btrfs: don't check stripe length if the profile is not stripe based
[sfrench/cifs-2.6.git] / fs / btrfs / ioctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 #include "subpage.h"
52
53 #ifdef CONFIG_64BIT
54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
55  * structures are incorrect, as the timespec structure from userspace
56  * is 4 bytes too small. We define these alternatives here to teach
57  * the kernel about the 32-bit struct packing.
58  */
59 struct btrfs_ioctl_timespec_32 {
60         __u64 sec;
61         __u32 nsec;
62 } __attribute__ ((__packed__));
63
64 struct btrfs_ioctl_received_subvol_args_32 {
65         char    uuid[BTRFS_UUID_SIZE];  /* in */
66         __u64   stransid;               /* in */
67         __u64   rtransid;               /* out */
68         struct btrfs_ioctl_timespec_32 stime; /* in */
69         struct btrfs_ioctl_timespec_32 rtime; /* out */
70         __u64   flags;                  /* in */
71         __u64   reserved[16];           /* in */
72 } __attribute__ ((__packed__));
73
74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
75                                 struct btrfs_ioctl_received_subvol_args_32)
76 #endif
77
78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
79 struct btrfs_ioctl_send_args_32 {
80         __s64 send_fd;                  /* in */
81         __u64 clone_sources_count;      /* in */
82         compat_uptr_t clone_sources;    /* in */
83         __u64 parent_root;              /* in */
84         __u64 flags;                    /* in */
85         __u32 version;                  /* in */
86         __u8  reserved[28];             /* in */
87 } __attribute__ ((__packed__));
88
89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
90                                struct btrfs_ioctl_send_args_32)
91 #endif
92
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95                 unsigned int flags)
96 {
97         if (S_ISDIR(inode->i_mode))
98                 return flags;
99         else if (S_ISREG(inode->i_mode))
100                 return flags & ~FS_DIRSYNC_FL;
101         else
102                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
110 {
111         unsigned int iflags = 0;
112         u32 flags = binode->flags;
113         u32 ro_flags = binode->ro_flags;
114
115         if (flags & BTRFS_INODE_SYNC)
116                 iflags |= FS_SYNC_FL;
117         if (flags & BTRFS_INODE_IMMUTABLE)
118                 iflags |= FS_IMMUTABLE_FL;
119         if (flags & BTRFS_INODE_APPEND)
120                 iflags |= FS_APPEND_FL;
121         if (flags & BTRFS_INODE_NODUMP)
122                 iflags |= FS_NODUMP_FL;
123         if (flags & BTRFS_INODE_NOATIME)
124                 iflags |= FS_NOATIME_FL;
125         if (flags & BTRFS_INODE_DIRSYNC)
126                 iflags |= FS_DIRSYNC_FL;
127         if (flags & BTRFS_INODE_NODATACOW)
128                 iflags |= FS_NOCOW_FL;
129         if (ro_flags & BTRFS_INODE_RO_VERITY)
130                 iflags |= FS_VERITY_FL;
131
132         if (flags & BTRFS_INODE_NOCOMPRESS)
133                 iflags |= FS_NOCOMP_FL;
134         else if (flags & BTRFS_INODE_COMPRESS)
135                 iflags |= FS_COMPR_FL;
136
137         return iflags;
138 }
139
140 /*
141  * Update inode->i_flags based on the btrfs internal flags.
142  */
143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
144 {
145         struct btrfs_inode *binode = BTRFS_I(inode);
146         unsigned int new_fl = 0;
147
148         if (binode->flags & BTRFS_INODE_SYNC)
149                 new_fl |= S_SYNC;
150         if (binode->flags & BTRFS_INODE_IMMUTABLE)
151                 new_fl |= S_IMMUTABLE;
152         if (binode->flags & BTRFS_INODE_APPEND)
153                 new_fl |= S_APPEND;
154         if (binode->flags & BTRFS_INODE_NOATIME)
155                 new_fl |= S_NOATIME;
156         if (binode->flags & BTRFS_INODE_DIRSYNC)
157                 new_fl |= S_DIRSYNC;
158         if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
159                 new_fl |= S_VERITY;
160
161         set_mask_bits(&inode->i_flags,
162                       S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
163                       S_VERITY, new_fl);
164 }
165
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173                       FS_NOATIME_FL | FS_NODUMP_FL | \
174                       FS_SYNC_FL | FS_DIRSYNC_FL | \
175                       FS_NOCOMP_FL | FS_COMPR_FL |
176                       FS_NOCOW_FL))
177                 return -EOPNOTSUPP;
178
179         /* COMPR and NOCOMP on new/old are valid */
180         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181                 return -EINVAL;
182
183         if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184                 return -EINVAL;
185
186         /* NOCOW and compression options are mutually exclusive */
187         if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188                 return -EINVAL;
189         if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190                 return -EINVAL;
191
192         return 0;
193 }
194
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196                                     unsigned int flags)
197 {
198         if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199                 return -EPERM;
200
201         return 0;
202 }
203
204 /*
205  * Set flags/xflags from the internal inode flags. The remaining items of
206  * fsxattr are zeroed.
207  */
208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
209 {
210         struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
211
212         fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
213         return 0;
214 }
215
216 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
217                        struct dentry *dentry, struct fileattr *fa)
218 {
219         struct inode *inode = d_inode(dentry);
220         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221         struct btrfs_inode *binode = BTRFS_I(inode);
222         struct btrfs_root *root = binode->root;
223         struct btrfs_trans_handle *trans;
224         unsigned int fsflags, old_fsflags;
225         int ret;
226         const char *comp = NULL;
227         u32 binode_flags;
228
229         if (btrfs_root_readonly(root))
230                 return -EROFS;
231
232         if (fileattr_has_fsx(fa))
233                 return -EOPNOTSUPP;
234
235         fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
236         old_fsflags = btrfs_inode_flags_to_fsflags(binode);
237         ret = check_fsflags(old_fsflags, fsflags);
238         if (ret)
239                 return ret;
240
241         ret = check_fsflags_compatible(fs_info, fsflags);
242         if (ret)
243                 return ret;
244
245         binode_flags = binode->flags;
246         if (fsflags & FS_SYNC_FL)
247                 binode_flags |= BTRFS_INODE_SYNC;
248         else
249                 binode_flags &= ~BTRFS_INODE_SYNC;
250         if (fsflags & FS_IMMUTABLE_FL)
251                 binode_flags |= BTRFS_INODE_IMMUTABLE;
252         else
253                 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254         if (fsflags & FS_APPEND_FL)
255                 binode_flags |= BTRFS_INODE_APPEND;
256         else
257                 binode_flags &= ~BTRFS_INODE_APPEND;
258         if (fsflags & FS_NODUMP_FL)
259                 binode_flags |= BTRFS_INODE_NODUMP;
260         else
261                 binode_flags &= ~BTRFS_INODE_NODUMP;
262         if (fsflags & FS_NOATIME_FL)
263                 binode_flags |= BTRFS_INODE_NOATIME;
264         else
265                 binode_flags &= ~BTRFS_INODE_NOATIME;
266
267         /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
268         if (!fa->flags_valid) {
269                 /* 1 item for the inode */
270                 trans = btrfs_start_transaction(root, 1);
271                 if (IS_ERR(trans))
272                         return PTR_ERR(trans);
273                 goto update_flags;
274         }
275
276         if (fsflags & FS_DIRSYNC_FL)
277                 binode_flags |= BTRFS_INODE_DIRSYNC;
278         else
279                 binode_flags &= ~BTRFS_INODE_DIRSYNC;
280         if (fsflags & FS_NOCOW_FL) {
281                 if (S_ISREG(inode->i_mode)) {
282                         /*
283                          * It's safe to turn csums off here, no extents exist.
284                          * Otherwise we want the flag to reflect the real COW
285                          * status of the file and will not set it.
286                          */
287                         if (inode->i_size == 0)
288                                 binode_flags |= BTRFS_INODE_NODATACOW |
289                                                 BTRFS_INODE_NODATASUM;
290                 } else {
291                         binode_flags |= BTRFS_INODE_NODATACOW;
292                 }
293         } else {
294                 /*
295                  * Revert back under same assumptions as above
296                  */
297                 if (S_ISREG(inode->i_mode)) {
298                         if (inode->i_size == 0)
299                                 binode_flags &= ~(BTRFS_INODE_NODATACOW |
300                                                   BTRFS_INODE_NODATASUM);
301                 } else {
302                         binode_flags &= ~BTRFS_INODE_NODATACOW;
303                 }
304         }
305
306         /*
307          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
308          * flag may be changed automatically if compression code won't make
309          * things smaller.
310          */
311         if (fsflags & FS_NOCOMP_FL) {
312                 binode_flags &= ~BTRFS_INODE_COMPRESS;
313                 binode_flags |= BTRFS_INODE_NOCOMPRESS;
314         } else if (fsflags & FS_COMPR_FL) {
315
316                 if (IS_SWAPFILE(inode))
317                         return -ETXTBSY;
318
319                 binode_flags |= BTRFS_INODE_COMPRESS;
320                 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
321
322                 comp = btrfs_compress_type2str(fs_info->compress_type);
323                 if (!comp || comp[0] == 0)
324                         comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
325         } else {
326                 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327         }
328
329         /*
330          * 1 for inode item
331          * 2 for properties
332          */
333         trans = btrfs_start_transaction(root, 3);
334         if (IS_ERR(trans))
335                 return PTR_ERR(trans);
336
337         if (comp) {
338                 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
339                                      strlen(comp), 0);
340                 if (ret) {
341                         btrfs_abort_transaction(trans, ret);
342                         goto out_end_trans;
343                 }
344         } else {
345                 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
346                                      0, 0);
347                 if (ret && ret != -ENODATA) {
348                         btrfs_abort_transaction(trans, ret);
349                         goto out_end_trans;
350                 }
351         }
352
353 update_flags:
354         binode->flags = binode_flags;
355         btrfs_sync_inode_flags_to_i_flags(inode);
356         inode_inc_iversion(inode);
357         inode->i_ctime = current_time(inode);
358         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
359
360  out_end_trans:
361         btrfs_end_transaction(trans);
362         return ret;
363 }
364
365 /*
366  * Start exclusive operation @type, return true on success
367  */
368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
369                         enum btrfs_exclusive_operation type)
370 {
371         bool ret = false;
372
373         spin_lock(&fs_info->super_lock);
374         if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
375                 fs_info->exclusive_operation = type;
376                 ret = true;
377         }
378         spin_unlock(&fs_info->super_lock);
379
380         return ret;
381 }
382
383 /*
384  * Conditionally allow to enter the exclusive operation in case it's compatible
385  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
386  * btrfs_exclop_finish.
387  *
388  * Compatibility:
389  * - the same type is already running
390  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
391  *   must check the condition first that would allow none -> @type
392  */
393 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
394                                  enum btrfs_exclusive_operation type)
395 {
396         spin_lock(&fs_info->super_lock);
397         if (fs_info->exclusive_operation == type)
398                 return true;
399
400         spin_unlock(&fs_info->super_lock);
401         return false;
402 }
403
404 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
405 {
406         spin_unlock(&fs_info->super_lock);
407 }
408
409 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
410 {
411         spin_lock(&fs_info->super_lock);
412         WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
413         spin_unlock(&fs_info->super_lock);
414         sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
415 }
416
417 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
418 {
419         struct inode *inode = file_inode(file);
420
421         return put_user(inode->i_generation, arg);
422 }
423
424 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
425                                         void __user *arg)
426 {
427         struct btrfs_device *device;
428         struct request_queue *q;
429         struct fstrim_range range;
430         u64 minlen = ULLONG_MAX;
431         u64 num_devices = 0;
432         int ret;
433
434         if (!capable(CAP_SYS_ADMIN))
435                 return -EPERM;
436
437         /*
438          * btrfs_trim_block_group() depends on space cache, which is not
439          * available in zoned filesystem. So, disallow fitrim on a zoned
440          * filesystem for now.
441          */
442         if (btrfs_is_zoned(fs_info))
443                 return -EOPNOTSUPP;
444
445         /*
446          * If the fs is mounted with nologreplay, which requires it to be
447          * mounted in RO mode as well, we can not allow discard on free space
448          * inside block groups, because log trees refer to extents that are not
449          * pinned in a block group's free space cache (pinning the extents is
450          * precisely the first phase of replaying a log tree).
451          */
452         if (btrfs_test_opt(fs_info, NOLOGREPLAY))
453                 return -EROFS;
454
455         rcu_read_lock();
456         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
457                                 dev_list) {
458                 if (!device->bdev)
459                         continue;
460                 q = bdev_get_queue(device->bdev);
461                 if (blk_queue_discard(q)) {
462                         num_devices++;
463                         minlen = min_t(u64, q->limits.discard_granularity,
464                                      minlen);
465                 }
466         }
467         rcu_read_unlock();
468
469         if (!num_devices)
470                 return -EOPNOTSUPP;
471         if (copy_from_user(&range, arg, sizeof(range)))
472                 return -EFAULT;
473
474         /*
475          * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
476          * block group is in the logical address space, which can be any
477          * sectorsize aligned bytenr in  the range [0, U64_MAX].
478          */
479         if (range.len < fs_info->sb->s_blocksize)
480                 return -EINVAL;
481
482         range.minlen = max(range.minlen, minlen);
483         ret = btrfs_trim_fs(fs_info, &range);
484         if (ret < 0)
485                 return ret;
486
487         if (copy_to_user(arg, &range, sizeof(range)))
488                 return -EFAULT;
489
490         return 0;
491 }
492
493 int __pure btrfs_is_empty_uuid(u8 *uuid)
494 {
495         int i;
496
497         for (i = 0; i < BTRFS_UUID_SIZE; i++) {
498                 if (uuid[i])
499                         return 0;
500         }
501         return 1;
502 }
503
504 static noinline int create_subvol(struct user_namespace *mnt_userns,
505                                   struct inode *dir, struct dentry *dentry,
506                                   const char *name, int namelen,
507                                   struct btrfs_qgroup_inherit *inherit)
508 {
509         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
510         struct btrfs_trans_handle *trans;
511         struct btrfs_key key;
512         struct btrfs_root_item *root_item;
513         struct btrfs_inode_item *inode_item;
514         struct extent_buffer *leaf;
515         struct btrfs_root *root = BTRFS_I(dir)->root;
516         struct btrfs_root *new_root;
517         struct btrfs_block_rsv block_rsv;
518         struct timespec64 cur_time = current_time(dir);
519         struct inode *inode;
520         int ret;
521         int err;
522         dev_t anon_dev = 0;
523         u64 objectid;
524         u64 index = 0;
525
526         root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
527         if (!root_item)
528                 return -ENOMEM;
529
530         ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
531         if (ret)
532                 goto fail_free;
533
534         ret = get_anon_bdev(&anon_dev);
535         if (ret < 0)
536                 goto fail_free;
537
538         /*
539          * Don't create subvolume whose level is not zero. Or qgroup will be
540          * screwed up since it assumes subvolume qgroup's level to be 0.
541          */
542         if (btrfs_qgroup_level(objectid)) {
543                 ret = -ENOSPC;
544                 goto fail_free;
545         }
546
547         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
548         /*
549          * The same as the snapshot creation, please see the comment
550          * of create_snapshot().
551          */
552         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
553         if (ret)
554                 goto fail_free;
555
556         trans = btrfs_start_transaction(root, 0);
557         if (IS_ERR(trans)) {
558                 ret = PTR_ERR(trans);
559                 btrfs_subvolume_release_metadata(root, &block_rsv);
560                 goto fail_free;
561         }
562         trans->block_rsv = &block_rsv;
563         trans->bytes_reserved = block_rsv.size;
564
565         ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
566         if (ret)
567                 goto fail;
568
569         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
570                                       BTRFS_NESTING_NORMAL);
571         if (IS_ERR(leaf)) {
572                 ret = PTR_ERR(leaf);
573                 goto fail;
574         }
575
576         btrfs_mark_buffer_dirty(leaf);
577
578         inode_item = &root_item->inode;
579         btrfs_set_stack_inode_generation(inode_item, 1);
580         btrfs_set_stack_inode_size(inode_item, 3);
581         btrfs_set_stack_inode_nlink(inode_item, 1);
582         btrfs_set_stack_inode_nbytes(inode_item,
583                                      fs_info->nodesize);
584         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
585
586         btrfs_set_root_flags(root_item, 0);
587         btrfs_set_root_limit(root_item, 0);
588         btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
589
590         btrfs_set_root_bytenr(root_item, leaf->start);
591         btrfs_set_root_generation(root_item, trans->transid);
592         btrfs_set_root_level(root_item, 0);
593         btrfs_set_root_refs(root_item, 1);
594         btrfs_set_root_used(root_item, leaf->len);
595         btrfs_set_root_last_snapshot(root_item, 0);
596
597         btrfs_set_root_generation_v2(root_item,
598                         btrfs_root_generation(root_item));
599         generate_random_guid(root_item->uuid);
600         btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
601         btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
602         root_item->ctime = root_item->otime;
603         btrfs_set_root_ctransid(root_item, trans->transid);
604         btrfs_set_root_otransid(root_item, trans->transid);
605
606         btrfs_tree_unlock(leaf);
607
608         btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
609
610         key.objectid = objectid;
611         key.offset = 0;
612         key.type = BTRFS_ROOT_ITEM_KEY;
613         ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
614                                 root_item);
615         if (ret) {
616                 /*
617                  * Since we don't abort the transaction in this case, free the
618                  * tree block so that we don't leak space and leave the
619                  * filesystem in an inconsistent state (an extent item in the
620                  * extent tree with a backreference for a root that does not
621                  * exists).
622                  */
623                 btrfs_tree_lock(leaf);
624                 btrfs_clean_tree_block(leaf);
625                 btrfs_tree_unlock(leaf);
626                 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
627                 free_extent_buffer(leaf);
628                 goto fail;
629         }
630
631         free_extent_buffer(leaf);
632         leaf = NULL;
633
634         key.offset = (u64)-1;
635         new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
636         if (IS_ERR(new_root)) {
637                 free_anon_bdev(anon_dev);
638                 ret = PTR_ERR(new_root);
639                 btrfs_abort_transaction(trans, ret);
640                 goto fail;
641         }
642         /* Freeing will be done in btrfs_put_root() of new_root */
643         anon_dev = 0;
644
645         ret = btrfs_record_root_in_trans(trans, new_root);
646         if (ret) {
647                 btrfs_put_root(new_root);
648                 btrfs_abort_transaction(trans, ret);
649                 goto fail;
650         }
651
652         ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
653         btrfs_put_root(new_root);
654         if (ret) {
655                 /* We potentially lose an unused inode item here */
656                 btrfs_abort_transaction(trans, ret);
657                 goto fail;
658         }
659
660         /*
661          * insert the directory item
662          */
663         ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
664         if (ret) {
665                 btrfs_abort_transaction(trans, ret);
666                 goto fail;
667         }
668
669         ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
670                                     BTRFS_FT_DIR, index);
671         if (ret) {
672                 btrfs_abort_transaction(trans, ret);
673                 goto fail;
674         }
675
676         btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
677         ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
678         if (ret) {
679                 btrfs_abort_transaction(trans, ret);
680                 goto fail;
681         }
682
683         ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
684                                  btrfs_ino(BTRFS_I(dir)), index, name, namelen);
685         if (ret) {
686                 btrfs_abort_transaction(trans, ret);
687                 goto fail;
688         }
689
690         ret = btrfs_uuid_tree_add(trans, root_item->uuid,
691                                   BTRFS_UUID_KEY_SUBVOL, objectid);
692         if (ret)
693                 btrfs_abort_transaction(trans, ret);
694
695 fail:
696         kfree(root_item);
697         trans->block_rsv = NULL;
698         trans->bytes_reserved = 0;
699         btrfs_subvolume_release_metadata(root, &block_rsv);
700
701         err = btrfs_commit_transaction(trans);
702         if (err && !ret)
703                 ret = err;
704
705         if (!ret) {
706                 inode = btrfs_lookup_dentry(dir, dentry);
707                 if (IS_ERR(inode))
708                         return PTR_ERR(inode);
709                 d_instantiate(dentry, inode);
710         }
711         return ret;
712
713 fail_free:
714         if (anon_dev)
715                 free_anon_bdev(anon_dev);
716         kfree(root_item);
717         return ret;
718 }
719
720 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
721                            struct dentry *dentry, bool readonly,
722                            struct btrfs_qgroup_inherit *inherit)
723 {
724         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
725         struct inode *inode;
726         struct btrfs_pending_snapshot *pending_snapshot;
727         struct btrfs_trans_handle *trans;
728         int ret;
729
730         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
731                 return -EINVAL;
732
733         if (atomic_read(&root->nr_swapfiles)) {
734                 btrfs_warn(fs_info,
735                            "cannot snapshot subvolume with active swapfile");
736                 return -ETXTBSY;
737         }
738
739         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
740         if (!pending_snapshot)
741                 return -ENOMEM;
742
743         ret = get_anon_bdev(&pending_snapshot->anon_dev);
744         if (ret < 0)
745                 goto free_pending;
746         pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
747                         GFP_KERNEL);
748         pending_snapshot->path = btrfs_alloc_path();
749         if (!pending_snapshot->root_item || !pending_snapshot->path) {
750                 ret = -ENOMEM;
751                 goto free_pending;
752         }
753
754         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
755                              BTRFS_BLOCK_RSV_TEMP);
756         /*
757          * 1 - parent dir inode
758          * 2 - dir entries
759          * 1 - root item
760          * 2 - root ref/backref
761          * 1 - root of snapshot
762          * 1 - UUID item
763          */
764         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
765                                         &pending_snapshot->block_rsv, 8,
766                                         false);
767         if (ret)
768                 goto free_pending;
769
770         pending_snapshot->dentry = dentry;
771         pending_snapshot->root = root;
772         pending_snapshot->readonly = readonly;
773         pending_snapshot->dir = dir;
774         pending_snapshot->inherit = inherit;
775
776         trans = btrfs_start_transaction(root, 0);
777         if (IS_ERR(trans)) {
778                 ret = PTR_ERR(trans);
779                 goto fail;
780         }
781
782         spin_lock(&fs_info->trans_lock);
783         list_add(&pending_snapshot->list,
784                  &trans->transaction->pending_snapshots);
785         spin_unlock(&fs_info->trans_lock);
786
787         ret = btrfs_commit_transaction(trans);
788         if (ret)
789                 goto fail;
790
791         ret = pending_snapshot->error;
792         if (ret)
793                 goto fail;
794
795         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
796         if (ret)
797                 goto fail;
798
799         inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
800         if (IS_ERR(inode)) {
801                 ret = PTR_ERR(inode);
802                 goto fail;
803         }
804
805         d_instantiate(dentry, inode);
806         ret = 0;
807         pending_snapshot->anon_dev = 0;
808 fail:
809         /* Prevent double freeing of anon_dev */
810         if (ret && pending_snapshot->snap)
811                 pending_snapshot->snap->anon_dev = 0;
812         btrfs_put_root(pending_snapshot->snap);
813         btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
814 free_pending:
815         if (pending_snapshot->anon_dev)
816                 free_anon_bdev(pending_snapshot->anon_dev);
817         kfree(pending_snapshot->root_item);
818         btrfs_free_path(pending_snapshot->path);
819         kfree(pending_snapshot);
820
821         return ret;
822 }
823
824 /*  copy of may_delete in fs/namei.c()
825  *      Check whether we can remove a link victim from directory dir, check
826  *  whether the type of victim is right.
827  *  1. We can't do it if dir is read-only (done in permission())
828  *  2. We should have write and exec permissions on dir
829  *  3. We can't remove anything from append-only dir
830  *  4. We can't do anything with immutable dir (done in permission())
831  *  5. If the sticky bit on dir is set we should either
832  *      a. be owner of dir, or
833  *      b. be owner of victim, or
834  *      c. have CAP_FOWNER capability
835  *  6. If the victim is append-only or immutable we can't do anything with
836  *     links pointing to it.
837  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
838  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
839  *  9. We can't remove a root or mountpoint.
840  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
841  *     nfs_async_unlink().
842  */
843
844 static int btrfs_may_delete(struct user_namespace *mnt_userns,
845                             struct inode *dir, struct dentry *victim, int isdir)
846 {
847         int error;
848
849         if (d_really_is_negative(victim))
850                 return -ENOENT;
851
852         BUG_ON(d_inode(victim->d_parent) != dir);
853         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
854
855         error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
856         if (error)
857                 return error;
858         if (IS_APPEND(dir))
859                 return -EPERM;
860         if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
861             IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
862             IS_SWAPFILE(d_inode(victim)))
863                 return -EPERM;
864         if (isdir) {
865                 if (!d_is_dir(victim))
866                         return -ENOTDIR;
867                 if (IS_ROOT(victim))
868                         return -EBUSY;
869         } else if (d_is_dir(victim))
870                 return -EISDIR;
871         if (IS_DEADDIR(dir))
872                 return -ENOENT;
873         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
874                 return -EBUSY;
875         return 0;
876 }
877
878 /* copy of may_create in fs/namei.c() */
879 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
880                                    struct inode *dir, struct dentry *child)
881 {
882         if (d_really_is_positive(child))
883                 return -EEXIST;
884         if (IS_DEADDIR(dir))
885                 return -ENOENT;
886         if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
887                 return -EOVERFLOW;
888         return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
889 }
890
891 /*
892  * Create a new subvolume below @parent.  This is largely modeled after
893  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
894  * inside this filesystem so it's quite a bit simpler.
895  */
896 static noinline int btrfs_mksubvol(const struct path *parent,
897                                    struct user_namespace *mnt_userns,
898                                    const char *name, int namelen,
899                                    struct btrfs_root *snap_src,
900                                    bool readonly,
901                                    struct btrfs_qgroup_inherit *inherit)
902 {
903         struct inode *dir = d_inode(parent->dentry);
904         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
905         struct dentry *dentry;
906         int error;
907
908         error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
909         if (error == -EINTR)
910                 return error;
911
912         dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
913         error = PTR_ERR(dentry);
914         if (IS_ERR(dentry))
915                 goto out_unlock;
916
917         error = btrfs_may_create(mnt_userns, dir, dentry);
918         if (error)
919                 goto out_dput;
920
921         /*
922          * even if this name doesn't exist, we may get hash collisions.
923          * check for them now when we can safely fail
924          */
925         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
926                                                dir->i_ino, name,
927                                                namelen);
928         if (error)
929                 goto out_dput;
930
931         down_read(&fs_info->subvol_sem);
932
933         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
934                 goto out_up_read;
935
936         if (snap_src)
937                 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
938         else
939                 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
940
941         if (!error)
942                 fsnotify_mkdir(dir, dentry);
943 out_up_read:
944         up_read(&fs_info->subvol_sem);
945 out_dput:
946         dput(dentry);
947 out_unlock:
948         btrfs_inode_unlock(dir, 0);
949         return error;
950 }
951
952 static noinline int btrfs_mksnapshot(const struct path *parent,
953                                    struct user_namespace *mnt_userns,
954                                    const char *name, int namelen,
955                                    struct btrfs_root *root,
956                                    bool readonly,
957                                    struct btrfs_qgroup_inherit *inherit)
958 {
959         int ret;
960         bool snapshot_force_cow = false;
961
962         /*
963          * Force new buffered writes to reserve space even when NOCOW is
964          * possible. This is to avoid later writeback (running dealloc) to
965          * fallback to COW mode and unexpectedly fail with ENOSPC.
966          */
967         btrfs_drew_read_lock(&root->snapshot_lock);
968
969         ret = btrfs_start_delalloc_snapshot(root, false);
970         if (ret)
971                 goto out;
972
973         /*
974          * All previous writes have started writeback in NOCOW mode, so now
975          * we force future writes to fallback to COW mode during snapshot
976          * creation.
977          */
978         atomic_inc(&root->snapshot_force_cow);
979         snapshot_force_cow = true;
980
981         btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
982
983         ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
984                              root, readonly, inherit);
985 out:
986         if (snapshot_force_cow)
987                 atomic_dec(&root->snapshot_force_cow);
988         btrfs_drew_read_unlock(&root->snapshot_lock);
989         return ret;
990 }
991
992 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
993                                                bool locked)
994 {
995         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
996         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
997         struct extent_map *em;
998         const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
999
1000         /*
1001          * hopefully we have this extent in the tree already, try without
1002          * the full extent lock
1003          */
1004         read_lock(&em_tree->lock);
1005         em = lookup_extent_mapping(em_tree, start, sectorsize);
1006         read_unlock(&em_tree->lock);
1007
1008         if (!em) {
1009                 struct extent_state *cached = NULL;
1010                 u64 end = start + sectorsize - 1;
1011
1012                 /* get the big lock and read metadata off disk */
1013                 if (!locked)
1014                         lock_extent_bits(io_tree, start, end, &cached);
1015                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1016                 if (!locked)
1017                         unlock_extent_cached(io_tree, start, end, &cached);
1018
1019                 if (IS_ERR(em))
1020                         return NULL;
1021         }
1022
1023         return em;
1024 }
1025
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1027                                      bool locked)
1028 {
1029         struct extent_map *next;
1030         bool ret = true;
1031
1032         /* this is the last extent */
1033         if (em->start + em->len >= i_size_read(inode))
1034                 return false;
1035
1036         next = defrag_lookup_extent(inode, em->start + em->len, locked);
1037         if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1038                 ret = false;
1039         else if ((em->block_start + em->block_len == next->block_start) &&
1040                  (em->block_len > SZ_128K && next->block_len > SZ_128K))
1041                 ret = false;
1042
1043         free_extent_map(next);
1044         return ret;
1045 }
1046
1047 /*
1048  * Prepare one page to be defragged.
1049  *
1050  * This will ensure:
1051  *
1052  * - Returned page is locked and has been set up properly.
1053  * - No ordered extent exists in the page.
1054  * - The page is uptodate.
1055  *
1056  * NOTE: Caller should also wait for page writeback after the cluster is
1057  * prepared, here we don't do writeback wait for each page.
1058  */
1059 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1060                                             pgoff_t index)
1061 {
1062         struct address_space *mapping = inode->vfs_inode.i_mapping;
1063         gfp_t mask = btrfs_alloc_write_mask(mapping);
1064         u64 page_start = (u64)index << PAGE_SHIFT;
1065         u64 page_end = page_start + PAGE_SIZE - 1;
1066         struct extent_state *cached_state = NULL;
1067         struct page *page;
1068         int ret;
1069
1070 again:
1071         page = find_or_create_page(mapping, index, mask);
1072         if (!page)
1073                 return ERR_PTR(-ENOMEM);
1074
1075         /*
1076          * Since we can defragment files opened read-only, we can encounter
1077          * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1078          * can't do I/O using huge pages yet, so return an error for now.
1079          * Filesystem transparent huge pages are typically only used for
1080          * executables that explicitly enable them, so this isn't very
1081          * restrictive.
1082          */
1083         if (PageCompound(page)) {
1084                 unlock_page(page);
1085                 put_page(page);
1086                 return ERR_PTR(-ETXTBSY);
1087         }
1088
1089         ret = set_page_extent_mapped(page);
1090         if (ret < 0) {
1091                 unlock_page(page);
1092                 put_page(page);
1093                 return ERR_PTR(ret);
1094         }
1095
1096         /* Wait for any existing ordered extent in the range */
1097         while (1) {
1098                 struct btrfs_ordered_extent *ordered;
1099
1100                 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1101                 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1102                 unlock_extent_cached(&inode->io_tree, page_start, page_end,
1103                                      &cached_state);
1104                 if (!ordered)
1105                         break;
1106
1107                 unlock_page(page);
1108                 btrfs_start_ordered_extent(ordered, 1);
1109                 btrfs_put_ordered_extent(ordered);
1110                 lock_page(page);
1111                 /*
1112                  * We unlocked the page above, so we need check if it was
1113                  * released or not.
1114                  */
1115                 if (page->mapping != mapping || !PagePrivate(page)) {
1116                         unlock_page(page);
1117                         put_page(page);
1118                         goto again;
1119                 }
1120         }
1121
1122         /*
1123          * Now the page range has no ordered extent any more.  Read the page to
1124          * make it uptodate.
1125          */
1126         if (!PageUptodate(page)) {
1127                 btrfs_readpage(NULL, page);
1128                 lock_page(page);
1129                 if (page->mapping != mapping || !PagePrivate(page)) {
1130                         unlock_page(page);
1131                         put_page(page);
1132                         goto again;
1133                 }
1134                 if (!PageUptodate(page)) {
1135                         unlock_page(page);
1136                         put_page(page);
1137                         return ERR_PTR(-EIO);
1138                 }
1139         }
1140         return page;
1141 }
1142
1143 struct defrag_target_range {
1144         struct list_head list;
1145         u64 start;
1146         u64 len;
1147 };
1148
1149 /*
1150  * Collect all valid target extents.
1151  *
1152  * @start:         file offset to lookup
1153  * @len:           length to lookup
1154  * @extent_thresh: file extent size threshold, any extent size >= this value
1155  *                 will be ignored
1156  * @newer_than:    only defrag extents newer than this value
1157  * @do_compress:   whether the defrag is doing compression
1158  *                 if true, @extent_thresh will be ignored and all regular
1159  *                 file extents meeting @newer_than will be targets.
1160  * @locked:        if the range has already held extent lock
1161  * @target_list:   list of targets file extents
1162  */
1163 static int defrag_collect_targets(struct btrfs_inode *inode,
1164                                   u64 start, u64 len, u32 extent_thresh,
1165                                   u64 newer_than, bool do_compress,
1166                                   bool locked, struct list_head *target_list)
1167 {
1168         u64 cur = start;
1169         int ret = 0;
1170
1171         while (cur < start + len) {
1172                 struct extent_map *em;
1173                 struct defrag_target_range *new;
1174                 bool next_mergeable = true;
1175                 u64 range_len;
1176
1177                 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1178                 if (!em)
1179                         break;
1180
1181                 /* Skip hole/inline/preallocated extents */
1182                 if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1183                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1184                         goto next;
1185
1186                 /* Skip older extent */
1187                 if (em->generation < newer_than)
1188                         goto next;
1189
1190                 /*
1191                  * For do_compress case, we want to compress all valid file
1192                  * extents, thus no @extent_thresh or mergeable check.
1193                  */
1194                 if (do_compress)
1195                         goto add;
1196
1197                 /* Skip too large extent */
1198                 if (em->len >= extent_thresh)
1199                         goto next;
1200
1201                 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1202                                                           locked);
1203                 if (!next_mergeable) {
1204                         struct defrag_target_range *last;
1205
1206                         /* Empty target list, no way to merge with last entry */
1207                         if (list_empty(target_list))
1208                                 goto next;
1209                         last = list_entry(target_list->prev,
1210                                           struct defrag_target_range, list);
1211                         /* Not mergeable with last entry */
1212                         if (last->start + last->len != cur)
1213                                 goto next;
1214
1215                         /* Mergeable, fall through to add it to @target_list. */
1216                 }
1217
1218 add:
1219                 range_len = min(extent_map_end(em), start + len) - cur;
1220                 /*
1221                  * This one is a good target, check if it can be merged into
1222                  * last range of the target list.
1223                  */
1224                 if (!list_empty(target_list)) {
1225                         struct defrag_target_range *last;
1226
1227                         last = list_entry(target_list->prev,
1228                                           struct defrag_target_range, list);
1229                         ASSERT(last->start + last->len <= cur);
1230                         if (last->start + last->len == cur) {
1231                                 /* Mergeable, enlarge the last entry */
1232                                 last->len += range_len;
1233                                 goto next;
1234                         }
1235                         /* Fall through to allocate a new entry */
1236                 }
1237
1238                 /* Allocate new defrag_target_range */
1239                 new = kmalloc(sizeof(*new), GFP_NOFS);
1240                 if (!new) {
1241                         free_extent_map(em);
1242                         ret = -ENOMEM;
1243                         break;
1244                 }
1245                 new->start = cur;
1246                 new->len = range_len;
1247                 list_add_tail(&new->list, target_list);
1248
1249 next:
1250                 cur = extent_map_end(em);
1251                 free_extent_map(em);
1252         }
1253         if (ret < 0) {
1254                 struct defrag_target_range *entry;
1255                 struct defrag_target_range *tmp;
1256
1257                 list_for_each_entry_safe(entry, tmp, target_list, list) {
1258                         list_del_init(&entry->list);
1259                         kfree(entry);
1260                 }
1261         }
1262         return ret;
1263 }
1264
1265 #define CLUSTER_SIZE    (SZ_256K)
1266
1267 /*
1268  * Defrag one contiguous target range.
1269  *
1270  * @inode:      target inode
1271  * @target:     target range to defrag
1272  * @pages:      locked pages covering the defrag range
1273  * @nr_pages:   number of locked pages
1274  *
1275  * Caller should ensure:
1276  *
1277  * - Pages are prepared
1278  *   Pages should be locked, no ordered extent in the pages range,
1279  *   no writeback.
1280  *
1281  * - Extent bits are locked
1282  */
1283 static int defrag_one_locked_target(struct btrfs_inode *inode,
1284                                     struct defrag_target_range *target,
1285                                     struct page **pages, int nr_pages,
1286                                     struct extent_state **cached_state)
1287 {
1288         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1289         struct extent_changeset *data_reserved = NULL;
1290         const u64 start = target->start;
1291         const u64 len = target->len;
1292         unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1293         unsigned long start_index = start >> PAGE_SHIFT;
1294         unsigned long first_index = page_index(pages[0]);
1295         int ret = 0;
1296         int i;
1297
1298         ASSERT(last_index - first_index + 1 <= nr_pages);
1299
1300         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1301         if (ret < 0)
1302                 return ret;
1303         clear_extent_bit(&inode->io_tree, start, start + len - 1,
1304                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1305                          EXTENT_DEFRAG, 0, 0, cached_state);
1306         set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1307
1308         /* Update the page status */
1309         for (i = start_index - first_index; i <= last_index - first_index; i++) {
1310                 ClearPageChecked(pages[i]);
1311                 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1312         }
1313         btrfs_delalloc_release_extents(inode, len);
1314         extent_changeset_free(data_reserved);
1315
1316         return ret;
1317 }
1318
1319 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1320                             u32 extent_thresh, u64 newer_than, bool do_compress)
1321 {
1322         struct extent_state *cached_state = NULL;
1323         struct defrag_target_range *entry;
1324         struct defrag_target_range *tmp;
1325         LIST_HEAD(target_list);
1326         struct page **pages;
1327         const u32 sectorsize = inode->root->fs_info->sectorsize;
1328         u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1329         u64 start_index = start >> PAGE_SHIFT;
1330         unsigned int nr_pages = last_index - start_index + 1;
1331         int ret = 0;
1332         int i;
1333
1334         ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1335         ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1336
1337         pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1338         if (!pages)
1339                 return -ENOMEM;
1340
1341         /* Prepare all pages */
1342         for (i = 0; i < nr_pages; i++) {
1343                 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1344                 if (IS_ERR(pages[i])) {
1345                         ret = PTR_ERR(pages[i]);
1346                         pages[i] = NULL;
1347                         goto free_pages;
1348                 }
1349         }
1350         for (i = 0; i < nr_pages; i++)
1351                 wait_on_page_writeback(pages[i]);
1352
1353         /* Lock the pages range */
1354         lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1355                          (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1356                          &cached_state);
1357         /*
1358          * Now we have a consistent view about the extent map, re-check
1359          * which range really needs to be defragged.
1360          *
1361          * And this time we have extent locked already, pass @locked = true
1362          * so that we won't relock the extent range and cause deadlock.
1363          */
1364         ret = defrag_collect_targets(inode, start, len, extent_thresh,
1365                                      newer_than, do_compress, true,
1366                                      &target_list);
1367         if (ret < 0)
1368                 goto unlock_extent;
1369
1370         list_for_each_entry(entry, &target_list, list) {
1371                 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1372                                                &cached_state);
1373                 if (ret < 0)
1374                         break;
1375         }
1376
1377         list_for_each_entry_safe(entry, tmp, &target_list, list) {
1378                 list_del_init(&entry->list);
1379                 kfree(entry);
1380         }
1381 unlock_extent:
1382         unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1383                              (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1384                              &cached_state);
1385 free_pages:
1386         for (i = 0; i < nr_pages; i++) {
1387                 if (pages[i]) {
1388                         unlock_page(pages[i]);
1389                         put_page(pages[i]);
1390                 }
1391         }
1392         kfree(pages);
1393         return ret;
1394 }
1395
1396 static int defrag_one_cluster(struct btrfs_inode *inode,
1397                               struct file_ra_state *ra,
1398                               u64 start, u32 len, u32 extent_thresh,
1399                               u64 newer_than, bool do_compress,
1400                               unsigned long *sectors_defragged,
1401                               unsigned long max_sectors)
1402 {
1403         const u32 sectorsize = inode->root->fs_info->sectorsize;
1404         struct defrag_target_range *entry;
1405         struct defrag_target_range *tmp;
1406         LIST_HEAD(target_list);
1407         int ret;
1408
1409         BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1410         ret = defrag_collect_targets(inode, start, len, extent_thresh,
1411                                      newer_than, do_compress, false,
1412                                      &target_list);
1413         if (ret < 0)
1414                 goto out;
1415
1416         list_for_each_entry(entry, &target_list, list) {
1417                 u32 range_len = entry->len;
1418
1419                 /* Reached the limit */
1420                 if (max_sectors && max_sectors == *sectors_defragged)
1421                         break;
1422
1423                 if (max_sectors)
1424                         range_len = min_t(u32, range_len,
1425                                 (max_sectors - *sectors_defragged) * sectorsize);
1426
1427                 if (ra)
1428                         page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1429                                 ra, NULL, entry->start >> PAGE_SHIFT,
1430                                 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1431                                 (entry->start >> PAGE_SHIFT) + 1);
1432                 /*
1433                  * Here we may not defrag any range if holes are punched before
1434                  * we locked the pages.
1435                  * But that's fine, it only affects the @sectors_defragged
1436                  * accounting.
1437                  */
1438                 ret = defrag_one_range(inode, entry->start, range_len,
1439                                        extent_thresh, newer_than, do_compress);
1440                 if (ret < 0)
1441                         break;
1442                 *sectors_defragged += range_len;
1443         }
1444 out:
1445         list_for_each_entry_safe(entry, tmp, &target_list, list) {
1446                 list_del_init(&entry->list);
1447                 kfree(entry);
1448         }
1449         return ret;
1450 }
1451
1452 /*
1453  * Entry point to file defragmentation.
1454  *
1455  * @inode:         inode to be defragged
1456  * @ra:            readahead state (can be NUL)
1457  * @range:         defrag options including range and flags
1458  * @newer_than:    minimum transid to defrag
1459  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1460  *                 will be defragged.
1461  */
1462 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1463                       struct btrfs_ioctl_defrag_range_args *range,
1464                       u64 newer_than, unsigned long max_to_defrag)
1465 {
1466         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1467         unsigned long sectors_defragged = 0;
1468         u64 isize = i_size_read(inode);
1469         u64 cur;
1470         u64 last_byte;
1471         bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1472         bool ra_allocated = false;
1473         int compress_type = BTRFS_COMPRESS_ZLIB;
1474         int ret = 0;
1475         u32 extent_thresh = range->extent_thresh;
1476
1477         if (isize == 0)
1478                 return 0;
1479
1480         if (range->start >= isize)
1481                 return -EINVAL;
1482
1483         if (do_compress) {
1484                 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1485                         return -EINVAL;
1486                 if (range->compress_type)
1487                         compress_type = range->compress_type;
1488         }
1489
1490         if (extent_thresh == 0)
1491                 extent_thresh = SZ_256K;
1492
1493         if (range->start + range->len > range->start) {
1494                 /* Got a specific range */
1495                 last_byte = min(isize, range->start + range->len) - 1;
1496         } else {
1497                 /* Defrag until file end */
1498                 last_byte = isize - 1;
1499         }
1500
1501         /*
1502          * If we were not given a ra, allocate a readahead context. As
1503          * readahead is just an optimization, defrag will work without it so
1504          * we don't error out.
1505          */
1506         if (!ra) {
1507                 ra_allocated = true;
1508                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1509                 if (ra)
1510                         file_ra_state_init(ra, inode->i_mapping);
1511         }
1512
1513         /* Align the range */
1514         cur = round_down(range->start, fs_info->sectorsize);
1515         last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1516
1517         while (cur < last_byte) {
1518                 u64 cluster_end;
1519
1520                 /* The cluster size 256K should always be page aligned */
1521                 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1522
1523                 /* We want the cluster end at page boundary when possible */
1524                 cluster_end = (((cur >> PAGE_SHIFT) +
1525                                (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1526                 cluster_end = min(cluster_end, last_byte);
1527
1528                 btrfs_inode_lock(inode, 0);
1529                 if (IS_SWAPFILE(inode)) {
1530                         ret = -ETXTBSY;
1531                         btrfs_inode_unlock(inode, 0);
1532                         break;
1533                 }
1534                 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1535                         btrfs_inode_unlock(inode, 0);
1536                         break;
1537                 }
1538                 if (do_compress)
1539                         BTRFS_I(inode)->defrag_compress = compress_type;
1540                 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1541                                 cluster_end + 1 - cur, extent_thresh,
1542                                 newer_than, do_compress,
1543                                 &sectors_defragged, max_to_defrag);
1544                 btrfs_inode_unlock(inode, 0);
1545                 if (ret < 0)
1546                         break;
1547                 cur = cluster_end + 1;
1548         }
1549
1550         if (ra_allocated)
1551                 kfree(ra);
1552         if (sectors_defragged) {
1553                 /*
1554                  * We have defragged some sectors, for compression case they
1555                  * need to be written back immediately.
1556                  */
1557                 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1558                         filemap_flush(inode->i_mapping);
1559                         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1560                                      &BTRFS_I(inode)->runtime_flags))
1561                                 filemap_flush(inode->i_mapping);
1562                 }
1563                 if (range->compress_type == BTRFS_COMPRESS_LZO)
1564                         btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1565                 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1566                         btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1567                 ret = sectors_defragged;
1568         }
1569         if (do_compress) {
1570                 btrfs_inode_lock(inode, 0);
1571                 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1572                 btrfs_inode_unlock(inode, 0);
1573         }
1574         return ret;
1575 }
1576
1577 /*
1578  * Try to start exclusive operation @type or cancel it if it's running.
1579  *
1580  * Return:
1581  *   0        - normal mode, newly claimed op started
1582  *  >0        - normal mode, something else is running,
1583  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1584  * ECANCELED  - cancel mode, successful cancel
1585  * ENOTCONN   - cancel mode, operation not running anymore
1586  */
1587 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1588                         enum btrfs_exclusive_operation type, bool cancel)
1589 {
1590         if (!cancel) {
1591                 /* Start normal op */
1592                 if (!btrfs_exclop_start(fs_info, type))
1593                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1594                 /* Exclusive operation is now claimed */
1595                 return 0;
1596         }
1597
1598         /* Cancel running op */
1599         if (btrfs_exclop_start_try_lock(fs_info, type)) {
1600                 /*
1601                  * This blocks any exclop finish from setting it to NONE, so we
1602                  * request cancellation. Either it runs and we will wait for it,
1603                  * or it has finished and no waiting will happen.
1604                  */
1605                 atomic_inc(&fs_info->reloc_cancel_req);
1606                 btrfs_exclop_start_unlock(fs_info);
1607
1608                 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1609                         wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1610                                     TASK_INTERRUPTIBLE);
1611
1612                 return -ECANCELED;
1613         }
1614
1615         /* Something else is running or none */
1616         return -ENOTCONN;
1617 }
1618
1619 static noinline int btrfs_ioctl_resize(struct file *file,
1620                                         void __user *arg)
1621 {
1622         BTRFS_DEV_LOOKUP_ARGS(args);
1623         struct inode *inode = file_inode(file);
1624         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1625         u64 new_size;
1626         u64 old_size;
1627         u64 devid = 1;
1628         struct btrfs_root *root = BTRFS_I(inode)->root;
1629         struct btrfs_ioctl_vol_args *vol_args;
1630         struct btrfs_trans_handle *trans;
1631         struct btrfs_device *device = NULL;
1632         char *sizestr;
1633         char *retptr;
1634         char *devstr = NULL;
1635         int ret = 0;
1636         int mod = 0;
1637         bool cancel;
1638
1639         if (!capable(CAP_SYS_ADMIN))
1640                 return -EPERM;
1641
1642         ret = mnt_want_write_file(file);
1643         if (ret)
1644                 return ret;
1645
1646         /*
1647          * Read the arguments before checking exclusivity to be able to
1648          * distinguish regular resize and cancel
1649          */
1650         vol_args = memdup_user(arg, sizeof(*vol_args));
1651         if (IS_ERR(vol_args)) {
1652                 ret = PTR_ERR(vol_args);
1653                 goto out_drop;
1654         }
1655         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1656         sizestr = vol_args->name;
1657         cancel = (strcmp("cancel", sizestr) == 0);
1658         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1659         if (ret)
1660                 goto out_free;
1661         /* Exclusive operation is now claimed */
1662
1663         devstr = strchr(sizestr, ':');
1664         if (devstr) {
1665                 sizestr = devstr + 1;
1666                 *devstr = '\0';
1667                 devstr = vol_args->name;
1668                 ret = kstrtoull(devstr, 10, &devid);
1669                 if (ret)
1670                         goto out_finish;
1671                 if (!devid) {
1672                         ret = -EINVAL;
1673                         goto out_finish;
1674                 }
1675                 btrfs_info(fs_info, "resizing devid %llu", devid);
1676         }
1677
1678         args.devid = devid;
1679         device = btrfs_find_device(fs_info->fs_devices, &args);
1680         if (!device) {
1681                 btrfs_info(fs_info, "resizer unable to find device %llu",
1682                            devid);
1683                 ret = -ENODEV;
1684                 goto out_finish;
1685         }
1686
1687         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1688                 btrfs_info(fs_info,
1689                            "resizer unable to apply on readonly device %llu",
1690                        devid);
1691                 ret = -EPERM;
1692                 goto out_finish;
1693         }
1694
1695         if (!strcmp(sizestr, "max"))
1696                 new_size = bdev_nr_bytes(device->bdev);
1697         else {
1698                 if (sizestr[0] == '-') {
1699                         mod = -1;
1700                         sizestr++;
1701                 } else if (sizestr[0] == '+') {
1702                         mod = 1;
1703                         sizestr++;
1704                 }
1705                 new_size = memparse(sizestr, &retptr);
1706                 if (*retptr != '\0' || new_size == 0) {
1707                         ret = -EINVAL;
1708                         goto out_finish;
1709                 }
1710         }
1711
1712         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1713                 ret = -EPERM;
1714                 goto out_finish;
1715         }
1716
1717         old_size = btrfs_device_get_total_bytes(device);
1718
1719         if (mod < 0) {
1720                 if (new_size > old_size) {
1721                         ret = -EINVAL;
1722                         goto out_finish;
1723                 }
1724                 new_size = old_size - new_size;
1725         } else if (mod > 0) {
1726                 if (new_size > ULLONG_MAX - old_size) {
1727                         ret = -ERANGE;
1728                         goto out_finish;
1729                 }
1730                 new_size = old_size + new_size;
1731         }
1732
1733         if (new_size < SZ_256M) {
1734                 ret = -EINVAL;
1735                 goto out_finish;
1736         }
1737         if (new_size > bdev_nr_bytes(device->bdev)) {
1738                 ret = -EFBIG;
1739                 goto out_finish;
1740         }
1741
1742         new_size = round_down(new_size, fs_info->sectorsize);
1743
1744         if (new_size > old_size) {
1745                 trans = btrfs_start_transaction(root, 0);
1746                 if (IS_ERR(trans)) {
1747                         ret = PTR_ERR(trans);
1748                         goto out_finish;
1749                 }
1750                 ret = btrfs_grow_device(trans, device, new_size);
1751                 btrfs_commit_transaction(trans);
1752         } else if (new_size < old_size) {
1753                 ret = btrfs_shrink_device(device, new_size);
1754         } /* equal, nothing need to do */
1755
1756         if (ret == 0 && new_size != old_size)
1757                 btrfs_info_in_rcu(fs_info,
1758                         "resize device %s (devid %llu) from %llu to %llu",
1759                         rcu_str_deref(device->name), device->devid,
1760                         old_size, new_size);
1761 out_finish:
1762         btrfs_exclop_finish(fs_info);
1763 out_free:
1764         kfree(vol_args);
1765 out_drop:
1766         mnt_drop_write_file(file);
1767         return ret;
1768 }
1769
1770 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1771                                 struct user_namespace *mnt_userns,
1772                                 const char *name, unsigned long fd, int subvol,
1773                                 bool readonly,
1774                                 struct btrfs_qgroup_inherit *inherit)
1775 {
1776         int namelen;
1777         int ret = 0;
1778
1779         if (!S_ISDIR(file_inode(file)->i_mode))
1780                 return -ENOTDIR;
1781
1782         ret = mnt_want_write_file(file);
1783         if (ret)
1784                 goto out;
1785
1786         namelen = strlen(name);
1787         if (strchr(name, '/')) {
1788                 ret = -EINVAL;
1789                 goto out_drop_write;
1790         }
1791
1792         if (name[0] == '.' &&
1793            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1794                 ret = -EEXIST;
1795                 goto out_drop_write;
1796         }
1797
1798         if (subvol) {
1799                 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1800                                      namelen, NULL, readonly, inherit);
1801         } else {
1802                 struct fd src = fdget(fd);
1803                 struct inode *src_inode;
1804                 if (!src.file) {
1805                         ret = -EINVAL;
1806                         goto out_drop_write;
1807                 }
1808
1809                 src_inode = file_inode(src.file);
1810                 if (src_inode->i_sb != file_inode(file)->i_sb) {
1811                         btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1812                                    "Snapshot src from another FS");
1813                         ret = -EXDEV;
1814                 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1815                         /*
1816                          * Subvolume creation is not restricted, but snapshots
1817                          * are limited to own subvolumes only
1818                          */
1819                         ret = -EPERM;
1820                 } else {
1821                         ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1822                                                name, namelen,
1823                                                BTRFS_I(src_inode)->root,
1824                                                readonly, inherit);
1825                 }
1826                 fdput(src);
1827         }
1828 out_drop_write:
1829         mnt_drop_write_file(file);
1830 out:
1831         return ret;
1832 }
1833
1834 static noinline int btrfs_ioctl_snap_create(struct file *file,
1835                                             void __user *arg, int subvol)
1836 {
1837         struct btrfs_ioctl_vol_args *vol_args;
1838         int ret;
1839
1840         if (!S_ISDIR(file_inode(file)->i_mode))
1841                 return -ENOTDIR;
1842
1843         vol_args = memdup_user(arg, sizeof(*vol_args));
1844         if (IS_ERR(vol_args))
1845                 return PTR_ERR(vol_args);
1846         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1847
1848         ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1849                                         vol_args->name, vol_args->fd, subvol,
1850                                         false, NULL);
1851
1852         kfree(vol_args);
1853         return ret;
1854 }
1855
1856 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1857                                                void __user *arg, int subvol)
1858 {
1859         struct btrfs_ioctl_vol_args_v2 *vol_args;
1860         int ret;
1861         bool readonly = false;
1862         struct btrfs_qgroup_inherit *inherit = NULL;
1863
1864         if (!S_ISDIR(file_inode(file)->i_mode))
1865                 return -ENOTDIR;
1866
1867         vol_args = memdup_user(arg, sizeof(*vol_args));
1868         if (IS_ERR(vol_args))
1869                 return PTR_ERR(vol_args);
1870         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1871
1872         if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1873                 ret = -EOPNOTSUPP;
1874                 goto free_args;
1875         }
1876
1877         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1878                 readonly = true;
1879         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1880                 u64 nums;
1881
1882                 if (vol_args->size < sizeof(*inherit) ||
1883                     vol_args->size > PAGE_SIZE) {
1884                         ret = -EINVAL;
1885                         goto free_args;
1886                 }
1887                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1888                 if (IS_ERR(inherit)) {
1889                         ret = PTR_ERR(inherit);
1890                         goto free_args;
1891                 }
1892
1893                 if (inherit->num_qgroups > PAGE_SIZE ||
1894                     inherit->num_ref_copies > PAGE_SIZE ||
1895                     inherit->num_excl_copies > PAGE_SIZE) {
1896                         ret = -EINVAL;
1897                         goto free_inherit;
1898                 }
1899
1900                 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1901                        2 * inherit->num_excl_copies;
1902                 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1903                         ret = -EINVAL;
1904                         goto free_inherit;
1905                 }
1906         }
1907
1908         ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1909                                         vol_args->name, vol_args->fd, subvol,
1910                                         readonly, inherit);
1911         if (ret)
1912                 goto free_inherit;
1913 free_inherit:
1914         kfree(inherit);
1915 free_args:
1916         kfree(vol_args);
1917         return ret;
1918 }
1919
1920 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1921                                                 void __user *arg)
1922 {
1923         struct inode *inode = file_inode(file);
1924         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1925         struct btrfs_root *root = BTRFS_I(inode)->root;
1926         int ret = 0;
1927         u64 flags = 0;
1928
1929         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1930                 return -EINVAL;
1931
1932         down_read(&fs_info->subvol_sem);
1933         if (btrfs_root_readonly(root))
1934                 flags |= BTRFS_SUBVOL_RDONLY;
1935         up_read(&fs_info->subvol_sem);
1936
1937         if (copy_to_user(arg, &flags, sizeof(flags)))
1938                 ret = -EFAULT;
1939
1940         return ret;
1941 }
1942
1943 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1944                                               void __user *arg)
1945 {
1946         struct inode *inode = file_inode(file);
1947         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948         struct btrfs_root *root = BTRFS_I(inode)->root;
1949         struct btrfs_trans_handle *trans;
1950         u64 root_flags;
1951         u64 flags;
1952         int ret = 0;
1953
1954         if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1955                 return -EPERM;
1956
1957         ret = mnt_want_write_file(file);
1958         if (ret)
1959                 goto out;
1960
1961         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1962                 ret = -EINVAL;
1963                 goto out_drop_write;
1964         }
1965
1966         if (copy_from_user(&flags, arg, sizeof(flags))) {
1967                 ret = -EFAULT;
1968                 goto out_drop_write;
1969         }
1970
1971         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1972                 ret = -EOPNOTSUPP;
1973                 goto out_drop_write;
1974         }
1975
1976         down_write(&fs_info->subvol_sem);
1977
1978         /* nothing to do */
1979         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1980                 goto out_drop_sem;
1981
1982         root_flags = btrfs_root_flags(&root->root_item);
1983         if (flags & BTRFS_SUBVOL_RDONLY) {
1984                 btrfs_set_root_flags(&root->root_item,
1985                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1986         } else {
1987                 /*
1988                  * Block RO -> RW transition if this subvolume is involved in
1989                  * send
1990                  */
1991                 spin_lock(&root->root_item_lock);
1992                 if (root->send_in_progress == 0) {
1993                         btrfs_set_root_flags(&root->root_item,
1994                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1995                         spin_unlock(&root->root_item_lock);
1996                 } else {
1997                         spin_unlock(&root->root_item_lock);
1998                         btrfs_warn(fs_info,
1999                                    "Attempt to set subvolume %llu read-write during send",
2000                                    root->root_key.objectid);
2001                         ret = -EPERM;
2002                         goto out_drop_sem;
2003                 }
2004         }
2005
2006         trans = btrfs_start_transaction(root, 1);
2007         if (IS_ERR(trans)) {
2008                 ret = PTR_ERR(trans);
2009                 goto out_reset;
2010         }
2011
2012         ret = btrfs_update_root(trans, fs_info->tree_root,
2013                                 &root->root_key, &root->root_item);
2014         if (ret < 0) {
2015                 btrfs_end_transaction(trans);
2016                 goto out_reset;
2017         }
2018
2019         ret = btrfs_commit_transaction(trans);
2020
2021 out_reset:
2022         if (ret)
2023                 btrfs_set_root_flags(&root->root_item, root_flags);
2024 out_drop_sem:
2025         up_write(&fs_info->subvol_sem);
2026 out_drop_write:
2027         mnt_drop_write_file(file);
2028 out:
2029         return ret;
2030 }
2031
2032 static noinline int key_in_sk(struct btrfs_key *key,
2033                               struct btrfs_ioctl_search_key *sk)
2034 {
2035         struct btrfs_key test;
2036         int ret;
2037
2038         test.objectid = sk->min_objectid;
2039         test.type = sk->min_type;
2040         test.offset = sk->min_offset;
2041
2042         ret = btrfs_comp_cpu_keys(key, &test);
2043         if (ret < 0)
2044                 return 0;
2045
2046         test.objectid = sk->max_objectid;
2047         test.type = sk->max_type;
2048         test.offset = sk->max_offset;
2049
2050         ret = btrfs_comp_cpu_keys(key, &test);
2051         if (ret > 0)
2052                 return 0;
2053         return 1;
2054 }
2055
2056 static noinline int copy_to_sk(struct btrfs_path *path,
2057                                struct btrfs_key *key,
2058                                struct btrfs_ioctl_search_key *sk,
2059                                size_t *buf_size,
2060                                char __user *ubuf,
2061                                unsigned long *sk_offset,
2062                                int *num_found)
2063 {
2064         u64 found_transid;
2065         struct extent_buffer *leaf;
2066         struct btrfs_ioctl_search_header sh;
2067         struct btrfs_key test;
2068         unsigned long item_off;
2069         unsigned long item_len;
2070         int nritems;
2071         int i;
2072         int slot;
2073         int ret = 0;
2074
2075         leaf = path->nodes[0];
2076         slot = path->slots[0];
2077         nritems = btrfs_header_nritems(leaf);
2078
2079         if (btrfs_header_generation(leaf) > sk->max_transid) {
2080                 i = nritems;
2081                 goto advance_key;
2082         }
2083         found_transid = btrfs_header_generation(leaf);
2084
2085         for (i = slot; i < nritems; i++) {
2086                 item_off = btrfs_item_ptr_offset(leaf, i);
2087                 item_len = btrfs_item_size(leaf, i);
2088
2089                 btrfs_item_key_to_cpu(leaf, key, i);
2090                 if (!key_in_sk(key, sk))
2091                         continue;
2092
2093                 if (sizeof(sh) + item_len > *buf_size) {
2094                         if (*num_found) {
2095                                 ret = 1;
2096                                 goto out;
2097                         }
2098
2099                         /*
2100                          * return one empty item back for v1, which does not
2101                          * handle -EOVERFLOW
2102                          */
2103
2104                         *buf_size = sizeof(sh) + item_len;
2105                         item_len = 0;
2106                         ret = -EOVERFLOW;
2107                 }
2108
2109                 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2110                         ret = 1;
2111                         goto out;
2112                 }
2113
2114                 sh.objectid = key->objectid;
2115                 sh.offset = key->offset;
2116                 sh.type = key->type;
2117                 sh.len = item_len;
2118                 sh.transid = found_transid;
2119
2120                 /*
2121                  * Copy search result header. If we fault then loop again so we
2122                  * can fault in the pages and -EFAULT there if there's a
2123                  * problem. Otherwise we'll fault and then copy the buffer in
2124                  * properly this next time through
2125                  */
2126                 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2127                         ret = 0;
2128                         goto out;
2129                 }
2130
2131                 *sk_offset += sizeof(sh);
2132
2133                 if (item_len) {
2134                         char __user *up = ubuf + *sk_offset;
2135                         /*
2136                          * Copy the item, same behavior as above, but reset the
2137                          * * sk_offset so we copy the full thing again.
2138                          */
2139                         if (read_extent_buffer_to_user_nofault(leaf, up,
2140                                                 item_off, item_len)) {
2141                                 ret = 0;
2142                                 *sk_offset -= sizeof(sh);
2143                                 goto out;
2144                         }
2145
2146                         *sk_offset += item_len;
2147                 }
2148                 (*num_found)++;
2149
2150                 if (ret) /* -EOVERFLOW from above */
2151                         goto out;
2152
2153                 if (*num_found >= sk->nr_items) {
2154                         ret = 1;
2155                         goto out;
2156                 }
2157         }
2158 advance_key:
2159         ret = 0;
2160         test.objectid = sk->max_objectid;
2161         test.type = sk->max_type;
2162         test.offset = sk->max_offset;
2163         if (btrfs_comp_cpu_keys(key, &test) >= 0)
2164                 ret = 1;
2165         else if (key->offset < (u64)-1)
2166                 key->offset++;
2167         else if (key->type < (u8)-1) {
2168                 key->offset = 0;
2169                 key->type++;
2170         } else if (key->objectid < (u64)-1) {
2171                 key->offset = 0;
2172                 key->type = 0;
2173                 key->objectid++;
2174         } else
2175                 ret = 1;
2176 out:
2177         /*
2178          *  0: all items from this leaf copied, continue with next
2179          *  1: * more items can be copied, but unused buffer is too small
2180          *     * all items were found
2181          *     Either way, it will stops the loop which iterates to the next
2182          *     leaf
2183          *  -EOVERFLOW: item was to large for buffer
2184          *  -EFAULT: could not copy extent buffer back to userspace
2185          */
2186         return ret;
2187 }
2188
2189 static noinline int search_ioctl(struct inode *inode,
2190                                  struct btrfs_ioctl_search_key *sk,
2191                                  size_t *buf_size,
2192                                  char __user *ubuf)
2193 {
2194         struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2195         struct btrfs_root *root;
2196         struct btrfs_key key;
2197         struct btrfs_path *path;
2198         int ret;
2199         int num_found = 0;
2200         unsigned long sk_offset = 0;
2201
2202         if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2203                 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2204                 return -EOVERFLOW;
2205         }
2206
2207         path = btrfs_alloc_path();
2208         if (!path)
2209                 return -ENOMEM;
2210
2211         if (sk->tree_id == 0) {
2212                 /* search the root of the inode that was passed */
2213                 root = btrfs_grab_root(BTRFS_I(inode)->root);
2214         } else {
2215                 root = btrfs_get_fs_root(info, sk->tree_id, true);
2216                 if (IS_ERR(root)) {
2217                         btrfs_free_path(path);
2218                         return PTR_ERR(root);
2219                 }
2220         }
2221
2222         key.objectid = sk->min_objectid;
2223         key.type = sk->min_type;
2224         key.offset = sk->min_offset;
2225
2226         while (1) {
2227                 ret = -EFAULT;
2228                 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2229                         break;
2230
2231                 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2232                 if (ret != 0) {
2233                         if (ret > 0)
2234                                 ret = 0;
2235                         goto err;
2236                 }
2237                 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2238                                  &sk_offset, &num_found);
2239                 btrfs_release_path(path);
2240                 if (ret)
2241                         break;
2242
2243         }
2244         if (ret > 0)
2245                 ret = 0;
2246 err:
2247         sk->nr_items = num_found;
2248         btrfs_put_root(root);
2249         btrfs_free_path(path);
2250         return ret;
2251 }
2252
2253 static noinline int btrfs_ioctl_tree_search(struct file *file,
2254                                            void __user *argp)
2255 {
2256         struct btrfs_ioctl_search_args __user *uargs;
2257         struct btrfs_ioctl_search_key sk;
2258         struct inode *inode;
2259         int ret;
2260         size_t buf_size;
2261
2262         if (!capable(CAP_SYS_ADMIN))
2263                 return -EPERM;
2264
2265         uargs = (struct btrfs_ioctl_search_args __user *)argp;
2266
2267         if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2268                 return -EFAULT;
2269
2270         buf_size = sizeof(uargs->buf);
2271
2272         inode = file_inode(file);
2273         ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2274
2275         /*
2276          * In the origin implementation an overflow is handled by returning a
2277          * search header with a len of zero, so reset ret.
2278          */
2279         if (ret == -EOVERFLOW)
2280                 ret = 0;
2281
2282         if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2283                 ret = -EFAULT;
2284         return ret;
2285 }
2286
2287 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2288                                                void __user *argp)
2289 {
2290         struct btrfs_ioctl_search_args_v2 __user *uarg;
2291         struct btrfs_ioctl_search_args_v2 args;
2292         struct inode *inode;
2293         int ret;
2294         size_t buf_size;
2295         const size_t buf_limit = SZ_16M;
2296
2297         if (!capable(CAP_SYS_ADMIN))
2298                 return -EPERM;
2299
2300         /* copy search header and buffer size */
2301         uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2302         if (copy_from_user(&args, uarg, sizeof(args)))
2303                 return -EFAULT;
2304
2305         buf_size = args.buf_size;
2306
2307         /* limit result size to 16MB */
2308         if (buf_size > buf_limit)
2309                 buf_size = buf_limit;
2310
2311         inode = file_inode(file);
2312         ret = search_ioctl(inode, &args.key, &buf_size,
2313                            (char __user *)(&uarg->buf[0]));
2314         if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2315                 ret = -EFAULT;
2316         else if (ret == -EOVERFLOW &&
2317                 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2318                 ret = -EFAULT;
2319
2320         return ret;
2321 }
2322
2323 /*
2324  * Search INODE_REFs to identify path name of 'dirid' directory
2325  * in a 'tree_id' tree. and sets path name to 'name'.
2326  */
2327 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2328                                 u64 tree_id, u64 dirid, char *name)
2329 {
2330         struct btrfs_root *root;
2331         struct btrfs_key key;
2332         char *ptr;
2333         int ret = -1;
2334         int slot;
2335         int len;
2336         int total_len = 0;
2337         struct btrfs_inode_ref *iref;
2338         struct extent_buffer *l;
2339         struct btrfs_path *path;
2340
2341         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2342                 name[0]='\0';
2343                 return 0;
2344         }
2345
2346         path = btrfs_alloc_path();
2347         if (!path)
2348                 return -ENOMEM;
2349
2350         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2351
2352         root = btrfs_get_fs_root(info, tree_id, true);
2353         if (IS_ERR(root)) {
2354                 ret = PTR_ERR(root);
2355                 root = NULL;
2356                 goto out;
2357         }
2358
2359         key.objectid = dirid;
2360         key.type = BTRFS_INODE_REF_KEY;
2361         key.offset = (u64)-1;
2362
2363         while (1) {
2364                 ret = btrfs_search_backwards(root, &key, path);
2365                 if (ret < 0)
2366                         goto out;
2367                 else if (ret > 0) {
2368                         ret = -ENOENT;
2369                         goto out;
2370                 }
2371
2372                 l = path->nodes[0];
2373                 slot = path->slots[0];
2374
2375                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2376                 len = btrfs_inode_ref_name_len(l, iref);
2377                 ptr -= len + 1;
2378                 total_len += len + 1;
2379                 if (ptr < name) {
2380                         ret = -ENAMETOOLONG;
2381                         goto out;
2382                 }
2383
2384                 *(ptr + len) = '/';
2385                 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2386
2387                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2388                         break;
2389
2390                 btrfs_release_path(path);
2391                 key.objectid = key.offset;
2392                 key.offset = (u64)-1;
2393                 dirid = key.objectid;
2394         }
2395         memmove(name, ptr, total_len);
2396         name[total_len] = '\0';
2397         ret = 0;
2398 out:
2399         btrfs_put_root(root);
2400         btrfs_free_path(path);
2401         return ret;
2402 }
2403
2404 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2405                                 struct inode *inode,
2406                                 struct btrfs_ioctl_ino_lookup_user_args *args)
2407 {
2408         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2409         struct super_block *sb = inode->i_sb;
2410         struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2411         u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2412         u64 dirid = args->dirid;
2413         unsigned long item_off;
2414         unsigned long item_len;
2415         struct btrfs_inode_ref *iref;
2416         struct btrfs_root_ref *rref;
2417         struct btrfs_root *root = NULL;
2418         struct btrfs_path *path;
2419         struct btrfs_key key, key2;
2420         struct extent_buffer *leaf;
2421         struct inode *temp_inode;
2422         char *ptr;
2423         int slot;
2424         int len;
2425         int total_len = 0;
2426         int ret;
2427
2428         path = btrfs_alloc_path();
2429         if (!path)
2430                 return -ENOMEM;
2431
2432         /*
2433          * If the bottom subvolume does not exist directly under upper_limit,
2434          * construct the path in from the bottom up.
2435          */
2436         if (dirid != upper_limit.objectid) {
2437                 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2438
2439                 root = btrfs_get_fs_root(fs_info, treeid, true);
2440                 if (IS_ERR(root)) {
2441                         ret = PTR_ERR(root);
2442                         goto out;
2443                 }
2444
2445                 key.objectid = dirid;
2446                 key.type = BTRFS_INODE_REF_KEY;
2447                 key.offset = (u64)-1;
2448                 while (1) {
2449                         ret = btrfs_search_backwards(root, &key, path);
2450                         if (ret < 0)
2451                                 goto out_put;
2452                         else if (ret > 0) {
2453                                 ret = -ENOENT;
2454                                 goto out_put;
2455                         }
2456
2457                         leaf = path->nodes[0];
2458                         slot = path->slots[0];
2459
2460                         iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2461                         len = btrfs_inode_ref_name_len(leaf, iref);
2462                         ptr -= len + 1;
2463                         total_len += len + 1;
2464                         if (ptr < args->path) {
2465                                 ret = -ENAMETOOLONG;
2466                                 goto out_put;
2467                         }
2468
2469                         *(ptr + len) = '/';
2470                         read_extent_buffer(leaf, ptr,
2471                                         (unsigned long)(iref + 1), len);
2472
2473                         /* Check the read+exec permission of this directory */
2474                         ret = btrfs_previous_item(root, path, dirid,
2475                                                   BTRFS_INODE_ITEM_KEY);
2476                         if (ret < 0) {
2477                                 goto out_put;
2478                         } else if (ret > 0) {
2479                                 ret = -ENOENT;
2480                                 goto out_put;
2481                         }
2482
2483                         leaf = path->nodes[0];
2484                         slot = path->slots[0];
2485                         btrfs_item_key_to_cpu(leaf, &key2, slot);
2486                         if (key2.objectid != dirid) {
2487                                 ret = -ENOENT;
2488                                 goto out_put;
2489                         }
2490
2491                         temp_inode = btrfs_iget(sb, key2.objectid, root);
2492                         if (IS_ERR(temp_inode)) {
2493                                 ret = PTR_ERR(temp_inode);
2494                                 goto out_put;
2495                         }
2496                         ret = inode_permission(mnt_userns, temp_inode,
2497                                                MAY_READ | MAY_EXEC);
2498                         iput(temp_inode);
2499                         if (ret) {
2500                                 ret = -EACCES;
2501                                 goto out_put;
2502                         }
2503
2504                         if (key.offset == upper_limit.objectid)
2505                                 break;
2506                         if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2507                                 ret = -EACCES;
2508                                 goto out_put;
2509                         }
2510
2511                         btrfs_release_path(path);
2512                         key.objectid = key.offset;
2513                         key.offset = (u64)-1;
2514                         dirid = key.objectid;
2515                 }
2516
2517                 memmove(args->path, ptr, total_len);
2518                 args->path[total_len] = '\0';
2519                 btrfs_put_root(root);
2520                 root = NULL;
2521                 btrfs_release_path(path);
2522         }
2523
2524         /* Get the bottom subvolume's name from ROOT_REF */
2525         key.objectid = treeid;
2526         key.type = BTRFS_ROOT_REF_KEY;
2527         key.offset = args->treeid;
2528         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2529         if (ret < 0) {
2530                 goto out;
2531         } else if (ret > 0) {
2532                 ret = -ENOENT;
2533                 goto out;
2534         }
2535
2536         leaf = path->nodes[0];
2537         slot = path->slots[0];
2538         btrfs_item_key_to_cpu(leaf, &key, slot);
2539
2540         item_off = btrfs_item_ptr_offset(leaf, slot);
2541         item_len = btrfs_item_size(leaf, slot);
2542         /* Check if dirid in ROOT_REF corresponds to passed dirid */
2543         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2544         if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2545                 ret = -EINVAL;
2546                 goto out;
2547         }
2548
2549         /* Copy subvolume's name */
2550         item_off += sizeof(struct btrfs_root_ref);
2551         item_len -= sizeof(struct btrfs_root_ref);
2552         read_extent_buffer(leaf, args->name, item_off, item_len);
2553         args->name[item_len] = 0;
2554
2555 out_put:
2556         btrfs_put_root(root);
2557 out:
2558         btrfs_free_path(path);
2559         return ret;
2560 }
2561
2562 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2563                                            void __user *argp)
2564 {
2565         struct btrfs_ioctl_ino_lookup_args *args;
2566         struct inode *inode;
2567         int ret = 0;
2568
2569         args = memdup_user(argp, sizeof(*args));
2570         if (IS_ERR(args))
2571                 return PTR_ERR(args);
2572
2573         inode = file_inode(file);
2574
2575         /*
2576          * Unprivileged query to obtain the containing subvolume root id. The
2577          * path is reset so it's consistent with btrfs_search_path_in_tree.
2578          */
2579         if (args->treeid == 0)
2580                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2581
2582         if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2583                 args->name[0] = 0;
2584                 goto out;
2585         }
2586
2587         if (!capable(CAP_SYS_ADMIN)) {
2588                 ret = -EPERM;
2589                 goto out;
2590         }
2591
2592         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2593                                         args->treeid, args->objectid,
2594                                         args->name);
2595
2596 out:
2597         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2598                 ret = -EFAULT;
2599
2600         kfree(args);
2601         return ret;
2602 }
2603
2604 /*
2605  * Version of ino_lookup ioctl (unprivileged)
2606  *
2607  * The main differences from ino_lookup ioctl are:
2608  *
2609  *   1. Read + Exec permission will be checked using inode_permission() during
2610  *      path construction. -EACCES will be returned in case of failure.
2611  *   2. Path construction will be stopped at the inode number which corresponds
2612  *      to the fd with which this ioctl is called. If constructed path does not
2613  *      exist under fd's inode, -EACCES will be returned.
2614  *   3. The name of bottom subvolume is also searched and filled.
2615  */
2616 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2617 {
2618         struct btrfs_ioctl_ino_lookup_user_args *args;
2619         struct inode *inode;
2620         int ret;
2621
2622         args = memdup_user(argp, sizeof(*args));
2623         if (IS_ERR(args))
2624                 return PTR_ERR(args);
2625
2626         inode = file_inode(file);
2627
2628         if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2629             BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2630                 /*
2631                  * The subvolume does not exist under fd with which this is
2632                  * called
2633                  */
2634                 kfree(args);
2635                 return -EACCES;
2636         }
2637
2638         ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2639
2640         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2641                 ret = -EFAULT;
2642
2643         kfree(args);
2644         return ret;
2645 }
2646
2647 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2648 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2649 {
2650         struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2651         struct btrfs_fs_info *fs_info;
2652         struct btrfs_root *root;
2653         struct btrfs_path *path;
2654         struct btrfs_key key;
2655         struct btrfs_root_item *root_item;
2656         struct btrfs_root_ref *rref;
2657         struct extent_buffer *leaf;
2658         unsigned long item_off;
2659         unsigned long item_len;
2660         struct inode *inode;
2661         int slot;
2662         int ret = 0;
2663
2664         path = btrfs_alloc_path();
2665         if (!path)
2666                 return -ENOMEM;
2667
2668         subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2669         if (!subvol_info) {
2670                 btrfs_free_path(path);
2671                 return -ENOMEM;
2672         }
2673
2674         inode = file_inode(file);
2675         fs_info = BTRFS_I(inode)->root->fs_info;
2676
2677         /* Get root_item of inode's subvolume */
2678         key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2679         root = btrfs_get_fs_root(fs_info, key.objectid, true);
2680         if (IS_ERR(root)) {
2681                 ret = PTR_ERR(root);
2682                 goto out_free;
2683         }
2684         root_item = &root->root_item;
2685
2686         subvol_info->treeid = key.objectid;
2687
2688         subvol_info->generation = btrfs_root_generation(root_item);
2689         subvol_info->flags = btrfs_root_flags(root_item);
2690
2691         memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2692         memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2693                                                     BTRFS_UUID_SIZE);
2694         memcpy(subvol_info->received_uuid, root_item->received_uuid,
2695                                                     BTRFS_UUID_SIZE);
2696
2697         subvol_info->ctransid = btrfs_root_ctransid(root_item);
2698         subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2699         subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2700
2701         subvol_info->otransid = btrfs_root_otransid(root_item);
2702         subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2703         subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2704
2705         subvol_info->stransid = btrfs_root_stransid(root_item);
2706         subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2707         subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2708
2709         subvol_info->rtransid = btrfs_root_rtransid(root_item);
2710         subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2711         subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2712
2713         if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2714                 /* Search root tree for ROOT_BACKREF of this subvolume */
2715                 key.type = BTRFS_ROOT_BACKREF_KEY;
2716                 key.offset = 0;
2717                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2718                 if (ret < 0) {
2719                         goto out;
2720                 } else if (path->slots[0] >=
2721                            btrfs_header_nritems(path->nodes[0])) {
2722                         ret = btrfs_next_leaf(fs_info->tree_root, path);
2723                         if (ret < 0) {
2724                                 goto out;
2725                         } else if (ret > 0) {
2726                                 ret = -EUCLEAN;
2727                                 goto out;
2728                         }
2729                 }
2730
2731                 leaf = path->nodes[0];
2732                 slot = path->slots[0];
2733                 btrfs_item_key_to_cpu(leaf, &key, slot);
2734                 if (key.objectid == subvol_info->treeid &&
2735                     key.type == BTRFS_ROOT_BACKREF_KEY) {
2736                         subvol_info->parent_id = key.offset;
2737
2738                         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2739                         subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2740
2741                         item_off = btrfs_item_ptr_offset(leaf, slot)
2742                                         + sizeof(struct btrfs_root_ref);
2743                         item_len = btrfs_item_size(leaf, slot)
2744                                         - sizeof(struct btrfs_root_ref);
2745                         read_extent_buffer(leaf, subvol_info->name,
2746                                            item_off, item_len);
2747                 } else {
2748                         ret = -ENOENT;
2749                         goto out;
2750                 }
2751         }
2752
2753         if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2754                 ret = -EFAULT;
2755
2756 out:
2757         btrfs_put_root(root);
2758 out_free:
2759         btrfs_free_path(path);
2760         kfree(subvol_info);
2761         return ret;
2762 }
2763
2764 /*
2765  * Return ROOT_REF information of the subvolume containing this inode
2766  * except the subvolume name.
2767  */
2768 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2769 {
2770         struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2771         struct btrfs_root_ref *rref;
2772         struct btrfs_root *root;
2773         struct btrfs_path *path;
2774         struct btrfs_key key;
2775         struct extent_buffer *leaf;
2776         struct inode *inode;
2777         u64 objectid;
2778         int slot;
2779         int ret;
2780         u8 found;
2781
2782         path = btrfs_alloc_path();
2783         if (!path)
2784                 return -ENOMEM;
2785
2786         rootrefs = memdup_user(argp, sizeof(*rootrefs));
2787         if (IS_ERR(rootrefs)) {
2788                 btrfs_free_path(path);
2789                 return PTR_ERR(rootrefs);
2790         }
2791
2792         inode = file_inode(file);
2793         root = BTRFS_I(inode)->root->fs_info->tree_root;
2794         objectid = BTRFS_I(inode)->root->root_key.objectid;
2795
2796         key.objectid = objectid;
2797         key.type = BTRFS_ROOT_REF_KEY;
2798         key.offset = rootrefs->min_treeid;
2799         found = 0;
2800
2801         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2802         if (ret < 0) {
2803                 goto out;
2804         } else if (path->slots[0] >=
2805                    btrfs_header_nritems(path->nodes[0])) {
2806                 ret = btrfs_next_leaf(root, path);
2807                 if (ret < 0) {
2808                         goto out;
2809                 } else if (ret > 0) {
2810                         ret = -EUCLEAN;
2811                         goto out;
2812                 }
2813         }
2814         while (1) {
2815                 leaf = path->nodes[0];
2816                 slot = path->slots[0];
2817
2818                 btrfs_item_key_to_cpu(leaf, &key, slot);
2819                 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2820                         ret = 0;
2821                         goto out;
2822                 }
2823
2824                 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2825                         ret = -EOVERFLOW;
2826                         goto out;
2827                 }
2828
2829                 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2830                 rootrefs->rootref[found].treeid = key.offset;
2831                 rootrefs->rootref[found].dirid =
2832                                   btrfs_root_ref_dirid(leaf, rref);
2833                 found++;
2834
2835                 ret = btrfs_next_item(root, path);
2836                 if (ret < 0) {
2837                         goto out;
2838                 } else if (ret > 0) {
2839                         ret = -EUCLEAN;
2840                         goto out;
2841                 }
2842         }
2843
2844 out:
2845         if (!ret || ret == -EOVERFLOW) {
2846                 rootrefs->num_items = found;
2847                 /* update min_treeid for next search */
2848                 if (found)
2849                         rootrefs->min_treeid =
2850                                 rootrefs->rootref[found - 1].treeid + 1;
2851                 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2852                         ret = -EFAULT;
2853         }
2854
2855         kfree(rootrefs);
2856         btrfs_free_path(path);
2857
2858         return ret;
2859 }
2860
2861 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2862                                              void __user *arg,
2863                                              bool destroy_v2)
2864 {
2865         struct dentry *parent = file->f_path.dentry;
2866         struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2867         struct dentry *dentry;
2868         struct inode *dir = d_inode(parent);
2869         struct inode *inode;
2870         struct btrfs_root *root = BTRFS_I(dir)->root;
2871         struct btrfs_root *dest = NULL;
2872         struct btrfs_ioctl_vol_args *vol_args = NULL;
2873         struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2874         struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2875         char *subvol_name, *subvol_name_ptr = NULL;
2876         int subvol_namelen;
2877         int err = 0;
2878         bool destroy_parent = false;
2879
2880         if (destroy_v2) {
2881                 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2882                 if (IS_ERR(vol_args2))
2883                         return PTR_ERR(vol_args2);
2884
2885                 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2886                         err = -EOPNOTSUPP;
2887                         goto out;
2888                 }
2889
2890                 /*
2891                  * If SPEC_BY_ID is not set, we are looking for the subvolume by
2892                  * name, same as v1 currently does.
2893                  */
2894                 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2895                         vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2896                         subvol_name = vol_args2->name;
2897
2898                         err = mnt_want_write_file(file);
2899                         if (err)
2900                                 goto out;
2901                 } else {
2902                         struct inode *old_dir;
2903
2904                         if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2905                                 err = -EINVAL;
2906                                 goto out;
2907                         }
2908
2909                         err = mnt_want_write_file(file);
2910                         if (err)
2911                                 goto out;
2912
2913                         dentry = btrfs_get_dentry(fs_info->sb,
2914                                         BTRFS_FIRST_FREE_OBJECTID,
2915                                         vol_args2->subvolid, 0, 0);
2916                         if (IS_ERR(dentry)) {
2917                                 err = PTR_ERR(dentry);
2918                                 goto out_drop_write;
2919                         }
2920
2921                         /*
2922                          * Change the default parent since the subvolume being
2923                          * deleted can be outside of the current mount point.
2924                          */
2925                         parent = btrfs_get_parent(dentry);
2926
2927                         /*
2928                          * At this point dentry->d_name can point to '/' if the
2929                          * subvolume we want to destroy is outsite of the
2930                          * current mount point, so we need to release the
2931                          * current dentry and execute the lookup to return a new
2932                          * one with ->d_name pointing to the
2933                          * <mount point>/subvol_name.
2934                          */
2935                         dput(dentry);
2936                         if (IS_ERR(parent)) {
2937                                 err = PTR_ERR(parent);
2938                                 goto out_drop_write;
2939                         }
2940                         old_dir = dir;
2941                         dir = d_inode(parent);
2942
2943                         /*
2944                          * If v2 was used with SPEC_BY_ID, a new parent was
2945                          * allocated since the subvolume can be outside of the
2946                          * current mount point. Later on we need to release this
2947                          * new parent dentry.
2948                          */
2949                         destroy_parent = true;
2950
2951                         /*
2952                          * On idmapped mounts, deletion via subvolid is
2953                          * restricted to subvolumes that are immediate
2954                          * ancestors of the inode referenced by the file
2955                          * descriptor in the ioctl. Otherwise the idmapping
2956                          * could potentially be abused to delete subvolumes
2957                          * anywhere in the filesystem the user wouldn't be able
2958                          * to delete without an idmapped mount.
2959                          */
2960                         if (old_dir != dir && mnt_userns != &init_user_ns) {
2961                                 err = -EOPNOTSUPP;
2962                                 goto free_parent;
2963                         }
2964
2965                         subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2966                                                 fs_info, vol_args2->subvolid);
2967                         if (IS_ERR(subvol_name_ptr)) {
2968                                 err = PTR_ERR(subvol_name_ptr);
2969                                 goto free_parent;
2970                         }
2971                         /* subvol_name_ptr is already nul terminated */
2972                         subvol_name = (char *)kbasename(subvol_name_ptr);
2973                 }
2974         } else {
2975                 vol_args = memdup_user(arg, sizeof(*vol_args));
2976                 if (IS_ERR(vol_args))
2977                         return PTR_ERR(vol_args);
2978
2979                 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2980                 subvol_name = vol_args->name;
2981
2982                 err = mnt_want_write_file(file);
2983                 if (err)
2984                         goto out;
2985         }
2986
2987         subvol_namelen = strlen(subvol_name);
2988
2989         if (strchr(subvol_name, '/') ||
2990             strncmp(subvol_name, "..", subvol_namelen) == 0) {
2991                 err = -EINVAL;
2992                 goto free_subvol_name;
2993         }
2994
2995         if (!S_ISDIR(dir->i_mode)) {
2996                 err = -ENOTDIR;
2997                 goto free_subvol_name;
2998         }
2999
3000         err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3001         if (err == -EINTR)
3002                 goto free_subvol_name;
3003         dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3004         if (IS_ERR(dentry)) {
3005                 err = PTR_ERR(dentry);
3006                 goto out_unlock_dir;
3007         }
3008
3009         if (d_really_is_negative(dentry)) {
3010                 err = -ENOENT;
3011                 goto out_dput;
3012         }
3013
3014         inode = d_inode(dentry);
3015         dest = BTRFS_I(inode)->root;
3016         if (!capable(CAP_SYS_ADMIN)) {
3017                 /*
3018                  * Regular user.  Only allow this with a special mount
3019                  * option, when the user has write+exec access to the
3020                  * subvol root, and when rmdir(2) would have been
3021                  * allowed.
3022                  *
3023                  * Note that this is _not_ check that the subvol is
3024                  * empty or doesn't contain data that we wouldn't
3025                  * otherwise be able to delete.
3026                  *
3027                  * Users who want to delete empty subvols should try
3028                  * rmdir(2).
3029                  */
3030                 err = -EPERM;
3031                 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3032                         goto out_dput;
3033
3034                 /*
3035                  * Do not allow deletion if the parent dir is the same
3036                  * as the dir to be deleted.  That means the ioctl
3037                  * must be called on the dentry referencing the root
3038                  * of the subvol, not a random directory contained
3039                  * within it.
3040                  */
3041                 err = -EINVAL;
3042                 if (root == dest)
3043                         goto out_dput;
3044
3045                 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3046                 if (err)
3047                         goto out_dput;
3048         }
3049
3050         /* check if subvolume may be deleted by a user */
3051         err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3052         if (err)
3053                 goto out_dput;
3054
3055         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3056                 err = -EINVAL;
3057                 goto out_dput;
3058         }
3059
3060         btrfs_inode_lock(inode, 0);
3061         err = btrfs_delete_subvolume(dir, dentry);
3062         btrfs_inode_unlock(inode, 0);
3063         if (!err) {
3064                 fsnotify_rmdir(dir, dentry);
3065                 d_delete(dentry);
3066         }
3067
3068 out_dput:
3069         dput(dentry);
3070 out_unlock_dir:
3071         btrfs_inode_unlock(dir, 0);
3072 free_subvol_name:
3073         kfree(subvol_name_ptr);
3074 free_parent:
3075         if (destroy_parent)
3076                 dput(parent);
3077 out_drop_write:
3078         mnt_drop_write_file(file);
3079 out:
3080         kfree(vol_args2);
3081         kfree(vol_args);
3082         return err;
3083 }
3084
3085 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3086 {
3087         struct inode *inode = file_inode(file);
3088         struct btrfs_root *root = BTRFS_I(inode)->root;
3089         struct btrfs_ioctl_defrag_range_args range = {0};
3090         int ret;
3091
3092         ret = mnt_want_write_file(file);
3093         if (ret)
3094                 return ret;
3095
3096         if (btrfs_root_readonly(root)) {
3097                 ret = -EROFS;
3098                 goto out;
3099         }
3100
3101         switch (inode->i_mode & S_IFMT) {
3102         case S_IFDIR:
3103                 if (!capable(CAP_SYS_ADMIN)) {
3104                         ret = -EPERM;
3105                         goto out;
3106                 }
3107                 ret = btrfs_defrag_root(root);
3108                 break;
3109         case S_IFREG:
3110                 /*
3111                  * Note that this does not check the file descriptor for write
3112                  * access. This prevents defragmenting executables that are
3113                  * running and allows defrag on files open in read-only mode.
3114                  */
3115                 if (!capable(CAP_SYS_ADMIN) &&
3116                     inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3117                         ret = -EPERM;
3118                         goto out;
3119                 }
3120
3121                 if (argp) {
3122                         if (copy_from_user(&range, argp, sizeof(range))) {
3123                                 ret = -EFAULT;
3124                                 goto out;
3125                         }
3126                         /* compression requires us to start the IO */
3127                         if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3128                                 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3129                                 range.extent_thresh = (u32)-1;
3130                         }
3131                 } else {
3132                         /* the rest are all set to zero by kzalloc */
3133                         range.len = (u64)-1;
3134                 }
3135                 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3136                                         &range, BTRFS_OLDEST_GENERATION, 0);
3137                 if (ret > 0)
3138                         ret = 0;
3139                 break;
3140         default:
3141                 ret = -EINVAL;
3142         }
3143 out:
3144         mnt_drop_write_file(file);
3145         return ret;
3146 }
3147
3148 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3149 {
3150         struct btrfs_ioctl_vol_args *vol_args;
3151         int ret;
3152
3153         if (!capable(CAP_SYS_ADMIN))
3154                 return -EPERM;
3155
3156         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3157                 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3158
3159         vol_args = memdup_user(arg, sizeof(*vol_args));
3160         if (IS_ERR(vol_args)) {
3161                 ret = PTR_ERR(vol_args);
3162                 goto out;
3163         }
3164
3165         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3166         ret = btrfs_init_new_device(fs_info, vol_args->name);
3167
3168         if (!ret)
3169                 btrfs_info(fs_info, "disk added %s", vol_args->name);
3170
3171         kfree(vol_args);
3172 out:
3173         btrfs_exclop_finish(fs_info);
3174         return ret;
3175 }
3176
3177 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3178 {
3179         BTRFS_DEV_LOOKUP_ARGS(args);
3180         struct inode *inode = file_inode(file);
3181         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3182         struct btrfs_ioctl_vol_args_v2 *vol_args;
3183         struct block_device *bdev = NULL;
3184         fmode_t mode;
3185         int ret;
3186         bool cancel = false;
3187
3188         if (!capable(CAP_SYS_ADMIN))
3189                 return -EPERM;
3190
3191         vol_args = memdup_user(arg, sizeof(*vol_args));
3192         if (IS_ERR(vol_args))
3193                 return PTR_ERR(vol_args);
3194
3195         if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3196                 ret = -EOPNOTSUPP;
3197                 goto out;
3198         }
3199
3200         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3201         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3202                 args.devid = vol_args->devid;
3203         } else if (!strcmp("cancel", vol_args->name)) {
3204                 cancel = true;
3205         } else {
3206                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3207                 if (ret)
3208                         goto out;
3209         }
3210
3211         ret = mnt_want_write_file(file);
3212         if (ret)
3213                 goto out;
3214
3215         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3216                                            cancel);
3217         if (ret)
3218                 goto err_drop;
3219
3220         /* Exclusive operation is now claimed */
3221         ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3222
3223         btrfs_exclop_finish(fs_info);
3224
3225         if (!ret) {
3226                 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3227                         btrfs_info(fs_info, "device deleted: id %llu",
3228                                         vol_args->devid);
3229                 else
3230                         btrfs_info(fs_info, "device deleted: %s",
3231                                         vol_args->name);
3232         }
3233 err_drop:
3234         mnt_drop_write_file(file);
3235         if (bdev)
3236                 blkdev_put(bdev, mode);
3237 out:
3238         btrfs_put_dev_args_from_path(&args);
3239         kfree(vol_args);
3240         return ret;
3241 }
3242
3243 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3244 {
3245         BTRFS_DEV_LOOKUP_ARGS(args);
3246         struct inode *inode = file_inode(file);
3247         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3248         struct btrfs_ioctl_vol_args *vol_args;
3249         struct block_device *bdev = NULL;
3250         fmode_t mode;
3251         int ret;
3252         bool cancel;
3253
3254         if (!capable(CAP_SYS_ADMIN))
3255                 return -EPERM;
3256
3257         vol_args = memdup_user(arg, sizeof(*vol_args));
3258         if (IS_ERR(vol_args))
3259                 return PTR_ERR(vol_args);
3260
3261         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3262         if (!strcmp("cancel", vol_args->name)) {
3263                 cancel = true;
3264         } else {
3265                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3266                 if (ret)
3267                         goto out;
3268         }
3269
3270         ret = mnt_want_write_file(file);
3271         if (ret)
3272                 goto out;
3273
3274         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3275                                            cancel);
3276         if (ret == 0) {
3277                 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3278                 if (!ret)
3279                         btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3280                 btrfs_exclop_finish(fs_info);
3281         }
3282
3283         mnt_drop_write_file(file);
3284         if (bdev)
3285                 blkdev_put(bdev, mode);
3286 out:
3287         btrfs_put_dev_args_from_path(&args);
3288         kfree(vol_args);
3289         return ret;
3290 }
3291
3292 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3293                                 void __user *arg)
3294 {
3295         struct btrfs_ioctl_fs_info_args *fi_args;
3296         struct btrfs_device *device;
3297         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3298         u64 flags_in;
3299         int ret = 0;
3300
3301         fi_args = memdup_user(arg, sizeof(*fi_args));
3302         if (IS_ERR(fi_args))
3303                 return PTR_ERR(fi_args);
3304
3305         flags_in = fi_args->flags;
3306         memset(fi_args, 0, sizeof(*fi_args));
3307
3308         rcu_read_lock();
3309         fi_args->num_devices = fs_devices->num_devices;
3310
3311         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3312                 if (device->devid > fi_args->max_id)
3313                         fi_args->max_id = device->devid;
3314         }
3315         rcu_read_unlock();
3316
3317         memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3318         fi_args->nodesize = fs_info->nodesize;
3319         fi_args->sectorsize = fs_info->sectorsize;
3320         fi_args->clone_alignment = fs_info->sectorsize;
3321
3322         if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3323                 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3324                 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3325                 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3326         }
3327
3328         if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3329                 fi_args->generation = fs_info->generation;
3330                 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3331         }
3332
3333         if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3334                 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3335                        sizeof(fi_args->metadata_uuid));
3336                 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3337         }
3338
3339         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3340                 ret = -EFAULT;
3341
3342         kfree(fi_args);
3343         return ret;
3344 }
3345
3346 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3347                                  void __user *arg)
3348 {
3349         BTRFS_DEV_LOOKUP_ARGS(args);
3350         struct btrfs_ioctl_dev_info_args *di_args;
3351         struct btrfs_device *dev;
3352         int ret = 0;
3353
3354         di_args = memdup_user(arg, sizeof(*di_args));
3355         if (IS_ERR(di_args))
3356                 return PTR_ERR(di_args);
3357
3358         args.devid = di_args->devid;
3359         if (!btrfs_is_empty_uuid(di_args->uuid))
3360                 args.uuid = di_args->uuid;
3361
3362         rcu_read_lock();
3363         dev = btrfs_find_device(fs_info->fs_devices, &args);
3364         if (!dev) {
3365                 ret = -ENODEV;
3366                 goto out;
3367         }
3368
3369         di_args->devid = dev->devid;
3370         di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3371         di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3372         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3373         if (dev->name) {
3374                 strncpy(di_args->path, rcu_str_deref(dev->name),
3375                                 sizeof(di_args->path) - 1);
3376                 di_args->path[sizeof(di_args->path) - 1] = 0;
3377         } else {
3378                 di_args->path[0] = '\0';
3379         }
3380
3381 out:
3382         rcu_read_unlock();
3383         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3384                 ret = -EFAULT;
3385
3386         kfree(di_args);
3387         return ret;
3388 }
3389
3390 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3391 {
3392         struct inode *inode = file_inode(file);
3393         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3394         struct btrfs_root *root = BTRFS_I(inode)->root;
3395         struct btrfs_root *new_root;
3396         struct btrfs_dir_item *di;
3397         struct btrfs_trans_handle *trans;
3398         struct btrfs_path *path = NULL;
3399         struct btrfs_disk_key disk_key;
3400         u64 objectid = 0;
3401         u64 dir_id;
3402         int ret;
3403
3404         if (!capable(CAP_SYS_ADMIN))
3405                 return -EPERM;
3406
3407         ret = mnt_want_write_file(file);
3408         if (ret)
3409                 return ret;
3410
3411         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3412                 ret = -EFAULT;
3413                 goto out;
3414         }
3415
3416         if (!objectid)
3417                 objectid = BTRFS_FS_TREE_OBJECTID;
3418
3419         new_root = btrfs_get_fs_root(fs_info, objectid, true);
3420         if (IS_ERR(new_root)) {
3421                 ret = PTR_ERR(new_root);
3422                 goto out;
3423         }
3424         if (!is_fstree(new_root->root_key.objectid)) {
3425                 ret = -ENOENT;
3426                 goto out_free;
3427         }
3428
3429         path = btrfs_alloc_path();
3430         if (!path) {
3431                 ret = -ENOMEM;
3432                 goto out_free;
3433         }
3434
3435         trans = btrfs_start_transaction(root, 1);
3436         if (IS_ERR(trans)) {
3437                 ret = PTR_ERR(trans);
3438                 goto out_free;
3439         }
3440
3441         dir_id = btrfs_super_root_dir(fs_info->super_copy);
3442         di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3443                                    dir_id, "default", 7, 1);
3444         if (IS_ERR_OR_NULL(di)) {
3445                 btrfs_release_path(path);
3446                 btrfs_end_transaction(trans);
3447                 btrfs_err(fs_info,
3448                           "Umm, you don't have the default diritem, this isn't going to work");
3449                 ret = -ENOENT;
3450                 goto out_free;
3451         }
3452
3453         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3454         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3455         btrfs_mark_buffer_dirty(path->nodes[0]);
3456         btrfs_release_path(path);
3457
3458         btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3459         btrfs_end_transaction(trans);
3460 out_free:
3461         btrfs_put_root(new_root);
3462         btrfs_free_path(path);
3463 out:
3464         mnt_drop_write_file(file);
3465         return ret;
3466 }
3467
3468 static void get_block_group_info(struct list_head *groups_list,
3469                                  struct btrfs_ioctl_space_info *space)
3470 {
3471         struct btrfs_block_group *block_group;
3472
3473         space->total_bytes = 0;
3474         space->used_bytes = 0;
3475         space->flags = 0;
3476         list_for_each_entry(block_group, groups_list, list) {
3477                 space->flags = block_group->flags;
3478                 space->total_bytes += block_group->length;
3479                 space->used_bytes += block_group->used;
3480         }
3481 }
3482
3483 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3484                                    void __user *arg)
3485 {
3486         struct btrfs_ioctl_space_args space_args;
3487         struct btrfs_ioctl_space_info space;
3488         struct btrfs_ioctl_space_info *dest;
3489         struct btrfs_ioctl_space_info *dest_orig;
3490         struct btrfs_ioctl_space_info __user *user_dest;
3491         struct btrfs_space_info *info;
3492         static const u64 types[] = {
3493                 BTRFS_BLOCK_GROUP_DATA,
3494                 BTRFS_BLOCK_GROUP_SYSTEM,
3495                 BTRFS_BLOCK_GROUP_METADATA,
3496                 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3497         };
3498         int num_types = 4;
3499         int alloc_size;
3500         int ret = 0;
3501         u64 slot_count = 0;
3502         int i, c;
3503
3504         if (copy_from_user(&space_args,
3505                            (struct btrfs_ioctl_space_args __user *)arg,
3506                            sizeof(space_args)))
3507                 return -EFAULT;
3508
3509         for (i = 0; i < num_types; i++) {
3510                 struct btrfs_space_info *tmp;
3511
3512                 info = NULL;
3513                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3514                         if (tmp->flags == types[i]) {
3515                                 info = tmp;
3516                                 break;
3517                         }
3518                 }
3519
3520                 if (!info)
3521                         continue;
3522
3523                 down_read(&info->groups_sem);
3524                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3525                         if (!list_empty(&info->block_groups[c]))
3526                                 slot_count++;
3527                 }
3528                 up_read(&info->groups_sem);
3529         }
3530
3531         /*
3532          * Global block reserve, exported as a space_info
3533          */
3534         slot_count++;
3535
3536         /* space_slots == 0 means they are asking for a count */
3537         if (space_args.space_slots == 0) {
3538                 space_args.total_spaces = slot_count;
3539                 goto out;
3540         }
3541
3542         slot_count = min_t(u64, space_args.space_slots, slot_count);
3543
3544         alloc_size = sizeof(*dest) * slot_count;
3545
3546         /* we generally have at most 6 or so space infos, one for each raid
3547          * level.  So, a whole page should be more than enough for everyone
3548          */
3549         if (alloc_size > PAGE_SIZE)
3550                 return -ENOMEM;
3551
3552         space_args.total_spaces = 0;
3553         dest = kmalloc(alloc_size, GFP_KERNEL);
3554         if (!dest)
3555                 return -ENOMEM;
3556         dest_orig = dest;
3557
3558         /* now we have a buffer to copy into */
3559         for (i = 0; i < num_types; i++) {
3560                 struct btrfs_space_info *tmp;
3561
3562                 if (!slot_count)
3563                         break;
3564
3565                 info = NULL;
3566                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3567                         if (tmp->flags == types[i]) {
3568                                 info = tmp;
3569                                 break;
3570                         }
3571                 }
3572
3573                 if (!info)
3574                         continue;
3575                 down_read(&info->groups_sem);
3576                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3577                         if (!list_empty(&info->block_groups[c])) {
3578                                 get_block_group_info(&info->block_groups[c],
3579                                                      &space);
3580                                 memcpy(dest, &space, sizeof(space));
3581                                 dest++;
3582                                 space_args.total_spaces++;
3583                                 slot_count--;
3584                         }
3585                         if (!slot_count)
3586                                 break;
3587                 }
3588                 up_read(&info->groups_sem);
3589         }
3590
3591         /*
3592          * Add global block reserve
3593          */
3594         if (slot_count) {
3595                 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3596
3597                 spin_lock(&block_rsv->lock);
3598                 space.total_bytes = block_rsv->size;
3599                 space.used_bytes = block_rsv->size - block_rsv->reserved;
3600                 spin_unlock(&block_rsv->lock);
3601                 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3602                 memcpy(dest, &space, sizeof(space));
3603                 space_args.total_spaces++;
3604         }
3605
3606         user_dest = (struct btrfs_ioctl_space_info __user *)
3607                 (arg + sizeof(struct btrfs_ioctl_space_args));
3608
3609         if (copy_to_user(user_dest, dest_orig, alloc_size))
3610                 ret = -EFAULT;
3611
3612         kfree(dest_orig);
3613 out:
3614         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3615                 ret = -EFAULT;
3616
3617         return ret;
3618 }
3619
3620 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3621                                             void __user *argp)
3622 {
3623         struct btrfs_trans_handle *trans;
3624         u64 transid;
3625         int ret;
3626
3627         trans = btrfs_attach_transaction_barrier(root);
3628         if (IS_ERR(trans)) {
3629                 if (PTR_ERR(trans) != -ENOENT)
3630                         return PTR_ERR(trans);
3631
3632                 /* No running transaction, don't bother */
3633                 transid = root->fs_info->last_trans_committed;
3634                 goto out;
3635         }
3636         transid = trans->transid;
3637         ret = btrfs_commit_transaction_async(trans);
3638         if (ret) {
3639                 btrfs_end_transaction(trans);
3640                 return ret;
3641         }
3642 out:
3643         if (argp)
3644                 if (copy_to_user(argp, &transid, sizeof(transid)))
3645                         return -EFAULT;
3646         return 0;
3647 }
3648
3649 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3650                                            void __user *argp)
3651 {
3652         u64 transid;
3653
3654         if (argp) {
3655                 if (copy_from_user(&transid, argp, sizeof(transid)))
3656                         return -EFAULT;
3657         } else {
3658                 transid = 0;  /* current trans */
3659         }
3660         return btrfs_wait_for_commit(fs_info, transid);
3661 }
3662
3663 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3664 {
3665         struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3666         struct btrfs_ioctl_scrub_args *sa;
3667         int ret;
3668
3669         if (!capable(CAP_SYS_ADMIN))
3670                 return -EPERM;
3671
3672         sa = memdup_user(arg, sizeof(*sa));
3673         if (IS_ERR(sa))
3674                 return PTR_ERR(sa);
3675
3676         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3677                 ret = mnt_want_write_file(file);
3678                 if (ret)
3679                         goto out;
3680         }
3681
3682         ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3683                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3684                               0);
3685
3686         /*
3687          * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3688          * error. This is important as it allows user space to know how much
3689          * progress scrub has done. For example, if scrub is canceled we get
3690          * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3691          * space. Later user space can inspect the progress from the structure
3692          * btrfs_ioctl_scrub_args and resume scrub from where it left off
3693          * previously (btrfs-progs does this).
3694          * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3695          * then return -EFAULT to signal the structure was not copied or it may
3696          * be corrupt and unreliable due to a partial copy.
3697          */
3698         if (copy_to_user(arg, sa, sizeof(*sa)))
3699                 ret = -EFAULT;
3700
3701         if (!(sa->flags & BTRFS_SCRUB_READONLY))
3702                 mnt_drop_write_file(file);
3703 out:
3704         kfree(sa);
3705         return ret;
3706 }
3707
3708 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3709 {
3710         if (!capable(CAP_SYS_ADMIN))
3711                 return -EPERM;
3712
3713         return btrfs_scrub_cancel(fs_info);
3714 }
3715
3716 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3717                                        void __user *arg)
3718 {
3719         struct btrfs_ioctl_scrub_args *sa;
3720         int ret;
3721
3722         if (!capable(CAP_SYS_ADMIN))
3723                 return -EPERM;
3724
3725         sa = memdup_user(arg, sizeof(*sa));
3726         if (IS_ERR(sa))
3727                 return PTR_ERR(sa);
3728
3729         ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3730
3731         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3732                 ret = -EFAULT;
3733
3734         kfree(sa);
3735         return ret;
3736 }
3737
3738 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3739                                       void __user *arg)
3740 {
3741         struct btrfs_ioctl_get_dev_stats *sa;
3742         int ret;
3743
3744         sa = memdup_user(arg, sizeof(*sa));
3745         if (IS_ERR(sa))
3746                 return PTR_ERR(sa);
3747
3748         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3749                 kfree(sa);
3750                 return -EPERM;
3751         }
3752
3753         ret = btrfs_get_dev_stats(fs_info, sa);
3754
3755         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3756                 ret = -EFAULT;
3757
3758         kfree(sa);
3759         return ret;
3760 }
3761
3762 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3763                                     void __user *arg)
3764 {
3765         struct btrfs_ioctl_dev_replace_args *p;
3766         int ret;
3767
3768         if (!capable(CAP_SYS_ADMIN))
3769                 return -EPERM;
3770
3771         p = memdup_user(arg, sizeof(*p));
3772         if (IS_ERR(p))
3773                 return PTR_ERR(p);
3774
3775         switch (p->cmd) {
3776         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3777                 if (sb_rdonly(fs_info->sb)) {
3778                         ret = -EROFS;
3779                         goto out;
3780                 }
3781                 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3782                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3783                 } else {
3784                         ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3785                         btrfs_exclop_finish(fs_info);
3786                 }
3787                 break;
3788         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3789                 btrfs_dev_replace_status(fs_info, p);
3790                 ret = 0;
3791                 break;
3792         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3793                 p->result = btrfs_dev_replace_cancel(fs_info);
3794                 ret = 0;
3795                 break;
3796         default:
3797                 ret = -EINVAL;
3798                 break;
3799         }
3800
3801         if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3802                 ret = -EFAULT;
3803 out:
3804         kfree(p);
3805         return ret;
3806 }
3807
3808 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3809 {
3810         int ret = 0;
3811         int i;
3812         u64 rel_ptr;
3813         int size;
3814         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3815         struct inode_fs_paths *ipath = NULL;
3816         struct btrfs_path *path;
3817
3818         if (!capable(CAP_DAC_READ_SEARCH))
3819                 return -EPERM;
3820
3821         path = btrfs_alloc_path();
3822         if (!path) {
3823                 ret = -ENOMEM;
3824                 goto out;
3825         }
3826
3827         ipa = memdup_user(arg, sizeof(*ipa));
3828         if (IS_ERR(ipa)) {
3829                 ret = PTR_ERR(ipa);
3830                 ipa = NULL;
3831                 goto out;
3832         }
3833
3834         size = min_t(u32, ipa->size, 4096);
3835         ipath = init_ipath(size, root, path);
3836         if (IS_ERR(ipath)) {
3837                 ret = PTR_ERR(ipath);
3838                 ipath = NULL;
3839                 goto out;
3840         }
3841
3842         ret = paths_from_inode(ipa->inum, ipath);
3843         if (ret < 0)
3844                 goto out;
3845
3846         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3847                 rel_ptr = ipath->fspath->val[i] -
3848                           (u64)(unsigned long)ipath->fspath->val;
3849                 ipath->fspath->val[i] = rel_ptr;
3850         }
3851
3852         ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3853                            ipath->fspath, size);
3854         if (ret) {
3855                 ret = -EFAULT;
3856                 goto out;
3857         }
3858
3859 out:
3860         btrfs_free_path(path);
3861         free_ipath(ipath);
3862         kfree(ipa);
3863
3864         return ret;
3865 }
3866
3867 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3868 {
3869         struct btrfs_data_container *inodes = ctx;
3870         const size_t c = 3 * sizeof(u64);
3871
3872         if (inodes->bytes_left >= c) {
3873                 inodes->bytes_left -= c;
3874                 inodes->val[inodes->elem_cnt] = inum;
3875                 inodes->val[inodes->elem_cnt + 1] = offset;
3876                 inodes->val[inodes->elem_cnt + 2] = root;
3877                 inodes->elem_cnt += 3;
3878         } else {
3879                 inodes->bytes_missing += c - inodes->bytes_left;
3880                 inodes->bytes_left = 0;
3881                 inodes->elem_missed += 3;
3882         }
3883
3884         return 0;
3885 }
3886
3887 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3888                                         void __user *arg, int version)
3889 {
3890         int ret = 0;
3891         int size;
3892         struct btrfs_ioctl_logical_ino_args *loi;
3893         struct btrfs_data_container *inodes = NULL;
3894         struct btrfs_path *path = NULL;
3895         bool ignore_offset;
3896
3897         if (!capable(CAP_SYS_ADMIN))
3898                 return -EPERM;
3899
3900         loi = memdup_user(arg, sizeof(*loi));
3901         if (IS_ERR(loi))
3902                 return PTR_ERR(loi);
3903
3904         if (version == 1) {
3905                 ignore_offset = false;
3906                 size = min_t(u32, loi->size, SZ_64K);
3907         } else {
3908                 /* All reserved bits must be 0 for now */
3909                 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3910                         ret = -EINVAL;
3911                         goto out_loi;
3912                 }
3913                 /* Only accept flags we have defined so far */
3914                 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3915                         ret = -EINVAL;
3916                         goto out_loi;
3917                 }
3918                 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3919                 size = min_t(u32, loi->size, SZ_16M);
3920         }
3921
3922         path = btrfs_alloc_path();
3923         if (!path) {
3924                 ret = -ENOMEM;
3925                 goto out;
3926         }
3927
3928         inodes = init_data_container(size);
3929         if (IS_ERR(inodes)) {
3930                 ret = PTR_ERR(inodes);
3931                 inodes = NULL;
3932                 goto out;
3933         }
3934
3935         ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3936                                           build_ino_list, inodes, ignore_offset);
3937         if (ret == -EINVAL)
3938                 ret = -ENOENT;
3939         if (ret < 0)
3940                 goto out;
3941
3942         ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3943                            size);
3944         if (ret)
3945                 ret = -EFAULT;
3946
3947 out:
3948         btrfs_free_path(path);
3949         kvfree(inodes);
3950 out_loi:
3951         kfree(loi);
3952
3953         return ret;
3954 }
3955
3956 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3957                                struct btrfs_ioctl_balance_args *bargs)
3958 {
3959         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3960
3961         bargs->flags = bctl->flags;
3962
3963         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3964                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3965         if (atomic_read(&fs_info->balance_pause_req))
3966                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3967         if (atomic_read(&fs_info->balance_cancel_req))
3968                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3969
3970         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3971         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3972         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3973
3974         spin_lock(&fs_info->balance_lock);
3975         memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3976         spin_unlock(&fs_info->balance_lock);
3977 }
3978
3979 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3980 {
3981         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3982         struct btrfs_fs_info *fs_info = root->fs_info;
3983         struct btrfs_ioctl_balance_args *bargs;
3984         struct btrfs_balance_control *bctl;
3985         bool need_unlock; /* for mut. excl. ops lock */
3986         int ret;
3987
3988         if (!arg)
3989                 btrfs_warn(fs_info,
3990         "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
3991
3992         if (!capable(CAP_SYS_ADMIN))
3993                 return -EPERM;
3994
3995         ret = mnt_want_write_file(file);
3996         if (ret)
3997                 return ret;
3998
3999 again:
4000         if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4001                 mutex_lock(&fs_info->balance_mutex);
4002                 need_unlock = true;
4003                 goto locked;
4004         }
4005
4006         /*
4007          * mut. excl. ops lock is locked.  Three possibilities:
4008          *   (1) some other op is running
4009          *   (2) balance is running
4010          *   (3) balance is paused -- special case (think resume)
4011          */
4012         mutex_lock(&fs_info->balance_mutex);
4013         if (fs_info->balance_ctl) {
4014                 /* this is either (2) or (3) */
4015                 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4016                         mutex_unlock(&fs_info->balance_mutex);
4017                         /*
4018                          * Lock released to allow other waiters to continue,
4019                          * we'll reexamine the status again.
4020                          */
4021                         mutex_lock(&fs_info->balance_mutex);
4022
4023                         if (fs_info->balance_ctl &&
4024                             !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4025                                 /* this is (3) */
4026                                 need_unlock = false;
4027                                 goto locked;
4028                         }
4029
4030                         mutex_unlock(&fs_info->balance_mutex);
4031                         goto again;
4032                 } else {
4033                         /* this is (2) */
4034                         mutex_unlock(&fs_info->balance_mutex);
4035                         ret = -EINPROGRESS;
4036                         goto out;
4037                 }
4038         } else {
4039                 /* this is (1) */
4040                 mutex_unlock(&fs_info->balance_mutex);
4041                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4042                 goto out;
4043         }
4044
4045 locked:
4046
4047         if (arg) {
4048                 bargs = memdup_user(arg, sizeof(*bargs));
4049                 if (IS_ERR(bargs)) {
4050                         ret = PTR_ERR(bargs);
4051                         goto out_unlock;
4052                 }
4053
4054                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4055                         if (!fs_info->balance_ctl) {
4056                                 ret = -ENOTCONN;
4057                                 goto out_bargs;
4058                         }
4059
4060                         bctl = fs_info->balance_ctl;
4061                         spin_lock(&fs_info->balance_lock);
4062                         bctl->flags |= BTRFS_BALANCE_RESUME;
4063                         spin_unlock(&fs_info->balance_lock);
4064
4065                         goto do_balance;
4066                 }
4067         } else {
4068                 bargs = NULL;
4069         }
4070
4071         if (fs_info->balance_ctl) {
4072                 ret = -EINPROGRESS;
4073                 goto out_bargs;
4074         }
4075
4076         bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4077         if (!bctl) {
4078                 ret = -ENOMEM;
4079                 goto out_bargs;
4080         }
4081
4082         if (arg) {
4083                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4084                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4085                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4086
4087                 bctl->flags = bargs->flags;
4088         } else {
4089                 /* balance everything - no filters */
4090                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4091         }
4092
4093         if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4094                 ret = -EINVAL;
4095                 goto out_bctl;
4096         }
4097
4098 do_balance:
4099         /*
4100          * Ownership of bctl and exclusive operation goes to btrfs_balance.
4101          * bctl is freed in reset_balance_state, or, if restriper was paused
4102          * all the way until unmount, in free_fs_info.  The flag should be
4103          * cleared after reset_balance_state.
4104          */
4105         need_unlock = false;
4106
4107         ret = btrfs_balance(fs_info, bctl, bargs);
4108         bctl = NULL;
4109
4110         if ((ret == 0 || ret == -ECANCELED) && arg) {
4111                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4112                         ret = -EFAULT;
4113         }
4114
4115 out_bctl:
4116         kfree(bctl);
4117 out_bargs:
4118         kfree(bargs);
4119 out_unlock:
4120         mutex_unlock(&fs_info->balance_mutex);
4121         if (need_unlock)
4122                 btrfs_exclop_finish(fs_info);
4123 out:
4124         mnt_drop_write_file(file);
4125         return ret;
4126 }
4127
4128 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4129 {
4130         if (!capable(CAP_SYS_ADMIN))
4131                 return -EPERM;
4132
4133         switch (cmd) {
4134         case BTRFS_BALANCE_CTL_PAUSE:
4135                 return btrfs_pause_balance(fs_info);
4136         case BTRFS_BALANCE_CTL_CANCEL:
4137                 return btrfs_cancel_balance(fs_info);
4138         }
4139
4140         return -EINVAL;
4141 }
4142
4143 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4144                                          void __user *arg)
4145 {
4146         struct btrfs_ioctl_balance_args *bargs;
4147         int ret = 0;
4148
4149         if (!capable(CAP_SYS_ADMIN))
4150                 return -EPERM;
4151
4152         mutex_lock(&fs_info->balance_mutex);
4153         if (!fs_info->balance_ctl) {
4154                 ret = -ENOTCONN;
4155                 goto out;
4156         }
4157
4158         bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4159         if (!bargs) {
4160                 ret = -ENOMEM;
4161                 goto out;
4162         }
4163
4164         btrfs_update_ioctl_balance_args(fs_info, bargs);
4165
4166         if (copy_to_user(arg, bargs, sizeof(*bargs)))
4167                 ret = -EFAULT;
4168
4169         kfree(bargs);
4170 out:
4171         mutex_unlock(&fs_info->balance_mutex);
4172         return ret;
4173 }
4174
4175 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4176 {
4177         struct inode *inode = file_inode(file);
4178         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4179         struct btrfs_ioctl_quota_ctl_args *sa;
4180         int ret;
4181
4182         if (!capable(CAP_SYS_ADMIN))
4183                 return -EPERM;
4184
4185         ret = mnt_want_write_file(file);
4186         if (ret)
4187                 return ret;
4188
4189         sa = memdup_user(arg, sizeof(*sa));
4190         if (IS_ERR(sa)) {
4191                 ret = PTR_ERR(sa);
4192                 goto drop_write;
4193         }
4194
4195         down_write(&fs_info->subvol_sem);
4196
4197         switch (sa->cmd) {
4198         case BTRFS_QUOTA_CTL_ENABLE:
4199                 ret = btrfs_quota_enable(fs_info);
4200                 break;
4201         case BTRFS_QUOTA_CTL_DISABLE:
4202                 ret = btrfs_quota_disable(fs_info);
4203                 break;
4204         default:
4205                 ret = -EINVAL;
4206                 break;
4207         }
4208
4209         kfree(sa);
4210         up_write(&fs_info->subvol_sem);
4211 drop_write:
4212         mnt_drop_write_file(file);
4213         return ret;
4214 }
4215
4216 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4217 {
4218         struct inode *inode = file_inode(file);
4219         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4220         struct btrfs_root *root = BTRFS_I(inode)->root;
4221         struct btrfs_ioctl_qgroup_assign_args *sa;
4222         struct btrfs_trans_handle *trans;
4223         int ret;
4224         int err;
4225
4226         if (!capable(CAP_SYS_ADMIN))
4227                 return -EPERM;
4228
4229         ret = mnt_want_write_file(file);
4230         if (ret)
4231                 return ret;
4232
4233         sa = memdup_user(arg, sizeof(*sa));
4234         if (IS_ERR(sa)) {
4235                 ret = PTR_ERR(sa);
4236                 goto drop_write;
4237         }
4238
4239         trans = btrfs_join_transaction(root);
4240         if (IS_ERR(trans)) {
4241                 ret = PTR_ERR(trans);
4242                 goto out;
4243         }
4244
4245         if (sa->assign) {
4246                 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4247         } else {
4248                 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4249         }
4250
4251         /* update qgroup status and info */
4252         err = btrfs_run_qgroups(trans);
4253         if (err < 0)
4254                 btrfs_handle_fs_error(fs_info, err,
4255                                       "failed to update qgroup status and info");
4256         err = btrfs_end_transaction(trans);
4257         if (err && !ret)
4258                 ret = err;
4259
4260 out:
4261         kfree(sa);
4262 drop_write:
4263         mnt_drop_write_file(file);
4264         return ret;
4265 }
4266
4267 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4268 {
4269         struct inode *inode = file_inode(file);
4270         struct btrfs_root *root = BTRFS_I(inode)->root;
4271         struct btrfs_ioctl_qgroup_create_args *sa;
4272         struct btrfs_trans_handle *trans;
4273         int ret;
4274         int err;
4275
4276         if (!capable(CAP_SYS_ADMIN))
4277                 return -EPERM;
4278
4279         ret = mnt_want_write_file(file);
4280         if (ret)
4281                 return ret;
4282
4283         sa = memdup_user(arg, sizeof(*sa));
4284         if (IS_ERR(sa)) {
4285                 ret = PTR_ERR(sa);
4286                 goto drop_write;
4287         }
4288
4289         if (!sa->qgroupid) {
4290                 ret = -EINVAL;
4291                 goto out;
4292         }
4293
4294         trans = btrfs_join_transaction(root);
4295         if (IS_ERR(trans)) {
4296                 ret = PTR_ERR(trans);
4297                 goto out;
4298         }
4299
4300         if (sa->create) {
4301                 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4302         } else {
4303                 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4304         }
4305
4306         err = btrfs_end_transaction(trans);
4307         if (err && !ret)
4308                 ret = err;
4309
4310 out:
4311         kfree(sa);
4312 drop_write:
4313         mnt_drop_write_file(file);
4314         return ret;
4315 }
4316
4317 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4318 {
4319         struct inode *inode = file_inode(file);
4320         struct btrfs_root *root = BTRFS_I(inode)->root;
4321         struct btrfs_ioctl_qgroup_limit_args *sa;
4322         struct btrfs_trans_handle *trans;
4323         int ret;
4324         int err;
4325         u64 qgroupid;
4326
4327         if (!capable(CAP_SYS_ADMIN))
4328                 return -EPERM;
4329
4330         ret = mnt_want_write_file(file);
4331         if (ret)
4332                 return ret;
4333
4334         sa = memdup_user(arg, sizeof(*sa));
4335         if (IS_ERR(sa)) {
4336                 ret = PTR_ERR(sa);
4337                 goto drop_write;
4338         }
4339
4340         trans = btrfs_join_transaction(root);
4341         if (IS_ERR(trans)) {
4342                 ret = PTR_ERR(trans);
4343                 goto out;
4344         }
4345
4346         qgroupid = sa->qgroupid;
4347         if (!qgroupid) {
4348                 /* take the current subvol as qgroup */
4349                 qgroupid = root->root_key.objectid;
4350         }
4351
4352         ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4353
4354         err = btrfs_end_transaction(trans);
4355         if (err && !ret)
4356                 ret = err;
4357
4358 out:
4359         kfree(sa);
4360 drop_write:
4361         mnt_drop_write_file(file);
4362         return ret;
4363 }
4364
4365 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4366 {
4367         struct inode *inode = file_inode(file);
4368         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4369         struct btrfs_ioctl_quota_rescan_args *qsa;
4370         int ret;
4371
4372         if (!capable(CAP_SYS_ADMIN))
4373                 return -EPERM;
4374
4375         ret = mnt_want_write_file(file);
4376         if (ret)
4377                 return ret;
4378
4379         qsa = memdup_user(arg, sizeof(*qsa));
4380         if (IS_ERR(qsa)) {
4381                 ret = PTR_ERR(qsa);
4382                 goto drop_write;
4383         }
4384
4385         if (qsa->flags) {
4386                 ret = -EINVAL;
4387                 goto out;
4388         }
4389
4390         ret = btrfs_qgroup_rescan(fs_info);
4391
4392 out:
4393         kfree(qsa);
4394 drop_write:
4395         mnt_drop_write_file(file);
4396         return ret;
4397 }
4398
4399 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4400                                                 void __user *arg)
4401 {
4402         struct btrfs_ioctl_quota_rescan_args qsa = {0};
4403
4404         if (!capable(CAP_SYS_ADMIN))
4405                 return -EPERM;
4406
4407         if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4408                 qsa.flags = 1;
4409                 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4410         }
4411
4412         if (copy_to_user(arg, &qsa, sizeof(qsa)))
4413                 return -EFAULT;
4414
4415         return 0;
4416 }
4417
4418 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4419                                                 void __user *arg)
4420 {
4421         if (!capable(CAP_SYS_ADMIN))
4422                 return -EPERM;
4423
4424         return btrfs_qgroup_wait_for_completion(fs_info, true);
4425 }
4426
4427 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4428                                             struct user_namespace *mnt_userns,
4429                                             struct btrfs_ioctl_received_subvol_args *sa)
4430 {
4431         struct inode *inode = file_inode(file);
4432         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4433         struct btrfs_root *root = BTRFS_I(inode)->root;
4434         struct btrfs_root_item *root_item = &root->root_item;
4435         struct btrfs_trans_handle *trans;
4436         struct timespec64 ct = current_time(inode);
4437         int ret = 0;
4438         int received_uuid_changed;
4439
4440         if (!inode_owner_or_capable(mnt_userns, inode))
4441                 return -EPERM;
4442
4443         ret = mnt_want_write_file(file);
4444         if (ret < 0)
4445                 return ret;
4446
4447         down_write(&fs_info->subvol_sem);
4448
4449         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4450                 ret = -EINVAL;
4451                 goto out;
4452         }
4453
4454         if (btrfs_root_readonly(root)) {
4455                 ret = -EROFS;
4456                 goto out;
4457         }
4458
4459         /*
4460          * 1 - root item
4461          * 2 - uuid items (received uuid + subvol uuid)
4462          */
4463         trans = btrfs_start_transaction(root, 3);
4464         if (IS_ERR(trans)) {
4465                 ret = PTR_ERR(trans);
4466                 trans = NULL;
4467                 goto out;
4468         }
4469
4470         sa->rtransid = trans->transid;
4471         sa->rtime.sec = ct.tv_sec;
4472         sa->rtime.nsec = ct.tv_nsec;
4473
4474         received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4475                                        BTRFS_UUID_SIZE);
4476         if (received_uuid_changed &&
4477             !btrfs_is_empty_uuid(root_item->received_uuid)) {
4478                 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4479                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4480                                           root->root_key.objectid);
4481                 if (ret && ret != -ENOENT) {
4482                         btrfs_abort_transaction(trans, ret);
4483                         btrfs_end_transaction(trans);
4484                         goto out;
4485                 }
4486         }
4487         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4488         btrfs_set_root_stransid(root_item, sa->stransid);
4489         btrfs_set_root_rtransid(root_item, sa->rtransid);
4490         btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4491         btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4492         btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4493         btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4494
4495         ret = btrfs_update_root(trans, fs_info->tree_root,
4496                                 &root->root_key, &root->root_item);
4497         if (ret < 0) {
4498                 btrfs_end_transaction(trans);
4499                 goto out;
4500         }
4501         if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4502                 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4503                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4504                                           root->root_key.objectid);
4505                 if (ret < 0 && ret != -EEXIST) {
4506                         btrfs_abort_transaction(trans, ret);
4507                         btrfs_end_transaction(trans);
4508                         goto out;
4509                 }
4510         }
4511         ret = btrfs_commit_transaction(trans);
4512 out:
4513         up_write(&fs_info->subvol_sem);
4514         mnt_drop_write_file(file);
4515         return ret;
4516 }
4517
4518 #ifdef CONFIG_64BIT
4519 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4520                                                 void __user *arg)
4521 {
4522         struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4523         struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4524         int ret = 0;
4525
4526         args32 = memdup_user(arg, sizeof(*args32));
4527         if (IS_ERR(args32))
4528                 return PTR_ERR(args32);
4529
4530         args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4531         if (!args64) {
4532                 ret = -ENOMEM;
4533                 goto out;
4534         }
4535
4536         memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4537         args64->stransid = args32->stransid;
4538         args64->rtransid = args32->rtransid;
4539         args64->stime.sec = args32->stime.sec;
4540         args64->stime.nsec = args32->stime.nsec;
4541         args64->rtime.sec = args32->rtime.sec;
4542         args64->rtime.nsec = args32->rtime.nsec;
4543         args64->flags = args32->flags;
4544
4545         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4546         if (ret)
4547                 goto out;
4548
4549         memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4550         args32->stransid = args64->stransid;
4551         args32->rtransid = args64->rtransid;
4552         args32->stime.sec = args64->stime.sec;
4553         args32->stime.nsec = args64->stime.nsec;
4554         args32->rtime.sec = args64->rtime.sec;
4555         args32->rtime.nsec = args64->rtime.nsec;
4556         args32->flags = args64->flags;
4557
4558         ret = copy_to_user(arg, args32, sizeof(*args32));
4559         if (ret)
4560                 ret = -EFAULT;
4561
4562 out:
4563         kfree(args32);
4564         kfree(args64);
4565         return ret;
4566 }
4567 #endif
4568
4569 static long btrfs_ioctl_set_received_subvol(struct file *file,
4570                                             void __user *arg)
4571 {
4572         struct btrfs_ioctl_received_subvol_args *sa = NULL;
4573         int ret = 0;
4574
4575         sa = memdup_user(arg, sizeof(*sa));
4576         if (IS_ERR(sa))
4577                 return PTR_ERR(sa);
4578
4579         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4580
4581         if (ret)
4582                 goto out;
4583
4584         ret = copy_to_user(arg, sa, sizeof(*sa));
4585         if (ret)
4586                 ret = -EFAULT;
4587
4588 out:
4589         kfree(sa);
4590         return ret;
4591 }
4592
4593 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4594                                         void __user *arg)
4595 {
4596         size_t len;
4597         int ret;
4598         char label[BTRFS_LABEL_SIZE];
4599
4600         spin_lock(&fs_info->super_lock);
4601         memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4602         spin_unlock(&fs_info->super_lock);
4603
4604         len = strnlen(label, BTRFS_LABEL_SIZE);
4605
4606         if (len == BTRFS_LABEL_SIZE) {
4607                 btrfs_warn(fs_info,
4608                            "label is too long, return the first %zu bytes",
4609                            --len);
4610         }
4611
4612         ret = copy_to_user(arg, label, len);
4613
4614         return ret ? -EFAULT : 0;
4615 }
4616
4617 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4618 {
4619         struct inode *inode = file_inode(file);
4620         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4621         struct btrfs_root *root = BTRFS_I(inode)->root;
4622         struct btrfs_super_block *super_block = fs_info->super_copy;
4623         struct btrfs_trans_handle *trans;
4624         char label[BTRFS_LABEL_SIZE];
4625         int ret;
4626
4627         if (!capable(CAP_SYS_ADMIN))
4628                 return -EPERM;
4629
4630         if (copy_from_user(label, arg, sizeof(label)))
4631                 return -EFAULT;
4632
4633         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4634                 btrfs_err(fs_info,
4635                           "unable to set label with more than %d bytes",
4636                           BTRFS_LABEL_SIZE - 1);
4637                 return -EINVAL;
4638         }
4639
4640         ret = mnt_want_write_file(file);
4641         if (ret)
4642                 return ret;
4643
4644         trans = btrfs_start_transaction(root, 0);
4645         if (IS_ERR(trans)) {
4646                 ret = PTR_ERR(trans);
4647                 goto out_unlock;
4648         }
4649
4650         spin_lock(&fs_info->super_lock);
4651         strcpy(super_block->label, label);
4652         spin_unlock(&fs_info->super_lock);
4653         ret = btrfs_commit_transaction(trans);
4654
4655 out_unlock:
4656         mnt_drop_write_file(file);
4657         return ret;
4658 }
4659
4660 #define INIT_FEATURE_FLAGS(suffix) \
4661         { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4662           .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4663           .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4664
4665 int btrfs_ioctl_get_supported_features(void __user *arg)
4666 {
4667         static const struct btrfs_ioctl_feature_flags features[3] = {
4668                 INIT_FEATURE_FLAGS(SUPP),
4669                 INIT_FEATURE_FLAGS(SAFE_SET),
4670                 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4671         };
4672
4673         if (copy_to_user(arg, &features, sizeof(features)))
4674                 return -EFAULT;
4675
4676         return 0;
4677 }
4678
4679 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4680                                         void __user *arg)
4681 {
4682         struct btrfs_super_block *super_block = fs_info->super_copy;
4683         struct btrfs_ioctl_feature_flags features;
4684
4685         features.compat_flags = btrfs_super_compat_flags(super_block);
4686         features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4687         features.incompat_flags = btrfs_super_incompat_flags(super_block);
4688
4689         if (copy_to_user(arg, &features, sizeof(features)))
4690                 return -EFAULT;
4691
4692         return 0;
4693 }
4694
4695 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4696                               enum btrfs_feature_set set,
4697                               u64 change_mask, u64 flags, u64 supported_flags,
4698                               u64 safe_set, u64 safe_clear)
4699 {
4700         const char *type = btrfs_feature_set_name(set);
4701         char *names;
4702         u64 disallowed, unsupported;
4703         u64 set_mask = flags & change_mask;
4704         u64 clear_mask = ~flags & change_mask;
4705
4706         unsupported = set_mask & ~supported_flags;
4707         if (unsupported) {
4708                 names = btrfs_printable_features(set, unsupported);
4709                 if (names) {
4710                         btrfs_warn(fs_info,
4711                                    "this kernel does not support the %s feature bit%s",
4712                                    names, strchr(names, ',') ? "s" : "");
4713                         kfree(names);
4714                 } else
4715                         btrfs_warn(fs_info,
4716                                    "this kernel does not support %s bits 0x%llx",
4717                                    type, unsupported);
4718                 return -EOPNOTSUPP;
4719         }
4720
4721         disallowed = set_mask & ~safe_set;
4722         if (disallowed) {
4723                 names = btrfs_printable_features(set, disallowed);
4724                 if (names) {
4725                         btrfs_warn(fs_info,
4726                                    "can't set the %s feature bit%s while mounted",
4727                                    names, strchr(names, ',') ? "s" : "");
4728                         kfree(names);
4729                 } else
4730                         btrfs_warn(fs_info,
4731                                    "can't set %s bits 0x%llx while mounted",
4732                                    type, disallowed);
4733                 return -EPERM;
4734         }
4735
4736         disallowed = clear_mask & ~safe_clear;
4737         if (disallowed) {
4738                 names = btrfs_printable_features(set, disallowed);
4739                 if (names) {
4740                         btrfs_warn(fs_info,
4741                                    "can't clear the %s feature bit%s while mounted",
4742                                    names, strchr(names, ',') ? "s" : "");
4743                         kfree(names);
4744                 } else
4745                         btrfs_warn(fs_info,
4746                                    "can't clear %s bits 0x%llx while mounted",
4747                                    type, disallowed);
4748                 return -EPERM;
4749         }
4750
4751         return 0;
4752 }
4753
4754 #define check_feature(fs_info, change_mask, flags, mask_base)   \
4755 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4756                    BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4757                    BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4758                    BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4759
4760 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4761 {
4762         struct inode *inode = file_inode(file);
4763         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4764         struct btrfs_root *root = BTRFS_I(inode)->root;
4765         struct btrfs_super_block *super_block = fs_info->super_copy;
4766         struct btrfs_ioctl_feature_flags flags[2];
4767         struct btrfs_trans_handle *trans;
4768         u64 newflags;
4769         int ret;
4770
4771         if (!capable(CAP_SYS_ADMIN))
4772                 return -EPERM;
4773
4774         if (copy_from_user(flags, arg, sizeof(flags)))
4775                 return -EFAULT;
4776
4777         /* Nothing to do */
4778         if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4779             !flags[0].incompat_flags)
4780                 return 0;
4781
4782         ret = check_feature(fs_info, flags[0].compat_flags,
4783                             flags[1].compat_flags, COMPAT);
4784         if (ret)
4785                 return ret;
4786
4787         ret = check_feature(fs_info, flags[0].compat_ro_flags,
4788                             flags[1].compat_ro_flags, COMPAT_RO);
4789         if (ret)
4790                 return ret;
4791
4792         ret = check_feature(fs_info, flags[0].incompat_flags,
4793                             flags[1].incompat_flags, INCOMPAT);
4794         if (ret)
4795                 return ret;
4796
4797         ret = mnt_want_write_file(file);
4798         if (ret)
4799                 return ret;
4800
4801         trans = btrfs_start_transaction(root, 0);
4802         if (IS_ERR(trans)) {
4803                 ret = PTR_ERR(trans);
4804                 goto out_drop_write;
4805         }
4806
4807         spin_lock(&fs_info->super_lock);
4808         newflags = btrfs_super_compat_flags(super_block);
4809         newflags |= flags[0].compat_flags & flags[1].compat_flags;
4810         newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4811         btrfs_set_super_compat_flags(super_block, newflags);
4812
4813         newflags = btrfs_super_compat_ro_flags(super_block);
4814         newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4815         newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4816         btrfs_set_super_compat_ro_flags(super_block, newflags);
4817
4818         newflags = btrfs_super_incompat_flags(super_block);
4819         newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4820         newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4821         btrfs_set_super_incompat_flags(super_block, newflags);
4822         spin_unlock(&fs_info->super_lock);
4823
4824         ret = btrfs_commit_transaction(trans);
4825 out_drop_write:
4826         mnt_drop_write_file(file);
4827
4828         return ret;
4829 }
4830
4831 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4832 {
4833         struct btrfs_ioctl_send_args *arg;
4834         int ret;
4835
4836         if (compat) {
4837 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4838                 struct btrfs_ioctl_send_args_32 args32;
4839
4840                 ret = copy_from_user(&args32, argp, sizeof(args32));
4841                 if (ret)
4842                         return -EFAULT;
4843                 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4844                 if (!arg)
4845                         return -ENOMEM;
4846                 arg->send_fd = args32.send_fd;
4847                 arg->clone_sources_count = args32.clone_sources_count;
4848                 arg->clone_sources = compat_ptr(args32.clone_sources);
4849                 arg->parent_root = args32.parent_root;
4850                 arg->flags = args32.flags;
4851                 memcpy(arg->reserved, args32.reserved,
4852                        sizeof(args32.reserved));
4853 #else
4854                 return -ENOTTY;
4855 #endif
4856         } else {
4857                 arg = memdup_user(argp, sizeof(*arg));
4858                 if (IS_ERR(arg))
4859                         return PTR_ERR(arg);
4860         }
4861         ret = btrfs_ioctl_send(file, arg);
4862         kfree(arg);
4863         return ret;
4864 }
4865
4866 long btrfs_ioctl(struct file *file, unsigned int
4867                 cmd, unsigned long arg)
4868 {
4869         struct inode *inode = file_inode(file);
4870         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4871         struct btrfs_root *root = BTRFS_I(inode)->root;
4872         void __user *argp = (void __user *)arg;
4873
4874         switch (cmd) {
4875         case FS_IOC_GETVERSION:
4876                 return btrfs_ioctl_getversion(file, argp);
4877         case FS_IOC_GETFSLABEL:
4878                 return btrfs_ioctl_get_fslabel(fs_info, argp);
4879         case FS_IOC_SETFSLABEL:
4880                 return btrfs_ioctl_set_fslabel(file, argp);
4881         case FITRIM:
4882                 return btrfs_ioctl_fitrim(fs_info, argp);
4883         case BTRFS_IOC_SNAP_CREATE:
4884                 return btrfs_ioctl_snap_create(file, argp, 0);
4885         case BTRFS_IOC_SNAP_CREATE_V2:
4886                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4887         case BTRFS_IOC_SUBVOL_CREATE:
4888                 return btrfs_ioctl_snap_create(file, argp, 1);
4889         case BTRFS_IOC_SUBVOL_CREATE_V2:
4890                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4891         case BTRFS_IOC_SNAP_DESTROY:
4892                 return btrfs_ioctl_snap_destroy(file, argp, false);
4893         case BTRFS_IOC_SNAP_DESTROY_V2:
4894                 return btrfs_ioctl_snap_destroy(file, argp, true);
4895         case BTRFS_IOC_SUBVOL_GETFLAGS:
4896                 return btrfs_ioctl_subvol_getflags(file, argp);
4897         case BTRFS_IOC_SUBVOL_SETFLAGS:
4898                 return btrfs_ioctl_subvol_setflags(file, argp);
4899         case BTRFS_IOC_DEFAULT_SUBVOL:
4900                 return btrfs_ioctl_default_subvol(file, argp);
4901         case BTRFS_IOC_DEFRAG:
4902                 return btrfs_ioctl_defrag(file, NULL);
4903         case BTRFS_IOC_DEFRAG_RANGE:
4904                 return btrfs_ioctl_defrag(file, argp);
4905         case BTRFS_IOC_RESIZE:
4906                 return btrfs_ioctl_resize(file, argp);
4907         case BTRFS_IOC_ADD_DEV:
4908                 return btrfs_ioctl_add_dev(fs_info, argp);
4909         case BTRFS_IOC_RM_DEV:
4910                 return btrfs_ioctl_rm_dev(file, argp);
4911         case BTRFS_IOC_RM_DEV_V2:
4912                 return btrfs_ioctl_rm_dev_v2(file, argp);
4913         case BTRFS_IOC_FS_INFO:
4914                 return btrfs_ioctl_fs_info(fs_info, argp);
4915         case BTRFS_IOC_DEV_INFO:
4916                 return btrfs_ioctl_dev_info(fs_info, argp);
4917         case BTRFS_IOC_BALANCE:
4918                 return btrfs_ioctl_balance(file, NULL);
4919         case BTRFS_IOC_TREE_SEARCH:
4920                 return btrfs_ioctl_tree_search(file, argp);
4921         case BTRFS_IOC_TREE_SEARCH_V2:
4922                 return btrfs_ioctl_tree_search_v2(file, argp);
4923         case BTRFS_IOC_INO_LOOKUP:
4924                 return btrfs_ioctl_ino_lookup(file, argp);
4925         case BTRFS_IOC_INO_PATHS:
4926                 return btrfs_ioctl_ino_to_path(root, argp);
4927         case BTRFS_IOC_LOGICAL_INO:
4928                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4929         case BTRFS_IOC_LOGICAL_INO_V2:
4930                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4931         case BTRFS_IOC_SPACE_INFO:
4932                 return btrfs_ioctl_space_info(fs_info, argp);
4933         case BTRFS_IOC_SYNC: {
4934                 int ret;
4935
4936                 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4937                 if (ret)
4938                         return ret;
4939                 ret = btrfs_sync_fs(inode->i_sb, 1);
4940                 /*
4941                  * The transaction thread may want to do more work,
4942                  * namely it pokes the cleaner kthread that will start
4943                  * processing uncleaned subvols.
4944                  */
4945                 wake_up_process(fs_info->transaction_kthread);
4946                 return ret;
4947         }
4948         case BTRFS_IOC_START_SYNC:
4949                 return btrfs_ioctl_start_sync(root, argp);
4950         case BTRFS_IOC_WAIT_SYNC:
4951                 return btrfs_ioctl_wait_sync(fs_info, argp);
4952         case BTRFS_IOC_SCRUB:
4953                 return btrfs_ioctl_scrub(file, argp);
4954         case BTRFS_IOC_SCRUB_CANCEL:
4955                 return btrfs_ioctl_scrub_cancel(fs_info);
4956         case BTRFS_IOC_SCRUB_PROGRESS:
4957                 return btrfs_ioctl_scrub_progress(fs_info, argp);
4958         case BTRFS_IOC_BALANCE_V2:
4959                 return btrfs_ioctl_balance(file, argp);
4960         case BTRFS_IOC_BALANCE_CTL:
4961                 return btrfs_ioctl_balance_ctl(fs_info, arg);
4962         case BTRFS_IOC_BALANCE_PROGRESS:
4963                 return btrfs_ioctl_balance_progress(fs_info, argp);
4964         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4965                 return btrfs_ioctl_set_received_subvol(file, argp);
4966 #ifdef CONFIG_64BIT
4967         case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4968                 return btrfs_ioctl_set_received_subvol_32(file, argp);
4969 #endif
4970         case BTRFS_IOC_SEND:
4971                 return _btrfs_ioctl_send(file, argp, false);
4972 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4973         case BTRFS_IOC_SEND_32:
4974                 return _btrfs_ioctl_send(file, argp, true);
4975 #endif
4976         case BTRFS_IOC_GET_DEV_STATS:
4977                 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4978         case BTRFS_IOC_QUOTA_CTL:
4979                 return btrfs_ioctl_quota_ctl(file, argp);
4980         case BTRFS_IOC_QGROUP_ASSIGN:
4981                 return btrfs_ioctl_qgroup_assign(file, argp);
4982         case BTRFS_IOC_QGROUP_CREATE:
4983                 return btrfs_ioctl_qgroup_create(file, argp);
4984         case BTRFS_IOC_QGROUP_LIMIT:
4985                 return btrfs_ioctl_qgroup_limit(file, argp);
4986         case BTRFS_IOC_QUOTA_RESCAN:
4987                 return btrfs_ioctl_quota_rescan(file, argp);
4988         case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4989                 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4990         case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4991                 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4992         case BTRFS_IOC_DEV_REPLACE:
4993                 return btrfs_ioctl_dev_replace(fs_info, argp);
4994         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4995                 return btrfs_ioctl_get_supported_features(argp);
4996         case BTRFS_IOC_GET_FEATURES:
4997                 return btrfs_ioctl_get_features(fs_info, argp);
4998         case BTRFS_IOC_SET_FEATURES:
4999                 return btrfs_ioctl_set_features(file, argp);
5000         case BTRFS_IOC_GET_SUBVOL_INFO:
5001                 return btrfs_ioctl_get_subvol_info(file, argp);
5002         case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5003                 return btrfs_ioctl_get_subvol_rootref(file, argp);
5004         case BTRFS_IOC_INO_LOOKUP_USER:
5005                 return btrfs_ioctl_ino_lookup_user(file, argp);
5006         case FS_IOC_ENABLE_VERITY:
5007                 return fsverity_ioctl_enable(file, (const void __user *)argp);
5008         case FS_IOC_MEASURE_VERITY:
5009                 return fsverity_ioctl_measure(file, argp);
5010         }
5011
5012         return -ENOTTY;
5013 }
5014
5015 #ifdef CONFIG_COMPAT
5016 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5017 {
5018         /*
5019          * These all access 32-bit values anyway so no further
5020          * handling is necessary.
5021          */
5022         switch (cmd) {
5023         case FS_IOC32_GETVERSION:
5024                 cmd = FS_IOC_GETVERSION;
5025                 break;
5026         }
5027
5028         return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5029 }
5030 #endif