Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / ufs / core / ufshcd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *      Santosh Yaraganavi <santosh.sy@samsung.com>
9  *      Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42
43 #define UFSHCD_ENABLE_INTRS     (UTP_TRANSFER_REQ_COMPL |\
44                                  UTP_TASK_REQ_COMPL |\
45                                  UFSHCD_ERROR_MASK)
46
47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
48                                  UFSHCD_ERROR_MASK |\
49                                  MCQ_CQ_EVENT_STATUS)
50
51
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT 500
54
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT  100 /* msecs */
70
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO 0x02
88
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100
101 /* UFSHC 4.0 compliant HC support this mode, refer param_set_mcq_mode() */
102 static bool use_mcq_mode = true;
103
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106         return hba->mcq_sup && use_mcq_mode;
107 }
108
109 static int param_set_mcq_mode(const char *val, const struct kernel_param *kp)
110 {
111         int ret;
112
113         ret = param_set_bool(val, kp);
114         if (ret)
115                 return ret;
116
117         return 0;
118 }
119
120 static const struct kernel_param_ops mcq_mode_ops = {
121         .set = param_set_mcq_mode,
122         .get = param_get_bool,
123 };
124
125 module_param_cb(use_mcq_mode, &mcq_mode_ops, &use_mcq_mode, 0644);
126 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
127
128 #define ufshcd_toggle_vreg(_dev, _vreg, _on)                            \
129         ({                                                              \
130                 int _ret;                                               \
131                 if (_on)                                                \
132                         _ret = ufshcd_enable_vreg(_dev, _vreg);         \
133                 else                                                    \
134                         _ret = ufshcd_disable_vreg(_dev, _vreg);        \
135                 _ret;                                                   \
136         })
137
138 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
139         size_t __len = (len);                                            \
140         print_hex_dump(KERN_ERR, prefix_str,                             \
141                        __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
142                        16, 4, buf, __len, false);                        \
143 } while (0)
144
145 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
146                      const char *prefix)
147 {
148         u32 *regs;
149         size_t pos;
150
151         if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
152                 return -EINVAL;
153
154         regs = kzalloc(len, GFP_ATOMIC);
155         if (!regs)
156                 return -ENOMEM;
157
158         for (pos = 0; pos < len; pos += 4) {
159                 if (offset == 0 &&
160                     pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
161                     pos <= REG_UIC_ERROR_CODE_DME)
162                         continue;
163                 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
164         }
165
166         ufshcd_hex_dump(prefix, regs, len);
167         kfree(regs);
168
169         return 0;
170 }
171 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
172
173 enum {
174         UFSHCD_MAX_CHANNEL      = 0,
175         UFSHCD_MAX_ID           = 1,
176         UFSHCD_NUM_RESERVED     = 1,
177         UFSHCD_CMD_PER_LUN      = 32 - UFSHCD_NUM_RESERVED,
178         UFSHCD_CAN_QUEUE        = 32 - UFSHCD_NUM_RESERVED,
179 };
180
181 static const char *const ufshcd_state_name[] = {
182         [UFSHCD_STATE_RESET]                    = "reset",
183         [UFSHCD_STATE_OPERATIONAL]              = "operational",
184         [UFSHCD_STATE_ERROR]                    = "error",
185         [UFSHCD_STATE_EH_SCHEDULED_FATAL]       = "eh_fatal",
186         [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]   = "eh_non_fatal",
187 };
188
189 /* UFSHCD error handling flags */
190 enum {
191         UFSHCD_EH_IN_PROGRESS = (1 << 0),
192 };
193
194 /* UFSHCD UIC layer error flags */
195 enum {
196         UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
197         UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
198         UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
199         UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
200         UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
201         UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
202         UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
203 };
204
205 #define ufshcd_set_eh_in_progress(h) \
206         ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
207 #define ufshcd_eh_in_progress(h) \
208         ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
209 #define ufshcd_clear_eh_in_progress(h) \
210         ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
211
212 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
213         [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
214         [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
215         [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
216         [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
217         [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
218         [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
219         /*
220          * For DeepSleep, the link is first put in hibern8 and then off.
221          * Leaving the link in hibern8 is not supported.
222          */
223         [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
224 };
225
226 static inline enum ufs_dev_pwr_mode
227 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
228 {
229         return ufs_pm_lvl_states[lvl].dev_state;
230 }
231
232 static inline enum uic_link_state
233 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
234 {
235         return ufs_pm_lvl_states[lvl].link_state;
236 }
237
238 static inline enum ufs_pm_level
239 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
240                                         enum uic_link_state link_state)
241 {
242         enum ufs_pm_level lvl;
243
244         for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
245                 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
246                         (ufs_pm_lvl_states[lvl].link_state == link_state))
247                         return lvl;
248         }
249
250         /* if no match found, return the level 0 */
251         return UFS_PM_LVL_0;
252 }
253
254 static const struct ufs_dev_quirk ufs_fixups[] = {
255         /* UFS cards deviations table */
256         { .wmanufacturerid = UFS_VENDOR_MICRON,
257           .model = UFS_ANY_MODEL,
258           .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
259                    UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
260         { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
261           .model = UFS_ANY_MODEL,
262           .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
263                    UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
264                    UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
265         { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
266           .model = UFS_ANY_MODEL,
267           .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
268         { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
269           .model = "hB8aL1" /*H28U62301AMR*/,
270           .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
271         { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
272           .model = UFS_ANY_MODEL,
273           .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
274         { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
275           .model = "THGLF2G9C8KBADG",
276           .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
277         { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
278           .model = "THGLF2G9D8KBADG",
279           .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
280         {}
281 };
282
283 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
284 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
285 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
286 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
287 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
288 static void ufshcd_hba_exit(struct ufs_hba *hba);
289 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
290 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
291 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
292 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
293 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
294 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
295 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
296 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
297 static irqreturn_t ufshcd_intr(int irq, void *__hba);
298 static int ufshcd_change_power_mode(struct ufs_hba *hba,
299                              struct ufs_pa_layer_attr *pwr_mode);
300 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
301 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
302 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
303                                          struct ufs_vreg *vreg);
304 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
305 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
306                                                  bool enable);
307 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
308 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
309
310 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
311 {
312         if (!hba->is_irq_enabled) {
313                 enable_irq(hba->irq);
314                 hba->is_irq_enabled = true;
315         }
316 }
317
318 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
319 {
320         if (hba->is_irq_enabled) {
321                 disable_irq(hba->irq);
322                 hba->is_irq_enabled = false;
323         }
324 }
325
326 static void ufshcd_configure_wb(struct ufs_hba *hba)
327 {
328         if (!ufshcd_is_wb_allowed(hba))
329                 return;
330
331         ufshcd_wb_toggle(hba, true);
332
333         ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
334
335         if (ufshcd_is_wb_buf_flush_allowed(hba))
336                 ufshcd_wb_toggle_buf_flush(hba, true);
337 }
338
339 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
340 {
341         if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
342                 scsi_unblock_requests(hba->host);
343 }
344
345 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
346 {
347         if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
348                 scsi_block_requests(hba->host);
349 }
350
351 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
352                                       enum ufs_trace_str_t str_t)
353 {
354         struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
355         struct utp_upiu_header *header;
356
357         if (!trace_ufshcd_upiu_enabled())
358                 return;
359
360         if (str_t == UFS_CMD_SEND)
361                 header = &rq->header;
362         else
363                 header = &hba->lrb[tag].ucd_rsp_ptr->header;
364
365         trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
366                           UFS_TSF_CDB);
367 }
368
369 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
370                                         enum ufs_trace_str_t str_t,
371                                         struct utp_upiu_req *rq_rsp)
372 {
373         if (!trace_ufshcd_upiu_enabled())
374                 return;
375
376         trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
377                           &rq_rsp->qr, UFS_TSF_OSF);
378 }
379
380 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381                                      enum ufs_trace_str_t str_t)
382 {
383         struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
384
385         if (!trace_ufshcd_upiu_enabled())
386                 return;
387
388         if (str_t == UFS_TM_SEND)
389                 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
390                                   &descp->upiu_req.req_header,
391                                   &descp->upiu_req.input_param1,
392                                   UFS_TSF_TM_INPUT);
393         else
394                 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
395                                   &descp->upiu_rsp.rsp_header,
396                                   &descp->upiu_rsp.output_param1,
397                                   UFS_TSF_TM_OUTPUT);
398 }
399
400 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
401                                          const struct uic_command *ucmd,
402                                          enum ufs_trace_str_t str_t)
403 {
404         u32 cmd;
405
406         if (!trace_ufshcd_uic_command_enabled())
407                 return;
408
409         if (str_t == UFS_CMD_SEND)
410                 cmd = ucmd->command;
411         else
412                 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
413
414         trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
415                                  ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
416                                  ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
417                                  ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
418 }
419
420 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
421                                      enum ufs_trace_str_t str_t)
422 {
423         u64 lba = 0;
424         u8 opcode = 0, group_id = 0;
425         u32 intr, doorbell;
426         struct ufshcd_lrb *lrbp = &hba->lrb[tag];
427         struct scsi_cmnd *cmd = lrbp->cmd;
428         struct request *rq = scsi_cmd_to_rq(cmd);
429         int transfer_len = -1;
430
431         if (!cmd)
432                 return;
433
434         /* trace UPIU also */
435         ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
436         if (!trace_ufshcd_command_enabled())
437                 return;
438
439         opcode = cmd->cmnd[0];
440
441         if (opcode == READ_10 || opcode == WRITE_10) {
442                 /*
443                  * Currently we only fully trace read(10) and write(10) commands
444                  */
445                 transfer_len =
446                        be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
447                 lba = scsi_get_lba(cmd);
448                 if (opcode == WRITE_10)
449                         group_id = lrbp->cmd->cmnd[6];
450         } else if (opcode == UNMAP) {
451                 /*
452                  * The number of Bytes to be unmapped beginning with the lba.
453                  */
454                 transfer_len = blk_rq_bytes(rq);
455                 lba = scsi_get_lba(cmd);
456         }
457
458         intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
459         doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
460         trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
461                         doorbell, transfer_len, intr, lba, opcode, group_id);
462 }
463
464 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
465 {
466         struct ufs_clk_info *clki;
467         struct list_head *head = &hba->clk_list_head;
468
469         if (list_empty(head))
470                 return;
471
472         list_for_each_entry(clki, head, list) {
473                 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
474                                 clki->max_freq)
475                         dev_err(hba->dev, "clk: %s, rate: %u\n",
476                                         clki->name, clki->curr_freq);
477         }
478 }
479
480 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
481                              const char *err_name)
482 {
483         int i;
484         bool found = false;
485         const struct ufs_event_hist *e;
486
487         if (id >= UFS_EVT_CNT)
488                 return;
489
490         e = &hba->ufs_stats.event[id];
491
492         for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
493                 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
494
495                 if (e->tstamp[p] == 0)
496                         continue;
497                 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
498                         e->val[p], div_u64(e->tstamp[p], 1000));
499                 found = true;
500         }
501
502         if (!found)
503                 dev_err(hba->dev, "No record of %s\n", err_name);
504         else
505                 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
506 }
507
508 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
509 {
510         ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
511
512         ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
513         ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
514         ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
515         ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
516         ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
517         ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
518                          "auto_hibern8_err");
519         ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
520         ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
521                          "link_startup_fail");
522         ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
523         ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
524                          "suspend_fail");
525         ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
526         ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
527                          "wlun suspend_fail");
528         ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
529         ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
530         ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
531
532         ufshcd_vops_dbg_register_dump(hba);
533 }
534
535 static
536 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
537 {
538         const struct ufshcd_lrb *lrbp;
539         int prdt_length;
540         int tag;
541
542         for_each_set_bit(tag, &bitmap, hba->nutrs) {
543                 lrbp = &hba->lrb[tag];
544
545                 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546                                 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547                 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548                                 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549                 dev_err(hba->dev,
550                         "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551                         tag, (u64)lrbp->utrd_dma_addr);
552
553                 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554                                 sizeof(struct utp_transfer_req_desc));
555                 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556                         (u64)lrbp->ucd_req_dma_addr);
557                 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558                                 sizeof(struct utp_upiu_req));
559                 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560                         (u64)lrbp->ucd_rsp_dma_addr);
561                 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562                                 sizeof(struct utp_upiu_rsp));
563
564                 prdt_length = le16_to_cpu(
565                         lrbp->utr_descriptor_ptr->prd_table_length);
566                 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567                         prdt_length /= ufshcd_sg_entry_size(hba);
568
569                 dev_err(hba->dev,
570                         "UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571                         tag, prdt_length,
572                         (u64)lrbp->ucd_prdt_dma_addr);
573
574                 if (pr_prdt)
575                         ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576                                 ufshcd_sg_entry_size(hba) * prdt_length);
577         }
578 }
579
580 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
581 {
582         int tag;
583
584         for_each_set_bit(tag, &bitmap, hba->nutmrs) {
585                 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
586
587                 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
588                 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
589         }
590 }
591
592 static void ufshcd_print_host_state(struct ufs_hba *hba)
593 {
594         const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
595
596         dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
597         dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
598                 hba->outstanding_reqs, hba->outstanding_tasks);
599         dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
600                 hba->saved_err, hba->saved_uic_err);
601         dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
602                 hba->curr_dev_pwr_mode, hba->uic_link_state);
603         dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
604                 hba->pm_op_in_progress, hba->is_sys_suspended);
605         dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
606                 hba->auto_bkops_enabled, hba->host->host_self_blocked);
607         dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
608         dev_err(hba->dev,
609                 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
610                 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
611                 hba->ufs_stats.hibern8_exit_cnt);
612         dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
613                 div_u64(hba->ufs_stats.last_intr_ts, 1000),
614                 hba->ufs_stats.last_intr_status);
615         dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
616                 hba->eh_flags, hba->req_abort_count);
617         dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
618                 hba->ufs_version, hba->capabilities, hba->caps);
619         dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
620                 hba->dev_quirks);
621         if (sdev_ufs)
622                 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
623                         sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
624
625         ufshcd_print_clk_freqs(hba);
626 }
627
628 /**
629  * ufshcd_print_pwr_info - print power params as saved in hba
630  * power info
631  * @hba: per-adapter instance
632  */
633 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
634 {
635         static const char * const names[] = {
636                 "INVALID MODE",
637                 "FAST MODE",
638                 "SLOW_MODE",
639                 "INVALID MODE",
640                 "FASTAUTO_MODE",
641                 "SLOWAUTO_MODE",
642                 "INVALID MODE",
643         };
644
645         /*
646          * Using dev_dbg to avoid messages during runtime PM to avoid
647          * never-ending cycles of messages written back to storage by user space
648          * causing runtime resume, causing more messages and so on.
649          */
650         dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
651                  __func__,
652                  hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
653                  hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
654                  names[hba->pwr_info.pwr_rx],
655                  names[hba->pwr_info.pwr_tx],
656                  hba->pwr_info.hs_rate);
657 }
658
659 static void ufshcd_device_reset(struct ufs_hba *hba)
660 {
661         int err;
662
663         err = ufshcd_vops_device_reset(hba);
664
665         if (!err) {
666                 ufshcd_set_ufs_dev_active(hba);
667                 if (ufshcd_is_wb_allowed(hba)) {
668                         hba->dev_info.wb_enabled = false;
669                         hba->dev_info.wb_buf_flush_enabled = false;
670                 }
671         }
672         if (err != -EOPNOTSUPP)
673                 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
674 }
675
676 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
677 {
678         if (!us)
679                 return;
680
681         if (us < 10)
682                 udelay(us);
683         else
684                 usleep_range(us, us + tolerance);
685 }
686 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
687
688 /**
689  * ufshcd_wait_for_register - wait for register value to change
690  * @hba: per-adapter interface
691  * @reg: mmio register offset
692  * @mask: mask to apply to the read register value
693  * @val: value to wait for
694  * @interval_us: polling interval in microseconds
695  * @timeout_ms: timeout in milliseconds
696  *
697  * Return:
698  * -ETIMEDOUT on error, zero on success.
699  */
700 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
701                                 u32 val, unsigned long interval_us,
702                                 unsigned long timeout_ms)
703 {
704         int err = 0;
705         unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
706
707         /* ignore bits that we don't intend to wait on */
708         val = val & mask;
709
710         while ((ufshcd_readl(hba, reg) & mask) != val) {
711                 usleep_range(interval_us, interval_us + 50);
712                 if (time_after(jiffies, timeout)) {
713                         if ((ufshcd_readl(hba, reg) & mask) != val)
714                                 err = -ETIMEDOUT;
715                         break;
716                 }
717         }
718
719         return err;
720 }
721
722 /**
723  * ufshcd_get_intr_mask - Get the interrupt bit mask
724  * @hba: Pointer to adapter instance
725  *
726  * Returns interrupt bit mask per version
727  */
728 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
729 {
730         if (hba->ufs_version == ufshci_version(1, 0))
731                 return INTERRUPT_MASK_ALL_VER_10;
732         if (hba->ufs_version <= ufshci_version(2, 0))
733                 return INTERRUPT_MASK_ALL_VER_11;
734
735         return INTERRUPT_MASK_ALL_VER_21;
736 }
737
738 /**
739  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
740  * @hba: Pointer to adapter instance
741  *
742  * Returns UFSHCI version supported by the controller
743  */
744 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
745 {
746         u32 ufshci_ver;
747
748         if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
749                 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
750         else
751                 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
752
753         /*
754          * UFSHCI v1.x uses a different version scheme, in order
755          * to allow the use of comparisons with the ufshci_version
756          * function, we convert it to the same scheme as ufs 2.0+.
757          */
758         if (ufshci_ver & 0x00010000)
759                 return ufshci_version(1, ufshci_ver & 0x00000100);
760
761         return ufshci_ver;
762 }
763
764 /**
765  * ufshcd_is_device_present - Check if any device connected to
766  *                            the host controller
767  * @hba: pointer to adapter instance
768  *
769  * Returns true if device present, false if no device detected
770  */
771 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
772 {
773         return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
774 }
775
776 /**
777  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
778  * @lrbp: pointer to local command reference block
779  * @cqe: pointer to the completion queue entry
780  *
781  * This function is used to get the OCS field from UTRD
782  * Returns the OCS field in the UTRD
783  */
784 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
785                                       struct cq_entry *cqe)
786 {
787         if (cqe)
788                 return le32_to_cpu(cqe->status) & MASK_OCS;
789
790         return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
791 }
792
793 /**
794  * ufshcd_utrl_clear() - Clear requests from the controller request list.
795  * @hba: per adapter instance
796  * @mask: mask with one bit set for each request to be cleared
797  */
798 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
799 {
800         if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
801                 mask = ~mask;
802         /*
803          * From the UFSHCI specification: "UTP Transfer Request List CLear
804          * Register (UTRLCLR): This field is bit significant. Each bit
805          * corresponds to a slot in the UTP Transfer Request List, where bit 0
806          * corresponds to request slot 0. A bit in this field is set to ‘0’
807          * by host software to indicate to the host controller that a transfer
808          * request slot is cleared. The host controller
809          * shall free up any resources associated to the request slot
810          * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
811          * host software indicates no change to request slots by setting the
812          * associated bits in this field to ‘1’. Bits in this field shall only
813          * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
814          */
815         ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
816 }
817
818 /**
819  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
820  * @hba: per adapter instance
821  * @pos: position of the bit to be cleared
822  */
823 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
824 {
825         if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
826                 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
827         else
828                 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
829 }
830
831 /**
832  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
833  * @reg: Register value of host controller status
834  *
835  * Returns integer, 0 on Success and positive value if failed
836  */
837 static inline int ufshcd_get_lists_status(u32 reg)
838 {
839         return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
840 }
841
842 /**
843  * ufshcd_get_uic_cmd_result - Get the UIC command result
844  * @hba: Pointer to adapter instance
845  *
846  * This function gets the result of UIC command completion
847  * Returns 0 on success, non zero value on error
848  */
849 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
850 {
851         return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
852                MASK_UIC_COMMAND_RESULT;
853 }
854
855 /**
856  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
857  * @hba: Pointer to adapter instance
858  *
859  * This function gets UIC command argument3
860  * Returns 0 on success, non zero value on error
861  */
862 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
863 {
864         return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
865 }
866
867 /**
868  * ufshcd_get_req_rsp - returns the TR response transaction type
869  * @ucd_rsp_ptr: pointer to response UPIU
870  */
871 static inline int
872 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
873 {
874         return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
875 }
876
877 /**
878  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * This function gets the response status and scsi_status from response UPIU
882  * Returns the response result code.
883  */
884 static inline int
885 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
886 {
887         return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
888 }
889
890 /*
891  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
892  *                              from response UPIU
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return the data segment length.
896  */
897 static inline unsigned int
898 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900         return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
901                 MASK_RSP_UPIU_DATA_SEG_LEN;
902 }
903
904 /**
905  * ufshcd_is_exception_event - Check if the device raised an exception event
906  * @ucd_rsp_ptr: pointer to response UPIU
907  *
908  * The function checks if the device raised an exception event indicated in
909  * the Device Information field of response UPIU.
910  *
911  * Returns true if exception is raised, false otherwise.
912  */
913 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
914 {
915         return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
916                         MASK_RSP_EXCEPTION_EVENT;
917 }
918
919 /**
920  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921  * @hba: per adapter instance
922  */
923 static inline void
924 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925 {
926         ufshcd_writel(hba, INT_AGGR_ENABLE |
927                       INT_AGGR_COUNTER_AND_TIMER_RESET,
928                       REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930
931 /**
932  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933  * @hba: per adapter instance
934  * @cnt: Interrupt aggregation counter threshold
935  * @tmout: Interrupt aggregation timeout value
936  */
937 static inline void
938 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939 {
940         ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941                       INT_AGGR_COUNTER_THLD_VAL(cnt) |
942                       INT_AGGR_TIMEOUT_VAL(tmout),
943                       REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944 }
945
946 /**
947  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948  * @hba: per adapter instance
949  */
950 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951 {
952         ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954
955 /**
956  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957  *                      When run-stop registers are set to 1, it indicates the
958  *                      host controller that it can process the requests
959  * @hba: per adapter instance
960  */
961 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962 {
963         ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964                       REG_UTP_TASK_REQ_LIST_RUN_STOP);
965         ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966                       REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967 }
968
969 /**
970  * ufshcd_hba_start - Start controller initialization sequence
971  * @hba: per adapter instance
972  */
973 static inline void ufshcd_hba_start(struct ufs_hba *hba)
974 {
975         u32 val = CONTROLLER_ENABLE;
976
977         if (ufshcd_crypto_enable(hba))
978                 val |= CRYPTO_GENERAL_ENABLE;
979
980         ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981 }
982
983 /**
984  * ufshcd_is_hba_active - Get controller state
985  * @hba: per adapter instance
986  *
987  * Returns true if and only if the controller is active.
988  */
989 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
990 {
991         return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992 }
993
994 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
995 {
996         /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
997         if (hba->ufs_version <= ufshci_version(1, 1))
998                 return UFS_UNIPRO_VER_1_41;
999         else
1000                 return UFS_UNIPRO_VER_1_6;
1001 }
1002 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1003
1004 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1005 {
1006         /*
1007          * If both host and device support UniPro ver1.6 or later, PA layer
1008          * parameters tuning happens during link startup itself.
1009          *
1010          * We can manually tune PA layer parameters if either host or device
1011          * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1012          * logic simple, we will only do manual tuning if local unipro version
1013          * doesn't support ver1.6 or later.
1014          */
1015         return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1016 }
1017
1018 /**
1019  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1020  * @hba: per adapter instance
1021  * @scale_up: If True, set max possible frequency othewise set low frequency
1022  *
1023  * Returns 0 if successful
1024  * Returns < 0 for any other errors
1025  */
1026 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1027 {
1028         int ret = 0;
1029         struct ufs_clk_info *clki;
1030         struct list_head *head = &hba->clk_list_head;
1031
1032         if (list_empty(head))
1033                 goto out;
1034
1035         list_for_each_entry(clki, head, list) {
1036                 if (!IS_ERR_OR_NULL(clki->clk)) {
1037                         if (scale_up && clki->max_freq) {
1038                                 if (clki->curr_freq == clki->max_freq)
1039                                         continue;
1040
1041                                 ret = clk_set_rate(clki->clk, clki->max_freq);
1042                                 if (ret) {
1043                                         dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1044                                                 __func__, clki->name,
1045                                                 clki->max_freq, ret);
1046                                         break;
1047                                 }
1048                                 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1049                                                 "scaled up", clki->name,
1050                                                 clki->curr_freq,
1051                                                 clki->max_freq);
1052
1053                                 clki->curr_freq = clki->max_freq;
1054
1055                         } else if (!scale_up && clki->min_freq) {
1056                                 if (clki->curr_freq == clki->min_freq)
1057                                         continue;
1058
1059                                 ret = clk_set_rate(clki->clk, clki->min_freq);
1060                                 if (ret) {
1061                                         dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062                                                 __func__, clki->name,
1063                                                 clki->min_freq, ret);
1064                                         break;
1065                                 }
1066                                 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1067                                                 "scaled down", clki->name,
1068                                                 clki->curr_freq,
1069                                                 clki->min_freq);
1070                                 clki->curr_freq = clki->min_freq;
1071                         }
1072                 }
1073                 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1074                                 clki->name, clk_get_rate(clki->clk));
1075         }
1076
1077 out:
1078         return ret;
1079 }
1080
1081 /**
1082  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1083  * @hba: per adapter instance
1084  * @scale_up: True if scaling up and false if scaling down
1085  *
1086  * Returns 0 if successful
1087  * Returns < 0 for any other errors
1088  */
1089 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1090 {
1091         int ret = 0;
1092         ktime_t start = ktime_get();
1093
1094         ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1095         if (ret)
1096                 goto out;
1097
1098         ret = ufshcd_set_clk_freq(hba, scale_up);
1099         if (ret)
1100                 goto out;
1101
1102         ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1103         if (ret)
1104                 ufshcd_set_clk_freq(hba, !scale_up);
1105
1106 out:
1107         trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1108                         (scale_up ? "up" : "down"),
1109                         ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1110         return ret;
1111 }
1112
1113 /**
1114  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1115  * @hba: per adapter instance
1116  * @scale_up: True if scaling up and false if scaling down
1117  *
1118  * Returns true if scaling is required, false otherwise.
1119  */
1120 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1121                                                bool scale_up)
1122 {
1123         struct ufs_clk_info *clki;
1124         struct list_head *head = &hba->clk_list_head;
1125
1126         if (list_empty(head))
1127                 return false;
1128
1129         list_for_each_entry(clki, head, list) {
1130                 if (!IS_ERR_OR_NULL(clki->clk)) {
1131                         if (scale_up && clki->max_freq) {
1132                                 if (clki->curr_freq == clki->max_freq)
1133                                         continue;
1134                                 return true;
1135                         } else if (!scale_up && clki->min_freq) {
1136                                 if (clki->curr_freq == clki->min_freq)
1137                                         continue;
1138                                 return true;
1139                         }
1140                 }
1141         }
1142
1143         return false;
1144 }
1145
1146 /*
1147  * Determine the number of pending commands by counting the bits in the SCSI
1148  * device budget maps. This approach has been selected because a bit is set in
1149  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1150  * flag. The host_self_blocked flag can be modified by calling
1151  * scsi_block_requests() or scsi_unblock_requests().
1152  */
1153 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1154 {
1155         const struct scsi_device *sdev;
1156         u32 pending = 0;
1157
1158         lockdep_assert_held(hba->host->host_lock);
1159         __shost_for_each_device(sdev, hba->host)
1160                 pending += sbitmap_weight(&sdev->budget_map);
1161
1162         return pending;
1163 }
1164
1165 /*
1166  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1167  * has expired.
1168  *
1169  * Return: 0 upon success; -EBUSY upon timeout.
1170  */
1171 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1172                                         u64 wait_timeout_us)
1173 {
1174         unsigned long flags;
1175         int ret = 0;
1176         u32 tm_doorbell;
1177         u32 tr_pending;
1178         bool timeout = false, do_last_check = false;
1179         ktime_t start;
1180
1181         ufshcd_hold(hba, false);
1182         spin_lock_irqsave(hba->host->host_lock, flags);
1183         /*
1184          * Wait for all the outstanding tasks/transfer requests.
1185          * Verify by checking the doorbell registers are clear.
1186          */
1187         start = ktime_get();
1188         do {
1189                 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1190                         ret = -EBUSY;
1191                         goto out;
1192                 }
1193
1194                 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1195                 tr_pending = ufshcd_pending_cmds(hba);
1196                 if (!tm_doorbell && !tr_pending) {
1197                         timeout = false;
1198                         break;
1199                 } else if (do_last_check) {
1200                         break;
1201                 }
1202
1203                 spin_unlock_irqrestore(hba->host->host_lock, flags);
1204                 io_schedule_timeout(msecs_to_jiffies(20));
1205                 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1206                     wait_timeout_us) {
1207                         timeout = true;
1208                         /*
1209                          * We might have scheduled out for long time so make
1210                          * sure to check if doorbells are cleared by this time
1211                          * or not.
1212                          */
1213                         do_last_check = true;
1214                 }
1215                 spin_lock_irqsave(hba->host->host_lock, flags);
1216         } while (tm_doorbell || tr_pending);
1217
1218         if (timeout) {
1219                 dev_err(hba->dev,
1220                         "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1221                         __func__, tm_doorbell, tr_pending);
1222                 ret = -EBUSY;
1223         }
1224 out:
1225         spin_unlock_irqrestore(hba->host->host_lock, flags);
1226         ufshcd_release(hba);
1227         return ret;
1228 }
1229
1230 /**
1231  * ufshcd_scale_gear - scale up/down UFS gear
1232  * @hba: per adapter instance
1233  * @scale_up: True for scaling up gear and false for scaling down
1234  *
1235  * Returns 0 for success,
1236  * Returns -EBUSY if scaling can't happen at this time
1237  * Returns non-zero for any other errors
1238  */
1239 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1240 {
1241         int ret = 0;
1242         struct ufs_pa_layer_attr new_pwr_info;
1243
1244         if (scale_up) {
1245                 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1246                        sizeof(struct ufs_pa_layer_attr));
1247         } else {
1248                 memcpy(&new_pwr_info, &hba->pwr_info,
1249                        sizeof(struct ufs_pa_layer_attr));
1250
1251                 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1252                     hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1253                         /* save the current power mode */
1254                         memcpy(&hba->clk_scaling.saved_pwr_info.info,
1255                                 &hba->pwr_info,
1256                                 sizeof(struct ufs_pa_layer_attr));
1257
1258                         /* scale down gear */
1259                         new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1260                         new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1261                 }
1262         }
1263
1264         /* check if the power mode needs to be changed or not? */
1265         ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1266         if (ret)
1267                 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1268                         __func__, ret,
1269                         hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1270                         new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1271
1272         return ret;
1273 }
1274
1275 /*
1276  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1277  * has expired.
1278  *
1279  * Return: 0 upon success; -EBUSY upon timeout.
1280  */
1281 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1282 {
1283         int ret = 0;
1284         /*
1285          * make sure that there are no outstanding requests when
1286          * clock scaling is in progress
1287          */
1288         ufshcd_scsi_block_requests(hba);
1289         mutex_lock(&hba->wb_mutex);
1290         down_write(&hba->clk_scaling_lock);
1291
1292         if (!hba->clk_scaling.is_allowed ||
1293             ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1294                 ret = -EBUSY;
1295                 up_write(&hba->clk_scaling_lock);
1296                 mutex_unlock(&hba->wb_mutex);
1297                 ufshcd_scsi_unblock_requests(hba);
1298                 goto out;
1299         }
1300
1301         /* let's not get into low power until clock scaling is completed */
1302         ufshcd_hold(hba, false);
1303
1304 out:
1305         return ret;
1306 }
1307
1308 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1309 {
1310         up_write(&hba->clk_scaling_lock);
1311
1312         /* Enable Write Booster if we have scaled up else disable it */
1313         if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1314                 ufshcd_wb_toggle(hba, scale_up);
1315
1316         mutex_unlock(&hba->wb_mutex);
1317
1318         ufshcd_scsi_unblock_requests(hba);
1319         ufshcd_release(hba);
1320 }
1321
1322 /**
1323  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1324  * @hba: per adapter instance
1325  * @scale_up: True for scaling up and false for scalin down
1326  *
1327  * Returns 0 for success,
1328  * Returns -EBUSY if scaling can't happen at this time
1329  * Returns non-zero for any other errors
1330  */
1331 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1332 {
1333         int ret = 0;
1334
1335         ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1336         if (ret)
1337                 return ret;
1338
1339         /* scale down the gear before scaling down clocks */
1340         if (!scale_up) {
1341                 ret = ufshcd_scale_gear(hba, false);
1342                 if (ret)
1343                         goto out_unprepare;
1344         }
1345
1346         ret = ufshcd_scale_clks(hba, scale_up);
1347         if (ret) {
1348                 if (!scale_up)
1349                         ufshcd_scale_gear(hba, true);
1350                 goto out_unprepare;
1351         }
1352
1353         /* scale up the gear after scaling up clocks */
1354         if (scale_up) {
1355                 ret = ufshcd_scale_gear(hba, true);
1356                 if (ret) {
1357                         ufshcd_scale_clks(hba, false);
1358                         goto out_unprepare;
1359                 }
1360         }
1361
1362 out_unprepare:
1363         ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1364         return ret;
1365 }
1366
1367 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1368 {
1369         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1370                                            clk_scaling.suspend_work);
1371         unsigned long irq_flags;
1372
1373         spin_lock_irqsave(hba->host->host_lock, irq_flags);
1374         if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1375                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1376                 return;
1377         }
1378         hba->clk_scaling.is_suspended = true;
1379         spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1380
1381         __ufshcd_suspend_clkscaling(hba);
1382 }
1383
1384 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1385 {
1386         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1387                                            clk_scaling.resume_work);
1388         unsigned long irq_flags;
1389
1390         spin_lock_irqsave(hba->host->host_lock, irq_flags);
1391         if (!hba->clk_scaling.is_suspended) {
1392                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1393                 return;
1394         }
1395         hba->clk_scaling.is_suspended = false;
1396         spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1397
1398         devfreq_resume_device(hba->devfreq);
1399 }
1400
1401 static int ufshcd_devfreq_target(struct device *dev,
1402                                 unsigned long *freq, u32 flags)
1403 {
1404         int ret = 0;
1405         struct ufs_hba *hba = dev_get_drvdata(dev);
1406         ktime_t start;
1407         bool scale_up, sched_clk_scaling_suspend_work = false;
1408         struct list_head *clk_list = &hba->clk_list_head;
1409         struct ufs_clk_info *clki;
1410         unsigned long irq_flags;
1411
1412         /*
1413          * Skip devfreq if UFS initialization is not finished.
1414          * Otherwise ufs could be in a inconsistent state.
1415          */
1416         if (!smp_load_acquire(&hba->logical_unit_scan_finished))
1417                 return 0;
1418
1419         if (!ufshcd_is_clkscaling_supported(hba))
1420                 return -EINVAL;
1421
1422         clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1423         /* Override with the closest supported frequency */
1424         *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1425         spin_lock_irqsave(hba->host->host_lock, irq_flags);
1426         if (ufshcd_eh_in_progress(hba)) {
1427                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1428                 return 0;
1429         }
1430
1431         if (!hba->clk_scaling.active_reqs)
1432                 sched_clk_scaling_suspend_work = true;
1433
1434         if (list_empty(clk_list)) {
1435                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1436                 goto out;
1437         }
1438
1439         /* Decide based on the rounded-off frequency and update */
1440         scale_up = *freq == clki->max_freq;
1441         if (!scale_up)
1442                 *freq = clki->min_freq;
1443         /* Update the frequency */
1444         if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1445                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1446                 ret = 0;
1447                 goto out; /* no state change required */
1448         }
1449         spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1450
1451         start = ktime_get();
1452         ret = ufshcd_devfreq_scale(hba, scale_up);
1453
1454         trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1455                 (scale_up ? "up" : "down"),
1456                 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1457
1458 out:
1459         if (sched_clk_scaling_suspend_work)
1460                 queue_work(hba->clk_scaling.workq,
1461                            &hba->clk_scaling.suspend_work);
1462
1463         return ret;
1464 }
1465
1466 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1467                 struct devfreq_dev_status *stat)
1468 {
1469         struct ufs_hba *hba = dev_get_drvdata(dev);
1470         struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1471         unsigned long flags;
1472         struct list_head *clk_list = &hba->clk_list_head;
1473         struct ufs_clk_info *clki;
1474         ktime_t curr_t;
1475
1476         if (!ufshcd_is_clkscaling_supported(hba))
1477                 return -EINVAL;
1478
1479         memset(stat, 0, sizeof(*stat));
1480
1481         spin_lock_irqsave(hba->host->host_lock, flags);
1482         curr_t = ktime_get();
1483         if (!scaling->window_start_t)
1484                 goto start_window;
1485
1486         clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1487         /*
1488          * If current frequency is 0, then the ondemand governor considers
1489          * there's no initial frequency set. And it always requests to set
1490          * to max. frequency.
1491          */
1492         stat->current_frequency = clki->curr_freq;
1493         if (scaling->is_busy_started)
1494                 scaling->tot_busy_t += ktime_us_delta(curr_t,
1495                                 scaling->busy_start_t);
1496
1497         stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1498         stat->busy_time = scaling->tot_busy_t;
1499 start_window:
1500         scaling->window_start_t = curr_t;
1501         scaling->tot_busy_t = 0;
1502
1503         if (hba->outstanding_reqs) {
1504                 scaling->busy_start_t = curr_t;
1505                 scaling->is_busy_started = true;
1506         } else {
1507                 scaling->busy_start_t = 0;
1508                 scaling->is_busy_started = false;
1509         }
1510         spin_unlock_irqrestore(hba->host->host_lock, flags);
1511         return 0;
1512 }
1513
1514 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1515 {
1516         struct list_head *clk_list = &hba->clk_list_head;
1517         struct ufs_clk_info *clki;
1518         struct devfreq *devfreq;
1519         int ret;
1520
1521         /* Skip devfreq if we don't have any clocks in the list */
1522         if (list_empty(clk_list))
1523                 return 0;
1524
1525         clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1526         dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1527         dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1528
1529         ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1530                                          &hba->vps->ondemand_data);
1531         devfreq = devfreq_add_device(hba->dev,
1532                         &hba->vps->devfreq_profile,
1533                         DEVFREQ_GOV_SIMPLE_ONDEMAND,
1534                         &hba->vps->ondemand_data);
1535         if (IS_ERR(devfreq)) {
1536                 ret = PTR_ERR(devfreq);
1537                 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1538
1539                 dev_pm_opp_remove(hba->dev, clki->min_freq);
1540                 dev_pm_opp_remove(hba->dev, clki->max_freq);
1541                 return ret;
1542         }
1543
1544         hba->devfreq = devfreq;
1545
1546         return 0;
1547 }
1548
1549 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1550 {
1551         struct list_head *clk_list = &hba->clk_list_head;
1552         struct ufs_clk_info *clki;
1553
1554         if (!hba->devfreq)
1555                 return;
1556
1557         devfreq_remove_device(hba->devfreq);
1558         hba->devfreq = NULL;
1559
1560         clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1561         dev_pm_opp_remove(hba->dev, clki->min_freq);
1562         dev_pm_opp_remove(hba->dev, clki->max_freq);
1563 }
1564
1565 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1566 {
1567         unsigned long flags;
1568
1569         devfreq_suspend_device(hba->devfreq);
1570         spin_lock_irqsave(hba->host->host_lock, flags);
1571         hba->clk_scaling.window_start_t = 0;
1572         spin_unlock_irqrestore(hba->host->host_lock, flags);
1573 }
1574
1575 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1576 {
1577         unsigned long flags;
1578         bool suspend = false;
1579
1580         cancel_work_sync(&hba->clk_scaling.suspend_work);
1581         cancel_work_sync(&hba->clk_scaling.resume_work);
1582
1583         spin_lock_irqsave(hba->host->host_lock, flags);
1584         if (!hba->clk_scaling.is_suspended) {
1585                 suspend = true;
1586                 hba->clk_scaling.is_suspended = true;
1587         }
1588         spin_unlock_irqrestore(hba->host->host_lock, flags);
1589
1590         if (suspend)
1591                 __ufshcd_suspend_clkscaling(hba);
1592 }
1593
1594 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1595 {
1596         unsigned long flags;
1597         bool resume = false;
1598
1599         spin_lock_irqsave(hba->host->host_lock, flags);
1600         if (hba->clk_scaling.is_suspended) {
1601                 resume = true;
1602                 hba->clk_scaling.is_suspended = false;
1603         }
1604         spin_unlock_irqrestore(hba->host->host_lock, flags);
1605
1606         if (resume)
1607                 devfreq_resume_device(hba->devfreq);
1608 }
1609
1610 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1611                 struct device_attribute *attr, char *buf)
1612 {
1613         struct ufs_hba *hba = dev_get_drvdata(dev);
1614
1615         return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1616 }
1617
1618 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1619                 struct device_attribute *attr, const char *buf, size_t count)
1620 {
1621         struct ufs_hba *hba = dev_get_drvdata(dev);
1622         u32 value;
1623         int err = 0;
1624
1625         if (kstrtou32(buf, 0, &value))
1626                 return -EINVAL;
1627
1628         down(&hba->host_sem);
1629         if (!ufshcd_is_user_access_allowed(hba)) {
1630                 err = -EBUSY;
1631                 goto out;
1632         }
1633
1634         value = !!value;
1635         if (value == hba->clk_scaling.is_enabled)
1636                 goto out;
1637
1638         ufshcd_rpm_get_sync(hba);
1639         ufshcd_hold(hba, false);
1640
1641         hba->clk_scaling.is_enabled = value;
1642
1643         if (value) {
1644                 ufshcd_resume_clkscaling(hba);
1645         } else {
1646                 ufshcd_suspend_clkscaling(hba);
1647                 err = ufshcd_devfreq_scale(hba, true);
1648                 if (err)
1649                         dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1650                                         __func__, err);
1651         }
1652
1653         ufshcd_release(hba);
1654         ufshcd_rpm_put_sync(hba);
1655 out:
1656         up(&hba->host_sem);
1657         return err ? err : count;
1658 }
1659
1660 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1661 {
1662         hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1663         hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1664         sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1665         hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1666         hba->clk_scaling.enable_attr.attr.mode = 0644;
1667         if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1668                 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1669 }
1670
1671 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1672 {
1673         if (hba->clk_scaling.enable_attr.attr.name)
1674                 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1675 }
1676
1677 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1678 {
1679         char wq_name[sizeof("ufs_clkscaling_00")];
1680
1681         if (!ufshcd_is_clkscaling_supported(hba))
1682                 return;
1683
1684         if (!hba->clk_scaling.min_gear)
1685                 hba->clk_scaling.min_gear = UFS_HS_G1;
1686
1687         INIT_WORK(&hba->clk_scaling.suspend_work,
1688                   ufshcd_clk_scaling_suspend_work);
1689         INIT_WORK(&hba->clk_scaling.resume_work,
1690                   ufshcd_clk_scaling_resume_work);
1691
1692         snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1693                  hba->host->host_no);
1694         hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1695
1696         hba->clk_scaling.is_initialized = true;
1697 }
1698
1699 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1700 {
1701         if (!hba->clk_scaling.is_initialized)
1702                 return;
1703
1704         ufshcd_remove_clk_scaling_sysfs(hba);
1705         destroy_workqueue(hba->clk_scaling.workq);
1706         ufshcd_devfreq_remove(hba);
1707         hba->clk_scaling.is_initialized = false;
1708 }
1709
1710 static void ufshcd_ungate_work(struct work_struct *work)
1711 {
1712         int ret;
1713         unsigned long flags;
1714         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1715                         clk_gating.ungate_work);
1716
1717         cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1718
1719         spin_lock_irqsave(hba->host->host_lock, flags);
1720         if (hba->clk_gating.state == CLKS_ON) {
1721                 spin_unlock_irqrestore(hba->host->host_lock, flags);
1722                 goto unblock_reqs;
1723         }
1724
1725         spin_unlock_irqrestore(hba->host->host_lock, flags);
1726         ufshcd_hba_vreg_set_hpm(hba);
1727         ufshcd_setup_clocks(hba, true);
1728
1729         ufshcd_enable_irq(hba);
1730
1731         /* Exit from hibern8 */
1732         if (ufshcd_can_hibern8_during_gating(hba)) {
1733                 /* Prevent gating in this path */
1734                 hba->clk_gating.is_suspended = true;
1735                 if (ufshcd_is_link_hibern8(hba)) {
1736                         ret = ufshcd_uic_hibern8_exit(hba);
1737                         if (ret)
1738                                 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1739                                         __func__, ret);
1740                         else
1741                                 ufshcd_set_link_active(hba);
1742                 }
1743                 hba->clk_gating.is_suspended = false;
1744         }
1745 unblock_reqs:
1746         ufshcd_scsi_unblock_requests(hba);
1747 }
1748
1749 /**
1750  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1751  * Also, exit from hibern8 mode and set the link as active.
1752  * @hba: per adapter instance
1753  * @async: This indicates whether caller should ungate clocks asynchronously.
1754  */
1755 int ufshcd_hold(struct ufs_hba *hba, bool async)
1756 {
1757         int rc = 0;
1758         bool flush_result;
1759         unsigned long flags;
1760
1761         if (!ufshcd_is_clkgating_allowed(hba) ||
1762             !hba->clk_gating.is_initialized)
1763                 goto out;
1764         spin_lock_irqsave(hba->host->host_lock, flags);
1765         hba->clk_gating.active_reqs++;
1766
1767 start:
1768         switch (hba->clk_gating.state) {
1769         case CLKS_ON:
1770                 /*
1771                  * Wait for the ungate work to complete if in progress.
1772                  * Though the clocks may be in ON state, the link could
1773                  * still be in hibner8 state if hibern8 is allowed
1774                  * during clock gating.
1775                  * Make sure we exit hibern8 state also in addition to
1776                  * clocks being ON.
1777                  */
1778                 if (ufshcd_can_hibern8_during_gating(hba) &&
1779                     ufshcd_is_link_hibern8(hba)) {
1780                         if (async) {
1781                                 rc = -EAGAIN;
1782                                 hba->clk_gating.active_reqs--;
1783                                 break;
1784                         }
1785                         spin_unlock_irqrestore(hba->host->host_lock, flags);
1786                         flush_result = flush_work(&hba->clk_gating.ungate_work);
1787                         if (hba->clk_gating.is_suspended && !flush_result)
1788                                 goto out;
1789                         spin_lock_irqsave(hba->host->host_lock, flags);
1790                         goto start;
1791                 }
1792                 break;
1793         case REQ_CLKS_OFF:
1794                 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1795                         hba->clk_gating.state = CLKS_ON;
1796                         trace_ufshcd_clk_gating(dev_name(hba->dev),
1797                                                 hba->clk_gating.state);
1798                         break;
1799                 }
1800                 /*
1801                  * If we are here, it means gating work is either done or
1802                  * currently running. Hence, fall through to cancel gating
1803                  * work and to enable clocks.
1804                  */
1805                 fallthrough;
1806         case CLKS_OFF:
1807                 hba->clk_gating.state = REQ_CLKS_ON;
1808                 trace_ufshcd_clk_gating(dev_name(hba->dev),
1809                                         hba->clk_gating.state);
1810                 if (queue_work(hba->clk_gating.clk_gating_workq,
1811                                &hba->clk_gating.ungate_work))
1812                         ufshcd_scsi_block_requests(hba);
1813                 /*
1814                  * fall through to check if we should wait for this
1815                  * work to be done or not.
1816                  */
1817                 fallthrough;
1818         case REQ_CLKS_ON:
1819                 if (async) {
1820                         rc = -EAGAIN;
1821                         hba->clk_gating.active_reqs--;
1822                         break;
1823                 }
1824
1825                 spin_unlock_irqrestore(hba->host->host_lock, flags);
1826                 flush_work(&hba->clk_gating.ungate_work);
1827                 /* Make sure state is CLKS_ON before returning */
1828                 spin_lock_irqsave(hba->host->host_lock, flags);
1829                 goto start;
1830         default:
1831                 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1832                                 __func__, hba->clk_gating.state);
1833                 break;
1834         }
1835         spin_unlock_irqrestore(hba->host->host_lock, flags);
1836 out:
1837         return rc;
1838 }
1839 EXPORT_SYMBOL_GPL(ufshcd_hold);
1840
1841 static void ufshcd_gate_work(struct work_struct *work)
1842 {
1843         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1844                         clk_gating.gate_work.work);
1845         unsigned long flags;
1846         int ret;
1847
1848         spin_lock_irqsave(hba->host->host_lock, flags);
1849         /*
1850          * In case you are here to cancel this work the gating state
1851          * would be marked as REQ_CLKS_ON. In this case save time by
1852          * skipping the gating work and exit after changing the clock
1853          * state to CLKS_ON.
1854          */
1855         if (hba->clk_gating.is_suspended ||
1856                 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1857                 hba->clk_gating.state = CLKS_ON;
1858                 trace_ufshcd_clk_gating(dev_name(hba->dev),
1859                                         hba->clk_gating.state);
1860                 goto rel_lock;
1861         }
1862
1863         if (hba->clk_gating.active_reqs
1864                 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1865                 || hba->outstanding_reqs || hba->outstanding_tasks
1866                 || hba->active_uic_cmd || hba->uic_async_done)
1867                 goto rel_lock;
1868
1869         spin_unlock_irqrestore(hba->host->host_lock, flags);
1870
1871         /* put the link into hibern8 mode before turning off clocks */
1872         if (ufshcd_can_hibern8_during_gating(hba)) {
1873                 ret = ufshcd_uic_hibern8_enter(hba);
1874                 if (ret) {
1875                         hba->clk_gating.state = CLKS_ON;
1876                         dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1877                                         __func__, ret);
1878                         trace_ufshcd_clk_gating(dev_name(hba->dev),
1879                                                 hba->clk_gating.state);
1880                         goto out;
1881                 }
1882                 ufshcd_set_link_hibern8(hba);
1883         }
1884
1885         ufshcd_disable_irq(hba);
1886
1887         ufshcd_setup_clocks(hba, false);
1888
1889         /* Put the host controller in low power mode if possible */
1890         ufshcd_hba_vreg_set_lpm(hba);
1891         /*
1892          * In case you are here to cancel this work the gating state
1893          * would be marked as REQ_CLKS_ON. In this case keep the state
1894          * as REQ_CLKS_ON which would anyway imply that clocks are off
1895          * and a request to turn them on is pending. By doing this way,
1896          * we keep the state machine in tact and this would ultimately
1897          * prevent from doing cancel work multiple times when there are
1898          * new requests arriving before the current cancel work is done.
1899          */
1900         spin_lock_irqsave(hba->host->host_lock, flags);
1901         if (hba->clk_gating.state == REQ_CLKS_OFF) {
1902                 hba->clk_gating.state = CLKS_OFF;
1903                 trace_ufshcd_clk_gating(dev_name(hba->dev),
1904                                         hba->clk_gating.state);
1905         }
1906 rel_lock:
1907         spin_unlock_irqrestore(hba->host->host_lock, flags);
1908 out:
1909         return;
1910 }
1911
1912 /* host lock must be held before calling this variant */
1913 static void __ufshcd_release(struct ufs_hba *hba)
1914 {
1915         if (!ufshcd_is_clkgating_allowed(hba))
1916                 return;
1917
1918         hba->clk_gating.active_reqs--;
1919
1920         if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1921             hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1922             hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1923             hba->active_uic_cmd || hba->uic_async_done ||
1924             hba->clk_gating.state == CLKS_OFF)
1925                 return;
1926
1927         hba->clk_gating.state = REQ_CLKS_OFF;
1928         trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1929         queue_delayed_work(hba->clk_gating.clk_gating_workq,
1930                            &hba->clk_gating.gate_work,
1931                            msecs_to_jiffies(hba->clk_gating.delay_ms));
1932 }
1933
1934 void ufshcd_release(struct ufs_hba *hba)
1935 {
1936         unsigned long flags;
1937
1938         spin_lock_irqsave(hba->host->host_lock, flags);
1939         __ufshcd_release(hba);
1940         spin_unlock_irqrestore(hba->host->host_lock, flags);
1941 }
1942 EXPORT_SYMBOL_GPL(ufshcd_release);
1943
1944 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1945                 struct device_attribute *attr, char *buf)
1946 {
1947         struct ufs_hba *hba = dev_get_drvdata(dev);
1948
1949         return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1950 }
1951
1952 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1953 {
1954         struct ufs_hba *hba = dev_get_drvdata(dev);
1955         unsigned long flags;
1956
1957         spin_lock_irqsave(hba->host->host_lock, flags);
1958         hba->clk_gating.delay_ms = value;
1959         spin_unlock_irqrestore(hba->host->host_lock, flags);
1960 }
1961 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1962
1963 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1964                 struct device_attribute *attr, const char *buf, size_t count)
1965 {
1966         unsigned long value;
1967
1968         if (kstrtoul(buf, 0, &value))
1969                 return -EINVAL;
1970
1971         ufshcd_clkgate_delay_set(dev, value);
1972         return count;
1973 }
1974
1975 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1976                 struct device_attribute *attr, char *buf)
1977 {
1978         struct ufs_hba *hba = dev_get_drvdata(dev);
1979
1980         return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1981 }
1982
1983 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1984                 struct device_attribute *attr, const char *buf, size_t count)
1985 {
1986         struct ufs_hba *hba = dev_get_drvdata(dev);
1987         unsigned long flags;
1988         u32 value;
1989
1990         if (kstrtou32(buf, 0, &value))
1991                 return -EINVAL;
1992
1993         value = !!value;
1994
1995         spin_lock_irqsave(hba->host->host_lock, flags);
1996         if (value == hba->clk_gating.is_enabled)
1997                 goto out;
1998
1999         if (value)
2000                 __ufshcd_release(hba);
2001         else
2002                 hba->clk_gating.active_reqs++;
2003
2004         hba->clk_gating.is_enabled = value;
2005 out:
2006         spin_unlock_irqrestore(hba->host->host_lock, flags);
2007         return count;
2008 }
2009
2010 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2011 {
2012         hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2013         hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2014         sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2015         hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2016         hba->clk_gating.delay_attr.attr.mode = 0644;
2017         if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2018                 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2019
2020         hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2021         hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2022         sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2023         hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2024         hba->clk_gating.enable_attr.attr.mode = 0644;
2025         if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2026                 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2027 }
2028
2029 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2030 {
2031         if (hba->clk_gating.delay_attr.attr.name)
2032                 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2033         if (hba->clk_gating.enable_attr.attr.name)
2034                 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2035 }
2036
2037 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2038 {
2039         char wq_name[sizeof("ufs_clk_gating_00")];
2040
2041         if (!ufshcd_is_clkgating_allowed(hba))
2042                 return;
2043
2044         hba->clk_gating.state = CLKS_ON;
2045
2046         hba->clk_gating.delay_ms = 150;
2047         INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2048         INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2049
2050         snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2051                  hba->host->host_no);
2052         hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2053                                         WQ_MEM_RECLAIM | WQ_HIGHPRI);
2054
2055         ufshcd_init_clk_gating_sysfs(hba);
2056
2057         hba->clk_gating.is_enabled = true;
2058         hba->clk_gating.is_initialized = true;
2059 }
2060
2061 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2062 {
2063         if (!hba->clk_gating.is_initialized)
2064                 return;
2065
2066         ufshcd_remove_clk_gating_sysfs(hba);
2067
2068         /* Ungate the clock if necessary. */
2069         ufshcd_hold(hba, false);
2070         hba->clk_gating.is_initialized = false;
2071         ufshcd_release(hba);
2072
2073         destroy_workqueue(hba->clk_gating.clk_gating_workq);
2074 }
2075
2076 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2077 {
2078         bool queue_resume_work = false;
2079         ktime_t curr_t = ktime_get();
2080         unsigned long flags;
2081
2082         if (!ufshcd_is_clkscaling_supported(hba))
2083                 return;
2084
2085         spin_lock_irqsave(hba->host->host_lock, flags);
2086         if (!hba->clk_scaling.active_reqs++)
2087                 queue_resume_work = true;
2088
2089         if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2090                 spin_unlock_irqrestore(hba->host->host_lock, flags);
2091                 return;
2092         }
2093
2094         if (queue_resume_work)
2095                 queue_work(hba->clk_scaling.workq,
2096                            &hba->clk_scaling.resume_work);
2097
2098         if (!hba->clk_scaling.window_start_t) {
2099                 hba->clk_scaling.window_start_t = curr_t;
2100                 hba->clk_scaling.tot_busy_t = 0;
2101                 hba->clk_scaling.is_busy_started = false;
2102         }
2103
2104         if (!hba->clk_scaling.is_busy_started) {
2105                 hba->clk_scaling.busy_start_t = curr_t;
2106                 hba->clk_scaling.is_busy_started = true;
2107         }
2108         spin_unlock_irqrestore(hba->host->host_lock, flags);
2109 }
2110
2111 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2112 {
2113         struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2114         unsigned long flags;
2115
2116         if (!ufshcd_is_clkscaling_supported(hba))
2117                 return;
2118
2119         spin_lock_irqsave(hba->host->host_lock, flags);
2120         hba->clk_scaling.active_reqs--;
2121         if (!hba->outstanding_reqs && scaling->is_busy_started) {
2122                 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2123                                         scaling->busy_start_t));
2124                 scaling->busy_start_t = 0;
2125                 scaling->is_busy_started = false;
2126         }
2127         spin_unlock_irqrestore(hba->host->host_lock, flags);
2128 }
2129
2130 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2131 {
2132         if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2133                 return READ;
2134         else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2135                 return WRITE;
2136         else
2137                 return -EINVAL;
2138 }
2139
2140 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2141                                                 struct ufshcd_lrb *lrbp)
2142 {
2143         const struct ufs_hba_monitor *m = &hba->monitor;
2144
2145         return (m->enabled && lrbp && lrbp->cmd &&
2146                 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2147                 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2148 }
2149
2150 static void ufshcd_start_monitor(struct ufs_hba *hba,
2151                                  const struct ufshcd_lrb *lrbp)
2152 {
2153         int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2154         unsigned long flags;
2155
2156         spin_lock_irqsave(hba->host->host_lock, flags);
2157         if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2158                 hba->monitor.busy_start_ts[dir] = ktime_get();
2159         spin_unlock_irqrestore(hba->host->host_lock, flags);
2160 }
2161
2162 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2163 {
2164         int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2165         unsigned long flags;
2166
2167         spin_lock_irqsave(hba->host->host_lock, flags);
2168         if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2169                 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2170                 struct ufs_hba_monitor *m = &hba->monitor;
2171                 ktime_t now, inc, lat;
2172
2173                 now = lrbp->compl_time_stamp;
2174                 inc = ktime_sub(now, m->busy_start_ts[dir]);
2175                 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2176                 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2177
2178                 /* Update latencies */
2179                 m->nr_req[dir]++;
2180                 lat = ktime_sub(now, lrbp->issue_time_stamp);
2181                 m->lat_sum[dir] += lat;
2182                 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2183                         m->lat_max[dir] = lat;
2184                 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2185                         m->lat_min[dir] = lat;
2186
2187                 m->nr_queued[dir]--;
2188                 /* Push forward the busy start of monitor */
2189                 m->busy_start_ts[dir] = now;
2190         }
2191         spin_unlock_irqrestore(hba->host->host_lock, flags);
2192 }
2193
2194 /**
2195  * ufshcd_send_command - Send SCSI or device management commands
2196  * @hba: per adapter instance
2197  * @task_tag: Task tag of the command
2198  * @hwq: pointer to hardware queue instance
2199  */
2200 static inline
2201 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2202                          struct ufs_hw_queue *hwq)
2203 {
2204         struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2205         unsigned long flags;
2206
2207         lrbp->issue_time_stamp = ktime_get();
2208         lrbp->issue_time_stamp_local_clock = local_clock();
2209         lrbp->compl_time_stamp = ktime_set(0, 0);
2210         lrbp->compl_time_stamp_local_clock = 0;
2211         ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2212         ufshcd_clk_scaling_start_busy(hba);
2213         if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2214                 ufshcd_start_monitor(hba, lrbp);
2215
2216         if (is_mcq_enabled(hba)) {
2217                 int utrd_size = sizeof(struct utp_transfer_req_desc);
2218
2219                 spin_lock(&hwq->sq_lock);
2220                 memcpy(hwq->sqe_base_addr + (hwq->sq_tail_slot * utrd_size),
2221                        lrbp->utr_descriptor_ptr, utrd_size);
2222                 ufshcd_inc_sq_tail(hwq);
2223                 spin_unlock(&hwq->sq_lock);
2224         } else {
2225                 spin_lock_irqsave(&hba->outstanding_lock, flags);
2226                 if (hba->vops && hba->vops->setup_xfer_req)
2227                         hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2228                                                   !!lrbp->cmd);
2229                 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2230                 ufshcd_writel(hba, 1 << lrbp->task_tag,
2231                               REG_UTP_TRANSFER_REQ_DOOR_BELL);
2232                 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2233         }
2234 }
2235
2236 /**
2237  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2238  * @lrbp: pointer to local reference block
2239  */
2240 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2241 {
2242         u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2243         int len;
2244
2245         if (sense_buffer &&
2246             ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2247                 int len_to_copy;
2248
2249                 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2250                 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2251
2252                 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2253                        len_to_copy);
2254         }
2255 }
2256
2257 /**
2258  * ufshcd_copy_query_response() - Copy the Query Response and the data
2259  * descriptor
2260  * @hba: per adapter instance
2261  * @lrbp: pointer to local reference block
2262  */
2263 static
2264 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2265 {
2266         struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2267
2268         memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2269
2270         /* Get the descriptor */
2271         if (hba->dev_cmd.query.descriptor &&
2272             lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2273                 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2274                                 GENERAL_UPIU_REQUEST_SIZE;
2275                 u16 resp_len;
2276                 u16 buf_len;
2277
2278                 /* data segment length */
2279                 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2280                                                 MASK_QUERY_DATA_SEG_LEN;
2281                 buf_len = be16_to_cpu(
2282                                 hba->dev_cmd.query.request.upiu_req.length);
2283                 if (likely(buf_len >= resp_len)) {
2284                         memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2285                 } else {
2286                         dev_warn(hba->dev,
2287                                  "%s: rsp size %d is bigger than buffer size %d",
2288                                  __func__, resp_len, buf_len);
2289                         return -EINVAL;
2290                 }
2291         }
2292
2293         return 0;
2294 }
2295
2296 /**
2297  * ufshcd_hba_capabilities - Read controller capabilities
2298  * @hba: per adapter instance
2299  *
2300  * Return: 0 on success, negative on error.
2301  */
2302 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2303 {
2304         int err;
2305
2306         hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2307         if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2308                 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2309
2310         /* nutrs and nutmrs are 0 based values */
2311         hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2312         hba->nutmrs =
2313         ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2314         hba->reserved_slot = hba->nutrs - 1;
2315
2316         /* Read crypto capabilities */
2317         err = ufshcd_hba_init_crypto_capabilities(hba);
2318         if (err)
2319                 dev_err(hba->dev, "crypto setup failed\n");
2320
2321         hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2322         if (!hba->mcq_sup)
2323                 return err;
2324
2325         hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2326         hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2327                                      hba->mcq_capabilities);
2328
2329         return err;
2330 }
2331
2332 /**
2333  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2334  *                            to accept UIC commands
2335  * @hba: per adapter instance
2336  * Return true on success, else false
2337  */
2338 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2339 {
2340         return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2341 }
2342
2343 /**
2344  * ufshcd_get_upmcrs - Get the power mode change request status
2345  * @hba: Pointer to adapter instance
2346  *
2347  * This function gets the UPMCRS field of HCS register
2348  * Returns value of UPMCRS field
2349  */
2350 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2351 {
2352         return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2353 }
2354
2355 /**
2356  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2357  * @hba: per adapter instance
2358  * @uic_cmd: UIC command
2359  */
2360 static inline void
2361 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2362 {
2363         lockdep_assert_held(&hba->uic_cmd_mutex);
2364
2365         WARN_ON(hba->active_uic_cmd);
2366
2367         hba->active_uic_cmd = uic_cmd;
2368
2369         /* Write Args */
2370         ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2371         ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2372         ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2373
2374         ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2375
2376         /* Write UIC Cmd */
2377         ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2378                       REG_UIC_COMMAND);
2379 }
2380
2381 /**
2382  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2383  * @hba: per adapter instance
2384  * @uic_cmd: UIC command
2385  *
2386  * Returns 0 only if success.
2387  */
2388 static int
2389 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2390 {
2391         int ret;
2392         unsigned long flags;
2393
2394         lockdep_assert_held(&hba->uic_cmd_mutex);
2395
2396         if (wait_for_completion_timeout(&uic_cmd->done,
2397                                         msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2398                 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2399         } else {
2400                 ret = -ETIMEDOUT;
2401                 dev_err(hba->dev,
2402                         "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2403                         uic_cmd->command, uic_cmd->argument3);
2404
2405                 if (!uic_cmd->cmd_active) {
2406                         dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2407                                 __func__);
2408                         ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2409                 }
2410         }
2411
2412         spin_lock_irqsave(hba->host->host_lock, flags);
2413         hba->active_uic_cmd = NULL;
2414         spin_unlock_irqrestore(hba->host->host_lock, flags);
2415
2416         return ret;
2417 }
2418
2419 /**
2420  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2421  * @hba: per adapter instance
2422  * @uic_cmd: UIC command
2423  * @completion: initialize the completion only if this is set to true
2424  *
2425  * Returns 0 only if success.
2426  */
2427 static int
2428 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2429                       bool completion)
2430 {
2431         lockdep_assert_held(&hba->uic_cmd_mutex);
2432         lockdep_assert_held(hba->host->host_lock);
2433
2434         if (!ufshcd_ready_for_uic_cmd(hba)) {
2435                 dev_err(hba->dev,
2436                         "Controller not ready to accept UIC commands\n");
2437                 return -EIO;
2438         }
2439
2440         if (completion)
2441                 init_completion(&uic_cmd->done);
2442
2443         uic_cmd->cmd_active = 1;
2444         ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2445
2446         return 0;
2447 }
2448
2449 /**
2450  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2451  * @hba: per adapter instance
2452  * @uic_cmd: UIC command
2453  *
2454  * Returns 0 only if success.
2455  */
2456 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2457 {
2458         int ret;
2459         unsigned long flags;
2460
2461         if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2462                 return 0;
2463
2464         ufshcd_hold(hba, false);
2465         mutex_lock(&hba->uic_cmd_mutex);
2466         ufshcd_add_delay_before_dme_cmd(hba);
2467
2468         spin_lock_irqsave(hba->host->host_lock, flags);
2469         ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2470         spin_unlock_irqrestore(hba->host->host_lock, flags);
2471         if (!ret)
2472                 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2473
2474         mutex_unlock(&hba->uic_cmd_mutex);
2475
2476         ufshcd_release(hba);
2477         return ret;
2478 }
2479
2480 /**
2481  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2482  * @hba:        per-adapter instance
2483  * @lrbp:       pointer to local reference block
2484  * @sg_entries: The number of sg lists actually used
2485  * @sg_list:    Pointer to SG list
2486  */
2487 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2488                                struct scatterlist *sg_list)
2489 {
2490         struct ufshcd_sg_entry *prd;
2491         struct scatterlist *sg;
2492         int i;
2493
2494         if (sg_entries) {
2495
2496                 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2497                         lrbp->utr_descriptor_ptr->prd_table_length =
2498                                 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2499                 else
2500                         lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2501
2502                 prd = lrbp->ucd_prdt_ptr;
2503
2504                 for_each_sg(sg_list, sg, sg_entries, i) {
2505                         const unsigned int len = sg_dma_len(sg);
2506
2507                         /*
2508                          * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2509                          * based value that indicates the length, in bytes, of
2510                          * the data block. A maximum of length of 256KB may
2511                          * exist for any entry. Bits 1:0 of this field shall be
2512                          * 11b to indicate Dword granularity. A value of '3'
2513                          * indicates 4 bytes, '7' indicates 8 bytes, etc."
2514                          */
2515                         WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2516                         prd->size = cpu_to_le32(len - 1);
2517                         prd->addr = cpu_to_le64(sg->dma_address);
2518                         prd->reserved = 0;
2519                         prd = (void *)prd + ufshcd_sg_entry_size(hba);
2520                 }
2521         } else {
2522                 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2523         }
2524 }
2525
2526 /**
2527  * ufshcd_map_sg - Map scatter-gather list to prdt
2528  * @hba: per adapter instance
2529  * @lrbp: pointer to local reference block
2530  *
2531  * Returns 0 in case of success, non-zero value in case of failure
2532  */
2533 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2534 {
2535         struct scsi_cmnd *cmd = lrbp->cmd;
2536         int sg_segments = scsi_dma_map(cmd);
2537
2538         if (sg_segments < 0)
2539                 return sg_segments;
2540
2541         ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2542
2543         return 0;
2544 }
2545
2546 /**
2547  * ufshcd_enable_intr - enable interrupts
2548  * @hba: per adapter instance
2549  * @intrs: interrupt bits
2550  */
2551 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2552 {
2553         u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2554
2555         if (hba->ufs_version == ufshci_version(1, 0)) {
2556                 u32 rw;
2557                 rw = set & INTERRUPT_MASK_RW_VER_10;
2558                 set = rw | ((set ^ intrs) & intrs);
2559         } else {
2560                 set |= intrs;
2561         }
2562
2563         ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2564 }
2565
2566 /**
2567  * ufshcd_disable_intr - disable interrupts
2568  * @hba: per adapter instance
2569  * @intrs: interrupt bits
2570  */
2571 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2572 {
2573         u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2574
2575         if (hba->ufs_version == ufshci_version(1, 0)) {
2576                 u32 rw;
2577                 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2578                         ~(intrs & INTERRUPT_MASK_RW_VER_10);
2579                 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2580
2581         } else {
2582                 set &= ~intrs;
2583         }
2584
2585         ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2586 }
2587
2588 /**
2589  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2590  * descriptor according to request
2591  * @lrbp: pointer to local reference block
2592  * @upiu_flags: flags required in the header
2593  * @cmd_dir: requests data direction
2594  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2595  */
2596 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2597                                         enum dma_data_direction cmd_dir, int ehs_length)
2598 {
2599         struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2600         u32 data_direction;
2601         u32 dword_0;
2602         u32 dword_1 = 0;
2603         u32 dword_3 = 0;
2604
2605         if (cmd_dir == DMA_FROM_DEVICE) {
2606                 data_direction = UTP_DEVICE_TO_HOST;
2607                 *upiu_flags = UPIU_CMD_FLAGS_READ;
2608         } else if (cmd_dir == DMA_TO_DEVICE) {
2609                 data_direction = UTP_HOST_TO_DEVICE;
2610                 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2611         } else {
2612                 data_direction = UTP_NO_DATA_TRANSFER;
2613                 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2614         }
2615
2616         dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) |
2617                 ehs_length << 8;
2618         if (lrbp->intr_cmd)
2619                 dword_0 |= UTP_REQ_DESC_INT_CMD;
2620
2621         /* Prepare crypto related dwords */
2622         ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2623
2624         /* Transfer request descriptor header fields */
2625         req_desc->header.dword_0 = cpu_to_le32(dword_0);
2626         req_desc->header.dword_1 = cpu_to_le32(dword_1);
2627         /*
2628          * assigning invalid value for command status. Controller
2629          * updates OCS on command completion, with the command
2630          * status
2631          */
2632         req_desc->header.dword_2 =
2633                 cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2634         req_desc->header.dword_3 = cpu_to_le32(dword_3);
2635
2636         req_desc->prd_table_length = 0;
2637 }
2638
2639 /**
2640  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2641  * for scsi commands
2642  * @lrbp: local reference block pointer
2643  * @upiu_flags: flags
2644  */
2645 static
2646 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2647 {
2648         struct scsi_cmnd *cmd = lrbp->cmd;
2649         struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2650         unsigned short cdb_len;
2651
2652         /* command descriptor fields */
2653         ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2654                                 UPIU_TRANSACTION_COMMAND, upiu_flags,
2655                                 lrbp->lun, lrbp->task_tag);
2656         ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2657                                 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2658
2659         /* Total EHS length and Data segment length will be zero */
2660         ucd_req_ptr->header.dword_2 = 0;
2661
2662         ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2663
2664         cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2665         memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2666         memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2667
2668         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2669 }
2670
2671 /**
2672  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2673  * @hba: UFS hba
2674  * @lrbp: local reference block pointer
2675  * @upiu_flags: flags
2676  */
2677 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2678                                 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2679 {
2680         struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2681         struct ufs_query *query = &hba->dev_cmd.query;
2682         u16 len = be16_to_cpu(query->request.upiu_req.length);
2683
2684         /* Query request header */
2685         ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2686                         UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2687                         lrbp->lun, lrbp->task_tag);
2688         ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2689                         0, query->request.query_func, 0, 0);
2690
2691         /* Data segment length only need for WRITE_DESC */
2692         if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2693                 ucd_req_ptr->header.dword_2 =
2694                         UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2695         else
2696                 ucd_req_ptr->header.dword_2 = 0;
2697
2698         /* Copy the Query Request buffer as is */
2699         memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2700                         QUERY_OSF_SIZE);
2701
2702         /* Copy the Descriptor */
2703         if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2704                 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2705
2706         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2707 }
2708
2709 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2710 {
2711         struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2712
2713         memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2714
2715         /* command descriptor fields */
2716         ucd_req_ptr->header.dword_0 =
2717                 UPIU_HEADER_DWORD(
2718                         UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2719         /* clear rest of the fields of basic header */
2720         ucd_req_ptr->header.dword_1 = 0;
2721         ucd_req_ptr->header.dword_2 = 0;
2722
2723         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2724 }
2725
2726 /**
2727  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2728  *                           for Device Management Purposes
2729  * @hba: per adapter instance
2730  * @lrbp: pointer to local reference block
2731  */
2732 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2733                                       struct ufshcd_lrb *lrbp)
2734 {
2735         u8 upiu_flags;
2736         int ret = 0;
2737
2738         if (hba->ufs_version <= ufshci_version(1, 1))
2739                 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2740         else
2741                 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2742
2743         ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2744         if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2745                 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2746         else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2747                 ufshcd_prepare_utp_nop_upiu(lrbp);
2748         else
2749                 ret = -EINVAL;
2750
2751         return ret;
2752 }
2753
2754 /**
2755  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2756  *                         for SCSI Purposes
2757  * @hba: per adapter instance
2758  * @lrbp: pointer to local reference block
2759  */
2760 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2761 {
2762         u8 upiu_flags;
2763         int ret = 0;
2764
2765         if (hba->ufs_version <= ufshci_version(1, 1))
2766                 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2767         else
2768                 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2769
2770         if (likely(lrbp->cmd)) {
2771                 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2772                 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2773         } else {
2774                 ret = -EINVAL;
2775         }
2776
2777         return ret;
2778 }
2779
2780 /**
2781  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2782  * @upiu_wlun_id: UPIU W-LUN id
2783  *
2784  * Returns SCSI W-LUN id
2785  */
2786 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2787 {
2788         return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2789 }
2790
2791 static inline bool is_device_wlun(struct scsi_device *sdev)
2792 {
2793         return sdev->lun ==
2794                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2795 }
2796
2797 /*
2798  * Associate the UFS controller queue with the default and poll HCTX types.
2799  * Initialize the mq_map[] arrays.
2800  */
2801 static void ufshcd_map_queues(struct Scsi_Host *shost)
2802 {
2803         struct ufs_hba *hba = shost_priv(shost);
2804         int i, queue_offset = 0;
2805
2806         if (!is_mcq_supported(hba)) {
2807                 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2808                 hba->nr_queues[HCTX_TYPE_READ] = 0;
2809                 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2810                 hba->nr_hw_queues = 1;
2811         }
2812
2813         for (i = 0; i < shost->nr_maps; i++) {
2814                 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2815
2816                 map->nr_queues = hba->nr_queues[i];
2817                 if (!map->nr_queues)
2818                         continue;
2819                 map->queue_offset = queue_offset;
2820                 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2821                         map->queue_offset = 0;
2822
2823                 blk_mq_map_queues(map);
2824                 queue_offset += map->nr_queues;
2825         }
2826 }
2827
2828 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2829 {
2830         struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2831                 i * sizeof_utp_transfer_cmd_desc(hba);
2832         struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2833         dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2834                 i * sizeof_utp_transfer_cmd_desc(hba);
2835         u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2836                                        response_upiu);
2837         u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2838
2839         lrb->utr_descriptor_ptr = utrdlp + i;
2840         lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2841                 i * sizeof(struct utp_transfer_req_desc);
2842         lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2843         lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2844         lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2845         lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2846         lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2847         lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2848 }
2849
2850 /**
2851  * ufshcd_queuecommand - main entry point for SCSI requests
2852  * @host: SCSI host pointer
2853  * @cmd: command from SCSI Midlayer
2854  *
2855  * Returns 0 for success, non-zero in case of failure
2856  */
2857 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2858 {
2859         struct ufs_hba *hba = shost_priv(host);
2860         int tag = scsi_cmd_to_rq(cmd)->tag;
2861         struct ufshcd_lrb *lrbp;
2862         int err = 0;
2863         struct ufs_hw_queue *hwq = NULL;
2864
2865         WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2866
2867         /*
2868          * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2869          * calls.
2870          */
2871         rcu_read_lock();
2872
2873         switch (hba->ufshcd_state) {
2874         case UFSHCD_STATE_OPERATIONAL:
2875                 break;
2876         case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2877                 /*
2878                  * SCSI error handler can call ->queuecommand() while UFS error
2879                  * handler is in progress. Error interrupts could change the
2880                  * state from UFSHCD_STATE_RESET to
2881                  * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2882                  * being issued in that case.
2883                  */
2884                 if (ufshcd_eh_in_progress(hba)) {
2885                         err = SCSI_MLQUEUE_HOST_BUSY;
2886                         goto out;
2887                 }
2888                 break;
2889         case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2890                 /*
2891                  * pm_runtime_get_sync() is used at error handling preparation
2892                  * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2893                  * PM ops, it can never be finished if we let SCSI layer keep
2894                  * retrying it, which gets err handler stuck forever. Neither
2895                  * can we let the scsi cmd pass through, because UFS is in bad
2896                  * state, the scsi cmd may eventually time out, which will get
2897                  * err handler blocked for too long. So, just fail the scsi cmd
2898                  * sent from PM ops, err handler can recover PM error anyways.
2899                  */
2900                 if (hba->pm_op_in_progress) {
2901                         hba->force_reset = true;
2902                         set_host_byte(cmd, DID_BAD_TARGET);
2903                         scsi_done(cmd);
2904                         goto out;
2905                 }
2906                 fallthrough;
2907         case UFSHCD_STATE_RESET:
2908                 err = SCSI_MLQUEUE_HOST_BUSY;
2909                 goto out;
2910         case UFSHCD_STATE_ERROR:
2911                 set_host_byte(cmd, DID_ERROR);
2912                 scsi_done(cmd);
2913                 goto out;
2914         }
2915
2916         hba->req_abort_count = 0;
2917
2918         err = ufshcd_hold(hba, true);
2919         if (err) {
2920                 err = SCSI_MLQUEUE_HOST_BUSY;
2921                 goto out;
2922         }
2923         WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2924                 (hba->clk_gating.state != CLKS_ON));
2925
2926         lrbp = &hba->lrb[tag];
2927         WARN_ON(lrbp->cmd);
2928         lrbp->cmd = cmd;
2929         lrbp->task_tag = tag;
2930         lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2931         lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2932
2933         ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2934
2935         lrbp->req_abort_skip = false;
2936
2937         ufshpb_prep(hba, lrbp);
2938
2939         ufshcd_comp_scsi_upiu(hba, lrbp);
2940
2941         err = ufshcd_map_sg(hba, lrbp);
2942         if (err) {
2943                 lrbp->cmd = NULL;
2944                 ufshcd_release(hba);
2945                 goto out;
2946         }
2947
2948         if (is_mcq_enabled(hba))
2949                 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2950
2951         ufshcd_send_command(hba, tag, hwq);
2952
2953 out:
2954         rcu_read_unlock();
2955
2956         if (ufs_trigger_eh()) {
2957                 unsigned long flags;
2958
2959                 spin_lock_irqsave(hba->host->host_lock, flags);
2960                 ufshcd_schedule_eh_work(hba);
2961                 spin_unlock_irqrestore(hba->host->host_lock, flags);
2962         }
2963
2964         return err;
2965 }
2966
2967 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2968                 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2969 {
2970         lrbp->cmd = NULL;
2971         lrbp->task_tag = tag;
2972         lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2973         lrbp->intr_cmd = true; /* No interrupt aggregation */
2974         ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2975         hba->dev_cmd.type = cmd_type;
2976
2977         return ufshcd_compose_devman_upiu(hba, lrbp);
2978 }
2979
2980 /*
2981  * Clear all the requests from the controller for which a bit has been set in
2982  * @mask and wait until the controller confirms that these requests have been
2983  * cleared.
2984  */
2985 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2986 {
2987         unsigned long flags;
2988
2989         /* clear outstanding transaction before retry */
2990         spin_lock_irqsave(hba->host->host_lock, flags);
2991         ufshcd_utrl_clear(hba, mask);
2992         spin_unlock_irqrestore(hba->host->host_lock, flags);
2993
2994         /*
2995          * wait for h/w to clear corresponding bit in door-bell.
2996          * max. wait is 1 sec.
2997          */
2998         return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2999                                         mask, ~mask, 1000, 1000);
3000 }
3001
3002 static int
3003 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3004 {
3005         struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
3006
3007         /* Get the UPIU response */
3008         query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
3009                                 UPIU_RSP_CODE_OFFSET;
3010         return query_res->response;
3011 }
3012
3013 /**
3014  * ufshcd_dev_cmd_completion() - handles device management command responses
3015  * @hba: per adapter instance
3016  * @lrbp: pointer to local reference block
3017  */
3018 static int
3019 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3020 {
3021         int resp;
3022         int err = 0;
3023
3024         hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3025         resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3026
3027         switch (resp) {
3028         case UPIU_TRANSACTION_NOP_IN:
3029                 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3030                         err = -EINVAL;
3031                         dev_err(hba->dev, "%s: unexpected response %x\n",
3032                                         __func__, resp);
3033                 }
3034                 break;
3035         case UPIU_TRANSACTION_QUERY_RSP:
3036                 err = ufshcd_check_query_response(hba, lrbp);
3037                 if (!err)
3038                         err = ufshcd_copy_query_response(hba, lrbp);
3039                 break;
3040         case UPIU_TRANSACTION_REJECT_UPIU:
3041                 /* TODO: handle Reject UPIU Response */
3042                 err = -EPERM;
3043                 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3044                                 __func__);
3045                 break;
3046         case UPIU_TRANSACTION_RESPONSE:
3047                 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3048                         err = -EINVAL;
3049                         dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3050                 }
3051                 break;
3052         default:
3053                 err = -EINVAL;
3054                 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3055                                 __func__, resp);
3056                 break;
3057         }
3058
3059         return err;
3060 }
3061
3062 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3063                 struct ufshcd_lrb *lrbp, int max_timeout)
3064 {
3065         unsigned long time_left = msecs_to_jiffies(max_timeout);
3066         unsigned long flags;
3067         bool pending;
3068         int err;
3069
3070 retry:
3071         time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3072                                                 time_left);
3073
3074         if (likely(time_left)) {
3075                 /*
3076                  * The completion handler called complete() and the caller of
3077                  * this function still owns the @lrbp tag so the code below does
3078                  * not trigger any race conditions.
3079                  */
3080                 hba->dev_cmd.complete = NULL;
3081                 err = ufshcd_get_tr_ocs(lrbp, hba->dev_cmd.cqe);
3082                 if (!err)
3083                         err = ufshcd_dev_cmd_completion(hba, lrbp);
3084         } else {
3085                 err = -ETIMEDOUT;
3086                 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3087                         __func__, lrbp->task_tag);
3088                 if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
3089                         /* successfully cleared the command, retry if needed */
3090                         err = -EAGAIN;
3091                         /*
3092                          * Since clearing the command succeeded we also need to
3093                          * clear the task tag bit from the outstanding_reqs
3094                          * variable.
3095                          */
3096                         spin_lock_irqsave(&hba->outstanding_lock, flags);
3097                         pending = test_bit(lrbp->task_tag,
3098                                            &hba->outstanding_reqs);
3099                         if (pending) {
3100                                 hba->dev_cmd.complete = NULL;
3101                                 __clear_bit(lrbp->task_tag,
3102                                             &hba->outstanding_reqs);
3103                         }
3104                         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3105
3106                         if (!pending) {
3107                                 /*
3108                                  * The completion handler ran while we tried to
3109                                  * clear the command.
3110                                  */
3111                                 time_left = 1;
3112                                 goto retry;
3113                         }
3114                 } else {
3115                         dev_err(hba->dev, "%s: failed to clear tag %d\n",
3116                                 __func__, lrbp->task_tag);
3117
3118                         spin_lock_irqsave(&hba->outstanding_lock, flags);
3119                         pending = test_bit(lrbp->task_tag,
3120                                            &hba->outstanding_reqs);
3121                         if (pending)
3122                                 hba->dev_cmd.complete = NULL;
3123                         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3124
3125                         if (!pending) {
3126                                 /*
3127                                  * The completion handler ran while we tried to
3128                                  * clear the command.
3129                                  */
3130                                 time_left = 1;
3131                                 goto retry;
3132                         }
3133                 }
3134         }
3135
3136         return err;
3137 }
3138
3139 /**
3140  * ufshcd_exec_dev_cmd - API for sending device management requests
3141  * @hba: UFS hba
3142  * @cmd_type: specifies the type (NOP, Query...)
3143  * @timeout: timeout in milliseconds
3144  *
3145  * NOTE: Since there is only one available tag for device management commands,
3146  * it is expected you hold the hba->dev_cmd.lock mutex.
3147  */
3148 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3149                 enum dev_cmd_type cmd_type, int timeout)
3150 {
3151         DECLARE_COMPLETION_ONSTACK(wait);
3152         const u32 tag = hba->reserved_slot;
3153         struct ufshcd_lrb *lrbp;
3154         int err;
3155
3156         /* Protects use of hba->reserved_slot. */
3157         lockdep_assert_held(&hba->dev_cmd.lock);
3158
3159         down_read(&hba->clk_scaling_lock);
3160
3161         lrbp = &hba->lrb[tag];
3162         WARN_ON(lrbp->cmd);
3163         err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3164         if (unlikely(err))
3165                 goto out;
3166
3167         hba->dev_cmd.complete = &wait;
3168         hba->dev_cmd.cqe = NULL;
3169
3170         ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3171
3172         ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3173         err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3174         ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3175                                     (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3176
3177 out:
3178         up_read(&hba->clk_scaling_lock);
3179         return err;
3180 }
3181
3182 /**
3183  * ufshcd_init_query() - init the query response and request parameters
3184  * @hba: per-adapter instance
3185  * @request: address of the request pointer to be initialized
3186  * @response: address of the response pointer to be initialized
3187  * @opcode: operation to perform
3188  * @idn: flag idn to access
3189  * @index: LU number to access
3190  * @selector: query/flag/descriptor further identification
3191  */
3192 static inline void ufshcd_init_query(struct ufs_hba *hba,
3193                 struct ufs_query_req **request, struct ufs_query_res **response,
3194                 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3195 {
3196         *request = &hba->dev_cmd.query.request;
3197         *response = &hba->dev_cmd.query.response;
3198         memset(*request, 0, sizeof(struct ufs_query_req));
3199         memset(*response, 0, sizeof(struct ufs_query_res));
3200         (*request)->upiu_req.opcode = opcode;
3201         (*request)->upiu_req.idn = idn;
3202         (*request)->upiu_req.index = index;
3203         (*request)->upiu_req.selector = selector;
3204 }
3205
3206 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3207         enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3208 {
3209         int ret;
3210         int retries;
3211
3212         for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3213                 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3214                 if (ret)
3215                         dev_dbg(hba->dev,
3216                                 "%s: failed with error %d, retries %d\n",
3217                                 __func__, ret, retries);
3218                 else
3219                         break;
3220         }
3221
3222         if (ret)
3223                 dev_err(hba->dev,
3224                         "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3225                         __func__, opcode, idn, ret, retries);
3226         return ret;
3227 }
3228
3229 /**
3230  * ufshcd_query_flag() - API function for sending flag query requests
3231  * @hba: per-adapter instance
3232  * @opcode: flag query to perform
3233  * @idn: flag idn to access
3234  * @index: flag index to access
3235  * @flag_res: the flag value after the query request completes
3236  *
3237  * Returns 0 for success, non-zero in case of failure
3238  */
3239 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3240                         enum flag_idn idn, u8 index, bool *flag_res)
3241 {
3242         struct ufs_query_req *request = NULL;
3243         struct ufs_query_res *response = NULL;
3244         int err, selector = 0;
3245         int timeout = QUERY_REQ_TIMEOUT;
3246
3247         BUG_ON(!hba);
3248
3249         ufshcd_hold(hba, false);
3250         mutex_lock(&hba->dev_cmd.lock);
3251         ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3252                         selector);
3253
3254         switch (opcode) {
3255         case UPIU_QUERY_OPCODE_SET_FLAG:
3256         case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3257         case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3258                 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3259                 break;
3260         case UPIU_QUERY_OPCODE_READ_FLAG:
3261                 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3262                 if (!flag_res) {
3263                         /* No dummy reads */
3264                         dev_err(hba->dev, "%s: Invalid argument for read request\n",
3265                                         __func__);
3266                         err = -EINVAL;
3267                         goto out_unlock;
3268                 }
3269                 break;
3270         default:
3271                 dev_err(hba->dev,
3272                         "%s: Expected query flag opcode but got = %d\n",
3273                         __func__, opcode);
3274                 err = -EINVAL;
3275                 goto out_unlock;
3276         }
3277
3278         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3279
3280         if (err) {
3281                 dev_err(hba->dev,
3282                         "%s: Sending flag query for idn %d failed, err = %d\n",
3283                         __func__, idn, err);
3284                 goto out_unlock;
3285         }
3286
3287         if (flag_res)
3288                 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3289                                 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3290
3291 out_unlock:
3292         mutex_unlock(&hba->dev_cmd.lock);
3293         ufshcd_release(hba);
3294         return err;
3295 }
3296
3297 /**
3298  * ufshcd_query_attr - API function for sending attribute requests
3299  * @hba: per-adapter instance
3300  * @opcode: attribute opcode
3301  * @idn: attribute idn to access
3302  * @index: index field
3303  * @selector: selector field
3304  * @attr_val: the attribute value after the query request completes
3305  *
3306  * Returns 0 for success, non-zero in case of failure
3307 */
3308 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3309                       enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3310 {
3311         struct ufs_query_req *request = NULL;
3312         struct ufs_query_res *response = NULL;
3313         int err;
3314
3315         BUG_ON(!hba);
3316
3317         if (!attr_val) {
3318                 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3319                                 __func__, opcode);
3320                 return -EINVAL;
3321         }
3322
3323         ufshcd_hold(hba, false);
3324
3325         mutex_lock(&hba->dev_cmd.lock);
3326         ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3327                         selector);
3328
3329         switch (opcode) {
3330         case UPIU_QUERY_OPCODE_WRITE_ATTR:
3331                 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3332                 request->upiu_req.value = cpu_to_be32(*attr_val);
3333                 break;
3334         case UPIU_QUERY_OPCODE_READ_ATTR:
3335                 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3336                 break;
3337         default:
3338                 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3339                                 __func__, opcode);
3340                 err = -EINVAL;
3341                 goto out_unlock;
3342         }
3343
3344         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3345
3346         if (err) {
3347                 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3348                                 __func__, opcode, idn, index, err);
3349                 goto out_unlock;
3350         }
3351
3352         *attr_val = be32_to_cpu(response->upiu_res.value);
3353
3354 out_unlock:
3355         mutex_unlock(&hba->dev_cmd.lock);
3356         ufshcd_release(hba);
3357         return err;
3358 }
3359
3360 /**
3361  * ufshcd_query_attr_retry() - API function for sending query
3362  * attribute with retries
3363  * @hba: per-adapter instance
3364  * @opcode: attribute opcode
3365  * @idn: attribute idn to access
3366  * @index: index field
3367  * @selector: selector field
3368  * @attr_val: the attribute value after the query request
3369  * completes
3370  *
3371  * Returns 0 for success, non-zero in case of failure
3372 */
3373 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3374         enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3375         u32 *attr_val)
3376 {
3377         int ret = 0;
3378         u32 retries;
3379
3380         for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3381                 ret = ufshcd_query_attr(hba, opcode, idn, index,
3382                                                 selector, attr_val);
3383                 if (ret)
3384                         dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3385                                 __func__, ret, retries);
3386                 else
3387                         break;
3388         }
3389
3390         if (ret)
3391                 dev_err(hba->dev,
3392                         "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3393                         __func__, idn, ret, QUERY_REQ_RETRIES);
3394         return ret;
3395 }
3396
3397 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3398                         enum query_opcode opcode, enum desc_idn idn, u8 index,
3399                         u8 selector, u8 *desc_buf, int *buf_len)
3400 {
3401         struct ufs_query_req *request = NULL;
3402         struct ufs_query_res *response = NULL;
3403         int err;
3404
3405         BUG_ON(!hba);
3406
3407         if (!desc_buf) {
3408                 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3409                                 __func__, opcode);
3410                 return -EINVAL;
3411         }
3412
3413         if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3414                 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3415                                 __func__, *buf_len);
3416                 return -EINVAL;
3417         }
3418
3419         ufshcd_hold(hba, false);
3420
3421         mutex_lock(&hba->dev_cmd.lock);
3422         ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3423                         selector);
3424         hba->dev_cmd.query.descriptor = desc_buf;
3425         request->upiu_req.length = cpu_to_be16(*buf_len);
3426
3427         switch (opcode) {
3428         case UPIU_QUERY_OPCODE_WRITE_DESC:
3429                 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3430                 break;
3431         case UPIU_QUERY_OPCODE_READ_DESC:
3432                 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3433                 break;
3434         default:
3435                 dev_err(hba->dev,
3436                                 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3437                                 __func__, opcode);
3438                 err = -EINVAL;
3439                 goto out_unlock;
3440         }
3441
3442         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3443
3444         if (err) {
3445                 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3446                                 __func__, opcode, idn, index, err);
3447                 goto out_unlock;
3448         }
3449
3450         *buf_len = be16_to_cpu(response->upiu_res.length);
3451
3452 out_unlock:
3453         hba->dev_cmd.query.descriptor = NULL;
3454         mutex_unlock(&hba->dev_cmd.lock);
3455         ufshcd_release(hba);
3456         return err;
3457 }
3458
3459 /**
3460  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3461  * @hba: per-adapter instance
3462  * @opcode: attribute opcode
3463  * @idn: attribute idn to access
3464  * @index: index field
3465  * @selector: selector field
3466  * @desc_buf: the buffer that contains the descriptor
3467  * @buf_len: length parameter passed to the device
3468  *
3469  * Returns 0 for success, non-zero in case of failure.
3470  * The buf_len parameter will contain, on return, the length parameter
3471  * received on the response.
3472  */
3473 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3474                                   enum query_opcode opcode,
3475                                   enum desc_idn idn, u8 index,
3476                                   u8 selector,
3477                                   u8 *desc_buf, int *buf_len)
3478 {
3479         int err;
3480         int retries;
3481
3482         for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3483                 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3484                                                 selector, desc_buf, buf_len);
3485                 if (!err || err == -EINVAL)
3486                         break;
3487         }
3488
3489         return err;
3490 }
3491
3492 /**
3493  * ufshcd_read_desc_param - read the specified descriptor parameter
3494  * @hba: Pointer to adapter instance
3495  * @desc_id: descriptor idn value
3496  * @desc_index: descriptor index
3497  * @param_offset: offset of the parameter to read
3498  * @param_read_buf: pointer to buffer where parameter would be read
3499  * @param_size: sizeof(param_read_buf)
3500  *
3501  * Return 0 in case of success, non-zero otherwise
3502  */
3503 int ufshcd_read_desc_param(struct ufs_hba *hba,
3504                            enum desc_idn desc_id,
3505                            int desc_index,
3506                            u8 param_offset,
3507                            u8 *param_read_buf,
3508                            u8 param_size)
3509 {
3510         int ret;
3511         u8 *desc_buf;
3512         int buff_len = QUERY_DESC_MAX_SIZE;
3513         bool is_kmalloc = true;
3514
3515         /* Safety check */
3516         if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3517                 return -EINVAL;
3518
3519         /* Check whether we need temp memory */
3520         if (param_offset != 0 || param_size < buff_len) {
3521                 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3522                 if (!desc_buf)
3523                         return -ENOMEM;
3524         } else {
3525                 desc_buf = param_read_buf;
3526                 is_kmalloc = false;
3527         }
3528
3529         /* Request for full descriptor */
3530         ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3531                                             desc_id, desc_index, 0,
3532                                             desc_buf, &buff_len);
3533         if (ret) {
3534                 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3535                         __func__, desc_id, desc_index, param_offset, ret);
3536                 goto out;
3537         }
3538
3539         /* Update descriptor length */
3540         buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3541
3542         if (param_offset >= buff_len) {
3543                 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3544                         __func__, param_offset, desc_id, buff_len);
3545                 ret = -EINVAL;
3546                 goto out;
3547         }
3548
3549         /* Sanity check */
3550         if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3551                 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3552                         __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3553                 ret = -EINVAL;
3554                 goto out;
3555         }
3556
3557         if (is_kmalloc) {
3558                 /* Make sure we don't copy more data than available */
3559                 if (param_offset >= buff_len)
3560                         ret = -EINVAL;
3561                 else
3562                         memcpy(param_read_buf, &desc_buf[param_offset],
3563                                min_t(u32, param_size, buff_len - param_offset));
3564         }
3565 out:
3566         if (is_kmalloc)
3567                 kfree(desc_buf);
3568         return ret;
3569 }
3570
3571 /**
3572  * struct uc_string_id - unicode string
3573  *
3574  * @len: size of this descriptor inclusive
3575  * @type: descriptor type
3576  * @uc: unicode string character
3577  */
3578 struct uc_string_id {
3579         u8 len;
3580         u8 type;
3581         wchar_t uc[];
3582 } __packed;
3583
3584 /* replace non-printable or non-ASCII characters with spaces */
3585 static inline char ufshcd_remove_non_printable(u8 ch)
3586 {
3587         return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3588 }
3589
3590 /**
3591  * ufshcd_read_string_desc - read string descriptor
3592  * @hba: pointer to adapter instance
3593  * @desc_index: descriptor index
3594  * @buf: pointer to buffer where descriptor would be read,
3595  *       the caller should free the memory.
3596  * @ascii: if true convert from unicode to ascii characters
3597  *         null terminated string.
3598  *
3599  * Return:
3600  * *      string size on success.
3601  * *      -ENOMEM: on allocation failure
3602  * *      -EINVAL: on a wrong parameter
3603  */
3604 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3605                             u8 **buf, bool ascii)
3606 {
3607         struct uc_string_id *uc_str;
3608         u8 *str;
3609         int ret;
3610
3611         if (!buf)
3612                 return -EINVAL;
3613
3614         uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3615         if (!uc_str)
3616                 return -ENOMEM;
3617
3618         ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3619                                      (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3620         if (ret < 0) {
3621                 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3622                         QUERY_REQ_RETRIES, ret);
3623                 str = NULL;
3624                 goto out;
3625         }
3626
3627         if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3628                 dev_dbg(hba->dev, "String Desc is of zero length\n");
3629                 str = NULL;
3630                 ret = 0;
3631                 goto out;
3632         }
3633
3634         if (ascii) {
3635                 ssize_t ascii_len;
3636                 int i;
3637                 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3638                 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3639                 str = kzalloc(ascii_len, GFP_KERNEL);
3640                 if (!str) {
3641                         ret = -ENOMEM;
3642                         goto out;
3643                 }
3644
3645                 /*
3646                  * the descriptor contains string in UTF16 format
3647                  * we need to convert to utf-8 so it can be displayed
3648                  */
3649                 ret = utf16s_to_utf8s(uc_str->uc,
3650                                       uc_str->len - QUERY_DESC_HDR_SIZE,
3651                                       UTF16_BIG_ENDIAN, str, ascii_len);
3652
3653                 /* replace non-printable or non-ASCII characters with spaces */
3654                 for (i = 0; i < ret; i++)
3655                         str[i] = ufshcd_remove_non_printable(str[i]);
3656
3657                 str[ret++] = '\0';
3658
3659         } else {
3660                 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3661                 if (!str) {
3662                         ret = -ENOMEM;
3663                         goto out;
3664                 }
3665                 ret = uc_str->len;
3666         }
3667 out:
3668         *buf = str;
3669         kfree(uc_str);
3670         return ret;
3671 }
3672
3673 /**
3674  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3675  * @hba: Pointer to adapter instance
3676  * @lun: lun id
3677  * @param_offset: offset of the parameter to read
3678  * @param_read_buf: pointer to buffer where parameter would be read
3679  * @param_size: sizeof(param_read_buf)
3680  *
3681  * Return 0 in case of success, non-zero otherwise
3682  */
3683 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3684                                               int lun,
3685                                               enum unit_desc_param param_offset,
3686                                               u8 *param_read_buf,
3687                                               u32 param_size)
3688 {
3689         /*
3690          * Unit descriptors are only available for general purpose LUs (LUN id
3691          * from 0 to 7) and RPMB Well known LU.
3692          */
3693         if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3694                 return -EOPNOTSUPP;
3695
3696         return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3697                                       param_offset, param_read_buf, param_size);
3698 }
3699
3700 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3701 {
3702         int err = 0;
3703         u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3704
3705         if (hba->dev_info.wspecversion >= 0x300) {
3706                 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3707                                 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3708                                 &gating_wait);
3709                 if (err)
3710                         dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3711                                          err, gating_wait);
3712
3713                 if (gating_wait == 0) {
3714                         gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3715                         dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3716                                          gating_wait);
3717                 }
3718
3719                 hba->dev_info.clk_gating_wait_us = gating_wait;
3720         }
3721
3722         return err;
3723 }
3724
3725 /**
3726  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3727  * @hba: per adapter instance
3728  *
3729  * 1. Allocate DMA memory for Command Descriptor array
3730  *      Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3731  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3732  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3733  *      (UTMRDL)
3734  * 4. Allocate memory for local reference block(lrb).
3735  *
3736  * Returns 0 for success, non-zero in case of failure
3737  */
3738 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3739 {
3740         size_t utmrdl_size, utrdl_size, ucdl_size;
3741
3742         /* Allocate memory for UTP command descriptors */
3743         ucdl_size = sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs;
3744         hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3745                                                   ucdl_size,
3746                                                   &hba->ucdl_dma_addr,
3747                                                   GFP_KERNEL);
3748
3749         /*
3750          * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3751          */
3752         if (!hba->ucdl_base_addr ||
3753             WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3754                 dev_err(hba->dev,
3755                         "Command Descriptor Memory allocation failed\n");
3756                 goto out;
3757         }
3758
3759         /*
3760          * Allocate memory for UTP Transfer descriptors
3761          * UFSHCI requires 1024 byte alignment of UTRD
3762          */
3763         utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3764         hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3765                                                    utrdl_size,
3766                                                    &hba->utrdl_dma_addr,
3767                                                    GFP_KERNEL);
3768         if (!hba->utrdl_base_addr ||
3769             WARN_ON(hba->utrdl_dma_addr & (1024 - 1))) {
3770                 dev_err(hba->dev,
3771                         "Transfer Descriptor Memory allocation failed\n");
3772                 goto out;
3773         }
3774
3775         /*
3776          * Skip utmrdl allocation; it may have been
3777          * allocated during first pass and not released during
3778          * MCQ memory allocation.
3779          * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3780          */
3781         if (hba->utmrdl_base_addr)
3782                 goto skip_utmrdl;
3783         /*
3784          * Allocate memory for UTP Task Management descriptors
3785          * UFSHCI requires 1024 byte alignment of UTMRD
3786          */
3787         utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3788         hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3789                                                     utmrdl_size,
3790                                                     &hba->utmrdl_dma_addr,
3791                                                     GFP_KERNEL);
3792         if (!hba->utmrdl_base_addr ||
3793             WARN_ON(hba->utmrdl_dma_addr & (1024 - 1))) {
3794                 dev_err(hba->dev,
3795                 "Task Management Descriptor Memory allocation failed\n");
3796                 goto out;
3797         }
3798
3799 skip_utmrdl:
3800         /* Allocate memory for local reference block */
3801         hba->lrb = devm_kcalloc(hba->dev,
3802                                 hba->nutrs, sizeof(struct ufshcd_lrb),
3803                                 GFP_KERNEL);
3804         if (!hba->lrb) {
3805                 dev_err(hba->dev, "LRB Memory allocation failed\n");
3806                 goto out;
3807         }
3808         return 0;
3809 out:
3810         return -ENOMEM;
3811 }
3812
3813 /**
3814  * ufshcd_host_memory_configure - configure local reference block with
3815  *                              memory offsets
3816  * @hba: per adapter instance
3817  *
3818  * Configure Host memory space
3819  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3820  * address.
3821  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3822  * and PRDT offset.
3823  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3824  * into local reference block.
3825  */
3826 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3827 {
3828         struct utp_transfer_req_desc *utrdlp;
3829         dma_addr_t cmd_desc_dma_addr;
3830         dma_addr_t cmd_desc_element_addr;
3831         u16 response_offset;
3832         u16 prdt_offset;
3833         int cmd_desc_size;
3834         int i;
3835
3836         utrdlp = hba->utrdl_base_addr;
3837
3838         response_offset =
3839                 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3840         prdt_offset =
3841                 offsetof(struct utp_transfer_cmd_desc, prd_table);
3842
3843         cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3844         cmd_desc_dma_addr = hba->ucdl_dma_addr;
3845
3846         for (i = 0; i < hba->nutrs; i++) {
3847                 /* Configure UTRD with command descriptor base address */
3848                 cmd_desc_element_addr =
3849                                 (cmd_desc_dma_addr + (cmd_desc_size * i));
3850                 utrdlp[i].command_desc_base_addr_lo =
3851                                 cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3852                 utrdlp[i].command_desc_base_addr_hi =
3853                                 cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3854
3855                 /* Response upiu and prdt offset should be in double words */
3856                 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3857                         utrdlp[i].response_upiu_offset =
3858                                 cpu_to_le16(response_offset);
3859                         utrdlp[i].prd_table_offset =
3860                                 cpu_to_le16(prdt_offset);
3861                         utrdlp[i].response_upiu_length =
3862                                 cpu_to_le16(ALIGNED_UPIU_SIZE);
3863                 } else {
3864                         utrdlp[i].response_upiu_offset =
3865                                 cpu_to_le16(response_offset >> 2);
3866                         utrdlp[i].prd_table_offset =
3867                                 cpu_to_le16(prdt_offset >> 2);
3868                         utrdlp[i].response_upiu_length =
3869                                 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3870                 }
3871
3872                 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3873         }
3874 }
3875
3876 /**
3877  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3878  * @hba: per adapter instance
3879  *
3880  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3881  * in order to initialize the Unipro link startup procedure.
3882  * Once the Unipro links are up, the device connected to the controller
3883  * is detected.
3884  *
3885  * Returns 0 on success, non-zero value on failure
3886  */
3887 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3888 {
3889         struct uic_command uic_cmd = {0};
3890         int ret;
3891
3892         uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3893
3894         ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3895         if (ret)
3896                 dev_dbg(hba->dev,
3897                         "dme-link-startup: error code %d\n", ret);
3898         return ret;
3899 }
3900 /**
3901  * ufshcd_dme_reset - UIC command for DME_RESET
3902  * @hba: per adapter instance
3903  *
3904  * DME_RESET command is issued in order to reset UniPro stack.
3905  * This function now deals with cold reset.
3906  *
3907  * Returns 0 on success, non-zero value on failure
3908  */
3909 static int ufshcd_dme_reset(struct ufs_hba *hba)
3910 {
3911         struct uic_command uic_cmd = {0};
3912         int ret;
3913
3914         uic_cmd.command = UIC_CMD_DME_RESET;
3915
3916         ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3917         if (ret)
3918                 dev_err(hba->dev,
3919                         "dme-reset: error code %d\n", ret);
3920
3921         return ret;
3922 }
3923
3924 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3925                                int agreed_gear,
3926                                int adapt_val)
3927 {
3928         int ret;
3929
3930         if (agreed_gear < UFS_HS_G4)
3931                 adapt_val = PA_NO_ADAPT;
3932
3933         ret = ufshcd_dme_set(hba,
3934                              UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3935                              adapt_val);
3936         return ret;
3937 }
3938 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3939
3940 /**
3941  * ufshcd_dme_enable - UIC command for DME_ENABLE
3942  * @hba: per adapter instance
3943  *
3944  * DME_ENABLE command is issued in order to enable UniPro stack.
3945  *
3946  * Returns 0 on success, non-zero value on failure
3947  */
3948 static int ufshcd_dme_enable(struct ufs_hba *hba)
3949 {
3950         struct uic_command uic_cmd = {0};
3951         int ret;
3952
3953         uic_cmd.command = UIC_CMD_DME_ENABLE;
3954
3955         ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3956         if (ret)
3957                 dev_err(hba->dev,
3958                         "dme-enable: error code %d\n", ret);
3959
3960         return ret;
3961 }
3962
3963 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3964 {
3965         #define MIN_DELAY_BEFORE_DME_CMDS_US    1000
3966         unsigned long min_sleep_time_us;
3967
3968         if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3969                 return;
3970
3971         /*
3972          * last_dme_cmd_tstamp will be 0 only for 1st call to
3973          * this function
3974          */
3975         if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3976                 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3977         } else {
3978                 unsigned long delta =
3979                         (unsigned long) ktime_to_us(
3980                                 ktime_sub(ktime_get(),
3981                                 hba->last_dme_cmd_tstamp));
3982
3983                 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3984                         min_sleep_time_us =
3985                                 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3986                 else
3987                         return; /* no more delay required */
3988         }
3989
3990         /* allow sleep for extra 50us if needed */
3991         usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3992 }
3993
3994 /**
3995  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3996  * @hba: per adapter instance
3997  * @attr_sel: uic command argument1
3998  * @attr_set: attribute set type as uic command argument2
3999  * @mib_val: setting value as uic command argument3
4000  * @peer: indicate whether peer or local
4001  *
4002  * Returns 0 on success, non-zero value on failure
4003  */
4004 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4005                         u8 attr_set, u32 mib_val, u8 peer)
4006 {
4007         struct uic_command uic_cmd = {0};
4008         static const char *const action[] = {
4009                 "dme-set",
4010                 "dme-peer-set"
4011         };
4012         const char *set = action[!!peer];
4013         int ret;
4014         int retries = UFS_UIC_COMMAND_RETRIES;
4015
4016         uic_cmd.command = peer ?
4017                 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4018         uic_cmd.argument1 = attr_sel;
4019         uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4020         uic_cmd.argument3 = mib_val;
4021
4022         do {
4023                 /* for peer attributes we retry upon failure */
4024                 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4025                 if (ret)
4026                         dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4027                                 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4028         } while (ret && peer && --retries);
4029
4030         if (ret)
4031                 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4032                         set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4033                         UFS_UIC_COMMAND_RETRIES - retries);
4034
4035         return ret;
4036 }
4037 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4038
4039 /**
4040  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4041  * @hba: per adapter instance
4042  * @attr_sel: uic command argument1
4043  * @mib_val: the value of the attribute as returned by the UIC command
4044  * @peer: indicate whether peer or local
4045  *
4046  * Returns 0 on success, non-zero value on failure
4047  */
4048 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4049                         u32 *mib_val, u8 peer)
4050 {
4051         struct uic_command uic_cmd = {0};
4052         static const char *const action[] = {
4053                 "dme-get",
4054                 "dme-peer-get"
4055         };
4056         const char *get = action[!!peer];
4057         int ret;
4058         int retries = UFS_UIC_COMMAND_RETRIES;
4059         struct ufs_pa_layer_attr orig_pwr_info;
4060         struct ufs_pa_layer_attr temp_pwr_info;
4061         bool pwr_mode_change = false;
4062
4063         if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4064                 orig_pwr_info = hba->pwr_info;
4065                 temp_pwr_info = orig_pwr_info;
4066
4067                 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4068                     orig_pwr_info.pwr_rx == FAST_MODE) {
4069                         temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4070                         temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4071                         pwr_mode_change = true;
4072                 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4073                     orig_pwr_info.pwr_rx == SLOW_MODE) {
4074                         temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4075                         temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4076                         pwr_mode_change = true;
4077                 }
4078                 if (pwr_mode_change) {
4079                         ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4080                         if (ret)
4081                                 goto out;
4082                 }
4083         }
4084
4085         uic_cmd.command = peer ?
4086                 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4087         uic_cmd.argument1 = attr_sel;
4088
4089         do {
4090                 /* for peer attributes we retry upon failure */
4091                 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4092                 if (ret)
4093                         dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4094                                 get, UIC_GET_ATTR_ID(attr_sel), ret);
4095         } while (ret && peer && --retries);
4096
4097         if (ret)
4098                 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4099                         get, UIC_GET_ATTR_ID(attr_sel),
4100                         UFS_UIC_COMMAND_RETRIES - retries);
4101
4102         if (mib_val && !ret)
4103                 *mib_val = uic_cmd.argument3;
4104
4105         if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4106             && pwr_mode_change)
4107                 ufshcd_change_power_mode(hba, &orig_pwr_info);
4108 out:
4109         return ret;
4110 }
4111 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4112
4113 /**
4114  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4115  * state) and waits for it to take effect.
4116  *
4117  * @hba: per adapter instance
4118  * @cmd: UIC command to execute
4119  *
4120  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4121  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4122  * and device UniPro link and hence it's final completion would be indicated by
4123  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4124  * addition to normal UIC command completion Status (UCCS). This function only
4125  * returns after the relevant status bits indicate the completion.
4126  *
4127  * Returns 0 on success, non-zero value on failure
4128  */
4129 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4130 {
4131         DECLARE_COMPLETION_ONSTACK(uic_async_done);
4132         unsigned long flags;
4133         u8 status;
4134         int ret;
4135         bool reenable_intr = false;
4136
4137         mutex_lock(&hba->uic_cmd_mutex);
4138         ufshcd_add_delay_before_dme_cmd(hba);
4139
4140         spin_lock_irqsave(hba->host->host_lock, flags);
4141         if (ufshcd_is_link_broken(hba)) {
4142                 ret = -ENOLINK;
4143                 goto out_unlock;
4144         }
4145         hba->uic_async_done = &uic_async_done;
4146         if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4147                 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4148                 /*
4149                  * Make sure UIC command completion interrupt is disabled before
4150                  * issuing UIC command.
4151                  */
4152                 wmb();
4153                 reenable_intr = true;
4154         }
4155         ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4156         spin_unlock_irqrestore(hba->host->host_lock, flags);
4157         if (ret) {
4158                 dev_err(hba->dev,
4159                         "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4160                         cmd->command, cmd->argument3, ret);
4161                 goto out;
4162         }
4163
4164         if (!wait_for_completion_timeout(hba->uic_async_done,
4165                                          msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4166                 dev_err(hba->dev,
4167                         "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4168                         cmd->command, cmd->argument3);
4169
4170                 if (!cmd->cmd_active) {
4171                         dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4172                                 __func__);
4173                         goto check_upmcrs;
4174                 }
4175
4176                 ret = -ETIMEDOUT;
4177                 goto out;
4178         }
4179
4180 check_upmcrs:
4181         status = ufshcd_get_upmcrs(hba);
4182         if (status != PWR_LOCAL) {
4183                 dev_err(hba->dev,
4184                         "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4185                         cmd->command, status);
4186                 ret = (status != PWR_OK) ? status : -1;
4187         }
4188 out:
4189         if (ret) {
4190                 ufshcd_print_host_state(hba);
4191                 ufshcd_print_pwr_info(hba);
4192                 ufshcd_print_evt_hist(hba);
4193         }
4194
4195         spin_lock_irqsave(hba->host->host_lock, flags);
4196         hba->active_uic_cmd = NULL;
4197         hba->uic_async_done = NULL;
4198         if (reenable_intr)
4199                 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4200         if (ret) {
4201                 ufshcd_set_link_broken(hba);
4202                 ufshcd_schedule_eh_work(hba);
4203         }
4204 out_unlock:
4205         spin_unlock_irqrestore(hba->host->host_lock, flags);
4206         mutex_unlock(&hba->uic_cmd_mutex);
4207
4208         return ret;
4209 }
4210
4211 /**
4212  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4213  *                              using DME_SET primitives.
4214  * @hba: per adapter instance
4215  * @mode: powr mode value
4216  *
4217  * Returns 0 on success, non-zero value on failure
4218  */
4219 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4220 {
4221         struct uic_command uic_cmd = {0};
4222         int ret;
4223
4224         if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4225                 ret = ufshcd_dme_set(hba,
4226                                 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4227                 if (ret) {
4228                         dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4229                                                 __func__, ret);
4230                         goto out;
4231                 }
4232         }
4233
4234         uic_cmd.command = UIC_CMD_DME_SET;
4235         uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4236         uic_cmd.argument3 = mode;
4237         ufshcd_hold(hba, false);
4238         ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4239         ufshcd_release(hba);
4240
4241 out:
4242         return ret;
4243 }
4244 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4245
4246 int ufshcd_link_recovery(struct ufs_hba *hba)
4247 {
4248         int ret;
4249         unsigned long flags;
4250
4251         spin_lock_irqsave(hba->host->host_lock, flags);
4252         hba->ufshcd_state = UFSHCD_STATE_RESET;
4253         ufshcd_set_eh_in_progress(hba);
4254         spin_unlock_irqrestore(hba->host->host_lock, flags);
4255
4256         /* Reset the attached device */
4257         ufshcd_device_reset(hba);
4258
4259         ret = ufshcd_host_reset_and_restore(hba);
4260
4261         spin_lock_irqsave(hba->host->host_lock, flags);
4262         if (ret)
4263                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4264         ufshcd_clear_eh_in_progress(hba);
4265         spin_unlock_irqrestore(hba->host->host_lock, flags);
4266
4267         if (ret)
4268                 dev_err(hba->dev, "%s: link recovery failed, err %d",
4269                         __func__, ret);
4270
4271         return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4274
4275 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4276 {
4277         int ret;
4278         struct uic_command uic_cmd = {0};
4279         ktime_t start = ktime_get();
4280
4281         ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4282
4283         uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4284         ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4285         trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4286                              ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4287
4288         if (ret)
4289                 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4290                         __func__, ret);
4291         else
4292                 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4293                                                                 POST_CHANGE);
4294
4295         return ret;
4296 }
4297 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4298
4299 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4300 {
4301         struct uic_command uic_cmd = {0};
4302         int ret;
4303         ktime_t start = ktime_get();
4304
4305         ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4306
4307         uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4308         ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4309         trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4310                              ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4311
4312         if (ret) {
4313                 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4314                         __func__, ret);
4315         } else {
4316                 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4317                                                                 POST_CHANGE);
4318                 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4319                 hba->ufs_stats.hibern8_exit_cnt++;
4320         }
4321
4322         return ret;
4323 }
4324 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4325
4326 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4327 {
4328         unsigned long flags;
4329         bool update = false;
4330
4331         if (!ufshcd_is_auto_hibern8_supported(hba))
4332                 return;
4333
4334         spin_lock_irqsave(hba->host->host_lock, flags);
4335         if (hba->ahit != ahit) {
4336                 hba->ahit = ahit;
4337                 update = true;
4338         }
4339         spin_unlock_irqrestore(hba->host->host_lock, flags);
4340
4341         if (update &&
4342             !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4343                 ufshcd_rpm_get_sync(hba);
4344                 ufshcd_hold(hba, false);
4345                 ufshcd_auto_hibern8_enable(hba);
4346                 ufshcd_release(hba);
4347                 ufshcd_rpm_put_sync(hba);
4348         }
4349 }
4350 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4351
4352 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4353 {
4354         if (!ufshcd_is_auto_hibern8_supported(hba))
4355                 return;
4356
4357         ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4358 }
4359
4360  /**
4361  * ufshcd_init_pwr_info - setting the POR (power on reset)
4362  * values in hba power info
4363  * @hba: per-adapter instance
4364  */
4365 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4366 {
4367         hba->pwr_info.gear_rx = UFS_PWM_G1;
4368         hba->pwr_info.gear_tx = UFS_PWM_G1;
4369         hba->pwr_info.lane_rx = 1;
4370         hba->pwr_info.lane_tx = 1;
4371         hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4372         hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4373         hba->pwr_info.hs_rate = 0;
4374 }
4375
4376 /**
4377  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4378  * @hba: per-adapter instance
4379  */
4380 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4381 {
4382         struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4383
4384         if (hba->max_pwr_info.is_valid)
4385                 return 0;
4386
4387         if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4388                 pwr_info->pwr_tx = FASTAUTO_MODE;
4389                 pwr_info->pwr_rx = FASTAUTO_MODE;
4390         } else {
4391                 pwr_info->pwr_tx = FAST_MODE;
4392                 pwr_info->pwr_rx = FAST_MODE;
4393         }
4394         pwr_info->hs_rate = PA_HS_MODE_B;
4395
4396         /* Get the connected lane count */
4397         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4398                         &pwr_info->lane_rx);
4399         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4400                         &pwr_info->lane_tx);
4401
4402         if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4403                 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4404                                 __func__,
4405                                 pwr_info->lane_rx,
4406                                 pwr_info->lane_tx);
4407                 return -EINVAL;
4408         }
4409
4410         /*
4411          * First, get the maximum gears of HS speed.
4412          * If a zero value, it means there is no HSGEAR capability.
4413          * Then, get the maximum gears of PWM speed.
4414          */
4415         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4416         if (!pwr_info->gear_rx) {
4417                 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4418                                 &pwr_info->gear_rx);
4419                 if (!pwr_info->gear_rx) {
4420                         dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4421                                 __func__, pwr_info->gear_rx);
4422                         return -EINVAL;
4423                 }
4424                 pwr_info->pwr_rx = SLOW_MODE;
4425         }
4426
4427         ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4428                         &pwr_info->gear_tx);
4429         if (!pwr_info->gear_tx) {
4430                 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4431                                 &pwr_info->gear_tx);
4432                 if (!pwr_info->gear_tx) {
4433                         dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4434                                 __func__, pwr_info->gear_tx);
4435                         return -EINVAL;
4436                 }
4437                 pwr_info->pwr_tx = SLOW_MODE;
4438         }
4439
4440         hba->max_pwr_info.is_valid = true;
4441         return 0;
4442 }
4443
4444 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4445                              struct ufs_pa_layer_attr *pwr_mode)
4446 {
4447         int ret;
4448
4449         /* if already configured to the requested pwr_mode */
4450         if (!hba->force_pmc &&
4451             pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4452             pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4453             pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4454             pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4455             pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4456             pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4457             pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4458                 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4459                 return 0;
4460         }
4461
4462         /*
4463          * Configure attributes for power mode change with below.
4464          * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4465          * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4466          * - PA_HSSERIES
4467          */
4468         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4469         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4470                         pwr_mode->lane_rx);
4471         if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4472                         pwr_mode->pwr_rx == FAST_MODE)
4473                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4474         else
4475                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4476
4477         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4478         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4479                         pwr_mode->lane_tx);
4480         if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4481                         pwr_mode->pwr_tx == FAST_MODE)
4482                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4483         else
4484                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4485
4486         if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4487             pwr_mode->pwr_tx == FASTAUTO_MODE ||
4488             pwr_mode->pwr_rx == FAST_MODE ||
4489             pwr_mode->pwr_tx == FAST_MODE)
4490                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4491                                                 pwr_mode->hs_rate);
4492
4493         if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4494                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4495                                 DL_FC0ProtectionTimeOutVal_Default);
4496                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4497                                 DL_TC0ReplayTimeOutVal_Default);
4498                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4499                                 DL_AFC0ReqTimeOutVal_Default);
4500                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4501                                 DL_FC1ProtectionTimeOutVal_Default);
4502                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4503                                 DL_TC1ReplayTimeOutVal_Default);
4504                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4505                                 DL_AFC1ReqTimeOutVal_Default);
4506
4507                 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4508                                 DL_FC0ProtectionTimeOutVal_Default);
4509                 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4510                                 DL_TC0ReplayTimeOutVal_Default);
4511                 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4512                                 DL_AFC0ReqTimeOutVal_Default);
4513         }
4514
4515         ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4516                         | pwr_mode->pwr_tx);
4517
4518         if (ret) {
4519                 dev_err(hba->dev,
4520                         "%s: power mode change failed %d\n", __func__, ret);
4521         } else {
4522                 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4523                                                                 pwr_mode);
4524
4525                 memcpy(&hba->pwr_info, pwr_mode,
4526                         sizeof(struct ufs_pa_layer_attr));
4527         }
4528
4529         return ret;
4530 }
4531
4532 /**
4533  * ufshcd_config_pwr_mode - configure a new power mode
4534  * @hba: per-adapter instance
4535  * @desired_pwr_mode: desired power configuration
4536  */
4537 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4538                 struct ufs_pa_layer_attr *desired_pwr_mode)
4539 {
4540         struct ufs_pa_layer_attr final_params = { 0 };
4541         int ret;
4542
4543         ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4544                                         desired_pwr_mode, &final_params);
4545
4546         if (ret)
4547                 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4548
4549         ret = ufshcd_change_power_mode(hba, &final_params);
4550
4551         return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4554
4555 /**
4556  * ufshcd_complete_dev_init() - checks device readiness
4557  * @hba: per-adapter instance
4558  *
4559  * Set fDeviceInit flag and poll until device toggles it.
4560  */
4561 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4562 {
4563         int err;
4564         bool flag_res = true;
4565         ktime_t timeout;
4566
4567         err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4568                 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4569         if (err) {
4570                 dev_err(hba->dev,
4571                         "%s: setting fDeviceInit flag failed with error %d\n",
4572                         __func__, err);
4573                 goto out;
4574         }
4575
4576         /* Poll fDeviceInit flag to be cleared */
4577         timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4578         do {
4579                 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4580                                         QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4581                 if (!flag_res)
4582                         break;
4583                 usleep_range(500, 1000);
4584         } while (ktime_before(ktime_get(), timeout));
4585
4586         if (err) {
4587                 dev_err(hba->dev,
4588                                 "%s: reading fDeviceInit flag failed with error %d\n",
4589                                 __func__, err);
4590         } else if (flag_res) {
4591                 dev_err(hba->dev,
4592                                 "%s: fDeviceInit was not cleared by the device\n",
4593                                 __func__);
4594                 err = -EBUSY;
4595         }
4596 out:
4597         return err;
4598 }
4599
4600 /**
4601  * ufshcd_make_hba_operational - Make UFS controller operational
4602  * @hba: per adapter instance
4603  *
4604  * To bring UFS host controller to operational state,
4605  * 1. Enable required interrupts
4606  * 2. Configure interrupt aggregation
4607  * 3. Program UTRL and UTMRL base address
4608  * 4. Configure run-stop-registers
4609  *
4610  * Returns 0 on success, non-zero value on failure
4611  */
4612 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4613 {
4614         int err = 0;
4615         u32 reg;
4616
4617         /* Enable required interrupts */
4618         ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4619
4620         /* Configure interrupt aggregation */
4621         if (ufshcd_is_intr_aggr_allowed(hba))
4622                 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4623         else
4624                 ufshcd_disable_intr_aggr(hba);
4625
4626         /* Configure UTRL and UTMRL base address registers */
4627         ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4628                         REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4629         ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4630                         REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4631         ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4632                         REG_UTP_TASK_REQ_LIST_BASE_L);
4633         ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4634                         REG_UTP_TASK_REQ_LIST_BASE_H);
4635
4636         /*
4637          * Make sure base address and interrupt setup are updated before
4638          * enabling the run/stop registers below.
4639          */
4640         wmb();
4641
4642         /*
4643          * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4644          */
4645         reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4646         if (!(ufshcd_get_lists_status(reg))) {
4647                 ufshcd_enable_run_stop_reg(hba);
4648         } else {
4649                 dev_err(hba->dev,
4650                         "Host controller not ready to process requests");
4651                 err = -EIO;
4652         }
4653
4654         return err;
4655 }
4656 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4657
4658 /**
4659  * ufshcd_hba_stop - Send controller to reset state
4660  * @hba: per adapter instance
4661  */
4662 void ufshcd_hba_stop(struct ufs_hba *hba)
4663 {
4664         unsigned long flags;
4665         int err;
4666
4667         /*
4668          * Obtain the host lock to prevent that the controller is disabled
4669          * while the UFS interrupt handler is active on another CPU.
4670          */
4671         spin_lock_irqsave(hba->host->host_lock, flags);
4672         ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4673         spin_unlock_irqrestore(hba->host->host_lock, flags);
4674
4675         err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4676                                         CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4677                                         10, 1);
4678         if (err)
4679                 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4680 }
4681 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4682
4683 /**
4684  * ufshcd_hba_execute_hce - initialize the controller
4685  * @hba: per adapter instance
4686  *
4687  * The controller resets itself and controller firmware initialization
4688  * sequence kicks off. When controller is ready it will set
4689  * the Host Controller Enable bit to 1.
4690  *
4691  * Returns 0 on success, non-zero value on failure
4692  */
4693 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4694 {
4695         int retry_outer = 3;
4696         int retry_inner;
4697
4698 start:
4699         if (ufshcd_is_hba_active(hba))
4700                 /* change controller state to "reset state" */
4701                 ufshcd_hba_stop(hba);
4702
4703         /* UniPro link is disabled at this point */
4704         ufshcd_set_link_off(hba);
4705
4706         ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4707
4708         /* start controller initialization sequence */
4709         ufshcd_hba_start(hba);
4710
4711         /*
4712          * To initialize a UFS host controller HCE bit must be set to 1.
4713          * During initialization the HCE bit value changes from 1->0->1.
4714          * When the host controller completes initialization sequence
4715          * it sets the value of HCE bit to 1. The same HCE bit is read back
4716          * to check if the controller has completed initialization sequence.
4717          * So without this delay the value HCE = 1, set in the previous
4718          * instruction might be read back.
4719          * This delay can be changed based on the controller.
4720          */
4721         ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4722
4723         /* wait for the host controller to complete initialization */
4724         retry_inner = 50;
4725         while (!ufshcd_is_hba_active(hba)) {
4726                 if (retry_inner) {
4727                         retry_inner--;
4728                 } else {
4729                         dev_err(hba->dev,
4730                                 "Controller enable failed\n");
4731                         if (retry_outer) {
4732                                 retry_outer--;
4733                                 goto start;
4734                         }
4735                         return -EIO;
4736                 }
4737                 usleep_range(1000, 1100);
4738         }
4739
4740         /* enable UIC related interrupts */
4741         ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4742
4743         ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4744
4745         return 0;
4746 }
4747
4748 int ufshcd_hba_enable(struct ufs_hba *hba)
4749 {
4750         int ret;
4751
4752         if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4753                 ufshcd_set_link_off(hba);
4754                 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4755
4756                 /* enable UIC related interrupts */
4757                 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4758                 ret = ufshcd_dme_reset(hba);
4759                 if (ret) {
4760                         dev_err(hba->dev, "DME_RESET failed\n");
4761                         return ret;
4762                 }
4763
4764                 ret = ufshcd_dme_enable(hba);
4765                 if (ret) {
4766                         dev_err(hba->dev, "Enabling DME failed\n");
4767                         return ret;
4768                 }
4769
4770                 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4771         } else {
4772                 ret = ufshcd_hba_execute_hce(hba);
4773         }
4774
4775         return ret;
4776 }
4777 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4778
4779 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4780 {
4781         int tx_lanes = 0, i, err = 0;
4782
4783         if (!peer)
4784                 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4785                                &tx_lanes);
4786         else
4787                 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4788                                     &tx_lanes);
4789         for (i = 0; i < tx_lanes; i++) {
4790                 if (!peer)
4791                         err = ufshcd_dme_set(hba,
4792                                 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4793                                         UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4794                                         0);
4795                 else
4796                         err = ufshcd_dme_peer_set(hba,
4797                                 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4798                                         UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4799                                         0);
4800                 if (err) {
4801                         dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4802                                 __func__, peer, i, err);
4803                         break;
4804                 }
4805         }
4806
4807         return err;
4808 }
4809
4810 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4811 {
4812         return ufshcd_disable_tx_lcc(hba, true);
4813 }
4814
4815 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4816 {
4817         struct ufs_event_hist *e;
4818
4819         if (id >= UFS_EVT_CNT)
4820                 return;
4821
4822         e = &hba->ufs_stats.event[id];
4823         e->val[e->pos] = val;
4824         e->tstamp[e->pos] = local_clock();
4825         e->cnt += 1;
4826         e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4827
4828         ufshcd_vops_event_notify(hba, id, &val);
4829 }
4830 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4831
4832 /**
4833  * ufshcd_link_startup - Initialize unipro link startup
4834  * @hba: per adapter instance
4835  *
4836  * Returns 0 for success, non-zero in case of failure
4837  */
4838 static int ufshcd_link_startup(struct ufs_hba *hba)
4839 {
4840         int ret;
4841         int retries = DME_LINKSTARTUP_RETRIES;
4842         bool link_startup_again = false;
4843
4844         /*
4845          * If UFS device isn't active then we will have to issue link startup
4846          * 2 times to make sure the device state move to active.
4847          */
4848         if (!ufshcd_is_ufs_dev_active(hba))
4849                 link_startup_again = true;
4850
4851 link_startup:
4852         do {
4853                 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4854
4855                 ret = ufshcd_dme_link_startup(hba);
4856
4857                 /* check if device is detected by inter-connect layer */
4858                 if (!ret && !ufshcd_is_device_present(hba)) {
4859                         ufshcd_update_evt_hist(hba,
4860                                                UFS_EVT_LINK_STARTUP_FAIL,
4861                                                0);
4862                         dev_err(hba->dev, "%s: Device not present\n", __func__);
4863                         ret = -ENXIO;
4864                         goto out;
4865                 }
4866
4867                 /*
4868                  * DME link lost indication is only received when link is up,
4869                  * but we can't be sure if the link is up until link startup
4870                  * succeeds. So reset the local Uni-Pro and try again.
4871                  */
4872                 if (ret && retries && ufshcd_hba_enable(hba)) {
4873                         ufshcd_update_evt_hist(hba,
4874                                                UFS_EVT_LINK_STARTUP_FAIL,
4875                                                (u32)ret);
4876                         goto out;
4877                 }
4878         } while (ret && retries--);
4879
4880         if (ret) {
4881                 /* failed to get the link up... retire */
4882                 ufshcd_update_evt_hist(hba,
4883                                        UFS_EVT_LINK_STARTUP_FAIL,
4884                                        (u32)ret);
4885                 goto out;
4886         }
4887
4888         if (link_startup_again) {
4889                 link_startup_again = false;
4890                 retries = DME_LINKSTARTUP_RETRIES;
4891                 goto link_startup;
4892         }
4893
4894         /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4895         ufshcd_init_pwr_info(hba);
4896         ufshcd_print_pwr_info(hba);
4897
4898         if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4899                 ret = ufshcd_disable_device_tx_lcc(hba);
4900                 if (ret)
4901                         goto out;
4902         }
4903
4904         /* Include any host controller configuration via UIC commands */
4905         ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4906         if (ret)
4907                 goto out;
4908
4909         /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4910         ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4911         ret = ufshcd_make_hba_operational(hba);
4912 out:
4913         if (ret) {
4914                 dev_err(hba->dev, "link startup failed %d\n", ret);
4915                 ufshcd_print_host_state(hba);
4916                 ufshcd_print_pwr_info(hba);
4917                 ufshcd_print_evt_hist(hba);
4918         }
4919         return ret;
4920 }
4921
4922 /**
4923  * ufshcd_verify_dev_init() - Verify device initialization
4924  * @hba: per-adapter instance
4925  *
4926  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4927  * device Transport Protocol (UTP) layer is ready after a reset.
4928  * If the UTP layer at the device side is not initialized, it may
4929  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4930  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4931  */
4932 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4933 {
4934         int err = 0;
4935         int retries;
4936
4937         ufshcd_hold(hba, false);
4938         mutex_lock(&hba->dev_cmd.lock);
4939         for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4940                 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4941                                           hba->nop_out_timeout);
4942
4943                 if (!err || err == -ETIMEDOUT)
4944                         break;
4945
4946                 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4947         }
4948         mutex_unlock(&hba->dev_cmd.lock);
4949         ufshcd_release(hba);
4950
4951         if (err)
4952                 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4953         return err;
4954 }
4955
4956 /**
4957  * ufshcd_setup_links - associate link b/w device wlun and other luns
4958  * @sdev: pointer to SCSI device
4959  * @hba: pointer to ufs hba
4960  */
4961 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4962 {
4963         struct device_link *link;
4964
4965         /*
4966          * Device wlun is the supplier & rest of the luns are consumers.
4967          * This ensures that device wlun suspends after all other luns.
4968          */
4969         if (hba->ufs_device_wlun) {
4970                 link = device_link_add(&sdev->sdev_gendev,
4971                                        &hba->ufs_device_wlun->sdev_gendev,
4972                                        DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4973                 if (!link) {
4974                         dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4975                                 dev_name(&hba->ufs_device_wlun->sdev_gendev));
4976                         return;
4977                 }
4978                 hba->luns_avail--;
4979                 /* Ignore REPORT_LUN wlun probing */
4980                 if (hba->luns_avail == 1) {
4981                         ufshcd_rpm_put(hba);
4982                         return;
4983                 }
4984         } else {
4985                 /*
4986                  * Device wlun is probed. The assumption is that WLUNs are
4987                  * scanned before other LUNs.
4988                  */
4989                 hba->luns_avail--;
4990         }
4991 }
4992
4993 /**
4994  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4995  * @hba: per-adapter instance
4996  * @sdev: pointer to SCSI device
4997  */
4998 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4999 {
5000         int len = QUERY_DESC_MAX_SIZE;
5001         u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5002         u8 lun_qdepth = hba->nutrs;
5003         u8 *desc_buf;
5004         int ret;
5005
5006         desc_buf = kzalloc(len, GFP_KERNEL);
5007         if (!desc_buf)
5008                 goto set_qdepth;
5009
5010         ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5011         if (ret < 0) {
5012                 if (ret == -EOPNOTSUPP)
5013                         /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5014                         lun_qdepth = 1;
5015                 kfree(desc_buf);
5016                 goto set_qdepth;
5017         }
5018
5019         if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5020                 /*
5021                  * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5022                  * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5023                  */
5024                 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5025         }
5026         /*
5027          * According to UFS device specification, the write protection mode is only supported by
5028          * normal LU, not supported by WLUN.
5029          */
5030         if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5031             !hba->dev_info.is_lu_power_on_wp &&
5032             desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5033                 hba->dev_info.is_lu_power_on_wp = true;
5034
5035         /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5036         if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5037             desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5038                 hba->dev_info.b_advanced_rpmb_en = true;
5039
5040
5041         kfree(desc_buf);
5042 set_qdepth:
5043         /*
5044          * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5045          * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5046          */
5047         dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5048         scsi_change_queue_depth(sdev, lun_qdepth);
5049 }
5050
5051 /**
5052  * ufshcd_slave_alloc - handle initial SCSI device configurations
5053  * @sdev: pointer to SCSI device
5054  *
5055  * Returns success
5056  */
5057 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5058 {
5059         struct ufs_hba *hba;
5060
5061         hba = shost_priv(sdev->host);
5062
5063         /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5064         sdev->use_10_for_ms = 1;
5065
5066         /* DBD field should be set to 1 in mode sense(10) */
5067         sdev->set_dbd_for_ms = 1;
5068
5069         /* allow SCSI layer to restart the device in case of errors */
5070         sdev->allow_restart = 1;
5071
5072         /* REPORT SUPPORTED OPERATION CODES is not supported */
5073         sdev->no_report_opcodes = 1;
5074
5075         /* WRITE_SAME command is not supported */
5076         sdev->no_write_same = 1;
5077
5078         ufshcd_lu_init(hba, sdev);
5079
5080         ufshcd_setup_links(hba, sdev);
5081
5082         return 0;
5083 }
5084
5085 /**
5086  * ufshcd_change_queue_depth - change queue depth
5087  * @sdev: pointer to SCSI device
5088  * @depth: required depth to set
5089  *
5090  * Change queue depth and make sure the max. limits are not crossed.
5091  */
5092 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5093 {
5094         return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5095 }
5096
5097 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5098 {
5099         /* skip well-known LU */
5100         if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5101             !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5102                 return;
5103
5104         ufshpb_destroy_lu(hba, sdev);
5105 }
5106
5107 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5108 {
5109         /* skip well-known LU */
5110         if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5111             !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5112                 return;
5113
5114         ufshpb_init_hpb_lu(hba, sdev);
5115 }
5116
5117 /**
5118  * ufshcd_slave_configure - adjust SCSI device configurations
5119  * @sdev: pointer to SCSI device
5120  */
5121 static int ufshcd_slave_configure(struct scsi_device *sdev)
5122 {
5123         struct ufs_hba *hba = shost_priv(sdev->host);
5124         struct request_queue *q = sdev->request_queue;
5125
5126         ufshcd_hpb_configure(hba, sdev);
5127
5128         blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5129         if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5130                 blk_queue_update_dma_alignment(q, 4096 - 1);
5131         /*
5132          * Block runtime-pm until all consumers are added.
5133          * Refer ufshcd_setup_links().
5134          */
5135         if (is_device_wlun(sdev))
5136                 pm_runtime_get_noresume(&sdev->sdev_gendev);
5137         else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5138                 sdev->rpm_autosuspend = 1;
5139         /*
5140          * Do not print messages during runtime PM to avoid never-ending cycles
5141          * of messages written back to storage by user space causing runtime
5142          * resume, causing more messages and so on.
5143          */
5144         sdev->silence_suspend = 1;
5145
5146         ufshcd_crypto_register(hba, q);
5147
5148         return 0;
5149 }
5150
5151 /**
5152  * ufshcd_slave_destroy - remove SCSI device configurations
5153  * @sdev: pointer to SCSI device
5154  */
5155 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5156 {
5157         struct ufs_hba *hba;
5158         unsigned long flags;
5159
5160         hba = shost_priv(sdev->host);
5161
5162         ufshcd_hpb_destroy(hba, sdev);
5163
5164         /* Drop the reference as it won't be needed anymore */
5165         if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5166                 spin_lock_irqsave(hba->host->host_lock, flags);
5167                 hba->ufs_device_wlun = NULL;
5168                 spin_unlock_irqrestore(hba->host->host_lock, flags);
5169         } else if (hba->ufs_device_wlun) {
5170                 struct device *supplier = NULL;
5171
5172                 /* Ensure UFS Device WLUN exists and does not disappear */
5173                 spin_lock_irqsave(hba->host->host_lock, flags);
5174                 if (hba->ufs_device_wlun) {
5175                         supplier = &hba->ufs_device_wlun->sdev_gendev;
5176                         get_device(supplier);
5177                 }
5178                 spin_unlock_irqrestore(hba->host->host_lock, flags);
5179
5180                 if (supplier) {
5181                         /*
5182                          * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5183                          * device will not have been registered but can still
5184                          * have a device link holding a reference to the device.
5185                          */
5186                         device_link_remove(&sdev->sdev_gendev, supplier);
5187                         put_device(supplier);
5188                 }
5189         }
5190 }
5191
5192 /**
5193  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5194  * @lrbp: pointer to local reference block of completed command
5195  * @scsi_status: SCSI command status
5196  *
5197  * Returns value base on SCSI command status
5198  */
5199 static inline int
5200 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5201 {
5202         int result = 0;
5203
5204         switch (scsi_status) {
5205         case SAM_STAT_CHECK_CONDITION:
5206                 ufshcd_copy_sense_data(lrbp);
5207                 fallthrough;
5208         case SAM_STAT_GOOD:
5209                 result |= DID_OK << 16 | scsi_status;
5210                 break;
5211         case SAM_STAT_TASK_SET_FULL:
5212         case SAM_STAT_BUSY:
5213         case SAM_STAT_TASK_ABORTED:
5214                 ufshcd_copy_sense_data(lrbp);
5215                 result |= scsi_status;
5216                 break;
5217         default:
5218                 result |= DID_ERROR << 16;
5219                 break;
5220         } /* end of switch */
5221
5222         return result;
5223 }
5224
5225 /**
5226  * ufshcd_transfer_rsp_status - Get overall status of the response
5227  * @hba: per adapter instance
5228  * @lrbp: pointer to local reference block of completed command
5229  * @cqe: pointer to the completion queue entry
5230  *
5231  * Returns result of the command to notify SCSI midlayer
5232  */
5233 static inline int
5234 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5235                            struct cq_entry *cqe)
5236 {
5237         int result = 0;
5238         int scsi_status;
5239         enum utp_ocs ocs;
5240
5241         /* overall command status of utrd */
5242         ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5243
5244         if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5245                 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5246                                         MASK_RSP_UPIU_RESULT)
5247                         ocs = OCS_SUCCESS;
5248         }
5249
5250         switch (ocs) {
5251         case OCS_SUCCESS:
5252                 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5253                 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5254                 switch (result) {
5255                 case UPIU_TRANSACTION_RESPONSE:
5256                         /*
5257                          * get the response UPIU result to extract
5258                          * the SCSI command status
5259                          */
5260                         result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5261
5262                         /*
5263                          * get the result based on SCSI status response
5264                          * to notify the SCSI midlayer of the command status
5265                          */
5266                         scsi_status = result & MASK_SCSI_STATUS;
5267                         result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5268
5269                         /*
5270                          * Currently we are only supporting BKOPs exception
5271                          * events hence we can ignore BKOPs exception event
5272                          * during power management callbacks. BKOPs exception
5273                          * event is not expected to be raised in runtime suspend
5274                          * callback as it allows the urgent bkops.
5275                          * During system suspend, we are anyway forcefully
5276                          * disabling the bkops and if urgent bkops is needed
5277                          * it will be enabled on system resume. Long term
5278                          * solution could be to abort the system suspend if
5279                          * UFS device needs urgent BKOPs.
5280                          */
5281                         if (!hba->pm_op_in_progress &&
5282                             !ufshcd_eh_in_progress(hba) &&
5283                             ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5284                                 /* Flushed in suspend */
5285                                 schedule_work(&hba->eeh_work);
5286
5287                         if (scsi_status == SAM_STAT_GOOD)
5288                                 ufshpb_rsp_upiu(hba, lrbp);
5289                         break;
5290                 case UPIU_TRANSACTION_REJECT_UPIU:
5291                         /* TODO: handle Reject UPIU Response */
5292                         result = DID_ERROR << 16;
5293                         dev_err(hba->dev,
5294                                 "Reject UPIU not fully implemented\n");
5295                         break;
5296                 default:
5297                         dev_err(hba->dev,
5298                                 "Unexpected request response code = %x\n",
5299                                 result);
5300                         result = DID_ERROR << 16;
5301                         break;
5302                 }
5303                 break;
5304         case OCS_ABORTED:
5305                 result |= DID_ABORT << 16;
5306                 break;
5307         case OCS_INVALID_COMMAND_STATUS:
5308                 result |= DID_REQUEUE << 16;
5309                 break;
5310         case OCS_INVALID_CMD_TABLE_ATTR:
5311         case OCS_INVALID_PRDT_ATTR:
5312         case OCS_MISMATCH_DATA_BUF_SIZE:
5313         case OCS_MISMATCH_RESP_UPIU_SIZE:
5314         case OCS_PEER_COMM_FAILURE:
5315         case OCS_FATAL_ERROR:
5316         case OCS_DEVICE_FATAL_ERROR:
5317         case OCS_INVALID_CRYPTO_CONFIG:
5318         case OCS_GENERAL_CRYPTO_ERROR:
5319         default:
5320                 result |= DID_ERROR << 16;
5321                 dev_err(hba->dev,
5322                                 "OCS error from controller = %x for tag %d\n",
5323                                 ocs, lrbp->task_tag);
5324                 ufshcd_print_evt_hist(hba);
5325                 ufshcd_print_host_state(hba);
5326                 break;
5327         } /* end of switch */
5328
5329         if ((host_byte(result) != DID_OK) &&
5330             (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5331                 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5332         return result;
5333 }
5334
5335 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5336                                          u32 intr_mask)
5337 {
5338         if (!ufshcd_is_auto_hibern8_supported(hba) ||
5339             !ufshcd_is_auto_hibern8_enabled(hba))
5340                 return false;
5341
5342         if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5343                 return false;
5344
5345         if (hba->active_uic_cmd &&
5346             (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5347             hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5348                 return false;
5349
5350         return true;
5351 }
5352
5353 /**
5354  * ufshcd_uic_cmd_compl - handle completion of uic command
5355  * @hba: per adapter instance
5356  * @intr_status: interrupt status generated by the controller
5357  *
5358  * Returns
5359  *  IRQ_HANDLED - If interrupt is valid
5360  *  IRQ_NONE    - If invalid interrupt
5361  */
5362 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5363 {
5364         irqreturn_t retval = IRQ_NONE;
5365
5366         spin_lock(hba->host->host_lock);
5367         if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5368                 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5369
5370         if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5371                 hba->active_uic_cmd->argument2 |=
5372                         ufshcd_get_uic_cmd_result(hba);
5373                 hba->active_uic_cmd->argument3 =
5374                         ufshcd_get_dme_attr_val(hba);
5375                 if (!hba->uic_async_done)
5376                         hba->active_uic_cmd->cmd_active = 0;
5377                 complete(&hba->active_uic_cmd->done);
5378                 retval = IRQ_HANDLED;
5379         }
5380
5381         if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5382                 hba->active_uic_cmd->cmd_active = 0;
5383                 complete(hba->uic_async_done);
5384                 retval = IRQ_HANDLED;
5385         }
5386
5387         if (retval == IRQ_HANDLED)
5388                 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5389                                              UFS_CMD_COMP);
5390         spin_unlock(hba->host->host_lock);
5391         return retval;
5392 }
5393
5394 /* Release the resources allocated for processing a SCSI command. */
5395 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5396                                     struct ufshcd_lrb *lrbp)
5397 {
5398         struct scsi_cmnd *cmd = lrbp->cmd;
5399
5400         scsi_dma_unmap(cmd);
5401         lrbp->cmd = NULL;       /* Mark the command as completed. */
5402         ufshcd_release(hba);
5403         ufshcd_clk_scaling_update_busy(hba);
5404 }
5405
5406 /**
5407  * ufshcd_compl_one_cqe - handle a completion queue entry
5408  * @hba: per adapter instance
5409  * @task_tag: the task tag of the request to be completed
5410  * @cqe: pointer to the completion queue entry
5411  */
5412 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5413                           struct cq_entry *cqe)
5414 {
5415         struct ufshcd_lrb *lrbp;
5416         struct scsi_cmnd *cmd;
5417
5418         lrbp = &hba->lrb[task_tag];
5419         lrbp->compl_time_stamp = ktime_get();
5420         cmd = lrbp->cmd;
5421         if (cmd) {
5422                 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5423                         ufshcd_update_monitor(hba, lrbp);
5424                 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5425                 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5426                 ufshcd_release_scsi_cmd(hba, lrbp);
5427                 /* Do not touch lrbp after scsi done */
5428                 scsi_done(cmd);
5429         } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5430                    lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5431                 if (hba->dev_cmd.complete) {
5432                         hba->dev_cmd.cqe = cqe;
5433                         ufshcd_add_command_trace(hba, task_tag, UFS_DEV_COMP);
5434                         complete(hba->dev_cmd.complete);
5435                         ufshcd_clk_scaling_update_busy(hba);
5436                 }
5437         }
5438 }
5439
5440 /**
5441  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5442  * @hba: per adapter instance
5443  * @completed_reqs: bitmask that indicates which requests to complete
5444  */
5445 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5446                                         unsigned long completed_reqs)
5447 {
5448         int tag;
5449
5450         for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5451                 ufshcd_compl_one_cqe(hba, tag, NULL);
5452 }
5453
5454 /* Any value that is not an existing queue number is fine for this constant. */
5455 enum {
5456         UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5457 };
5458
5459 static void ufshcd_clear_polled(struct ufs_hba *hba,
5460                                 unsigned long *completed_reqs)
5461 {
5462         int tag;
5463
5464         for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5465                 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5466
5467                 if (!cmd)
5468                         continue;
5469                 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5470                         __clear_bit(tag, completed_reqs);
5471         }
5472 }
5473
5474 /*
5475  * Returns > 0 if one or more commands have been completed or 0 if no
5476  * requests have been completed.
5477  */
5478 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5479 {
5480         struct ufs_hba *hba = shost_priv(shost);
5481         unsigned long completed_reqs, flags;
5482         u32 tr_doorbell;
5483         struct ufs_hw_queue *hwq;
5484
5485         if (is_mcq_enabled(hba)) {
5486                 hwq = &hba->uhq[queue_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5487
5488                 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5489         }
5490
5491         spin_lock_irqsave(&hba->outstanding_lock, flags);
5492         tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5493         completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5494         WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5495                   "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5496                   hba->outstanding_reqs);
5497         if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5498                 /* Do not complete polled requests from interrupt context. */
5499                 ufshcd_clear_polled(hba, &completed_reqs);
5500         }
5501         hba->outstanding_reqs &= ~completed_reqs;
5502         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5503
5504         if (completed_reqs)
5505                 __ufshcd_transfer_req_compl(hba, completed_reqs);
5506
5507         return completed_reqs != 0;
5508 }
5509
5510 /**
5511  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5512  * @hba: per adapter instance
5513  *
5514  * Returns
5515  *  IRQ_HANDLED - If interrupt is valid
5516  *  IRQ_NONE    - If invalid interrupt
5517  */
5518 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5519 {
5520         /* Resetting interrupt aggregation counters first and reading the
5521          * DOOR_BELL afterward allows us to handle all the completed requests.
5522          * In order to prevent other interrupts starvation the DB is read once
5523          * after reset. The down side of this solution is the possibility of
5524          * false interrupt if device completes another request after resetting
5525          * aggregation and before reading the DB.
5526          */
5527         if (ufshcd_is_intr_aggr_allowed(hba) &&
5528             !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5529                 ufshcd_reset_intr_aggr(hba);
5530
5531         if (ufs_fail_completion())
5532                 return IRQ_HANDLED;
5533
5534         /*
5535          * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5536          * do not want polling to trigger spurious interrupt complaints.
5537          */
5538         ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5539
5540         return IRQ_HANDLED;
5541 }
5542
5543 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5544 {
5545         return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5546                                        QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5547                                        &ee_ctrl_mask);
5548 }
5549
5550 int ufshcd_write_ee_control(struct ufs_hba *hba)
5551 {
5552         int err;
5553
5554         mutex_lock(&hba->ee_ctrl_mutex);
5555         err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5556         mutex_unlock(&hba->ee_ctrl_mutex);
5557         if (err)
5558                 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5559                         __func__, err);
5560         return err;
5561 }
5562
5563 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5564                              const u16 *other_mask, u16 set, u16 clr)
5565 {
5566         u16 new_mask, ee_ctrl_mask;
5567         int err = 0;
5568
5569         mutex_lock(&hba->ee_ctrl_mutex);
5570         new_mask = (*mask & ~clr) | set;
5571         ee_ctrl_mask = new_mask | *other_mask;
5572         if (ee_ctrl_mask != hba->ee_ctrl_mask)
5573                 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5574         /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5575         if (!err) {
5576                 hba->ee_ctrl_mask = ee_ctrl_mask;
5577                 *mask = new_mask;
5578         }
5579         mutex_unlock(&hba->ee_ctrl_mutex);
5580         return err;
5581 }
5582
5583 /**
5584  * ufshcd_disable_ee - disable exception event
5585  * @hba: per-adapter instance
5586  * @mask: exception event to disable
5587  *
5588  * Disables exception event in the device so that the EVENT_ALERT
5589  * bit is not set.
5590  *
5591  * Returns zero on success, non-zero error value on failure.
5592  */
5593 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5594 {
5595         return ufshcd_update_ee_drv_mask(hba, 0, mask);
5596 }
5597
5598 /**
5599  * ufshcd_enable_ee - enable exception event
5600  * @hba: per-adapter instance
5601  * @mask: exception event to enable
5602  *
5603  * Enable corresponding exception event in the device to allow
5604  * device to alert host in critical scenarios.
5605  *
5606  * Returns zero on success, non-zero error value on failure.
5607  */
5608 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5609 {
5610         return ufshcd_update_ee_drv_mask(hba, mask, 0);
5611 }
5612
5613 /**
5614  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5615  * @hba: per-adapter instance
5616  *
5617  * Allow device to manage background operations on its own. Enabling
5618  * this might lead to inconsistent latencies during normal data transfers
5619  * as the device is allowed to manage its own way of handling background
5620  * operations.
5621  *
5622  * Returns zero on success, non-zero on failure.
5623  */
5624 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5625 {
5626         int err = 0;
5627
5628         if (hba->auto_bkops_enabled)
5629                 goto out;
5630
5631         err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5632                         QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5633         if (err) {
5634                 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5635                                 __func__, err);
5636                 goto out;
5637         }
5638
5639         hba->auto_bkops_enabled = true;
5640         trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5641
5642         /* No need of URGENT_BKOPS exception from the device */
5643         err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5644         if (err)
5645                 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5646                                 __func__, err);
5647 out:
5648         return err;
5649 }
5650
5651 /**
5652  * ufshcd_disable_auto_bkops - block device in doing background operations
5653  * @hba: per-adapter instance
5654  *
5655  * Disabling background operations improves command response latency but
5656  * has drawback of device moving into critical state where the device is
5657  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5658  * host is idle so that BKOPS are managed effectively without any negative
5659  * impacts.
5660  *
5661  * Returns zero on success, non-zero on failure.
5662  */
5663 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5664 {
5665         int err = 0;
5666
5667         if (!hba->auto_bkops_enabled)
5668                 goto out;
5669
5670         /*
5671          * If host assisted BKOPs is to be enabled, make sure
5672          * urgent bkops exception is allowed.
5673          */
5674         err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5675         if (err) {
5676                 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5677                                 __func__, err);
5678                 goto out;
5679         }
5680
5681         err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5682                         QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5683         if (err) {
5684                 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5685                                 __func__, err);
5686                 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5687                 goto out;
5688         }
5689
5690         hba->auto_bkops_enabled = false;
5691         trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5692         hba->is_urgent_bkops_lvl_checked = false;
5693 out:
5694         return err;
5695 }
5696
5697 /**
5698  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5699  * @hba: per adapter instance
5700  *
5701  * After a device reset the device may toggle the BKOPS_EN flag
5702  * to default value. The s/w tracking variables should be updated
5703  * as well. This function would change the auto-bkops state based on
5704  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5705  */
5706 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5707 {
5708         if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5709                 hba->auto_bkops_enabled = false;
5710                 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5711                 ufshcd_enable_auto_bkops(hba);
5712         } else {
5713                 hba->auto_bkops_enabled = true;
5714                 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5715                 ufshcd_disable_auto_bkops(hba);
5716         }
5717         hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5718         hba->is_urgent_bkops_lvl_checked = false;
5719 }
5720
5721 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5722 {
5723         return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5724                         QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5725 }
5726
5727 /**
5728  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5729  * @hba: per-adapter instance
5730  * @status: bkops_status value
5731  *
5732  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5733  * flag in the device to permit background operations if the device
5734  * bkops_status is greater than or equal to "status" argument passed to
5735  * this function, disable otherwise.
5736  *
5737  * Returns 0 for success, non-zero in case of failure.
5738  *
5739  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5740  * to know whether auto bkops is enabled or disabled after this function
5741  * returns control to it.
5742  */
5743 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5744                              enum bkops_status status)
5745 {
5746         int err;
5747         u32 curr_status = 0;
5748
5749         err = ufshcd_get_bkops_status(hba, &curr_status);
5750         if (err) {
5751                 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5752                                 __func__, err);
5753                 goto out;
5754         } else if (curr_status > BKOPS_STATUS_MAX) {
5755                 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5756                                 __func__, curr_status);
5757                 err = -EINVAL;
5758                 goto out;
5759         }
5760
5761         if (curr_status >= status)
5762                 err = ufshcd_enable_auto_bkops(hba);
5763         else
5764                 err = ufshcd_disable_auto_bkops(hba);
5765 out:
5766         return err;
5767 }
5768
5769 /**
5770  * ufshcd_urgent_bkops - handle urgent bkops exception event
5771  * @hba: per-adapter instance
5772  *
5773  * Enable fBackgroundOpsEn flag in the device to permit background
5774  * operations.
5775  *
5776  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5777  * and negative error value for any other failure.
5778  */
5779 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5780 {
5781         return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5782 }
5783
5784 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5785 {
5786         return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5787                         QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5788 }
5789
5790 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5791 {
5792         int err;
5793         u32 curr_status = 0;
5794
5795         if (hba->is_urgent_bkops_lvl_checked)
5796                 goto enable_auto_bkops;
5797
5798         err = ufshcd_get_bkops_status(hba, &curr_status);
5799         if (err) {
5800                 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5801                                 __func__, err);
5802                 goto out;
5803         }
5804
5805         /*
5806          * We are seeing that some devices are raising the urgent bkops
5807          * exception events even when BKOPS status doesn't indicate performace
5808          * impacted or critical. Handle these device by determining their urgent
5809          * bkops status at runtime.
5810          */
5811         if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5812                 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5813                                 __func__, curr_status);
5814                 /* update the current status as the urgent bkops level */
5815                 hba->urgent_bkops_lvl = curr_status;
5816                 hba->is_urgent_bkops_lvl_checked = true;
5817         }
5818
5819 enable_auto_bkops:
5820         err = ufshcd_enable_auto_bkops(hba);
5821 out:
5822         if (err < 0)
5823                 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5824                                 __func__, err);
5825 }
5826
5827 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5828 {
5829         u32 value;
5830
5831         if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5832                                 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5833                 return;
5834
5835         dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5836
5837         ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5838
5839         /*
5840          * A placeholder for the platform vendors to add whatever additional
5841          * steps required
5842          */
5843 }
5844
5845 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5846 {
5847         u8 index;
5848         enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5849                                    UPIU_QUERY_OPCODE_CLEAR_FLAG;
5850
5851         index = ufshcd_wb_get_query_index(hba);
5852         return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5853 }
5854
5855 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5856 {
5857         int ret;
5858
5859         if (!ufshcd_is_wb_allowed(hba) ||
5860             hba->dev_info.wb_enabled == enable)
5861                 return 0;
5862
5863         ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5864         if (ret) {
5865                 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5866                         __func__, enable ? "enabling" : "disabling", ret);
5867                 return ret;
5868         }
5869
5870         hba->dev_info.wb_enabled = enable;
5871         dev_dbg(hba->dev, "%s: Write Booster %s\n",
5872                         __func__, enable ? "enabled" : "disabled");
5873
5874         return ret;
5875 }
5876
5877 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5878                                                  bool enable)
5879 {
5880         int ret;
5881
5882         ret = __ufshcd_wb_toggle(hba, enable,
5883                         QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5884         if (ret) {
5885                 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5886                         __func__, enable ? "enabling" : "disabling", ret);
5887                 return;
5888         }
5889         dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5890                         __func__, enable ? "enabled" : "disabled");
5891 }
5892
5893 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5894 {
5895         int ret;
5896
5897         if (!ufshcd_is_wb_allowed(hba) ||
5898             hba->dev_info.wb_buf_flush_enabled == enable)
5899                 return 0;
5900
5901         ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5902         if (ret) {
5903                 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5904                         __func__, enable ? "enabling" : "disabling", ret);
5905                 return ret;
5906         }
5907
5908         hba->dev_info.wb_buf_flush_enabled = enable;
5909         dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5910                         __func__, enable ? "enabled" : "disabled");
5911
5912         return ret;
5913 }
5914
5915 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5916                                                 u32 avail_buf)
5917 {
5918         u32 cur_buf;
5919         int ret;
5920         u8 index;
5921
5922         index = ufshcd_wb_get_query_index(hba);
5923         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5924                                               QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5925                                               index, 0, &cur_buf);
5926         if (ret) {
5927                 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5928                         __func__, ret);
5929                 return false;
5930         }
5931
5932         if (!cur_buf) {
5933                 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5934                          cur_buf);
5935                 return false;
5936         }
5937         /* Let it continue to flush when available buffer exceeds threshold */
5938         return avail_buf < hba->vps->wb_flush_threshold;
5939 }
5940
5941 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5942 {
5943         if (ufshcd_is_wb_buf_flush_allowed(hba))
5944                 ufshcd_wb_toggle_buf_flush(hba, false);
5945
5946         ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5947         ufshcd_wb_toggle(hba, false);
5948         hba->caps &= ~UFSHCD_CAP_WB_EN;
5949
5950         dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5951 }
5952
5953 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5954 {
5955         u32 lifetime;
5956         int ret;
5957         u8 index;
5958
5959         index = ufshcd_wb_get_query_index(hba);
5960         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5961                                       QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5962                                       index, 0, &lifetime);
5963         if (ret) {
5964                 dev_err(hba->dev,
5965                         "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5966                         __func__, ret);
5967                 return false;
5968         }
5969
5970         if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5971                 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5972                         __func__, lifetime);
5973                 return false;
5974         }
5975
5976         dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5977                 __func__, lifetime);
5978
5979         return true;
5980 }
5981
5982 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5983 {
5984         int ret;
5985         u32 avail_buf;
5986         u8 index;
5987
5988         if (!ufshcd_is_wb_allowed(hba))
5989                 return false;
5990
5991         if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5992                 ufshcd_wb_force_disable(hba);
5993                 return false;
5994         }
5995
5996         /*
5997          * The ufs device needs the vcc to be ON to flush.
5998          * With user-space reduction enabled, it's enough to enable flush
5999          * by checking only the available buffer. The threshold
6000          * defined here is > 90% full.
6001          * With user-space preserved enabled, the current-buffer
6002          * should be checked too because the wb buffer size can reduce
6003          * when disk tends to be full. This info is provided by current
6004          * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6005          * keeping vcc on when current buffer is empty.
6006          */
6007         index = ufshcd_wb_get_query_index(hba);
6008         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6009                                       QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6010                                       index, 0, &avail_buf);
6011         if (ret) {
6012                 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6013                          __func__, ret);
6014                 return false;
6015         }
6016
6017         if (!hba->dev_info.b_presrv_uspc_en)
6018                 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6019
6020         return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6021 }
6022
6023 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6024 {
6025         struct ufs_hba *hba = container_of(to_delayed_work(work),
6026                                            struct ufs_hba,
6027                                            rpm_dev_flush_recheck_work);
6028         /*
6029          * To prevent unnecessary VCC power drain after device finishes
6030          * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6031          * after a certain delay to recheck the threshold by next runtime
6032          * suspend.
6033          */
6034         ufshcd_rpm_get_sync(hba);
6035         ufshcd_rpm_put_sync(hba);
6036 }
6037
6038 /**
6039  * ufshcd_exception_event_handler - handle exceptions raised by device
6040  * @work: pointer to work data
6041  *
6042  * Read bExceptionEventStatus attribute from the device and handle the
6043  * exception event accordingly.
6044  */
6045 static void ufshcd_exception_event_handler(struct work_struct *work)
6046 {
6047         struct ufs_hba *hba;
6048         int err;
6049         u32 status = 0;
6050         hba = container_of(work, struct ufs_hba, eeh_work);
6051
6052         ufshcd_scsi_block_requests(hba);
6053         err = ufshcd_get_ee_status(hba, &status);
6054         if (err) {
6055                 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6056                                 __func__, err);
6057                 goto out;
6058         }
6059
6060         trace_ufshcd_exception_event(dev_name(hba->dev), status);
6061
6062         if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6063                 ufshcd_bkops_exception_event_handler(hba);
6064
6065         if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6066                 ufshcd_temp_exception_event_handler(hba, status);
6067
6068         ufs_debugfs_exception_event(hba, status);
6069 out:
6070         ufshcd_scsi_unblock_requests(hba);
6071 }
6072
6073 /* Complete requests that have door-bell cleared */
6074 static void ufshcd_complete_requests(struct ufs_hba *hba)
6075 {
6076         ufshcd_transfer_req_compl(hba);
6077         ufshcd_tmc_handler(hba);
6078 }
6079
6080 /**
6081  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6082  *                              to recover from the DL NAC errors or not.
6083  * @hba: per-adapter instance
6084  *
6085  * Returns true if error handling is required, false otherwise
6086  */
6087 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6088 {
6089         unsigned long flags;
6090         bool err_handling = true;
6091
6092         spin_lock_irqsave(hba->host->host_lock, flags);
6093         /*
6094          * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6095          * device fatal error and/or DL NAC & REPLAY timeout errors.
6096          */
6097         if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6098                 goto out;
6099
6100         if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6101             ((hba->saved_err & UIC_ERROR) &&
6102              (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6103                 goto out;
6104
6105         if ((hba->saved_err & UIC_ERROR) &&
6106             (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6107                 int err;
6108                 /*
6109                  * wait for 50ms to see if we can get any other errors or not.
6110                  */
6111                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6112                 msleep(50);
6113                 spin_lock_irqsave(hba->host->host_lock, flags);
6114
6115                 /*
6116                  * now check if we have got any other severe errors other than
6117                  * DL NAC error?
6118                  */
6119                 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6120                     ((hba->saved_err & UIC_ERROR) &&
6121                     (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6122                         goto out;
6123
6124                 /*
6125                  * As DL NAC is the only error received so far, send out NOP
6126                  * command to confirm if link is still active or not.
6127                  *   - If we don't get any response then do error recovery.
6128                  *   - If we get response then clear the DL NAC error bit.
6129                  */
6130
6131                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6132                 err = ufshcd_verify_dev_init(hba);
6133                 spin_lock_irqsave(hba->host->host_lock, flags);
6134
6135                 if (err)
6136                         goto out;
6137
6138                 /* Link seems to be alive hence ignore the DL NAC errors */
6139                 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6140                         hba->saved_err &= ~UIC_ERROR;
6141                 /* clear NAC error */
6142                 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6143                 if (!hba->saved_uic_err)
6144                         err_handling = false;
6145         }
6146 out:
6147         spin_unlock_irqrestore(hba->host->host_lock, flags);
6148         return err_handling;
6149 }
6150
6151 /* host lock must be held before calling this func */
6152 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6153 {
6154         return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6155                (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6156 }
6157
6158 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6159 {
6160         lockdep_assert_held(hba->host->host_lock);
6161
6162         /* handle fatal errors only when link is not in error state */
6163         if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6164                 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6165                     ufshcd_is_saved_err_fatal(hba))
6166                         hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6167                 else
6168                         hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6169                 queue_work(hba->eh_wq, &hba->eh_work);
6170         }
6171 }
6172
6173 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6174 {
6175         spin_lock_irq(hba->host->host_lock);
6176         hba->force_reset = true;
6177         ufshcd_schedule_eh_work(hba);
6178         spin_unlock_irq(hba->host->host_lock);
6179 }
6180
6181 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6182 {
6183         mutex_lock(&hba->wb_mutex);
6184         down_write(&hba->clk_scaling_lock);
6185         hba->clk_scaling.is_allowed = allow;
6186         up_write(&hba->clk_scaling_lock);
6187         mutex_unlock(&hba->wb_mutex);
6188 }
6189
6190 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6191 {
6192         if (suspend) {
6193                 if (hba->clk_scaling.is_enabled)
6194                         ufshcd_suspend_clkscaling(hba);
6195                 ufshcd_clk_scaling_allow(hba, false);
6196         } else {
6197                 ufshcd_clk_scaling_allow(hba, true);
6198                 if (hba->clk_scaling.is_enabled)
6199                         ufshcd_resume_clkscaling(hba);
6200         }
6201 }
6202
6203 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6204 {
6205         ufshcd_rpm_get_sync(hba);
6206         if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6207             hba->is_sys_suspended) {
6208                 enum ufs_pm_op pm_op;
6209
6210                 /*
6211                  * Don't assume anything of resume, if
6212                  * resume fails, irq and clocks can be OFF, and powers
6213                  * can be OFF or in LPM.
6214                  */
6215                 ufshcd_setup_hba_vreg(hba, true);
6216                 ufshcd_enable_irq(hba);
6217                 ufshcd_setup_vreg(hba, true);
6218                 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6219                 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6220                 ufshcd_hold(hba, false);
6221                 if (!ufshcd_is_clkgating_allowed(hba))
6222                         ufshcd_setup_clocks(hba, true);
6223                 ufshcd_release(hba);
6224                 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6225                 ufshcd_vops_resume(hba, pm_op);
6226         } else {
6227                 ufshcd_hold(hba, false);
6228                 if (ufshcd_is_clkscaling_supported(hba) &&
6229                     hba->clk_scaling.is_enabled)
6230                         ufshcd_suspend_clkscaling(hba);
6231                 ufshcd_clk_scaling_allow(hba, false);
6232         }
6233         ufshcd_scsi_block_requests(hba);
6234         /* Drain ufshcd_queuecommand() */
6235         synchronize_rcu();
6236         cancel_work_sync(&hba->eeh_work);
6237 }
6238
6239 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6240 {
6241         ufshcd_scsi_unblock_requests(hba);
6242         ufshcd_release(hba);
6243         if (ufshcd_is_clkscaling_supported(hba))
6244                 ufshcd_clk_scaling_suspend(hba, false);
6245         ufshcd_rpm_put(hba);
6246 }
6247
6248 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6249 {
6250         return (!hba->is_powered || hba->shutting_down ||
6251                 !hba->ufs_device_wlun ||
6252                 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6253                 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6254                    ufshcd_is_link_broken(hba))));
6255 }
6256
6257 #ifdef CONFIG_PM
6258 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6259 {
6260         struct Scsi_Host *shost = hba->host;
6261         struct scsi_device *sdev;
6262         struct request_queue *q;
6263         int ret;
6264
6265         hba->is_sys_suspended = false;
6266         /*
6267          * Set RPM status of wlun device to RPM_ACTIVE,
6268          * this also clears its runtime error.
6269          */
6270         ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6271
6272         /* hba device might have a runtime error otherwise */
6273         if (ret)
6274                 ret = pm_runtime_set_active(hba->dev);
6275         /*
6276          * If wlun device had runtime error, we also need to resume those
6277          * consumer scsi devices in case any of them has failed to be
6278          * resumed due to supplier runtime resume failure. This is to unblock
6279          * blk_queue_enter in case there are bios waiting inside it.
6280          */
6281         if (!ret) {
6282                 shost_for_each_device(sdev, shost) {
6283                         q = sdev->request_queue;
6284                         if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6285                                        q->rpm_status == RPM_SUSPENDING))
6286                                 pm_request_resume(q->dev);
6287                 }
6288         }
6289 }
6290 #else
6291 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6292 {
6293 }
6294 #endif
6295
6296 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6297 {
6298         struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6299         u32 mode;
6300
6301         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6302
6303         if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6304                 return true;
6305
6306         if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6307                 return true;
6308
6309         return false;
6310 }
6311
6312 static bool ufshcd_abort_all(struct ufs_hba *hba)
6313 {
6314         bool needs_reset = false;
6315         int tag, ret;
6316
6317         /* Clear pending transfer requests */
6318         for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6319                 ret = ufshcd_try_to_abort_task(hba, tag);
6320                 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6321                         hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6322                         ret ? "failed" : "succeeded");
6323                 if (ret) {
6324                         needs_reset = true;
6325                         goto out;
6326                 }
6327         }
6328
6329         /* Clear pending task management requests */
6330         for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6331                 if (ufshcd_clear_tm_cmd(hba, tag)) {
6332                         needs_reset = true;
6333                         goto out;
6334                 }
6335         }
6336
6337 out:
6338         /* Complete the requests that are cleared by s/w */
6339         ufshcd_complete_requests(hba);
6340
6341         return needs_reset;
6342 }
6343
6344 /**
6345  * ufshcd_err_handler - handle UFS errors that require s/w attention
6346  * @work: pointer to work structure
6347  */
6348 static void ufshcd_err_handler(struct work_struct *work)
6349 {
6350         int retries = MAX_ERR_HANDLER_RETRIES;
6351         struct ufs_hba *hba;
6352         unsigned long flags;
6353         bool needs_restore;
6354         bool needs_reset;
6355         int pmc_err;
6356
6357         hba = container_of(work, struct ufs_hba, eh_work);
6358
6359         dev_info(hba->dev,
6360                  "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6361                  __func__, ufshcd_state_name[hba->ufshcd_state],
6362                  hba->is_powered, hba->shutting_down, hba->saved_err,
6363                  hba->saved_uic_err, hba->force_reset,
6364                  ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6365
6366         down(&hba->host_sem);
6367         spin_lock_irqsave(hba->host->host_lock, flags);
6368         if (ufshcd_err_handling_should_stop(hba)) {
6369                 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6370                         hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6371                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6372                 up(&hba->host_sem);
6373                 return;
6374         }
6375         ufshcd_set_eh_in_progress(hba);
6376         spin_unlock_irqrestore(hba->host->host_lock, flags);
6377         ufshcd_err_handling_prepare(hba);
6378         /* Complete requests that have door-bell cleared by h/w */
6379         ufshcd_complete_requests(hba);
6380         spin_lock_irqsave(hba->host->host_lock, flags);
6381 again:
6382         needs_restore = false;
6383         needs_reset = false;
6384
6385         if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6386                 hba->ufshcd_state = UFSHCD_STATE_RESET;
6387         /*
6388          * A full reset and restore might have happened after preparation
6389          * is finished, double check whether we should stop.
6390          */
6391         if (ufshcd_err_handling_should_stop(hba))
6392                 goto skip_err_handling;
6393
6394         if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6395                 bool ret;
6396
6397                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6398                 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6399                 ret = ufshcd_quirk_dl_nac_errors(hba);
6400                 spin_lock_irqsave(hba->host->host_lock, flags);
6401                 if (!ret && ufshcd_err_handling_should_stop(hba))
6402                         goto skip_err_handling;
6403         }
6404
6405         if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6406             (hba->saved_uic_err &&
6407              (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6408                 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6409
6410                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6411                 ufshcd_print_host_state(hba);
6412                 ufshcd_print_pwr_info(hba);
6413                 ufshcd_print_evt_hist(hba);
6414                 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6415                 ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6416                 spin_lock_irqsave(hba->host->host_lock, flags);
6417         }
6418
6419         /*
6420          * if host reset is required then skip clearing the pending
6421          * transfers forcefully because they will get cleared during
6422          * host reset and restore
6423          */
6424         if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6425             ufshcd_is_saved_err_fatal(hba) ||
6426             ((hba->saved_err & UIC_ERROR) &&
6427              (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6428                                     UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6429                 needs_reset = true;
6430                 goto do_reset;
6431         }
6432
6433         /*
6434          * If LINERESET was caught, UFS might have been put to PWM mode,
6435          * check if power mode restore is needed.
6436          */
6437         if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6438                 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6439                 if (!hba->saved_uic_err)
6440                         hba->saved_err &= ~UIC_ERROR;
6441                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6442                 if (ufshcd_is_pwr_mode_restore_needed(hba))
6443                         needs_restore = true;
6444                 spin_lock_irqsave(hba->host->host_lock, flags);
6445                 if (!hba->saved_err && !needs_restore)
6446                         goto skip_err_handling;
6447         }
6448
6449         hba->silence_err_logs = true;
6450         /* release lock as clear command might sleep */
6451         spin_unlock_irqrestore(hba->host->host_lock, flags);
6452
6453         needs_reset = ufshcd_abort_all(hba);
6454
6455         spin_lock_irqsave(hba->host->host_lock, flags);
6456         hba->silence_err_logs = false;
6457         if (needs_reset)
6458                 goto do_reset;
6459
6460         /*
6461          * After all reqs and tasks are cleared from doorbell,
6462          * now it is safe to retore power mode.
6463          */
6464         if (needs_restore) {
6465                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6466                 /*
6467                  * Hold the scaling lock just in case dev cmds
6468                  * are sent via bsg and/or sysfs.
6469                  */
6470                 down_write(&hba->clk_scaling_lock);
6471                 hba->force_pmc = true;
6472                 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6473                 if (pmc_err) {
6474                         needs_reset = true;
6475                         dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6476                                         __func__, pmc_err);
6477                 }
6478                 hba->force_pmc = false;
6479                 ufshcd_print_pwr_info(hba);
6480                 up_write(&hba->clk_scaling_lock);
6481                 spin_lock_irqsave(hba->host->host_lock, flags);
6482         }
6483
6484 do_reset:
6485         /* Fatal errors need reset */
6486         if (needs_reset) {
6487                 int err;
6488
6489                 hba->force_reset = false;
6490                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6491                 err = ufshcd_reset_and_restore(hba);
6492                 if (err)
6493                         dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6494                                         __func__, err);
6495                 else
6496                         ufshcd_recover_pm_error(hba);
6497                 spin_lock_irqsave(hba->host->host_lock, flags);
6498         }
6499
6500 skip_err_handling:
6501         if (!needs_reset) {
6502                 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6503                         hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6504                 if (hba->saved_err || hba->saved_uic_err)
6505                         dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6506                             __func__, hba->saved_err, hba->saved_uic_err);
6507         }
6508         /* Exit in an operational state or dead */
6509         if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6510             hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6511                 if (--retries)
6512                         goto again;
6513                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6514         }
6515         ufshcd_clear_eh_in_progress(hba);
6516         spin_unlock_irqrestore(hba->host->host_lock, flags);
6517         ufshcd_err_handling_unprepare(hba);
6518         up(&hba->host_sem);
6519
6520         dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6521                  ufshcd_state_name[hba->ufshcd_state]);
6522 }
6523
6524 /**
6525  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6526  * @hba: per-adapter instance
6527  *
6528  * Returns
6529  *  IRQ_HANDLED - If interrupt is valid
6530  *  IRQ_NONE    - If invalid interrupt
6531  */
6532 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6533 {
6534         u32 reg;
6535         irqreturn_t retval = IRQ_NONE;
6536
6537         /* PHY layer error */
6538         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6539         if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6540             (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6541                 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6542                 /*
6543                  * To know whether this error is fatal or not, DB timeout
6544                  * must be checked but this error is handled separately.
6545                  */
6546                 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6547                         dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6548                                         __func__);
6549
6550                 /* Got a LINERESET indication. */
6551                 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6552                         struct uic_command *cmd = NULL;
6553
6554                         hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6555                         if (hba->uic_async_done && hba->active_uic_cmd)
6556                                 cmd = hba->active_uic_cmd;
6557                         /*
6558                          * Ignore the LINERESET during power mode change
6559                          * operation via DME_SET command.
6560                          */
6561                         if (cmd && (cmd->command == UIC_CMD_DME_SET))
6562                                 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6563                 }
6564                 retval |= IRQ_HANDLED;
6565         }
6566
6567         /* PA_INIT_ERROR is fatal and needs UIC reset */
6568         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6569         if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6570             (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6571                 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6572
6573                 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6574                         hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6575                 else if (hba->dev_quirks &
6576                                 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6577                         if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6578                                 hba->uic_error |=
6579                                         UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6580                         else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6581                                 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6582                 }
6583                 retval |= IRQ_HANDLED;
6584         }
6585
6586         /* UIC NL/TL/DME errors needs software retry */
6587         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6588         if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6589             (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6590                 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6591                 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6592                 retval |= IRQ_HANDLED;
6593         }
6594
6595         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6596         if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6597             (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6598                 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6599                 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6600                 retval |= IRQ_HANDLED;
6601         }
6602
6603         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6604         if ((reg & UIC_DME_ERROR) &&
6605             (reg & UIC_DME_ERROR_CODE_MASK)) {
6606                 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6607                 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6608                 retval |= IRQ_HANDLED;
6609         }
6610
6611         dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6612                         __func__, hba->uic_error);
6613         return retval;
6614 }
6615
6616 /**
6617  * ufshcd_check_errors - Check for errors that need s/w attention
6618  * @hba: per-adapter instance
6619  * @intr_status: interrupt status generated by the controller
6620  *
6621  * Returns
6622  *  IRQ_HANDLED - If interrupt is valid
6623  *  IRQ_NONE    - If invalid interrupt
6624  */
6625 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6626 {
6627         bool queue_eh_work = false;
6628         irqreturn_t retval = IRQ_NONE;
6629
6630         spin_lock(hba->host->host_lock);
6631         hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6632
6633         if (hba->errors & INT_FATAL_ERRORS) {
6634                 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6635                                        hba->errors);
6636                 queue_eh_work = true;
6637         }
6638
6639         if (hba->errors & UIC_ERROR) {
6640                 hba->uic_error = 0;
6641                 retval = ufshcd_update_uic_error(hba);
6642                 if (hba->uic_error)
6643                         queue_eh_work = true;
6644         }
6645
6646         if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6647                 dev_err(hba->dev,
6648                         "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6649                         __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6650                         "Enter" : "Exit",
6651                         hba->errors, ufshcd_get_upmcrs(hba));
6652                 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6653                                        hba->errors);
6654                 ufshcd_set_link_broken(hba);
6655                 queue_eh_work = true;
6656         }
6657
6658         if (queue_eh_work) {
6659                 /*
6660                  * update the transfer error masks to sticky bits, let's do this
6661                  * irrespective of current ufshcd_state.
6662                  */
6663                 hba->saved_err |= hba->errors;
6664                 hba->saved_uic_err |= hba->uic_error;
6665
6666                 /* dump controller state before resetting */
6667                 if ((hba->saved_err &
6668                      (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6669                     (hba->saved_uic_err &&
6670                      (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6671                         dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6672                                         __func__, hba->saved_err,
6673                                         hba->saved_uic_err);
6674                         ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6675                                          "host_regs: ");
6676                         ufshcd_print_pwr_info(hba);
6677                 }
6678                 ufshcd_schedule_eh_work(hba);
6679                 retval |= IRQ_HANDLED;
6680         }
6681         /*
6682          * if (!queue_eh_work) -
6683          * Other errors are either non-fatal where host recovers
6684          * itself without s/w intervention or errors that will be
6685          * handled by the SCSI core layer.
6686          */
6687         hba->errors = 0;
6688         hba->uic_error = 0;
6689         spin_unlock(hba->host->host_lock);
6690         return retval;
6691 }
6692
6693 /**
6694  * ufshcd_tmc_handler - handle task management function completion
6695  * @hba: per adapter instance
6696  *
6697  * Returns
6698  *  IRQ_HANDLED - If interrupt is valid
6699  *  IRQ_NONE    - If invalid interrupt
6700  */
6701 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6702 {
6703         unsigned long flags, pending, issued;
6704         irqreturn_t ret = IRQ_NONE;
6705         int tag;
6706
6707         spin_lock_irqsave(hba->host->host_lock, flags);
6708         pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6709         issued = hba->outstanding_tasks & ~pending;
6710         for_each_set_bit(tag, &issued, hba->nutmrs) {
6711                 struct request *req = hba->tmf_rqs[tag];
6712                 struct completion *c = req->end_io_data;
6713
6714                 complete(c);
6715                 ret = IRQ_HANDLED;
6716         }
6717         spin_unlock_irqrestore(hba->host->host_lock, flags);
6718
6719         return ret;
6720 }
6721
6722 /**
6723  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6724  * @hba: per adapter instance
6725  *
6726  * Returns IRQ_HANDLED if interrupt is handled
6727  */
6728 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6729 {
6730         struct ufs_hw_queue *hwq;
6731         unsigned long outstanding_cqs;
6732         unsigned int nr_queues;
6733         int i, ret;
6734         u32 events;
6735
6736         ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6737         if (ret)
6738                 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6739
6740         /* Exclude the poll queues */
6741         nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6742         for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6743                 hwq = &hba->uhq[i];
6744
6745                 events = ufshcd_mcq_read_cqis(hba, i);
6746                 if (events)
6747                         ufshcd_mcq_write_cqis(hba, events, i);
6748
6749                 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6750                         ufshcd_mcq_poll_cqe_nolock(hba, hwq);
6751         }
6752
6753         return IRQ_HANDLED;
6754 }
6755
6756 /**
6757  * ufshcd_sl_intr - Interrupt service routine
6758  * @hba: per adapter instance
6759  * @intr_status: contains interrupts generated by the controller
6760  *
6761  * Returns
6762  *  IRQ_HANDLED - If interrupt is valid
6763  *  IRQ_NONE    - If invalid interrupt
6764  */
6765 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6766 {
6767         irqreturn_t retval = IRQ_NONE;
6768
6769         if (intr_status & UFSHCD_UIC_MASK)
6770                 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6771
6772         if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6773                 retval |= ufshcd_check_errors(hba, intr_status);
6774
6775         if (intr_status & UTP_TASK_REQ_COMPL)
6776                 retval |= ufshcd_tmc_handler(hba);
6777
6778         if (intr_status & UTP_TRANSFER_REQ_COMPL)
6779                 retval |= ufshcd_transfer_req_compl(hba);
6780
6781         if (intr_status & MCQ_CQ_EVENT_STATUS)
6782                 retval |= ufshcd_handle_mcq_cq_events(hba);
6783
6784         return retval;
6785 }
6786
6787 /**
6788  * ufshcd_intr - Main interrupt service routine
6789  * @irq: irq number
6790  * @__hba: pointer to adapter instance
6791  *
6792  * Returns
6793  *  IRQ_HANDLED - If interrupt is valid
6794  *  IRQ_NONE    - If invalid interrupt
6795  */
6796 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6797 {
6798         u32 intr_status, enabled_intr_status = 0;
6799         irqreturn_t retval = IRQ_NONE;
6800         struct ufs_hba *hba = __hba;
6801         int retries = hba->nutrs;
6802
6803         intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6804         hba->ufs_stats.last_intr_status = intr_status;
6805         hba->ufs_stats.last_intr_ts = local_clock();
6806
6807         /*
6808          * There could be max of hba->nutrs reqs in flight and in worst case
6809          * if the reqs get finished 1 by 1 after the interrupt status is
6810          * read, make sure we handle them by checking the interrupt status
6811          * again in a loop until we process all of the reqs before returning.
6812          */
6813         while (intr_status && retries--) {
6814                 enabled_intr_status =
6815                         intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6816                 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6817                 if (enabled_intr_status)
6818                         retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6819
6820                 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6821         }
6822
6823         if (enabled_intr_status && retval == IRQ_NONE &&
6824             (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6825              hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6826                 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6827                                         __func__,
6828                                         intr_status,
6829                                         hba->ufs_stats.last_intr_status,
6830                                         enabled_intr_status);
6831                 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6832         }
6833
6834         return retval;
6835 }
6836
6837 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6838 {
6839         int err = 0;
6840         u32 mask = 1 << tag;
6841         unsigned long flags;
6842
6843         if (!test_bit(tag, &hba->outstanding_tasks))
6844                 goto out;
6845
6846         spin_lock_irqsave(hba->host->host_lock, flags);
6847         ufshcd_utmrl_clear(hba, tag);
6848         spin_unlock_irqrestore(hba->host->host_lock, flags);
6849
6850         /* poll for max. 1 sec to clear door bell register by h/w */
6851         err = ufshcd_wait_for_register(hba,
6852                         REG_UTP_TASK_REQ_DOOR_BELL,
6853                         mask, 0, 1000, 1000);
6854
6855         dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6856                 tag, err ? "succeeded" : "failed");
6857
6858 out:
6859         return err;
6860 }
6861
6862 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6863                 struct utp_task_req_desc *treq, u8 tm_function)
6864 {
6865         struct request_queue *q = hba->tmf_queue;
6866         struct Scsi_Host *host = hba->host;
6867         DECLARE_COMPLETION_ONSTACK(wait);
6868         struct request *req;
6869         unsigned long flags;
6870         int task_tag, err;
6871
6872         /*
6873          * blk_mq_alloc_request() is used here only to get a free tag.
6874          */
6875         req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6876         if (IS_ERR(req))
6877                 return PTR_ERR(req);
6878
6879         req->end_io_data = &wait;
6880         ufshcd_hold(hba, false);
6881
6882         spin_lock_irqsave(host->host_lock, flags);
6883
6884         task_tag = req->tag;
6885         WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6886                   task_tag);
6887         hba->tmf_rqs[req->tag] = req;
6888         treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6889
6890         memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6891         ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6892
6893         /* send command to the controller */
6894         __set_bit(task_tag, &hba->outstanding_tasks);
6895
6896         ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6897         /* Make sure that doorbell is committed immediately */
6898         wmb();
6899
6900         spin_unlock_irqrestore(host->host_lock, flags);
6901
6902         ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6903
6904         /* wait until the task management command is completed */
6905         err = wait_for_completion_io_timeout(&wait,
6906                         msecs_to_jiffies(TM_CMD_TIMEOUT));
6907         if (!err) {
6908                 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6909                 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6910                                 __func__, tm_function);
6911                 if (ufshcd_clear_tm_cmd(hba, task_tag))
6912                         dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6913                                         __func__, task_tag);
6914                 err = -ETIMEDOUT;
6915         } else {
6916                 err = 0;
6917                 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6918
6919                 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6920         }
6921
6922         spin_lock_irqsave(hba->host->host_lock, flags);
6923         hba->tmf_rqs[req->tag] = NULL;
6924         __clear_bit(task_tag, &hba->outstanding_tasks);
6925         spin_unlock_irqrestore(hba->host->host_lock, flags);
6926
6927         ufshcd_release(hba);
6928         blk_mq_free_request(req);
6929
6930         return err;
6931 }
6932
6933 /**
6934  * ufshcd_issue_tm_cmd - issues task management commands to controller
6935  * @hba: per adapter instance
6936  * @lun_id: LUN ID to which TM command is sent
6937  * @task_id: task ID to which the TM command is applicable
6938  * @tm_function: task management function opcode
6939  * @tm_response: task management service response return value
6940  *
6941  * Returns non-zero value on error, zero on success.
6942  */
6943 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6944                 u8 tm_function, u8 *tm_response)
6945 {
6946         struct utp_task_req_desc treq = { { 0 }, };
6947         enum utp_ocs ocs_value;
6948         int err;
6949
6950         /* Configure task request descriptor */
6951         treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6952         treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6953
6954         /* Configure task request UPIU */
6955         treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6956                                   cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6957         treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6958
6959         /*
6960          * The host shall provide the same value for LUN field in the basic
6961          * header and for Input Parameter.
6962          */
6963         treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6964         treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6965
6966         err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6967         if (err == -ETIMEDOUT)
6968                 return err;
6969
6970         ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6971         if (ocs_value != OCS_SUCCESS)
6972                 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6973                                 __func__, ocs_value);
6974         else if (tm_response)
6975                 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6976                                 MASK_TM_SERVICE_RESP;
6977         return err;
6978 }
6979
6980 /**
6981  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6982  * @hba:        per-adapter instance
6983  * @req_upiu:   upiu request
6984  * @rsp_upiu:   upiu reply
6985  * @desc_buff:  pointer to descriptor buffer, NULL if NA
6986  * @buff_len:   descriptor size, 0 if NA
6987  * @cmd_type:   specifies the type (NOP, Query...)
6988  * @desc_op:    descriptor operation
6989  *
6990  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6991  * Therefore, it "rides" the device management infrastructure: uses its tag and
6992  * tasks work queues.
6993  *
6994  * Since there is only one available tag for device management commands,
6995  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6996  */
6997 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6998                                         struct utp_upiu_req *req_upiu,
6999                                         struct utp_upiu_req *rsp_upiu,
7000                                         u8 *desc_buff, int *buff_len,
7001                                         enum dev_cmd_type cmd_type,
7002                                         enum query_opcode desc_op)
7003 {
7004         DECLARE_COMPLETION_ONSTACK(wait);
7005         const u32 tag = hba->reserved_slot;
7006         struct ufshcd_lrb *lrbp;
7007         int err = 0;
7008         u8 upiu_flags;
7009
7010         /* Protects use of hba->reserved_slot. */
7011         lockdep_assert_held(&hba->dev_cmd.lock);
7012
7013         down_read(&hba->clk_scaling_lock);
7014
7015         lrbp = &hba->lrb[tag];
7016         WARN_ON(lrbp->cmd);
7017         lrbp->cmd = NULL;
7018         lrbp->task_tag = tag;
7019         lrbp->lun = 0;
7020         lrbp->intr_cmd = true;
7021         ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7022         hba->dev_cmd.type = cmd_type;
7023
7024         if (hba->ufs_version <= ufshci_version(1, 1))
7025                 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7026         else
7027                 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7028
7029         /* update the task tag in the request upiu */
7030         req_upiu->header.dword_0 |= cpu_to_be32(tag);
7031
7032         ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7033
7034         /* just copy the upiu request as it is */
7035         memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7036         if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7037                 /* The Data Segment Area is optional depending upon the query
7038                  * function value. for WRITE DESCRIPTOR, the data segment
7039                  * follows right after the tsf.
7040                  */
7041                 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7042                 *buff_len = 0;
7043         }
7044
7045         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7046
7047         hba->dev_cmd.complete = &wait;
7048
7049         ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7050
7051         ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7052         /*
7053          * ignore the returning value here - ufshcd_check_query_response is
7054          * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7055          * read the response directly ignoring all errors.
7056          */
7057         ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7058
7059         /* just copy the upiu response as it is */
7060         memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7061         if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7062                 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7063                 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7064                                MASK_QUERY_DATA_SEG_LEN;
7065
7066                 if (*buff_len >= resp_len) {
7067                         memcpy(desc_buff, descp, resp_len);
7068                         *buff_len = resp_len;
7069                 } else {
7070                         dev_warn(hba->dev,
7071                                  "%s: rsp size %d is bigger than buffer size %d",
7072                                  __func__, resp_len, *buff_len);
7073                         *buff_len = 0;
7074                         err = -EINVAL;
7075                 }
7076         }
7077         ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7078                                     (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7079
7080         up_read(&hba->clk_scaling_lock);
7081         return err;
7082 }
7083
7084 /**
7085  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7086  * @hba:        per-adapter instance
7087  * @req_upiu:   upiu request
7088  * @rsp_upiu:   upiu reply - only 8 DW as we do not support scsi commands
7089  * @msgcode:    message code, one of UPIU Transaction Codes Initiator to Target
7090  * @desc_buff:  pointer to descriptor buffer, NULL if NA
7091  * @buff_len:   descriptor size, 0 if NA
7092  * @desc_op:    descriptor operation
7093  *
7094  * Supports UTP Transfer requests (nop and query), and UTP Task
7095  * Management requests.
7096  * It is up to the caller to fill the upiu conent properly, as it will
7097  * be copied without any further input validations.
7098  */
7099 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7100                              struct utp_upiu_req *req_upiu,
7101                              struct utp_upiu_req *rsp_upiu,
7102                              int msgcode,
7103                              u8 *desc_buff, int *buff_len,
7104                              enum query_opcode desc_op)
7105 {
7106         int err;
7107         enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7108         struct utp_task_req_desc treq = { { 0 }, };
7109         enum utp_ocs ocs_value;
7110         u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7111
7112         switch (msgcode) {
7113         case UPIU_TRANSACTION_NOP_OUT:
7114                 cmd_type = DEV_CMD_TYPE_NOP;
7115                 fallthrough;
7116         case UPIU_TRANSACTION_QUERY_REQ:
7117                 ufshcd_hold(hba, false);
7118                 mutex_lock(&hba->dev_cmd.lock);
7119                 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7120                                                    desc_buff, buff_len,
7121                                                    cmd_type, desc_op);
7122                 mutex_unlock(&hba->dev_cmd.lock);
7123                 ufshcd_release(hba);
7124
7125                 break;
7126         case UPIU_TRANSACTION_TASK_REQ:
7127                 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7128                 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7129
7130                 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7131
7132                 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7133                 if (err == -ETIMEDOUT)
7134                         break;
7135
7136                 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7137                 if (ocs_value != OCS_SUCCESS) {
7138                         dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7139                                 ocs_value);
7140                         break;
7141                 }
7142
7143                 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7144
7145                 break;
7146         default:
7147                 err = -EINVAL;
7148
7149                 break;
7150         }
7151
7152         return err;
7153 }
7154
7155 /**
7156  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7157  * @hba:        per adapter instance
7158  * @req_upiu:   upiu request
7159  * @rsp_upiu:   upiu reply
7160  * @req_ehs:    EHS field which contains Advanced RPMB Request Message
7161  * @rsp_ehs:    EHS field which returns Advanced RPMB Response Message
7162  * @sg_cnt:     The number of sg lists actually used
7163  * @sg_list:    Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7164  * @dir:        DMA direction
7165  *
7166  * Returns zero on success, non-zero on failure
7167  */
7168 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7169                          struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7170                          struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7171                          enum dma_data_direction dir)
7172 {
7173         DECLARE_COMPLETION_ONSTACK(wait);
7174         const u32 tag = hba->reserved_slot;
7175         struct ufshcd_lrb *lrbp;
7176         int err = 0;
7177         int result;
7178         u8 upiu_flags;
7179         u8 *ehs_data;
7180         u16 ehs_len;
7181
7182         /* Protects use of hba->reserved_slot. */
7183         ufshcd_hold(hba, false);
7184         mutex_lock(&hba->dev_cmd.lock);
7185         down_read(&hba->clk_scaling_lock);
7186
7187         lrbp = &hba->lrb[tag];
7188         WARN_ON(lrbp->cmd);
7189         lrbp->cmd = NULL;
7190         lrbp->task_tag = tag;
7191         lrbp->lun = UFS_UPIU_RPMB_WLUN;
7192
7193         lrbp->intr_cmd = true;
7194         ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7195         hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7196
7197         /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7198         lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7199
7200         ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7201
7202         /* update the task tag and LUN in the request upiu */
7203         req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag);
7204
7205         /* copy the UPIU(contains CDB) request as it is */
7206         memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7207         /* Copy EHS, starting with byte32, immediately after the CDB package */
7208         memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7209
7210         if (dir != DMA_NONE && sg_list)
7211                 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7212
7213         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7214
7215         hba->dev_cmd.complete = &wait;
7216
7217         ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7218
7219         err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7220
7221         if (!err) {
7222                 /* Just copy the upiu response as it is */
7223                 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7224                 /* Get the response UPIU result */
7225                 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
7226
7227                 ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24;
7228                 /*
7229                  * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7230                  * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7231                  * Message is 02h
7232                  */
7233                 if (ehs_len == 2 && rsp_ehs) {
7234                         /*
7235                          * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7236                          * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7237                          */
7238                         ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7239                         memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7240                 }
7241         }
7242
7243         up_read(&hba->clk_scaling_lock);
7244         mutex_unlock(&hba->dev_cmd.lock);
7245         ufshcd_release(hba);
7246         return err ? : result;
7247 }
7248
7249 /**
7250  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7251  * @cmd: SCSI command pointer
7252  *
7253  * Returns SUCCESS/FAILED
7254  */
7255 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7256 {
7257         unsigned long flags, pending_reqs = 0, not_cleared = 0;
7258         struct Scsi_Host *host;
7259         struct ufs_hba *hba;
7260         u32 pos;
7261         int err;
7262         u8 resp = 0xF, lun;
7263
7264         host = cmd->device->host;
7265         hba = shost_priv(host);
7266
7267         lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7268         err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7269         if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7270                 if (!err)
7271                         err = resp;
7272                 goto out;
7273         }
7274
7275         /* clear the commands that were pending for corresponding LUN */
7276         spin_lock_irqsave(&hba->outstanding_lock, flags);
7277         for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7278                 if (hba->lrb[pos].lun == lun)
7279                         __set_bit(pos, &pending_reqs);
7280         hba->outstanding_reqs &= ~pending_reqs;
7281         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7282
7283         if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7284                 spin_lock_irqsave(&hba->outstanding_lock, flags);
7285                 not_cleared = pending_reqs &
7286                         ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7287                 hba->outstanding_reqs |= not_cleared;
7288                 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7289
7290                 dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7291                         __func__, not_cleared);
7292         }
7293         __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7294
7295 out:
7296         hba->req_abort_count = 0;
7297         ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7298         if (!err) {
7299                 err = SUCCESS;
7300         } else {
7301                 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7302                 err = FAILED;
7303         }
7304         return err;
7305 }
7306
7307 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7308 {
7309         struct ufshcd_lrb *lrbp;
7310         int tag;
7311
7312         for_each_set_bit(tag, &bitmap, hba->nutrs) {
7313                 lrbp = &hba->lrb[tag];
7314                 lrbp->req_abort_skip = true;
7315         }
7316 }
7317
7318 /**
7319  * ufshcd_try_to_abort_task - abort a specific task
7320  * @hba: Pointer to adapter instance
7321  * @tag: Task tag/index to be aborted
7322  *
7323  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7324  * command, and in host controller by clearing the door-bell register. There can
7325  * be race between controller sending the command to the device while abort is
7326  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7327  * really issued and then try to abort it.
7328  *
7329  * Returns zero on success, non-zero on failure
7330  */
7331 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7332 {
7333         struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7334         int err = 0;
7335         int poll_cnt;
7336         u8 resp = 0xF;
7337         u32 reg;
7338
7339         for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7340                 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7341                                 UFS_QUERY_TASK, &resp);
7342                 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7343                         /* cmd pending in the device */
7344                         dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7345                                 __func__, tag);
7346                         break;
7347                 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7348                         /*
7349                          * cmd not pending in the device, check if it is
7350                          * in transition.
7351                          */
7352                         dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7353                                 __func__, tag);
7354                         reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7355                         if (reg & (1 << tag)) {
7356                                 /* sleep for max. 200us to stabilize */
7357                                 usleep_range(100, 200);
7358                                 continue;
7359                         }
7360                         /* command completed already */
7361                         dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7362                                 __func__, tag);
7363                         goto out;
7364                 } else {
7365                         dev_err(hba->dev,
7366                                 "%s: no response from device. tag = %d, err %d\n",
7367                                 __func__, tag, err);
7368                         if (!err)
7369                                 err = resp; /* service response error */
7370                         goto out;
7371                 }
7372         }
7373
7374         if (!poll_cnt) {
7375                 err = -EBUSY;
7376                 goto out;
7377         }
7378
7379         err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7380                         UFS_ABORT_TASK, &resp);
7381         if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7382                 if (!err) {
7383                         err = resp; /* service response error */
7384                         dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7385                                 __func__, tag, err);
7386                 }
7387                 goto out;
7388         }
7389
7390         err = ufshcd_clear_cmds(hba, 1U << tag);
7391         if (err)
7392                 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7393                         __func__, tag, err);
7394
7395 out:
7396         return err;
7397 }
7398
7399 /**
7400  * ufshcd_abort - scsi host template eh_abort_handler callback
7401  * @cmd: SCSI command pointer
7402  *
7403  * Returns SUCCESS/FAILED
7404  */
7405 static int ufshcd_abort(struct scsi_cmnd *cmd)
7406 {
7407         struct Scsi_Host *host = cmd->device->host;
7408         struct ufs_hba *hba = shost_priv(host);
7409         int tag = scsi_cmd_to_rq(cmd)->tag;
7410         struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7411         unsigned long flags;
7412         int err = FAILED;
7413         bool outstanding;
7414         u32 reg;
7415
7416         WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7417
7418         ufshcd_hold(hba, false);
7419         reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7420         /* If command is already aborted/completed, return FAILED. */
7421         if (!(test_bit(tag, &hba->outstanding_reqs))) {
7422                 dev_err(hba->dev,
7423                         "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7424                         __func__, tag, hba->outstanding_reqs, reg);
7425                 goto release;
7426         }
7427
7428         /* Print Transfer Request of aborted task */
7429         dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7430
7431         /*
7432          * Print detailed info about aborted request.
7433          * As more than one request might get aborted at the same time,
7434          * print full information only for the first aborted request in order
7435          * to reduce repeated printouts. For other aborted requests only print
7436          * basic details.
7437          */
7438         scsi_print_command(cmd);
7439         if (!hba->req_abort_count) {
7440                 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7441                 ufshcd_print_evt_hist(hba);
7442                 ufshcd_print_host_state(hba);
7443                 ufshcd_print_pwr_info(hba);
7444                 ufshcd_print_trs(hba, 1 << tag, true);
7445         } else {
7446                 ufshcd_print_trs(hba, 1 << tag, false);
7447         }
7448         hba->req_abort_count++;
7449
7450         if (!(reg & (1 << tag))) {
7451                 dev_err(hba->dev,
7452                 "%s: cmd was completed, but without a notifying intr, tag = %d",
7453                 __func__, tag);
7454                 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7455                 goto release;
7456         }
7457
7458         /*
7459          * Task abort to the device W-LUN is illegal. When this command
7460          * will fail, due to spec violation, scsi err handling next step
7461          * will be to send LU reset which, again, is a spec violation.
7462          * To avoid these unnecessary/illegal steps, first we clean up
7463          * the lrb taken by this cmd and re-set it in outstanding_reqs,
7464          * then queue the eh_work and bail.
7465          */
7466         if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7467                 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7468
7469                 spin_lock_irqsave(host->host_lock, flags);
7470                 hba->force_reset = true;
7471                 ufshcd_schedule_eh_work(hba);
7472                 spin_unlock_irqrestore(host->host_lock, flags);
7473                 goto release;
7474         }
7475
7476         /* Skip task abort in case previous aborts failed and report failure */
7477         if (lrbp->req_abort_skip) {
7478                 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7479                 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7480                 goto release;
7481         }
7482
7483         err = ufshcd_try_to_abort_task(hba, tag);
7484         if (err) {
7485                 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7486                 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7487                 err = FAILED;
7488                 goto release;
7489         }
7490
7491         /*
7492          * Clear the corresponding bit from outstanding_reqs since the command
7493          * has been aborted successfully.
7494          */
7495         spin_lock_irqsave(&hba->outstanding_lock, flags);
7496         outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7497         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7498
7499         if (outstanding)
7500                 ufshcd_release_scsi_cmd(hba, lrbp);
7501
7502         err = SUCCESS;
7503
7504 release:
7505         /* Matches the ufshcd_hold() call at the start of this function. */
7506         ufshcd_release(hba);
7507         return err;
7508 }
7509
7510 /**
7511  * ufshcd_host_reset_and_restore - reset and restore host controller
7512  * @hba: per-adapter instance
7513  *
7514  * Note that host controller reset may issue DME_RESET to
7515  * local and remote (device) Uni-Pro stack and the attributes
7516  * are reset to default state.
7517  *
7518  * Returns zero on success, non-zero on failure
7519  */
7520 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7521 {
7522         int err;
7523
7524         /*
7525          * Stop the host controller and complete the requests
7526          * cleared by h/w
7527          */
7528         ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7529         ufshcd_hba_stop(hba);
7530         hba->silence_err_logs = true;
7531         ufshcd_complete_requests(hba);
7532         hba->silence_err_logs = false;
7533
7534         /* scale up clocks to max frequency before full reinitialization */
7535         ufshcd_scale_clks(hba, true);
7536
7537         err = ufshcd_hba_enable(hba);
7538
7539         /* Establish the link again and restore the device */
7540         if (!err)
7541                 err = ufshcd_probe_hba(hba, false);
7542
7543         if (err)
7544                 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7545         ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7546         return err;
7547 }
7548
7549 /**
7550  * ufshcd_reset_and_restore - reset and re-initialize host/device
7551  * @hba: per-adapter instance
7552  *
7553  * Reset and recover device, host and re-establish link. This
7554  * is helpful to recover the communication in fatal error conditions.
7555  *
7556  * Returns zero on success, non-zero on failure
7557  */
7558 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7559 {
7560         u32 saved_err = 0;
7561         u32 saved_uic_err = 0;
7562         int err = 0;
7563         unsigned long flags;
7564         int retries = MAX_HOST_RESET_RETRIES;
7565
7566         spin_lock_irqsave(hba->host->host_lock, flags);
7567         do {
7568                 /*
7569                  * This is a fresh start, cache and clear saved error first,
7570                  * in case new error generated during reset and restore.
7571                  */
7572                 saved_err |= hba->saved_err;
7573                 saved_uic_err |= hba->saved_uic_err;
7574                 hba->saved_err = 0;
7575                 hba->saved_uic_err = 0;
7576                 hba->force_reset = false;
7577                 hba->ufshcd_state = UFSHCD_STATE_RESET;
7578                 spin_unlock_irqrestore(hba->host->host_lock, flags);
7579
7580                 /* Reset the attached device */
7581                 ufshcd_device_reset(hba);
7582
7583                 err = ufshcd_host_reset_and_restore(hba);
7584
7585                 spin_lock_irqsave(hba->host->host_lock, flags);
7586                 if (err)
7587                         continue;
7588                 /* Do not exit unless operational or dead */
7589                 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7590                     hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7591                     hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7592                         err = -EAGAIN;
7593         } while (err && --retries);
7594
7595         /*
7596          * Inform scsi mid-layer that we did reset and allow to handle
7597          * Unit Attention properly.
7598          */
7599         scsi_report_bus_reset(hba->host, 0);
7600         if (err) {
7601                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7602                 hba->saved_err |= saved_err;
7603                 hba->saved_uic_err |= saved_uic_err;
7604         }
7605         spin_unlock_irqrestore(hba->host->host_lock, flags);
7606
7607         return err;
7608 }
7609
7610 /**
7611  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7612  * @cmd: SCSI command pointer
7613  *
7614  * Returns SUCCESS/FAILED
7615  */
7616 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7617 {
7618         int err = SUCCESS;
7619         unsigned long flags;
7620         struct ufs_hba *hba;
7621
7622         hba = shost_priv(cmd->device->host);
7623
7624         spin_lock_irqsave(hba->host->host_lock, flags);
7625         hba->force_reset = true;
7626         ufshcd_schedule_eh_work(hba);
7627         dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7628         spin_unlock_irqrestore(hba->host->host_lock, flags);
7629
7630         flush_work(&hba->eh_work);
7631
7632         spin_lock_irqsave(hba->host->host_lock, flags);
7633         if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7634                 err = FAILED;
7635         spin_unlock_irqrestore(hba->host->host_lock, flags);
7636
7637         return err;
7638 }
7639
7640 /**
7641  * ufshcd_get_max_icc_level - calculate the ICC level
7642  * @sup_curr_uA: max. current supported by the regulator
7643  * @start_scan: row at the desc table to start scan from
7644  * @buff: power descriptor buffer
7645  *
7646  * Returns calculated max ICC level for specific regulator
7647  */
7648 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7649                                     const char *buff)
7650 {
7651         int i;
7652         int curr_uA;
7653         u16 data;
7654         u16 unit;
7655
7656         for (i = start_scan; i >= 0; i--) {
7657                 data = get_unaligned_be16(&buff[2 * i]);
7658                 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7659                                                 ATTR_ICC_LVL_UNIT_OFFSET;
7660                 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7661                 switch (unit) {
7662                 case UFSHCD_NANO_AMP:
7663                         curr_uA = curr_uA / 1000;
7664                         break;
7665                 case UFSHCD_MILI_AMP:
7666                         curr_uA = curr_uA * 1000;
7667                         break;
7668                 case UFSHCD_AMP:
7669                         curr_uA = curr_uA * 1000 * 1000;
7670                         break;
7671                 case UFSHCD_MICRO_AMP:
7672                 default:
7673                         break;
7674                 }
7675                 if (sup_curr_uA >= curr_uA)
7676                         break;
7677         }
7678         if (i < 0) {
7679                 i = 0;
7680                 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7681         }
7682
7683         return (u32)i;
7684 }
7685
7686 /**
7687  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7688  * In case regulators are not initialized we'll return 0
7689  * @hba: per-adapter instance
7690  * @desc_buf: power descriptor buffer to extract ICC levels from.
7691  *
7692  * Returns calculated ICC level
7693  */
7694 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7695                                                 const u8 *desc_buf)
7696 {
7697         u32 icc_level = 0;
7698
7699         if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7700                                                 !hba->vreg_info.vccq2) {
7701                 /*
7702                  * Using dev_dbg to avoid messages during runtime PM to avoid
7703                  * never-ending cycles of messages written back to storage by
7704                  * user space causing runtime resume, causing more messages and
7705                  * so on.
7706                  */
7707                 dev_dbg(hba->dev,
7708                         "%s: Regulator capability was not set, actvIccLevel=%d",
7709                                                         __func__, icc_level);
7710                 goto out;
7711         }
7712
7713         if (hba->vreg_info.vcc->max_uA)
7714                 icc_level = ufshcd_get_max_icc_level(
7715                                 hba->vreg_info.vcc->max_uA,
7716                                 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7717                                 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7718
7719         if (hba->vreg_info.vccq->max_uA)
7720                 icc_level = ufshcd_get_max_icc_level(
7721                                 hba->vreg_info.vccq->max_uA,
7722                                 icc_level,
7723                                 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7724
7725         if (hba->vreg_info.vccq2->max_uA)
7726                 icc_level = ufshcd_get_max_icc_level(
7727                                 hba->vreg_info.vccq2->max_uA,
7728                                 icc_level,
7729                                 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7730 out:
7731         return icc_level;
7732 }
7733
7734 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7735 {
7736         int ret;
7737         u8 *desc_buf;
7738         u32 icc_level;
7739
7740         desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7741         if (!desc_buf)
7742                 return;
7743
7744         ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7745                                      desc_buf, QUERY_DESC_MAX_SIZE);
7746         if (ret) {
7747                 dev_err(hba->dev,
7748                         "%s: Failed reading power descriptor ret = %d",
7749                         __func__, ret);
7750                 goto out;
7751         }
7752
7753         icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7754         dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7755
7756         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7757                 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7758
7759         if (ret)
7760                 dev_err(hba->dev,
7761                         "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7762                         __func__, icc_level, ret);
7763
7764 out:
7765         kfree(desc_buf);
7766 }
7767
7768 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7769 {
7770         scsi_autopm_get_device(sdev);
7771         blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7772         if (sdev->rpm_autosuspend)
7773                 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7774                                                  RPM_AUTOSUSPEND_DELAY_MS);
7775         scsi_autopm_put_device(sdev);
7776 }
7777
7778 /**
7779  * ufshcd_scsi_add_wlus - Adds required W-LUs
7780  * @hba: per-adapter instance
7781  *
7782  * UFS device specification requires the UFS devices to support 4 well known
7783  * logical units:
7784  *      "REPORT_LUNS" (address: 01h)
7785  *      "UFS Device" (address: 50h)
7786  *      "RPMB" (address: 44h)
7787  *      "BOOT" (address: 30h)
7788  * UFS device's power management needs to be controlled by "POWER CONDITION"
7789  * field of SSU (START STOP UNIT) command. But this "power condition" field
7790  * will take effect only when its sent to "UFS device" well known logical unit
7791  * hence we require the scsi_device instance to represent this logical unit in
7792  * order for the UFS host driver to send the SSU command for power management.
7793  *
7794  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7795  * Block) LU so user space process can control this LU. User space may also
7796  * want to have access to BOOT LU.
7797  *
7798  * This function adds scsi device instances for each of all well known LUs
7799  * (except "REPORT LUNS" LU).
7800  *
7801  * Returns zero on success (all required W-LUs are added successfully),
7802  * non-zero error value on failure (if failed to add any of the required W-LU).
7803  */
7804 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7805 {
7806         int ret = 0;
7807         struct scsi_device *sdev_boot, *sdev_rpmb;
7808
7809         hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7810                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7811         if (IS_ERR(hba->ufs_device_wlun)) {
7812                 ret = PTR_ERR(hba->ufs_device_wlun);
7813                 hba->ufs_device_wlun = NULL;
7814                 goto out;
7815         }
7816         scsi_device_put(hba->ufs_device_wlun);
7817
7818         sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7819                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7820         if (IS_ERR(sdev_rpmb)) {
7821                 ret = PTR_ERR(sdev_rpmb);
7822                 goto remove_ufs_device_wlun;
7823         }
7824         ufshcd_blk_pm_runtime_init(sdev_rpmb);
7825         scsi_device_put(sdev_rpmb);
7826
7827         sdev_boot = __scsi_add_device(hba->host, 0, 0,
7828                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7829         if (IS_ERR(sdev_boot)) {
7830                 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7831         } else {
7832                 ufshcd_blk_pm_runtime_init(sdev_boot);
7833                 scsi_device_put(sdev_boot);
7834         }
7835         goto out;
7836
7837 remove_ufs_device_wlun:
7838         scsi_remove_device(hba->ufs_device_wlun);
7839 out:
7840         return ret;
7841 }
7842
7843 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7844 {
7845         struct ufs_dev_info *dev_info = &hba->dev_info;
7846         u8 lun;
7847         u32 d_lu_wb_buf_alloc;
7848         u32 ext_ufs_feature;
7849
7850         if (!ufshcd_is_wb_allowed(hba))
7851                 return;
7852
7853         /*
7854          * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7855          * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7856          * enabled
7857          */
7858         if (!(dev_info->wspecversion >= 0x310 ||
7859               dev_info->wspecversion == 0x220 ||
7860              (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7861                 goto wb_disabled;
7862
7863         ext_ufs_feature = get_unaligned_be32(desc_buf +
7864                                         DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7865
7866         if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7867                 goto wb_disabled;
7868
7869         /*
7870          * WB may be supported but not configured while provisioning. The spec
7871          * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7872          * buffer configured.
7873          */
7874         dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7875
7876         dev_info->b_presrv_uspc_en =
7877                 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7878
7879         if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7880                 if (!get_unaligned_be32(desc_buf +
7881                                    DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7882                         goto wb_disabled;
7883         } else {
7884                 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7885                         d_lu_wb_buf_alloc = 0;
7886                         ufshcd_read_unit_desc_param(hba,
7887                                         lun,
7888                                         UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7889                                         (u8 *)&d_lu_wb_buf_alloc,
7890                                         sizeof(d_lu_wb_buf_alloc));
7891                         if (d_lu_wb_buf_alloc) {
7892                                 dev_info->wb_dedicated_lu = lun;
7893                                 break;
7894                         }
7895                 }
7896
7897                 if (!d_lu_wb_buf_alloc)
7898                         goto wb_disabled;
7899         }
7900
7901         if (!ufshcd_is_wb_buf_lifetime_available(hba))
7902                 goto wb_disabled;
7903
7904         return;
7905
7906 wb_disabled:
7907         hba->caps &= ~UFSHCD_CAP_WB_EN;
7908 }
7909
7910 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7911 {
7912         struct ufs_dev_info *dev_info = &hba->dev_info;
7913         u32 ext_ufs_feature;
7914         u8 mask = 0;
7915
7916         if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7917                 return;
7918
7919         ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7920
7921         if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7922                 mask |= MASK_EE_TOO_LOW_TEMP;
7923
7924         if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7925                 mask |= MASK_EE_TOO_HIGH_TEMP;
7926
7927         if (mask) {
7928                 ufshcd_enable_ee(hba, mask);
7929                 ufs_hwmon_probe(hba, mask);
7930         }
7931 }
7932
7933 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
7934 {
7935         struct ufs_dev_info *dev_info = &hba->dev_info;
7936         u32 ext_ufs_feature;
7937         u32 ext_iid_en = 0;
7938         int err;
7939
7940         /* Only UFS-4.0 and above may support EXT_IID */
7941         if (dev_info->wspecversion < 0x400)
7942                 goto out;
7943
7944         ext_ufs_feature = get_unaligned_be32(desc_buf +
7945                                      DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7946         if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
7947                 goto out;
7948
7949         err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7950                                       QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
7951         if (err)
7952                 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
7953
7954 out:
7955         dev_info->b_ext_iid_en = ext_iid_en;
7956 }
7957
7958 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7959                              const struct ufs_dev_quirk *fixups)
7960 {
7961         const struct ufs_dev_quirk *f;
7962         struct ufs_dev_info *dev_info = &hba->dev_info;
7963
7964         if (!fixups)
7965                 return;
7966
7967         for (f = fixups; f->quirk; f++) {
7968                 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7969                      f->wmanufacturerid == UFS_ANY_VENDOR) &&
7970                      ((dev_info->model &&
7971                        STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7972                       !strcmp(f->model, UFS_ANY_MODEL)))
7973                         hba->dev_quirks |= f->quirk;
7974         }
7975 }
7976 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7977
7978 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7979 {
7980         /* fix by general quirk table */
7981         ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7982
7983         /* allow vendors to fix quirks */
7984         ufshcd_vops_fixup_dev_quirks(hba);
7985 }
7986
7987 static int ufs_get_device_desc(struct ufs_hba *hba)
7988 {
7989         int err;
7990         u8 model_index;
7991         u8 b_ufs_feature_sup;
7992         u8 *desc_buf;
7993         struct ufs_dev_info *dev_info = &hba->dev_info;
7994
7995         desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7996         if (!desc_buf) {
7997                 err = -ENOMEM;
7998                 goto out;
7999         }
8000
8001         err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8002                                      QUERY_DESC_MAX_SIZE);
8003         if (err) {
8004                 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8005                         __func__, err);
8006                 goto out;
8007         }
8008
8009         /*
8010          * getting vendor (manufacturerID) and Bank Index in big endian
8011          * format
8012          */
8013         dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8014                                      desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8015
8016         /* getting Specification Version in big endian format */
8017         dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8018                                       desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8019         dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8020         b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
8021
8022         model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8023
8024         if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
8025             (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
8026                 bool hpb_en = false;
8027
8028                 ufshpb_get_dev_info(hba, desc_buf);
8029
8030                 if (!ufshpb_is_legacy(hba))
8031                         err = ufshcd_query_flag_retry(hba,
8032                                                       UPIU_QUERY_OPCODE_READ_FLAG,
8033                                                       QUERY_FLAG_IDN_HPB_EN, 0,
8034                                                       &hpb_en);
8035
8036                 if (ufshpb_is_legacy(hba) || (!err && hpb_en))
8037                         dev_info->hpb_enabled = true;
8038         }
8039
8040         err = ufshcd_read_string_desc(hba, model_index,
8041                                       &dev_info->model, SD_ASCII_STD);
8042         if (err < 0) {
8043                 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8044                         __func__, err);
8045                 goto out;
8046         }
8047
8048         hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8049                 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8050
8051         ufs_fixup_device_setup(hba);
8052
8053         ufshcd_wb_probe(hba, desc_buf);
8054
8055         ufshcd_temp_notif_probe(hba, desc_buf);
8056
8057         if (hba->ext_iid_sup)
8058                 ufshcd_ext_iid_probe(hba, desc_buf);
8059
8060         /*
8061          * ufshcd_read_string_desc returns size of the string
8062          * reset the error value
8063          */
8064         err = 0;
8065
8066 out:
8067         kfree(desc_buf);
8068         return err;
8069 }
8070
8071 static void ufs_put_device_desc(struct ufs_hba *hba)
8072 {
8073         struct ufs_dev_info *dev_info = &hba->dev_info;
8074
8075         kfree(dev_info->model);
8076         dev_info->model = NULL;
8077 }
8078
8079 /**
8080  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8081  * @hba: per-adapter instance
8082  *
8083  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8084  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8085  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8086  * the hibern8 exit latency.
8087  *
8088  * Returns zero on success, non-zero error value on failure.
8089  */
8090 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8091 {
8092         int ret = 0;
8093         u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8094
8095         ret = ufshcd_dme_peer_get(hba,
8096                                   UIC_ARG_MIB_SEL(
8097                                         RX_MIN_ACTIVATETIME_CAPABILITY,
8098                                         UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8099                                   &peer_rx_min_activatetime);
8100         if (ret)
8101                 goto out;
8102
8103         /* make sure proper unit conversion is applied */
8104         tuned_pa_tactivate =
8105                 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8106                  / PA_TACTIVATE_TIME_UNIT_US);
8107         ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8108                              tuned_pa_tactivate);
8109
8110 out:
8111         return ret;
8112 }
8113
8114 /**
8115  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8116  * @hba: per-adapter instance
8117  *
8118  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8119  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8120  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8121  * This optimal value can help reduce the hibern8 exit latency.
8122  *
8123  * Returns zero on success, non-zero error value on failure.
8124  */
8125 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8126 {
8127         int ret = 0;
8128         u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8129         u32 max_hibern8_time, tuned_pa_hibern8time;
8130
8131         ret = ufshcd_dme_get(hba,
8132                              UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8133                                         UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8134                                   &local_tx_hibern8_time_cap);
8135         if (ret)
8136                 goto out;
8137
8138         ret = ufshcd_dme_peer_get(hba,
8139                                   UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8140                                         UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8141                                   &peer_rx_hibern8_time_cap);
8142         if (ret)
8143                 goto out;
8144
8145         max_hibern8_time = max(local_tx_hibern8_time_cap,
8146                                peer_rx_hibern8_time_cap);
8147         /* make sure proper unit conversion is applied */
8148         tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8149                                 / PA_HIBERN8_TIME_UNIT_US);
8150         ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8151                              tuned_pa_hibern8time);
8152 out:
8153         return ret;
8154 }
8155
8156 /**
8157  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8158  * less than device PA_TACTIVATE time.
8159  * @hba: per-adapter instance
8160  *
8161  * Some UFS devices require host PA_TACTIVATE to be lower than device
8162  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8163  * for such devices.
8164  *
8165  * Returns zero on success, non-zero error value on failure.
8166  */
8167 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8168 {
8169         int ret = 0;
8170         u32 granularity, peer_granularity;
8171         u32 pa_tactivate, peer_pa_tactivate;
8172         u32 pa_tactivate_us, peer_pa_tactivate_us;
8173         static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8174
8175         ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8176                                   &granularity);
8177         if (ret)
8178                 goto out;
8179
8180         ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8181                                   &peer_granularity);
8182         if (ret)
8183                 goto out;
8184
8185         if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8186             (granularity > PA_GRANULARITY_MAX_VAL)) {
8187                 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8188                         __func__, granularity);
8189                 return -EINVAL;
8190         }
8191
8192         if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8193             (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8194                 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8195                         __func__, peer_granularity);
8196                 return -EINVAL;
8197         }
8198
8199         ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8200         if (ret)
8201                 goto out;
8202
8203         ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8204                                   &peer_pa_tactivate);
8205         if (ret)
8206                 goto out;
8207
8208         pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8209         peer_pa_tactivate_us = peer_pa_tactivate *
8210                              gran_to_us_table[peer_granularity - 1];
8211
8212         if (pa_tactivate_us >= peer_pa_tactivate_us) {
8213                 u32 new_peer_pa_tactivate;
8214
8215                 new_peer_pa_tactivate = pa_tactivate_us /
8216                                       gran_to_us_table[peer_granularity - 1];
8217                 new_peer_pa_tactivate++;
8218                 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8219                                           new_peer_pa_tactivate);
8220         }
8221
8222 out:
8223         return ret;
8224 }
8225
8226 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8227 {
8228         if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8229                 ufshcd_tune_pa_tactivate(hba);
8230                 ufshcd_tune_pa_hibern8time(hba);
8231         }
8232
8233         ufshcd_vops_apply_dev_quirks(hba);
8234
8235         if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8236                 /* set 1ms timeout for PA_TACTIVATE */
8237                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8238
8239         if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8240                 ufshcd_quirk_tune_host_pa_tactivate(hba);
8241 }
8242
8243 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8244 {
8245         hba->ufs_stats.hibern8_exit_cnt = 0;
8246         hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8247         hba->req_abort_count = 0;
8248 }
8249
8250 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8251 {
8252         int err;
8253         u8 *desc_buf;
8254
8255         desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8256         if (!desc_buf) {
8257                 err = -ENOMEM;
8258                 goto out;
8259         }
8260
8261         err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8262                                      desc_buf, QUERY_DESC_MAX_SIZE);
8263         if (err) {
8264                 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8265                                 __func__, err);
8266                 goto out;
8267         }
8268
8269         if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8270                 hba->dev_info.max_lu_supported = 32;
8271         else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8272                 hba->dev_info.max_lu_supported = 8;
8273
8274         if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >=
8275                 GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8276                 ufshpb_get_geo_info(hba, desc_buf);
8277
8278 out:
8279         kfree(desc_buf);
8280         return err;
8281 }
8282
8283 struct ufs_ref_clk {
8284         unsigned long freq_hz;
8285         enum ufs_ref_clk_freq val;
8286 };
8287
8288 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8289         {19200000, REF_CLK_FREQ_19_2_MHZ},
8290         {26000000, REF_CLK_FREQ_26_MHZ},
8291         {38400000, REF_CLK_FREQ_38_4_MHZ},
8292         {52000000, REF_CLK_FREQ_52_MHZ},
8293         {0, REF_CLK_FREQ_INVAL},
8294 };
8295
8296 static enum ufs_ref_clk_freq
8297 ufs_get_bref_clk_from_hz(unsigned long freq)
8298 {
8299         int i;
8300
8301         for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8302                 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8303                         return ufs_ref_clk_freqs[i].val;
8304
8305         return REF_CLK_FREQ_INVAL;
8306 }
8307
8308 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8309 {
8310         unsigned long freq;
8311
8312         freq = clk_get_rate(refclk);
8313
8314         hba->dev_ref_clk_freq =
8315                 ufs_get_bref_clk_from_hz(freq);
8316
8317         if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8318                 dev_err(hba->dev,
8319                 "invalid ref_clk setting = %ld\n", freq);
8320 }
8321
8322 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8323 {
8324         int err;
8325         u32 ref_clk;
8326         u32 freq = hba->dev_ref_clk_freq;
8327
8328         err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8329                         QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8330
8331         if (err) {
8332                 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8333                         err);
8334                 goto out;
8335         }
8336
8337         if (ref_clk == freq)
8338                 goto out; /* nothing to update */
8339
8340         err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8341                         QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8342
8343         if (err) {
8344                 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8345                         ufs_ref_clk_freqs[freq].freq_hz);
8346                 goto out;
8347         }
8348
8349         dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8350                         ufs_ref_clk_freqs[freq].freq_hz);
8351
8352 out:
8353         return err;
8354 }
8355
8356 static int ufshcd_device_params_init(struct ufs_hba *hba)
8357 {
8358         bool flag;
8359         int ret;
8360
8361         /* Init UFS geometry descriptor related parameters */
8362         ret = ufshcd_device_geo_params_init(hba);
8363         if (ret)
8364                 goto out;
8365
8366         /* Check and apply UFS device quirks */
8367         ret = ufs_get_device_desc(hba);
8368         if (ret) {
8369                 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8370                         __func__, ret);
8371                 goto out;
8372         }
8373
8374         ufshcd_get_ref_clk_gating_wait(hba);
8375
8376         if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8377                         QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8378                 hba->dev_info.f_power_on_wp_en = flag;
8379
8380         /* Probe maximum power mode co-supported by both UFS host and device */
8381         if (ufshcd_get_max_pwr_mode(hba))
8382                 dev_err(hba->dev,
8383                         "%s: Failed getting max supported power mode\n",
8384                         __func__);
8385 out:
8386         return ret;
8387 }
8388
8389 /**
8390  * ufshcd_add_lus - probe and add UFS logical units
8391  * @hba: per-adapter instance
8392  */
8393 static int ufshcd_add_lus(struct ufs_hba *hba)
8394 {
8395         int ret;
8396
8397         /* Add required well known logical units to scsi mid layer */
8398         ret = ufshcd_scsi_add_wlus(hba);
8399         if (ret)
8400                 goto out;
8401
8402         ufs_bsg_probe(hba);
8403         ufshpb_init(hba);
8404         scsi_scan_host(hba->host);
8405         pm_runtime_put_sync(hba->dev);
8406
8407 out:
8408         return ret;
8409 }
8410
8411 /* SDB - Single Doorbell */
8412 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8413 {
8414         size_t ucdl_size, utrdl_size;
8415
8416         ucdl_size = sizeof(struct utp_transfer_cmd_desc) * nutrs;
8417         dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8418                            hba->ucdl_dma_addr);
8419
8420         utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8421         dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8422                            hba->utrdl_dma_addr);
8423
8424         devm_kfree(hba->dev, hba->lrb);
8425 }
8426
8427 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8428 {
8429         int ret;
8430         int old_nutrs = hba->nutrs;
8431
8432         ret = ufshcd_mcq_decide_queue_depth(hba);
8433         if (ret < 0)
8434                 return ret;
8435
8436         hba->nutrs = ret;
8437         ret = ufshcd_mcq_init(hba);
8438         if (ret)
8439                 goto err;
8440
8441         /*
8442          * Previously allocated memory for nutrs may not be enough in MCQ mode.
8443          * Number of supported tags in MCQ mode may be larger than SDB mode.
8444          */
8445         if (hba->nutrs != old_nutrs) {
8446                 ufshcd_release_sdb_queue(hba, old_nutrs);
8447                 ret = ufshcd_memory_alloc(hba);
8448                 if (ret)
8449                         goto err;
8450                 ufshcd_host_memory_configure(hba);
8451         }
8452
8453         ret = ufshcd_mcq_memory_alloc(hba);
8454         if (ret)
8455                 goto err;
8456
8457         return 0;
8458 err:
8459         hba->nutrs = old_nutrs;
8460         return ret;
8461 }
8462
8463 static void ufshcd_config_mcq(struct ufs_hba *hba)
8464 {
8465         int ret;
8466
8467         ret = ufshcd_mcq_vops_config_esi(hba);
8468         dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8469
8470         ufshcd_enable_intr(hba, UFSHCD_ENABLE_MCQ_INTRS);
8471         ufshcd_mcq_make_queues_operational(hba);
8472         ufshcd_mcq_config_mac(hba, hba->nutrs);
8473
8474         hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8475         hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8476
8477         /* Select MCQ mode */
8478         ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8479                       REG_UFS_MEM_CFG);
8480         hba->mcq_enabled = true;
8481
8482         dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8483                  hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8484                  hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8485                  hba->nutrs);
8486 }
8487
8488 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8489 {
8490         int ret;
8491         struct Scsi_Host *host = hba->host;
8492
8493         hba->ufshcd_state = UFSHCD_STATE_RESET;
8494
8495         ret = ufshcd_link_startup(hba);
8496         if (ret)
8497                 return ret;
8498
8499         if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8500                 return ret;
8501
8502         /* Debug counters initialization */
8503         ufshcd_clear_dbg_ufs_stats(hba);
8504
8505         /* UniPro link is active now */
8506         ufshcd_set_link_active(hba);
8507
8508         /* Reconfigure MCQ upon reset */
8509         if (is_mcq_enabled(hba) && !init_dev_params)
8510                 ufshcd_config_mcq(hba);
8511
8512         /* Verify device initialization by sending NOP OUT UPIU */
8513         ret = ufshcd_verify_dev_init(hba);
8514         if (ret)
8515                 return ret;
8516
8517         /* Initiate UFS initialization, and waiting until completion */
8518         ret = ufshcd_complete_dev_init(hba);
8519         if (ret)
8520                 return ret;
8521
8522         /*
8523          * Initialize UFS device parameters used by driver, these
8524          * parameters are associated with UFS descriptors.
8525          */
8526         if (init_dev_params) {
8527                 ret = ufshcd_device_params_init(hba);
8528                 if (ret)
8529                         return ret;
8530                 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8531                         ret = ufshcd_alloc_mcq(hba);
8532                         if (!ret) {
8533                                 ufshcd_config_mcq(hba);
8534                         } else {
8535                                 /* Continue with SDB mode */
8536                                 use_mcq_mode = false;
8537                                 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8538                                          ret);
8539                         }
8540                         ret = scsi_add_host(host, hba->dev);
8541                         if (ret) {
8542                                 dev_err(hba->dev, "scsi_add_host failed\n");
8543                                 return ret;
8544                         }
8545                         hba->scsi_host_added = true;
8546                 } else if (is_mcq_supported(hba)) {
8547                         /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8548                         ufshcd_config_mcq(hba);
8549                 }
8550         }
8551
8552         ufshcd_tune_unipro_params(hba);
8553
8554         /* UFS device is also active now */
8555         ufshcd_set_ufs_dev_active(hba);
8556         ufshcd_force_reset_auto_bkops(hba);
8557
8558         /* Gear up to HS gear if supported */
8559         if (hba->max_pwr_info.is_valid) {
8560                 /*
8561                  * Set the right value to bRefClkFreq before attempting to
8562                  * switch to HS gears.
8563                  */
8564                 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8565                         ufshcd_set_dev_ref_clk(hba);
8566                 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8567                 if (ret) {
8568                         dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8569                                         __func__, ret);
8570                         return ret;
8571                 }
8572         }
8573
8574         return 0;
8575 }
8576
8577 /**
8578  * ufshcd_probe_hba - probe hba to detect device and initialize it
8579  * @hba: per-adapter instance
8580  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8581  *
8582  * Execute link-startup and verify device initialization
8583  */
8584 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8585 {
8586         ktime_t start = ktime_get();
8587         unsigned long flags;
8588         int ret;
8589
8590         ret = ufshcd_device_init(hba, init_dev_params);
8591         if (ret)
8592                 goto out;
8593
8594         if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8595                 /* Reset the device and controller before doing reinit */
8596                 ufshcd_device_reset(hba);
8597                 ufshcd_hba_stop(hba);
8598                 ufshcd_vops_reinit_notify(hba);
8599                 ret = ufshcd_hba_enable(hba);
8600                 if (ret) {
8601                         dev_err(hba->dev, "Host controller enable failed\n");
8602                         ufshcd_print_evt_hist(hba);
8603                         ufshcd_print_host_state(hba);
8604                         goto out;
8605                 }
8606
8607                 /* Reinit the device */
8608                 ret = ufshcd_device_init(hba, init_dev_params);
8609                 if (ret)
8610                         goto out;
8611         }
8612
8613         ufshcd_print_pwr_info(hba);
8614
8615         /*
8616          * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8617          * and for removable UFS card as well, hence always set the parameter.
8618          * Note: Error handler may issue the device reset hence resetting
8619          * bActiveICCLevel as well so it is always safe to set this here.
8620          */
8621         ufshcd_set_active_icc_lvl(hba);
8622
8623         /* Enable UFS Write Booster if supported */
8624         ufshcd_configure_wb(hba);
8625
8626         if (hba->ee_usr_mask)
8627                 ufshcd_write_ee_control(hba);
8628         /* Enable Auto-Hibernate if configured */
8629         ufshcd_auto_hibern8_enable(hba);
8630
8631         ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8632 out:
8633         spin_lock_irqsave(hba->host->host_lock, flags);
8634         if (ret)
8635                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8636         else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8637                 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8638         spin_unlock_irqrestore(hba->host->host_lock, flags);
8639
8640         trace_ufshcd_init(dev_name(hba->dev), ret,
8641                 ktime_to_us(ktime_sub(ktime_get(), start)),
8642                 hba->curr_dev_pwr_mode, hba->uic_link_state);
8643         return ret;
8644 }
8645
8646 /**
8647  * ufshcd_async_scan - asynchronous execution for probing hba
8648  * @data: data pointer to pass to this function
8649  * @cookie: cookie data
8650  */
8651 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8652 {
8653         struct ufs_hba *hba = (struct ufs_hba *)data;
8654         int ret;
8655
8656         down(&hba->host_sem);
8657         /* Initialize hba, detect and initialize UFS device */
8658         ret = ufshcd_probe_hba(hba, true);
8659         up(&hba->host_sem);
8660         if (ret)
8661                 goto out;
8662
8663         /* Probe and add UFS logical units  */
8664         ret = ufshcd_add_lus(hba);
8665 out:
8666         /*
8667          * If we failed to initialize the device or the device is not
8668          * present, turn off the power/clocks etc.
8669          */
8670         if (ret) {
8671                 pm_runtime_put_sync(hba->dev);
8672                 ufshcd_hba_exit(hba);
8673         } else {
8674                 /*
8675                  * Make sure that when reader code sees UFS initialization has finished,
8676                  * all initialization steps have really been executed.
8677                  */
8678                 smp_store_release(&hba->logical_unit_scan_finished, true);
8679         }
8680 }
8681
8682 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8683 {
8684         struct ufs_hba *hba = shost_priv(scmd->device->host);
8685
8686         if (!hba->system_suspending) {
8687                 /* Activate the error handler in the SCSI core. */
8688                 return SCSI_EH_NOT_HANDLED;
8689         }
8690
8691         /*
8692          * If we get here we know that no TMFs are outstanding and also that
8693          * the only pending command is a START STOP UNIT command. Handle the
8694          * timeout of that command directly to prevent a deadlock between
8695          * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8696          */
8697         ufshcd_link_recovery(hba);
8698         dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8699                  __func__, hba->outstanding_tasks);
8700
8701         return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8702 }
8703
8704 static const struct attribute_group *ufshcd_driver_groups[] = {
8705         &ufs_sysfs_unit_descriptor_group,
8706         &ufs_sysfs_lun_attributes_group,
8707 #ifdef CONFIG_SCSI_UFS_HPB
8708         &ufs_sysfs_hpb_stat_group,
8709         &ufs_sysfs_hpb_param_group,
8710 #endif
8711         NULL,
8712 };
8713
8714 static struct ufs_hba_variant_params ufs_hba_vps = {
8715         .hba_enable_delay_us            = 1000,
8716         .wb_flush_threshold             = UFS_WB_BUF_REMAIN_PERCENT(40),
8717         .devfreq_profile.polling_ms     = 100,
8718         .devfreq_profile.target         = ufshcd_devfreq_target,
8719         .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8720         .ondemand_data.upthreshold      = 70,
8721         .ondemand_data.downdifferential = 5,
8722 };
8723
8724 static struct scsi_host_template ufshcd_driver_template = {
8725         .module                 = THIS_MODULE,
8726         .name                   = UFSHCD,
8727         .proc_name              = UFSHCD,
8728         .map_queues             = ufshcd_map_queues,
8729         .queuecommand           = ufshcd_queuecommand,
8730         .mq_poll                = ufshcd_poll,
8731         .slave_alloc            = ufshcd_slave_alloc,
8732         .slave_configure        = ufshcd_slave_configure,
8733         .slave_destroy          = ufshcd_slave_destroy,
8734         .change_queue_depth     = ufshcd_change_queue_depth,
8735         .eh_abort_handler       = ufshcd_abort,
8736         .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8737         .eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8738         .eh_timed_out           = ufshcd_eh_timed_out,
8739         .this_id                = -1,
8740         .sg_tablesize           = SG_ALL,
8741         .cmd_per_lun            = UFSHCD_CMD_PER_LUN,
8742         .can_queue              = UFSHCD_CAN_QUEUE,
8743         .max_segment_size       = PRDT_DATA_BYTE_COUNT_MAX,
8744         .max_sectors            = (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8745         .max_host_blocked       = 1,
8746         .track_queue_depth      = 1,
8747         .sdev_groups            = ufshcd_driver_groups,
8748         .rpm_autosuspend_delay  = RPM_AUTOSUSPEND_DELAY_MS,
8749 };
8750
8751 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8752                                    int ua)
8753 {
8754         int ret;
8755
8756         if (!vreg)
8757                 return 0;
8758
8759         /*
8760          * "set_load" operation shall be required on those regulators
8761          * which specifically configured current limitation. Otherwise
8762          * zero max_uA may cause unexpected behavior when regulator is
8763          * enabled or set as high power mode.
8764          */
8765         if (!vreg->max_uA)
8766                 return 0;
8767
8768         ret = regulator_set_load(vreg->reg, ua);
8769         if (ret < 0) {
8770                 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8771                                 __func__, vreg->name, ua, ret);
8772         }
8773
8774         return ret;
8775 }
8776
8777 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8778                                          struct ufs_vreg *vreg)
8779 {
8780         return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8781 }
8782
8783 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8784                                          struct ufs_vreg *vreg)
8785 {
8786         if (!vreg)
8787                 return 0;
8788
8789         return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8790 }
8791
8792 static int ufshcd_config_vreg(struct device *dev,
8793                 struct ufs_vreg *vreg, bool on)
8794 {
8795         if (regulator_count_voltages(vreg->reg) <= 0)
8796                 return 0;
8797
8798         return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8799 }
8800
8801 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8802 {
8803         int ret = 0;
8804
8805         if (!vreg || vreg->enabled)
8806                 goto out;
8807
8808         ret = ufshcd_config_vreg(dev, vreg, true);
8809         if (!ret)
8810                 ret = regulator_enable(vreg->reg);
8811
8812         if (!ret)
8813                 vreg->enabled = true;
8814         else
8815                 dev_err(dev, "%s: %s enable failed, err=%d\n",
8816                                 __func__, vreg->name, ret);
8817 out:
8818         return ret;
8819 }
8820
8821 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8822 {
8823         int ret = 0;
8824
8825         if (!vreg || !vreg->enabled || vreg->always_on)
8826                 goto out;
8827
8828         ret = regulator_disable(vreg->reg);
8829
8830         if (!ret) {
8831                 /* ignore errors on applying disable config */
8832                 ufshcd_config_vreg(dev, vreg, false);
8833                 vreg->enabled = false;
8834         } else {
8835                 dev_err(dev, "%s: %s disable failed, err=%d\n",
8836                                 __func__, vreg->name, ret);
8837         }
8838 out:
8839         return ret;
8840 }
8841
8842 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8843 {
8844         int ret = 0;
8845         struct device *dev = hba->dev;
8846         struct ufs_vreg_info *info = &hba->vreg_info;
8847
8848         ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8849         if (ret)
8850                 goto out;
8851
8852         ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8853         if (ret)
8854                 goto out;
8855
8856         ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8857
8858 out:
8859         if (ret) {
8860                 ufshcd_toggle_vreg(dev, info->vccq2, false);
8861                 ufshcd_toggle_vreg(dev, info->vccq, false);
8862                 ufshcd_toggle_vreg(dev, info->vcc, false);
8863         }
8864         return ret;
8865 }
8866
8867 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8868 {
8869         struct ufs_vreg_info *info = &hba->vreg_info;
8870
8871         return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8872 }
8873
8874 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8875 {
8876         int ret = 0;
8877
8878         if (!vreg)
8879                 goto out;
8880
8881         vreg->reg = devm_regulator_get(dev, vreg->name);
8882         if (IS_ERR(vreg->reg)) {
8883                 ret = PTR_ERR(vreg->reg);
8884                 dev_err(dev, "%s: %s get failed, err=%d\n",
8885                                 __func__, vreg->name, ret);
8886         }
8887 out:
8888         return ret;
8889 }
8890 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8891
8892 static int ufshcd_init_vreg(struct ufs_hba *hba)
8893 {
8894         int ret = 0;
8895         struct device *dev = hba->dev;
8896         struct ufs_vreg_info *info = &hba->vreg_info;
8897
8898         ret = ufshcd_get_vreg(dev, info->vcc);
8899         if (ret)
8900                 goto out;
8901
8902         ret = ufshcd_get_vreg(dev, info->vccq);
8903         if (!ret)
8904                 ret = ufshcd_get_vreg(dev, info->vccq2);
8905 out:
8906         return ret;
8907 }
8908
8909 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8910 {
8911         struct ufs_vreg_info *info = &hba->vreg_info;
8912
8913         return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8914 }
8915
8916 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8917 {
8918         int ret = 0;
8919         struct ufs_clk_info *clki;
8920         struct list_head *head = &hba->clk_list_head;
8921         unsigned long flags;
8922         ktime_t start = ktime_get();
8923         bool clk_state_changed = false;
8924
8925         if (list_empty(head))
8926                 goto out;
8927
8928         ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8929         if (ret)
8930                 return ret;
8931
8932         list_for_each_entry(clki, head, list) {
8933                 if (!IS_ERR_OR_NULL(clki->clk)) {
8934                         /*
8935                          * Don't disable clocks which are needed
8936                          * to keep the link active.
8937                          */
8938                         if (ufshcd_is_link_active(hba) &&
8939                             clki->keep_link_active)
8940                                 continue;
8941
8942                         clk_state_changed = on ^ clki->enabled;
8943                         if (on && !clki->enabled) {
8944                                 ret = clk_prepare_enable(clki->clk);
8945                                 if (ret) {
8946                                         dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8947                                                 __func__, clki->name, ret);
8948                                         goto out;
8949                                 }
8950                         } else if (!on && clki->enabled) {
8951                                 clk_disable_unprepare(clki->clk);
8952                         }
8953                         clki->enabled = on;
8954                         dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8955                                         clki->name, on ? "en" : "dis");
8956                 }
8957         }
8958
8959         ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8960         if (ret)
8961                 return ret;
8962
8963 out:
8964         if (ret) {
8965                 list_for_each_entry(clki, head, list) {
8966                         if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8967                                 clk_disable_unprepare(clki->clk);
8968                 }
8969         } else if (!ret && on) {
8970                 spin_lock_irqsave(hba->host->host_lock, flags);
8971                 hba->clk_gating.state = CLKS_ON;
8972                 trace_ufshcd_clk_gating(dev_name(hba->dev),
8973                                         hba->clk_gating.state);
8974                 spin_unlock_irqrestore(hba->host->host_lock, flags);
8975         }
8976
8977         if (clk_state_changed)
8978                 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8979                         (on ? "on" : "off"),
8980                         ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8981         return ret;
8982 }
8983
8984 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
8985 {
8986         u32 freq;
8987         int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
8988
8989         if (ret) {
8990                 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
8991                 return REF_CLK_FREQ_INVAL;
8992         }
8993
8994         return ufs_get_bref_clk_from_hz(freq);
8995 }
8996
8997 static int ufshcd_init_clocks(struct ufs_hba *hba)
8998 {
8999         int ret = 0;
9000         struct ufs_clk_info *clki;
9001         struct device *dev = hba->dev;
9002         struct list_head *head = &hba->clk_list_head;
9003
9004         if (list_empty(head))
9005                 goto out;
9006
9007         list_for_each_entry(clki, head, list) {
9008                 if (!clki->name)
9009                         continue;
9010
9011                 clki->clk = devm_clk_get(dev, clki->name);
9012                 if (IS_ERR(clki->clk)) {
9013                         ret = PTR_ERR(clki->clk);
9014                         dev_err(dev, "%s: %s clk get failed, %d\n",
9015                                         __func__, clki->name, ret);
9016                         goto out;
9017                 }
9018
9019                 /*
9020                  * Parse device ref clk freq as per device tree "ref_clk".
9021                  * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9022                  * in ufshcd_alloc_host().
9023                  */
9024                 if (!strcmp(clki->name, "ref_clk"))
9025                         ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9026
9027                 if (clki->max_freq) {
9028                         ret = clk_set_rate(clki->clk, clki->max_freq);
9029                         if (ret) {
9030                                 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9031                                         __func__, clki->name,
9032                                         clki->max_freq, ret);
9033                                 goto out;
9034                         }
9035                         clki->curr_freq = clki->max_freq;
9036                 }
9037                 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9038                                 clki->name, clk_get_rate(clki->clk));
9039         }
9040 out:
9041         return ret;
9042 }
9043
9044 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9045 {
9046         int err = 0;
9047
9048         if (!hba->vops)
9049                 goto out;
9050
9051         err = ufshcd_vops_init(hba);
9052         if (err)
9053                 dev_err(hba->dev, "%s: variant %s init failed err %d\n",
9054                         __func__, ufshcd_get_var_name(hba), err);
9055 out:
9056         return err;
9057 }
9058
9059 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9060 {
9061         if (!hba->vops)
9062                 return;
9063
9064         ufshcd_vops_exit(hba);
9065 }
9066
9067 static int ufshcd_hba_init(struct ufs_hba *hba)
9068 {
9069         int err;
9070
9071         /*
9072          * Handle host controller power separately from the UFS device power
9073          * rails as it will help controlling the UFS host controller power
9074          * collapse easily which is different than UFS device power collapse.
9075          * Also, enable the host controller power before we go ahead with rest
9076          * of the initialization here.
9077          */
9078         err = ufshcd_init_hba_vreg(hba);
9079         if (err)
9080                 goto out;
9081
9082         err = ufshcd_setup_hba_vreg(hba, true);
9083         if (err)
9084                 goto out;
9085
9086         err = ufshcd_init_clocks(hba);
9087         if (err)
9088                 goto out_disable_hba_vreg;
9089
9090         if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9091                 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9092
9093         err = ufshcd_setup_clocks(hba, true);
9094         if (err)
9095                 goto out_disable_hba_vreg;
9096
9097         err = ufshcd_init_vreg(hba);
9098         if (err)
9099                 goto out_disable_clks;
9100
9101         err = ufshcd_setup_vreg(hba, true);
9102         if (err)
9103                 goto out_disable_clks;
9104
9105         err = ufshcd_variant_hba_init(hba);
9106         if (err)
9107                 goto out_disable_vreg;
9108
9109         ufs_debugfs_hba_init(hba);
9110
9111         hba->is_powered = true;
9112         goto out;
9113
9114 out_disable_vreg:
9115         ufshcd_setup_vreg(hba, false);
9116 out_disable_clks:
9117         ufshcd_setup_clocks(hba, false);
9118 out_disable_hba_vreg:
9119         ufshcd_setup_hba_vreg(hba, false);
9120 out:
9121         return err;
9122 }
9123
9124 static void ufshcd_hba_exit(struct ufs_hba *hba)
9125 {
9126         if (hba->is_powered) {
9127                 ufshcd_exit_clk_scaling(hba);
9128                 ufshcd_exit_clk_gating(hba);
9129                 if (hba->eh_wq)
9130                         destroy_workqueue(hba->eh_wq);
9131                 ufs_debugfs_hba_exit(hba);
9132                 ufshcd_variant_hba_exit(hba);
9133                 ufshcd_setup_vreg(hba, false);
9134                 ufshcd_setup_clocks(hba, false);
9135                 ufshcd_setup_hba_vreg(hba, false);
9136                 hba->is_powered = false;
9137                 ufs_put_device_desc(hba);
9138         }
9139 }
9140
9141 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9142                                      enum ufs_dev_pwr_mode pwr_mode,
9143                                      struct scsi_sense_hdr *sshdr)
9144 {
9145         const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9146         const struct scsi_exec_args args = {
9147                 .sshdr = sshdr,
9148                 .req_flags = BLK_MQ_REQ_PM,
9149                 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9150         };
9151
9152         return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9153                         /*bufflen=*/0, /*timeout=*/HZ, /*retries=*/0, &args);
9154 }
9155
9156 /**
9157  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9158  *                           power mode
9159  * @hba: per adapter instance
9160  * @pwr_mode: device power mode to set
9161  *
9162  * Returns 0 if requested power mode is set successfully
9163  * Returns < 0 if failed to set the requested power mode
9164  */
9165 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9166                                      enum ufs_dev_pwr_mode pwr_mode)
9167 {
9168         struct scsi_sense_hdr sshdr;
9169         struct scsi_device *sdp;
9170         unsigned long flags;
9171         int ret, retries;
9172
9173         spin_lock_irqsave(hba->host->host_lock, flags);
9174         sdp = hba->ufs_device_wlun;
9175         if (sdp && scsi_device_online(sdp))
9176                 ret = scsi_device_get(sdp);
9177         else
9178                 ret = -ENODEV;
9179         spin_unlock_irqrestore(hba->host->host_lock, flags);
9180
9181         if (ret)
9182                 return ret;
9183
9184         /*
9185          * If scsi commands fail, the scsi mid-layer schedules scsi error-
9186          * handling, which would wait for host to be resumed. Since we know
9187          * we are functional while we are here, skip host resume in error
9188          * handling context.
9189          */
9190         hba->host->eh_noresume = 1;
9191
9192         /*
9193          * Current function would be generally called from the power management
9194          * callbacks hence set the RQF_PM flag so that it doesn't resume the
9195          * already suspended childs.
9196          */
9197         for (retries = 3; retries > 0; --retries) {
9198                 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9199                 /*
9200                  * scsi_execute() only returns a negative value if the request
9201                  * queue is dying.
9202                  */
9203                 if (ret <= 0)
9204                         break;
9205         }
9206         if (ret) {
9207                 sdev_printk(KERN_WARNING, sdp,
9208                             "START_STOP failed for power mode: %d, result %x\n",
9209                             pwr_mode, ret);
9210                 if (ret > 0) {
9211                         if (scsi_sense_valid(&sshdr))
9212                                 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9213                         ret = -EIO;
9214                 }
9215         } else {
9216                 hba->curr_dev_pwr_mode = pwr_mode;
9217         }
9218
9219         scsi_device_put(sdp);
9220         hba->host->eh_noresume = 0;
9221         return ret;
9222 }
9223
9224 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9225                                         enum uic_link_state req_link_state,
9226                                         bool check_for_bkops)
9227 {
9228         int ret = 0;
9229
9230         if (req_link_state == hba->uic_link_state)
9231                 return 0;
9232
9233         if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9234                 ret = ufshcd_uic_hibern8_enter(hba);
9235                 if (!ret) {
9236                         ufshcd_set_link_hibern8(hba);
9237                 } else {
9238                         dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9239                                         __func__, ret);
9240                         goto out;
9241                 }
9242         }
9243         /*
9244          * If autobkops is enabled, link can't be turned off because
9245          * turning off the link would also turn off the device, except in the
9246          * case of DeepSleep where the device is expected to remain powered.
9247          */
9248         else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9249                  (!check_for_bkops || !hba->auto_bkops_enabled)) {
9250                 /*
9251                  * Let's make sure that link is in low power mode, we are doing
9252                  * this currently by putting the link in Hibern8. Otherway to
9253                  * put the link in low power mode is to send the DME end point
9254                  * to device and then send the DME reset command to local
9255                  * unipro. But putting the link in hibern8 is much faster.
9256                  *
9257                  * Note also that putting the link in Hibern8 is a requirement
9258                  * for entering DeepSleep.
9259                  */
9260                 ret = ufshcd_uic_hibern8_enter(hba);
9261                 if (ret) {
9262                         dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9263                                         __func__, ret);
9264                         goto out;
9265                 }
9266                 /*
9267                  * Change controller state to "reset state" which
9268                  * should also put the link in off/reset state
9269                  */
9270                 ufshcd_hba_stop(hba);
9271                 /*
9272                  * TODO: Check if we need any delay to make sure that
9273                  * controller is reset
9274                  */
9275                 ufshcd_set_link_off(hba);
9276         }
9277
9278 out:
9279         return ret;
9280 }
9281
9282 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9283 {
9284         bool vcc_off = false;
9285
9286         /*
9287          * It seems some UFS devices may keep drawing more than sleep current
9288          * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9289          * To avoid this situation, add 2ms delay before putting these UFS
9290          * rails in LPM mode.
9291          */
9292         if (!ufshcd_is_link_active(hba) &&
9293             hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9294                 usleep_range(2000, 2100);
9295
9296         /*
9297          * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9298          * power.
9299          *
9300          * If UFS device and link is in OFF state, all power supplies (VCC,
9301          * VCCQ, VCCQ2) can be turned off if power on write protect is not
9302          * required. If UFS link is inactive (Hibern8 or OFF state) and device
9303          * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9304          *
9305          * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9306          * in low power state which would save some power.
9307          *
9308          * If Write Booster is enabled and the device needs to flush the WB
9309          * buffer OR if bkops status is urgent for WB, keep Vcc on.
9310          */
9311         if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9312             !hba->dev_info.is_lu_power_on_wp) {
9313                 ufshcd_setup_vreg(hba, false);
9314                 vcc_off = true;
9315         } else if (!ufshcd_is_ufs_dev_active(hba)) {
9316                 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9317                 vcc_off = true;
9318                 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9319                         ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9320                         ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9321                 }
9322         }
9323
9324         /*
9325          * Some UFS devices require delay after VCC power rail is turned-off.
9326          */
9327         if (vcc_off && hba->vreg_info.vcc &&
9328                 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9329                 usleep_range(5000, 5100);
9330 }
9331
9332 #ifdef CONFIG_PM
9333 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9334 {
9335         int ret = 0;
9336
9337         if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9338             !hba->dev_info.is_lu_power_on_wp) {
9339                 ret = ufshcd_setup_vreg(hba, true);
9340         } else if (!ufshcd_is_ufs_dev_active(hba)) {
9341                 if (!ufshcd_is_link_active(hba)) {
9342                         ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9343                         if (ret)
9344                                 goto vcc_disable;
9345                         ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9346                         if (ret)
9347                                 goto vccq_lpm;
9348                 }
9349                 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9350         }
9351         goto out;
9352
9353 vccq_lpm:
9354         ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9355 vcc_disable:
9356         ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9357 out:
9358         return ret;
9359 }
9360 #endif /* CONFIG_PM */
9361
9362 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9363 {
9364         if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9365                 ufshcd_setup_hba_vreg(hba, false);
9366 }
9367
9368 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9369 {
9370         if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9371                 ufshcd_setup_hba_vreg(hba, true);
9372 }
9373
9374 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9375 {
9376         int ret = 0;
9377         bool check_for_bkops;
9378         enum ufs_pm_level pm_lvl;
9379         enum ufs_dev_pwr_mode req_dev_pwr_mode;
9380         enum uic_link_state req_link_state;
9381
9382         hba->pm_op_in_progress = true;
9383         if (pm_op != UFS_SHUTDOWN_PM) {
9384                 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9385                          hba->rpm_lvl : hba->spm_lvl;
9386                 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9387                 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9388         } else {
9389                 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9390                 req_link_state = UIC_LINK_OFF_STATE;
9391         }
9392
9393         ufshpb_suspend(hba);
9394
9395         /*
9396          * If we can't transition into any of the low power modes
9397          * just gate the clocks.
9398          */
9399         ufshcd_hold(hba, false);
9400         hba->clk_gating.is_suspended = true;
9401
9402         if (ufshcd_is_clkscaling_supported(hba))
9403                 ufshcd_clk_scaling_suspend(hba, true);
9404
9405         if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9406                         req_link_state == UIC_LINK_ACTIVE_STATE) {
9407                 goto vops_suspend;
9408         }
9409
9410         if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9411             (req_link_state == hba->uic_link_state))
9412                 goto enable_scaling;
9413
9414         /* UFS device & link must be active before we enter in this function */
9415         if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9416                 ret = -EINVAL;
9417                 goto enable_scaling;
9418         }
9419
9420         if (pm_op == UFS_RUNTIME_PM) {
9421                 if (ufshcd_can_autobkops_during_suspend(hba)) {
9422                         /*
9423                          * The device is idle with no requests in the queue,
9424                          * allow background operations if bkops status shows
9425                          * that performance might be impacted.
9426                          */
9427                         ret = ufshcd_urgent_bkops(hba);
9428                         if (ret)
9429                                 goto enable_scaling;
9430                 } else {
9431                         /* make sure that auto bkops is disabled */
9432                         ufshcd_disable_auto_bkops(hba);
9433                 }
9434                 /*
9435                  * If device needs to do BKOP or WB buffer flush during
9436                  * Hibern8, keep device power mode as "active power mode"
9437                  * and VCC supply.
9438                  */
9439                 hba->dev_info.b_rpm_dev_flush_capable =
9440                         hba->auto_bkops_enabled ||
9441                         (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9442                         ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9443                         ufshcd_is_auto_hibern8_enabled(hba))) &&
9444                         ufshcd_wb_need_flush(hba));
9445         }
9446
9447         flush_work(&hba->eeh_work);
9448
9449         ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9450         if (ret)
9451                 goto enable_scaling;
9452
9453         if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9454                 if (pm_op != UFS_RUNTIME_PM)
9455                         /* ensure that bkops is disabled */
9456                         ufshcd_disable_auto_bkops(hba);
9457
9458                 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9459                         ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9460                         if (ret && pm_op != UFS_SHUTDOWN_PM) {
9461                                 /*
9462                                  * If return err in suspend flow, IO will hang.
9463                                  * Trigger error handler and break suspend for
9464                                  * error recovery.
9465                                  */
9466                                 ufshcd_force_error_recovery(hba);
9467                                 ret = -EBUSY;
9468                         }
9469                         if (ret)
9470                                 goto enable_scaling;
9471                 }
9472         }
9473
9474         /*
9475          * In the case of DeepSleep, the device is expected to remain powered
9476          * with the link off, so do not check for bkops.
9477          */
9478         check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9479         ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9480         if (ret && pm_op != UFS_SHUTDOWN_PM) {
9481                 /*
9482                  * If return err in suspend flow, IO will hang.
9483                  * Trigger error handler and break suspend for
9484                  * error recovery.
9485                  */
9486                 ufshcd_force_error_recovery(hba);
9487                 ret = -EBUSY;
9488         }
9489         if (ret)
9490                 goto set_dev_active;
9491
9492 vops_suspend:
9493         /*
9494          * Call vendor specific suspend callback. As these callbacks may access
9495          * vendor specific host controller register space call them before the
9496          * host clocks are ON.
9497          */
9498         ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9499         if (ret)
9500                 goto set_link_active;
9501         goto out;
9502
9503 set_link_active:
9504         /*
9505          * Device hardware reset is required to exit DeepSleep. Also, for
9506          * DeepSleep, the link is off so host reset and restore will be done
9507          * further below.
9508          */
9509         if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9510                 ufshcd_device_reset(hba);
9511                 WARN_ON(!ufshcd_is_link_off(hba));
9512         }
9513         if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9514                 ufshcd_set_link_active(hba);
9515         else if (ufshcd_is_link_off(hba))
9516                 ufshcd_host_reset_and_restore(hba);
9517 set_dev_active:
9518         /* Can also get here needing to exit DeepSleep */
9519         if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9520                 ufshcd_device_reset(hba);
9521                 ufshcd_host_reset_and_restore(hba);
9522         }
9523         if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9524                 ufshcd_disable_auto_bkops(hba);
9525 enable_scaling:
9526         if (ufshcd_is_clkscaling_supported(hba))
9527                 ufshcd_clk_scaling_suspend(hba, false);
9528
9529         hba->dev_info.b_rpm_dev_flush_capable = false;
9530 out:
9531         if (hba->dev_info.b_rpm_dev_flush_capable) {
9532                 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9533                         msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9534         }
9535
9536         if (ret) {
9537                 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9538                 hba->clk_gating.is_suspended = false;
9539                 ufshcd_release(hba);
9540                 ufshpb_resume(hba);
9541         }
9542         hba->pm_op_in_progress = false;
9543         return ret;
9544 }
9545
9546 #ifdef CONFIG_PM
9547 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9548 {
9549         int ret;
9550         enum uic_link_state old_link_state = hba->uic_link_state;
9551
9552         hba->pm_op_in_progress = true;
9553
9554         /*
9555          * Call vendor specific resume callback. As these callbacks may access
9556          * vendor specific host controller register space call them when the
9557          * host clocks are ON.
9558          */
9559         ret = ufshcd_vops_resume(hba, pm_op);
9560         if (ret)
9561                 goto out;
9562
9563         /* For DeepSleep, the only supported option is to have the link off */
9564         WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9565
9566         if (ufshcd_is_link_hibern8(hba)) {
9567                 ret = ufshcd_uic_hibern8_exit(hba);
9568                 if (!ret) {
9569                         ufshcd_set_link_active(hba);
9570                 } else {
9571                         dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9572                                         __func__, ret);
9573                         goto vendor_suspend;
9574                 }
9575         } else if (ufshcd_is_link_off(hba)) {
9576                 /*
9577                  * A full initialization of the host and the device is
9578                  * required since the link was put to off during suspend.
9579                  * Note, in the case of DeepSleep, the device will exit
9580                  * DeepSleep due to device reset.
9581                  */
9582                 ret = ufshcd_reset_and_restore(hba);
9583                 /*
9584                  * ufshcd_reset_and_restore() should have already
9585                  * set the link state as active
9586                  */
9587                 if (ret || !ufshcd_is_link_active(hba))
9588                         goto vendor_suspend;
9589         }
9590
9591         if (!ufshcd_is_ufs_dev_active(hba)) {
9592                 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9593                 if (ret)
9594                         goto set_old_link_state;
9595         }
9596
9597         if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9598                 ufshcd_enable_auto_bkops(hba);
9599         else
9600                 /*
9601                  * If BKOPs operations are urgently needed at this moment then
9602                  * keep auto-bkops enabled or else disable it.
9603                  */
9604                 ufshcd_urgent_bkops(hba);
9605
9606         if (hba->ee_usr_mask)
9607                 ufshcd_write_ee_control(hba);
9608
9609         if (ufshcd_is_clkscaling_supported(hba))
9610                 ufshcd_clk_scaling_suspend(hba, false);
9611
9612         if (hba->dev_info.b_rpm_dev_flush_capable) {
9613                 hba->dev_info.b_rpm_dev_flush_capable = false;
9614                 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9615         }
9616
9617         /* Enable Auto-Hibernate if configured */
9618         ufshcd_auto_hibern8_enable(hba);
9619
9620         ufshpb_resume(hba);
9621         goto out;
9622
9623 set_old_link_state:
9624         ufshcd_link_state_transition(hba, old_link_state, 0);
9625 vendor_suspend:
9626         ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9627         ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9628 out:
9629         if (ret)
9630                 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9631         hba->clk_gating.is_suspended = false;
9632         ufshcd_release(hba);
9633         hba->pm_op_in_progress = false;
9634         return ret;
9635 }
9636
9637 static int ufshcd_wl_runtime_suspend(struct device *dev)
9638 {
9639         struct scsi_device *sdev = to_scsi_device(dev);
9640         struct ufs_hba *hba;
9641         int ret;
9642         ktime_t start = ktime_get();
9643
9644         hba = shost_priv(sdev->host);
9645
9646         ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9647         if (ret)
9648                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9649
9650         trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9651                 ktime_to_us(ktime_sub(ktime_get(), start)),
9652                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9653
9654         return ret;
9655 }
9656
9657 static int ufshcd_wl_runtime_resume(struct device *dev)
9658 {
9659         struct scsi_device *sdev = to_scsi_device(dev);
9660         struct ufs_hba *hba;
9661         int ret = 0;
9662         ktime_t start = ktime_get();
9663
9664         hba = shost_priv(sdev->host);
9665
9666         ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9667         if (ret)
9668                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9669
9670         trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9671                 ktime_to_us(ktime_sub(ktime_get(), start)),
9672                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9673
9674         return ret;
9675 }
9676 #endif
9677
9678 #ifdef CONFIG_PM_SLEEP
9679 static int ufshcd_wl_suspend(struct device *dev)
9680 {
9681         struct scsi_device *sdev = to_scsi_device(dev);
9682         struct ufs_hba *hba;
9683         int ret = 0;
9684         ktime_t start = ktime_get();
9685
9686         hba = shost_priv(sdev->host);
9687         down(&hba->host_sem);
9688         hba->system_suspending = true;
9689
9690         if (pm_runtime_suspended(dev))
9691                 goto out;
9692
9693         ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9694         if (ret) {
9695                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9696                 up(&hba->host_sem);
9697         }
9698
9699 out:
9700         if (!ret)
9701                 hba->is_sys_suspended = true;
9702         trace_ufshcd_wl_suspend(dev_name(dev), ret,
9703                 ktime_to_us(ktime_sub(ktime_get(), start)),
9704                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9705
9706         return ret;
9707 }
9708
9709 static int ufshcd_wl_resume(struct device *dev)
9710 {
9711         struct scsi_device *sdev = to_scsi_device(dev);
9712         struct ufs_hba *hba;
9713         int ret = 0;
9714         ktime_t start = ktime_get();
9715
9716         hba = shost_priv(sdev->host);
9717
9718         if (pm_runtime_suspended(dev))
9719                 goto out;
9720
9721         ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9722         if (ret)
9723                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9724 out:
9725         trace_ufshcd_wl_resume(dev_name(dev), ret,
9726                 ktime_to_us(ktime_sub(ktime_get(), start)),
9727                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9728         if (!ret)
9729                 hba->is_sys_suspended = false;
9730         hba->system_suspending = false;
9731         up(&hba->host_sem);
9732         return ret;
9733 }
9734 #endif
9735
9736 static void ufshcd_wl_shutdown(struct device *dev)
9737 {
9738         struct scsi_device *sdev = to_scsi_device(dev);
9739         struct ufs_hba *hba;
9740
9741         hba = shost_priv(sdev->host);
9742
9743         down(&hba->host_sem);
9744         hba->shutting_down = true;
9745         up(&hba->host_sem);
9746
9747         /* Turn on everything while shutting down */
9748         ufshcd_rpm_get_sync(hba);
9749         scsi_device_quiesce(sdev);
9750         shost_for_each_device(sdev, hba->host) {
9751                 if (sdev == hba->ufs_device_wlun)
9752                         continue;
9753                 scsi_device_quiesce(sdev);
9754         }
9755         __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9756 }
9757
9758 /**
9759  * ufshcd_suspend - helper function for suspend operations
9760  * @hba: per adapter instance
9761  *
9762  * This function will put disable irqs, turn off clocks
9763  * and set vreg and hba-vreg in lpm mode.
9764  */
9765 static int ufshcd_suspend(struct ufs_hba *hba)
9766 {
9767         int ret;
9768
9769         if (!hba->is_powered)
9770                 return 0;
9771         /*
9772          * Disable the host irq as host controller as there won't be any
9773          * host controller transaction expected till resume.
9774          */
9775         ufshcd_disable_irq(hba);
9776         ret = ufshcd_setup_clocks(hba, false);
9777         if (ret) {
9778                 ufshcd_enable_irq(hba);
9779                 return ret;
9780         }
9781         if (ufshcd_is_clkgating_allowed(hba)) {
9782                 hba->clk_gating.state = CLKS_OFF;
9783                 trace_ufshcd_clk_gating(dev_name(hba->dev),
9784                                         hba->clk_gating.state);
9785         }
9786
9787         ufshcd_vreg_set_lpm(hba);
9788         /* Put the host controller in low power mode if possible */
9789         ufshcd_hba_vreg_set_lpm(hba);
9790         return ret;
9791 }
9792
9793 #ifdef CONFIG_PM
9794 /**
9795  * ufshcd_resume - helper function for resume operations
9796  * @hba: per adapter instance
9797  *
9798  * This function basically turns on the regulators, clocks and
9799  * irqs of the hba.
9800  *
9801  * Returns 0 for success and non-zero for failure
9802  */
9803 static int ufshcd_resume(struct ufs_hba *hba)
9804 {
9805         int ret;
9806
9807         if (!hba->is_powered)
9808                 return 0;
9809
9810         ufshcd_hba_vreg_set_hpm(hba);
9811         ret = ufshcd_vreg_set_hpm(hba);
9812         if (ret)
9813                 goto out;
9814
9815         /* Make sure clocks are enabled before accessing controller */
9816         ret = ufshcd_setup_clocks(hba, true);
9817         if (ret)
9818                 goto disable_vreg;
9819
9820         /* enable the host irq as host controller would be active soon */
9821         ufshcd_enable_irq(hba);
9822
9823         goto out;
9824
9825 disable_vreg:
9826         ufshcd_vreg_set_lpm(hba);
9827 out:
9828         if (ret)
9829                 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9830         return ret;
9831 }
9832 #endif /* CONFIG_PM */
9833
9834 #ifdef CONFIG_PM_SLEEP
9835 /**
9836  * ufshcd_system_suspend - system suspend callback
9837  * @dev: Device associated with the UFS controller.
9838  *
9839  * Executed before putting the system into a sleep state in which the contents
9840  * of main memory are preserved.
9841  *
9842  * Returns 0 for success and non-zero for failure
9843  */
9844 int ufshcd_system_suspend(struct device *dev)
9845 {
9846         struct ufs_hba *hba = dev_get_drvdata(dev);
9847         int ret = 0;
9848         ktime_t start = ktime_get();
9849
9850         if (pm_runtime_suspended(hba->dev))
9851                 goto out;
9852
9853         ret = ufshcd_suspend(hba);
9854 out:
9855         trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9856                 ktime_to_us(ktime_sub(ktime_get(), start)),
9857                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9858         return ret;
9859 }
9860 EXPORT_SYMBOL(ufshcd_system_suspend);
9861
9862 /**
9863  * ufshcd_system_resume - system resume callback
9864  * @dev: Device associated with the UFS controller.
9865  *
9866  * Executed after waking the system up from a sleep state in which the contents
9867  * of main memory were preserved.
9868  *
9869  * Returns 0 for success and non-zero for failure
9870  */
9871 int ufshcd_system_resume(struct device *dev)
9872 {
9873         struct ufs_hba *hba = dev_get_drvdata(dev);
9874         ktime_t start = ktime_get();
9875         int ret = 0;
9876
9877         if (pm_runtime_suspended(hba->dev))
9878                 goto out;
9879
9880         ret = ufshcd_resume(hba);
9881
9882 out:
9883         trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9884                 ktime_to_us(ktime_sub(ktime_get(), start)),
9885                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9886
9887         return ret;
9888 }
9889 EXPORT_SYMBOL(ufshcd_system_resume);
9890 #endif /* CONFIG_PM_SLEEP */
9891
9892 #ifdef CONFIG_PM
9893 /**
9894  * ufshcd_runtime_suspend - runtime suspend callback
9895  * @dev: Device associated with the UFS controller.
9896  *
9897  * Check the description of ufshcd_suspend() function for more details.
9898  *
9899  * Returns 0 for success and non-zero for failure
9900  */
9901 int ufshcd_runtime_suspend(struct device *dev)
9902 {
9903         struct ufs_hba *hba = dev_get_drvdata(dev);
9904         int ret;
9905         ktime_t start = ktime_get();
9906
9907         ret = ufshcd_suspend(hba);
9908
9909         trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9910                 ktime_to_us(ktime_sub(ktime_get(), start)),
9911                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9912         return ret;
9913 }
9914 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9915
9916 /**
9917  * ufshcd_runtime_resume - runtime resume routine
9918  * @dev: Device associated with the UFS controller.
9919  *
9920  * This function basically brings controller
9921  * to active state. Following operations are done in this function:
9922  *
9923  * 1. Turn on all the controller related clocks
9924  * 2. Turn ON VCC rail
9925  */
9926 int ufshcd_runtime_resume(struct device *dev)
9927 {
9928         struct ufs_hba *hba = dev_get_drvdata(dev);
9929         int ret;
9930         ktime_t start = ktime_get();
9931
9932         ret = ufshcd_resume(hba);
9933
9934         trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9935                 ktime_to_us(ktime_sub(ktime_get(), start)),
9936                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9937         return ret;
9938 }
9939 EXPORT_SYMBOL(ufshcd_runtime_resume);
9940 #endif /* CONFIG_PM */
9941
9942 /**
9943  * ufshcd_shutdown - shutdown routine
9944  * @hba: per adapter instance
9945  *
9946  * This function would turn off both UFS device and UFS hba
9947  * regulators. It would also disable clocks.
9948  *
9949  * Returns 0 always to allow force shutdown even in case of errors.
9950  */
9951 int ufshcd_shutdown(struct ufs_hba *hba)
9952 {
9953         if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9954                 ufshcd_suspend(hba);
9955
9956         hba->is_powered = false;
9957         /* allow force shutdown even in case of errors */
9958         return 0;
9959 }
9960 EXPORT_SYMBOL(ufshcd_shutdown);
9961
9962 /**
9963  * ufshcd_remove - de-allocate SCSI host and host memory space
9964  *              data structure memory
9965  * @hba: per adapter instance
9966  */
9967 void ufshcd_remove(struct ufs_hba *hba)
9968 {
9969         if (hba->ufs_device_wlun)
9970                 ufshcd_rpm_get_sync(hba);
9971         ufs_hwmon_remove(hba);
9972         ufs_bsg_remove(hba);
9973         ufshpb_remove(hba);
9974         ufs_sysfs_remove_nodes(hba->dev);
9975         blk_mq_destroy_queue(hba->tmf_queue);
9976         blk_put_queue(hba->tmf_queue);
9977         blk_mq_free_tag_set(&hba->tmf_tag_set);
9978         scsi_remove_host(hba->host);
9979         /* disable interrupts */
9980         ufshcd_disable_intr(hba, hba->intr_mask);
9981         ufshcd_hba_stop(hba);
9982         ufshcd_hba_exit(hba);
9983 }
9984 EXPORT_SYMBOL_GPL(ufshcd_remove);
9985
9986 #ifdef CONFIG_PM_SLEEP
9987 int ufshcd_system_freeze(struct device *dev)
9988 {
9989
9990         return ufshcd_system_suspend(dev);
9991
9992 }
9993 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
9994
9995 int ufshcd_system_restore(struct device *dev)
9996 {
9997
9998         struct ufs_hba *hba = dev_get_drvdata(dev);
9999         int ret;
10000
10001         ret = ufshcd_system_resume(dev);
10002         if (ret)
10003                 return ret;
10004
10005         /* Configure UTRL and UTMRL base address registers */
10006         ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10007                         REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10008         ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10009                         REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10010         ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10011                         REG_UTP_TASK_REQ_LIST_BASE_L);
10012         ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10013                         REG_UTP_TASK_REQ_LIST_BASE_H);
10014         /*
10015          * Make sure that UTRL and UTMRL base address registers
10016          * are updated with the latest queue addresses. Only after
10017          * updating these addresses, we can queue the new commands.
10018          */
10019         mb();
10020
10021         /* Resuming from hibernate, assume that link was OFF */
10022         ufshcd_set_link_off(hba);
10023
10024         return 0;
10025
10026 }
10027 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10028
10029 int ufshcd_system_thaw(struct device *dev)
10030 {
10031         return ufshcd_system_resume(dev);
10032 }
10033 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10034 #endif /* CONFIG_PM_SLEEP  */
10035
10036 /**
10037  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10038  * @hba: pointer to Host Bus Adapter (HBA)
10039  */
10040 void ufshcd_dealloc_host(struct ufs_hba *hba)
10041 {
10042         scsi_host_put(hba->host);
10043 }
10044 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10045
10046 /**
10047  * ufshcd_set_dma_mask - Set dma mask based on the controller
10048  *                       addressing capability
10049  * @hba: per adapter instance
10050  *
10051  * Returns 0 for success, non-zero for failure
10052  */
10053 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10054 {
10055         if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10056                 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10057                         return 0;
10058         }
10059         return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10060 }
10061
10062 /**
10063  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10064  * @dev: pointer to device handle
10065  * @hba_handle: driver private handle
10066  * Returns 0 on success, non-zero value on failure
10067  */
10068 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10069 {
10070         struct Scsi_Host *host;
10071         struct ufs_hba *hba;
10072         int err = 0;
10073
10074         if (!dev) {
10075                 dev_err(dev,
10076                 "Invalid memory reference for dev is NULL\n");
10077                 err = -ENODEV;
10078                 goto out_error;
10079         }
10080
10081         host = scsi_host_alloc(&ufshcd_driver_template,
10082                                 sizeof(struct ufs_hba));
10083         if (!host) {
10084                 dev_err(dev, "scsi_host_alloc failed\n");
10085                 err = -ENOMEM;
10086                 goto out_error;
10087         }
10088         host->nr_maps = HCTX_TYPE_POLL + 1;
10089         hba = shost_priv(host);
10090         hba->host = host;
10091         hba->dev = dev;
10092         hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10093         hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10094         ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10095         INIT_LIST_HEAD(&hba->clk_list_head);
10096         spin_lock_init(&hba->outstanding_lock);
10097
10098         *hba_handle = hba;
10099
10100 out_error:
10101         return err;
10102 }
10103 EXPORT_SYMBOL(ufshcd_alloc_host);
10104
10105 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10106 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10107                                      const struct blk_mq_queue_data *qd)
10108 {
10109         WARN_ON_ONCE(true);
10110         return BLK_STS_NOTSUPP;
10111 }
10112
10113 static const struct blk_mq_ops ufshcd_tmf_ops = {
10114         .queue_rq = ufshcd_queue_tmf,
10115 };
10116
10117 /**
10118  * ufshcd_init - Driver initialization routine
10119  * @hba: per-adapter instance
10120  * @mmio_base: base register address
10121  * @irq: Interrupt line of device
10122  * Returns 0 on success, non-zero value on failure
10123  */
10124 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10125 {
10126         int err;
10127         struct Scsi_Host *host = hba->host;
10128         struct device *dev = hba->dev;
10129         char eh_wq_name[sizeof("ufs_eh_wq_00")];
10130
10131         /*
10132          * dev_set_drvdata() must be called before any callbacks are registered
10133          * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10134          * sysfs).
10135          */
10136         dev_set_drvdata(dev, hba);
10137
10138         if (!mmio_base) {
10139                 dev_err(hba->dev,
10140                 "Invalid memory reference for mmio_base is NULL\n");
10141                 err = -ENODEV;
10142                 goto out_error;
10143         }
10144
10145         hba->mmio_base = mmio_base;
10146         hba->irq = irq;
10147         hba->vps = &ufs_hba_vps;
10148
10149         err = ufshcd_hba_init(hba);
10150         if (err)
10151                 goto out_error;
10152
10153         /* Read capabilities registers */
10154         err = ufshcd_hba_capabilities(hba);
10155         if (err)
10156                 goto out_disable;
10157
10158         /* Get UFS version supported by the controller */
10159         hba->ufs_version = ufshcd_get_ufs_version(hba);
10160
10161         /* Get Interrupt bit mask per version */
10162         hba->intr_mask = ufshcd_get_intr_mask(hba);
10163
10164         err = ufshcd_set_dma_mask(hba);
10165         if (err) {
10166                 dev_err(hba->dev, "set dma mask failed\n");
10167                 goto out_disable;
10168         }
10169
10170         /* Allocate memory for host memory space */
10171         err = ufshcd_memory_alloc(hba);
10172         if (err) {
10173                 dev_err(hba->dev, "Memory allocation failed\n");
10174                 goto out_disable;
10175         }
10176
10177         /* Configure LRB */
10178         ufshcd_host_memory_configure(hba);
10179
10180         host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10181         host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10182         host->max_id = UFSHCD_MAX_ID;
10183         host->max_lun = UFS_MAX_LUNS;
10184         host->max_channel = UFSHCD_MAX_CHANNEL;
10185         host->unique_id = host->host_no;
10186         host->max_cmd_len = UFS_CDB_SIZE;
10187
10188         hba->max_pwr_info.is_valid = false;
10189
10190         /* Initialize work queues */
10191         snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10192                  hba->host->host_no);
10193         hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10194         if (!hba->eh_wq) {
10195                 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10196                         __func__);
10197                 err = -ENOMEM;
10198                 goto out_disable;
10199         }
10200         INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10201         INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10202
10203         sema_init(&hba->host_sem, 1);
10204
10205         /* Initialize UIC command mutex */
10206         mutex_init(&hba->uic_cmd_mutex);
10207
10208         /* Initialize mutex for device management commands */
10209         mutex_init(&hba->dev_cmd.lock);
10210
10211         /* Initialize mutex for exception event control */
10212         mutex_init(&hba->ee_ctrl_mutex);
10213
10214         mutex_init(&hba->wb_mutex);
10215         init_rwsem(&hba->clk_scaling_lock);
10216
10217         ufshcd_init_clk_gating(hba);
10218
10219         ufshcd_init_clk_scaling(hba);
10220
10221         /*
10222          * In order to avoid any spurious interrupt immediately after
10223          * registering UFS controller interrupt handler, clear any pending UFS
10224          * interrupt status and disable all the UFS interrupts.
10225          */
10226         ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10227                       REG_INTERRUPT_STATUS);
10228         ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10229         /*
10230          * Make sure that UFS interrupts are disabled and any pending interrupt
10231          * status is cleared before registering UFS interrupt handler.
10232          */
10233         mb();
10234
10235         /* IRQ registration */
10236         err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10237         if (err) {
10238                 dev_err(hba->dev, "request irq failed\n");
10239                 goto out_disable;
10240         } else {
10241                 hba->is_irq_enabled = true;
10242         }
10243
10244         if (!is_mcq_supported(hba)) {
10245                 err = scsi_add_host(host, hba->dev);
10246                 if (err) {
10247                         dev_err(hba->dev, "scsi_add_host failed\n");
10248                         goto out_disable;
10249                 }
10250         }
10251
10252         hba->tmf_tag_set = (struct blk_mq_tag_set) {
10253                 .nr_hw_queues   = 1,
10254                 .queue_depth    = hba->nutmrs,
10255                 .ops            = &ufshcd_tmf_ops,
10256                 .flags          = BLK_MQ_F_NO_SCHED,
10257         };
10258         err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10259         if (err < 0)
10260                 goto out_remove_scsi_host;
10261         hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10262         if (IS_ERR(hba->tmf_queue)) {
10263                 err = PTR_ERR(hba->tmf_queue);
10264                 goto free_tmf_tag_set;
10265         }
10266         hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10267                                     sizeof(*hba->tmf_rqs), GFP_KERNEL);
10268         if (!hba->tmf_rqs) {
10269                 err = -ENOMEM;
10270                 goto free_tmf_queue;
10271         }
10272
10273         /* Reset the attached device */
10274         ufshcd_device_reset(hba);
10275
10276         ufshcd_init_crypto(hba);
10277
10278         /* Host controller enable */
10279         err = ufshcd_hba_enable(hba);
10280         if (err) {
10281                 dev_err(hba->dev, "Host controller enable failed\n");
10282                 ufshcd_print_evt_hist(hba);
10283                 ufshcd_print_host_state(hba);
10284                 goto free_tmf_queue;
10285         }
10286
10287         /*
10288          * Set the default power management level for runtime and system PM.
10289          * Default power saving mode is to keep UFS link in Hibern8 state
10290          * and UFS device in sleep state.
10291          */
10292         hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10293                                                 UFS_SLEEP_PWR_MODE,
10294                                                 UIC_LINK_HIBERN8_STATE);
10295         hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10296                                                 UFS_SLEEP_PWR_MODE,
10297                                                 UIC_LINK_HIBERN8_STATE);
10298
10299         INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10300                           ufshcd_rpm_dev_flush_recheck_work);
10301
10302         /* Set the default auto-hiberate idle timer value to 150 ms */
10303         if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10304                 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10305                             FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10306         }
10307
10308         /* Hold auto suspend until async scan completes */
10309         pm_runtime_get_sync(dev);
10310         atomic_set(&hba->scsi_block_reqs_cnt, 0);
10311         /*
10312          * We are assuming that device wasn't put in sleep/power-down
10313          * state exclusively during the boot stage before kernel.
10314          * This assumption helps avoid doing link startup twice during
10315          * ufshcd_probe_hba().
10316          */
10317         ufshcd_set_ufs_dev_active(hba);
10318
10319         /* Initialize devfreq */
10320         if (ufshcd_is_clkscaling_supported(hba)) {
10321                 memcpy(&hba->clk_scaling.saved_pwr_info.info,
10322                         &hba->pwr_info,
10323                         sizeof(struct ufs_pa_layer_attr));
10324                 hba->clk_scaling.saved_pwr_info.is_valid = true;
10325                 hba->clk_scaling.is_allowed = true;
10326
10327                 err = ufshcd_devfreq_init(hba);
10328                 if (err)
10329                         goto rpm_put_sync;
10330
10331                 hba->clk_scaling.is_enabled = true;
10332                 ufshcd_init_clk_scaling_sysfs(hba);
10333         }
10334
10335         async_schedule(ufshcd_async_scan, hba);
10336         ufs_sysfs_add_nodes(hba->dev);
10337
10338         device_enable_async_suspend(dev);
10339         return 0;
10340
10341 rpm_put_sync:
10342         pm_runtime_put_sync(dev);
10343 free_tmf_queue:
10344         blk_mq_destroy_queue(hba->tmf_queue);
10345         blk_put_queue(hba->tmf_queue);
10346 free_tmf_tag_set:
10347         blk_mq_free_tag_set(&hba->tmf_tag_set);
10348 out_remove_scsi_host:
10349         scsi_remove_host(hba->host);
10350 out_disable:
10351         hba->is_irq_enabled = false;
10352         ufshcd_hba_exit(hba);
10353 out_error:
10354         return err;
10355 }
10356 EXPORT_SYMBOL_GPL(ufshcd_init);
10357
10358 void ufshcd_resume_complete(struct device *dev)
10359 {
10360         struct ufs_hba *hba = dev_get_drvdata(dev);
10361
10362         if (hba->complete_put) {
10363                 ufshcd_rpm_put(hba);
10364                 hba->complete_put = false;
10365         }
10366 }
10367 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10368
10369 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10370 {
10371         struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10372         enum ufs_dev_pwr_mode dev_pwr_mode;
10373         enum uic_link_state link_state;
10374         unsigned long flags;
10375         bool res;
10376
10377         spin_lock_irqsave(&dev->power.lock, flags);
10378         dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10379         link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10380         res = pm_runtime_suspended(dev) &&
10381               hba->curr_dev_pwr_mode == dev_pwr_mode &&
10382               hba->uic_link_state == link_state &&
10383               !hba->dev_info.b_rpm_dev_flush_capable;
10384         spin_unlock_irqrestore(&dev->power.lock, flags);
10385
10386         return res;
10387 }
10388
10389 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10390 {
10391         struct ufs_hba *hba = dev_get_drvdata(dev);
10392         int ret;
10393
10394         /*
10395          * SCSI assumes that runtime-pm and system-pm for scsi drivers
10396          * are same. And it doesn't wake up the device for system-suspend
10397          * if it's runtime suspended. But ufs doesn't follow that.
10398          * Refer ufshcd_resume_complete()
10399          */
10400         if (hba->ufs_device_wlun) {
10401                 /* Prevent runtime suspend */
10402                 ufshcd_rpm_get_noresume(hba);
10403                 /*
10404                  * Check if already runtime suspended in same state as system
10405                  * suspend would be.
10406                  */
10407                 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10408                         /* RPM state is not ok for SPM, so runtime resume */
10409                         ret = ufshcd_rpm_resume(hba);
10410                         if (ret < 0 && ret != -EACCES) {
10411                                 ufshcd_rpm_put(hba);
10412                                 return ret;
10413                         }
10414                 }
10415                 hba->complete_put = true;
10416         }
10417         return 0;
10418 }
10419 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10420
10421 int ufshcd_suspend_prepare(struct device *dev)
10422 {
10423         return __ufshcd_suspend_prepare(dev, true);
10424 }
10425 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10426
10427 #ifdef CONFIG_PM_SLEEP
10428 static int ufshcd_wl_poweroff(struct device *dev)
10429 {
10430         struct scsi_device *sdev = to_scsi_device(dev);
10431         struct ufs_hba *hba = shost_priv(sdev->host);
10432
10433         __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10434         return 0;
10435 }
10436 #endif
10437
10438 static int ufshcd_wl_probe(struct device *dev)
10439 {
10440         struct scsi_device *sdev = to_scsi_device(dev);
10441
10442         if (!is_device_wlun(sdev))
10443                 return -ENODEV;
10444
10445         blk_pm_runtime_init(sdev->request_queue, dev);
10446         pm_runtime_set_autosuspend_delay(dev, 0);
10447         pm_runtime_allow(dev);
10448
10449         return  0;
10450 }
10451
10452 static int ufshcd_wl_remove(struct device *dev)
10453 {
10454         pm_runtime_forbid(dev);
10455         return 0;
10456 }
10457
10458 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10459 #ifdef CONFIG_PM_SLEEP
10460         .suspend = ufshcd_wl_suspend,
10461         .resume = ufshcd_wl_resume,
10462         .freeze = ufshcd_wl_suspend,
10463         .thaw = ufshcd_wl_resume,
10464         .poweroff = ufshcd_wl_poweroff,
10465         .restore = ufshcd_wl_resume,
10466 #endif
10467         SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10468 };
10469
10470 /*
10471  * ufs_dev_wlun_template - describes ufs device wlun
10472  * ufs-device wlun - used to send pm commands
10473  * All luns are consumers of ufs-device wlun.
10474  *
10475  * Currently, no sd driver is present for wluns.
10476  * Hence the no specific pm operations are performed.
10477  * With ufs design, SSU should be sent to ufs-device wlun.
10478  * Hence register a scsi driver for ufs wluns only.
10479  */
10480 static struct scsi_driver ufs_dev_wlun_template = {
10481         .gendrv = {
10482                 .name = "ufs_device_wlun",
10483                 .owner = THIS_MODULE,
10484                 .probe = ufshcd_wl_probe,
10485                 .remove = ufshcd_wl_remove,
10486                 .pm = &ufshcd_wl_pm_ops,
10487                 .shutdown = ufshcd_wl_shutdown,
10488         },
10489 };
10490
10491 static int __init ufshcd_core_init(void)
10492 {
10493         int ret;
10494
10495         ufs_debugfs_init();
10496
10497         ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10498         if (ret)
10499                 ufs_debugfs_exit();
10500         return ret;
10501 }
10502
10503 static void __exit ufshcd_core_exit(void)
10504 {
10505         ufs_debugfs_exit();
10506         scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10507 }
10508
10509 module_init(ufshcd_core_init);
10510 module_exit(ufshcd_core_exit);
10511
10512 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10513 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10514 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10515 MODULE_LICENSE("GPL");