Merge tag 'hwlock-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[sfrench/cifs-2.6.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 #define spi_pcpu_stats_totalize(ret, in, field)                         \
121 do {                                                                    \
122         int i;                                                          \
123         ret = 0;                                                        \
124         for_each_possible_cpu(i) {                                      \
125                 const struct spi_statistics *pcpu_stats;                \
126                 u64 inc;                                                \
127                 unsigned int start;                                     \
128                 pcpu_stats = per_cpu_ptr(in, i);                        \
129                 do {                                                    \
130                         start = u64_stats_fetch_begin(          \
131                                         &pcpu_stats->syncp);            \
132                         inc = u64_stats_read(&pcpu_stats->field);       \
133                 } while (u64_stats_fetch_retry(                 \
134                                         &pcpu_stats->syncp, start));    \
135                 ret += inc;                                             \
136         }                                                               \
137 } while (0)
138
139 #define SPI_STATISTICS_ATTRS(field, file)                               \
140 static ssize_t spi_controller_##field##_show(struct device *dev,        \
141                                              struct device_attribute *attr, \
142                                              char *buf)                 \
143 {                                                                       \
144         struct spi_controller *ctlr = container_of(dev,                 \
145                                          struct spi_controller, dev);   \
146         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }                                                                       \
148 static struct device_attribute dev_attr_spi_controller_##field = {      \
149         .attr = { .name = file, .mode = 0444 },                         \
150         .show = spi_controller_##field##_show,                          \
151 };                                                                      \
152 static ssize_t spi_device_##field##_show(struct device *dev,            \
153                                          struct device_attribute *attr, \
154                                         char *buf)                      \
155 {                                                                       \
156         struct spi_device *spi = to_spi_device(dev);                    \
157         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }                                                                       \
159 static struct device_attribute dev_attr_spi_device_##field = {          \
160         .attr = { .name = file, .mode = 0444 },                         \
161         .show = spi_device_##field##_show,                              \
162 }
163
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166                                             char *buf)                  \
167 {                                                                       \
168         ssize_t len;                                                    \
169         u64 val;                                                        \
170         spi_pcpu_stats_totalize(val, stat, field);                      \
171         len = sysfs_emit(buf, "%llu\n", val);                           \
172         return len;                                                     \
173 }                                                                       \
174 SPI_STATISTICS_ATTRS(name, file)
175
176 #define SPI_STATISTICS_SHOW(field)                                      \
177         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
178                                  field)
179
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
194         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
195                                  "transfer_bytes_histo_" number,        \
196                                  transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216
217 static struct attribute *spi_dev_attrs[] = {
218         &dev_attr_modalias.attr,
219         &dev_attr_driver_override.attr,
220         NULL,
221 };
222
223 static const struct attribute_group spi_dev_group = {
224         .attrs  = spi_dev_attrs,
225 };
226
227 static struct attribute *spi_device_statistics_attrs[] = {
228         &dev_attr_spi_device_messages.attr,
229         &dev_attr_spi_device_transfers.attr,
230         &dev_attr_spi_device_errors.attr,
231         &dev_attr_spi_device_timedout.attr,
232         &dev_attr_spi_device_spi_sync.attr,
233         &dev_attr_spi_device_spi_sync_immediate.attr,
234         &dev_attr_spi_device_spi_async.attr,
235         &dev_attr_spi_device_bytes.attr,
236         &dev_attr_spi_device_bytes_rx.attr,
237         &dev_attr_spi_device_bytes_tx.attr,
238         &dev_attr_spi_device_transfer_bytes_histo0.attr,
239         &dev_attr_spi_device_transfer_bytes_histo1.attr,
240         &dev_attr_spi_device_transfer_bytes_histo2.attr,
241         &dev_attr_spi_device_transfer_bytes_histo3.attr,
242         &dev_attr_spi_device_transfer_bytes_histo4.attr,
243         &dev_attr_spi_device_transfer_bytes_histo5.attr,
244         &dev_attr_spi_device_transfer_bytes_histo6.attr,
245         &dev_attr_spi_device_transfer_bytes_histo7.attr,
246         &dev_attr_spi_device_transfer_bytes_histo8.attr,
247         &dev_attr_spi_device_transfer_bytes_histo9.attr,
248         &dev_attr_spi_device_transfer_bytes_histo10.attr,
249         &dev_attr_spi_device_transfer_bytes_histo11.attr,
250         &dev_attr_spi_device_transfer_bytes_histo12.attr,
251         &dev_attr_spi_device_transfer_bytes_histo13.attr,
252         &dev_attr_spi_device_transfer_bytes_histo14.attr,
253         &dev_attr_spi_device_transfer_bytes_histo15.attr,
254         &dev_attr_spi_device_transfer_bytes_histo16.attr,
255         &dev_attr_spi_device_transfers_split_maxsize.attr,
256         NULL,
257 };
258
259 static const struct attribute_group spi_device_statistics_group = {
260         .name  = "statistics",
261         .attrs  = spi_device_statistics_attrs,
262 };
263
264 static const struct attribute_group *spi_dev_groups[] = {
265         &spi_dev_group,
266         &spi_device_statistics_group,
267         NULL,
268 };
269
270 static struct attribute *spi_controller_statistics_attrs[] = {
271         &dev_attr_spi_controller_messages.attr,
272         &dev_attr_spi_controller_transfers.attr,
273         &dev_attr_spi_controller_errors.attr,
274         &dev_attr_spi_controller_timedout.attr,
275         &dev_attr_spi_controller_spi_sync.attr,
276         &dev_attr_spi_controller_spi_sync_immediate.attr,
277         &dev_attr_spi_controller_spi_async.attr,
278         &dev_attr_spi_controller_bytes.attr,
279         &dev_attr_spi_controller_bytes_rx.attr,
280         &dev_attr_spi_controller_bytes_tx.attr,
281         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298         &dev_attr_spi_controller_transfers_split_maxsize.attr,
299         NULL,
300 };
301
302 static const struct attribute_group spi_controller_statistics_group = {
303         .name  = "statistics",
304         .attrs  = spi_controller_statistics_attrs,
305 };
306
307 static const struct attribute_group *spi_master_groups[] = {
308         &spi_controller_statistics_group,
309         NULL,
310 };
311
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313                                               struct spi_transfer *xfer,
314                                               struct spi_controller *ctlr)
315 {
316         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317         struct spi_statistics *stats;
318
319         if (l2len < 0)
320                 l2len = 0;
321
322         get_cpu();
323         stats = this_cpu_ptr(pcpu_stats);
324         u64_stats_update_begin(&stats->syncp);
325
326         u64_stats_inc(&stats->transfers);
327         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328
329         u64_stats_add(&stats->bytes, xfer->len);
330         if ((xfer->tx_buf) &&
331             (xfer->tx_buf != ctlr->dummy_tx))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if ((xfer->rx_buf) &&
334             (xfer->rx_buf != ctlr->dummy_rx))
335                 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337         u64_stats_update_end(&stats->syncp);
338         put_cpu();
339 }
340
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347         while (id->name[0]) {
348                 if (!strcmp(name, id->name))
349                         return id;
350                 id++;
351         }
352         return NULL;
353 }
354
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359         return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365         const void *match;
366
367         match = device_get_match_data(&sdev->dev);
368         if (match)
369                 return match;
370
371         return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374
375 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 {
377         const struct spi_device *spi = to_spi_device(dev);
378         const struct spi_driver *sdrv = to_spi_driver(drv);
379
380         /* Check override first, and if set, only use the named driver */
381         if (spi->driver_override)
382                 return strcmp(spi->driver_override, drv->name) == 0;
383
384         /* Attempt an OF style match */
385         if (of_driver_match_device(dev, drv))
386                 return 1;
387
388         /* Then try ACPI */
389         if (acpi_driver_match_device(dev, drv))
390                 return 1;
391
392         if (sdrv->id_table)
393                 return !!spi_match_id(sdrv->id_table, spi->modalias);
394
395         return strcmp(spi->modalias, drv->name) == 0;
396 }
397
398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 {
400         const struct spi_device         *spi = to_spi_device(dev);
401         int rc;
402
403         rc = acpi_device_uevent_modalias(dev, env);
404         if (rc != -ENODEV)
405                 return rc;
406
407         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409
410 static int spi_probe(struct device *dev)
411 {
412         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
413         struct spi_device               *spi = to_spi_device(dev);
414         int ret;
415
416         ret = of_clk_set_defaults(dev->of_node, false);
417         if (ret)
418                 return ret;
419
420         if (dev->of_node) {
421                 spi->irq = of_irq_get(dev->of_node, 0);
422                 if (spi->irq == -EPROBE_DEFER)
423                         return -EPROBE_DEFER;
424                 if (spi->irq < 0)
425                         spi->irq = 0;
426         }
427
428         ret = dev_pm_domain_attach(dev, true);
429         if (ret)
430                 return ret;
431
432         if (sdrv->probe) {
433                 ret = sdrv->probe(spi);
434                 if (ret)
435                         dev_pm_domain_detach(dev, true);
436         }
437
438         return ret;
439 }
440
441 static void spi_remove(struct device *dev)
442 {
443         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
444
445         if (sdrv->remove)
446                 sdrv->remove(to_spi_device(dev));
447
448         dev_pm_domain_detach(dev, true);
449 }
450
451 static void spi_shutdown(struct device *dev)
452 {
453         if (dev->driver) {
454                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
455
456                 if (sdrv->shutdown)
457                         sdrv->shutdown(to_spi_device(dev));
458         }
459 }
460
461 struct bus_type spi_bus_type = {
462         .name           = "spi",
463         .dev_groups     = spi_dev_groups,
464         .match          = spi_match_device,
465         .uevent         = spi_uevent,
466         .probe          = spi_probe,
467         .remove         = spi_remove,
468         .shutdown       = spi_shutdown,
469 };
470 EXPORT_SYMBOL_GPL(spi_bus_type);
471
472 /**
473  * __spi_register_driver - register a SPI driver
474  * @owner: owner module of the driver to register
475  * @sdrv: the driver to register
476  * Context: can sleep
477  *
478  * Return: zero on success, else a negative error code.
479  */
480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 {
482         sdrv->driver.owner = owner;
483         sdrv->driver.bus = &spi_bus_type;
484
485         /*
486          * For Really Good Reasons we use spi: modaliases not of:
487          * modaliases for DT so module autoloading won't work if we
488          * don't have a spi_device_id as well as a compatible string.
489          */
490         if (sdrv->driver.of_match_table) {
491                 const struct of_device_id *of_id;
492
493                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
494                      of_id++) {
495                         const char *of_name;
496
497                         /* Strip off any vendor prefix */
498                         of_name = strnchr(of_id->compatible,
499                                           sizeof(of_id->compatible), ',');
500                         if (of_name)
501                                 of_name++;
502                         else
503                                 of_name = of_id->compatible;
504
505                         if (sdrv->id_table) {
506                                 const struct spi_device_id *spi_id;
507
508                                 spi_id = spi_match_id(sdrv->id_table, of_name);
509                                 if (spi_id)
510                                         continue;
511                         } else {
512                                 if (strcmp(sdrv->driver.name, of_name) == 0)
513                                         continue;
514                         }
515
516                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
517                                 sdrv->driver.name, of_id->compatible);
518                 }
519         }
520
521         return driver_register(&sdrv->driver);
522 }
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
524
525 /*-------------------------------------------------------------------------*/
526
527 /*
528  * SPI devices should normally not be created by SPI device drivers; that
529  * would make them board-specific.  Similarly with SPI controller drivers.
530  * Device registration normally goes into like arch/.../mach.../board-YYY.c
531  * with other readonly (flashable) information about mainboard devices.
532  */
533
534 struct boardinfo {
535         struct list_head        list;
536         struct spi_board_info   board_info;
537 };
538
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
541
542 /*
543  * Used to protect add/del operation for board_info list and
544  * spi_controller list, and their matching process also used
545  * to protect object of type struct idr.
546  */
547 static DEFINE_MUTEX(board_lock);
548
549 /**
550  * spi_alloc_device - Allocate a new SPI device
551  * @ctlr: Controller to which device is connected
552  * Context: can sleep
553  *
554  * Allows a driver to allocate and initialize a spi_device without
555  * registering it immediately.  This allows a driver to directly
556  * fill the spi_device with device parameters before calling
557  * spi_add_device() on it.
558  *
559  * Caller is responsible to call spi_add_device() on the returned
560  * spi_device structure to add it to the SPI controller.  If the caller
561  * needs to discard the spi_device without adding it, then it should
562  * call spi_dev_put() on it.
563  *
564  * Return: a pointer to the new device, or NULL.
565  */
566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 {
568         struct spi_device       *spi;
569
570         if (!spi_controller_get(ctlr))
571                 return NULL;
572
573         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574         if (!spi) {
575                 spi_controller_put(ctlr);
576                 return NULL;
577         }
578
579         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580         if (!spi->pcpu_statistics) {
581                 kfree(spi);
582                 spi_controller_put(ctlr);
583                 return NULL;
584         }
585
586         spi->master = spi->controller = ctlr;
587         spi->dev.parent = &ctlr->dev;
588         spi->dev.bus = &spi_bus_type;
589         spi->dev.release = spidev_release;
590         spi->mode = ctlr->buswidth_override_bits;
591
592         device_initialize(&spi->dev);
593         return spi;
594 }
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
596
597 static void spi_dev_set_name(struct spi_device *spi)
598 {
599         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
600
601         if (adev) {
602                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
603                 return;
604         }
605
606         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607                      spi_get_chipselect(spi, 0));
608 }
609
610 static int spi_dev_check(struct device *dev, void *data)
611 {
612         struct spi_device *spi = to_spi_device(dev);
613         struct spi_device *new_spi = data;
614
615         if (spi->controller == new_spi->controller &&
616             spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
617                 return -EBUSY;
618         return 0;
619 }
620
621 static void spi_cleanup(struct spi_device *spi)
622 {
623         if (spi->controller->cleanup)
624                 spi->controller->cleanup(spi);
625 }
626
627 static int __spi_add_device(struct spi_device *spi)
628 {
629         struct spi_controller *ctlr = spi->controller;
630         struct device *dev = ctlr->dev.parent;
631         int status;
632
633         /*
634          * We need to make sure there's no other device with this
635          * chipselect **BEFORE** we call setup(), else we'll trash
636          * its configuration.
637          */
638         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
639         if (status) {
640                 dev_err(dev, "chipselect %d already in use\n",
641                                 spi_get_chipselect(spi, 0));
642                 return status;
643         }
644
645         /* Controller may unregister concurrently */
646         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647             !device_is_registered(&ctlr->dev)) {
648                 return -ENODEV;
649         }
650
651         if (ctlr->cs_gpiods)
652                 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
653
654         /*
655          * Drivers may modify this initial i/o setup, but will
656          * normally rely on the device being setup.  Devices
657          * using SPI_CS_HIGH can't coexist well otherwise...
658          */
659         status = spi_setup(spi);
660         if (status < 0) {
661                 dev_err(dev, "can't setup %s, status %d\n",
662                                 dev_name(&spi->dev), status);
663                 return status;
664         }
665
666         /* Device may be bound to an active driver when this returns */
667         status = device_add(&spi->dev);
668         if (status < 0) {
669                 dev_err(dev, "can't add %s, status %d\n",
670                                 dev_name(&spi->dev), status);
671                 spi_cleanup(spi);
672         } else {
673                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
674         }
675
676         return status;
677 }
678
679 /**
680  * spi_add_device - Add spi_device allocated with spi_alloc_device
681  * @spi: spi_device to register
682  *
683  * Companion function to spi_alloc_device.  Devices allocated with
684  * spi_alloc_device can be added onto the spi bus with this function.
685  *
686  * Return: 0 on success; negative errno on failure
687  */
688 int spi_add_device(struct spi_device *spi)
689 {
690         struct spi_controller *ctlr = spi->controller;
691         struct device *dev = ctlr->dev.parent;
692         int status;
693
694         /* Chipselects are numbered 0..max; validate. */
695         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
696                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
697                         ctlr->num_chipselect);
698                 return -EINVAL;
699         }
700
701         /* Set the bus ID string */
702         spi_dev_set_name(spi);
703
704         mutex_lock(&ctlr->add_lock);
705         status = __spi_add_device(spi);
706         mutex_unlock(&ctlr->add_lock);
707         return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 static int spi_add_device_locked(struct spi_device *spi)
712 {
713         struct spi_controller *ctlr = spi->controller;
714         struct device *dev = ctlr->dev.parent;
715
716         /* Chipselects are numbered 0..max; validate. */
717         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
718                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
719                         ctlr->num_chipselect);
720                 return -EINVAL;
721         }
722
723         /* Set the bus ID string */
724         spi_dev_set_name(spi);
725
726         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727         return __spi_add_device(spi);
728 }
729
730 /**
731  * spi_new_device - instantiate one new SPI device
732  * @ctlr: Controller to which device is connected
733  * @chip: Describes the SPI device
734  * Context: can sleep
735  *
736  * On typical mainboards, this is purely internal; and it's not needed
737  * after board init creates the hard-wired devices.  Some development
738  * platforms may not be able to use spi_register_board_info though, and
739  * this is exported so that for example a USB or parport based adapter
740  * driver could add devices (which it would learn about out-of-band).
741  *
742  * Return: the new device, or NULL.
743  */
744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745                                   struct spi_board_info *chip)
746 {
747         struct spi_device       *proxy;
748         int                     status;
749
750         /*
751          * NOTE:  caller did any chip->bus_num checks necessary.
752          *
753          * Also, unless we change the return value convention to use
754          * error-or-pointer (not NULL-or-pointer), troubleshootability
755          * suggests syslogged diagnostics are best here (ugh).
756          */
757
758         proxy = spi_alloc_device(ctlr);
759         if (!proxy)
760                 return NULL;
761
762         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
763
764         spi_set_chipselect(proxy, 0, chip->chip_select);
765         proxy->max_speed_hz = chip->max_speed_hz;
766         proxy->mode = chip->mode;
767         proxy->irq = chip->irq;
768         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769         proxy->dev.platform_data = (void *) chip->platform_data;
770         proxy->controller_data = chip->controller_data;
771         proxy->controller_state = NULL;
772
773         if (chip->swnode) {
774                 status = device_add_software_node(&proxy->dev, chip->swnode);
775                 if (status) {
776                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777                                 chip->modalias, status);
778                         goto err_dev_put;
779                 }
780         }
781
782         status = spi_add_device(proxy);
783         if (status < 0)
784                 goto err_dev_put;
785
786         return proxy;
787
788 err_dev_put:
789         device_remove_software_node(&proxy->dev);
790         spi_dev_put(proxy);
791         return NULL;
792 }
793 EXPORT_SYMBOL_GPL(spi_new_device);
794
795 /**
796  * spi_unregister_device - unregister a single SPI device
797  * @spi: spi_device to unregister
798  *
799  * Start making the passed SPI device vanish. Normally this would be handled
800  * by spi_unregister_controller().
801  */
802 void spi_unregister_device(struct spi_device *spi)
803 {
804         if (!spi)
805                 return;
806
807         if (spi->dev.of_node) {
808                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809                 of_node_put(spi->dev.of_node);
810         }
811         if (ACPI_COMPANION(&spi->dev))
812                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813         device_remove_software_node(&spi->dev);
814         device_del(&spi->dev);
815         spi_cleanup(spi);
816         put_device(&spi->dev);
817 }
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
819
820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821                                               struct spi_board_info *bi)
822 {
823         struct spi_device *dev;
824
825         if (ctlr->bus_num != bi->bus_num)
826                 return;
827
828         dev = spi_new_device(ctlr, bi);
829         if (!dev)
830                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
831                         bi->modalias);
832 }
833
834 /**
835  * spi_register_board_info - register SPI devices for a given board
836  * @info: array of chip descriptors
837  * @n: how many descriptors are provided
838  * Context: can sleep
839  *
840  * Board-specific early init code calls this (probably during arch_initcall)
841  * with segments of the SPI device table.  Any device nodes are created later,
842  * after the relevant parent SPI controller (bus_num) is defined.  We keep
843  * this table of devices forever, so that reloading a controller driver will
844  * not make Linux forget about these hard-wired devices.
845  *
846  * Other code can also call this, e.g. a particular add-on board might provide
847  * SPI devices through its expansion connector, so code initializing that board
848  * would naturally declare its SPI devices.
849  *
850  * The board info passed can safely be __initdata ... but be careful of
851  * any embedded pointers (platform_data, etc), they're copied as-is.
852  *
853  * Return: zero on success, else a negative error code.
854  */
855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
856 {
857         struct boardinfo *bi;
858         int i;
859
860         if (!n)
861                 return 0;
862
863         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
864         if (!bi)
865                 return -ENOMEM;
866
867         for (i = 0; i < n; i++, bi++, info++) {
868                 struct spi_controller *ctlr;
869
870                 memcpy(&bi->board_info, info, sizeof(*info));
871
872                 mutex_lock(&board_lock);
873                 list_add_tail(&bi->list, &board_list);
874                 list_for_each_entry(ctlr, &spi_controller_list, list)
875                         spi_match_controller_to_boardinfo(ctlr,
876                                                           &bi->board_info);
877                 mutex_unlock(&board_lock);
878         }
879
880         return 0;
881 }
882
883 /*-------------------------------------------------------------------------*/
884
885 /* Core methods for SPI resource management */
886
887 /**
888  * spi_res_alloc - allocate a spi resource that is life-cycle managed
889  *                 during the processing of a spi_message while using
890  *                 spi_transfer_one
891  * @spi:     the spi device for which we allocate memory
892  * @release: the release code to execute for this resource
893  * @size:    size to alloc and return
894  * @gfp:     GFP allocation flags
895  *
896  * Return: the pointer to the allocated data
897  *
898  * This may get enhanced in the future to allocate from a memory pool
899  * of the @spi_device or @spi_controller to avoid repeated allocations.
900  */
901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902                            size_t size, gfp_t gfp)
903 {
904         struct spi_res *sres;
905
906         sres = kzalloc(sizeof(*sres) + size, gfp);
907         if (!sres)
908                 return NULL;
909
910         INIT_LIST_HEAD(&sres->entry);
911         sres->release = release;
912
913         return sres->data;
914 }
915
916 /**
917  * spi_res_free - free an spi resource
918  * @res: pointer to the custom data of a resource
919  */
920 static void spi_res_free(void *res)
921 {
922         struct spi_res *sres = container_of(res, struct spi_res, data);
923
924         if (!res)
925                 return;
926
927         WARN_ON(!list_empty(&sres->entry));
928         kfree(sres);
929 }
930
931 /**
932  * spi_res_add - add a spi_res to the spi_message
933  * @message: the spi message
934  * @res:     the spi_resource
935  */
936 static void spi_res_add(struct spi_message *message, void *res)
937 {
938         struct spi_res *sres = container_of(res, struct spi_res, data);
939
940         WARN_ON(!list_empty(&sres->entry));
941         list_add_tail(&sres->entry, &message->resources);
942 }
943
944 /**
945  * spi_res_release - release all spi resources for this message
946  * @ctlr:  the @spi_controller
947  * @message: the @spi_message
948  */
949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
950 {
951         struct spi_res *res, *tmp;
952
953         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
954                 if (res->release)
955                         res->release(ctlr, message, res->data);
956
957                 list_del(&res->entry);
958
959                 kfree(res);
960         }
961 }
962
963 /*-------------------------------------------------------------------------*/
964
965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
966 {
967         bool activate = enable;
968
969         /*
970          * Avoid calling into the driver (or doing delays) if the chip select
971          * isn't actually changing from the last time this was called.
972          */
973         if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
974                        (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
975             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
976                 return;
977
978         trace_spi_set_cs(spi, activate);
979
980         spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
981         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
982
983         if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
984                 spi_delay_exec(&spi->cs_hold, NULL);
985
986         if (spi->mode & SPI_CS_HIGH)
987                 enable = !enable;
988
989         if (spi_get_csgpiod(spi, 0)) {
990                 if (!(spi->mode & SPI_NO_CS)) {
991                         /*
992                          * Historically ACPI has no means of the GPIO polarity and
993                          * thus the SPISerialBus() resource defines it on the per-chip
994                          * basis. In order to avoid a chain of negations, the GPIO
995                          * polarity is considered being Active High. Even for the cases
996                          * when _DSD() is involved (in the updated versions of ACPI)
997                          * the GPIO CS polarity must be defined Active High to avoid
998                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
999                          * into account.
1000                          */
1001                         if (has_acpi_companion(&spi->dev))
1002                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1003                         else
1004                                 /* Polarity handled by GPIO library */
1005                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1006                 }
1007                 /* Some SPI masters need both GPIO CS & slave_select */
1008                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1009                     spi->controller->set_cs)
1010                         spi->controller->set_cs(spi, !enable);
1011         } else if (spi->controller->set_cs) {
1012                 spi->controller->set_cs(spi, !enable);
1013         }
1014
1015         if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1016                 if (activate)
1017                         spi_delay_exec(&spi->cs_setup, NULL);
1018                 else
1019                         spi_delay_exec(&spi->cs_inactive, NULL);
1020         }
1021 }
1022
1023 #ifdef CONFIG_HAS_DMA
1024 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1025                              struct sg_table *sgt, void *buf, size_t len,
1026                              enum dma_data_direction dir, unsigned long attrs)
1027 {
1028         const bool vmalloced_buf = is_vmalloc_addr(buf);
1029         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1030 #ifdef CONFIG_HIGHMEM
1031         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1032                                 (unsigned long)buf < (PKMAP_BASE +
1033                                         (LAST_PKMAP * PAGE_SIZE)));
1034 #else
1035         const bool kmap_buf = false;
1036 #endif
1037         int desc_len;
1038         int sgs;
1039         struct page *vm_page;
1040         struct scatterlist *sg;
1041         void *sg_buf;
1042         size_t min;
1043         int i, ret;
1044
1045         if (vmalloced_buf || kmap_buf) {
1046                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1047                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1048         } else if (virt_addr_valid(buf)) {
1049                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1050                 sgs = DIV_ROUND_UP(len, desc_len);
1051         } else {
1052                 return -EINVAL;
1053         }
1054
1055         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1056         if (ret != 0)
1057                 return ret;
1058
1059         sg = &sgt->sgl[0];
1060         for (i = 0; i < sgs; i++) {
1061
1062                 if (vmalloced_buf || kmap_buf) {
1063                         /*
1064                          * Next scatterlist entry size is the minimum between
1065                          * the desc_len and the remaining buffer length that
1066                          * fits in a page.
1067                          */
1068                         min = min_t(size_t, desc_len,
1069                                     min_t(size_t, len,
1070                                           PAGE_SIZE - offset_in_page(buf)));
1071                         if (vmalloced_buf)
1072                                 vm_page = vmalloc_to_page(buf);
1073                         else
1074                                 vm_page = kmap_to_page(buf);
1075                         if (!vm_page) {
1076                                 sg_free_table(sgt);
1077                                 return -ENOMEM;
1078                         }
1079                         sg_set_page(sg, vm_page,
1080                                     min, offset_in_page(buf));
1081                 } else {
1082                         min = min_t(size_t, len, desc_len);
1083                         sg_buf = buf;
1084                         sg_set_buf(sg, sg_buf, min);
1085                 }
1086
1087                 buf += min;
1088                 len -= min;
1089                 sg = sg_next(sg);
1090         }
1091
1092         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1093         if (ret < 0) {
1094                 sg_free_table(sgt);
1095                 return ret;
1096         }
1097
1098         return 0;
1099 }
1100
1101 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1102                 struct sg_table *sgt, void *buf, size_t len,
1103                 enum dma_data_direction dir)
1104 {
1105         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1106 }
1107
1108 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1109                                 struct device *dev, struct sg_table *sgt,
1110                                 enum dma_data_direction dir,
1111                                 unsigned long attrs)
1112 {
1113         if (sgt->orig_nents) {
1114                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1115                 sg_free_table(sgt);
1116                 sgt->orig_nents = 0;
1117                 sgt->nents = 0;
1118         }
1119 }
1120
1121 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1122                    struct sg_table *sgt, enum dma_data_direction dir)
1123 {
1124         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1125 }
1126
1127 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1128 {
1129         struct device *tx_dev, *rx_dev;
1130         struct spi_transfer *xfer;
1131         int ret;
1132
1133         if (!ctlr->can_dma)
1134                 return 0;
1135
1136         if (ctlr->dma_tx)
1137                 tx_dev = ctlr->dma_tx->device->dev;
1138         else if (ctlr->dma_map_dev)
1139                 tx_dev = ctlr->dma_map_dev;
1140         else
1141                 tx_dev = ctlr->dev.parent;
1142
1143         if (ctlr->dma_rx)
1144                 rx_dev = ctlr->dma_rx->device->dev;
1145         else if (ctlr->dma_map_dev)
1146                 rx_dev = ctlr->dma_map_dev;
1147         else
1148                 rx_dev = ctlr->dev.parent;
1149
1150         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1151                 /* The sync is done before each transfer. */
1152                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1153
1154                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1155                         continue;
1156
1157                 if (xfer->tx_buf != NULL) {
1158                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1159                                                 (void *)xfer->tx_buf,
1160                                                 xfer->len, DMA_TO_DEVICE,
1161                                                 attrs);
1162                         if (ret != 0)
1163                                 return ret;
1164                 }
1165
1166                 if (xfer->rx_buf != NULL) {
1167                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1168                                                 xfer->rx_buf, xfer->len,
1169                                                 DMA_FROM_DEVICE, attrs);
1170                         if (ret != 0) {
1171                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1172                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1173                                                 attrs);
1174
1175                                 return ret;
1176                         }
1177                 }
1178         }
1179
1180         ctlr->cur_rx_dma_dev = rx_dev;
1181         ctlr->cur_tx_dma_dev = tx_dev;
1182         ctlr->cur_msg_mapped = true;
1183
1184         return 0;
1185 }
1186
1187 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1188 {
1189         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1190         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1191         struct spi_transfer *xfer;
1192
1193         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1194                 return 0;
1195
1196         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1197                 /* The sync has already been done after each transfer. */
1198                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1199
1200                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1201                         continue;
1202
1203                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1204                                     DMA_FROM_DEVICE, attrs);
1205                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1206                                     DMA_TO_DEVICE, attrs);
1207         }
1208
1209         ctlr->cur_msg_mapped = false;
1210
1211         return 0;
1212 }
1213
1214 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1215                                     struct spi_transfer *xfer)
1216 {
1217         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1218         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1219
1220         if (!ctlr->cur_msg_mapped)
1221                 return;
1222
1223         if (xfer->tx_sg.orig_nents)
1224                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1225         if (xfer->rx_sg.orig_nents)
1226                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1227 }
1228
1229 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1230                                  struct spi_transfer *xfer)
1231 {
1232         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1233         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1234
1235         if (!ctlr->cur_msg_mapped)
1236                 return;
1237
1238         if (xfer->rx_sg.orig_nents)
1239                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1240         if (xfer->tx_sg.orig_nents)
1241                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1242 }
1243 #else /* !CONFIG_HAS_DMA */
1244 static inline int __spi_map_msg(struct spi_controller *ctlr,
1245                                 struct spi_message *msg)
1246 {
1247         return 0;
1248 }
1249
1250 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1251                                   struct spi_message *msg)
1252 {
1253         return 0;
1254 }
1255
1256 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1257                                     struct spi_transfer *xfer)
1258 {
1259 }
1260
1261 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1262                                  struct spi_transfer *xfer)
1263 {
1264 }
1265 #endif /* !CONFIG_HAS_DMA */
1266
1267 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1268                                 struct spi_message *msg)
1269 {
1270         struct spi_transfer *xfer;
1271
1272         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1273                 /*
1274                  * Restore the original value of tx_buf or rx_buf if they are
1275                  * NULL.
1276                  */
1277                 if (xfer->tx_buf == ctlr->dummy_tx)
1278                         xfer->tx_buf = NULL;
1279                 if (xfer->rx_buf == ctlr->dummy_rx)
1280                         xfer->rx_buf = NULL;
1281         }
1282
1283         return __spi_unmap_msg(ctlr, msg);
1284 }
1285
1286 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287 {
1288         struct spi_transfer *xfer;
1289         void *tmp;
1290         unsigned int max_tx, max_rx;
1291
1292         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1293                 && !(msg->spi->mode & SPI_3WIRE)) {
1294                 max_tx = 0;
1295                 max_rx = 0;
1296
1297                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1299                             !xfer->tx_buf)
1300                                 max_tx = max(xfer->len, max_tx);
1301                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1302                             !xfer->rx_buf)
1303                                 max_rx = max(xfer->len, max_rx);
1304                 }
1305
1306                 if (max_tx) {
1307                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1308                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1309                         if (!tmp)
1310                                 return -ENOMEM;
1311                         ctlr->dummy_tx = tmp;
1312                 }
1313
1314                 if (max_rx) {
1315                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1316                                        GFP_KERNEL | GFP_DMA);
1317                         if (!tmp)
1318                                 return -ENOMEM;
1319                         ctlr->dummy_rx = tmp;
1320                 }
1321
1322                 if (max_tx || max_rx) {
1323                         list_for_each_entry(xfer, &msg->transfers,
1324                                             transfer_list) {
1325                                 if (!xfer->len)
1326                                         continue;
1327                                 if (!xfer->tx_buf)
1328                                         xfer->tx_buf = ctlr->dummy_tx;
1329                                 if (!xfer->rx_buf)
1330                                         xfer->rx_buf = ctlr->dummy_rx;
1331                         }
1332                 }
1333         }
1334
1335         return __spi_map_msg(ctlr, msg);
1336 }
1337
1338 static int spi_transfer_wait(struct spi_controller *ctlr,
1339                              struct spi_message *msg,
1340                              struct spi_transfer *xfer)
1341 {
1342         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1343         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1344         u32 speed_hz = xfer->speed_hz;
1345         unsigned long long ms;
1346
1347         if (spi_controller_is_slave(ctlr)) {
1348                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1349                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1350                         return -EINTR;
1351                 }
1352         } else {
1353                 if (!speed_hz)
1354                         speed_hz = 100000;
1355
1356                 /*
1357                  * For each byte we wait for 8 cycles of the SPI clock.
1358                  * Since speed is defined in Hz and we want milliseconds,
1359                  * use respective multiplier, but before the division,
1360                  * otherwise we may get 0 for short transfers.
1361                  */
1362                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1363                 do_div(ms, speed_hz);
1364
1365                 /*
1366                  * Increase it twice and add 200 ms tolerance, use
1367                  * predefined maximum in case of overflow.
1368                  */
1369                 ms += ms + 200;
1370                 if (ms > UINT_MAX)
1371                         ms = UINT_MAX;
1372
1373                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1374                                                  msecs_to_jiffies(ms));
1375
1376                 if (ms == 0) {
1377                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1378                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1379                         dev_err(&msg->spi->dev,
1380                                 "SPI transfer timed out\n");
1381                         return -ETIMEDOUT;
1382                 }
1383         }
1384
1385         return 0;
1386 }
1387
1388 static void _spi_transfer_delay_ns(u32 ns)
1389 {
1390         if (!ns)
1391                 return;
1392         if (ns <= NSEC_PER_USEC) {
1393                 ndelay(ns);
1394         } else {
1395                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1396
1397                 if (us <= 10)
1398                         udelay(us);
1399                 else
1400                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1401         }
1402 }
1403
1404 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1405 {
1406         u32 delay = _delay->value;
1407         u32 unit = _delay->unit;
1408         u32 hz;
1409
1410         if (!delay)
1411                 return 0;
1412
1413         switch (unit) {
1414         case SPI_DELAY_UNIT_USECS:
1415                 delay *= NSEC_PER_USEC;
1416                 break;
1417         case SPI_DELAY_UNIT_NSECS:
1418                 /* Nothing to do here */
1419                 break;
1420         case SPI_DELAY_UNIT_SCK:
1421                 /* Clock cycles need to be obtained from spi_transfer */
1422                 if (!xfer)
1423                         return -EINVAL;
1424                 /*
1425                  * If there is unknown effective speed, approximate it
1426                  * by underestimating with half of the requested hz.
1427                  */
1428                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1429                 if (!hz)
1430                         return -EINVAL;
1431
1432                 /* Convert delay to nanoseconds */
1433                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1434                 break;
1435         default:
1436                 return -EINVAL;
1437         }
1438
1439         return delay;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1442
1443 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1444 {
1445         int delay;
1446
1447         might_sleep();
1448
1449         if (!_delay)
1450                 return -EINVAL;
1451
1452         delay = spi_delay_to_ns(_delay, xfer);
1453         if (delay < 0)
1454                 return delay;
1455
1456         _spi_transfer_delay_ns(delay);
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(spi_delay_exec);
1461
1462 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1463                                           struct spi_transfer *xfer)
1464 {
1465         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1466         u32 delay = xfer->cs_change_delay.value;
1467         u32 unit = xfer->cs_change_delay.unit;
1468         int ret;
1469
1470         /* Return early on "fast" mode - for everything but USECS */
1471         if (!delay) {
1472                 if (unit == SPI_DELAY_UNIT_USECS)
1473                         _spi_transfer_delay_ns(default_delay_ns);
1474                 return;
1475         }
1476
1477         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1478         if (ret) {
1479                 dev_err_once(&msg->spi->dev,
1480                              "Use of unsupported delay unit %i, using default of %luus\n",
1481                              unit, default_delay_ns / NSEC_PER_USEC);
1482                 _spi_transfer_delay_ns(default_delay_ns);
1483         }
1484 }
1485
1486 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1487                                                   struct spi_transfer *xfer)
1488 {
1489         _spi_transfer_cs_change_delay(msg, xfer);
1490 }
1491 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1492
1493 /*
1494  * spi_transfer_one_message - Default implementation of transfer_one_message()
1495  *
1496  * This is a standard implementation of transfer_one_message() for
1497  * drivers which implement a transfer_one() operation.  It provides
1498  * standard handling of delays and chip select management.
1499  */
1500 static int spi_transfer_one_message(struct spi_controller *ctlr,
1501                                     struct spi_message *msg)
1502 {
1503         struct spi_transfer *xfer;
1504         bool keep_cs = false;
1505         int ret = 0;
1506         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1507         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1508
1509         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1510         spi_set_cs(msg->spi, !xfer->cs_off, false);
1511
1512         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1513         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1514
1515         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1516                 trace_spi_transfer_start(msg, xfer);
1517
1518                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1519                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1520
1521                 if (!ctlr->ptp_sts_supported) {
1522                         xfer->ptp_sts_word_pre = 0;
1523                         ptp_read_system_prets(xfer->ptp_sts);
1524                 }
1525
1526                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1527                         reinit_completion(&ctlr->xfer_completion);
1528
1529 fallback_pio:
1530                         spi_dma_sync_for_device(ctlr, xfer);
1531                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1532                         if (ret < 0) {
1533                                 spi_dma_sync_for_cpu(ctlr, xfer);
1534
1535                                 if (ctlr->cur_msg_mapped &&
1536                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1537                                         __spi_unmap_msg(ctlr, msg);
1538                                         ctlr->fallback = true;
1539                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1540                                         goto fallback_pio;
1541                                 }
1542
1543                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1544                                                                errors);
1545                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1546                                                                errors);
1547                                 dev_err(&msg->spi->dev,
1548                                         "SPI transfer failed: %d\n", ret);
1549                                 goto out;
1550                         }
1551
1552                         if (ret > 0) {
1553                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1554                                 if (ret < 0)
1555                                         msg->status = ret;
1556                         }
1557
1558                         spi_dma_sync_for_cpu(ctlr, xfer);
1559                 } else {
1560                         if (xfer->len)
1561                                 dev_err(&msg->spi->dev,
1562                                         "Bufferless transfer has length %u\n",
1563                                         xfer->len);
1564                 }
1565
1566                 if (!ctlr->ptp_sts_supported) {
1567                         ptp_read_system_postts(xfer->ptp_sts);
1568                         xfer->ptp_sts_word_post = xfer->len;
1569                 }
1570
1571                 trace_spi_transfer_stop(msg, xfer);
1572
1573                 if (msg->status != -EINPROGRESS)
1574                         goto out;
1575
1576                 spi_transfer_delay_exec(xfer);
1577
1578                 if (xfer->cs_change) {
1579                         if (list_is_last(&xfer->transfer_list,
1580                                          &msg->transfers)) {
1581                                 keep_cs = true;
1582                         } else {
1583                                 if (!xfer->cs_off)
1584                                         spi_set_cs(msg->spi, false, false);
1585                                 _spi_transfer_cs_change_delay(msg, xfer);
1586                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1587                                         spi_set_cs(msg->spi, true, false);
1588                         }
1589                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1590                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1591                         spi_set_cs(msg->spi, xfer->cs_off, false);
1592                 }
1593
1594                 msg->actual_length += xfer->len;
1595         }
1596
1597 out:
1598         if (ret != 0 || !keep_cs)
1599                 spi_set_cs(msg->spi, false, false);
1600
1601         if (msg->status == -EINPROGRESS)
1602                 msg->status = ret;
1603
1604         if (msg->status && ctlr->handle_err)
1605                 ctlr->handle_err(ctlr, msg);
1606
1607         spi_finalize_current_message(ctlr);
1608
1609         return ret;
1610 }
1611
1612 /**
1613  * spi_finalize_current_transfer - report completion of a transfer
1614  * @ctlr: the controller reporting completion
1615  *
1616  * Called by SPI drivers using the core transfer_one_message()
1617  * implementation to notify it that the current interrupt driven
1618  * transfer has finished and the next one may be scheduled.
1619  */
1620 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1621 {
1622         complete(&ctlr->xfer_completion);
1623 }
1624 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1625
1626 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1627 {
1628         if (ctlr->auto_runtime_pm) {
1629                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1630                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1631         }
1632 }
1633
1634 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1635                 struct spi_message *msg, bool was_busy)
1636 {
1637         struct spi_transfer *xfer;
1638         int ret;
1639
1640         if (!was_busy && ctlr->auto_runtime_pm) {
1641                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1642                 if (ret < 0) {
1643                         pm_runtime_put_noidle(ctlr->dev.parent);
1644                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1645                                 ret);
1646                         return ret;
1647                 }
1648         }
1649
1650         if (!was_busy)
1651                 trace_spi_controller_busy(ctlr);
1652
1653         if (!was_busy && ctlr->prepare_transfer_hardware) {
1654                 ret = ctlr->prepare_transfer_hardware(ctlr);
1655                 if (ret) {
1656                         dev_err(&ctlr->dev,
1657                                 "failed to prepare transfer hardware: %d\n",
1658                                 ret);
1659
1660                         if (ctlr->auto_runtime_pm)
1661                                 pm_runtime_put(ctlr->dev.parent);
1662
1663                         msg->status = ret;
1664                         spi_finalize_current_message(ctlr);
1665
1666                         return ret;
1667                 }
1668         }
1669
1670         trace_spi_message_start(msg);
1671
1672         ret = spi_split_transfers_maxsize(ctlr, msg,
1673                                           spi_max_transfer_size(msg->spi),
1674                                           GFP_KERNEL | GFP_DMA);
1675         if (ret) {
1676                 msg->status = ret;
1677                 spi_finalize_current_message(ctlr);
1678                 return ret;
1679         }
1680
1681         if (ctlr->prepare_message) {
1682                 ret = ctlr->prepare_message(ctlr, msg);
1683                 if (ret) {
1684                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1685                                 ret);
1686                         msg->status = ret;
1687                         spi_finalize_current_message(ctlr);
1688                         return ret;
1689                 }
1690                 msg->prepared = true;
1691         }
1692
1693         ret = spi_map_msg(ctlr, msg);
1694         if (ret) {
1695                 msg->status = ret;
1696                 spi_finalize_current_message(ctlr);
1697                 return ret;
1698         }
1699
1700         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1701                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1702                         xfer->ptp_sts_word_pre = 0;
1703                         ptp_read_system_prets(xfer->ptp_sts);
1704                 }
1705         }
1706
1707         /*
1708          * Drivers implementation of transfer_one_message() must arrange for
1709          * spi_finalize_current_message() to get called. Most drivers will do
1710          * this in the calling context, but some don't. For those cases, a
1711          * completion is used to guarantee that this function does not return
1712          * until spi_finalize_current_message() is done accessing
1713          * ctlr->cur_msg.
1714          * Use of the following two flags enable to opportunistically skip the
1715          * use of the completion since its use involves expensive spin locks.
1716          * In case of a race with the context that calls
1717          * spi_finalize_current_message() the completion will always be used,
1718          * due to strict ordering of these flags using barriers.
1719          */
1720         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1721         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1722         reinit_completion(&ctlr->cur_msg_completion);
1723         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1724
1725         ret = ctlr->transfer_one_message(ctlr, msg);
1726         if (ret) {
1727                 dev_err(&ctlr->dev,
1728                         "failed to transfer one message from queue\n");
1729                 return ret;
1730         }
1731
1732         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1733         smp_mb(); /* See spi_finalize_current_message()... */
1734         if (READ_ONCE(ctlr->cur_msg_incomplete))
1735                 wait_for_completion(&ctlr->cur_msg_completion);
1736
1737         return 0;
1738 }
1739
1740 /**
1741  * __spi_pump_messages - function which processes spi message queue
1742  * @ctlr: controller to process queue for
1743  * @in_kthread: true if we are in the context of the message pump thread
1744  *
1745  * This function checks if there is any spi message in the queue that
1746  * needs processing and if so call out to the driver to initialize hardware
1747  * and transfer each message.
1748  *
1749  * Note that it is called both from the kthread itself and also from
1750  * inside spi_sync(); the queue extraction handling at the top of the
1751  * function should deal with this safely.
1752  */
1753 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1754 {
1755         struct spi_message *msg;
1756         bool was_busy = false;
1757         unsigned long flags;
1758         int ret;
1759
1760         /* Take the IO mutex */
1761         mutex_lock(&ctlr->io_mutex);
1762
1763         /* Lock queue */
1764         spin_lock_irqsave(&ctlr->queue_lock, flags);
1765
1766         /* Make sure we are not already running a message */
1767         if (ctlr->cur_msg)
1768                 goto out_unlock;
1769
1770         /* Check if the queue is idle */
1771         if (list_empty(&ctlr->queue) || !ctlr->running) {
1772                 if (!ctlr->busy)
1773                         goto out_unlock;
1774
1775                 /* Defer any non-atomic teardown to the thread */
1776                 if (!in_kthread) {
1777                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1778                             !ctlr->unprepare_transfer_hardware) {
1779                                 spi_idle_runtime_pm(ctlr);
1780                                 ctlr->busy = false;
1781                                 ctlr->queue_empty = true;
1782                                 trace_spi_controller_idle(ctlr);
1783                         } else {
1784                                 kthread_queue_work(ctlr->kworker,
1785                                                    &ctlr->pump_messages);
1786                         }
1787                         goto out_unlock;
1788                 }
1789
1790                 ctlr->busy = false;
1791                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792
1793                 kfree(ctlr->dummy_rx);
1794                 ctlr->dummy_rx = NULL;
1795                 kfree(ctlr->dummy_tx);
1796                 ctlr->dummy_tx = NULL;
1797                 if (ctlr->unprepare_transfer_hardware &&
1798                     ctlr->unprepare_transfer_hardware(ctlr))
1799                         dev_err(&ctlr->dev,
1800                                 "failed to unprepare transfer hardware\n");
1801                 spi_idle_runtime_pm(ctlr);
1802                 trace_spi_controller_idle(ctlr);
1803
1804                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1805                 ctlr->queue_empty = true;
1806                 goto out_unlock;
1807         }
1808
1809         /* Extract head of queue */
1810         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1811         ctlr->cur_msg = msg;
1812
1813         list_del_init(&msg->queue);
1814         if (ctlr->busy)
1815                 was_busy = true;
1816         else
1817                 ctlr->busy = true;
1818         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1819
1820         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1821         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1822
1823         ctlr->cur_msg = NULL;
1824         ctlr->fallback = false;
1825
1826         mutex_unlock(&ctlr->io_mutex);
1827
1828         /* Prod the scheduler in case transfer_one() was busy waiting */
1829         if (!ret)
1830                 cond_resched();
1831         return;
1832
1833 out_unlock:
1834         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1835         mutex_unlock(&ctlr->io_mutex);
1836 }
1837
1838 /**
1839  * spi_pump_messages - kthread work function which processes spi message queue
1840  * @work: pointer to kthread work struct contained in the controller struct
1841  */
1842 static void spi_pump_messages(struct kthread_work *work)
1843 {
1844         struct spi_controller *ctlr =
1845                 container_of(work, struct spi_controller, pump_messages);
1846
1847         __spi_pump_messages(ctlr, true);
1848 }
1849
1850 /**
1851  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1852  * @ctlr: Pointer to the spi_controller structure of the driver
1853  * @xfer: Pointer to the transfer being timestamped
1854  * @progress: How many words (not bytes) have been transferred so far
1855  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1856  *            transfer, for less jitter in time measurement. Only compatible
1857  *            with PIO drivers. If true, must follow up with
1858  *            spi_take_timestamp_post or otherwise system will crash.
1859  *            WARNING: for fully predictable results, the CPU frequency must
1860  *            also be under control (governor).
1861  *
1862  * This is a helper for drivers to collect the beginning of the TX timestamp
1863  * for the requested byte from the SPI transfer. The frequency with which this
1864  * function must be called (once per word, once for the whole transfer, once
1865  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1866  * greater than or equal to the requested byte at the time of the call. The
1867  * timestamp is only taken once, at the first such call. It is assumed that
1868  * the driver advances its @tx buffer pointer monotonically.
1869  */
1870 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1871                             struct spi_transfer *xfer,
1872                             size_t progress, bool irqs_off)
1873 {
1874         if (!xfer->ptp_sts)
1875                 return;
1876
1877         if (xfer->timestamped)
1878                 return;
1879
1880         if (progress > xfer->ptp_sts_word_pre)
1881                 return;
1882
1883         /* Capture the resolution of the timestamp */
1884         xfer->ptp_sts_word_pre = progress;
1885
1886         if (irqs_off) {
1887                 local_irq_save(ctlr->irq_flags);
1888                 preempt_disable();
1889         }
1890
1891         ptp_read_system_prets(xfer->ptp_sts);
1892 }
1893 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1894
1895 /**
1896  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1897  * @ctlr: Pointer to the spi_controller structure of the driver
1898  * @xfer: Pointer to the transfer being timestamped
1899  * @progress: How many words (not bytes) have been transferred so far
1900  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1901  *
1902  * This is a helper for drivers to collect the end of the TX timestamp for
1903  * the requested byte from the SPI transfer. Can be called with an arbitrary
1904  * frequency: only the first call where @tx exceeds or is equal to the
1905  * requested word will be timestamped.
1906  */
1907 void spi_take_timestamp_post(struct spi_controller *ctlr,
1908                              struct spi_transfer *xfer,
1909                              size_t progress, bool irqs_off)
1910 {
1911         if (!xfer->ptp_sts)
1912                 return;
1913
1914         if (xfer->timestamped)
1915                 return;
1916
1917         if (progress < xfer->ptp_sts_word_post)
1918                 return;
1919
1920         ptp_read_system_postts(xfer->ptp_sts);
1921
1922         if (irqs_off) {
1923                 local_irq_restore(ctlr->irq_flags);
1924                 preempt_enable();
1925         }
1926
1927         /* Capture the resolution of the timestamp */
1928         xfer->ptp_sts_word_post = progress;
1929
1930         xfer->timestamped = 1;
1931 }
1932 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1933
1934 /**
1935  * spi_set_thread_rt - set the controller to pump at realtime priority
1936  * @ctlr: controller to boost priority of
1937  *
1938  * This can be called because the controller requested realtime priority
1939  * (by setting the ->rt value before calling spi_register_controller()) or
1940  * because a device on the bus said that its transfers needed realtime
1941  * priority.
1942  *
1943  * NOTE: at the moment if any device on a bus says it needs realtime then
1944  * the thread will be at realtime priority for all transfers on that
1945  * controller.  If this eventually becomes a problem we may see if we can
1946  * find a way to boost the priority only temporarily during relevant
1947  * transfers.
1948  */
1949 static void spi_set_thread_rt(struct spi_controller *ctlr)
1950 {
1951         dev_info(&ctlr->dev,
1952                 "will run message pump with realtime priority\n");
1953         sched_set_fifo(ctlr->kworker->task);
1954 }
1955
1956 static int spi_init_queue(struct spi_controller *ctlr)
1957 {
1958         ctlr->running = false;
1959         ctlr->busy = false;
1960         ctlr->queue_empty = true;
1961
1962         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1963         if (IS_ERR(ctlr->kworker)) {
1964                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1965                 return PTR_ERR(ctlr->kworker);
1966         }
1967
1968         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1969
1970         /*
1971          * Controller config will indicate if this controller should run the
1972          * message pump with high (realtime) priority to reduce the transfer
1973          * latency on the bus by minimising the delay between a transfer
1974          * request and the scheduling of the message pump thread. Without this
1975          * setting the message pump thread will remain at default priority.
1976          */
1977         if (ctlr->rt)
1978                 spi_set_thread_rt(ctlr);
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * spi_get_next_queued_message() - called by driver to check for queued
1985  * messages
1986  * @ctlr: the controller to check for queued messages
1987  *
1988  * If there are more messages in the queue, the next message is returned from
1989  * this call.
1990  *
1991  * Return: the next message in the queue, else NULL if the queue is empty.
1992  */
1993 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1994 {
1995         struct spi_message *next;
1996         unsigned long flags;
1997
1998         /* Get a pointer to the next message, if any */
1999         spin_lock_irqsave(&ctlr->queue_lock, flags);
2000         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2001                                         queue);
2002         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2003
2004         return next;
2005 }
2006 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2007
2008 /**
2009  * spi_finalize_current_message() - the current message is complete
2010  * @ctlr: the controller to return the message to
2011  *
2012  * Called by the driver to notify the core that the message in the front of the
2013  * queue is complete and can be removed from the queue.
2014  */
2015 void spi_finalize_current_message(struct spi_controller *ctlr)
2016 {
2017         struct spi_transfer *xfer;
2018         struct spi_message *mesg;
2019         int ret;
2020
2021         mesg = ctlr->cur_msg;
2022
2023         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2024                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2025                         ptp_read_system_postts(xfer->ptp_sts);
2026                         xfer->ptp_sts_word_post = xfer->len;
2027                 }
2028         }
2029
2030         if (unlikely(ctlr->ptp_sts_supported))
2031                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2032                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2033
2034         spi_unmap_msg(ctlr, mesg);
2035
2036         /*
2037          * In the prepare_messages callback the SPI bus has the opportunity
2038          * to split a transfer to smaller chunks.
2039          *
2040          * Release the split transfers here since spi_map_msg() is done on
2041          * the split transfers.
2042          */
2043         spi_res_release(ctlr, mesg);
2044
2045         if (mesg->prepared && ctlr->unprepare_message) {
2046                 ret = ctlr->unprepare_message(ctlr, mesg);
2047                 if (ret) {
2048                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2049                                 ret);
2050                 }
2051         }
2052
2053         mesg->prepared = false;
2054
2055         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2056         smp_mb(); /* See __spi_pump_transfer_message()... */
2057         if (READ_ONCE(ctlr->cur_msg_need_completion))
2058                 complete(&ctlr->cur_msg_completion);
2059
2060         trace_spi_message_done(mesg);
2061
2062         mesg->state = NULL;
2063         if (mesg->complete)
2064                 mesg->complete(mesg->context);
2065 }
2066 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2067
2068 static int spi_start_queue(struct spi_controller *ctlr)
2069 {
2070         unsigned long flags;
2071
2072         spin_lock_irqsave(&ctlr->queue_lock, flags);
2073
2074         if (ctlr->running || ctlr->busy) {
2075                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076                 return -EBUSY;
2077         }
2078
2079         ctlr->running = true;
2080         ctlr->cur_msg = NULL;
2081         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2082
2083         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2084
2085         return 0;
2086 }
2087
2088 static int spi_stop_queue(struct spi_controller *ctlr)
2089 {
2090         unsigned long flags;
2091         unsigned limit = 500;
2092         int ret = 0;
2093
2094         spin_lock_irqsave(&ctlr->queue_lock, flags);
2095
2096         /*
2097          * This is a bit lame, but is optimized for the common execution path.
2098          * A wait_queue on the ctlr->busy could be used, but then the common
2099          * execution path (pump_messages) would be required to call wake_up or
2100          * friends on every SPI message. Do this instead.
2101          */
2102         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2103                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104                 usleep_range(10000, 11000);
2105                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2106         }
2107
2108         if (!list_empty(&ctlr->queue) || ctlr->busy)
2109                 ret = -EBUSY;
2110         else
2111                 ctlr->running = false;
2112
2113         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2114
2115         if (ret) {
2116                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2117                 return ret;
2118         }
2119         return ret;
2120 }
2121
2122 static int spi_destroy_queue(struct spi_controller *ctlr)
2123 {
2124         int ret;
2125
2126         ret = spi_stop_queue(ctlr);
2127
2128         /*
2129          * kthread_flush_worker will block until all work is done.
2130          * If the reason that stop_queue timed out is that the work will never
2131          * finish, then it does no good to call flush/stop thread, so
2132          * return anyway.
2133          */
2134         if (ret) {
2135                 dev_err(&ctlr->dev, "problem destroying queue\n");
2136                 return ret;
2137         }
2138
2139         kthread_destroy_worker(ctlr->kworker);
2140
2141         return 0;
2142 }
2143
2144 static int __spi_queued_transfer(struct spi_device *spi,
2145                                  struct spi_message *msg,
2146                                  bool need_pump)
2147 {
2148         struct spi_controller *ctlr = spi->controller;
2149         unsigned long flags;
2150
2151         spin_lock_irqsave(&ctlr->queue_lock, flags);
2152
2153         if (!ctlr->running) {
2154                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2155                 return -ESHUTDOWN;
2156         }
2157         msg->actual_length = 0;
2158         msg->status = -EINPROGRESS;
2159
2160         list_add_tail(&msg->queue, &ctlr->queue);
2161         ctlr->queue_empty = false;
2162         if (!ctlr->busy && need_pump)
2163                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2164
2165         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2166         return 0;
2167 }
2168
2169 /**
2170  * spi_queued_transfer - transfer function for queued transfers
2171  * @spi: spi device which is requesting transfer
2172  * @msg: spi message which is to handled is queued to driver queue
2173  *
2174  * Return: zero on success, else a negative error code.
2175  */
2176 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2177 {
2178         return __spi_queued_transfer(spi, msg, true);
2179 }
2180
2181 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2182 {
2183         int ret;
2184
2185         ctlr->transfer = spi_queued_transfer;
2186         if (!ctlr->transfer_one_message)
2187                 ctlr->transfer_one_message = spi_transfer_one_message;
2188
2189         /* Initialize and start queue */
2190         ret = spi_init_queue(ctlr);
2191         if (ret) {
2192                 dev_err(&ctlr->dev, "problem initializing queue\n");
2193                 goto err_init_queue;
2194         }
2195         ctlr->queued = true;
2196         ret = spi_start_queue(ctlr);
2197         if (ret) {
2198                 dev_err(&ctlr->dev, "problem starting queue\n");
2199                 goto err_start_queue;
2200         }
2201
2202         return 0;
2203
2204 err_start_queue:
2205         spi_destroy_queue(ctlr);
2206 err_init_queue:
2207         return ret;
2208 }
2209
2210 /**
2211  * spi_flush_queue - Send all pending messages in the queue from the callers'
2212  *                   context
2213  * @ctlr: controller to process queue for
2214  *
2215  * This should be used when one wants to ensure all pending messages have been
2216  * sent before doing something. Is used by the spi-mem code to make sure SPI
2217  * memory operations do not preempt regular SPI transfers that have been queued
2218  * before the spi-mem operation.
2219  */
2220 void spi_flush_queue(struct spi_controller *ctlr)
2221 {
2222         if (ctlr->transfer == spi_queued_transfer)
2223                 __spi_pump_messages(ctlr, false);
2224 }
2225
2226 /*-------------------------------------------------------------------------*/
2227
2228 #if defined(CONFIG_OF)
2229 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2230                                      struct spi_delay *delay, const char *prop)
2231 {
2232         u32 value;
2233
2234         if (!of_property_read_u32(nc, prop, &value)) {
2235                 if (value > U16_MAX) {
2236                         delay->value = DIV_ROUND_UP(value, 1000);
2237                         delay->unit = SPI_DELAY_UNIT_USECS;
2238                 } else {
2239                         delay->value = value;
2240                         delay->unit = SPI_DELAY_UNIT_NSECS;
2241                 }
2242         }
2243 }
2244
2245 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2246                            struct device_node *nc)
2247 {
2248         u32 value;
2249         int rc;
2250
2251         /* Mode (clock phase/polarity/etc.) */
2252         if (of_property_read_bool(nc, "spi-cpha"))
2253                 spi->mode |= SPI_CPHA;
2254         if (of_property_read_bool(nc, "spi-cpol"))
2255                 spi->mode |= SPI_CPOL;
2256         if (of_property_read_bool(nc, "spi-3wire"))
2257                 spi->mode |= SPI_3WIRE;
2258         if (of_property_read_bool(nc, "spi-lsb-first"))
2259                 spi->mode |= SPI_LSB_FIRST;
2260         if (of_property_read_bool(nc, "spi-cs-high"))
2261                 spi->mode |= SPI_CS_HIGH;
2262
2263         /* Device DUAL/QUAD mode */
2264         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2265                 switch (value) {
2266                 case 0:
2267                         spi->mode |= SPI_NO_TX;
2268                         break;
2269                 case 1:
2270                         break;
2271                 case 2:
2272                         spi->mode |= SPI_TX_DUAL;
2273                         break;
2274                 case 4:
2275                         spi->mode |= SPI_TX_QUAD;
2276                         break;
2277                 case 8:
2278                         spi->mode |= SPI_TX_OCTAL;
2279                         break;
2280                 default:
2281                         dev_warn(&ctlr->dev,
2282                                 "spi-tx-bus-width %d not supported\n",
2283                                 value);
2284                         break;
2285                 }
2286         }
2287
2288         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2289                 switch (value) {
2290                 case 0:
2291                         spi->mode |= SPI_NO_RX;
2292                         break;
2293                 case 1:
2294                         break;
2295                 case 2:
2296                         spi->mode |= SPI_RX_DUAL;
2297                         break;
2298                 case 4:
2299                         spi->mode |= SPI_RX_QUAD;
2300                         break;
2301                 case 8:
2302                         spi->mode |= SPI_RX_OCTAL;
2303                         break;
2304                 default:
2305                         dev_warn(&ctlr->dev,
2306                                 "spi-rx-bus-width %d not supported\n",
2307                                 value);
2308                         break;
2309                 }
2310         }
2311
2312         if (spi_controller_is_slave(ctlr)) {
2313                 if (!of_node_name_eq(nc, "slave")) {
2314                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2315                                 nc);
2316                         return -EINVAL;
2317                 }
2318                 return 0;
2319         }
2320
2321         /* Device address */
2322         rc = of_property_read_u32(nc, "reg", &value);
2323         if (rc) {
2324                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2325                         nc, rc);
2326                 return rc;
2327         }
2328         spi_set_chipselect(spi, 0, value);
2329
2330         /* Device speed */
2331         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2332                 spi->max_speed_hz = value;
2333
2334         /* Device CS delays */
2335         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2336         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2337         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2338
2339         return 0;
2340 }
2341
2342 static struct spi_device *
2343 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2344 {
2345         struct spi_device *spi;
2346         int rc;
2347
2348         /* Alloc an spi_device */
2349         spi = spi_alloc_device(ctlr);
2350         if (!spi) {
2351                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2352                 rc = -ENOMEM;
2353                 goto err_out;
2354         }
2355
2356         /* Select device driver */
2357         rc = of_modalias_node(nc, spi->modalias,
2358                                 sizeof(spi->modalias));
2359         if (rc < 0) {
2360                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2361                 goto err_out;
2362         }
2363
2364         rc = of_spi_parse_dt(ctlr, spi, nc);
2365         if (rc)
2366                 goto err_out;
2367
2368         /* Store a pointer to the node in the device structure */
2369         of_node_get(nc);
2370         spi->dev.of_node = nc;
2371         spi->dev.fwnode = of_fwnode_handle(nc);
2372
2373         /* Register the new device */
2374         rc = spi_add_device(spi);
2375         if (rc) {
2376                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2377                 goto err_of_node_put;
2378         }
2379
2380         return spi;
2381
2382 err_of_node_put:
2383         of_node_put(nc);
2384 err_out:
2385         spi_dev_put(spi);
2386         return ERR_PTR(rc);
2387 }
2388
2389 /**
2390  * of_register_spi_devices() - Register child devices onto the SPI bus
2391  * @ctlr:       Pointer to spi_controller device
2392  *
2393  * Registers an spi_device for each child node of controller node which
2394  * represents a valid SPI slave.
2395  */
2396 static void of_register_spi_devices(struct spi_controller *ctlr)
2397 {
2398         struct spi_device *spi;
2399         struct device_node *nc;
2400
2401         if (!ctlr->dev.of_node)
2402                 return;
2403
2404         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2405                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2406                         continue;
2407                 spi = of_register_spi_device(ctlr, nc);
2408                 if (IS_ERR(spi)) {
2409                         dev_warn(&ctlr->dev,
2410                                  "Failed to create SPI device for %pOF\n", nc);
2411                         of_node_clear_flag(nc, OF_POPULATED);
2412                 }
2413         }
2414 }
2415 #else
2416 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2417 #endif
2418
2419 /**
2420  * spi_new_ancillary_device() - Register ancillary SPI device
2421  * @spi:         Pointer to the main SPI device registering the ancillary device
2422  * @chip_select: Chip Select of the ancillary device
2423  *
2424  * Register an ancillary SPI device; for example some chips have a chip-select
2425  * for normal device usage and another one for setup/firmware upload.
2426  *
2427  * This may only be called from main SPI device's probe routine.
2428  *
2429  * Return: 0 on success; negative errno on failure
2430  */
2431 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2432                                              u8 chip_select)
2433 {
2434         struct spi_device *ancillary;
2435         int rc = 0;
2436
2437         /* Alloc an spi_device */
2438         ancillary = spi_alloc_device(spi->controller);
2439         if (!ancillary) {
2440                 rc = -ENOMEM;
2441                 goto err_out;
2442         }
2443
2444         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2445
2446         /* Use provided chip-select for ancillary device */
2447         spi_set_chipselect(ancillary, 0, chip_select);
2448
2449         /* Take over SPI mode/speed from SPI main device */
2450         ancillary->max_speed_hz = spi->max_speed_hz;
2451         ancillary->mode = spi->mode;
2452
2453         /* Register the new device */
2454         rc = spi_add_device_locked(ancillary);
2455         if (rc) {
2456                 dev_err(&spi->dev, "failed to register ancillary device\n");
2457                 goto err_out;
2458         }
2459
2460         return ancillary;
2461
2462 err_out:
2463         spi_dev_put(ancillary);
2464         return ERR_PTR(rc);
2465 }
2466 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2467
2468 #ifdef CONFIG_ACPI
2469 struct acpi_spi_lookup {
2470         struct spi_controller   *ctlr;
2471         u32                     max_speed_hz;
2472         u32                     mode;
2473         int                     irq;
2474         u8                      bits_per_word;
2475         u8                      chip_select;
2476         int                     n;
2477         int                     index;
2478 };
2479
2480 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2481 {
2482         struct acpi_resource_spi_serialbus *sb;
2483         int *count = data;
2484
2485         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2486                 return 1;
2487
2488         sb = &ares->data.spi_serial_bus;
2489         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2490                 return 1;
2491
2492         *count = *count + 1;
2493
2494         return 1;
2495 }
2496
2497 /**
2498  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2499  * @adev:       ACPI device
2500  *
2501  * Returns the number of SpiSerialBus resources in the ACPI-device's
2502  * resource-list; or a negative error code.
2503  */
2504 int acpi_spi_count_resources(struct acpi_device *adev)
2505 {
2506         LIST_HEAD(r);
2507         int count = 0;
2508         int ret;
2509
2510         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2511         if (ret < 0)
2512                 return ret;
2513
2514         acpi_dev_free_resource_list(&r);
2515
2516         return count;
2517 }
2518 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2519
2520 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2521                                             struct acpi_spi_lookup *lookup)
2522 {
2523         const union acpi_object *obj;
2524
2525         if (!x86_apple_machine)
2526                 return;
2527
2528         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2529             && obj->buffer.length >= 4)
2530                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2531
2532         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2533             && obj->buffer.length == 8)
2534                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2535
2536         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2537             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2538                 lookup->mode |= SPI_LSB_FIRST;
2539
2540         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2541             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2542                 lookup->mode |= SPI_CPOL;
2543
2544         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2545             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2546                 lookup->mode |= SPI_CPHA;
2547 }
2548
2549 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2550
2551 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2552 {
2553         struct acpi_spi_lookup *lookup = data;
2554         struct spi_controller *ctlr = lookup->ctlr;
2555
2556         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2557                 struct acpi_resource_spi_serialbus *sb;
2558                 acpi_handle parent_handle;
2559                 acpi_status status;
2560
2561                 sb = &ares->data.spi_serial_bus;
2562                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2563
2564                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2565                                 return 1;
2566
2567                         status = acpi_get_handle(NULL,
2568                                                  sb->resource_source.string_ptr,
2569                                                  &parent_handle);
2570
2571                         if (ACPI_FAILURE(status))
2572                                 return -ENODEV;
2573
2574                         if (ctlr) {
2575                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2576                                         return -ENODEV;
2577                         } else {
2578                                 struct acpi_device *adev;
2579
2580                                 adev = acpi_fetch_acpi_dev(parent_handle);
2581                                 if (!adev)
2582                                         return -ENODEV;
2583
2584                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2585                                 if (!ctlr)
2586                                         return -EPROBE_DEFER;
2587
2588                                 lookup->ctlr = ctlr;
2589                         }
2590
2591                         /*
2592                          * ACPI DeviceSelection numbering is handled by the
2593                          * host controller driver in Windows and can vary
2594                          * from driver to driver. In Linux we always expect
2595                          * 0 .. max - 1 so we need to ask the driver to
2596                          * translate between the two schemes.
2597                          */
2598                         if (ctlr->fw_translate_cs) {
2599                                 int cs = ctlr->fw_translate_cs(ctlr,
2600                                                 sb->device_selection);
2601                                 if (cs < 0)
2602                                         return cs;
2603                                 lookup->chip_select = cs;
2604                         } else {
2605                                 lookup->chip_select = sb->device_selection;
2606                         }
2607
2608                         lookup->max_speed_hz = sb->connection_speed;
2609                         lookup->bits_per_word = sb->data_bit_length;
2610
2611                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2612                                 lookup->mode |= SPI_CPHA;
2613                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2614                                 lookup->mode |= SPI_CPOL;
2615                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2616                                 lookup->mode |= SPI_CS_HIGH;
2617                 }
2618         } else if (lookup->irq < 0) {
2619                 struct resource r;
2620
2621                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2622                         lookup->irq = r.start;
2623         }
2624
2625         /* Always tell the ACPI core to skip this resource */
2626         return 1;
2627 }
2628
2629 /**
2630  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2631  * @ctlr: controller to which the spi device belongs
2632  * @adev: ACPI Device for the spi device
2633  * @index: Index of the spi resource inside the ACPI Node
2634  *
2635  * This should be used to allocate a new spi device from and ACPI Node.
2636  * The caller is responsible for calling spi_add_device to register the spi device.
2637  *
2638  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2639  * using the resource.
2640  * If index is set to -1, index is not used.
2641  * Note: If index is -1, ctlr must be set.
2642  *
2643  * Return: a pointer to the new device, or ERR_PTR on error.
2644  */
2645 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2646                                          struct acpi_device *adev,
2647                                          int index)
2648 {
2649         acpi_handle parent_handle = NULL;
2650         struct list_head resource_list;
2651         struct acpi_spi_lookup lookup = {};
2652         struct spi_device *spi;
2653         int ret;
2654
2655         if (!ctlr && index == -1)
2656                 return ERR_PTR(-EINVAL);
2657
2658         lookup.ctlr             = ctlr;
2659         lookup.irq              = -1;
2660         lookup.index            = index;
2661         lookup.n                = 0;
2662
2663         INIT_LIST_HEAD(&resource_list);
2664         ret = acpi_dev_get_resources(adev, &resource_list,
2665                                      acpi_spi_add_resource, &lookup);
2666         acpi_dev_free_resource_list(&resource_list);
2667
2668         if (ret < 0)
2669                 /* Found SPI in _CRS but it points to another controller */
2670                 return ERR_PTR(ret);
2671
2672         if (!lookup.max_speed_hz &&
2673             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2674             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2675                 /* Apple does not use _CRS but nested devices for SPI slaves */
2676                 acpi_spi_parse_apple_properties(adev, &lookup);
2677         }
2678
2679         if (!lookup.max_speed_hz)
2680                 return ERR_PTR(-ENODEV);
2681
2682         spi = spi_alloc_device(lookup.ctlr);
2683         if (!spi) {
2684                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2685                         dev_name(&adev->dev));
2686                 return ERR_PTR(-ENOMEM);
2687         }
2688
2689         ACPI_COMPANION_SET(&spi->dev, adev);
2690         spi->max_speed_hz       = lookup.max_speed_hz;
2691         spi->mode               |= lookup.mode;
2692         spi->irq                = lookup.irq;
2693         spi->bits_per_word      = lookup.bits_per_word;
2694         spi_set_chipselect(spi, 0, lookup.chip_select);
2695
2696         return spi;
2697 }
2698 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2699
2700 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2701                                             struct acpi_device *adev)
2702 {
2703         struct spi_device *spi;
2704
2705         if (acpi_bus_get_status(adev) || !adev->status.present ||
2706             acpi_device_enumerated(adev))
2707                 return AE_OK;
2708
2709         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2710         if (IS_ERR(spi)) {
2711                 if (PTR_ERR(spi) == -ENOMEM)
2712                         return AE_NO_MEMORY;
2713                 else
2714                         return AE_OK;
2715         }
2716
2717         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2718                           sizeof(spi->modalias));
2719
2720         if (spi->irq < 0)
2721                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2722
2723         acpi_device_set_enumerated(adev);
2724
2725         adev->power.flags.ignore_parent = true;
2726         if (spi_add_device(spi)) {
2727                 adev->power.flags.ignore_parent = false;
2728                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2729                         dev_name(&adev->dev));
2730                 spi_dev_put(spi);
2731         }
2732
2733         return AE_OK;
2734 }
2735
2736 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2737                                        void *data, void **return_value)
2738 {
2739         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2740         struct spi_controller *ctlr = data;
2741
2742         if (!adev)
2743                 return AE_OK;
2744
2745         return acpi_register_spi_device(ctlr, adev);
2746 }
2747
2748 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2749
2750 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2751 {
2752         acpi_status status;
2753         acpi_handle handle;
2754
2755         handle = ACPI_HANDLE(ctlr->dev.parent);
2756         if (!handle)
2757                 return;
2758
2759         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2760                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2761                                      acpi_spi_add_device, NULL, ctlr, NULL);
2762         if (ACPI_FAILURE(status))
2763                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2764 }
2765 #else
2766 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2767 #endif /* CONFIG_ACPI */
2768
2769 static void spi_controller_release(struct device *dev)
2770 {
2771         struct spi_controller *ctlr;
2772
2773         ctlr = container_of(dev, struct spi_controller, dev);
2774         kfree(ctlr);
2775 }
2776
2777 static struct class spi_master_class = {
2778         .name           = "spi_master",
2779         .owner          = THIS_MODULE,
2780         .dev_release    = spi_controller_release,
2781         .dev_groups     = spi_master_groups,
2782 };
2783
2784 #ifdef CONFIG_SPI_SLAVE
2785 /**
2786  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2787  *                   controller
2788  * @spi: device used for the current transfer
2789  */
2790 int spi_slave_abort(struct spi_device *spi)
2791 {
2792         struct spi_controller *ctlr = spi->controller;
2793
2794         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2795                 return ctlr->slave_abort(ctlr);
2796
2797         return -ENOTSUPP;
2798 }
2799 EXPORT_SYMBOL_GPL(spi_slave_abort);
2800
2801 int spi_target_abort(struct spi_device *spi)
2802 {
2803         struct spi_controller *ctlr = spi->controller;
2804
2805         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2806                 return ctlr->target_abort(ctlr);
2807
2808         return -ENOTSUPP;
2809 }
2810 EXPORT_SYMBOL_GPL(spi_target_abort);
2811
2812 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2813                           char *buf)
2814 {
2815         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2816                                                    dev);
2817         struct device *child;
2818
2819         child = device_find_any_child(&ctlr->dev);
2820         return sprintf(buf, "%s\n",
2821                        child ? to_spi_device(child)->modalias : NULL);
2822 }
2823
2824 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2825                            const char *buf, size_t count)
2826 {
2827         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2828                                                    dev);
2829         struct spi_device *spi;
2830         struct device *child;
2831         char name[32];
2832         int rc;
2833
2834         rc = sscanf(buf, "%31s", name);
2835         if (rc != 1 || !name[0])
2836                 return -EINVAL;
2837
2838         child = device_find_any_child(&ctlr->dev);
2839         if (child) {
2840                 /* Remove registered slave */
2841                 device_unregister(child);
2842                 put_device(child);
2843         }
2844
2845         if (strcmp(name, "(null)")) {
2846                 /* Register new slave */
2847                 spi = spi_alloc_device(ctlr);
2848                 if (!spi)
2849                         return -ENOMEM;
2850
2851                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2852
2853                 rc = spi_add_device(spi);
2854                 if (rc) {
2855                         spi_dev_put(spi);
2856                         return rc;
2857                 }
2858         }
2859
2860         return count;
2861 }
2862
2863 static DEVICE_ATTR_RW(slave);
2864
2865 static struct attribute *spi_slave_attrs[] = {
2866         &dev_attr_slave.attr,
2867         NULL,
2868 };
2869
2870 static const struct attribute_group spi_slave_group = {
2871         .attrs = spi_slave_attrs,
2872 };
2873
2874 static const struct attribute_group *spi_slave_groups[] = {
2875         &spi_controller_statistics_group,
2876         &spi_slave_group,
2877         NULL,
2878 };
2879
2880 static struct class spi_slave_class = {
2881         .name           = "spi_slave",
2882         .owner          = THIS_MODULE,
2883         .dev_release    = spi_controller_release,
2884         .dev_groups     = spi_slave_groups,
2885 };
2886 #else
2887 extern struct class spi_slave_class;    /* dummy */
2888 #endif
2889
2890 /**
2891  * __spi_alloc_controller - allocate an SPI master or slave controller
2892  * @dev: the controller, possibly using the platform_bus
2893  * @size: how much zeroed driver-private data to allocate; the pointer to this
2894  *      memory is in the driver_data field of the returned device, accessible
2895  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2896  *      drivers granting DMA access to portions of their private data need to
2897  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2898  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2899  *      slave (true) controller
2900  * Context: can sleep
2901  *
2902  * This call is used only by SPI controller drivers, which are the
2903  * only ones directly touching chip registers.  It's how they allocate
2904  * an spi_controller structure, prior to calling spi_register_controller().
2905  *
2906  * This must be called from context that can sleep.
2907  *
2908  * The caller is responsible for assigning the bus number and initializing the
2909  * controller's methods before calling spi_register_controller(); and (after
2910  * errors adding the device) calling spi_controller_put() to prevent a memory
2911  * leak.
2912  *
2913  * Return: the SPI controller structure on success, else NULL.
2914  */
2915 struct spi_controller *__spi_alloc_controller(struct device *dev,
2916                                               unsigned int size, bool slave)
2917 {
2918         struct spi_controller   *ctlr;
2919         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2920
2921         if (!dev)
2922                 return NULL;
2923
2924         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2925         if (!ctlr)
2926                 return NULL;
2927
2928         device_initialize(&ctlr->dev);
2929         INIT_LIST_HEAD(&ctlr->queue);
2930         spin_lock_init(&ctlr->queue_lock);
2931         spin_lock_init(&ctlr->bus_lock_spinlock);
2932         mutex_init(&ctlr->bus_lock_mutex);
2933         mutex_init(&ctlr->io_mutex);
2934         mutex_init(&ctlr->add_lock);
2935         ctlr->bus_num = -1;
2936         ctlr->num_chipselect = 1;
2937         ctlr->slave = slave;
2938         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2939                 ctlr->dev.class = &spi_slave_class;
2940         else
2941                 ctlr->dev.class = &spi_master_class;
2942         ctlr->dev.parent = dev;
2943         pm_suspend_ignore_children(&ctlr->dev, true);
2944         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2945
2946         return ctlr;
2947 }
2948 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2949
2950 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2951 {
2952         spi_controller_put(*(struct spi_controller **)ctlr);
2953 }
2954
2955 /**
2956  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2957  * @dev: physical device of SPI controller
2958  * @size: how much zeroed driver-private data to allocate
2959  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2960  * Context: can sleep
2961  *
2962  * Allocate an SPI controller and automatically release a reference on it
2963  * when @dev is unbound from its driver.  Drivers are thus relieved from
2964  * having to call spi_controller_put().
2965  *
2966  * The arguments to this function are identical to __spi_alloc_controller().
2967  *
2968  * Return: the SPI controller structure on success, else NULL.
2969  */
2970 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2971                                                    unsigned int size,
2972                                                    bool slave)
2973 {
2974         struct spi_controller **ptr, *ctlr;
2975
2976         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2977                            GFP_KERNEL);
2978         if (!ptr)
2979                 return NULL;
2980
2981         ctlr = __spi_alloc_controller(dev, size, slave);
2982         if (ctlr) {
2983                 ctlr->devm_allocated = true;
2984                 *ptr = ctlr;
2985                 devres_add(dev, ptr);
2986         } else {
2987                 devres_free(ptr);
2988         }
2989
2990         return ctlr;
2991 }
2992 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2993
2994 /**
2995  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2996  * @ctlr: The SPI master to grab GPIO descriptors for
2997  */
2998 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2999 {
3000         int nb, i;
3001         struct gpio_desc **cs;
3002         struct device *dev = &ctlr->dev;
3003         unsigned long native_cs_mask = 0;
3004         unsigned int num_cs_gpios = 0;
3005
3006         nb = gpiod_count(dev, "cs");
3007         if (nb < 0) {
3008                 /* No GPIOs at all is fine, else return the error */
3009                 if (nb == -ENOENT)
3010                         return 0;
3011                 return nb;
3012         }
3013
3014         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3015
3016         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3017                           GFP_KERNEL);
3018         if (!cs)
3019                 return -ENOMEM;
3020         ctlr->cs_gpiods = cs;
3021
3022         for (i = 0; i < nb; i++) {
3023                 /*
3024                  * Most chipselects are active low, the inverted
3025                  * semantics are handled by special quirks in gpiolib,
3026                  * so initializing them GPIOD_OUT_LOW here means
3027                  * "unasserted", in most cases this will drive the physical
3028                  * line high.
3029                  */
3030                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3031                                                       GPIOD_OUT_LOW);
3032                 if (IS_ERR(cs[i]))
3033                         return PTR_ERR(cs[i]);
3034
3035                 if (cs[i]) {
3036                         /*
3037                          * If we find a CS GPIO, name it after the device and
3038                          * chip select line.
3039                          */
3040                         char *gpioname;
3041
3042                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3043                                                   dev_name(dev), i);
3044                         if (!gpioname)
3045                                 return -ENOMEM;
3046                         gpiod_set_consumer_name(cs[i], gpioname);
3047                         num_cs_gpios++;
3048                         continue;
3049                 }
3050
3051                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3052                         dev_err(dev, "Invalid native chip select %d\n", i);
3053                         return -EINVAL;
3054                 }
3055                 native_cs_mask |= BIT(i);
3056         }
3057
3058         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3059
3060         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3061             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3062                 dev_err(dev, "No unused native chip select available\n");
3063                 return -EINVAL;
3064         }
3065
3066         return 0;
3067 }
3068
3069 static int spi_controller_check_ops(struct spi_controller *ctlr)
3070 {
3071         /*
3072          * The controller may implement only the high-level SPI-memory like
3073          * operations if it does not support regular SPI transfers, and this is
3074          * valid use case.
3075          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3076          * one of the ->transfer_xxx() method be implemented.
3077          */
3078         if (!ctlr->mem_ops || (ctlr->mem_ops && !ctlr->mem_ops->exec_op)) {
3079                 if (!ctlr->transfer && !ctlr->transfer_one &&
3080                    !ctlr->transfer_one_message) {
3081                         return -EINVAL;
3082                 }
3083         }
3084
3085         return 0;
3086 }
3087
3088 /**
3089  * spi_register_controller - register SPI master or slave controller
3090  * @ctlr: initialized master, originally from spi_alloc_master() or
3091  *      spi_alloc_slave()
3092  * Context: can sleep
3093  *
3094  * SPI controllers connect to their drivers using some non-SPI bus,
3095  * such as the platform bus.  The final stage of probe() in that code
3096  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3097  *
3098  * SPI controllers use board specific (often SOC specific) bus numbers,
3099  * and board-specific addressing for SPI devices combines those numbers
3100  * with chip select numbers.  Since SPI does not directly support dynamic
3101  * device identification, boards need configuration tables telling which
3102  * chip is at which address.
3103  *
3104  * This must be called from context that can sleep.  It returns zero on
3105  * success, else a negative error code (dropping the controller's refcount).
3106  * After a successful return, the caller is responsible for calling
3107  * spi_unregister_controller().
3108  *
3109  * Return: zero on success, else a negative error code.
3110  */
3111 int spi_register_controller(struct spi_controller *ctlr)
3112 {
3113         struct device           *dev = ctlr->dev.parent;
3114         struct boardinfo        *bi;
3115         int                     status;
3116         int                     id, first_dynamic;
3117
3118         if (!dev)
3119                 return -ENODEV;
3120
3121         /*
3122          * Make sure all necessary hooks are implemented before registering
3123          * the SPI controller.
3124          */
3125         status = spi_controller_check_ops(ctlr);
3126         if (status)
3127                 return status;
3128
3129         if (ctlr->bus_num >= 0) {
3130                 /* Devices with a fixed bus num must check-in with the num */
3131                 mutex_lock(&board_lock);
3132                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3133                         ctlr->bus_num + 1, GFP_KERNEL);
3134                 mutex_unlock(&board_lock);
3135                 if (WARN(id < 0, "couldn't get idr"))
3136                         return id == -ENOSPC ? -EBUSY : id;
3137                 ctlr->bus_num = id;
3138         } else if (ctlr->dev.of_node) {
3139                 /* Allocate dynamic bus number using Linux idr */
3140                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3141                 if (id >= 0) {
3142                         ctlr->bus_num = id;
3143                         mutex_lock(&board_lock);
3144                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3145                                        ctlr->bus_num + 1, GFP_KERNEL);
3146                         mutex_unlock(&board_lock);
3147                         if (WARN(id < 0, "couldn't get idr"))
3148                                 return id == -ENOSPC ? -EBUSY : id;
3149                 }
3150         }
3151         if (ctlr->bus_num < 0) {
3152                 first_dynamic = of_alias_get_highest_id("spi");
3153                 if (first_dynamic < 0)
3154                         first_dynamic = 0;
3155                 else
3156                         first_dynamic++;
3157
3158                 mutex_lock(&board_lock);
3159                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3160                                0, GFP_KERNEL);
3161                 mutex_unlock(&board_lock);
3162                 if (WARN(id < 0, "couldn't get idr"))
3163                         return id;
3164                 ctlr->bus_num = id;
3165         }
3166         ctlr->bus_lock_flag = 0;
3167         init_completion(&ctlr->xfer_completion);
3168         init_completion(&ctlr->cur_msg_completion);
3169         if (!ctlr->max_dma_len)
3170                 ctlr->max_dma_len = INT_MAX;
3171
3172         /*
3173          * Register the device, then userspace will see it.
3174          * Registration fails if the bus ID is in use.
3175          */
3176         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3177
3178         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3179                 status = spi_get_gpio_descs(ctlr);
3180                 if (status)
3181                         goto free_bus_id;
3182                 /*
3183                  * A controller using GPIO descriptors always
3184                  * supports SPI_CS_HIGH if need be.
3185                  */
3186                 ctlr->mode_bits |= SPI_CS_HIGH;
3187         }
3188
3189         /*
3190          * Even if it's just one always-selected device, there must
3191          * be at least one chipselect.
3192          */
3193         if (!ctlr->num_chipselect) {
3194                 status = -EINVAL;
3195                 goto free_bus_id;
3196         }
3197
3198         /* Setting last_cs to -1 means no chip selected */
3199         ctlr->last_cs = -1;
3200
3201         status = device_add(&ctlr->dev);
3202         if (status < 0)
3203                 goto free_bus_id;
3204         dev_dbg(dev, "registered %s %s\n",
3205                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3206                         dev_name(&ctlr->dev));
3207
3208         /*
3209          * If we're using a queued driver, start the queue. Note that we don't
3210          * need the queueing logic if the driver is only supporting high-level
3211          * memory operations.
3212          */
3213         if (ctlr->transfer) {
3214                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3215         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3216                 status = spi_controller_initialize_queue(ctlr);
3217                 if (status) {
3218                         device_del(&ctlr->dev);
3219                         goto free_bus_id;
3220                 }
3221         }
3222         /* Add statistics */
3223         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3224         if (!ctlr->pcpu_statistics) {
3225                 dev_err(dev, "Error allocating per-cpu statistics\n");
3226                 status = -ENOMEM;
3227                 goto destroy_queue;
3228         }
3229
3230         mutex_lock(&board_lock);
3231         list_add_tail(&ctlr->list, &spi_controller_list);
3232         list_for_each_entry(bi, &board_list, list)
3233                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3234         mutex_unlock(&board_lock);
3235
3236         /* Register devices from the device tree and ACPI */
3237         of_register_spi_devices(ctlr);
3238         acpi_register_spi_devices(ctlr);
3239         return status;
3240
3241 destroy_queue:
3242         spi_destroy_queue(ctlr);
3243 free_bus_id:
3244         mutex_lock(&board_lock);
3245         idr_remove(&spi_master_idr, ctlr->bus_num);
3246         mutex_unlock(&board_lock);
3247         return status;
3248 }
3249 EXPORT_SYMBOL_GPL(spi_register_controller);
3250
3251 static void devm_spi_unregister(struct device *dev, void *res)
3252 {
3253         spi_unregister_controller(*(struct spi_controller **)res);
3254 }
3255
3256 /**
3257  * devm_spi_register_controller - register managed SPI master or slave
3258  *      controller
3259  * @dev:    device managing SPI controller
3260  * @ctlr: initialized controller, originally from spi_alloc_master() or
3261  *      spi_alloc_slave()
3262  * Context: can sleep
3263  *
3264  * Register a SPI device as with spi_register_controller() which will
3265  * automatically be unregistered and freed.
3266  *
3267  * Return: zero on success, else a negative error code.
3268  */
3269 int devm_spi_register_controller(struct device *dev,
3270                                  struct spi_controller *ctlr)
3271 {
3272         struct spi_controller **ptr;
3273         int ret;
3274
3275         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3276         if (!ptr)
3277                 return -ENOMEM;
3278
3279         ret = spi_register_controller(ctlr);
3280         if (!ret) {
3281                 *ptr = ctlr;
3282                 devres_add(dev, ptr);
3283         } else {
3284                 devres_free(ptr);
3285         }
3286
3287         return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3290
3291 static int __unregister(struct device *dev, void *null)
3292 {
3293         spi_unregister_device(to_spi_device(dev));
3294         return 0;
3295 }
3296
3297 /**
3298  * spi_unregister_controller - unregister SPI master or slave controller
3299  * @ctlr: the controller being unregistered
3300  * Context: can sleep
3301  *
3302  * This call is used only by SPI controller drivers, which are the
3303  * only ones directly touching chip registers.
3304  *
3305  * This must be called from context that can sleep.
3306  *
3307  * Note that this function also drops a reference to the controller.
3308  */
3309 void spi_unregister_controller(struct spi_controller *ctlr)
3310 {
3311         struct spi_controller *found;
3312         int id = ctlr->bus_num;
3313
3314         /* Prevent addition of new devices, unregister existing ones */
3315         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3316                 mutex_lock(&ctlr->add_lock);
3317
3318         device_for_each_child(&ctlr->dev, NULL, __unregister);
3319
3320         /* First make sure that this controller was ever added */
3321         mutex_lock(&board_lock);
3322         found = idr_find(&spi_master_idr, id);
3323         mutex_unlock(&board_lock);
3324         if (ctlr->queued) {
3325                 if (spi_destroy_queue(ctlr))
3326                         dev_err(&ctlr->dev, "queue remove failed\n");
3327         }
3328         mutex_lock(&board_lock);
3329         list_del(&ctlr->list);
3330         mutex_unlock(&board_lock);
3331
3332         device_del(&ctlr->dev);
3333
3334         /* Free bus id */
3335         mutex_lock(&board_lock);
3336         if (found == ctlr)
3337                 idr_remove(&spi_master_idr, id);
3338         mutex_unlock(&board_lock);
3339
3340         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3341                 mutex_unlock(&ctlr->add_lock);
3342
3343         /* Release the last reference on the controller if its driver
3344          * has not yet been converted to devm_spi_alloc_master/slave().
3345          */
3346         if (!ctlr->devm_allocated)
3347                 put_device(&ctlr->dev);
3348 }
3349 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3350
3351 int spi_controller_suspend(struct spi_controller *ctlr)
3352 {
3353         int ret;
3354
3355         /* Basically no-ops for non-queued controllers */
3356         if (!ctlr->queued)
3357                 return 0;
3358
3359         ret = spi_stop_queue(ctlr);
3360         if (ret)
3361                 dev_err(&ctlr->dev, "queue stop failed\n");
3362
3363         return ret;
3364 }
3365 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3366
3367 int spi_controller_resume(struct spi_controller *ctlr)
3368 {
3369         int ret;
3370
3371         if (!ctlr->queued)
3372                 return 0;
3373
3374         ret = spi_start_queue(ctlr);
3375         if (ret)
3376                 dev_err(&ctlr->dev, "queue restart failed\n");
3377
3378         return ret;
3379 }
3380 EXPORT_SYMBOL_GPL(spi_controller_resume);
3381
3382 /*-------------------------------------------------------------------------*/
3383
3384 /* Core methods for spi_message alterations */
3385
3386 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3387                                             struct spi_message *msg,
3388                                             void *res)
3389 {
3390         struct spi_replaced_transfers *rxfer = res;
3391         size_t i;
3392
3393         /* Call extra callback if requested */
3394         if (rxfer->release)
3395                 rxfer->release(ctlr, msg, res);
3396
3397         /* Insert replaced transfers back into the message */
3398         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3399
3400         /* Remove the formerly inserted entries */
3401         for (i = 0; i < rxfer->inserted; i++)
3402                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3403 }
3404
3405 /**
3406  * spi_replace_transfers - replace transfers with several transfers
3407  *                         and register change with spi_message.resources
3408  * @msg:           the spi_message we work upon
3409  * @xfer_first:    the first spi_transfer we want to replace
3410  * @remove:        number of transfers to remove
3411  * @insert:        the number of transfers we want to insert instead
3412  * @release:       extra release code necessary in some circumstances
3413  * @extradatasize: extra data to allocate (with alignment guarantees
3414  *                 of struct @spi_transfer)
3415  * @gfp:           gfp flags
3416  *
3417  * Returns: pointer to @spi_replaced_transfers,
3418  *          PTR_ERR(...) in case of errors.
3419  */
3420 static struct spi_replaced_transfers *spi_replace_transfers(
3421         struct spi_message *msg,
3422         struct spi_transfer *xfer_first,
3423         size_t remove,
3424         size_t insert,
3425         spi_replaced_release_t release,
3426         size_t extradatasize,
3427         gfp_t gfp)
3428 {
3429         struct spi_replaced_transfers *rxfer;
3430         struct spi_transfer *xfer;
3431         size_t i;
3432
3433         /* Allocate the structure using spi_res */
3434         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3435                               struct_size(rxfer, inserted_transfers, insert)
3436                               + extradatasize,
3437                               gfp);
3438         if (!rxfer)
3439                 return ERR_PTR(-ENOMEM);
3440
3441         /* The release code to invoke before running the generic release */
3442         rxfer->release = release;
3443
3444         /* Assign extradata */
3445         if (extradatasize)
3446                 rxfer->extradata =
3447                         &rxfer->inserted_transfers[insert];
3448
3449         /* Init the replaced_transfers list */
3450         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3451
3452         /*
3453          * Assign the list_entry after which we should reinsert
3454          * the @replaced_transfers - it may be spi_message.messages!
3455          */
3456         rxfer->replaced_after = xfer_first->transfer_list.prev;
3457
3458         /* Remove the requested number of transfers */
3459         for (i = 0; i < remove; i++) {
3460                 /*
3461                  * If the entry after replaced_after it is msg->transfers
3462                  * then we have been requested to remove more transfers
3463                  * than are in the list.
3464                  */
3465                 if (rxfer->replaced_after->next == &msg->transfers) {
3466                         dev_err(&msg->spi->dev,
3467                                 "requested to remove more spi_transfers than are available\n");
3468                         /* Insert replaced transfers back into the message */
3469                         list_splice(&rxfer->replaced_transfers,
3470                                     rxfer->replaced_after);
3471
3472                         /* Free the spi_replace_transfer structure... */
3473                         spi_res_free(rxfer);
3474
3475                         /* ...and return with an error */
3476                         return ERR_PTR(-EINVAL);
3477                 }
3478
3479                 /*
3480                  * Remove the entry after replaced_after from list of
3481                  * transfers and add it to list of replaced_transfers.
3482                  */
3483                 list_move_tail(rxfer->replaced_after->next,
3484                                &rxfer->replaced_transfers);
3485         }
3486
3487         /*
3488          * Create copy of the given xfer with identical settings
3489          * based on the first transfer to get removed.
3490          */
3491         for (i = 0; i < insert; i++) {
3492                 /* We need to run in reverse order */
3493                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3494
3495                 /* Copy all spi_transfer data */
3496                 memcpy(xfer, xfer_first, sizeof(*xfer));
3497
3498                 /* Add to list */
3499                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3500
3501                 /* Clear cs_change and delay for all but the last */
3502                 if (i) {
3503                         xfer->cs_change = false;
3504                         xfer->delay.value = 0;
3505                 }
3506         }
3507
3508         /* Set up inserted... */
3509         rxfer->inserted = insert;
3510
3511         /* ...and register it with spi_res/spi_message */
3512         spi_res_add(msg, rxfer);
3513
3514         return rxfer;
3515 }
3516
3517 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3518                                         struct spi_message *msg,
3519                                         struct spi_transfer **xferp,
3520                                         size_t maxsize,
3521                                         gfp_t gfp)
3522 {
3523         struct spi_transfer *xfer = *xferp, *xfers;
3524         struct spi_replaced_transfers *srt;
3525         size_t offset;
3526         size_t count, i;
3527
3528         /* Calculate how many we have to replace */
3529         count = DIV_ROUND_UP(xfer->len, maxsize);
3530
3531         /* Create replacement */
3532         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3533         if (IS_ERR(srt))
3534                 return PTR_ERR(srt);
3535         xfers = srt->inserted_transfers;
3536
3537         /*
3538          * Now handle each of those newly inserted spi_transfers.
3539          * Note that the replacements spi_transfers all are preset
3540          * to the same values as *xferp, so tx_buf, rx_buf and len
3541          * are all identical (as well as most others)
3542          * so we just have to fix up len and the pointers.
3543          *
3544          * This also includes support for the depreciated
3545          * spi_message.is_dma_mapped interface.
3546          */
3547
3548         /*
3549          * The first transfer just needs the length modified, so we
3550          * run it outside the loop.
3551          */
3552         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3553
3554         /* All the others need rx_buf/tx_buf also set */
3555         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3556                 /* Update rx_buf, tx_buf and dma */
3557                 if (xfers[i].rx_buf)
3558                         xfers[i].rx_buf += offset;
3559                 if (xfers[i].rx_dma)
3560                         xfers[i].rx_dma += offset;
3561                 if (xfers[i].tx_buf)
3562                         xfers[i].tx_buf += offset;
3563                 if (xfers[i].tx_dma)
3564                         xfers[i].tx_dma += offset;
3565
3566                 /* Update length */
3567                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3568         }
3569
3570         /*
3571          * We set up xferp to the last entry we have inserted,
3572          * so that we skip those already split transfers.
3573          */
3574         *xferp = &xfers[count - 1];
3575
3576         /* Increment statistics counters */
3577         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3578                                        transfers_split_maxsize);
3579         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3580                                        transfers_split_maxsize);
3581
3582         return 0;
3583 }
3584
3585 /**
3586  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3587  *                               when an individual transfer exceeds a
3588  *                               certain size
3589  * @ctlr:    the @spi_controller for this transfer
3590  * @msg:   the @spi_message to transform
3591  * @maxsize:  the maximum when to apply this
3592  * @gfp: GFP allocation flags
3593  *
3594  * Return: status of transformation
3595  */
3596 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3597                                 struct spi_message *msg,
3598                                 size_t maxsize,
3599                                 gfp_t gfp)
3600 {
3601         struct spi_transfer *xfer;
3602         int ret;
3603
3604         /*
3605          * Iterate over the transfer_list,
3606          * but note that xfer is advanced to the last transfer inserted
3607          * to avoid checking sizes again unnecessarily (also xfer does
3608          * potentially belong to a different list by the time the
3609          * replacement has happened).
3610          */
3611         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3612                 if (xfer->len > maxsize) {
3613                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3614                                                            maxsize, gfp);
3615                         if (ret)
3616                                 return ret;
3617                 }
3618         }
3619
3620         return 0;
3621 }
3622 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3623
3624 /*-------------------------------------------------------------------------*/
3625
3626 /* Core methods for SPI controller protocol drivers.  Some of the
3627  * other core methods are currently defined as inline functions.
3628  */
3629
3630 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3631                                         u8 bits_per_word)
3632 {
3633         if (ctlr->bits_per_word_mask) {
3634                 /* Only 32 bits fit in the mask */
3635                 if (bits_per_word > 32)
3636                         return -EINVAL;
3637                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3638                         return -EINVAL;
3639         }
3640
3641         return 0;
3642 }
3643
3644 /**
3645  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3646  * @spi: the device that requires specific CS timing configuration
3647  *
3648  * Return: zero on success, else a negative error code.
3649  */
3650 static int spi_set_cs_timing(struct spi_device *spi)
3651 {
3652         struct device *parent = spi->controller->dev.parent;
3653         int status = 0;
3654
3655         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3656                 if (spi->controller->auto_runtime_pm) {
3657                         status = pm_runtime_get_sync(parent);
3658                         if (status < 0) {
3659                                 pm_runtime_put_noidle(parent);
3660                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3661                                         status);
3662                                 return status;
3663                         }
3664
3665                         status = spi->controller->set_cs_timing(spi);
3666                         pm_runtime_mark_last_busy(parent);
3667                         pm_runtime_put_autosuspend(parent);
3668                 } else {
3669                         status = spi->controller->set_cs_timing(spi);
3670                 }
3671         }
3672         return status;
3673 }
3674
3675 /**
3676  * spi_setup - setup SPI mode and clock rate
3677  * @spi: the device whose settings are being modified
3678  * Context: can sleep, and no requests are queued to the device
3679  *
3680  * SPI protocol drivers may need to update the transfer mode if the
3681  * device doesn't work with its default.  They may likewise need
3682  * to update clock rates or word sizes from initial values.  This function
3683  * changes those settings, and must be called from a context that can sleep.
3684  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3685  * effect the next time the device is selected and data is transferred to
3686  * or from it.  When this function returns, the spi device is deselected.
3687  *
3688  * Note that this call will fail if the protocol driver specifies an option
3689  * that the underlying controller or its driver does not support.  For
3690  * example, not all hardware supports wire transfers using nine bit words,
3691  * LSB-first wire encoding, or active-high chipselects.
3692  *
3693  * Return: zero on success, else a negative error code.
3694  */
3695 int spi_setup(struct spi_device *spi)
3696 {
3697         unsigned        bad_bits, ugly_bits;
3698         int             status = 0;
3699
3700         /*
3701          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3702          * are set at the same time.
3703          */
3704         if ((hweight_long(spi->mode &
3705                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3706             (hweight_long(spi->mode &
3707                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3708                 dev_err(&spi->dev,
3709                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3710                 return -EINVAL;
3711         }
3712         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3713         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3714                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3715                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3716                 return -EINVAL;
3717         /*
3718          * Help drivers fail *cleanly* when they need options
3719          * that aren't supported with their current controller.
3720          * SPI_CS_WORD has a fallback software implementation,
3721          * so it is ignored here.
3722          */
3723         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3724                                  SPI_NO_TX | SPI_NO_RX);
3725         ugly_bits = bad_bits &
3726                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3727                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3728         if (ugly_bits) {
3729                 dev_warn(&spi->dev,
3730                          "setup: ignoring unsupported mode bits %x\n",
3731                          ugly_bits);
3732                 spi->mode &= ~ugly_bits;
3733                 bad_bits &= ~ugly_bits;
3734         }
3735         if (bad_bits) {
3736                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3737                         bad_bits);
3738                 return -EINVAL;
3739         }
3740
3741         if (!spi->bits_per_word) {
3742                 spi->bits_per_word = 8;
3743         } else {
3744                 /*
3745                  * Some controllers may not support the default 8 bits-per-word
3746                  * so only perform the check when this is explicitly provided.
3747                  */
3748                 status = __spi_validate_bits_per_word(spi->controller,
3749                                                       spi->bits_per_word);
3750                 if (status)
3751                         return status;
3752         }
3753
3754         if (spi->controller->max_speed_hz &&
3755             (!spi->max_speed_hz ||
3756              spi->max_speed_hz > spi->controller->max_speed_hz))
3757                 spi->max_speed_hz = spi->controller->max_speed_hz;
3758
3759         mutex_lock(&spi->controller->io_mutex);
3760
3761         if (spi->controller->setup) {
3762                 status = spi->controller->setup(spi);
3763                 if (status) {
3764                         mutex_unlock(&spi->controller->io_mutex);
3765                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3766                                 status);
3767                         return status;
3768                 }
3769         }
3770
3771         status = spi_set_cs_timing(spi);
3772         if (status) {
3773                 mutex_unlock(&spi->controller->io_mutex);
3774                 return status;
3775         }
3776
3777         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3778                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3779                 if (status < 0) {
3780                         mutex_unlock(&spi->controller->io_mutex);
3781                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3782                                 status);
3783                         return status;
3784                 }
3785
3786                 /*
3787                  * We do not want to return positive value from pm_runtime_get,
3788                  * there are many instances of devices calling spi_setup() and
3789                  * checking for a non-zero return value instead of a negative
3790                  * return value.
3791                  */
3792                 status = 0;
3793
3794                 spi_set_cs(spi, false, true);
3795                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3796                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3797         } else {
3798                 spi_set_cs(spi, false, true);
3799         }
3800
3801         mutex_unlock(&spi->controller->io_mutex);
3802
3803         if (spi->rt && !spi->controller->rt) {
3804                 spi->controller->rt = true;
3805                 spi_set_thread_rt(spi->controller);
3806         }
3807
3808         trace_spi_setup(spi, status);
3809
3810         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3811                         spi->mode & SPI_MODE_X_MASK,
3812                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3813                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3814                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3815                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3816                         spi->bits_per_word, spi->max_speed_hz,
3817                         status);
3818
3819         return status;
3820 }
3821 EXPORT_SYMBOL_GPL(spi_setup);
3822
3823 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3824                                        struct spi_device *spi)
3825 {
3826         int delay1, delay2;
3827
3828         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3829         if (delay1 < 0)
3830                 return delay1;
3831
3832         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3833         if (delay2 < 0)
3834                 return delay2;
3835
3836         if (delay1 < delay2)
3837                 memcpy(&xfer->word_delay, &spi->word_delay,
3838                        sizeof(xfer->word_delay));
3839
3840         return 0;
3841 }
3842
3843 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3844 {
3845         struct spi_controller *ctlr = spi->controller;
3846         struct spi_transfer *xfer;
3847         int w_size;
3848
3849         if (list_empty(&message->transfers))
3850                 return -EINVAL;
3851
3852         /*
3853          * If an SPI controller does not support toggling the CS line on each
3854          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3855          * for the CS line, we can emulate the CS-per-word hardware function by
3856          * splitting transfers into one-word transfers and ensuring that
3857          * cs_change is set for each transfer.
3858          */
3859         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3860                                           spi_get_csgpiod(spi, 0))) {
3861                 size_t maxsize;
3862                 int ret;
3863
3864                 maxsize = (spi->bits_per_word + 7) / 8;
3865
3866                 /* spi_split_transfers_maxsize() requires message->spi */
3867                 message->spi = spi;
3868
3869                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3870                                                   GFP_KERNEL);
3871                 if (ret)
3872                         return ret;
3873
3874                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3875                         /* Don't change cs_change on the last entry in the list */
3876                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3877                                 break;
3878                         xfer->cs_change = 1;
3879                 }
3880         }
3881
3882         /*
3883          * Half-duplex links include original MicroWire, and ones with
3884          * only one data pin like SPI_3WIRE (switches direction) or where
3885          * either MOSI or MISO is missing.  They can also be caused by
3886          * software limitations.
3887          */
3888         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3889             (spi->mode & SPI_3WIRE)) {
3890                 unsigned flags = ctlr->flags;
3891
3892                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3893                         if (xfer->rx_buf && xfer->tx_buf)
3894                                 return -EINVAL;
3895                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3896                                 return -EINVAL;
3897                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3898                                 return -EINVAL;
3899                 }
3900         }
3901
3902         /*
3903          * Set transfer bits_per_word and max speed as spi device default if
3904          * it is not set for this transfer.
3905          * Set transfer tx_nbits and rx_nbits as single transfer default
3906          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3907          * Ensure transfer word_delay is at least as long as that required by
3908          * device itself.
3909          */
3910         message->frame_length = 0;
3911         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3912                 xfer->effective_speed_hz = 0;
3913                 message->frame_length += xfer->len;
3914                 if (!xfer->bits_per_word)
3915                         xfer->bits_per_word = spi->bits_per_word;
3916
3917                 if (!xfer->speed_hz)
3918                         xfer->speed_hz = spi->max_speed_hz;
3919
3920                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3921                         xfer->speed_hz = ctlr->max_speed_hz;
3922
3923                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3924                         return -EINVAL;
3925
3926                 /*
3927                  * SPI transfer length should be multiple of SPI word size
3928                  * where SPI word size should be power-of-two multiple.
3929                  */
3930                 if (xfer->bits_per_word <= 8)
3931                         w_size = 1;
3932                 else if (xfer->bits_per_word <= 16)
3933                         w_size = 2;
3934                 else
3935                         w_size = 4;
3936
3937                 /* No partial transfers accepted */
3938                 if (xfer->len % w_size)
3939                         return -EINVAL;
3940
3941                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3942                     xfer->speed_hz < ctlr->min_speed_hz)
3943                         return -EINVAL;
3944
3945                 if (xfer->tx_buf && !xfer->tx_nbits)
3946                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3947                 if (xfer->rx_buf && !xfer->rx_nbits)
3948                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3949                 /*
3950                  * Check transfer tx/rx_nbits:
3951                  * 1. check the value matches one of single, dual and quad
3952                  * 2. check tx/rx_nbits match the mode in spi_device
3953                  */
3954                 if (xfer->tx_buf) {
3955                         if (spi->mode & SPI_NO_TX)
3956                                 return -EINVAL;
3957                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3958                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3959                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3960                                 return -EINVAL;
3961                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3962                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3963                                 return -EINVAL;
3964                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3965                                 !(spi->mode & SPI_TX_QUAD))
3966                                 return -EINVAL;
3967                 }
3968                 /* Check transfer rx_nbits */
3969                 if (xfer->rx_buf) {
3970                         if (spi->mode & SPI_NO_RX)
3971                                 return -EINVAL;
3972                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3973                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3974                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3975                                 return -EINVAL;
3976                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3977                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3978                                 return -EINVAL;
3979                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3980                                 !(spi->mode & SPI_RX_QUAD))
3981                                 return -EINVAL;
3982                 }
3983
3984                 if (_spi_xfer_word_delay_update(xfer, spi))
3985                         return -EINVAL;
3986         }
3987
3988         message->status = -EINPROGRESS;
3989
3990         return 0;
3991 }
3992
3993 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3994 {
3995         struct spi_controller *ctlr = spi->controller;
3996         struct spi_transfer *xfer;
3997
3998         /*
3999          * Some controllers do not support doing regular SPI transfers. Return
4000          * ENOTSUPP when this is the case.
4001          */
4002         if (!ctlr->transfer)
4003                 return -ENOTSUPP;
4004
4005         message->spi = spi;
4006
4007         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4008         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4009
4010         trace_spi_message_submit(message);
4011
4012         if (!ctlr->ptp_sts_supported) {
4013                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4014                         xfer->ptp_sts_word_pre = 0;
4015                         ptp_read_system_prets(xfer->ptp_sts);
4016                 }
4017         }
4018
4019         return ctlr->transfer(spi, message);
4020 }
4021
4022 /**
4023  * spi_async - asynchronous SPI transfer
4024  * @spi: device with which data will be exchanged
4025  * @message: describes the data transfers, including completion callback
4026  * Context: any (irqs may be blocked, etc)
4027  *
4028  * This call may be used in_irq and other contexts which can't sleep,
4029  * as well as from task contexts which can sleep.
4030  *
4031  * The completion callback is invoked in a context which can't sleep.
4032  * Before that invocation, the value of message->status is undefined.
4033  * When the callback is issued, message->status holds either zero (to
4034  * indicate complete success) or a negative error code.  After that
4035  * callback returns, the driver which issued the transfer request may
4036  * deallocate the associated memory; it's no longer in use by any SPI
4037  * core or controller driver code.
4038  *
4039  * Note that although all messages to a spi_device are handled in
4040  * FIFO order, messages may go to different devices in other orders.
4041  * Some device might be higher priority, or have various "hard" access
4042  * time requirements, for example.
4043  *
4044  * On detection of any fault during the transfer, processing of
4045  * the entire message is aborted, and the device is deselected.
4046  * Until returning from the associated message completion callback,
4047  * no other spi_message queued to that device will be processed.
4048  * (This rule applies equally to all the synchronous transfer calls,
4049  * which are wrappers around this core asynchronous primitive.)
4050  *
4051  * Return: zero on success, else a negative error code.
4052  */
4053 int spi_async(struct spi_device *spi, struct spi_message *message)
4054 {
4055         struct spi_controller *ctlr = spi->controller;
4056         int ret;
4057         unsigned long flags;
4058
4059         ret = __spi_validate(spi, message);
4060         if (ret != 0)
4061                 return ret;
4062
4063         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4064
4065         if (ctlr->bus_lock_flag)
4066                 ret = -EBUSY;
4067         else
4068                 ret = __spi_async(spi, message);
4069
4070         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4071
4072         return ret;
4073 }
4074 EXPORT_SYMBOL_GPL(spi_async);
4075
4076 /**
4077  * spi_async_locked - version of spi_async with exclusive bus usage
4078  * @spi: device with which data will be exchanged
4079  * @message: describes the data transfers, including completion callback
4080  * Context: any (irqs may be blocked, etc)
4081  *
4082  * This call may be used in_irq and other contexts which can't sleep,
4083  * as well as from task contexts which can sleep.
4084  *
4085  * The completion callback is invoked in a context which can't sleep.
4086  * Before that invocation, the value of message->status is undefined.
4087  * When the callback is issued, message->status holds either zero (to
4088  * indicate complete success) or a negative error code.  After that
4089  * callback returns, the driver which issued the transfer request may
4090  * deallocate the associated memory; it's no longer in use by any SPI
4091  * core or controller driver code.
4092  *
4093  * Note that although all messages to a spi_device are handled in
4094  * FIFO order, messages may go to different devices in other orders.
4095  * Some device might be higher priority, or have various "hard" access
4096  * time requirements, for example.
4097  *
4098  * On detection of any fault during the transfer, processing of
4099  * the entire message is aborted, and the device is deselected.
4100  * Until returning from the associated message completion callback,
4101  * no other spi_message queued to that device will be processed.
4102  * (This rule applies equally to all the synchronous transfer calls,
4103  * which are wrappers around this core asynchronous primitive.)
4104  *
4105  * Return: zero on success, else a negative error code.
4106  */
4107 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4108 {
4109         struct spi_controller *ctlr = spi->controller;
4110         int ret;
4111         unsigned long flags;
4112
4113         ret = __spi_validate(spi, message);
4114         if (ret != 0)
4115                 return ret;
4116
4117         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4118
4119         ret = __spi_async(spi, message);
4120
4121         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4122
4123         return ret;
4124
4125 }
4126
4127 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4128 {
4129         bool was_busy;
4130         int ret;
4131
4132         mutex_lock(&ctlr->io_mutex);
4133
4134         was_busy = ctlr->busy;
4135
4136         ctlr->cur_msg = msg;
4137         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4138         if (ret)
4139                 goto out;
4140
4141         ctlr->cur_msg = NULL;
4142         ctlr->fallback = false;
4143
4144         if (!was_busy) {
4145                 kfree(ctlr->dummy_rx);
4146                 ctlr->dummy_rx = NULL;
4147                 kfree(ctlr->dummy_tx);
4148                 ctlr->dummy_tx = NULL;
4149                 if (ctlr->unprepare_transfer_hardware &&
4150                     ctlr->unprepare_transfer_hardware(ctlr))
4151                         dev_err(&ctlr->dev,
4152                                 "failed to unprepare transfer hardware\n");
4153                 spi_idle_runtime_pm(ctlr);
4154         }
4155
4156 out:
4157         mutex_unlock(&ctlr->io_mutex);
4158 }
4159
4160 /*-------------------------------------------------------------------------*/
4161
4162 /*
4163  * Utility methods for SPI protocol drivers, layered on
4164  * top of the core.  Some other utility methods are defined as
4165  * inline functions.
4166  */
4167
4168 static void spi_complete(void *arg)
4169 {
4170         complete(arg);
4171 }
4172
4173 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4174 {
4175         DECLARE_COMPLETION_ONSTACK(done);
4176         int status;
4177         struct spi_controller *ctlr = spi->controller;
4178
4179         status = __spi_validate(spi, message);
4180         if (status != 0)
4181                 return status;
4182
4183         message->spi = spi;
4184
4185         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4186         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4187
4188         /*
4189          * Checking queue_empty here only guarantees async/sync message
4190          * ordering when coming from the same context. It does not need to
4191          * guard against reentrancy from a different context. The io_mutex
4192          * will catch those cases.
4193          */
4194         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4195                 message->actual_length = 0;
4196                 message->status = -EINPROGRESS;
4197
4198                 trace_spi_message_submit(message);
4199
4200                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4201                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4202
4203                 __spi_transfer_message_noqueue(ctlr, message);
4204
4205                 return message->status;
4206         }
4207
4208         /*
4209          * There are messages in the async queue that could have originated
4210          * from the same context, so we need to preserve ordering.
4211          * Therefor we send the message to the async queue and wait until they
4212          * are completed.
4213          */
4214         message->complete = spi_complete;
4215         message->context = &done;
4216         status = spi_async_locked(spi, message);
4217         if (status == 0) {
4218                 wait_for_completion(&done);
4219                 status = message->status;
4220         }
4221         message->context = NULL;
4222
4223         return status;
4224 }
4225
4226 /**
4227  * spi_sync - blocking/synchronous SPI data transfers
4228  * @spi: device with which data will be exchanged
4229  * @message: describes the data transfers
4230  * Context: can sleep
4231  *
4232  * This call may only be used from a context that may sleep.  The sleep
4233  * is non-interruptible, and has no timeout.  Low-overhead controller
4234  * drivers may DMA directly into and out of the message buffers.
4235  *
4236  * Note that the SPI device's chip select is active during the message,
4237  * and then is normally disabled between messages.  Drivers for some
4238  * frequently-used devices may want to minimize costs of selecting a chip,
4239  * by leaving it selected in anticipation that the next message will go
4240  * to the same chip.  (That may increase power usage.)
4241  *
4242  * Also, the caller is guaranteeing that the memory associated with the
4243  * message will not be freed before this call returns.
4244  *
4245  * Return: zero on success, else a negative error code.
4246  */
4247 int spi_sync(struct spi_device *spi, struct spi_message *message)
4248 {
4249         int ret;
4250
4251         mutex_lock(&spi->controller->bus_lock_mutex);
4252         ret = __spi_sync(spi, message);
4253         mutex_unlock(&spi->controller->bus_lock_mutex);
4254
4255         return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(spi_sync);
4258
4259 /**
4260  * spi_sync_locked - version of spi_sync with exclusive bus usage
4261  * @spi: device with which data will be exchanged
4262  * @message: describes the data transfers
4263  * Context: can sleep
4264  *
4265  * This call may only be used from a context that may sleep.  The sleep
4266  * is non-interruptible, and has no timeout.  Low-overhead controller
4267  * drivers may DMA directly into and out of the message buffers.
4268  *
4269  * This call should be used by drivers that require exclusive access to the
4270  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4271  * be released by a spi_bus_unlock call when the exclusive access is over.
4272  *
4273  * Return: zero on success, else a negative error code.
4274  */
4275 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4276 {
4277         return __spi_sync(spi, message);
4278 }
4279 EXPORT_SYMBOL_GPL(spi_sync_locked);
4280
4281 /**
4282  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4283  * @ctlr: SPI bus master that should be locked for exclusive bus access
4284  * Context: can sleep
4285  *
4286  * This call may only be used from a context that may sleep.  The sleep
4287  * is non-interruptible, and has no timeout.
4288  *
4289  * This call should be used by drivers that require exclusive access to the
4290  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4291  * exclusive access is over. Data transfer must be done by spi_sync_locked
4292  * and spi_async_locked calls when the SPI bus lock is held.
4293  *
4294  * Return: always zero.
4295  */
4296 int spi_bus_lock(struct spi_controller *ctlr)
4297 {
4298         unsigned long flags;
4299
4300         mutex_lock(&ctlr->bus_lock_mutex);
4301
4302         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4303         ctlr->bus_lock_flag = 1;
4304         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4305
4306         /* Mutex remains locked until spi_bus_unlock() is called */
4307
4308         return 0;
4309 }
4310 EXPORT_SYMBOL_GPL(spi_bus_lock);
4311
4312 /**
4313  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4314  * @ctlr: SPI bus master that was locked for exclusive bus access
4315  * Context: can sleep
4316  *
4317  * This call may only be used from a context that may sleep.  The sleep
4318  * is non-interruptible, and has no timeout.
4319  *
4320  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4321  * call.
4322  *
4323  * Return: always zero.
4324  */
4325 int spi_bus_unlock(struct spi_controller *ctlr)
4326 {
4327         ctlr->bus_lock_flag = 0;
4328
4329         mutex_unlock(&ctlr->bus_lock_mutex);
4330
4331         return 0;
4332 }
4333 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4334
4335 /* Portable code must never pass more than 32 bytes */
4336 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4337
4338 static u8       *buf;
4339
4340 /**
4341  * spi_write_then_read - SPI synchronous write followed by read
4342  * @spi: device with which data will be exchanged
4343  * @txbuf: data to be written (need not be dma-safe)
4344  * @n_tx: size of txbuf, in bytes
4345  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4346  * @n_rx: size of rxbuf, in bytes
4347  * Context: can sleep
4348  *
4349  * This performs a half duplex MicroWire style transaction with the
4350  * device, sending txbuf and then reading rxbuf.  The return value
4351  * is zero for success, else a negative errno status code.
4352  * This call may only be used from a context that may sleep.
4353  *
4354  * Parameters to this routine are always copied using a small buffer.
4355  * Performance-sensitive or bulk transfer code should instead use
4356  * spi_{async,sync}() calls with dma-safe buffers.
4357  *
4358  * Return: zero on success, else a negative error code.
4359  */
4360 int spi_write_then_read(struct spi_device *spi,
4361                 const void *txbuf, unsigned n_tx,
4362                 void *rxbuf, unsigned n_rx)
4363 {
4364         static DEFINE_MUTEX(lock);
4365
4366         int                     status;
4367         struct spi_message      message;
4368         struct spi_transfer     x[2];
4369         u8                      *local_buf;
4370
4371         /*
4372          * Use preallocated DMA-safe buffer if we can. We can't avoid
4373          * copying here, (as a pure convenience thing), but we can
4374          * keep heap costs out of the hot path unless someone else is
4375          * using the pre-allocated buffer or the transfer is too large.
4376          */
4377         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4378                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4379                                     GFP_KERNEL | GFP_DMA);
4380                 if (!local_buf)
4381                         return -ENOMEM;
4382         } else {
4383                 local_buf = buf;
4384         }
4385
4386         spi_message_init(&message);
4387         memset(x, 0, sizeof(x));
4388         if (n_tx) {
4389                 x[0].len = n_tx;
4390                 spi_message_add_tail(&x[0], &message);
4391         }
4392         if (n_rx) {
4393                 x[1].len = n_rx;
4394                 spi_message_add_tail(&x[1], &message);
4395         }
4396
4397         memcpy(local_buf, txbuf, n_tx);
4398         x[0].tx_buf = local_buf;
4399         x[1].rx_buf = local_buf + n_tx;
4400
4401         /* Do the i/o */
4402         status = spi_sync(spi, &message);
4403         if (status == 0)
4404                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4405
4406         if (x[0].tx_buf == buf)
4407                 mutex_unlock(&lock);
4408         else
4409                 kfree(local_buf);
4410
4411         return status;
4412 }
4413 EXPORT_SYMBOL_GPL(spi_write_then_read);
4414
4415 /*-------------------------------------------------------------------------*/
4416
4417 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4418 /* Must call put_device() when done with returned spi_device device */
4419 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4420 {
4421         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4422
4423         return dev ? to_spi_device(dev) : NULL;
4424 }
4425
4426 /* The spi controllers are not using spi_bus, so we find it with another way */
4427 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4428 {
4429         struct device *dev;
4430
4431         dev = class_find_device_by_of_node(&spi_master_class, node);
4432         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4433                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4434         if (!dev)
4435                 return NULL;
4436
4437         /* Reference got in class_find_device */
4438         return container_of(dev, struct spi_controller, dev);
4439 }
4440
4441 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4442                          void *arg)
4443 {
4444         struct of_reconfig_data *rd = arg;
4445         struct spi_controller *ctlr;
4446         struct spi_device *spi;
4447
4448         switch (of_reconfig_get_state_change(action, arg)) {
4449         case OF_RECONFIG_CHANGE_ADD:
4450                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4451                 if (ctlr == NULL)
4452                         return NOTIFY_OK;       /* Not for us */
4453
4454                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4455                         put_device(&ctlr->dev);
4456                         return NOTIFY_OK;
4457                 }
4458
4459                 spi = of_register_spi_device(ctlr, rd->dn);
4460                 put_device(&ctlr->dev);
4461
4462                 if (IS_ERR(spi)) {
4463                         pr_err("%s: failed to create for '%pOF'\n",
4464                                         __func__, rd->dn);
4465                         of_node_clear_flag(rd->dn, OF_POPULATED);
4466                         return notifier_from_errno(PTR_ERR(spi));
4467                 }
4468                 break;
4469
4470         case OF_RECONFIG_CHANGE_REMOVE:
4471                 /* Already depopulated? */
4472                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4473                         return NOTIFY_OK;
4474
4475                 /* Find our device by node */
4476                 spi = of_find_spi_device_by_node(rd->dn);
4477                 if (spi == NULL)
4478                         return NOTIFY_OK;       /* No? not meant for us */
4479
4480                 /* Unregister takes one ref away */
4481                 spi_unregister_device(spi);
4482
4483                 /* And put the reference of the find */
4484                 put_device(&spi->dev);
4485                 break;
4486         }
4487
4488         return NOTIFY_OK;
4489 }
4490
4491 static struct notifier_block spi_of_notifier = {
4492         .notifier_call = of_spi_notify,
4493 };
4494 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4495 extern struct notifier_block spi_of_notifier;
4496 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4497
4498 #if IS_ENABLED(CONFIG_ACPI)
4499 static int spi_acpi_controller_match(struct device *dev, const void *data)
4500 {
4501         return ACPI_COMPANION(dev->parent) == data;
4502 }
4503
4504 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4505 {
4506         struct device *dev;
4507
4508         dev = class_find_device(&spi_master_class, NULL, adev,
4509                                 spi_acpi_controller_match);
4510         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4511                 dev = class_find_device(&spi_slave_class, NULL, adev,
4512                                         spi_acpi_controller_match);
4513         if (!dev)
4514                 return NULL;
4515
4516         return container_of(dev, struct spi_controller, dev);
4517 }
4518
4519 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4520 {
4521         struct device *dev;
4522
4523         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4524         return to_spi_device(dev);
4525 }
4526
4527 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4528                            void *arg)
4529 {
4530         struct acpi_device *adev = arg;
4531         struct spi_controller *ctlr;
4532         struct spi_device *spi;
4533
4534         switch (value) {
4535         case ACPI_RECONFIG_DEVICE_ADD:
4536                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4537                 if (!ctlr)
4538                         break;
4539
4540                 acpi_register_spi_device(ctlr, adev);
4541                 put_device(&ctlr->dev);
4542                 break;
4543         case ACPI_RECONFIG_DEVICE_REMOVE:
4544                 if (!acpi_device_enumerated(adev))
4545                         break;
4546
4547                 spi = acpi_spi_find_device_by_adev(adev);
4548                 if (!spi)
4549                         break;
4550
4551                 spi_unregister_device(spi);
4552                 put_device(&spi->dev);
4553                 break;
4554         }
4555
4556         return NOTIFY_OK;
4557 }
4558
4559 static struct notifier_block spi_acpi_notifier = {
4560         .notifier_call = acpi_spi_notify,
4561 };
4562 #else
4563 extern struct notifier_block spi_acpi_notifier;
4564 #endif
4565
4566 static int __init spi_init(void)
4567 {
4568         int     status;
4569
4570         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4571         if (!buf) {
4572                 status = -ENOMEM;
4573                 goto err0;
4574         }
4575
4576         status = bus_register(&spi_bus_type);
4577         if (status < 0)
4578                 goto err1;
4579
4580         status = class_register(&spi_master_class);
4581         if (status < 0)
4582                 goto err2;
4583
4584         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4585                 status = class_register(&spi_slave_class);
4586                 if (status < 0)
4587                         goto err3;
4588         }
4589
4590         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4591                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4592         if (IS_ENABLED(CONFIG_ACPI))
4593                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4594
4595         return 0;
4596
4597 err3:
4598         class_unregister(&spi_master_class);
4599 err2:
4600         bus_unregister(&spi_bus_type);
4601 err1:
4602         kfree(buf);
4603         buf = NULL;
4604 err0:
4605         return status;
4606 }
4607
4608 /*
4609  * A board_info is normally registered in arch_initcall(),
4610  * but even essential drivers wait till later.
4611  *
4612  * REVISIT only boardinfo really needs static linking. The rest (device and
4613  * driver registration) _could_ be dynamically linked (modular) ... Costs
4614  * include needing to have boardinfo data structures be much more public.
4615  */
4616 postcore_initcall(spi_init);