map->stripe_len;
6187                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6188                 stripe_index++;
6189         }
6190
6191         /* build raid_map */
6192         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6193             (need_full_stripe(op) || mirror_num > 1)) {
6194                 u64 tmp;
6195                 unsigned rot;
6196
6197                 /* Work out the disk rotation on this stripe-set */
6198                 div_u64_rem(stripe_nr, num_stripes, &rot);
6199
6200                 /* Fill in the logical address of each stripe */
6201                 tmp = stripe_nr * data_stripes;
6202                 for (i = 0; i < data_stripes; i++)
6203                         bbio->raid_map[(i+rot) % num_stripes] =
6204                                 em->start + (tmp + i) * map->stripe_len;
6205
6206                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6207                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6208                         bbio->raid_map[(i+rot+1) % num_stripes] =
6209                                 RAID6_Q_STRIPE;
6210
6211                 sort_parity_stripes(bbio, num_stripes);
6212         }
6213
6214         if (need_full_stripe(op))
6215                 max_errors = btrfs_chunk_max_errors(map);
6216
6217         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6218             need_full_stripe(op)) {
6219                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6220                                           &max_errors);
6221         }
6222
6223         *bbio_ret = bbio;
6224         bbio->map_type = map->type;
6225         bbio->num_stripes = num_stripes;
6226         bbio->max_errors = max_errors;
6227         bbio->mirror_num = mirror_num;
6228
6229         /*
6230          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6231          * mirror_num == num_stripes + 1 && dev_replace target drive is
6232          * available as a mirror
6233          */
6234         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6235                 WARN_ON(num_stripes > 1);
6236                 bbio->stripes[0].dev = dev_replace->tgtdev;
6237                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6238                 bbio->mirror_num = map->num_stripes + 1;
6239         }
6240 out:
6241         if (dev_replace_is_ongoing) {
6242                 lockdep_assert_held(&dev_replace->rwsem);
6243                 /* Unlock and let waiting writers proceed */
6244                 up_read(&dev_replace->rwsem);
6245         }
6246         free_extent_map(em);
6247         return ret;
6248 }
6249
6250 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6251                       u64 logical, u64 *length,
6252                       struct btrfs_bio **bbio_ret, int mirror_num)
6253 {
6254         if (op == BTRFS_MAP_DISCARD)
6255                 return __btrfs_map_block_for_discard(fs_info, logical,
6256                                                      length, bbio_ret);
6257
6258         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6259                                  mirror_num, 0);
6260 }
6261
6262 /* For Scrub/replace */
6263 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6264                      u64 logical, u64 *length,
6265                      struct btrfs_bio **bbio_ret)
6266 {
6267         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6268 }
6269
6270 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6271 {
6272         bio->bi_private = bbio->private;
6273         bio->bi_end_io = bbio->end_io;
6274         bio_endio(bio);
6275
6276         btrfs_put_bbio(bbio);
6277 }
6278
6279 static void btrfs_end_bio(struct bio *bio)
6280 {
6281         struct btrfs_bio *bbio = bio->bi_private;
6282         int is_orig_bio = 0;
6283
6284         if (bio->bi_status) {
6285                 atomic_inc(&bbio->error);
6286                 if (bio->bi_status == BLK_STS_IOERR ||
6287                     bio->bi_status == BLK_STS_TARGET) {
6288                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6289
6290                         ASSERT(dev->bdev);
6291                         if (bio_op(bio) == REQ_OP_WRITE)
6292                                 btrfs_dev_stat_inc_and_print(dev,
6293                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6294                         else if (!(bio->bi_opf & REQ_RAHEAD))
6295                                 btrfs_dev_stat_inc_and_print(dev,
6296                                                 BTRFS_DEV_STAT_READ_ERRS);
6297                         if (bio->bi_opf & REQ_PREFLUSH)
6298                                 btrfs_dev_stat_inc_and_print(dev,
6299                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6300                 }
6301         }
6302
6303         if (bio == bbio->orig_bio)
6304                 is_orig_bio = 1;
6305
6306         btrfs_bio_counter_dec(bbio->fs_info);
6307
6308         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6309                 if (!is_orig_bio) {
6310                         bio_put(bio);
6311                         bio = bbio->orig_bio;
6312                 }
6313
6314                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6315                 /* only send an error to the higher layers if it is
6316                  * beyond the tolerance of the btrfs bio
6317                  */
6318                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6319                         bio->bi_status = BLK_STS_IOERR;
6320                 } else {
6321                         /*
6322                          * this bio is actually up to date, we didn't
6323                          * go over the max number of errors
6324                          */
6325                         bio->bi_status = BLK_STS_OK;
6326                 }
6327
6328                 btrfs_end_bbio(bbio, bio);
6329         } else if (!is_orig_bio) {
6330                 bio_put(bio);
6331         }
6332 }
6333
6334 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6335                               u64 physical, struct btrfs_device *dev)
6336 {
6337         struct btrfs_fs_info *fs_info = bbio->fs_info;
6338
6339         bio->bi_private = bbio;
6340         btrfs_io_bio(bio)->device = dev;
6341         bio->bi_end_io = btrfs_end_bio;
6342         bio->bi_iter.bi_sector = physical >> 9;
6343         btrfs_debug_in_rcu(fs_info,
6344         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6345                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6346                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6347                 dev->devid, bio->bi_iter.bi_size);
6348         bio_set_dev(bio, dev->bdev);
6349
6350         btrfs_bio_counter_inc_noblocked(fs_info);
6351
6352         btrfsic_submit_bio(bio);
6353 }
6354
6355 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6356 {
6357         atomic_inc(&bbio->error);
6358         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6359                 /* Should be the original bio. */
6360                 WARN_ON(bio != bbio->orig_bio);
6361
6362                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6363                 bio->bi_iter.bi_sector = logical >> 9;
6364                 if (atomic_read(&bbio->error) > bbio->max_errors)
6365                         bio->bi_status = BLK_STS_IOERR;
6366                 else
6367                         bio->bi_status = BLK_STS_OK;
6368                 btrfs_end_bbio(bbio, bio);
6369         }
6370 }
6371
6372 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6373                            int mirror_num)
6374 {
6375         struct btrfs_device *dev;
6376         struct bio *first_bio = bio;
6377         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6378         u64 length = 0;
6379         u64 map_length;
6380         int ret;
6381         int dev_nr;
6382         int total_devs;
6383         struct btrfs_bio *bbio = NULL;
6384
6385         length = bio->bi_iter.bi_size;
6386         map_length = length;
6387
6388         btrfs_bio_counter_inc_blocked(fs_info);
6389         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6390                                 &map_length, &bbio, mirror_num, 1);
6391         if (ret) {
6392                 btrfs_bio_counter_dec(fs_info);
6393                 return errno_to_blk_status(ret);
6394         }
6395
6396         total_devs = bbio->num_stripes;
6397         bbio->orig_bio = first_bio;
6398         bbio->private = first_bio->bi_private;
6399         bbio->end_io = first_bio->bi_end_io;
6400         bbio->fs_info = fs_info;
6401         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6402
6403         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6404             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6405                 /* In this case, map_length has been set to the length of
6406                    a single stripe; not the whole write */
6407                 if (bio_op(bio) == REQ_OP_WRITE) {
6408                         ret = raid56_parity_write(fs_info, bio, bbio,
6409                                                   map_length);
6410                 } else {
6411                         ret = raid56_parity_recover(fs_info, bio, bbio,
6412                                                     map_length, mirror_num, 1);
6413                 }
6414
6415                 btrfs_bio_counter_dec(fs_info);
6416                 return errno_to_blk_status(ret);
6417         }
6418
6419         if (map_length < length) {
6420                 btrfs_crit(fs_info,
6421                            "mapping failed logical %llu bio len %llu len %llu",
6422                            logical, length, map_length);
6423                 BUG();
6424         }
6425
6426         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6427                 dev = bbio->stripes[dev_nr].dev;
6428                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6429                                                    &dev->dev_state) ||
6430                     (bio_op(first_bio) == REQ_OP_WRITE &&
6431                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6432                         bbio_error(bbio, first_bio, logical);
6433                         continue;
6434                 }
6435
6436                 if (dev_nr < total_devs - 1)
6437                         bio = btrfs_bio_clone(first_bio);
6438                 else
6439                         bio = first_bio;
6440
6441                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6442         }
6443         btrfs_bio_counter_dec(fs_info);
6444         return BLK_STS_OK;
6445 }
6446
6447 /*
6448  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6449  * return NULL.
6450  *
6451  * If devid and uuid are both specified, the match must be exact, otherwise
6452  * only devid is used.
6453  *
6454  * If @seed is true, traverse through the seed devices.
6455  */
6456 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6457                                        u64 devid, u8 *uuid, u8 *fsid,
6458                                        bool seed)
6459 {
6460         struct btrfs_device *device;
6461
6462         while (fs_devices) {
6463                 if (!fsid ||
6464                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6465                         list_for_each_entry(device, &fs_devices->devices,
6466                                             dev_list) {
6467                                 if (device->devid == devid &&
6468                                     (!uuid || memcmp(device->uuid, uuid,
6469                                                      BTRFS_UUID_SIZE) == 0))
6470                                         return device;
6471                         }
6472                 }
6473                 if (seed)
6474                         fs_devices = fs_devices->seed;
6475                 else
6476                         return NULL;
6477         }
6478         return NULL;
6479 }
6480
6481 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6482                                             u64 devid, u8 *dev_uuid)
6483 {
6484         struct btrfs_device *device;
6485         unsigned int nofs_flag;
6486
6487         /*
6488          * We call this under the chunk_mutex, so we want to use NOFS for this
6489          * allocation, however we don't want to change btrfs_alloc_device() to
6490          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6491          * places.
6492          */
6493         nofs_flag = memalloc_nofs_save();
6494         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6495         memalloc_nofs_restore(nofs_flag);
6496         if (IS_ERR(device))
6497                 return device;
6498
6499         list_add(&device->dev_list, &fs_devices->devices);
6500         device->fs_devices = fs_devices;
6501         fs_devices->num_devices++;
6502
6503         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6504         fs_devices->missing_devices++;
6505
6506         return device;
6507 }
6508
6509 /**
6510  * btrfs_alloc_device - allocate struct btrfs_device
6511  * @fs_info:    used only for generating a new devid, can be NULL if
6512  *              devid is provided (i.e. @devid != NULL).
6513  * @devid:      a pointer to devid for this device.  If NULL a new devid
6514  *              is generated.
6515  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6516  *              is generated.
6517  *
6518  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6519  * on error.  Returned struct is not linked onto any lists and must be
6520  * destroyed with btrfs_free_device.
6521  */
6522 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6523                                         const u64 *devid,
6524                                         const u8 *uuid)
6525 {
6526         struct btrfs_device *dev;
6527         u64 tmp;
6528
6529         if (WARN_ON(!devid && !fs_info))
6530                 return ERR_PTR(-EINVAL);
6531
6532         dev = __alloc_device();
6533         if (IS_ERR(dev))
6534                 return dev;
6535
6536         if (devid)
6537                 tmp = *devid;
6538         else {
6539                 int ret;
6540
6541                 ret = find_next_devid(fs_info, &tmp);
6542                 if (ret) {
6543                         btrfs_free_device(dev);
6544                         return ERR_PTR(ret);
6545                 }
6546         }
6547         dev->devid = tmp;
6548
6549         if (uuid)
6550                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6551         else
6552                 generate_random_uuid(dev->uuid);
6553
6554         return dev;
6555 }
6556
6557 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6558                                         u64 devid, u8 *uuid, bool error)
6559 {
6560         if (error)
6561                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6562                               devid, uuid);
6563         else
6564                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6565                               devid, uuid);
6566 }
6567
6568 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6569 {
6570         int index = btrfs_bg_flags_to_raid_index(type);
6571         int ncopies = btrfs_raid_array[index].ncopies;
6572         const int nparity = btrfs_raid_array[index].nparity;
6573         int data_stripes;
6574
6575         if (nparity)
6576                 data_stripes = num_stripes - nparity;
6577         else
6578                 data_stripes = num_stripes / ncopies;
6579
6580         return div_u64(chunk_len, data_stripes);
6581 }
6582
6583 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6584                           struct btrfs_chunk *chunk)
6585 {
6586         struct btrfs_fs_info *fs_info = leaf->fs_info;
6587         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6588         struct map_lookup *map;
6589         struct extent_map *em;
6590         u64 logical;
6591         u64 length;
6592         u64 devid;
6593         u8 uuid[BTRFS_UUID_SIZE];
6594         int num_stripes;
6595         int ret;
6596         int i;
6597
6598         logical = key->offset;
6599         length = btrfs_chunk_length(leaf, chunk);
6600         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6601
6602         /*
6603          * Only need to verify chunk item if we're reading from sys chunk array,
6604          * as chunk item in tree block is already verified by tree-checker.
6605          */
6606         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6607                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6608                 if (ret)
6609                         return ret;
6610         }
6611
6612         read_lock(&map_tree->lock);
6613         em = lookup_extent_mapping(map_tree, logical, 1);
6614         read_unlock(&map_tree->lock);
6615
6616         /* already mapped? */
6617         if (em && em->start <= logical && em->start + em->len > logical) {
6618                 free_extent_map(em);
6619                 return 0;
6620         } else if (em) {
6621                 free_extent_map(em);
6622         }
6623
6624         em = alloc_extent_map();
6625         if (!em)
6626                 return -ENOMEM;
6627         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6628         if (!map) {
6629                 free_extent_map(em);
6630                 return -ENOMEM;
6631         }
6632
6633         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6634         em->map_lookup = map;
6635         em->start = logical;
6636         em->len = length;
6637         em->orig_start = 0;
6638         em->block_start = 0;
6639         em->block_len = em->len;
6640
6641         map->num_stripes = num_stripes;
6642         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6643         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6644         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6645         map->type = btrfs_chunk_type(leaf, chunk);
6646         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6647         map->verified_stripes = 0;
6648         em->orig_block_len = calc_stripe_length(map->type, em->len,
6649                                                 map->num_stripes);
6650         for (i = 0; i < num_stripes; i++) {
6651                 map->stripes[i].physical =
6652                         btrfs_stripe_offset_nr(leaf, chunk, i);
6653                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6654                 read_extent_buffer(leaf, uuid, (unsigned long)
6655                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6656                                    BTRFS_UUID_SIZE);
6657                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6658                                                         devid, uuid, NULL, true);
6659                 if (!map->stripes[i].dev &&
6660                     !btrfs_test_opt(fs_info, DEGRADED)) {
6661                         free_extent_map(em);
6662                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6663                         return -ENOENT;
6664                 }
6665                 if (!map->stripes[i].dev) {
6666                         map->stripes[i].dev =
6667                                 add_missing_dev(fs_info->fs_devices, devid,
6668                                                 uuid);
6669                         if (IS_ERR(map->stripes[i].dev)) {
6670                                 free_extent_map(em);
6671                                 btrfs_err(fs_info,
6672                                         "failed to init missing dev %llu: %ld",
6673                                         devid, PTR_ERR(map->stripes[i].dev));
6674                                 return PTR_ERR(map->stripes[i].dev);
6675                         }
6676                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6677                 }
6678                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6679                                 &(map->stripes[i].dev->dev_state));
6680
6681         }
6682
6683         write_lock(&map_tree->lock);
6684         ret = add_extent_mapping(map_tree, em, 0);
6685         write_unlock(&map_tree->lock);
6686         if (ret < 0) {
6687                 btrfs_err(fs_info,
6688                           "failed to add chunk map, start=%llu len=%llu: %d",
6689                           em->start, em->len, ret);
6690         }
6691         free_extent_map(em);
6692
6693         return ret;
6694 }
6695
6696 static void fill_device_from_item(struct extent_buffer *leaf,
6697                                  struct btrfs_dev_item *dev_item,
6698                                  struct btrfs_device *device)
6699 {
6700         unsigned long ptr;
6701
6702         device->devid = btrfs_device_id(leaf, dev_item);
6703         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6704         device->total_bytes = device->disk_total_bytes;
6705         device->commit_total_bytes = device->disk_total_bytes;
6706         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6707         device->commit_bytes_used = device->bytes_used;
6708         device->type = btrfs_device_type(leaf, dev_item);
6709         device->io_align = btrfs_device_io_align(leaf, dev_item);
6710         device->io_width = btrfs_device_io_width(leaf, dev_item);
6711         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6712         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6713         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6714
6715         ptr = btrfs_device_uuid(dev_item);
6716         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6717 }
6718
6719 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6720                                                   u8 *fsid)
6721 {
6722         struct btrfs_fs_devices *fs_devices;
6723         int ret;
6724
6725         lockdep_assert_held(&uuid_mutex);
6726         ASSERT(fsid);
6727
6728         fs_devices = fs_info->fs_devices->seed;
6729         while (fs_devices) {
6730                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6731                         return fs_devices;
6732
6733                 fs_devices = fs_devices->seed;
6734         }
6735
6736         fs_devices = find_fsid(fsid, NULL);
6737         if (!fs_devices) {
6738                 if (!btrfs_test_opt(fs_info, DEGRADED))
6739                         return ERR_PTR(-ENOENT);
6740
6741                 fs_devices = alloc_fs_devices(fsid, NULL);
6742                 if (IS_ERR(fs_devices))
6743                         return fs_devices;
6744
6745                 fs_devices->seeding = true;
6746                 fs_devices->opened = 1;
6747                 return fs_devices;
6748         }
6749
6750         fs_devices = clone_fs_devices(fs_devices);
6751         if (IS_ERR(fs_devices))
6752                 return fs_devices;
6753
6754         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6755         if (ret) {
6756                 free_fs_devices(fs_devices);
6757                 fs_devices = ERR_PTR(ret);
6758                 goto out;
6759         }
6760
6761         if (!fs_devices->seeding) {
6762                 close_fs_devices(fs_devices);
6763                 free_fs_devices(fs_devices);
6764                 fs_devices = ERR_PTR(-EINVAL);
6765                 goto out;
6766         }
6767
6768         fs_devices->seed = fs_info->fs_devices->seed;
6769         fs_info->fs_devices->seed = fs_devices;
6770 out:
6771         return fs_devices;
6772 }
6773
6774 static int read_one_dev(struct extent_buffer *leaf,
6775                         struct btrfs_dev_item *dev_item)
6776 {
6777         struct btrfs_fs_info *fs_info = leaf->fs_info;
6778         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6779         struct btrfs_device *device;
6780         u64 devid;
6781         int ret;
6782         u8 fs_uuid[BTRFS_FSID_SIZE];
6783         u8 dev_uuid[BTRFS_UUID_SIZE];
6784
6785         devid = btrfs_device_id(leaf, dev_item);
6786         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6787                            BTRFS_UUID_SIZE);
6788         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6789                            BTRFS_FSID_SIZE);
6790
6791         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6792                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6793                 if (IS_ERR(fs_devices))
6794                         return PTR_ERR(fs_devices);
6795         }
6796
6797         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6798                                    fs_uuid, true);
6799         if (!device) {
6800                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6801                         btrfs_report_missing_device(fs_info, devid,
6802                                                         dev_uuid, true);
6803                         return -ENOENT;
6804                 }
6805
6806                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6807                 if (IS_ERR(device)) {
6808                         btrfs_err(fs_info,
6809                                 "failed to add missing dev %llu: %ld",
6810                                 devid, PTR_ERR(device));
6811                         return PTR_ERR(device);
6812                 }
6813                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6814         } else {
6815                 if (!device->bdev) {
6816                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6817                                 btrfs_report_missing_device(fs_info,
6818                                                 devid, dev_uuid, true);
6819                                 return -ENOENT;
6820                         }
6821                         btrfs_report_missing_device(fs_info, devid,
6822                                                         dev_uuid, false);
6823                 }
6824
6825                 if (!device->bdev &&
6826                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6827                         /*
6828                          * this happens when a device that was properly setup
6829                          * in the device info lists suddenly goes bad.
6830                          * device->bdev is NULL, and so we have to set
6831                          * device->missing to one here
6832                          */
6833                         device->fs_devices->missing_devices++;
6834                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6835                 }
6836
6837                 /* Move the device to its own fs_devices */
6838                 if (device->fs_devices != fs_devices) {
6839                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6840                                                         &device->dev_state));
6841
6842                         list_move(&device->dev_list, &fs_devices->devices);
6843                         device->fs_devices->num_devices--;
6844                         fs_devices->num_devices++;
6845
6846                         device->fs_devices->missing_devices--;
6847                         fs_devices->missing_devices++;
6848
6849                         device->fs_devices = fs_devices;
6850                 }
6851         }
6852
6853         if (device->fs_devices != fs_info->fs_devices) {
6854                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6855                 if (device->generation !=
6856                     btrfs_device_generation(leaf, dev_item))
6857                         return -EINVAL;
6858         }
6859
6860         fill_device_from_item(leaf, dev_item, device);
6861         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6862         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6863            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6864                 device->fs_devices->total_rw_bytes += device->total_bytes;
6865                 atomic64_add(device->total_bytes - device->bytes_used,
6866                                 &fs_info->free_chunk_space);
6867         }
6868         ret = 0;
6869         return ret;
6870 }
6871
6872 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6873 {
6874         struct btrfs_root *root = fs_info->tree_root;
6875         struct btrfs_super_block *super_copy = fs_info->super_copy;
6876         struct extent_buffer *sb;
6877         struct btrfs_disk_key *disk_key;
6878         struct btrfs_chunk *chunk;
6879         u8 *array_ptr;
6880         unsigned long sb_array_offset;
6881         int ret = 0;
6882         u32 num_stripes;
6883         u32 array_size;
6884         u32 len = 0;
6885         u32 cur_offset;
6886         u64 type;
6887         struct btrfs_key key;
6888
6889         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6890         /*
6891          * This will create extent buffer of nodesize, superblock size is
6892          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6893          * overallocate but we can keep it as-is, only the first page is used.
6894          */
6895         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6896         if (IS_ERR(sb))
6897                 return PTR_ERR(sb);
6898         set_extent_buffer_uptodate(sb);
6899         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6900         /*
6901          * The sb extent buffer is artificial and just used to read the system array.
6902          * set_extent_buffer_uptodate() call does not properly mark all it's
6903          * pages up-to-date when the page is larger: extent does not cover the
6904          * whole page and consequently check_page_uptodate does not find all
6905          * the page's extents up-to-date (the hole beyond sb),
6906          * write_extent_buffer then triggers a WARN_ON.
6907          *
6908          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6909          * but sb spans only this function. Add an explicit SetPageUptodate call
6910          * to silence the warning eg. on PowerPC 64.
6911          */
6912         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6913                 SetPageUptodate(sb->pages[0]);
6914
6915         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6916         array_size = btrfs_super_sys_array_size(super_copy);
6917
6918         array_ptr = super_copy->sys_chunk_array;
6919         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6920         cur_offset = 0;
6921
6922         while (cur_offset < array_size) {
6923                 disk_key = (struct btrfs_disk_key *)array_ptr;
6924                 len = sizeof(*disk_key);
6925                 if (cur_offset + len > array_size)
6926                         goto out_short_read;
6927
6928                 btrfs_disk_key_to_cpu(&key, disk_key);
6929
6930                 array_ptr += len;
6931                 sb_array_offset += len;
6932                 cur_offset += len;
6933
6934                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6935                         btrfs_err(fs_info,
6936                             "unexpected item type %u in sys_array at offset %u",
6937                                   (u32)key.type, cur_offset);
6938                         ret = -EIO;
6939                         break;
6940                 }
6941
6942                 chunk = (struct btrfs_chunk *)sb_array_offset;
6943                 /*
6944                  * At least one btrfs_chunk with one stripe must be present,
6945                  * exact stripe count check comes afterwards
6946                  */
6947                 len = btrfs_chunk_item_size(1);
6948                 if (cur_offset + len > array_size)
6949                         goto out_short_read;
6950
6951                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6952                 if (!num_stripes) {
6953                         btrfs_err(fs_info,
6954                         "invalid number of stripes %u in sys_array at offset %u",
6955                                   num_stripes, cur_offset);
6956                         ret = -EIO;
6957                         break;
6958                 }
6959
6960                 type = btrfs_chunk_type(sb, chunk);
6961                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6962                         btrfs_err(fs_info,
6963                         "invalid chunk type %llu in sys_array at offset %u",
6964                                   type, cur_offset);
6965                         ret = -EIO;
6966                         break;
6967                 }
6968
6969                 len = btrfs_chunk_item_size(num_stripes);
6970                 if (cur_offset + len > array_size)
6971                         goto out_short_read;
6972
6973                 ret = read_one_chunk(&key, sb, chunk);
6974                 if (ret)
6975                         break;
6976
6977                 array_ptr += len;
6978                 sb_array_offset += len;
6979                 cur_offset += len;
6980         }
6981         clear_extent_buffer_uptodate(sb);
6982         free_extent_buffer_stale(sb);
6983         return ret;
6984
6985 out_short_read:
6986         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6987                         len, cur_offset);
6988         clear_extent_buffer_uptodate(sb);
6989         free_extent_buffer_stale(sb);
6990         return -EIO;
6991 }
6992
6993 /*
6994  * Check if all chunks in the fs are OK for read-write degraded mount
6995  *
6996  * If the @failing_dev is specified, it's accounted as missing.
6997  *
6998  * Return true if all chunks meet the minimal RW mount requirements.
6999  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7000  */
7001 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7002                                         struct btrfs_device *failing_dev)
7003 {
7004         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7005         struct extent_map *em;
7006         u64 next_start = 0;
7007         bool ret = true;
7008
7009         read_lock(&map_tree->lock);
7010         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7011         read_unlock(&map_tree->lock);
7012         /* No chunk at all? Return false anyway */
7013         if (!em) {
7014                 ret = false;
7015                 goto out;
7016         }
7017         while (em) {
7018                 struct map_lookup *map;
7019                 int missing = 0;
7020                 int max_tolerated;
7021                 int i;
7022
7023                 map = em->map_lookup;
7024                 max_tolerated =
7025                         btrfs_get_num_tolerated_disk_barrier_failures(
7026                                         map->type);
7027                 for (i = 0; i < map->num_stripes; i++) {
7028                         struct btrfs_device *dev = map->stripes[i].dev;
7029
7030                         if (!dev || !dev->bdev ||
7031                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7032                             dev->last_flush_error)
7033                                 missing++;
7034                         else if (failing_dev && failing_dev == dev)
7035                                 missing++;
7036                 }
7037                 if (missing > max_tolerated) {
7038                         if (!failing_dev)
7039                                 btrfs_warn(fs_info,
7040         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7041                                    em->start, missing, max_tolerated);
7042                         free_extent_map(em);
7043                         ret = false;
7044                         goto out;
7045                 }
7046                 next_start = extent_map_end(em);
7047                 free_extent_map(em);
7048
7049                 read_lock(&map_tree->lock);
7050                 em = lookup_extent_mapping(map_tree, next_start,
7051                                            (u64)(-1) - next_start);
7052                 read_unlock(&map_tree->lock);
7053         }
7054 out:
7055         return ret;
7056 }
7057
7058 static void readahead_tree_node_children(struct extent_buffer *node)
7059 {
7060         int i;
7061         const int nr_items = btrfs_header_nritems(node);
7062
7063         for (i = 0; i < nr_items; i++) {
7064                 u64 start;
7065
7066                 start = btrfs_node_blockptr(node, i);
7067                 readahead_tree_block(node->fs_info, start);
7068         }
7069 }
7070
7071 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7072 {
7073         struct btrfs_root *root = fs_info->chunk_root;
7074         struct btrfs_path *path;
7075         struct extent_buffer *leaf;
7076         struct btrfs_key key;
7077         struct btrfs_key found_key;
7078         int ret;
7079         int slot;
7080         u64 total_dev = 0;
7081         u64 last_ra_node = 0;
7082
7083         path = btrfs_alloc_path();
7084         if (!path)
7085                 return -ENOMEM;
7086
7087         /*
7088          * uuid_mutex is needed only if we are mounting a sprout FS
7089          * otherwise we don't need it.
7090          */
7091         mutex_lock(&uuid_mutex);
7092
7093         /*
7094          * It is possible for mount and umount to race in such a way that
7095          * we execute this code path, but open_fs_devices failed to clear
7096          * total_rw_bytes. We certainly want it cleared before reading the
7097          * device items, so clear it here.
7098          */
7099         fs_info->fs_devices->total_rw_bytes = 0;
7100
7101         /*
7102          * Read all device items, and then all the chunk items. All
7103          * device items are found before any chunk item (their object id
7104          * is smaller than the lowest possible object id for a chunk
7105          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7106          */
7107         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7108         key.offset = 0;
7109         key.type = 0;
7110         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7111         if (ret < 0)
7112                 goto error;
7113         while (1) {
7114                 struct extent_buffer *node;
7115
7116                 leaf = path->nodes[0];
7117                 slot = path->slots[0];
7118                 if (slot >= btrfs_header_nritems(leaf)) {
7119                         ret = btrfs_next_leaf(root, path);
7120                         if (ret == 0)
7121                                 continue;
7122                         if (ret < 0)
7123                                 goto error;
7124                         break;
7125                 }
7126                 /*
7127                  * The nodes on level 1 are not locked but we don't need to do
7128                  * that during mount time as nothing else can access the tree
7129                  */
7130                 node = path->nodes[1];
7131                 if (node) {
7132                         if (last_ra_node != node->start) {
7133                                 readahead_tree_node_children(node);
7134                                 last_ra_node = node->start;
7135                         }
7136                 }
7137                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7138                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7139                         struct btrfs_dev_item *dev_item;
7140                         dev_item = btrfs_item_ptr(leaf, slot,
7141                                                   struct btrfs_dev_item);
7142                         ret = read_one_dev(leaf, dev_item);
7143                         if (ret)
7144                                 goto error;
7145                         total_dev++;
7146                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7147                         struct btrfs_chunk *chunk;
7148                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7149                         mutex_lock(&fs_info->chunk_mutex);
7150                         ret = read_one_chunk(&found_key, leaf, chunk);
7151                         mutex_unlock(&fs_info->chunk_mutex);
7152                         if (ret)
7153                                 goto error;
7154                 }
7155                 path->slots[0]++;
7156         }
7157
7158         /*
7159          * After loading chunk tree, we've got all device information,
7160          * do another round of validation checks.
7161          */
7162         if (total_dev != fs_info->fs_devices->total_devices) {
7163                 btrfs_err(fs_info,
7164            "super_num_devices %llu mismatch with num_devices %llu found here",
7165                           btrfs_super_num_devices(fs_info->super_copy),
7166                           total_dev);
7167                 ret = -EINVAL;
7168                 goto error;
7169         }
7170         if (btrfs_super_total_bytes(fs_info->super_copy) <
7171             fs_info->fs_devices->total_rw_bytes) {
7172                 btrfs_err(fs_info,
7173         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7174                           btrfs_super_total_bytes(fs_info->super_copy),
7175                           fs_info->fs_devices->total_rw_bytes);
7176                 ret = -EINVAL;
7177                 goto error;
7178         }
7179         ret = 0;
7180 error:
7181         mutex_unlock(&uuid_mutex);
7182
7183         btrfs_free_path(path);
7184         return ret;
7185 }
7186
7187 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7188 {
7189         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7190         struct btrfs_device *device;
7191
7192         while (fs_devices) {
7193                 mutex_lock(&fs_devices->device_list_mutex);
7194                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7195                         device->fs_info = fs_info;
7196                 mutex_unlock(&fs_devices->device_list_mutex);
7197
7198                 fs_devices = fs_devices->seed;
7199         }
7200 }
7201
7202 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7203                                  const struct btrfs_dev_stats_item *ptr,
7204                                  int index)
7205 {
7206         u64 val;
7207
7208         read_extent_buffer(eb, &val,
7209                            offsetof(struct btrfs_dev_stats_item, values) +
7210                             ((unsigned long)ptr) + (index * sizeof(u64)),
7211                            sizeof(val));
7212         return val;
7213 }
7214
7215 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7216                                       struct btrfs_dev_stats_item *ptr,
7217                                       int index, u64 val)
7218 {
7219         write_extent_buffer(eb, &val,
7220                             offsetof(struct btrfs_dev_stats_item, values) +
7221                              ((unsigned long)ptr) + (index * sizeof(u64)),
7222                             sizeof(val));
7223 }
7224
7225 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7226 {
7227         struct btrfs_key key;
7228         struct btrfs_root *dev_root = fs_info->dev_root;
7229         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7230         struct extent_buffer *eb;
7231         int slot;
7232         int ret = 0;
7233         struct btrfs_device *device;
7234         struct btrfs_path *path = NULL;
7235         int i;
7236
7237         path = btrfs_alloc_path();
7238         if (!path)
7239                 return -ENOMEM;
7240
7241         mutex_lock(&fs_devices->device_list_mutex);
7242         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7243                 int item_size;
7244                 struct btrfs_dev_stats_item *ptr;
7245
7246                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7247                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7248                 key.offset = device->devid;
7249                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7250                 if (ret) {
7251                         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7252                                 btrfs_dev_stat_set(device, i, 0);
7253                         device->dev_stats_valid = 1;
7254                         btrfs_release_path(path);
7255                         continue;
7256                 }
7257                 slot = path->slots[0];
7258                 eb = path->nodes[0];
7259                 item_size = btrfs_item_size_nr(eb, slot);
7260
7261                 ptr = btrfs_item_ptr(eb, slot,
7262                                      struct btrfs_dev_stats_item);
7263
7264                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7265                         if (item_size >= (1 + i) * sizeof(__le64))
7266                                 btrfs_dev_stat_set(device, i,
7267                                         btrfs_dev_stats_value(eb, ptr, i));
7268                         else
7269                                 btrfs_dev_stat_set(device, i, 0);
7270                 }
7271
7272                 device->dev_stats_valid = 1;
7273                 btrfs_dev_stat_print_on_load(device);
7274                 btrfs_release_path(path);
7275         }
7276         mutex_unlock(&fs_devices->device_list_mutex);
7277
7278         btrfs_free_path(path);
7279         return ret < 0 ? ret : 0;
7280 }
7281
7282 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7283                                 struct btrfs_device *device)
7284 {
7285         struct btrfs_fs_info *fs_info = trans->fs_info;
7286         struct btrfs_root *dev_root = fs_info->dev_root;
7287         struct btrfs_path *path;
7288         struct btrfs_key key;
7289         struct extent_buffer *eb;
7290         struct btrfs_dev_stats_item *ptr;
7291         int ret;
7292         int i;
7293
7294         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7295         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7296         key.offset = device->devid;
7297
7298         path = btrfs_alloc_path();
7299         if (!path)
7300                 return -ENOMEM;
7301         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7302         if (ret < 0) {
7303                 btrfs_warn_in_rcu(fs_info,
7304                         "error %d while searching for dev_stats item for device %s",
7305                               ret, rcu_str_deref(device->name));
7306                 goto out;
7307         }
7308
7309         if (ret == 0 &&
7310             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7311                 /* need to delete old one and insert a new one */
7312                 ret = btrfs_del_item(trans, dev_root, path);
7313                 if (ret != 0) {
7314                         btrfs_warn_in_rcu(fs_info,
7315                                 "delete too small dev_stats item for device %s failed %d",
7316                                       rcu_str_deref(device->name), ret);
7317                         goto out;
7318                 }
7319                 ret = 1;
7320         }
7321
7322         if (ret == 1) {
7323                 /* need to insert a new item */
7324                 btrfs_release_path(path);
7325                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7326                                               &key, sizeof(*ptr));
7327                 if (ret < 0) {
7328                         btrfs_warn_in_rcu(fs_info,
7329                                 "insert dev_stats item for device %s failed %d",
7330                                 rcu_str_deref(device->name), ret);
7331                         goto out;
7332                 }
7333         }
7334
7335         eb = path->nodes[0];
7336         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7337         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7338                 btrfs_set_dev_stats_value(eb, ptr, i,
7339                                           btrfs_dev_stat_read(device, i));
7340         btrfs_mark_buffer_dirty(eb);
7341
7342 out:
7343         btrfs_free_path(path);
7344         return ret;
7345 }
7346
7347 /*
7348  * called from commit_transaction. Writes all changed device stats to disk.
7349  */
7350 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7351 {
7352         struct btrfs_fs_info *fs_info = trans->fs_info;
7353         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7354         struct btrfs_device *device;
7355         int stats_cnt;
7356         int ret = 0;
7357
7358         mutex_lock(&fs_devices->device_list_mutex);
7359         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7360                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7361                 if (!device->dev_stats_valid || stats_cnt == 0)
7362                         continue;
7363
7364
7365                 /*
7366                  * There is a LOAD-LOAD control dependency between the value of
7367                  * dev_stats_ccnt and updating the on-disk values which requires
7368                  * reading the in-memory counters. Such control dependencies
7369                  * require explicit read memory barriers.
7370                  *
7371                  * This memory barriers pairs with smp_mb__before_atomic in
7372                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7373                  * barrier implied by atomic_xchg in
7374                  * btrfs_dev_stats_read_and_reset
7375                  */
7376                 smp_rmb();
7377
7378                 ret = update_dev_stat_item(trans, device);
7379                 if (!ret)
7380                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7381         }
7382         mutex_unlock(&fs_devices->device_list_mutex);
7383
7384         return ret;
7385 }
7386
7387 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7388 {
7389         btrfs_dev_stat_inc(dev, index);
7390         btrfs_dev_stat_print_on_error(dev);
7391 }
7392
7393 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7394 {
7395         if (!dev->dev_stats_valid)
7396                 return;
7397         btrfs_err_rl_in_rcu(dev->fs_info,
7398                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7399                            rcu_str_deref(dev->name),
7400                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7401                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7402                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7403                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7404                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7405 }
7406
7407 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7408 {
7409         int i;
7410
7411         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7412                 if (btrfs_dev_stat_read(dev, i) != 0)
7413                         break;
7414         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7415                 return; /* all values == 0, suppress message */
7416
7417         btrfs_info_in_rcu(dev->fs_info,
7418                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7419                rcu_str_deref(dev->name),
7420                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7421                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7422                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7423                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7424                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7425 }
7426
7427 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7428                         struct btrfs_ioctl_get_dev_stats *stats)
7429 {
7430         struct btrfs_device *dev;
7431         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7432         int i;
7433
7434         mutex_lock(&fs_devices->device_list_mutex);
7435         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7436                                 true);
7437         mutex_unlock(&fs_devices->device_list_mutex);
7438
7439         if (!dev) {
7440                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7441                 return -ENODEV;
7442         } else if (!dev->dev_stats_valid) {
7443                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7444                 return -ENODEV;
7445         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7446                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7447                         if (stats->nr_items > i)
7448                                 stats->values[i] =
7449                                         btrfs_dev_stat_read_and_reset(dev, i);
7450                         else
7451                                 btrfs_dev_stat_set(dev, i, 0);
7452                 }
7453                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7454                            current->comm, task_pid_nr(current));
7455         } else {
7456                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7457                         if (stats->nr_items > i)
7458                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7459         }
7460         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7461                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7462         return 0;
7463 }
7464
7465 /*
7466  * Update the size and bytes used for each device where it changed.  This is
7467  * delayed since we would otherwise get errors while writing out the
7468  * superblocks.
7469  *
7470  * Must be invoked during transaction commit.
7471  */
7472 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7473 {
7474         struct btrfs_device *curr, *next;
7475
7476         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7477
7478         if (list_empty(&trans->dev_update_list))
7479                 return;
7480
7481         /*
7482          * We don't need the device_list_mutex here.  This list is owned by the
7483          * transaction and the transaction must complete before the device is
7484          * released.
7485          */
7486         mutex_lock(&trans->fs_info->chunk_mutex);
7487         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7488                                  post_commit_list) {
7489                 list_del_init(&curr->post_commit_list);
7490                 curr->commit_total_bytes = curr->disk_total_bytes;
7491                 curr->commit_bytes_used = curr->bytes_used;
7492         }
7493         mutex_unlock(&trans->fs_info->chunk_mutex);
7494 }
7495
7496 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7497 {
7498         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7499         while (fs_devices) {
7500                 fs_devices->fs_info = fs_info;
7501                 fs_devices = fs_devices->seed;
7502         }
7503 }
7504
7505 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7506 {
7507         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7508         while (fs_devices) {
7509                 fs_devices->fs_info = NULL;
7510                 fs_devices = fs_devices->seed;
7511         }
7512 }
7513
7514 /*
7515  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7516  */
7517 int btrfs_bg_type_to_factor(u64 flags)
7518 {
7519         const int index = btrfs_bg_flags_to_raid_index(flags);
7520
7521         return btrfs_raid_array[index].ncopies;
7522 }
7523
7524
7525
7526 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7527                                  u64 chunk_offset, u64 devid,
7528                                  u64 physical_offset, u64 physical_len)
7529 {
7530         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7531         struct extent_map *em;
7532         struct map_lookup *map;
7533         struct btrfs_device *dev;
7534         u64 stripe_len;
7535         bool found = false;
7536         int ret = 0;
7537         int i;
7538
7539         read_lock(&em_tree->lock);
7540         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7541         read_unlock(&em_tree->lock);
7542
7543         if (!em) {
7544                 btrfs_err(fs_info,
7545 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7546                           physical_offset, devid);
7547                 ret = -EUCLEAN;
7548                 goto out;
7549         }
7550
7551         map = em->map_lookup;
7552         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7553         if (physical_len != stripe_len) {
7554                 btrfs_err(fs_info,
7555 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7556                           physical_offset, devid, em->start, physical_len,
7557                           stripe_len);
7558                 ret = -EUCLEAN;
7559                 goto out;
7560         }
7561
7562         for (i = 0; i < map->num_stripes; i++) {
7563                 if (map->stripes[i].dev->devid == devid &&
7564                     map->stripes[i].physical == physical_offset) {
7565                         found = true;
7566                         if (map->verified_stripes >= map->num_stripes) {
7567                                 btrfs_err(fs_info,
7568                                 "too many dev extents for chunk %llu found",
7569                                           em->start);
7570                                 ret = -EUCLEAN;
7571                                 goto out;
7572                         }
7573                         map->verified_stripes++;
7574                         break;
7575                 }
7576         }
7577         if (!found) {
7578                 btrfs_err(fs_info,
7579         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7580                         physical_offset, devid);
7581                 ret = -EUCLEAN;
7582         }
7583
7584         /* Make sure no dev extent is beyond device bondary */
7585         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7586         if (!dev) {
7587                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7588                 ret = -EUCLEAN;
7589                 goto out;
7590         }
7591
7592         /* It's possible this device is a dummy for seed device */
7593         if (dev->disk_total_bytes == 0) {
7594                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7595                                         NULL, false);
7596                 if (!dev) {
7597                         btrfs_err(fs_info, "failed to find seed devid %llu",
7598                                   devid);
7599                         ret = -EUCLEAN;
7600                         goto out;
7601                 }
7602         }
7603
7604         if (physical_offset + physical_len > dev->disk_total_bytes) {
7605                 btrfs_err(fs_info,
7606 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7607                           devid, physical_offset, physical_len,
7608                           dev->disk_total_bytes);
7609                 ret = -EUCLEAN;
7610                 goto out;
7611         }
7612 out:
7613         free_extent_map(em);
7614         return ret;
7615 }
7616
7617 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7618 {
7619         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7620         struct extent_map *em;
7621         struct rb_node *node;
7622         int ret = 0;
7623
7624         read_lock(&em_tree->lock);
7625         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7626                 em = rb_entry(node, struct extent_map, rb_node);
7627                 if (em->map_lookup->num_stripes !=
7628                     em->map_lookup->verified_stripes) {
7629                         btrfs_err(fs_info,
7630                         "chunk %llu has missing dev extent, have %d expect %d",
7631                                   em->start, em->map_lookup->verified_stripes,
7632                                   em->map_lookup->num_stripes);
7633                         ret = -EUCLEAN;
7634                         goto out;
7635                 }
7636         }
7637 out:
7638         read_unlock(&em_tree->lock);
7639         return ret;
7640 }
7641
7642 /*
7643  * Ensure that all dev extents are mapped to correct chunk, otherwise
7644  * later chunk allocation/free would cause unexpected behavior.
7645  *
7646  * NOTE: This will iterate through the whole device tree, which should be of
7647  * the same size level as the chunk tree.  This slightly increases mount time.
7648  */
7649 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7650 {
7651         struct btrfs_path *path;
7652         struct btrfs_root *root = fs_info->dev_root;
7653         struct btrfs_key key;
7654         u64 prev_devid = 0;
7655         u64 prev_dev_ext_end = 0;
7656         int ret = 0;
7657
7658         key.objectid = 1;
7659         key.type = BTRFS_DEV_EXTENT_KEY;
7660         key.offset = 0;
7661
7662         path = btrfs_alloc_path();
7663         if (!path)
7664                 return -ENOMEM;
7665
7666         path->reada = READA_FORWARD;
7667         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7668         if (ret < 0)
7669                 goto out;
7670
7671         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7672                 ret = btrfs_next_item(root, path);
7673                 if (ret < 0)
7674                         goto out;
7675                 /* No dev extents at all? Not good */
7676                 if (ret > 0) {
7677                         ret = -EUCLEAN;
7678                         goto out;
7679                 }
7680         }
7681         while (1) {
7682                 struct extent_buffer *leaf = path->nodes[0];
7683                 struct btrfs_dev_extent *dext;
7684                 int slot = path->slots[0];
7685                 u64 chunk_offset;
7686                 u64 physical_offset;
7687                 u64 physical_len;
7688                 u64 devid;
7689
7690                 btrfs_item_key_to_cpu(leaf, &key, slot);
7691                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7692                         break;
7693                 devid = key.objectid;
7694                 physical_offset = key.offset;
7695
7696                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7697                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7698                 physical_len = btrfs_dev_extent_length(leaf, dext);
7699
7700                 /* Check if this dev extent overlaps with the previous one */
7701                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7702                         btrfs_err(fs_info,
7703 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7704                                   devid, physical_offset, prev_dev_ext_end);
7705                         ret = -EUCLEAN;
7706                         goto out;
7707                 }
7708
7709                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7710                                             physical_offset, physical_len);
7711                 if (ret < 0)
7712                         goto out;
7713                 prev_devid = devid;
7714                 prev_dev_ext_end = physical_offset + physical_len;
7715
7716                 ret = btrfs_next_item(root, path);
7717                 if (ret < 0)
7718                         goto out;
7719                 if (ret > 0) {
7720                         ret = 0;
7721                         break;
7722                 }
7723         }
7724
7725         /* Ensure all chunks have corresponding dev extents */
7726         ret = verify_chunk_dev_extent_mapping(fs_info);
7727 out:
7728         btrfs_free_path(path);
7729         return ret;
7730 }
7731
7732 /*
7733  * Check whether the given block group or device is pinned by any inode being
7734  * used as a swapfile.
7735  */
7736 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7737 {
7738         struct btrfs_swapfile_pin *sp;
7739         struct rb_node *node;
7740
7741         spin_lock(&fs_info->swapfile_pins_lock);
7742         node = fs_info->swapfile_pins.rb_node;
7743         while (node) {
7744                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7745                 if (ptr < sp->ptr)
7746                         node = node->rb_left;
7747                 else if (ptr > sp->ptr)
7748                         node = node->rb_right;
7749                 else
7750                         break;
7751         }
7752         spin_unlock(&fs_info->swapfile_pins_lock);
7753         return node != NULL;
7754 }