Merge existing fixes from spi/for-5.16 into new branch
[sfrench/cifs-2.6.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         spi_controller_put(spi->controller);
51         kfree(spi->driver_override);
52         kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58         const struct spi_device *spi = to_spi_device(dev);
59         int len;
60
61         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62         if (len != -ENODEV)
63                 return len;
64
65         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70                                      struct device_attribute *a,
71                                      const char *buf, size_t count)
72 {
73         struct spi_device *spi = to_spi_device(dev);
74         const char *end = memchr(buf, '\n', count);
75         const size_t len = end ? end - buf : count;
76         const char *driver_override, *old;
77
78         /* We need to keep extra room for a newline when displaying value */
79         if (len >= (PAGE_SIZE - 1))
80                 return -EINVAL;
81
82         driver_override = kstrndup(buf, len, GFP_KERNEL);
83         if (!driver_override)
84                 return -ENOMEM;
85
86         device_lock(dev);
87         old = spi->driver_override;
88         if (len) {
89                 spi->driver_override = driver_override;
90         } else {
91                 /* Empty string, disable driver override */
92                 spi->driver_override = NULL;
93                 kfree(driver_override);
94         }
95         device_unlock(dev);
96         kfree(old);
97
98         return count;
99 }
100
101 static ssize_t driver_override_show(struct device *dev,
102                                     struct device_attribute *a, char *buf)
103 {
104         const struct spi_device *spi = to_spi_device(dev);
105         ssize_t len;
106
107         device_lock(dev);
108         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109         device_unlock(dev);
110         return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file)                               \
115 static ssize_t spi_controller_##field##_show(struct device *dev,        \
116                                              struct device_attribute *attr, \
117                                              char *buf)                 \
118 {                                                                       \
119         struct spi_controller *ctlr = container_of(dev,                 \
120                                          struct spi_controller, dev);   \
121         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
122 }                                                                       \
123 static struct device_attribute dev_attr_spi_controller_##field = {      \
124         .attr = { .name = file, .mode = 0444 },                         \
125         .show = spi_controller_##field##_show,                          \
126 };                                                                      \
127 static ssize_t spi_device_##field##_show(struct device *dev,            \
128                                          struct device_attribute *attr, \
129                                         char *buf)                      \
130 {                                                                       \
131         struct spi_device *spi = to_spi_device(dev);                    \
132         return spi_statistics_##field##_show(&spi->statistics, buf);    \
133 }                                                                       \
134 static struct device_attribute dev_attr_spi_device_##field = {          \
135         .attr = { .name = file, .mode = 0444 },                         \
136         .show = spi_device_##field##_show,                              \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141                                             char *buf)                  \
142 {                                                                       \
143         unsigned long flags;                                            \
144         ssize_t len;                                                    \
145         spin_lock_irqsave(&stat->lock, flags);                          \
146         len = sprintf(buf, format_string, stat->field);                 \
147         spin_unlock_irqrestore(&stat->lock, flags);                     \
148         return len;                                                     \
149 }                                                                       \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string)                       \
153         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
154                                  field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
170         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
171                                  "transfer_bytes_histo_" number,        \
172                                  transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194         &dev_attr_modalias.attr,
195         &dev_attr_driver_override.attr,
196         NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200         .attrs  = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204         &dev_attr_spi_device_messages.attr,
205         &dev_attr_spi_device_transfers.attr,
206         &dev_attr_spi_device_errors.attr,
207         &dev_attr_spi_device_timedout.attr,
208         &dev_attr_spi_device_spi_sync.attr,
209         &dev_attr_spi_device_spi_sync_immediate.attr,
210         &dev_attr_spi_device_spi_async.attr,
211         &dev_attr_spi_device_bytes.attr,
212         &dev_attr_spi_device_bytes_rx.attr,
213         &dev_attr_spi_device_bytes_tx.attr,
214         &dev_attr_spi_device_transfer_bytes_histo0.attr,
215         &dev_attr_spi_device_transfer_bytes_histo1.attr,
216         &dev_attr_spi_device_transfer_bytes_histo2.attr,
217         &dev_attr_spi_device_transfer_bytes_histo3.attr,
218         &dev_attr_spi_device_transfer_bytes_histo4.attr,
219         &dev_attr_spi_device_transfer_bytes_histo5.attr,
220         &dev_attr_spi_device_transfer_bytes_histo6.attr,
221         &dev_attr_spi_device_transfer_bytes_histo7.attr,
222         &dev_attr_spi_device_transfer_bytes_histo8.attr,
223         &dev_attr_spi_device_transfer_bytes_histo9.attr,
224         &dev_attr_spi_device_transfer_bytes_histo10.attr,
225         &dev_attr_spi_device_transfer_bytes_histo11.attr,
226         &dev_attr_spi_device_transfer_bytes_histo12.attr,
227         &dev_attr_spi_device_transfer_bytes_histo13.attr,
228         &dev_attr_spi_device_transfer_bytes_histo14.attr,
229         &dev_attr_spi_device_transfer_bytes_histo15.attr,
230         &dev_attr_spi_device_transfer_bytes_histo16.attr,
231         &dev_attr_spi_device_transfers_split_maxsize.attr,
232         NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236         .name  = "statistics",
237         .attrs  = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241         &spi_dev_group,
242         &spi_device_statistics_group,
243         NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247         &dev_attr_spi_controller_messages.attr,
248         &dev_attr_spi_controller_transfers.attr,
249         &dev_attr_spi_controller_errors.attr,
250         &dev_attr_spi_controller_timedout.attr,
251         &dev_attr_spi_controller_spi_sync.attr,
252         &dev_attr_spi_controller_spi_sync_immediate.attr,
253         &dev_attr_spi_controller_spi_async.attr,
254         &dev_attr_spi_controller_bytes.attr,
255         &dev_attr_spi_controller_bytes_rx.attr,
256         &dev_attr_spi_controller_bytes_tx.attr,
257         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274         &dev_attr_spi_controller_transfers_split_maxsize.attr,
275         NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279         .name  = "statistics",
280         .attrs  = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284         &spi_controller_statistics_group,
285         NULL,
286 };
287
288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289                                               struct spi_transfer *xfer,
290                                               struct spi_controller *ctlr)
291 {
292         unsigned long flags;
293         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295         if (l2len < 0)
296                 l2len = 0;
297
298         spin_lock_irqsave(&stats->lock, flags);
299
300         stats->transfers++;
301         stats->transfer_bytes_histo[l2len]++;
302
303         stats->bytes += xfer->len;
304         if ((xfer->tx_buf) &&
305             (xfer->tx_buf != ctlr->dummy_tx))
306                 stats->bytes_tx += xfer->len;
307         if ((xfer->rx_buf) &&
308             (xfer->rx_buf != ctlr->dummy_rx))
309                 stats->bytes_rx += xfer->len;
310
311         spin_unlock_irqrestore(&stats->lock, flags);
312 }
313
314 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
315  * and the sysfs version makes coldplug work too.
316  */
317
318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
319                                                 const struct spi_device *sdev)
320 {
321         while (id->name[0]) {
322                 if (!strcmp(sdev->modalias, id->name))
323                         return id;
324                 id++;
325         }
326         return NULL;
327 }
328
329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
330 {
331         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
332
333         return spi_match_id(sdrv->id_table, sdev);
334 }
335 EXPORT_SYMBOL_GPL(spi_get_device_id);
336
337 static int spi_match_device(struct device *dev, struct device_driver *drv)
338 {
339         const struct spi_device *spi = to_spi_device(dev);
340         const struct spi_driver *sdrv = to_spi_driver(drv);
341
342         /* Check override first, and if set, only use the named driver */
343         if (spi->driver_override)
344                 return strcmp(spi->driver_override, drv->name) == 0;
345
346         /* Attempt an OF style match */
347         if (of_driver_match_device(dev, drv))
348                 return 1;
349
350         /* Then try ACPI */
351         if (acpi_driver_match_device(dev, drv))
352                 return 1;
353
354         if (sdrv->id_table)
355                 return !!spi_match_id(sdrv->id_table, spi);
356
357         return strcmp(spi->modalias, drv->name) == 0;
358 }
359
360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
361 {
362         const struct spi_device         *spi = to_spi_device(dev);
363         int rc;
364
365         rc = acpi_device_uevent_modalias(dev, env);
366         if (rc != -ENODEV)
367                 return rc;
368
369         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
370 }
371
372 static int spi_probe(struct device *dev)
373 {
374         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
375         struct spi_device               *spi = to_spi_device(dev);
376         int ret;
377
378         ret = of_clk_set_defaults(dev->of_node, false);
379         if (ret)
380                 return ret;
381
382         if (dev->of_node) {
383                 spi->irq = of_irq_get(dev->of_node, 0);
384                 if (spi->irq == -EPROBE_DEFER)
385                         return -EPROBE_DEFER;
386                 if (spi->irq < 0)
387                         spi->irq = 0;
388         }
389
390         ret = dev_pm_domain_attach(dev, true);
391         if (ret)
392                 return ret;
393
394         if (sdrv->probe) {
395                 ret = sdrv->probe(spi);
396                 if (ret)
397                         dev_pm_domain_detach(dev, true);
398         }
399
400         return ret;
401 }
402
403 static void spi_remove(struct device *dev)
404 {
405         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
406
407         if (sdrv->remove) {
408                 int ret;
409
410                 ret = sdrv->remove(to_spi_device(dev));
411                 if (ret)
412                         dev_warn(dev,
413                                  "Failed to unbind driver (%pe), ignoring\n",
414                                  ERR_PTR(ret));
415         }
416
417         dev_pm_domain_detach(dev, true);
418 }
419
420 static void spi_shutdown(struct device *dev)
421 {
422         if (dev->driver) {
423                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
424
425                 if (sdrv->shutdown)
426                         sdrv->shutdown(to_spi_device(dev));
427         }
428 }
429
430 struct bus_type spi_bus_type = {
431         .name           = "spi",
432         .dev_groups     = spi_dev_groups,
433         .match          = spi_match_device,
434         .uevent         = spi_uevent,
435         .probe          = spi_probe,
436         .remove         = spi_remove,
437         .shutdown       = spi_shutdown,
438 };
439 EXPORT_SYMBOL_GPL(spi_bus_type);
440
441 /**
442  * __spi_register_driver - register a SPI driver
443  * @owner: owner module of the driver to register
444  * @sdrv: the driver to register
445  * Context: can sleep
446  *
447  * Return: zero on success, else a negative error code.
448  */
449 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
450 {
451         sdrv->driver.owner = owner;
452         sdrv->driver.bus = &spi_bus_type;
453
454         /*
455          * For Really Good Reasons we use spi: modaliases not of:
456          * modaliases for DT so module autoloading won't work if we
457          * don't have a spi_device_id as well as a compatible string.
458          */
459         if (sdrv->driver.of_match_table) {
460                 const struct of_device_id *of_id;
461
462                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
463                      of_id++) {
464                         const char *of_name;
465
466                         /* Strip off any vendor prefix */
467                         of_name = strnchr(of_id->compatible,
468                                           sizeof(of_id->compatible), ',');
469                         if (of_name)
470                                 of_name++;
471                         else
472                                 of_name = of_id->compatible;
473
474                         if (sdrv->id_table) {
475                                 const struct spi_device_id *spi_id;
476
477                                 for (spi_id = sdrv->id_table; spi_id->name[0];
478                                      spi_id++)
479                                         if (strcmp(spi_id->name, of_name) == 0)
480                                                 break;
481
482                                 if (spi_id->name[0])
483                                         continue;
484                         } else {
485                                 if (strcmp(sdrv->driver.name, of_name) == 0)
486                                         continue;
487                         }
488
489                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
490                                 sdrv->driver.name, of_id->compatible);
491                 }
492         }
493
494         return driver_register(&sdrv->driver);
495 }
496 EXPORT_SYMBOL_GPL(__spi_register_driver);
497
498 /*-------------------------------------------------------------------------*/
499
500 /* SPI devices should normally not be created by SPI device drivers; that
501  * would make them board-specific.  Similarly with SPI controller drivers.
502  * Device registration normally goes into like arch/.../mach.../board-YYY.c
503  * with other readonly (flashable) information about mainboard devices.
504  */
505
506 struct boardinfo {
507         struct list_head        list;
508         struct spi_board_info   board_info;
509 };
510
511 static LIST_HEAD(board_list);
512 static LIST_HEAD(spi_controller_list);
513
514 /*
515  * Used to protect add/del operation for board_info list and
516  * spi_controller list, and their matching process
517  * also used to protect object of type struct idr
518  */
519 static DEFINE_MUTEX(board_lock);
520
521 /**
522  * spi_alloc_device - Allocate a new SPI device
523  * @ctlr: Controller to which device is connected
524  * Context: can sleep
525  *
526  * Allows a driver to allocate and initialize a spi_device without
527  * registering it immediately.  This allows a driver to directly
528  * fill the spi_device with device parameters before calling
529  * spi_add_device() on it.
530  *
531  * Caller is responsible to call spi_add_device() on the returned
532  * spi_device structure to add it to the SPI controller.  If the caller
533  * needs to discard the spi_device without adding it, then it should
534  * call spi_dev_put() on it.
535  *
536  * Return: a pointer to the new device, or NULL.
537  */
538 static struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
539 {
540         struct spi_device       *spi;
541
542         if (!spi_controller_get(ctlr))
543                 return NULL;
544
545         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
546         if (!spi) {
547                 spi_controller_put(ctlr);
548                 return NULL;
549         }
550
551         spi->master = spi->controller = ctlr;
552         spi->dev.parent = &ctlr->dev;
553         spi->dev.bus = &spi_bus_type;
554         spi->dev.release = spidev_release;
555         spi->cs_gpio = -ENOENT;
556         spi->mode = ctlr->buswidth_override_bits;
557
558         spin_lock_init(&spi->statistics.lock);
559
560         device_initialize(&spi->dev);
561         return spi;
562 }
563
564 static void spi_dev_set_name(struct spi_device *spi)
565 {
566         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
567
568         if (adev) {
569                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
570                 return;
571         }
572
573         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
574                      spi->chip_select);
575 }
576
577 static int spi_dev_check(struct device *dev, void *data)
578 {
579         struct spi_device *spi = to_spi_device(dev);
580         struct spi_device *new_spi = data;
581
582         if (spi->controller == new_spi->controller &&
583             spi->chip_select == new_spi->chip_select)
584                 return -EBUSY;
585         return 0;
586 }
587
588 static void spi_cleanup(struct spi_device *spi)
589 {
590         if (spi->controller->cleanup)
591                 spi->controller->cleanup(spi);
592 }
593
594 static int __spi_add_device(struct spi_device *spi)
595 {
596         struct spi_controller *ctlr = spi->controller;
597         struct device *dev = ctlr->dev.parent;
598         int status;
599
600         /*
601          * We need to make sure there's no other device with this
602          * chipselect **BEFORE** we call setup(), else we'll trash
603          * its configuration.
604          */
605         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
606         if (status) {
607                 dev_err(dev, "chipselect %d already in use\n",
608                                 spi->chip_select);
609                 return status;
610         }
611
612         /* Controller may unregister concurrently */
613         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
614             !device_is_registered(&ctlr->dev)) {
615                 return -ENODEV;
616         }
617
618         /* Descriptors take precedence */
619         if (ctlr->cs_gpiods)
620                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
621         else if (ctlr->cs_gpios)
622                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
623
624         /* Drivers may modify this initial i/o setup, but will
625          * normally rely on the device being setup.  Devices
626          * using SPI_CS_HIGH can't coexist well otherwise...
627          */
628         status = spi_setup(spi);
629         if (status < 0) {
630                 dev_err(dev, "can't setup %s, status %d\n",
631                                 dev_name(&spi->dev), status);
632                 return status;
633         }
634
635         /* Device may be bound to an active driver when this returns */
636         status = device_add(&spi->dev);
637         if (status < 0) {
638                 dev_err(dev, "can't add %s, status %d\n",
639                                 dev_name(&spi->dev), status);
640                 spi_cleanup(spi);
641         } else {
642                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
643         }
644
645         return status;
646 }
647
648 /**
649  * spi_add_device - Add spi_device allocated with spi_alloc_device
650  * @spi: spi_device to register
651  *
652  * Companion function to spi_alloc_device.  Devices allocated with
653  * spi_alloc_device can be added onto the spi bus with this function.
654  *
655  * Return: 0 on success; negative errno on failure
656  */
657 static int spi_add_device(struct spi_device *spi)
658 {
659         struct spi_controller *ctlr = spi->controller;
660         struct device *dev = ctlr->dev.parent;
661         int status;
662
663         /* Chipselects are numbered 0..max; validate. */
664         if (spi->chip_select >= ctlr->num_chipselect) {
665                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
666                         ctlr->num_chipselect);
667                 return -EINVAL;
668         }
669
670         /* Set the bus ID string */
671         spi_dev_set_name(spi);
672
673         mutex_lock(&ctlr->add_lock);
674         status = __spi_add_device(spi);
675         mutex_unlock(&ctlr->add_lock);
676         return status;
677 }
678
679 static int spi_add_device_locked(struct spi_device *spi)
680 {
681         struct spi_controller *ctlr = spi->controller;
682         struct device *dev = ctlr->dev.parent;
683
684         /* Chipselects are numbered 0..max; validate. */
685         if (spi->chip_select >= ctlr->num_chipselect) {
686                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
687                         ctlr->num_chipselect);
688                 return -EINVAL;
689         }
690
691         /* Set the bus ID string */
692         spi_dev_set_name(spi);
693
694         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
695         return __spi_add_device(spi);
696 }
697
698 /**
699  * spi_new_device - instantiate one new SPI device
700  * @ctlr: Controller to which device is connected
701  * @chip: Describes the SPI device
702  * Context: can sleep
703  *
704  * On typical mainboards, this is purely internal; and it's not needed
705  * after board init creates the hard-wired devices.  Some development
706  * platforms may not be able to use spi_register_board_info though, and
707  * this is exported so that for example a USB or parport based adapter
708  * driver could add devices (which it would learn about out-of-band).
709  *
710  * Return: the new device, or NULL.
711  */
712 struct spi_device *spi_new_device(struct spi_controller *ctlr,
713                                   struct spi_board_info *chip)
714 {
715         struct spi_device       *proxy;
716         int                     status;
717
718         /* NOTE:  caller did any chip->bus_num checks necessary.
719          *
720          * Also, unless we change the return value convention to use
721          * error-or-pointer (not NULL-or-pointer), troubleshootability
722          * suggests syslogged diagnostics are best here (ugh).
723          */
724
725         proxy = spi_alloc_device(ctlr);
726         if (!proxy)
727                 return NULL;
728
729         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
730
731         proxy->chip_select = chip->chip_select;
732         proxy->max_speed_hz = chip->max_speed_hz;
733         proxy->mode = chip->mode;
734         proxy->irq = chip->irq;
735         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
736         proxy->dev.platform_data = (void *) chip->platform_data;
737         proxy->controller_data = chip->controller_data;
738         proxy->controller_state = NULL;
739
740         if (chip->swnode) {
741                 status = device_add_software_node(&proxy->dev, chip->swnode);
742                 if (status) {
743                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
744                                 chip->modalias, status);
745                         goto err_dev_put;
746                 }
747         }
748
749         status = spi_add_device(proxy);
750         if (status < 0)
751                 goto err_dev_put;
752
753         return proxy;
754
755 err_dev_put:
756         device_remove_software_node(&proxy->dev);
757         spi_dev_put(proxy);
758         return NULL;
759 }
760 EXPORT_SYMBOL_GPL(spi_new_device);
761
762 /**
763  * spi_unregister_device - unregister a single SPI device
764  * @spi: spi_device to unregister
765  *
766  * Start making the passed SPI device vanish. Normally this would be handled
767  * by spi_unregister_controller().
768  */
769 void spi_unregister_device(struct spi_device *spi)
770 {
771         if (!spi)
772                 return;
773
774         if (spi->dev.of_node) {
775                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
776                 of_node_put(spi->dev.of_node);
777         }
778         if (ACPI_COMPANION(&spi->dev))
779                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
780         device_remove_software_node(&spi->dev);
781         device_del(&spi->dev);
782         spi_cleanup(spi);
783         put_device(&spi->dev);
784 }
785 EXPORT_SYMBOL_GPL(spi_unregister_device);
786
787 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
788                                               struct spi_board_info *bi)
789 {
790         struct spi_device *dev;
791
792         if (ctlr->bus_num != bi->bus_num)
793                 return;
794
795         dev = spi_new_device(ctlr, bi);
796         if (!dev)
797                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
798                         bi->modalias);
799 }
800
801 /**
802  * spi_register_board_info - register SPI devices for a given board
803  * @info: array of chip descriptors
804  * @n: how many descriptors are provided
805  * Context: can sleep
806  *
807  * Board-specific early init code calls this (probably during arch_initcall)
808  * with segments of the SPI device table.  Any device nodes are created later,
809  * after the relevant parent SPI controller (bus_num) is defined.  We keep
810  * this table of devices forever, so that reloading a controller driver will
811  * not make Linux forget about these hard-wired devices.
812  *
813  * Other code can also call this, e.g. a particular add-on board might provide
814  * SPI devices through its expansion connector, so code initializing that board
815  * would naturally declare its SPI devices.
816  *
817  * The board info passed can safely be __initdata ... but be careful of
818  * any embedded pointers (platform_data, etc), they're copied as-is.
819  *
820  * Return: zero on success, else a negative error code.
821  */
822 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
823 {
824         struct boardinfo *bi;
825         int i;
826
827         if (!n)
828                 return 0;
829
830         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
831         if (!bi)
832                 return -ENOMEM;
833
834         for (i = 0; i < n; i++, bi++, info++) {
835                 struct spi_controller *ctlr;
836
837                 memcpy(&bi->board_info, info, sizeof(*info));
838
839                 mutex_lock(&board_lock);
840                 list_add_tail(&bi->list, &board_list);
841                 list_for_each_entry(ctlr, &spi_controller_list, list)
842                         spi_match_controller_to_boardinfo(ctlr,
843                                                           &bi->board_info);
844                 mutex_unlock(&board_lock);
845         }
846
847         return 0;
848 }
849
850 /*-------------------------------------------------------------------------*/
851
852 /* Core methods for SPI resource management */
853
854 /**
855  * spi_res_alloc - allocate a spi resource that is life-cycle managed
856  *                 during the processing of a spi_message while using
857  *                 spi_transfer_one
858  * @spi:     the spi device for which we allocate memory
859  * @release: the release code to execute for this resource
860  * @size:    size to alloc and return
861  * @gfp:     GFP allocation flags
862  *
863  * Return: the pointer to the allocated data
864  *
865  * This may get enhanced in the future to allocate from a memory pool
866  * of the @spi_device or @spi_controller to avoid repeated allocations.
867  */
868 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
869                            size_t size, gfp_t gfp)
870 {
871         struct spi_res *sres;
872
873         sres = kzalloc(sizeof(*sres) + size, gfp);
874         if (!sres)
875                 return NULL;
876
877         INIT_LIST_HEAD(&sres->entry);
878         sres->release = release;
879
880         return sres->data;
881 }
882
883 /**
884  * spi_res_free - free an spi resource
885  * @res: pointer to the custom data of a resource
886  *
887  */
888 static void spi_res_free(void *res)
889 {
890         struct spi_res *sres = container_of(res, struct spi_res, data);
891
892         if (!res)
893                 return;
894
895         WARN_ON(!list_empty(&sres->entry));
896         kfree(sres);
897 }
898
899 /**
900  * spi_res_add - add a spi_res to the spi_message
901  * @message: the spi message
902  * @res:     the spi_resource
903  */
904 static void spi_res_add(struct spi_message *message, void *res)
905 {
906         struct spi_res *sres = container_of(res, struct spi_res, data);
907
908         WARN_ON(!list_empty(&sres->entry));
909         list_add_tail(&sres->entry, &message->resources);
910 }
911
912 /**
913  * spi_res_release - release all spi resources for this message
914  * @ctlr:  the @spi_controller
915  * @message: the @spi_message
916  */
917 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
918 {
919         struct spi_res *res, *tmp;
920
921         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
922                 if (res->release)
923                         res->release(ctlr, message, res->data);
924
925                 list_del(&res->entry);
926
927                 kfree(res);
928         }
929 }
930
931 /*-------------------------------------------------------------------------*/
932
933 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
934 {
935         bool activate = enable;
936
937         /*
938          * Avoid calling into the driver (or doing delays) if the chip select
939          * isn't actually changing from the last time this was called.
940          */
941         if (!force && (spi->controller->last_cs_enable == enable) &&
942             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
943                 return;
944
945         trace_spi_set_cs(spi, activate);
946
947         spi->controller->last_cs_enable = enable;
948         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
949
950         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
951             !spi->controller->set_cs_timing) {
952                 if (activate)
953                         spi_delay_exec(&spi->cs_setup, NULL);
954                 else
955                         spi_delay_exec(&spi->cs_hold, NULL);
956         }
957
958         if (spi->mode & SPI_CS_HIGH)
959                 enable = !enable;
960
961         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
962                 if (!(spi->mode & SPI_NO_CS)) {
963                         if (spi->cs_gpiod) {
964                                 /*
965                                  * Historically ACPI has no means of the GPIO polarity and
966                                  * thus the SPISerialBus() resource defines it on the per-chip
967                                  * basis. In order to avoid a chain of negations, the GPIO
968                                  * polarity is considered being Active High. Even for the cases
969                                  * when _DSD() is involved (in the updated versions of ACPI)
970                                  * the GPIO CS polarity must be defined Active High to avoid
971                                  * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
972                                  * into account.
973                                  */
974                                 if (has_acpi_companion(&spi->dev))
975                                         gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
976                                 else
977                                         /* Polarity handled by GPIO library */
978                                         gpiod_set_value_cansleep(spi->cs_gpiod, activate);
979                         } else {
980                                 /*
981                                  * invert the enable line, as active low is
982                                  * default for SPI.
983                                  */
984                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
985                         }
986                 }
987                 /* Some SPI masters need both GPIO CS & slave_select */
988                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
989                     spi->controller->set_cs)
990                         spi->controller->set_cs(spi, !enable);
991         } else if (spi->controller->set_cs) {
992                 spi->controller->set_cs(spi, !enable);
993         }
994
995         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
996             !spi->controller->set_cs_timing) {
997                 if (!activate)
998                         spi_delay_exec(&spi->cs_inactive, NULL);
999         }
1000 }
1001
1002 #ifdef CONFIG_HAS_DMA
1003 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1004                 struct sg_table *sgt, void *buf, size_t len,
1005                 enum dma_data_direction dir)
1006 {
1007         const bool vmalloced_buf = is_vmalloc_addr(buf);
1008         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1009 #ifdef CONFIG_HIGHMEM
1010         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1011                                 (unsigned long)buf < (PKMAP_BASE +
1012                                         (LAST_PKMAP * PAGE_SIZE)));
1013 #else
1014         const bool kmap_buf = false;
1015 #endif
1016         int desc_len;
1017         int sgs;
1018         struct page *vm_page;
1019         struct scatterlist *sg;
1020         void *sg_buf;
1021         size_t min;
1022         int i, ret;
1023
1024         if (vmalloced_buf || kmap_buf) {
1025                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
1026                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1027         } else if (virt_addr_valid(buf)) {
1028                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
1029                 sgs = DIV_ROUND_UP(len, desc_len);
1030         } else {
1031                 return -EINVAL;
1032         }
1033
1034         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1035         if (ret != 0)
1036                 return ret;
1037
1038         sg = &sgt->sgl[0];
1039         for (i = 0; i < sgs; i++) {
1040
1041                 if (vmalloced_buf || kmap_buf) {
1042                         /*
1043                          * Next scatterlist entry size is the minimum between
1044                          * the desc_len and the remaining buffer length that
1045                          * fits in a page.
1046                          */
1047                         min = min_t(size_t, desc_len,
1048                                     min_t(size_t, len,
1049                                           PAGE_SIZE - offset_in_page(buf)));
1050                         if (vmalloced_buf)
1051                                 vm_page = vmalloc_to_page(buf);
1052                         else
1053                                 vm_page = kmap_to_page(buf);
1054                         if (!vm_page) {
1055                                 sg_free_table(sgt);
1056                                 return -ENOMEM;
1057                         }
1058                         sg_set_page(sg, vm_page,
1059                                     min, offset_in_page(buf));
1060                 } else {
1061                         min = min_t(size_t, len, desc_len);
1062                         sg_buf = buf;
1063                         sg_set_buf(sg, sg_buf, min);
1064                 }
1065
1066                 buf += min;
1067                 len -= min;
1068                 sg = sg_next(sg);
1069         }
1070
1071         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1072         if (!ret)
1073                 ret = -ENOMEM;
1074         if (ret < 0) {
1075                 sg_free_table(sgt);
1076                 return ret;
1077         }
1078
1079         sgt->nents = ret;
1080
1081         return 0;
1082 }
1083
1084 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1085                    struct sg_table *sgt, enum dma_data_direction dir)
1086 {
1087         if (sgt->orig_nents) {
1088                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1089                 sg_free_table(sgt);
1090         }
1091 }
1092
1093 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1094 {
1095         struct device *tx_dev, *rx_dev;
1096         struct spi_transfer *xfer;
1097         int ret;
1098
1099         if (!ctlr->can_dma)
1100                 return 0;
1101
1102         if (ctlr->dma_tx)
1103                 tx_dev = ctlr->dma_tx->device->dev;
1104         else if (ctlr->dma_map_dev)
1105                 tx_dev = ctlr->dma_map_dev;
1106         else
1107                 tx_dev = ctlr->dev.parent;
1108
1109         if (ctlr->dma_rx)
1110                 rx_dev = ctlr->dma_rx->device->dev;
1111         else if (ctlr->dma_map_dev)
1112                 rx_dev = ctlr->dma_map_dev;
1113         else
1114                 rx_dev = ctlr->dev.parent;
1115
1116         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1117                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1118                         continue;
1119
1120                 if (xfer->tx_buf != NULL) {
1121                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1122                                           (void *)xfer->tx_buf, xfer->len,
1123                                           DMA_TO_DEVICE);
1124                         if (ret != 0)
1125                                 return ret;
1126                 }
1127
1128                 if (xfer->rx_buf != NULL) {
1129                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1130                                           xfer->rx_buf, xfer->len,
1131                                           DMA_FROM_DEVICE);
1132                         if (ret != 0) {
1133                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1134                                               DMA_TO_DEVICE);
1135                                 return ret;
1136                         }
1137                 }
1138         }
1139
1140         ctlr->cur_msg_mapped = true;
1141
1142         return 0;
1143 }
1144
1145 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1146 {
1147         struct spi_transfer *xfer;
1148         struct device *tx_dev, *rx_dev;
1149
1150         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1151                 return 0;
1152
1153         if (ctlr->dma_tx)
1154                 tx_dev = ctlr->dma_tx->device->dev;
1155         else
1156                 tx_dev = ctlr->dev.parent;
1157
1158         if (ctlr->dma_rx)
1159                 rx_dev = ctlr->dma_rx->device->dev;
1160         else
1161                 rx_dev = ctlr->dev.parent;
1162
1163         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1164                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1165                         continue;
1166
1167                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1168                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1169         }
1170
1171         ctlr->cur_msg_mapped = false;
1172
1173         return 0;
1174 }
1175 #else /* !CONFIG_HAS_DMA */
1176 static inline int __spi_map_msg(struct spi_controller *ctlr,
1177                                 struct spi_message *msg)
1178 {
1179         return 0;
1180 }
1181
1182 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1183                                   struct spi_message *msg)
1184 {
1185         return 0;
1186 }
1187 #endif /* !CONFIG_HAS_DMA */
1188
1189 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1190                                 struct spi_message *msg)
1191 {
1192         struct spi_transfer *xfer;
1193
1194         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1195                 /*
1196                  * Restore the original value of tx_buf or rx_buf if they are
1197                  * NULL.
1198                  */
1199                 if (xfer->tx_buf == ctlr->dummy_tx)
1200                         xfer->tx_buf = NULL;
1201                 if (xfer->rx_buf == ctlr->dummy_rx)
1202                         xfer->rx_buf = NULL;
1203         }
1204
1205         return __spi_unmap_msg(ctlr, msg);
1206 }
1207
1208 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1209 {
1210         struct spi_transfer *xfer;
1211         void *tmp;
1212         unsigned int max_tx, max_rx;
1213
1214         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1215                 && !(msg->spi->mode & SPI_3WIRE)) {
1216                 max_tx = 0;
1217                 max_rx = 0;
1218
1219                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1221                             !xfer->tx_buf)
1222                                 max_tx = max(xfer->len, max_tx);
1223                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1224                             !xfer->rx_buf)
1225                                 max_rx = max(xfer->len, max_rx);
1226                 }
1227
1228                 if (max_tx) {
1229                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1230                                        GFP_KERNEL | GFP_DMA);
1231                         if (!tmp)
1232                                 return -ENOMEM;
1233                         ctlr->dummy_tx = tmp;
1234                         memset(tmp, 0, max_tx);
1235                 }
1236
1237                 if (max_rx) {
1238                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1239                                        GFP_KERNEL | GFP_DMA);
1240                         if (!tmp)
1241                                 return -ENOMEM;
1242                         ctlr->dummy_rx = tmp;
1243                 }
1244
1245                 if (max_tx || max_rx) {
1246                         list_for_each_entry(xfer, &msg->transfers,
1247                                             transfer_list) {
1248                                 if (!xfer->len)
1249                                         continue;
1250                                 if (!xfer->tx_buf)
1251                                         xfer->tx_buf = ctlr->dummy_tx;
1252                                 if (!xfer->rx_buf)
1253                                         xfer->rx_buf = ctlr->dummy_rx;
1254                         }
1255                 }
1256         }
1257
1258         return __spi_map_msg(ctlr, msg);
1259 }
1260
1261 static int spi_transfer_wait(struct spi_controller *ctlr,
1262                              struct spi_message *msg,
1263                              struct spi_transfer *xfer)
1264 {
1265         struct spi_statistics *statm = &ctlr->statistics;
1266         struct spi_statistics *stats = &msg->spi->statistics;
1267         u32 speed_hz = xfer->speed_hz;
1268         unsigned long long ms;
1269
1270         if (spi_controller_is_slave(ctlr)) {
1271                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1272                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1273                         return -EINTR;
1274                 }
1275         } else {
1276                 if (!speed_hz)
1277                         speed_hz = 100000;
1278
1279                 /*
1280                  * For each byte we wait for 8 cycles of the SPI clock.
1281                  * Since speed is defined in Hz and we want milliseconds,
1282                  * use respective multiplier, but before the division,
1283                  * otherwise we may get 0 for short transfers.
1284                  */
1285                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1286                 do_div(ms, speed_hz);
1287
1288                 /*
1289                  * Increase it twice and add 200 ms tolerance, use
1290                  * predefined maximum in case of overflow.
1291                  */
1292                 ms += ms + 200;
1293                 if (ms > UINT_MAX)
1294                         ms = UINT_MAX;
1295
1296                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1297                                                  msecs_to_jiffies(ms));
1298
1299                 if (ms == 0) {
1300                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1301                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1302                         dev_err(&msg->spi->dev,
1303                                 "SPI transfer timed out\n");
1304                         return -ETIMEDOUT;
1305                 }
1306         }
1307
1308         return 0;
1309 }
1310
1311 static void _spi_transfer_delay_ns(u32 ns)
1312 {
1313         if (!ns)
1314                 return;
1315         if (ns <= NSEC_PER_USEC) {
1316                 ndelay(ns);
1317         } else {
1318                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1319
1320                 if (us <= 10)
1321                         udelay(us);
1322                 else
1323                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1324         }
1325 }
1326
1327 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1328 {
1329         u32 delay = _delay->value;
1330         u32 unit = _delay->unit;
1331         u32 hz;
1332
1333         if (!delay)
1334                 return 0;
1335
1336         switch (unit) {
1337         case SPI_DELAY_UNIT_USECS:
1338                 delay *= NSEC_PER_USEC;
1339                 break;
1340         case SPI_DELAY_UNIT_NSECS:
1341                 /* Nothing to do here */
1342                 break;
1343         case SPI_DELAY_UNIT_SCK:
1344                 /* clock cycles need to be obtained from spi_transfer */
1345                 if (!xfer)
1346                         return -EINVAL;
1347                 /*
1348                  * If there is unknown effective speed, approximate it
1349                  * by underestimating with half of the requested hz.
1350                  */
1351                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1352                 if (!hz)
1353                         return -EINVAL;
1354
1355                 /* Convert delay to nanoseconds */
1356                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1357                 break;
1358         default:
1359                 return -EINVAL;
1360         }
1361
1362         return delay;
1363 }
1364 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1365
1366 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1367 {
1368         int delay;
1369
1370         might_sleep();
1371
1372         if (!_delay)
1373                 return -EINVAL;
1374
1375         delay = spi_delay_to_ns(_delay, xfer);
1376         if (delay < 0)
1377                 return delay;
1378
1379         _spi_transfer_delay_ns(delay);
1380
1381         return 0;
1382 }
1383 EXPORT_SYMBOL_GPL(spi_delay_exec);
1384
1385 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1386                                           struct spi_transfer *xfer)
1387 {
1388         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1389         u32 delay = xfer->cs_change_delay.value;
1390         u32 unit = xfer->cs_change_delay.unit;
1391         int ret;
1392
1393         /* return early on "fast" mode - for everything but USECS */
1394         if (!delay) {
1395                 if (unit == SPI_DELAY_UNIT_USECS)
1396                         _spi_transfer_delay_ns(default_delay_ns);
1397                 return;
1398         }
1399
1400         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1401         if (ret) {
1402                 dev_err_once(&msg->spi->dev,
1403                              "Use of unsupported delay unit %i, using default of %luus\n",
1404                              unit, default_delay_ns / NSEC_PER_USEC);
1405                 _spi_transfer_delay_ns(default_delay_ns);
1406         }
1407 }
1408
1409 /*
1410  * spi_transfer_one_message - Default implementation of transfer_one_message()
1411  *
1412  * This is a standard implementation of transfer_one_message() for
1413  * drivers which implement a transfer_one() operation.  It provides
1414  * standard handling of delays and chip select management.
1415  */
1416 static int spi_transfer_one_message(struct spi_controller *ctlr,
1417                                     struct spi_message *msg)
1418 {
1419         struct spi_transfer *xfer;
1420         bool keep_cs = false;
1421         int ret = 0;
1422         struct spi_statistics *statm = &ctlr->statistics;
1423         struct spi_statistics *stats = &msg->spi->statistics;
1424
1425         spi_set_cs(msg->spi, true, false);
1426
1427         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1428         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1429
1430         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1431                 trace_spi_transfer_start(msg, xfer);
1432
1433                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1434                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1435
1436                 if (!ctlr->ptp_sts_supported) {
1437                         xfer->ptp_sts_word_pre = 0;
1438                         ptp_read_system_prets(xfer->ptp_sts);
1439                 }
1440
1441                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1442                         reinit_completion(&ctlr->xfer_completion);
1443
1444 fallback_pio:
1445                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1446                         if (ret < 0) {
1447                                 if (ctlr->cur_msg_mapped &&
1448                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1449                                         __spi_unmap_msg(ctlr, msg);
1450                                         ctlr->fallback = true;
1451                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1452                                         goto fallback_pio;
1453                                 }
1454
1455                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1456                                                                errors);
1457                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1458                                                                errors);
1459                                 dev_err(&msg->spi->dev,
1460                                         "SPI transfer failed: %d\n", ret);
1461                                 goto out;
1462                         }
1463
1464                         if (ret > 0) {
1465                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1466                                 if (ret < 0)
1467                                         msg->status = ret;
1468                         }
1469                 } else {
1470                         if (xfer->len)
1471                                 dev_err(&msg->spi->dev,
1472                                         "Bufferless transfer has length %u\n",
1473                                         xfer->len);
1474                 }
1475
1476                 if (!ctlr->ptp_sts_supported) {
1477                         ptp_read_system_postts(xfer->ptp_sts);
1478                         xfer->ptp_sts_word_post = xfer->len;
1479                 }
1480
1481                 trace_spi_transfer_stop(msg, xfer);
1482
1483                 if (msg->status != -EINPROGRESS)
1484                         goto out;
1485
1486                 spi_transfer_delay_exec(xfer);
1487
1488                 if (xfer->cs_change) {
1489                         if (list_is_last(&xfer->transfer_list,
1490                                          &msg->transfers)) {
1491                                 keep_cs = true;
1492                         } else {
1493                                 spi_set_cs(msg->spi, false, false);
1494                                 _spi_transfer_cs_change_delay(msg, xfer);
1495                                 spi_set_cs(msg->spi, true, false);
1496                         }
1497                 }
1498
1499                 msg->actual_length += xfer->len;
1500         }
1501
1502 out:
1503         if (ret != 0 || !keep_cs)
1504                 spi_set_cs(msg->spi, false, false);
1505
1506         if (msg->status == -EINPROGRESS)
1507                 msg->status = ret;
1508
1509         if (msg->status && ctlr->handle_err)
1510                 ctlr->handle_err(ctlr, msg);
1511
1512         spi_finalize_current_message(ctlr);
1513
1514         return ret;
1515 }
1516
1517 /**
1518  * spi_finalize_current_transfer - report completion of a transfer
1519  * @ctlr: the controller reporting completion
1520  *
1521  * Called by SPI drivers using the core transfer_one_message()
1522  * implementation to notify it that the current interrupt driven
1523  * transfer has finished and the next one may be scheduled.
1524  */
1525 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1526 {
1527         complete(&ctlr->xfer_completion);
1528 }
1529 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1530
1531 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1532 {
1533         if (ctlr->auto_runtime_pm) {
1534                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1535                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1536         }
1537 }
1538
1539 /**
1540  * __spi_pump_messages - function which processes spi message queue
1541  * @ctlr: controller to process queue for
1542  * @in_kthread: true if we are in the context of the message pump thread
1543  *
1544  * This function checks if there is any spi message in the queue that
1545  * needs processing and if so call out to the driver to initialize hardware
1546  * and transfer each message.
1547  *
1548  * Note that it is called both from the kthread itself and also from
1549  * inside spi_sync(); the queue extraction handling at the top of the
1550  * function should deal with this safely.
1551  */
1552 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1553 {
1554         struct spi_transfer *xfer;
1555         struct spi_message *msg;
1556         bool was_busy = false;
1557         unsigned long flags;
1558         int ret;
1559
1560         /* Lock queue */
1561         spin_lock_irqsave(&ctlr->queue_lock, flags);
1562
1563         /* Make sure we are not already running a message */
1564         if (ctlr->cur_msg) {
1565                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1566                 return;
1567         }
1568
1569         /* If another context is idling the device then defer */
1570         if (ctlr->idling) {
1571                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1572                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1573                 return;
1574         }
1575
1576         /* Check if the queue is idle */
1577         if (list_empty(&ctlr->queue) || !ctlr->running) {
1578                 if (!ctlr->busy) {
1579                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1580                         return;
1581                 }
1582
1583                 /* Defer any non-atomic teardown to the thread */
1584                 if (!in_kthread) {
1585                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1586                             !ctlr->unprepare_transfer_hardware) {
1587                                 spi_idle_runtime_pm(ctlr);
1588                                 ctlr->busy = false;
1589                                 trace_spi_controller_idle(ctlr);
1590                         } else {
1591                                 kthread_queue_work(ctlr->kworker,
1592                                                    &ctlr->pump_messages);
1593                         }
1594                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1595                         return;
1596                 }
1597
1598                 ctlr->busy = false;
1599                 ctlr->idling = true;
1600                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1601
1602                 kfree(ctlr->dummy_rx);
1603                 ctlr->dummy_rx = NULL;
1604                 kfree(ctlr->dummy_tx);
1605                 ctlr->dummy_tx = NULL;
1606                 if (ctlr->unprepare_transfer_hardware &&
1607                     ctlr->unprepare_transfer_hardware(ctlr))
1608                         dev_err(&ctlr->dev,
1609                                 "failed to unprepare transfer hardware\n");
1610                 spi_idle_runtime_pm(ctlr);
1611                 trace_spi_controller_idle(ctlr);
1612
1613                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1614                 ctlr->idling = false;
1615                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1616                 return;
1617         }
1618
1619         /* Extract head of queue */
1620         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1621         ctlr->cur_msg = msg;
1622
1623         list_del_init(&msg->queue);
1624         if (ctlr->busy)
1625                 was_busy = true;
1626         else
1627                 ctlr->busy = true;
1628         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1629
1630         mutex_lock(&ctlr->io_mutex);
1631
1632         if (!was_busy && ctlr->auto_runtime_pm) {
1633                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1634                 if (ret < 0) {
1635                         pm_runtime_put_noidle(ctlr->dev.parent);
1636                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1637                                 ret);
1638                         mutex_unlock(&ctlr->io_mutex);
1639                         return;
1640                 }
1641         }
1642
1643         if (!was_busy)
1644                 trace_spi_controller_busy(ctlr);
1645
1646         if (!was_busy && ctlr->prepare_transfer_hardware) {
1647                 ret = ctlr->prepare_transfer_hardware(ctlr);
1648                 if (ret) {
1649                         dev_err(&ctlr->dev,
1650                                 "failed to prepare transfer hardware: %d\n",
1651                                 ret);
1652
1653                         if (ctlr->auto_runtime_pm)
1654                                 pm_runtime_put(ctlr->dev.parent);
1655
1656                         msg->status = ret;
1657                         spi_finalize_current_message(ctlr);
1658
1659                         mutex_unlock(&ctlr->io_mutex);
1660                         return;
1661                 }
1662         }
1663
1664         trace_spi_message_start(msg);
1665
1666         if (ctlr->prepare_message) {
1667                 ret = ctlr->prepare_message(ctlr, msg);
1668                 if (ret) {
1669                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1670                                 ret);
1671                         msg->status = ret;
1672                         spi_finalize_current_message(ctlr);
1673                         goto out;
1674                 }
1675                 ctlr->cur_msg_prepared = true;
1676         }
1677
1678         ret = spi_map_msg(ctlr, msg);
1679         if (ret) {
1680                 msg->status = ret;
1681                 spi_finalize_current_message(ctlr);
1682                 goto out;
1683         }
1684
1685         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1686                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1687                         xfer->ptp_sts_word_pre = 0;
1688                         ptp_read_system_prets(xfer->ptp_sts);
1689                 }
1690         }
1691
1692         ret = ctlr->transfer_one_message(ctlr, msg);
1693         if (ret) {
1694                 dev_err(&ctlr->dev,
1695                         "failed to transfer one message from queue\n");
1696                 goto out;
1697         }
1698
1699 out:
1700         mutex_unlock(&ctlr->io_mutex);
1701
1702         /* Prod the scheduler in case transfer_one() was busy waiting */
1703         if (!ret)
1704                 cond_resched();
1705 }
1706
1707 /**
1708  * spi_pump_messages - kthread work function which processes spi message queue
1709  * @work: pointer to kthread work struct contained in the controller struct
1710  */
1711 static void spi_pump_messages(struct kthread_work *work)
1712 {
1713         struct spi_controller *ctlr =
1714                 container_of(work, struct spi_controller, pump_messages);
1715
1716         __spi_pump_messages(ctlr, true);
1717 }
1718
1719 /**
1720  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1721  *                          TX timestamp for the requested byte from the SPI
1722  *                          transfer. The frequency with which this function
1723  *                          must be called (once per word, once for the whole
1724  *                          transfer, once per batch of words etc) is arbitrary
1725  *                          as long as the @tx buffer offset is greater than or
1726  *                          equal to the requested byte at the time of the
1727  *                          call. The timestamp is only taken once, at the
1728  *                          first such call. It is assumed that the driver
1729  *                          advances its @tx buffer pointer monotonically.
1730  * @ctlr: Pointer to the spi_controller structure of the driver
1731  * @xfer: Pointer to the transfer being timestamped
1732  * @progress: How many words (not bytes) have been transferred so far
1733  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1734  *            transfer, for less jitter in time measurement. Only compatible
1735  *            with PIO drivers. If true, must follow up with
1736  *            spi_take_timestamp_post or otherwise system will crash.
1737  *            WARNING: for fully predictable results, the CPU frequency must
1738  *            also be under control (governor).
1739  */
1740 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1741                             struct spi_transfer *xfer,
1742                             size_t progress, bool irqs_off)
1743 {
1744         if (!xfer->ptp_sts)
1745                 return;
1746
1747         if (xfer->timestamped)
1748                 return;
1749
1750         if (progress > xfer->ptp_sts_word_pre)
1751                 return;
1752
1753         /* Capture the resolution of the timestamp */
1754         xfer->ptp_sts_word_pre = progress;
1755
1756         if (irqs_off) {
1757                 local_irq_save(ctlr->irq_flags);
1758                 preempt_disable();
1759         }
1760
1761         ptp_read_system_prets(xfer->ptp_sts);
1762 }
1763 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1764
1765 /**
1766  * spi_take_timestamp_post - helper for drivers to collect the end of the
1767  *                           TX timestamp for the requested byte from the SPI
1768  *                           transfer. Can be called with an arbitrary
1769  *                           frequency: only the first call where @tx exceeds
1770  *                           or is equal to the requested word will be
1771  *                           timestamped.
1772  * @ctlr: Pointer to the spi_controller structure of the driver
1773  * @xfer: Pointer to the transfer being timestamped
1774  * @progress: How many words (not bytes) have been transferred so far
1775  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1776  */
1777 void spi_take_timestamp_post(struct spi_controller *ctlr,
1778                              struct spi_transfer *xfer,
1779                              size_t progress, bool irqs_off)
1780 {
1781         if (!xfer->ptp_sts)
1782                 return;
1783
1784         if (xfer->timestamped)
1785                 return;
1786
1787         if (progress < xfer->ptp_sts_word_post)
1788                 return;
1789
1790         ptp_read_system_postts(xfer->ptp_sts);
1791
1792         if (irqs_off) {
1793                 local_irq_restore(ctlr->irq_flags);
1794                 preempt_enable();
1795         }
1796
1797         /* Capture the resolution of the timestamp */
1798         xfer->ptp_sts_word_post = progress;
1799
1800         xfer->timestamped = true;
1801 }
1802 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1803
1804 /**
1805  * spi_set_thread_rt - set the controller to pump at realtime priority
1806  * @ctlr: controller to boost priority of
1807  *
1808  * This can be called because the controller requested realtime priority
1809  * (by setting the ->rt value before calling spi_register_controller()) or
1810  * because a device on the bus said that its transfers needed realtime
1811  * priority.
1812  *
1813  * NOTE: at the moment if any device on a bus says it needs realtime then
1814  * the thread will be at realtime priority for all transfers on that
1815  * controller.  If this eventually becomes a problem we may see if we can
1816  * find a way to boost the priority only temporarily during relevant
1817  * transfers.
1818  */
1819 static void spi_set_thread_rt(struct spi_controller *ctlr)
1820 {
1821         dev_info(&ctlr->dev,
1822                 "will run message pump with realtime priority\n");
1823         sched_set_fifo(ctlr->kworker->task);
1824 }
1825
1826 static int spi_init_queue(struct spi_controller *ctlr)
1827 {
1828         ctlr->running = false;
1829         ctlr->busy = false;
1830
1831         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1832         if (IS_ERR(ctlr->kworker)) {
1833                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1834                 return PTR_ERR(ctlr->kworker);
1835         }
1836
1837         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1838
1839         /*
1840          * Controller config will indicate if this controller should run the
1841          * message pump with high (realtime) priority to reduce the transfer
1842          * latency on the bus by minimising the delay between a transfer
1843          * request and the scheduling of the message pump thread. Without this
1844          * setting the message pump thread will remain at default priority.
1845          */
1846         if (ctlr->rt)
1847                 spi_set_thread_rt(ctlr);
1848
1849         return 0;
1850 }
1851
1852 /**
1853  * spi_get_next_queued_message() - called by driver to check for queued
1854  * messages
1855  * @ctlr: the controller to check for queued messages
1856  *
1857  * If there are more messages in the queue, the next message is returned from
1858  * this call.
1859  *
1860  * Return: the next message in the queue, else NULL if the queue is empty.
1861  */
1862 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1863 {
1864         struct spi_message *next;
1865         unsigned long flags;
1866
1867         /* get a pointer to the next message, if any */
1868         spin_lock_irqsave(&ctlr->queue_lock, flags);
1869         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1870                                         queue);
1871         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1872
1873         return next;
1874 }
1875 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1876
1877 /**
1878  * spi_finalize_current_message() - the current message is complete
1879  * @ctlr: the controller to return the message to
1880  *
1881  * Called by the driver to notify the core that the message in the front of the
1882  * queue is complete and can be removed from the queue.
1883  */
1884 void spi_finalize_current_message(struct spi_controller *ctlr)
1885 {
1886         struct spi_transfer *xfer;
1887         struct spi_message *mesg;
1888         unsigned long flags;
1889         int ret;
1890
1891         spin_lock_irqsave(&ctlr->queue_lock, flags);
1892         mesg = ctlr->cur_msg;
1893         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1894
1895         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1896                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1897                         ptp_read_system_postts(xfer->ptp_sts);
1898                         xfer->ptp_sts_word_post = xfer->len;
1899                 }
1900         }
1901
1902         if (unlikely(ctlr->ptp_sts_supported))
1903                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1904                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1905
1906         spi_unmap_msg(ctlr, mesg);
1907
1908         /* In the prepare_messages callback the spi bus has the opportunity to
1909          * split a transfer to smaller chunks.
1910          * Release splited transfers here since spi_map_msg is done on the
1911          * splited transfers.
1912          */
1913         spi_res_release(ctlr, mesg);
1914
1915         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1916                 ret = ctlr->unprepare_message(ctlr, mesg);
1917                 if (ret) {
1918                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1919                                 ret);
1920                 }
1921         }
1922
1923         spin_lock_irqsave(&ctlr->queue_lock, flags);
1924         ctlr->cur_msg = NULL;
1925         ctlr->cur_msg_prepared = false;
1926         ctlr->fallback = false;
1927         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1928         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929
1930         trace_spi_message_done(mesg);
1931
1932         mesg->state = NULL;
1933         if (mesg->complete)
1934                 mesg->complete(mesg->context);
1935 }
1936 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1937
1938 static int spi_start_queue(struct spi_controller *ctlr)
1939 {
1940         unsigned long flags;
1941
1942         spin_lock_irqsave(&ctlr->queue_lock, flags);
1943
1944         if (ctlr->running || ctlr->busy) {
1945                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1946                 return -EBUSY;
1947         }
1948
1949         ctlr->running = true;
1950         ctlr->cur_msg = NULL;
1951         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1952
1953         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1954
1955         return 0;
1956 }
1957
1958 static int spi_stop_queue(struct spi_controller *ctlr)
1959 {
1960         unsigned long flags;
1961         unsigned limit = 500;
1962         int ret = 0;
1963
1964         spin_lock_irqsave(&ctlr->queue_lock, flags);
1965
1966         /*
1967          * This is a bit lame, but is optimized for the common execution path.
1968          * A wait_queue on the ctlr->busy could be used, but then the common
1969          * execution path (pump_messages) would be required to call wake_up or
1970          * friends on every SPI message. Do this instead.
1971          */
1972         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1973                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1974                 usleep_range(10000, 11000);
1975                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1976         }
1977
1978         if (!list_empty(&ctlr->queue) || ctlr->busy)
1979                 ret = -EBUSY;
1980         else
1981                 ctlr->running = false;
1982
1983         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1984
1985         if (ret) {
1986                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1987                 return ret;
1988         }
1989         return ret;
1990 }
1991
1992 static int spi_destroy_queue(struct spi_controller *ctlr)
1993 {
1994         int ret;
1995
1996         ret = spi_stop_queue(ctlr);
1997
1998         /*
1999          * kthread_flush_worker will block until all work is done.
2000          * If the reason that stop_queue timed out is that the work will never
2001          * finish, then it does no good to call flush/stop thread, so
2002          * return anyway.
2003          */
2004         if (ret) {
2005                 dev_err(&ctlr->dev, "problem destroying queue\n");
2006                 return ret;
2007         }
2008
2009         kthread_destroy_worker(ctlr->kworker);
2010
2011         return 0;
2012 }
2013
2014 static int __spi_queued_transfer(struct spi_device *spi,
2015                                  struct spi_message *msg,
2016                                  bool need_pump)
2017 {
2018         struct spi_controller *ctlr = spi->controller;
2019         unsigned long flags;
2020
2021         spin_lock_irqsave(&ctlr->queue_lock, flags);
2022
2023         if (!ctlr->running) {
2024                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2025                 return -ESHUTDOWN;
2026         }
2027         msg->actual_length = 0;
2028         msg->status = -EINPROGRESS;
2029
2030         list_add_tail(&msg->queue, &ctlr->queue);
2031         if (!ctlr->busy && need_pump)
2032                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2033
2034         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2035         return 0;
2036 }
2037
2038 /**
2039  * spi_queued_transfer - transfer function for queued transfers
2040  * @spi: spi device which is requesting transfer
2041  * @msg: spi message which is to handled is queued to driver queue
2042  *
2043  * Return: zero on success, else a negative error code.
2044  */
2045 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2046 {
2047         return __spi_queued_transfer(spi, msg, true);
2048 }
2049
2050 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2051 {
2052         int ret;
2053
2054         ctlr->transfer = spi_queued_transfer;
2055         if (!ctlr->transfer_one_message)
2056                 ctlr->transfer_one_message = spi_transfer_one_message;
2057
2058         /* Initialize and start queue */
2059         ret = spi_init_queue(ctlr);
2060         if (ret) {
2061                 dev_err(&ctlr->dev, "problem initializing queue\n");
2062                 goto err_init_queue;
2063         }
2064         ctlr->queued = true;
2065         ret = spi_start_queue(ctlr);
2066         if (ret) {
2067                 dev_err(&ctlr->dev, "problem starting queue\n");
2068                 goto err_start_queue;
2069         }
2070
2071         return 0;
2072
2073 err_start_queue:
2074         spi_destroy_queue(ctlr);
2075 err_init_queue:
2076         return ret;
2077 }
2078
2079 /**
2080  * spi_flush_queue - Send all pending messages in the queue from the callers'
2081  *                   context
2082  * @ctlr: controller to process queue for
2083  *
2084  * This should be used when one wants to ensure all pending messages have been
2085  * sent before doing something. Is used by the spi-mem code to make sure SPI
2086  * memory operations do not preempt regular SPI transfers that have been queued
2087  * before the spi-mem operation.
2088  */
2089 void spi_flush_queue(struct spi_controller *ctlr)
2090 {
2091         if (ctlr->transfer == spi_queued_transfer)
2092                 __spi_pump_messages(ctlr, false);
2093 }
2094
2095 /*-------------------------------------------------------------------------*/
2096
2097 #if defined(CONFIG_OF)
2098 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2099                            struct device_node *nc)
2100 {
2101         u32 value;
2102         int rc;
2103
2104         /* Mode (clock phase/polarity/etc.) */
2105         if (of_property_read_bool(nc, "spi-cpha"))
2106                 spi->mode |= SPI_CPHA;
2107         if (of_property_read_bool(nc, "spi-cpol"))
2108                 spi->mode |= SPI_CPOL;
2109         if (of_property_read_bool(nc, "spi-3wire"))
2110                 spi->mode |= SPI_3WIRE;
2111         if (of_property_read_bool(nc, "spi-lsb-first"))
2112                 spi->mode |= SPI_LSB_FIRST;
2113         if (of_property_read_bool(nc, "spi-cs-high"))
2114                 spi->mode |= SPI_CS_HIGH;
2115
2116         /* Device DUAL/QUAD mode */
2117         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2118                 switch (value) {
2119                 case 0:
2120                         spi->mode |= SPI_NO_TX;
2121                         break;
2122                 case 1:
2123                         break;
2124                 case 2:
2125                         spi->mode |= SPI_TX_DUAL;
2126                         break;
2127                 case 4:
2128                         spi->mode |= SPI_TX_QUAD;
2129                         break;
2130                 case 8:
2131                         spi->mode |= SPI_TX_OCTAL;
2132                         break;
2133                 default:
2134                         dev_warn(&ctlr->dev,
2135                                 "spi-tx-bus-width %d not supported\n",
2136                                 value);
2137                         break;
2138                 }
2139         }
2140
2141         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2142                 switch (value) {
2143                 case 0:
2144                         spi->mode |= SPI_NO_RX;
2145                         break;
2146                 case 1:
2147                         break;
2148                 case 2:
2149                         spi->mode |= SPI_RX_DUAL;
2150                         break;
2151                 case 4:
2152                         spi->mode |= SPI_RX_QUAD;
2153                         break;
2154                 case 8:
2155                         spi->mode |= SPI_RX_OCTAL;
2156                         break;
2157                 default:
2158                         dev_warn(&ctlr->dev,
2159                                 "spi-rx-bus-width %d not supported\n",
2160                                 value);
2161                         break;
2162                 }
2163         }
2164
2165         if (spi_controller_is_slave(ctlr)) {
2166                 if (!of_node_name_eq(nc, "slave")) {
2167                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2168                                 nc);
2169                         return -EINVAL;
2170                 }
2171                 return 0;
2172         }
2173
2174         /* Device address */
2175         rc = of_property_read_u32(nc, "reg", &value);
2176         if (rc) {
2177                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2178                         nc, rc);
2179                 return rc;
2180         }
2181         spi->chip_select = value;
2182
2183         /* Device speed */
2184         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2185                 spi->max_speed_hz = value;
2186
2187         return 0;
2188 }
2189
2190 static struct spi_device *
2191 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2192 {
2193         struct spi_device *spi;
2194         int rc;
2195
2196         /* Alloc an spi_device */
2197         spi = spi_alloc_device(ctlr);
2198         if (!spi) {
2199                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2200                 rc = -ENOMEM;
2201                 goto err_out;
2202         }
2203
2204         /* Select device driver */
2205         rc = of_modalias_node(nc, spi->modalias,
2206                                 sizeof(spi->modalias));
2207         if (rc < 0) {
2208                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2209                 goto err_out;
2210         }
2211
2212         rc = of_spi_parse_dt(ctlr, spi, nc);
2213         if (rc)
2214                 goto err_out;
2215
2216         /* Store a pointer to the node in the device structure */
2217         of_node_get(nc);
2218         spi->dev.of_node = nc;
2219         spi->dev.fwnode = of_fwnode_handle(nc);
2220
2221         /* Register the new device */
2222         rc = spi_add_device(spi);
2223         if (rc) {
2224                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2225                 goto err_of_node_put;
2226         }
2227
2228         return spi;
2229
2230 err_of_node_put:
2231         of_node_put(nc);
2232 err_out:
2233         spi_dev_put(spi);
2234         return ERR_PTR(rc);
2235 }
2236
2237 /**
2238  * of_register_spi_devices() - Register child devices onto the SPI bus
2239  * @ctlr:       Pointer to spi_controller device
2240  *
2241  * Registers an spi_device for each child node of controller node which
2242  * represents a valid SPI slave.
2243  */
2244 static void of_register_spi_devices(struct spi_controller *ctlr)
2245 {
2246         struct spi_device *spi;
2247         struct device_node *nc;
2248
2249         if (!ctlr->dev.of_node)
2250                 return;
2251
2252         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2253                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2254                         continue;
2255                 spi = of_register_spi_device(ctlr, nc);
2256                 if (IS_ERR(spi)) {
2257                         dev_warn(&ctlr->dev,
2258                                  "Failed to create SPI device for %pOF\n", nc);
2259                         of_node_clear_flag(nc, OF_POPULATED);
2260                 }
2261         }
2262 }
2263 #else
2264 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2265 #endif
2266
2267 /**
2268  * spi_new_ancillary_device() - Register ancillary SPI device
2269  * @spi:         Pointer to the main SPI device registering the ancillary device
2270  * @chip_select: Chip Select of the ancillary device
2271  *
2272  * Register an ancillary SPI device; for example some chips have a chip-select
2273  * for normal device usage and another one for setup/firmware upload.
2274  *
2275  * This may only be called from main SPI device's probe routine.
2276  *
2277  * Return: 0 on success; negative errno on failure
2278  */
2279 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2280                                              u8 chip_select)
2281 {
2282         struct spi_device *ancillary;
2283         int rc = 0;
2284
2285         /* Alloc an spi_device */
2286         ancillary = spi_alloc_device(spi->controller);
2287         if (!ancillary) {
2288                 rc = -ENOMEM;
2289                 goto err_out;
2290         }
2291
2292         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2293
2294         /* Use provided chip-select for ancillary device */
2295         ancillary->chip_select = chip_select;
2296
2297         /* Take over SPI mode/speed from SPI main device */
2298         ancillary->max_speed_hz = spi->max_speed_hz;
2299         ancillary->mode = spi->mode;
2300
2301         /* Register the new device */
2302         rc = spi_add_device_locked(ancillary);
2303         if (rc) {
2304                 dev_err(&spi->dev, "failed to register ancillary device\n");
2305                 goto err_out;
2306         }
2307
2308         return ancillary;
2309
2310 err_out:
2311         spi_dev_put(ancillary);
2312         return ERR_PTR(rc);
2313 }
2314 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2315
2316 #ifdef CONFIG_ACPI
2317 struct acpi_spi_lookup {
2318         struct spi_controller   *ctlr;
2319         u32                     max_speed_hz;
2320         u32                     mode;
2321         int                     irq;
2322         u8                      bits_per_word;
2323         u8                      chip_select;
2324 };
2325
2326 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2327                                             struct acpi_spi_lookup *lookup)
2328 {
2329         const union acpi_object *obj;
2330
2331         if (!x86_apple_machine)
2332                 return;
2333
2334         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2335             && obj->buffer.length >= 4)
2336                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2337
2338         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2339             && obj->buffer.length == 8)
2340                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2341
2342         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2343             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2344                 lookup->mode |= SPI_LSB_FIRST;
2345
2346         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2347             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2348                 lookup->mode |= SPI_CPOL;
2349
2350         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2351             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2352                 lookup->mode |= SPI_CPHA;
2353 }
2354
2355 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2356 {
2357         struct acpi_spi_lookup *lookup = data;
2358         struct spi_controller *ctlr = lookup->ctlr;
2359
2360         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2361                 struct acpi_resource_spi_serialbus *sb;
2362                 acpi_handle parent_handle;
2363                 acpi_status status;
2364
2365                 sb = &ares->data.spi_serial_bus;
2366                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2367
2368                         status = acpi_get_handle(NULL,
2369                                                  sb->resource_source.string_ptr,
2370                                                  &parent_handle);
2371
2372                         if (ACPI_FAILURE(status) ||
2373                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2374                                 return -ENODEV;
2375
2376                         /*
2377                          * ACPI DeviceSelection numbering is handled by the
2378                          * host controller driver in Windows and can vary
2379                          * from driver to driver. In Linux we always expect
2380                          * 0 .. max - 1 so we need to ask the driver to
2381                          * translate between the two schemes.
2382                          */
2383                         if (ctlr->fw_translate_cs) {
2384                                 int cs = ctlr->fw_translate_cs(ctlr,
2385                                                 sb->device_selection);
2386                                 if (cs < 0)
2387                                         return cs;
2388                                 lookup->chip_select = cs;
2389                         } else {
2390                                 lookup->chip_select = sb->device_selection;
2391                         }
2392
2393                         lookup->max_speed_hz = sb->connection_speed;
2394                         lookup->bits_per_word = sb->data_bit_length;
2395
2396                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2397                                 lookup->mode |= SPI_CPHA;
2398                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2399                                 lookup->mode |= SPI_CPOL;
2400                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2401                                 lookup->mode |= SPI_CS_HIGH;
2402                 }
2403         } else if (lookup->irq < 0) {
2404                 struct resource r;
2405
2406                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2407                         lookup->irq = r.start;
2408         }
2409
2410         /* Always tell the ACPI core to skip this resource */
2411         return 1;
2412 }
2413
2414 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2415                                             struct acpi_device *adev)
2416 {
2417         acpi_handle parent_handle = NULL;
2418         struct list_head resource_list;
2419         struct acpi_spi_lookup lookup = {};
2420         struct spi_device *spi;
2421         int ret;
2422
2423         if (acpi_bus_get_status(adev) || !adev->status.present ||
2424             acpi_device_enumerated(adev))
2425                 return AE_OK;
2426
2427         lookup.ctlr             = ctlr;
2428         lookup.irq              = -1;
2429
2430         INIT_LIST_HEAD(&resource_list);
2431         ret = acpi_dev_get_resources(adev, &resource_list,
2432                                      acpi_spi_add_resource, &lookup);
2433         acpi_dev_free_resource_list(&resource_list);
2434
2435         if (ret < 0)
2436                 /* found SPI in _CRS but it points to another controller */
2437                 return AE_OK;
2438
2439         if (!lookup.max_speed_hz &&
2440             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2441             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2442                 /* Apple does not use _CRS but nested devices for SPI slaves */
2443                 acpi_spi_parse_apple_properties(adev, &lookup);
2444         }
2445
2446         if (!lookup.max_speed_hz)
2447                 return AE_OK;
2448
2449         spi = spi_alloc_device(ctlr);
2450         if (!spi) {
2451                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2452                         dev_name(&adev->dev));
2453                 return AE_NO_MEMORY;
2454         }
2455
2456
2457         ACPI_COMPANION_SET(&spi->dev, adev);
2458         spi->max_speed_hz       = lookup.max_speed_hz;
2459         spi->mode               |= lookup.mode;
2460         spi->irq                = lookup.irq;
2461         spi->bits_per_word      = lookup.bits_per_word;
2462         spi->chip_select        = lookup.chip_select;
2463
2464         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2465                           sizeof(spi->modalias));
2466
2467         if (spi->irq < 0)
2468                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2469
2470         acpi_device_set_enumerated(adev);
2471
2472         adev->power.flags.ignore_parent = true;
2473         if (spi_add_device(spi)) {
2474                 adev->power.flags.ignore_parent = false;
2475                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2476                         dev_name(&adev->dev));
2477                 spi_dev_put(spi);
2478         }
2479
2480         return AE_OK;
2481 }
2482
2483 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2484                                        void *data, void **return_value)
2485 {
2486         struct spi_controller *ctlr = data;
2487         struct acpi_device *adev;
2488
2489         if (acpi_bus_get_device(handle, &adev))
2490                 return AE_OK;
2491
2492         return acpi_register_spi_device(ctlr, adev);
2493 }
2494
2495 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2496
2497 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2498 {
2499         acpi_status status;
2500         acpi_handle handle;
2501
2502         handle = ACPI_HANDLE(ctlr->dev.parent);
2503         if (!handle)
2504                 return;
2505
2506         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2507                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2508                                      acpi_spi_add_device, NULL, ctlr, NULL);
2509         if (ACPI_FAILURE(status))
2510                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2511 }
2512 #else
2513 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2514 #endif /* CONFIG_ACPI */
2515
2516 static void spi_controller_release(struct device *dev)
2517 {
2518         struct spi_controller *ctlr;
2519
2520         ctlr = container_of(dev, struct spi_controller, dev);
2521         kfree(ctlr);
2522 }
2523
2524 static struct class spi_master_class = {
2525         .name           = "spi_master",
2526         .owner          = THIS_MODULE,
2527         .dev_release    = spi_controller_release,
2528         .dev_groups     = spi_master_groups,
2529 };
2530
2531 #ifdef CONFIG_SPI_SLAVE
2532 /**
2533  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2534  *                   controller
2535  * @spi: device used for the current transfer
2536  */
2537 int spi_slave_abort(struct spi_device *spi)
2538 {
2539         struct spi_controller *ctlr = spi->controller;
2540
2541         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2542                 return ctlr->slave_abort(ctlr);
2543
2544         return -ENOTSUPP;
2545 }
2546 EXPORT_SYMBOL_GPL(spi_slave_abort);
2547
2548 static int match_true(struct device *dev, void *data)
2549 {
2550         return 1;
2551 }
2552
2553 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2554                           char *buf)
2555 {
2556         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2557                                                    dev);
2558         struct device *child;
2559
2560         child = device_find_child(&ctlr->dev, NULL, match_true);
2561         return sprintf(buf, "%s\n",
2562                        child ? to_spi_device(child)->modalias : NULL);
2563 }
2564
2565 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2566                            const char *buf, size_t count)
2567 {
2568         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2569                                                    dev);
2570         struct spi_device *spi;
2571         struct device *child;
2572         char name[32];
2573         int rc;
2574
2575         rc = sscanf(buf, "%31s", name);
2576         if (rc != 1 || !name[0])
2577                 return -EINVAL;
2578
2579         child = device_find_child(&ctlr->dev, NULL, match_true);
2580         if (child) {
2581                 /* Remove registered slave */
2582                 device_unregister(child);
2583                 put_device(child);
2584         }
2585
2586         if (strcmp(name, "(null)")) {
2587                 /* Register new slave */
2588                 spi = spi_alloc_device(ctlr);
2589                 if (!spi)
2590                         return -ENOMEM;
2591
2592                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2593
2594                 rc = spi_add_device(spi);
2595                 if (rc) {
2596                         spi_dev_put(spi);
2597                         return rc;
2598                 }
2599         }
2600
2601         return count;
2602 }
2603
2604 static DEVICE_ATTR_RW(slave);
2605
2606 static struct attribute *spi_slave_attrs[] = {
2607         &dev_attr_slave.attr,
2608         NULL,
2609 };
2610
2611 static const struct attribute_group spi_slave_group = {
2612         .attrs = spi_slave_attrs,
2613 };
2614
2615 static const struct attribute_group *spi_slave_groups[] = {
2616         &spi_controller_statistics_group,
2617         &spi_slave_group,
2618         NULL,
2619 };
2620
2621 static struct class spi_slave_class = {
2622         .name           = "spi_slave",
2623         .owner          = THIS_MODULE,
2624         .dev_release    = spi_controller_release,
2625         .dev_groups     = spi_slave_groups,
2626 };
2627 #else
2628 extern struct class spi_slave_class;    /* dummy */
2629 #endif
2630
2631 /**
2632  * __spi_alloc_controller - allocate an SPI master or slave controller
2633  * @dev: the controller, possibly using the platform_bus
2634  * @size: how much zeroed driver-private data to allocate; the pointer to this
2635  *      memory is in the driver_data field of the returned device, accessible
2636  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2637  *      drivers granting DMA access to portions of their private data need to
2638  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2639  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2640  *      slave (true) controller
2641  * Context: can sleep
2642  *
2643  * This call is used only by SPI controller drivers, which are the
2644  * only ones directly touching chip registers.  It's how they allocate
2645  * an spi_controller structure, prior to calling spi_register_controller().
2646  *
2647  * This must be called from context that can sleep.
2648  *
2649  * The caller is responsible for assigning the bus number and initializing the
2650  * controller's methods before calling spi_register_controller(); and (after
2651  * errors adding the device) calling spi_controller_put() to prevent a memory
2652  * leak.
2653  *
2654  * Return: the SPI controller structure on success, else NULL.
2655  */
2656 struct spi_controller *__spi_alloc_controller(struct device *dev,
2657                                               unsigned int size, bool slave)
2658 {
2659         struct spi_controller   *ctlr;
2660         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2661
2662         if (!dev)
2663                 return NULL;
2664
2665         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2666         if (!ctlr)
2667                 return NULL;
2668
2669         device_initialize(&ctlr->dev);
2670         INIT_LIST_HEAD(&ctlr->queue);
2671         spin_lock_init(&ctlr->queue_lock);
2672         spin_lock_init(&ctlr->bus_lock_spinlock);
2673         mutex_init(&ctlr->bus_lock_mutex);
2674         mutex_init(&ctlr->io_mutex);
2675         mutex_init(&ctlr->add_lock);
2676         ctlr->bus_num = -1;
2677         ctlr->num_chipselect = 1;
2678         ctlr->slave = slave;
2679         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2680                 ctlr->dev.class = &spi_slave_class;
2681         else
2682                 ctlr->dev.class = &spi_master_class;
2683         ctlr->dev.parent = dev;
2684         pm_suspend_ignore_children(&ctlr->dev, true);
2685         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2686
2687         return ctlr;
2688 }
2689 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2690
2691 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2692 {
2693         spi_controller_put(*(struct spi_controller **)ctlr);
2694 }
2695
2696 /**
2697  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2698  * @dev: physical device of SPI controller
2699  * @size: how much zeroed driver-private data to allocate
2700  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2701  * Context: can sleep
2702  *
2703  * Allocate an SPI controller and automatically release a reference on it
2704  * when @dev is unbound from its driver.  Drivers are thus relieved from
2705  * having to call spi_controller_put().
2706  *
2707  * The arguments to this function are identical to __spi_alloc_controller().
2708  *
2709  * Return: the SPI controller structure on success, else NULL.
2710  */
2711 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2712                                                    unsigned int size,
2713                                                    bool slave)
2714 {
2715         struct spi_controller **ptr, *ctlr;
2716
2717         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2718                            GFP_KERNEL);
2719         if (!ptr)
2720                 return NULL;
2721
2722         ctlr = __spi_alloc_controller(dev, size, slave);
2723         if (ctlr) {
2724                 ctlr->devm_allocated = true;
2725                 *ptr = ctlr;
2726                 devres_add(dev, ptr);
2727         } else {
2728                 devres_free(ptr);
2729         }
2730
2731         return ctlr;
2732 }
2733 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2734
2735 #ifdef CONFIG_OF
2736 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2737 {
2738         int nb, i, *cs;
2739         struct device_node *np = ctlr->dev.of_node;
2740
2741         if (!np)
2742                 return 0;
2743
2744         nb = of_gpio_named_count(np, "cs-gpios");
2745         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2746
2747         /* Return error only for an incorrectly formed cs-gpios property */
2748         if (nb == 0 || nb == -ENOENT)
2749                 return 0;
2750         else if (nb < 0)
2751                 return nb;
2752
2753         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2754                           GFP_KERNEL);
2755         ctlr->cs_gpios = cs;
2756
2757         if (!ctlr->cs_gpios)
2758                 return -ENOMEM;
2759
2760         for (i = 0; i < ctlr->num_chipselect; i++)
2761                 cs[i] = -ENOENT;
2762
2763         for (i = 0; i < nb; i++)
2764                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2765
2766         return 0;
2767 }
2768 #else
2769 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2770 {
2771         return 0;
2772 }
2773 #endif
2774
2775 /**
2776  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2777  * @ctlr: The SPI master to grab GPIO descriptors for
2778  */
2779 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2780 {
2781         int nb, i;
2782         struct gpio_desc **cs;
2783         struct device *dev = &ctlr->dev;
2784         unsigned long native_cs_mask = 0;
2785         unsigned int num_cs_gpios = 0;
2786
2787         nb = gpiod_count(dev, "cs");
2788         if (nb < 0) {
2789                 /* No GPIOs at all is fine, else return the error */
2790                 if (nb == -ENOENT)
2791                         return 0;
2792                 return nb;
2793         }
2794
2795         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2796
2797         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2798                           GFP_KERNEL);
2799         if (!cs)
2800                 return -ENOMEM;
2801         ctlr->cs_gpiods = cs;
2802
2803         for (i = 0; i < nb; i++) {
2804                 /*
2805                  * Most chipselects are active low, the inverted
2806                  * semantics are handled by special quirks in gpiolib,
2807                  * so initializing them GPIOD_OUT_LOW here means
2808                  * "unasserted", in most cases this will drive the physical
2809                  * line high.
2810                  */
2811                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2812                                                       GPIOD_OUT_LOW);
2813                 if (IS_ERR(cs[i]))
2814                         return PTR_ERR(cs[i]);
2815
2816                 if (cs[i]) {
2817                         /*
2818                          * If we find a CS GPIO, name it after the device and
2819                          * chip select line.
2820                          */
2821                         char *gpioname;
2822
2823                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2824                                                   dev_name(dev), i);
2825                         if (!gpioname)
2826                                 return -ENOMEM;
2827                         gpiod_set_consumer_name(cs[i], gpioname);
2828                         num_cs_gpios++;
2829                         continue;
2830                 }
2831
2832                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2833                         dev_err(dev, "Invalid native chip select %d\n", i);
2834                         return -EINVAL;
2835                 }
2836                 native_cs_mask |= BIT(i);
2837         }
2838
2839         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2840
2841         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2842             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2843                 dev_err(dev, "No unused native chip select available\n");
2844                 return -EINVAL;
2845         }
2846
2847         return 0;
2848 }
2849
2850 static int spi_controller_check_ops(struct spi_controller *ctlr)
2851 {
2852         /*
2853          * The controller may implement only the high-level SPI-memory like
2854          * operations if it does not support regular SPI transfers, and this is
2855          * valid use case.
2856          * If ->mem_ops is NULL, we request that at least one of the
2857          * ->transfer_xxx() method be implemented.
2858          */
2859         if (ctlr->mem_ops) {
2860                 if (!ctlr->mem_ops->exec_op)
2861                         return -EINVAL;
2862         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2863                    !ctlr->transfer_one_message) {
2864                 return -EINVAL;
2865         }
2866
2867         return 0;
2868 }
2869
2870 /**
2871  * spi_register_controller - register SPI master or slave controller
2872  * @ctlr: initialized master, originally from spi_alloc_master() or
2873  *      spi_alloc_slave()
2874  * Context: can sleep
2875  *
2876  * SPI controllers connect to their drivers using some non-SPI bus,
2877  * such as the platform bus.  The final stage of probe() in that code
2878  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2879  *
2880  * SPI controllers use board specific (often SOC specific) bus numbers,
2881  * and board-specific addressing for SPI devices combines those numbers
2882  * with chip select numbers.  Since SPI does not directly support dynamic
2883  * device identification, boards need configuration tables telling which
2884  * chip is at which address.
2885  *
2886  * This must be called from context that can sleep.  It returns zero on
2887  * success, else a negative error code (dropping the controller's refcount).
2888  * After a successful return, the caller is responsible for calling
2889  * spi_unregister_controller().
2890  *
2891  * Return: zero on success, else a negative error code.
2892  */
2893 int spi_register_controller(struct spi_controller *ctlr)
2894 {
2895         struct device           *dev = ctlr->dev.parent;
2896         struct boardinfo        *bi;
2897         int                     status;
2898         int                     id, first_dynamic;
2899
2900         if (!dev)
2901                 return -ENODEV;
2902
2903         /*
2904          * Make sure all necessary hooks are implemented before registering
2905          * the SPI controller.
2906          */
2907         status = spi_controller_check_ops(ctlr);
2908         if (status)
2909                 return status;
2910
2911         if (ctlr->bus_num >= 0) {
2912                 /* devices with a fixed bus num must check-in with the num */
2913                 mutex_lock(&board_lock);
2914                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2915                         ctlr->bus_num + 1, GFP_KERNEL);
2916                 mutex_unlock(&board_lock);
2917                 if (WARN(id < 0, "couldn't get idr"))
2918                         return id == -ENOSPC ? -EBUSY : id;
2919                 ctlr->bus_num = id;
2920         } else if (ctlr->dev.of_node) {
2921                 /* allocate dynamic bus number using Linux idr */
2922                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2923                 if (id >= 0) {
2924                         ctlr->bus_num = id;
2925                         mutex_lock(&board_lock);
2926                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2927                                        ctlr->bus_num + 1, GFP_KERNEL);
2928                         mutex_unlock(&board_lock);
2929                         if (WARN(id < 0, "couldn't get idr"))
2930                                 return id == -ENOSPC ? -EBUSY : id;
2931                 }
2932         }
2933         if (ctlr->bus_num < 0) {
2934                 first_dynamic = of_alias_get_highest_id("spi");
2935                 if (first_dynamic < 0)
2936                         first_dynamic = 0;
2937                 else
2938                         first_dynamic++;
2939
2940                 mutex_lock(&board_lock);
2941                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2942                                0, GFP_KERNEL);
2943                 mutex_unlock(&board_lock);
2944                 if (WARN(id < 0, "couldn't get idr"))
2945                         return id;
2946                 ctlr->bus_num = id;
2947         }
2948         ctlr->bus_lock_flag = 0;
2949         init_completion(&ctlr->xfer_completion);
2950         if (!ctlr->max_dma_len)
2951                 ctlr->max_dma_len = INT_MAX;
2952
2953         /* register the device, then userspace will see it.
2954          * registration fails if the bus ID is in use.
2955          */
2956         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2957
2958         if (!spi_controller_is_slave(ctlr)) {
2959                 if (ctlr->use_gpio_descriptors) {
2960                         status = spi_get_gpio_descs(ctlr);
2961                         if (status)
2962                                 goto free_bus_id;
2963                         /*
2964                          * A controller using GPIO descriptors always
2965                          * supports SPI_CS_HIGH if need be.
2966                          */
2967                         ctlr->mode_bits |= SPI_CS_HIGH;
2968                 } else {
2969                         /* Legacy code path for GPIOs from DT */
2970                         status = of_spi_get_gpio_numbers(ctlr);
2971                         if (status)
2972                                 goto free_bus_id;
2973                 }
2974         }
2975
2976         /*
2977          * Even if it's just one always-selected device, there must
2978          * be at least one chipselect.
2979          */
2980         if (!ctlr->num_chipselect) {
2981                 status = -EINVAL;
2982                 goto free_bus_id;
2983         }
2984
2985         status = device_add(&ctlr->dev);
2986         if (status < 0)
2987                 goto free_bus_id;
2988         dev_dbg(dev, "registered %s %s\n",
2989                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2990                         dev_name(&ctlr->dev));
2991
2992         /*
2993          * If we're using a queued driver, start the queue. Note that we don't
2994          * need the queueing logic if the driver is only supporting high-level
2995          * memory operations.
2996          */
2997         if (ctlr->transfer) {
2998                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2999         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3000                 status = spi_controller_initialize_queue(ctlr);
3001                 if (status) {
3002                         device_del(&ctlr->dev);
3003                         goto free_bus_id;
3004                 }
3005         }
3006         /* add statistics */
3007         spin_lock_init(&ctlr->statistics.lock);
3008
3009         mutex_lock(&board_lock);
3010         list_add_tail(&ctlr->list, &spi_controller_list);
3011         list_for_each_entry(bi, &board_list, list)
3012                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3013         mutex_unlock(&board_lock);
3014
3015         /* Register devices from the device tree and ACPI */
3016         of_register_spi_devices(ctlr);
3017         acpi_register_spi_devices(ctlr);
3018         return status;
3019
3020 free_bus_id:
3021         mutex_lock(&board_lock);
3022         idr_remove(&spi_master_idr, ctlr->bus_num);
3023         mutex_unlock(&board_lock);
3024         return status;
3025 }
3026 EXPORT_SYMBOL_GPL(spi_register_controller);
3027
3028 static void devm_spi_unregister(void *ctlr)
3029 {
3030         spi_unregister_controller(ctlr);
3031 }
3032
3033 /**
3034  * devm_spi_register_controller - register managed SPI master or slave
3035  *      controller
3036  * @dev:    device managing SPI controller
3037  * @ctlr: initialized controller, originally from spi_alloc_master() or
3038  *      spi_alloc_slave()
3039  * Context: can sleep
3040  *
3041  * Register a SPI device as with spi_register_controller() which will
3042  * automatically be unregistered and freed.
3043  *
3044  * Return: zero on success, else a negative error code.
3045  */
3046 int devm_spi_register_controller(struct device *dev,
3047                                  struct spi_controller *ctlr)
3048 {
3049         int ret;
3050
3051         ret = spi_register_controller(ctlr);
3052         if (ret)
3053                 return ret;
3054
3055         return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3056 }
3057 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3058
3059 static int __unregister(struct device *dev, void *null)
3060 {
3061         spi_unregister_device(to_spi_device(dev));
3062         return 0;
3063 }
3064
3065 /**
3066  * spi_unregister_controller - unregister SPI master or slave controller
3067  * @ctlr: the controller being unregistered
3068  * Context: can sleep
3069  *
3070  * This call is used only by SPI controller drivers, which are the
3071  * only ones directly touching chip registers.
3072  *
3073  * This must be called from context that can sleep.
3074  *
3075  * Note that this function also drops a reference to the controller.
3076  */
3077 void spi_unregister_controller(struct spi_controller *ctlr)
3078 {
3079         struct spi_controller *found;
3080         int id = ctlr->bus_num;
3081
3082         /* Prevent addition of new devices, unregister existing ones */
3083         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3084                 mutex_lock(&ctlr->add_lock);
3085
3086         device_for_each_child(&ctlr->dev, NULL, __unregister);
3087
3088         /* First make sure that this controller was ever added */
3089         mutex_lock(&board_lock);
3090         found = idr_find(&spi_master_idr, id);
3091         mutex_unlock(&board_lock);
3092         if (ctlr->queued) {
3093                 if (spi_destroy_queue(ctlr))
3094                         dev_err(&ctlr->dev, "queue remove failed\n");
3095         }
3096         mutex_lock(&board_lock);
3097         list_del(&ctlr->list);
3098         mutex_unlock(&board_lock);
3099
3100         device_del(&ctlr->dev);
3101
3102         /* free bus id */
3103         mutex_lock(&board_lock);
3104         if (found == ctlr)
3105                 idr_remove(&spi_master_idr, id);
3106         mutex_unlock(&board_lock);
3107
3108         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3109                 mutex_unlock(&ctlr->add_lock);
3110
3111         /* Release the last reference on the controller if its driver
3112          * has not yet been converted to devm_spi_alloc_master/slave().
3113          */
3114         if (!ctlr->devm_allocated)
3115                 put_device(&ctlr->dev);
3116 }
3117 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3118
3119 int spi_controller_suspend(struct spi_controller *ctlr)
3120 {
3121         int ret;
3122
3123         /* Basically no-ops for non-queued controllers */
3124         if (!ctlr->queued)
3125                 return 0;
3126
3127         ret = spi_stop_queue(ctlr);
3128         if (ret)
3129                 dev_err(&ctlr->dev, "queue stop failed\n");
3130
3131         return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3134
3135 int spi_controller_resume(struct spi_controller *ctlr)
3136 {
3137         int ret;
3138
3139         if (!ctlr->queued)
3140                 return 0;
3141
3142         ret = spi_start_queue(ctlr);
3143         if (ret)
3144                 dev_err(&ctlr->dev, "queue restart failed\n");
3145
3146         return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(spi_controller_resume);
3149
3150 /*-------------------------------------------------------------------------*/
3151
3152 /* Core methods for spi_message alterations */
3153
3154 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3155                                             struct spi_message *msg,
3156                                             void *res)
3157 {
3158         struct spi_replaced_transfers *rxfer = res;
3159         size_t i;
3160
3161         /* call extra callback if requested */
3162         if (rxfer->release)
3163                 rxfer->release(ctlr, msg, res);
3164
3165         /* insert replaced transfers back into the message */
3166         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3167
3168         /* remove the formerly inserted entries */
3169         for (i = 0; i < rxfer->inserted; i++)
3170                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3171 }
3172
3173 /**
3174  * spi_replace_transfers - replace transfers with several transfers
3175  *                         and register change with spi_message.resources
3176  * @msg:           the spi_message we work upon
3177  * @xfer_first:    the first spi_transfer we want to replace
3178  * @remove:        number of transfers to remove
3179  * @insert:        the number of transfers we want to insert instead
3180  * @release:       extra release code necessary in some circumstances
3181  * @extradatasize: extra data to allocate (with alignment guarantees
3182  *                 of struct @spi_transfer)
3183  * @gfp:           gfp flags
3184  *
3185  * Returns: pointer to @spi_replaced_transfers,
3186  *          PTR_ERR(...) in case of errors.
3187  */
3188 static struct spi_replaced_transfers *spi_replace_transfers(
3189         struct spi_message *msg,
3190         struct spi_transfer *xfer_first,
3191         size_t remove,
3192         size_t insert,
3193         spi_replaced_release_t release,
3194         size_t extradatasize,
3195         gfp_t gfp)
3196 {
3197         struct spi_replaced_transfers *rxfer;
3198         struct spi_transfer *xfer;
3199         size_t i;
3200
3201         /* allocate the structure using spi_res */
3202         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3203                               struct_size(rxfer, inserted_transfers, insert)
3204                               + extradatasize,
3205                               gfp);
3206         if (!rxfer)
3207                 return ERR_PTR(-ENOMEM);
3208
3209         /* the release code to invoke before running the generic release */
3210         rxfer->release = release;
3211
3212         /* assign extradata */
3213         if (extradatasize)
3214                 rxfer->extradata =
3215                         &rxfer->inserted_transfers[insert];
3216
3217         /* init the replaced_transfers list */
3218         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3219
3220         /* assign the list_entry after which we should reinsert
3221          * the @replaced_transfers - it may be spi_message.messages!
3222          */
3223         rxfer->replaced_after = xfer_first->transfer_list.prev;
3224
3225         /* remove the requested number of transfers */
3226         for (i = 0; i < remove; i++) {
3227                 /* if the entry after replaced_after it is msg->transfers
3228                  * then we have been requested to remove more transfers
3229                  * than are in the list
3230                  */
3231                 if (rxfer->replaced_after->next == &msg->transfers) {
3232                         dev_err(&msg->spi->dev,
3233                                 "requested to remove more spi_transfers than are available\n");
3234                         /* insert replaced transfers back into the message */
3235                         list_splice(&rxfer->replaced_transfers,
3236                                     rxfer->replaced_after);
3237
3238                         /* free the spi_replace_transfer structure */
3239                         spi_res_free(rxfer);
3240
3241                         /* and return with an error */
3242                         return ERR_PTR(-EINVAL);
3243                 }
3244
3245                 /* remove the entry after replaced_after from list of
3246                  * transfers and add it to list of replaced_transfers
3247                  */
3248                 list_move_tail(rxfer->replaced_after->next,
3249                                &rxfer->replaced_transfers);
3250         }
3251
3252         /* create copy of the given xfer with identical settings
3253          * based on the first transfer to get removed
3254          */
3255         for (i = 0; i < insert; i++) {
3256                 /* we need to run in reverse order */
3257                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3258
3259                 /* copy all spi_transfer data */
3260                 memcpy(xfer, xfer_first, sizeof(*xfer));
3261
3262                 /* add to list */
3263                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3264
3265                 /* clear cs_change and delay for all but the last */
3266                 if (i) {
3267                         xfer->cs_change = false;
3268                         xfer->delay.value = 0;
3269                 }
3270         }
3271
3272         /* set up inserted */
3273         rxfer->inserted = insert;
3274
3275         /* and register it with spi_res/spi_message */
3276         spi_res_add(msg, rxfer);
3277
3278         return rxfer;
3279 }
3280
3281 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3282                                         struct spi_message *msg,
3283                                         struct spi_transfer **xferp,
3284                                         size_t maxsize,
3285                                         gfp_t gfp)
3286 {
3287         struct spi_transfer *xfer = *xferp, *xfers;
3288         struct spi_replaced_transfers *srt;
3289         size_t offset;
3290         size_t count, i;
3291
3292         /* calculate how many we have to replace */
3293         count = DIV_ROUND_UP(xfer->len, maxsize);
3294
3295         /* create replacement */
3296         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3297         if (IS_ERR(srt))
3298                 return PTR_ERR(srt);
3299         xfers = srt->inserted_transfers;
3300
3301         /* now handle each of those newly inserted spi_transfers
3302          * note that the replacements spi_transfers all are preset
3303          * to the same values as *xferp, so tx_buf, rx_buf and len
3304          * are all identical (as well as most others)
3305          * so we just have to fix up len and the pointers.
3306          *
3307          * this also includes support for the depreciated
3308          * spi_message.is_dma_mapped interface
3309          */
3310
3311         /* the first transfer just needs the length modified, so we
3312          * run it outside the loop
3313          */
3314         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3315
3316         /* all the others need rx_buf/tx_buf also set */
3317         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3318                 /* update rx_buf, tx_buf and dma */
3319                 if (xfers[i].rx_buf)
3320                         xfers[i].rx_buf += offset;
3321                 if (xfers[i].rx_dma)
3322                         xfers[i].rx_dma += offset;
3323                 if (xfers[i].tx_buf)
3324                         xfers[i].tx_buf += offset;
3325                 if (xfers[i].tx_dma)
3326                         xfers[i].tx_dma += offset;
3327
3328                 /* update length */
3329                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3330         }
3331
3332         /* we set up xferp to the last entry we have inserted,
3333          * so that we skip those already split transfers
3334          */
3335         *xferp = &xfers[count - 1];
3336
3337         /* increment statistics counters */
3338         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3339                                        transfers_split_maxsize);
3340         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3341                                        transfers_split_maxsize);
3342
3343         return 0;
3344 }
3345
3346 /**
3347  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3348  *                               when an individual transfer exceeds a
3349  *                               certain size
3350  * @ctlr:    the @spi_controller for this transfer
3351  * @msg:   the @spi_message to transform
3352  * @maxsize:  the maximum when to apply this
3353  * @gfp: GFP allocation flags
3354  *
3355  * Return: status of transformation
3356  */
3357 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3358                                 struct spi_message *msg,
3359                                 size_t maxsize,
3360                                 gfp_t gfp)
3361 {
3362         struct spi_transfer *xfer;
3363         int ret;
3364
3365         /* iterate over the transfer_list,
3366          * but note that xfer is advanced to the last transfer inserted
3367          * to avoid checking sizes again unnecessarily (also xfer does
3368          * potentiall belong to a different list by the time the
3369          * replacement has happened
3370          */
3371         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3372                 if (xfer->len > maxsize) {
3373                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3374                                                            maxsize, gfp);
3375                         if (ret)
3376                                 return ret;
3377                 }
3378         }
3379
3380         return 0;
3381 }
3382 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3383
3384 /*-------------------------------------------------------------------------*/
3385
3386 /* Core methods for SPI controller protocol drivers.  Some of the
3387  * other core methods are currently defined as inline functions.
3388  */
3389
3390 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3391                                         u8 bits_per_word)
3392 {
3393         if (ctlr->bits_per_word_mask) {
3394                 /* Only 32 bits fit in the mask */
3395                 if (bits_per_word > 32)
3396                         return -EINVAL;
3397                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3398                         return -EINVAL;
3399         }
3400
3401         return 0;
3402 }
3403
3404 /**
3405  * spi_setup - setup SPI mode and clock rate
3406  * @spi: the device whose settings are being modified
3407  * Context: can sleep, and no requests are queued to the device
3408  *
3409  * SPI protocol drivers may need to update the transfer mode if the
3410  * device doesn't work with its default.  They may likewise need
3411  * to update clock rates or word sizes from initial values.  This function
3412  * changes those settings, and must be called from a context that can sleep.
3413  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3414  * effect the next time the device is selected and data is transferred to
3415  * or from it.  When this function returns, the spi device is deselected.
3416  *
3417  * Note that this call will fail if the protocol driver specifies an option
3418  * that the underlying controller or its driver does not support.  For
3419  * example, not all hardware supports wire transfers using nine bit words,
3420  * LSB-first wire encoding, or active-high chipselects.
3421  *
3422  * Return: zero on success, else a negative error code.
3423  */
3424 int spi_setup(struct spi_device *spi)
3425 {
3426         unsigned        bad_bits, ugly_bits;
3427         int             status;
3428
3429         /*
3430          * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3431          * are set at the same time
3432          */
3433         if ((hweight_long(spi->mode &
3434                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3435             (hweight_long(spi->mode &
3436                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3437                 dev_err(&spi->dev,
3438                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3439                 return -EINVAL;
3440         }
3441         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3442          */
3443         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3444                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3445                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3446                 return -EINVAL;
3447         /* help drivers fail *cleanly* when they need options
3448          * that aren't supported with their current controller
3449          * SPI_CS_WORD has a fallback software implementation,
3450          * so it is ignored here.
3451          */
3452         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3453                                  SPI_NO_TX | SPI_NO_RX);
3454         /* nothing prevents from working with active-high CS in case if it
3455          * is driven by GPIO.
3456          */
3457         if (gpio_is_valid(spi->cs_gpio))
3458                 bad_bits &= ~SPI_CS_HIGH;
3459         ugly_bits = bad_bits &
3460                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3461                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3462         if (ugly_bits) {
3463                 dev_warn(&spi->dev,
3464                          "setup: ignoring unsupported mode bits %x\n",
3465                          ugly_bits);
3466                 spi->mode &= ~ugly_bits;
3467                 bad_bits &= ~ugly_bits;
3468         }
3469         if (bad_bits) {
3470                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3471                         bad_bits);
3472                 return -EINVAL;
3473         }
3474
3475         if (!spi->bits_per_word)
3476                 spi->bits_per_word = 8;
3477
3478         status = __spi_validate_bits_per_word(spi->controller,
3479                                               spi->bits_per_word);
3480         if (status)
3481                 return status;
3482
3483         if (spi->controller->max_speed_hz &&
3484             (!spi->max_speed_hz ||
3485              spi->max_speed_hz > spi->controller->max_speed_hz))
3486                 spi->max_speed_hz = spi->controller->max_speed_hz;
3487
3488         mutex_lock(&spi->controller->io_mutex);
3489
3490         if (spi->controller->setup) {
3491                 status = spi->controller->setup(spi);
3492                 if (status) {
3493                         mutex_unlock(&spi->controller->io_mutex);
3494                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3495                                 status);
3496                         return status;
3497                 }
3498         }
3499
3500         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3501                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3502                 if (status < 0) {
3503                         mutex_unlock(&spi->controller->io_mutex);
3504                         pm_runtime_put_noidle(spi->controller->dev.parent);
3505                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3506                                 status);
3507                         return status;
3508                 }
3509
3510                 /*
3511                  * We do not want to return positive value from pm_runtime_get,
3512                  * there are many instances of devices calling spi_setup() and
3513                  * checking for a non-zero return value instead of a negative
3514                  * return value.
3515                  */
3516                 status = 0;
3517
3518                 spi_set_cs(spi, false, true);
3519                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3520                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3521         } else {
3522                 spi_set_cs(spi, false, true);
3523         }
3524
3525         mutex_unlock(&spi->controller->io_mutex);
3526
3527         if (spi->rt && !spi->controller->rt) {
3528                 spi->controller->rt = true;
3529                 spi_set_thread_rt(spi->controller);
3530         }
3531
3532         trace_spi_setup(spi, status);
3533
3534         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3535                         spi->mode & SPI_MODE_X_MASK,
3536                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3537                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3538                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3539                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3540                         spi->bits_per_word, spi->max_speed_hz,
3541                         status);
3542
3543         return status;
3544 }
3545 EXPORT_SYMBOL_GPL(spi_setup);
3546
3547 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3548                                        struct spi_device *spi)
3549 {
3550         int delay1, delay2;
3551
3552         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3553         if (delay1 < 0)
3554                 return delay1;
3555
3556         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3557         if (delay2 < 0)
3558                 return delay2;
3559
3560         if (delay1 < delay2)
3561                 memcpy(&xfer->word_delay, &spi->word_delay,
3562                        sizeof(xfer->word_delay));
3563
3564         return 0;
3565 }
3566
3567 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3568 {
3569         struct spi_controller *ctlr = spi->controller;
3570         struct spi_transfer *xfer;
3571         int w_size;
3572
3573         if (list_empty(&message->transfers))
3574                 return -EINVAL;
3575
3576         /* If an SPI controller does not support toggling the CS line on each
3577          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3578          * for the CS line, we can emulate the CS-per-word hardware function by
3579          * splitting transfers into one-word transfers and ensuring that
3580          * cs_change is set for each transfer.
3581          */
3582         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3583                                           spi->cs_gpiod ||
3584                                           gpio_is_valid(spi->cs_gpio))) {
3585                 size_t maxsize;
3586                 int ret;
3587
3588                 maxsize = (spi->bits_per_word + 7) / 8;
3589
3590                 /* spi_split_transfers_maxsize() requires message->spi */
3591                 message->spi = spi;
3592
3593                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3594                                                   GFP_KERNEL);
3595                 if (ret)
3596                         return ret;
3597
3598                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3599                         /* don't change cs_change on the last entry in the list */
3600                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3601                                 break;
3602                         xfer->cs_change = 1;
3603                 }
3604         }
3605
3606         /* Half-duplex links include original MicroWire, and ones with
3607          * only one data pin like SPI_3WIRE (switches direction) or where
3608          * either MOSI or MISO is missing.  They can also be caused by
3609          * software limitations.
3610          */
3611         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3612             (spi->mode & SPI_3WIRE)) {
3613                 unsigned flags = ctlr->flags;
3614
3615                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3616                         if (xfer->rx_buf && xfer->tx_buf)
3617                                 return -EINVAL;
3618                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3619                                 return -EINVAL;
3620                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3621                                 return -EINVAL;
3622                 }
3623         }
3624
3625         /**
3626          * Set transfer bits_per_word and max speed as spi device default if
3627          * it is not set for this transfer.
3628          * Set transfer tx_nbits and rx_nbits as single transfer default
3629          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3630          * Ensure transfer word_delay is at least as long as that required by
3631          * device itself.
3632          */
3633         message->frame_length = 0;
3634         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3635                 xfer->effective_speed_hz = 0;
3636                 message->frame_length += xfer->len;
3637                 if (!xfer->bits_per_word)
3638                         xfer->bits_per_word = spi->bits_per_word;
3639
3640                 if (!xfer->speed_hz)
3641                         xfer->speed_hz = spi->max_speed_hz;
3642
3643                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3644                         xfer->speed_hz = ctlr->max_speed_hz;
3645
3646                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3647                         return -EINVAL;
3648
3649                 /*
3650                  * SPI transfer length should be multiple of SPI word size
3651                  * where SPI word size should be power-of-two multiple
3652                  */
3653                 if (xfer->bits_per_word <= 8)
3654                         w_size = 1;
3655                 else if (xfer->bits_per_word <= 16)
3656                         w_size = 2;
3657                 else
3658                         w_size = 4;
3659
3660                 /* No partial transfers accepted */
3661                 if (xfer->len % w_size)
3662                         return -EINVAL;
3663
3664                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3665                     xfer->speed_hz < ctlr->min_speed_hz)
3666                         return -EINVAL;
3667
3668                 if (xfer->tx_buf && !xfer->tx_nbits)
3669                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3670                 if (xfer->rx_buf && !xfer->rx_nbits)
3671                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3672                 /* check transfer tx/rx_nbits:
3673                  * 1. check the value matches one of single, dual and quad
3674                  * 2. check tx/rx_nbits match the mode in spi_device
3675                  */
3676                 if (xfer->tx_buf) {
3677                         if (spi->mode & SPI_NO_TX)
3678                                 return -EINVAL;
3679                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3680                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3681                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3682                                 return -EINVAL;
3683                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3684                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3685                                 return -EINVAL;
3686                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3687                                 !(spi->mode & SPI_TX_QUAD))
3688                                 return -EINVAL;
3689                 }
3690                 /* check transfer rx_nbits */
3691                 if (xfer->rx_buf) {
3692                         if (spi->mode & SPI_NO_RX)
3693                                 return -EINVAL;
3694                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3695                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3696                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3697                                 return -EINVAL;
3698                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3699                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3700                                 return -EINVAL;
3701                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3702                                 !(spi->mode & SPI_RX_QUAD))
3703                                 return -EINVAL;
3704                 }
3705
3706                 if (_spi_xfer_word_delay_update(xfer, spi))
3707                         return -EINVAL;
3708         }
3709
3710         message->status = -EINPROGRESS;
3711
3712         return 0;
3713 }
3714
3715 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3716 {
3717         struct spi_controller *ctlr = spi->controller;
3718         struct spi_transfer *xfer;
3719
3720         /*
3721          * Some controllers do not support doing regular SPI transfers. Return
3722          * ENOTSUPP when this is the case.
3723          */
3724         if (!ctlr->transfer)
3725                 return -ENOTSUPP;
3726
3727         message->spi = spi;
3728
3729         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3730         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3731
3732         trace_spi_message_submit(message);
3733
3734         if (!ctlr->ptp_sts_supported) {
3735                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3736                         xfer->ptp_sts_word_pre = 0;
3737                         ptp_read_system_prets(xfer->ptp_sts);
3738                 }
3739         }
3740
3741         return ctlr->transfer(spi, message);
3742 }
3743
3744 /**
3745  * spi_async - asynchronous SPI transfer
3746  * @spi: device with which data will be exchanged
3747  * @message: describes the data transfers, including completion callback
3748  * Context: any (irqs may be blocked, etc)
3749  *
3750  * This call may be used in_irq and other contexts which can't sleep,
3751  * as well as from task contexts which can sleep.
3752  *
3753  * The completion callback is invoked in a context which can't sleep.
3754  * Before that invocation, the value of message->status is undefined.
3755  * When the callback is issued, message->status holds either zero (to
3756  * indicate complete success) or a negative error code.  After that
3757  * callback returns, the driver which issued the transfer request may
3758  * deallocate the associated memory; it's no longer in use by any SPI
3759  * core or controller driver code.
3760  *
3761  * Note that although all messages to a spi_device are handled in
3762  * FIFO order, messages may go to different devices in other orders.
3763  * Some device might be higher priority, or have various "hard" access
3764  * time requirements, for example.
3765  *
3766  * On detection of any fault during the transfer, processing of
3767  * the entire message is aborted, and the device is deselected.
3768  * Until returning from the associated message completion callback,
3769  * no other spi_message queued to that device will be processed.
3770  * (This rule applies equally to all the synchronous transfer calls,
3771  * which are wrappers around this core asynchronous primitive.)
3772  *
3773  * Return: zero on success, else a negative error code.
3774  */
3775 int spi_async(struct spi_device *spi, struct spi_message *message)
3776 {
3777         struct spi_controller *ctlr = spi->controller;
3778         int ret;
3779         unsigned long flags;
3780
3781         ret = __spi_validate(spi, message);
3782         if (ret != 0)
3783                 return ret;
3784
3785         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3786
3787         if (ctlr->bus_lock_flag)
3788                 ret = -EBUSY;
3789         else
3790                 ret = __spi_async(spi, message);
3791
3792         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3793
3794         return ret;
3795 }
3796 EXPORT_SYMBOL_GPL(spi_async);
3797
3798 /**
3799  * spi_async_locked - version of spi_async with exclusive bus usage
3800  * @spi: device with which data will be exchanged
3801  * @message: describes the data transfers, including completion callback
3802  * Context: any (irqs may be blocked, etc)
3803  *
3804  * This call may be used in_irq and other contexts which can't sleep,
3805  * as well as from task contexts which can sleep.
3806  *
3807  * The completion callback is invoked in a context which can't sleep.
3808  * Before that invocation, the value of message->status is undefined.
3809  * When the callback is issued, message->status holds either zero (to
3810  * indicate complete success) or a negative error code.  After that
3811  * callback returns, the driver which issued the transfer request may
3812  * deallocate the associated memory; it's no longer in use by any SPI
3813  * core or controller driver code.
3814  *
3815  * Note that although all messages to a spi_device are handled in
3816  * FIFO order, messages may go to different devices in other orders.
3817  * Some device might be higher priority, or have various "hard" access
3818  * time requirements, for example.
3819  *
3820  * On detection of any fault during the transfer, processing of
3821  * the entire message is aborted, and the device is deselected.
3822  * Until returning from the associated message completion callback,
3823  * no other spi_message queued to that device will be processed.
3824  * (This rule applies equally to all the synchronous transfer calls,
3825  * which are wrappers around this core asynchronous primitive.)
3826  *
3827  * Return: zero on success, else a negative error code.
3828  */
3829 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3830 {
3831         struct spi_controller *ctlr = spi->controller;
3832         int ret;
3833         unsigned long flags;
3834
3835         ret = __spi_validate(spi, message);
3836         if (ret != 0)
3837                 return ret;
3838
3839         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3840
3841         ret = __spi_async(spi, message);
3842
3843         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3844
3845         return ret;
3846
3847 }
3848
3849 /*-------------------------------------------------------------------------*/
3850
3851 /* Utility methods for SPI protocol drivers, layered on
3852  * top of the core.  Some other utility methods are defined as
3853  * inline functions.
3854  */
3855
3856 static void spi_complete(void *arg)
3857 {
3858         complete(arg);
3859 }
3860
3861 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3862 {
3863         DECLARE_COMPLETION_ONSTACK(done);
3864         int status;
3865         struct spi_controller *ctlr = spi->controller;
3866         unsigned long flags;
3867
3868         status = __spi_validate(spi, message);
3869         if (status != 0)
3870                 return status;
3871
3872         message->complete = spi_complete;
3873         message->context = &done;
3874         message->spi = spi;
3875
3876         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3877         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3878
3879         /* If we're not using the legacy transfer method then we will
3880          * try to transfer in the calling context so special case.
3881          * This code would be less tricky if we could remove the
3882          * support for driver implemented message queues.
3883          */
3884         if (ctlr->transfer == spi_queued_transfer) {
3885                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3886
3887                 trace_spi_message_submit(message);
3888
3889                 status = __spi_queued_transfer(spi, message, false);
3890
3891                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3892         } else {
3893                 status = spi_async_locked(spi, message);
3894         }
3895
3896         if (status == 0) {
3897                 /* Push out the messages in the calling context if we
3898                  * can.
3899                  */
3900                 if (ctlr->transfer == spi_queued_transfer) {
3901                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3902                                                        spi_sync_immediate);
3903                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3904                                                        spi_sync_immediate);
3905                         __spi_pump_messages(ctlr, false);
3906                 }
3907
3908                 wait_for_completion(&done);
3909                 status = message->status;
3910         }
3911         message->context = NULL;
3912         return status;
3913 }
3914
3915 /**
3916  * spi_sync - blocking/synchronous SPI data transfers
3917  * @spi: device with which data will be exchanged
3918  * @message: describes the data transfers
3919  * Context: can sleep
3920  *
3921  * This call may only be used from a context that may sleep.  The sleep
3922  * is non-interruptible, and has no timeout.  Low-overhead controller
3923  * drivers may DMA directly into and out of the message buffers.
3924  *
3925  * Note that the SPI device's chip select is active during the message,
3926  * and then is normally disabled between messages.  Drivers for some
3927  * frequently-used devices may want to minimize costs of selecting a chip,
3928  * by leaving it selected in anticipation that the next message will go
3929  * to the same chip.  (That may increase power usage.)
3930  *
3931  * Also, the caller is guaranteeing that the memory associated with the
3932  * message will not be freed before this call returns.
3933  *
3934  * Return: zero on success, else a negative error code.
3935  */
3936 int spi_sync(struct spi_device *spi, struct spi_message *message)
3937 {
3938         int ret;
3939
3940         mutex_lock(&spi->controller->bus_lock_mutex);
3941         ret = __spi_sync(spi, message);
3942         mutex_unlock(&spi->controller->bus_lock_mutex);
3943
3944         return ret;
3945 }
3946 EXPORT_SYMBOL_GPL(spi_sync);
3947
3948 /**
3949  * spi_sync_locked - version of spi_sync with exclusive bus usage
3950  * @spi: device with which data will be exchanged
3951  * @message: describes the data transfers
3952  * Context: can sleep
3953  *
3954  * This call may only be used from a context that may sleep.  The sleep
3955  * is non-interruptible, and has no timeout.  Low-overhead controller
3956  * drivers may DMA directly into and out of the message buffers.
3957  *
3958  * This call should be used by drivers that require exclusive access to the
3959  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3960  * be released by a spi_bus_unlock call when the exclusive access is over.
3961  *
3962  * Return: zero on success, else a negative error code.
3963  */
3964 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3965 {
3966         return __spi_sync(spi, message);
3967 }
3968 EXPORT_SYMBOL_GPL(spi_sync_locked);
3969
3970 /**
3971  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3972  * @ctlr: SPI bus master that should be locked for exclusive bus access
3973  * Context: can sleep
3974  *
3975  * This call may only be used from a context that may sleep.  The sleep
3976  * is non-interruptible, and has no timeout.
3977  *
3978  * This call should be used by drivers that require exclusive access to the
3979  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3980  * exclusive access is over. Data transfer must be done by spi_sync_locked
3981  * and spi_async_locked calls when the SPI bus lock is held.
3982  *
3983  * Return: always zero.
3984  */
3985 int spi_bus_lock(struct spi_controller *ctlr)
3986 {
3987         unsigned long flags;
3988
3989         mutex_lock(&ctlr->bus_lock_mutex);
3990
3991         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3992         ctlr->bus_lock_flag = 1;
3993         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3994
3995         /* mutex remains locked until spi_bus_unlock is called */
3996
3997         return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(spi_bus_lock);
4000
4001 /**
4002  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4003  * @ctlr: SPI bus master that was locked for exclusive bus access
4004  * Context: can sleep
4005  *
4006  * This call may only be used from a context that may sleep.  The sleep
4007  * is non-interruptible, and has no timeout.
4008  *
4009  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4010  * call.
4011  *
4012  * Return: always zero.
4013  */
4014 int spi_bus_unlock(struct spi_controller *ctlr)
4015 {
4016         ctlr->bus_lock_flag = 0;
4017
4018         mutex_unlock(&ctlr->bus_lock_mutex);
4019
4020         return 0;
4021 }
4022 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4023
4024 /* portable code must never pass more than 32 bytes */
4025 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4026
4027 static u8       *buf;
4028
4029 /**
4030  * spi_write_then_read - SPI synchronous write followed by read
4031  * @spi: device with which data will be exchanged
4032  * @txbuf: data to be written (need not be dma-safe)
4033  * @n_tx: size of txbuf, in bytes
4034  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4035  * @n_rx: size of rxbuf, in bytes
4036  * Context: can sleep
4037  *
4038  * This performs a half duplex MicroWire style transaction with the
4039  * device, sending txbuf and then reading rxbuf.  The return value
4040  * is zero for success, else a negative errno status code.
4041  * This call may only be used from a context that may sleep.
4042  *
4043  * Parameters to this routine are always copied using a small buffer.
4044  * Performance-sensitive or bulk transfer code should instead use
4045  * spi_{async,sync}() calls with dma-safe buffers.
4046  *
4047  * Return: zero on success, else a negative error code.
4048  */
4049 int spi_write_then_read(struct spi_device *spi,
4050                 const void *txbuf, unsigned n_tx,
4051                 void *rxbuf, unsigned n_rx)
4052 {
4053         static DEFINE_MUTEX(lock);
4054
4055         int                     status;
4056         struct spi_message      message;
4057         struct spi_transfer     x[2];
4058         u8                      *local_buf;
4059
4060         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
4061          * copying here, (as a pure convenience thing), but we can
4062          * keep heap costs out of the hot path unless someone else is
4063          * using the pre-allocated buffer or the transfer is too large.
4064          */
4065         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4066                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4067                                     GFP_KERNEL | GFP_DMA);
4068                 if (!local_buf)
4069                         return -ENOMEM;
4070         } else {
4071                 local_buf = buf;
4072         }
4073
4074         spi_message_init(&message);
4075         memset(x, 0, sizeof(x));
4076         if (n_tx) {
4077                 x[0].len = n_tx;
4078                 spi_message_add_tail(&x[0], &message);
4079         }
4080         if (n_rx) {
4081                 x[1].len = n_rx;
4082                 spi_message_add_tail(&x[1], &message);
4083         }
4084
4085         memcpy(local_buf, txbuf, n_tx);
4086         x[0].tx_buf = local_buf;
4087         x[1].rx_buf = local_buf + n_tx;
4088
4089         /* do the i/o */
4090         status = spi_sync(spi, &message);
4091         if (status == 0)
4092                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4093
4094         if (x[0].tx_buf == buf)
4095                 mutex_unlock(&lock);
4096         else
4097                 kfree(local_buf);
4098
4099         return status;
4100 }
4101 EXPORT_SYMBOL_GPL(spi_write_then_read);
4102
4103 /*-------------------------------------------------------------------------*/
4104
4105 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4106 /* must call put_device() when done with returned spi_device device */
4107 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4108 {
4109         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4110
4111         return dev ? to_spi_device(dev) : NULL;
4112 }
4113
4114 /* the spi controllers are not using spi_bus, so we find it with another way */
4115 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4116 {
4117         struct device *dev;
4118
4119         dev = class_find_device_by_of_node(&spi_master_class, node);
4120         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4121                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4122         if (!dev)
4123                 return NULL;
4124
4125         /* reference got in class_find_device */
4126         return container_of(dev, struct spi_controller, dev);
4127 }
4128
4129 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4130                          void *arg)
4131 {
4132         struct of_reconfig_data *rd = arg;
4133         struct spi_controller *ctlr;
4134         struct spi_device *spi;
4135
4136         switch (of_reconfig_get_state_change(action, arg)) {
4137         case OF_RECONFIG_CHANGE_ADD:
4138                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4139                 if (ctlr == NULL)
4140                         return NOTIFY_OK;       /* not for us */
4141
4142                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4143                         put_device(&ctlr->dev);
4144                         return NOTIFY_OK;
4145                 }
4146
4147                 spi = of_register_spi_device(ctlr, rd->dn);
4148                 put_device(&ctlr->dev);
4149
4150                 if (IS_ERR(spi)) {
4151                         pr_err("%s: failed to create for '%pOF'\n",
4152                                         __func__, rd->dn);
4153                         of_node_clear_flag(rd->dn, OF_POPULATED);
4154                         return notifier_from_errno(PTR_ERR(spi));
4155                 }
4156                 break;
4157
4158         case OF_RECONFIG_CHANGE_REMOVE:
4159                 /* already depopulated? */
4160                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4161                         return NOTIFY_OK;
4162
4163                 /* find our device by node */
4164                 spi = of_find_spi_device_by_node(rd->dn);
4165                 if (spi == NULL)
4166                         return NOTIFY_OK;       /* no? not meant for us */
4167
4168                 /* unregister takes one ref away */
4169                 spi_unregister_device(spi);
4170
4171                 /* and put the reference of the find */
4172                 put_device(&spi->dev);
4173                 break;
4174         }
4175
4176         return NOTIFY_OK;
4177 }
4178
4179 static struct notifier_block spi_of_notifier = {
4180         .notifier_call = of_spi_notify,
4181 };
4182 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4183 extern struct notifier_block spi_of_notifier;
4184 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4185
4186 #if IS_ENABLED(CONFIG_ACPI)
4187 static int spi_acpi_controller_match(struct device *dev, const void *data)
4188 {
4189         return ACPI_COMPANION(dev->parent) == data;
4190 }
4191
4192 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4193 {
4194         struct device *dev;
4195
4196         dev = class_find_device(&spi_master_class, NULL, adev,
4197                                 spi_acpi_controller_match);
4198         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4199                 dev = class_find_device(&spi_slave_class, NULL, adev,
4200                                         spi_acpi_controller_match);
4201         if (!dev)
4202                 return NULL;
4203
4204         return container_of(dev, struct spi_controller, dev);
4205 }
4206
4207 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4208 {
4209         struct device *dev;
4210
4211         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4212         return to_spi_device(dev);
4213 }
4214
4215 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4216                            void *arg)
4217 {
4218         struct acpi_device *adev = arg;
4219         struct spi_controller *ctlr;
4220         struct spi_device *spi;
4221
4222         switch (value) {
4223         case ACPI_RECONFIG_DEVICE_ADD:
4224                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4225                 if (!ctlr)
4226                         break;
4227
4228                 acpi_register_spi_device(ctlr, adev);
4229                 put_device(&ctlr->dev);
4230                 break;
4231         case ACPI_RECONFIG_DEVICE_REMOVE:
4232                 if (!acpi_device_enumerated(adev))
4233                         break;
4234
4235                 spi = acpi_spi_find_device_by_adev(adev);
4236                 if (!spi)
4237                         break;
4238
4239                 spi_unregister_device(spi);
4240                 put_device(&spi->dev);
4241                 break;
4242         }
4243
4244         return NOTIFY_OK;
4245 }
4246
4247 static struct notifier_block spi_acpi_notifier = {
4248         .notifier_call = acpi_spi_notify,
4249 };
4250 #else
4251 extern struct notifier_block spi_acpi_notifier;
4252 #endif
4253
4254 static int __init spi_init(void)
4255 {
4256         int     status;
4257
4258         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4259         if (!buf) {
4260                 status = -ENOMEM;
4261                 goto err0;
4262         }
4263
4264         status = bus_register(&spi_bus_type);
4265         if (status < 0)
4266                 goto err1;
4267
4268         status = class_register(&spi_master_class);
4269         if (status < 0)
4270                 goto err2;
4271
4272         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4273                 status = class_register(&spi_slave_class);
4274                 if (status < 0)
4275                         goto err3;
4276         }
4277
4278         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4279                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4280         if (IS_ENABLED(CONFIG_ACPI))
4281                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4282
4283         return 0;
4284
4285 err3:
4286         class_unregister(&spi_master_class);
4287 err2:
4288         bus_unregister(&spi_bus_type);
4289 err1:
4290         kfree(buf);
4291         buf = NULL;
4292 err0:
4293         return status;
4294 }
4295
4296 /* board_info is normally registered in arch_initcall(),
4297  * but even essential drivers wait till later
4298  *
4299  * REVISIT only boardinfo really needs static linking. the rest (device and
4300  * driver registration) _could_ be dynamically linked (modular) ... costs
4301  * include needing to have boardinfo data structures be much more public.
4302  */
4303 postcore_initcall(spi_init);