Merge tag 'dma-mapping-5.20-2022-08-06' of git://git.infradead.org/users/hch/dma...
[sfrench/cifs-2.6.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124         blk_mq_requeue_request(rq, true);
125 }
126
127 /**
128  * __scsi_queue_insert - private queue insertion
129  * @cmd: The SCSI command being requeued
130  * @reason:  The reason for the requeue
131  * @unbusy: Whether the queue should be unbusied
132  *
133  * This is a private queue insertion.  The public interface
134  * scsi_queue_insert() always assumes the queue should be unbusied
135  * because it's always called before the completion.  This function is
136  * for a requeue after completion, which should only occur in this
137  * file.
138  */
139 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
140 {
141         struct scsi_device *device = cmd->device;
142
143         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
144                 "Inserting command %p into mlqueue\n", cmd));
145
146         scsi_set_blocked(cmd, reason);
147
148         /*
149          * Decrement the counters, since these commands are no longer
150          * active on the host/device.
151          */
152         if (unbusy)
153                 scsi_device_unbusy(device, cmd);
154
155         /*
156          * Requeue this command.  It will go before all other commands
157          * that are already in the queue. Schedule requeue work under
158          * lock such that the kblockd_schedule_work() call happens
159          * before blk_mq_destroy_queue() finishes.
160          */
161         cmd->result = 0;
162
163         blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
164 }
165
166 /**
167  * scsi_queue_insert - Reinsert a command in the queue.
168  * @cmd:    command that we are adding to queue.
169  * @reason: why we are inserting command to queue.
170  *
171  * We do this for one of two cases. Either the host is busy and it cannot accept
172  * any more commands for the time being, or the device returned QUEUE_FULL and
173  * can accept no more commands.
174  *
175  * Context: This could be called either from an interrupt context or a normal
176  * process context.
177  */
178 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
179 {
180         __scsi_queue_insert(cmd, reason, true);
181 }
182
183
184 /**
185  * __scsi_execute - insert request and wait for the result
186  * @sdev:       scsi device
187  * @cmd:        scsi command
188  * @data_direction: data direction
189  * @buffer:     data buffer
190  * @bufflen:    len of buffer
191  * @sense:      optional sense buffer
192  * @sshdr:      optional decoded sense header
193  * @timeout:    request timeout in HZ
194  * @retries:    number of times to retry request
195  * @flags:      flags for ->cmd_flags
196  * @rq_flags:   flags for ->rq_flags
197  * @resid:      optional residual length
198  *
199  * Returns the scsi_cmnd result field if a command was executed, or a negative
200  * Linux error code if we didn't get that far.
201  */
202 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
203                  int data_direction, void *buffer, unsigned bufflen,
204                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
205                  int timeout, int retries, blk_opf_t flags,
206                  req_flags_t rq_flags, int *resid)
207 {
208         struct request *req;
209         struct scsi_cmnd *scmd;
210         int ret;
211
212         req = scsi_alloc_request(sdev->request_queue,
213                         data_direction == DMA_TO_DEVICE ?
214                         REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
215                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
216         if (IS_ERR(req))
217                 return PTR_ERR(req);
218
219         if (bufflen) {
220                 ret = blk_rq_map_kern(sdev->request_queue, req,
221                                       buffer, bufflen, GFP_NOIO);
222                 if (ret)
223                         goto out;
224         }
225         scmd = blk_mq_rq_to_pdu(req);
226         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
227         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
228         scmd->allowed = retries;
229         req->timeout = timeout;
230         req->cmd_flags |= flags;
231         req->rq_flags |= rq_flags | RQF_QUIET;
232
233         /*
234          * head injection *required* here otherwise quiesce won't work
235          */
236         blk_execute_rq(req, true);
237
238         /*
239          * Some devices (USB mass-storage in particular) may transfer
240          * garbage data together with a residue indicating that the data
241          * is invalid.  Prevent the garbage from being misinterpreted
242          * and prevent security leaks by zeroing out the excess data.
243          */
244         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
245                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
246
247         if (resid)
248                 *resid = scmd->resid_len;
249         if (sense && scmd->sense_len)
250                 memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
251         if (sshdr)
252                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
253                                      sshdr);
254         ret = scmd->result;
255  out:
256         blk_mq_free_request(req);
257
258         return ret;
259 }
260 EXPORT_SYMBOL(__scsi_execute);
261
262 /*
263  * Wake up the error handler if necessary. Avoid as follows that the error
264  * handler is not woken up if host in-flight requests number ==
265  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
266  * with an RCU read lock in this function to ensure that this function in
267  * its entirety either finishes before scsi_eh_scmd_add() increases the
268  * host_failed counter or that it notices the shost state change made by
269  * scsi_eh_scmd_add().
270  */
271 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
272 {
273         unsigned long flags;
274
275         rcu_read_lock();
276         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
277         if (unlikely(scsi_host_in_recovery(shost))) {
278                 spin_lock_irqsave(shost->host_lock, flags);
279                 if (shost->host_failed || shost->host_eh_scheduled)
280                         scsi_eh_wakeup(shost);
281                 spin_unlock_irqrestore(shost->host_lock, flags);
282         }
283         rcu_read_unlock();
284 }
285
286 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
287 {
288         struct Scsi_Host *shost = sdev->host;
289         struct scsi_target *starget = scsi_target(sdev);
290
291         scsi_dec_host_busy(shost, cmd);
292
293         if (starget->can_queue > 0)
294                 atomic_dec(&starget->target_busy);
295
296         sbitmap_put(&sdev->budget_map, cmd->budget_token);
297         cmd->budget_token = -1;
298 }
299
300 static void scsi_kick_queue(struct request_queue *q)
301 {
302         blk_mq_run_hw_queues(q, false);
303 }
304
305 /*
306  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
307  * and call blk_run_queue for all the scsi_devices on the target -
308  * including current_sdev first.
309  *
310  * Called with *no* scsi locks held.
311  */
312 static void scsi_single_lun_run(struct scsi_device *current_sdev)
313 {
314         struct Scsi_Host *shost = current_sdev->host;
315         struct scsi_device *sdev, *tmp;
316         struct scsi_target *starget = scsi_target(current_sdev);
317         unsigned long flags;
318
319         spin_lock_irqsave(shost->host_lock, flags);
320         starget->starget_sdev_user = NULL;
321         spin_unlock_irqrestore(shost->host_lock, flags);
322
323         /*
324          * Call blk_run_queue for all LUNs on the target, starting with
325          * current_sdev. We race with others (to set starget_sdev_user),
326          * but in most cases, we will be first. Ideally, each LU on the
327          * target would get some limited time or requests on the target.
328          */
329         scsi_kick_queue(current_sdev->request_queue);
330
331         spin_lock_irqsave(shost->host_lock, flags);
332         if (starget->starget_sdev_user)
333                 goto out;
334         list_for_each_entry_safe(sdev, tmp, &starget->devices,
335                         same_target_siblings) {
336                 if (sdev == current_sdev)
337                         continue;
338                 if (scsi_device_get(sdev))
339                         continue;
340
341                 spin_unlock_irqrestore(shost->host_lock, flags);
342                 scsi_kick_queue(sdev->request_queue);
343                 spin_lock_irqsave(shost->host_lock, flags);
344
345                 scsi_device_put(sdev);
346         }
347  out:
348         spin_unlock_irqrestore(shost->host_lock, flags);
349 }
350
351 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
352 {
353         if (scsi_device_busy(sdev) >= sdev->queue_depth)
354                 return true;
355         if (atomic_read(&sdev->device_blocked) > 0)
356                 return true;
357         return false;
358 }
359
360 static inline bool scsi_target_is_busy(struct scsi_target *starget)
361 {
362         if (starget->can_queue > 0) {
363                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
364                         return true;
365                 if (atomic_read(&starget->target_blocked) > 0)
366                         return true;
367         }
368         return false;
369 }
370
371 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
372 {
373         if (atomic_read(&shost->host_blocked) > 0)
374                 return true;
375         if (shost->host_self_blocked)
376                 return true;
377         return false;
378 }
379
380 static void scsi_starved_list_run(struct Scsi_Host *shost)
381 {
382         LIST_HEAD(starved_list);
383         struct scsi_device *sdev;
384         unsigned long flags;
385
386         spin_lock_irqsave(shost->host_lock, flags);
387         list_splice_init(&shost->starved_list, &starved_list);
388
389         while (!list_empty(&starved_list)) {
390                 struct request_queue *slq;
391
392                 /*
393                  * As long as shost is accepting commands and we have
394                  * starved queues, call blk_run_queue. scsi_request_fn
395                  * drops the queue_lock and can add us back to the
396                  * starved_list.
397                  *
398                  * host_lock protects the starved_list and starved_entry.
399                  * scsi_request_fn must get the host_lock before checking
400                  * or modifying starved_list or starved_entry.
401                  */
402                 if (scsi_host_is_busy(shost))
403                         break;
404
405                 sdev = list_entry(starved_list.next,
406                                   struct scsi_device, starved_entry);
407                 list_del_init(&sdev->starved_entry);
408                 if (scsi_target_is_busy(scsi_target(sdev))) {
409                         list_move_tail(&sdev->starved_entry,
410                                        &shost->starved_list);
411                         continue;
412                 }
413
414                 /*
415                  * Once we drop the host lock, a racing scsi_remove_device()
416                  * call may remove the sdev from the starved list and destroy
417                  * it and the queue.  Mitigate by taking a reference to the
418                  * queue and never touching the sdev again after we drop the
419                  * host lock.  Note: if __scsi_remove_device() invokes
420                  * blk_mq_destroy_queue() before the queue is run from this
421                  * function then blk_run_queue() will return immediately since
422                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
423                  */
424                 slq = sdev->request_queue;
425                 if (!blk_get_queue(slq))
426                         continue;
427                 spin_unlock_irqrestore(shost->host_lock, flags);
428
429                 scsi_kick_queue(slq);
430                 blk_put_queue(slq);
431
432                 spin_lock_irqsave(shost->host_lock, flags);
433         }
434         /* put any unprocessed entries back */
435         list_splice(&starved_list, &shost->starved_list);
436         spin_unlock_irqrestore(shost->host_lock, flags);
437 }
438
439 /**
440  * scsi_run_queue - Select a proper request queue to serve next.
441  * @q:  last request's queue
442  *
443  * The previous command was completely finished, start a new one if possible.
444  */
445 static void scsi_run_queue(struct request_queue *q)
446 {
447         struct scsi_device *sdev = q->queuedata;
448
449         if (scsi_target(sdev)->single_lun)
450                 scsi_single_lun_run(sdev);
451         if (!list_empty(&sdev->host->starved_list))
452                 scsi_starved_list_run(sdev->host);
453
454         blk_mq_run_hw_queues(q, false);
455 }
456
457 void scsi_requeue_run_queue(struct work_struct *work)
458 {
459         struct scsi_device *sdev;
460         struct request_queue *q;
461
462         sdev = container_of(work, struct scsi_device, requeue_work);
463         q = sdev->request_queue;
464         scsi_run_queue(q);
465 }
466
467 void scsi_run_host_queues(struct Scsi_Host *shost)
468 {
469         struct scsi_device *sdev;
470
471         shost_for_each_device(sdev, shost)
472                 scsi_run_queue(sdev->request_queue);
473 }
474
475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476 {
477         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479
480                 if (drv->uninit_command)
481                         drv->uninit_command(cmd);
482         }
483 }
484
485 void scsi_free_sgtables(struct scsi_cmnd *cmd)
486 {
487         if (cmd->sdb.table.nents)
488                 sg_free_table_chained(&cmd->sdb.table,
489                                 SCSI_INLINE_SG_CNT);
490         if (scsi_prot_sg_count(cmd))
491                 sg_free_table_chained(&cmd->prot_sdb->table,
492                                 SCSI_INLINE_PROT_SG_CNT);
493 }
494 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495
496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497 {
498         scsi_free_sgtables(cmd);
499         scsi_uninit_cmd(cmd);
500 }
501
502 static void scsi_run_queue_async(struct scsi_device *sdev)
503 {
504         if (scsi_target(sdev)->single_lun ||
505             !list_empty(&sdev->host->starved_list)) {
506                 kblockd_schedule_work(&sdev->requeue_work);
507         } else {
508                 /*
509                  * smp_mb() present in sbitmap_queue_clear() or implied in
510                  * .end_io is for ordering writing .device_busy in
511                  * scsi_device_unbusy() and reading sdev->restarts.
512                  */
513                 int old = atomic_read(&sdev->restarts);
514
515                 /*
516                  * ->restarts has to be kept as non-zero if new budget
517                  *  contention occurs.
518                  *
519                  *  No need to run queue when either another re-run
520                  *  queue wins in updating ->restarts or a new budget
521                  *  contention occurs.
522                  */
523                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
524                         blk_mq_run_hw_queues(sdev->request_queue, true);
525         }
526 }
527
528 /* Returns false when no more bytes to process, true if there are more */
529 static bool scsi_end_request(struct request *req, blk_status_t error,
530                 unsigned int bytes)
531 {
532         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
533         struct scsi_device *sdev = cmd->device;
534         struct request_queue *q = sdev->request_queue;
535
536         if (blk_update_request(req, error, bytes))
537                 return true;
538
539         // XXX:
540         if (blk_queue_add_random(q))
541                 add_disk_randomness(req->q->disk);
542
543         if (!blk_rq_is_passthrough(req)) {
544                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
545                 cmd->flags &= ~SCMD_INITIALIZED;
546         }
547
548         /*
549          * Calling rcu_barrier() is not necessary here because the
550          * SCSI error handler guarantees that the function called by
551          * call_rcu() has been called before scsi_end_request() is
552          * called.
553          */
554         destroy_rcu_head(&cmd->rcu);
555
556         /*
557          * In the MQ case the command gets freed by __blk_mq_end_request,
558          * so we have to do all cleanup that depends on it earlier.
559          *
560          * We also can't kick the queues from irq context, so we
561          * will have to defer it to a workqueue.
562          */
563         scsi_mq_uninit_cmd(cmd);
564
565         /*
566          * queue is still alive, so grab the ref for preventing it
567          * from being cleaned up during running queue.
568          */
569         percpu_ref_get(&q->q_usage_counter);
570
571         __blk_mq_end_request(req, error);
572
573         scsi_run_queue_async(sdev);
574
575         percpu_ref_put(&q->q_usage_counter);
576         return false;
577 }
578
579 /**
580  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
581  * @cmd:        SCSI command
582  * @result:     scsi error code
583  *
584  * Translate a SCSI result code into a blk_status_t value. May reset the host
585  * byte of @cmd->result.
586  */
587 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
588 {
589         switch (host_byte(result)) {
590         case DID_OK:
591                 if (scsi_status_is_good(result))
592                         return BLK_STS_OK;
593                 return BLK_STS_IOERR;
594         case DID_TRANSPORT_FAILFAST:
595         case DID_TRANSPORT_MARGINAL:
596                 return BLK_STS_TRANSPORT;
597         case DID_TARGET_FAILURE:
598                 set_host_byte(cmd, DID_OK);
599                 return BLK_STS_TARGET;
600         case DID_NEXUS_FAILURE:
601                 set_host_byte(cmd, DID_OK);
602                 return BLK_STS_NEXUS;
603         case DID_ALLOC_FAILURE:
604                 set_host_byte(cmd, DID_OK);
605                 return BLK_STS_NOSPC;
606         case DID_MEDIUM_ERROR:
607                 set_host_byte(cmd, DID_OK);
608                 return BLK_STS_MEDIUM;
609         default:
610                 return BLK_STS_IOERR;
611         }
612 }
613
614 /**
615  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
616  * @rq: request to examine
617  *
618  * Description:
619  *     A request could be merge of IOs which require different failure
620  *     handling.  This function determines the number of bytes which
621  *     can be failed from the beginning of the request without
622  *     crossing into area which need to be retried further.
623  *
624  * Return:
625  *     The number of bytes to fail.
626  */
627 static unsigned int scsi_rq_err_bytes(const struct request *rq)
628 {
629         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
630         unsigned int bytes = 0;
631         struct bio *bio;
632
633         if (!(rq->rq_flags & RQF_MIXED_MERGE))
634                 return blk_rq_bytes(rq);
635
636         /*
637          * Currently the only 'mixing' which can happen is between
638          * different fastfail types.  We can safely fail portions
639          * which have all the failfast bits that the first one has -
640          * the ones which are at least as eager to fail as the first
641          * one.
642          */
643         for (bio = rq->bio; bio; bio = bio->bi_next) {
644                 if ((bio->bi_opf & ff) != ff)
645                         break;
646                 bytes += bio->bi_iter.bi_size;
647         }
648
649         /* this could lead to infinite loop */
650         BUG_ON(blk_rq_bytes(rq) && !bytes);
651         return bytes;
652 }
653
654 /* Helper for scsi_io_completion() when "reprep" action required. */
655 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
656                                       struct request_queue *q)
657 {
658         /* A new command will be prepared and issued. */
659         scsi_mq_requeue_cmd(cmd);
660 }
661
662 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
663 {
664         struct request *req = scsi_cmd_to_rq(cmd);
665         unsigned long wait_for;
666
667         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
668                 return false;
669
670         wait_for = (cmd->allowed + 1) * req->timeout;
671         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
672                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
673                             wait_for/HZ);
674                 return true;
675         }
676         return false;
677 }
678
679 /* Helper for scsi_io_completion() when special action required. */
680 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
681 {
682         struct request_queue *q = cmd->device->request_queue;
683         struct request *req = scsi_cmd_to_rq(cmd);
684         int level = 0;
685         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
686               ACTION_DELAYED_RETRY} action;
687         struct scsi_sense_hdr sshdr;
688         bool sense_valid;
689         bool sense_current = true;      /* false implies "deferred sense" */
690         blk_status_t blk_stat;
691
692         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
693         if (sense_valid)
694                 sense_current = !scsi_sense_is_deferred(&sshdr);
695
696         blk_stat = scsi_result_to_blk_status(cmd, result);
697
698         if (host_byte(result) == DID_RESET) {
699                 /* Third party bus reset or reset for error recovery
700                  * reasons.  Just retry the command and see what
701                  * happens.
702                  */
703                 action = ACTION_RETRY;
704         } else if (sense_valid && sense_current) {
705                 switch (sshdr.sense_key) {
706                 case UNIT_ATTENTION:
707                         if (cmd->device->removable) {
708                                 /* Detected disc change.  Set a bit
709                                  * and quietly refuse further access.
710                                  */
711                                 cmd->device->changed = 1;
712                                 action = ACTION_FAIL;
713                         } else {
714                                 /* Must have been a power glitch, or a
715                                  * bus reset.  Could not have been a
716                                  * media change, so we just retry the
717                                  * command and see what happens.
718                                  */
719                                 action = ACTION_RETRY;
720                         }
721                         break;
722                 case ILLEGAL_REQUEST:
723                         /* If we had an ILLEGAL REQUEST returned, then
724                          * we may have performed an unsupported
725                          * command.  The only thing this should be
726                          * would be a ten byte read where only a six
727                          * byte read was supported.  Also, on a system
728                          * where READ CAPACITY failed, we may have
729                          * read past the end of the disk.
730                          */
731                         if ((cmd->device->use_10_for_rw &&
732                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
733                             (cmd->cmnd[0] == READ_10 ||
734                              cmd->cmnd[0] == WRITE_10)) {
735                                 /* This will issue a new 6-byte command. */
736                                 cmd->device->use_10_for_rw = 0;
737                                 action = ACTION_REPREP;
738                         } else if (sshdr.asc == 0x10) /* DIX */ {
739                                 action = ACTION_FAIL;
740                                 blk_stat = BLK_STS_PROTECTION;
741                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
742                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
743                                 action = ACTION_FAIL;
744                                 blk_stat = BLK_STS_TARGET;
745                         } else
746                                 action = ACTION_FAIL;
747                         break;
748                 case ABORTED_COMMAND:
749                         action = ACTION_FAIL;
750                         if (sshdr.asc == 0x10) /* DIF */
751                                 blk_stat = BLK_STS_PROTECTION;
752                         break;
753                 case NOT_READY:
754                         /* If the device is in the process of becoming
755                          * ready, or has a temporary blockage, retry.
756                          */
757                         if (sshdr.asc == 0x04) {
758                                 switch (sshdr.ascq) {
759                                 case 0x01: /* becoming ready */
760                                 case 0x04: /* format in progress */
761                                 case 0x05: /* rebuild in progress */
762                                 case 0x06: /* recalculation in progress */
763                                 case 0x07: /* operation in progress */
764                                 case 0x08: /* Long write in progress */
765                                 case 0x09: /* self test in progress */
766                                 case 0x11: /* notify (enable spinup) required */
767                                 case 0x14: /* space allocation in progress */
768                                 case 0x1a: /* start stop unit in progress */
769                                 case 0x1b: /* sanitize in progress */
770                                 case 0x1d: /* configuration in progress */
771                                 case 0x24: /* depopulation in progress */
772                                         action = ACTION_DELAYED_RETRY;
773                                         break;
774                                 case 0x0a: /* ALUA state transition */
775                                         blk_stat = BLK_STS_TRANSPORT;
776                                         fallthrough;
777                                 default:
778                                         action = ACTION_FAIL;
779                                         break;
780                                 }
781                         } else
782                                 action = ACTION_FAIL;
783                         break;
784                 case VOLUME_OVERFLOW:
785                         /* See SSC3rXX or current. */
786                         action = ACTION_FAIL;
787                         break;
788                 case DATA_PROTECT:
789                         action = ACTION_FAIL;
790                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
791                             (sshdr.asc == 0x55 &&
792                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
793                                 /* Insufficient zone resources */
794                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
795                         }
796                         break;
797                 default:
798                         action = ACTION_FAIL;
799                         break;
800                 }
801         } else
802                 action = ACTION_FAIL;
803
804         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
805                 action = ACTION_FAIL;
806
807         switch (action) {
808         case ACTION_FAIL:
809                 /* Give up and fail the remainder of the request */
810                 if (!(req->rq_flags & RQF_QUIET)) {
811                         static DEFINE_RATELIMIT_STATE(_rs,
812                                         DEFAULT_RATELIMIT_INTERVAL,
813                                         DEFAULT_RATELIMIT_BURST);
814
815                         if (unlikely(scsi_logging_level))
816                                 level =
817                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
818                                                     SCSI_LOG_MLCOMPLETE_BITS);
819
820                         /*
821                          * if logging is enabled the failure will be printed
822                          * in scsi_log_completion(), so avoid duplicate messages
823                          */
824                         if (!level && __ratelimit(&_rs)) {
825                                 scsi_print_result(cmd, NULL, FAILED);
826                                 if (sense_valid)
827                                         scsi_print_sense(cmd);
828                                 scsi_print_command(cmd);
829                         }
830                 }
831                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
832                         return;
833                 fallthrough;
834         case ACTION_REPREP:
835                 scsi_io_completion_reprep(cmd, q);
836                 break;
837         case ACTION_RETRY:
838                 /* Retry the same command immediately */
839                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
840                 break;
841         case ACTION_DELAYED_RETRY:
842                 /* Retry the same command after a delay */
843                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
844                 break;
845         }
846 }
847
848 /*
849  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
850  * new result that may suppress further error checking. Also modifies
851  * *blk_statp in some cases.
852  */
853 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
854                                         blk_status_t *blk_statp)
855 {
856         bool sense_valid;
857         bool sense_current = true;      /* false implies "deferred sense" */
858         struct request *req = scsi_cmd_to_rq(cmd);
859         struct scsi_sense_hdr sshdr;
860
861         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
862         if (sense_valid)
863                 sense_current = !scsi_sense_is_deferred(&sshdr);
864
865         if (blk_rq_is_passthrough(req)) {
866                 if (sense_valid) {
867                         /*
868                          * SG_IO wants current and deferred errors
869                          */
870                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
871                                              SCSI_SENSE_BUFFERSIZE);
872                 }
873                 if (sense_current)
874                         *blk_statp = scsi_result_to_blk_status(cmd, result);
875         } else if (blk_rq_bytes(req) == 0 && sense_current) {
876                 /*
877                  * Flush commands do not transfers any data, and thus cannot use
878                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
879                  * This sets *blk_statp explicitly for the problem case.
880                  */
881                 *blk_statp = scsi_result_to_blk_status(cmd, result);
882         }
883         /*
884          * Recovered errors need reporting, but they're always treated as
885          * success, so fiddle the result code here.  For passthrough requests
886          * we already took a copy of the original into sreq->result which
887          * is what gets returned to the user
888          */
889         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
890                 bool do_print = true;
891                 /*
892                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
893                  * skip print since caller wants ATA registers. Only occurs
894                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
895                  */
896                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
897                         do_print = false;
898                 else if (req->rq_flags & RQF_QUIET)
899                         do_print = false;
900                 if (do_print)
901                         scsi_print_sense(cmd);
902                 result = 0;
903                 /* for passthrough, *blk_statp may be set */
904                 *blk_statp = BLK_STS_OK;
905         }
906         /*
907          * Another corner case: the SCSI status byte is non-zero but 'good'.
908          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
909          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
910          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
911          * intermediate statuses (both obsolete in SAM-4) as good.
912          */
913         if ((result & 0xff) && scsi_status_is_good(result)) {
914                 result = 0;
915                 *blk_statp = BLK_STS_OK;
916         }
917         return result;
918 }
919
920 /**
921  * scsi_io_completion - Completion processing for SCSI commands.
922  * @cmd:        command that is finished.
923  * @good_bytes: number of processed bytes.
924  *
925  * We will finish off the specified number of sectors. If we are done, the
926  * command block will be released and the queue function will be goosed. If we
927  * are not done then we have to figure out what to do next:
928  *
929  *   a) We can call scsi_io_completion_reprep().  The request will be
930  *      unprepared and put back on the queue.  Then a new command will
931  *      be created for it.  This should be used if we made forward
932  *      progress, or if we want to switch from READ(10) to READ(6) for
933  *      example.
934  *
935  *   b) We can call scsi_io_completion_action().  The request will be
936  *      put back on the queue and retried using the same command as
937  *      before, possibly after a delay.
938  *
939  *   c) We can call scsi_end_request() with blk_stat other than
940  *      BLK_STS_OK, to fail the remainder of the request.
941  */
942 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
943 {
944         int result = cmd->result;
945         struct request_queue *q = cmd->device->request_queue;
946         struct request *req = scsi_cmd_to_rq(cmd);
947         blk_status_t blk_stat = BLK_STS_OK;
948
949         if (unlikely(result))   /* a nz result may or may not be an error */
950                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
951
952         /*
953          * Next deal with any sectors which we were able to correctly
954          * handle.
955          */
956         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
957                 "%u sectors total, %d bytes done.\n",
958                 blk_rq_sectors(req), good_bytes));
959
960         /*
961          * Failed, zero length commands always need to drop down
962          * to retry code. Fast path should return in this block.
963          */
964         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
965                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
966                         return; /* no bytes remaining */
967         }
968
969         /* Kill remainder if no retries. */
970         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
971                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
972                         WARN_ONCE(true,
973                             "Bytes remaining after failed, no-retry command");
974                 return;
975         }
976
977         /*
978          * If there had been no error, but we have leftover bytes in the
979          * request just queue the command up again.
980          */
981         if (likely(result == 0))
982                 scsi_io_completion_reprep(cmd, q);
983         else
984                 scsi_io_completion_action(cmd, result);
985 }
986
987 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
988                 struct request *rq)
989 {
990         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
991                !op_is_write(req_op(rq)) &&
992                sdev->host->hostt->dma_need_drain(rq);
993 }
994
995 /**
996  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
997  * @cmd: SCSI command data structure to initialize.
998  *
999  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1000  * for @cmd.
1001  *
1002  * Returns:
1003  * * BLK_STS_OK       - on success
1004  * * BLK_STS_RESOURCE - if the failure is retryable
1005  * * BLK_STS_IOERR    - if the failure is fatal
1006  */
1007 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1008 {
1009         struct scsi_device *sdev = cmd->device;
1010         struct request *rq = scsi_cmd_to_rq(cmd);
1011         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1012         struct scatterlist *last_sg = NULL;
1013         blk_status_t ret;
1014         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1015         int count;
1016
1017         if (WARN_ON_ONCE(!nr_segs))
1018                 return BLK_STS_IOERR;
1019
1020         /*
1021          * Make sure there is space for the drain.  The driver must adjust
1022          * max_hw_segments to be prepared for this.
1023          */
1024         if (need_drain)
1025                 nr_segs++;
1026
1027         /*
1028          * If sg table allocation fails, requeue request later.
1029          */
1030         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1031                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1032                 return BLK_STS_RESOURCE;
1033
1034         /*
1035          * Next, walk the list, and fill in the addresses and sizes of
1036          * each segment.
1037          */
1038         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1039
1040         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1041                 unsigned int pad_len =
1042                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1043
1044                 last_sg->length += pad_len;
1045                 cmd->extra_len += pad_len;
1046         }
1047
1048         if (need_drain) {
1049                 sg_unmark_end(last_sg);
1050                 last_sg = sg_next(last_sg);
1051                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1052                 sg_mark_end(last_sg);
1053
1054                 cmd->extra_len += sdev->dma_drain_len;
1055                 count++;
1056         }
1057
1058         BUG_ON(count > cmd->sdb.table.nents);
1059         cmd->sdb.table.nents = count;
1060         cmd->sdb.length = blk_rq_payload_bytes(rq);
1061
1062         if (blk_integrity_rq(rq)) {
1063                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1064                 int ivecs;
1065
1066                 if (WARN_ON_ONCE(!prot_sdb)) {
1067                         /*
1068                          * This can happen if someone (e.g. multipath)
1069                          * queues a command to a device on an adapter
1070                          * that does not support DIX.
1071                          */
1072                         ret = BLK_STS_IOERR;
1073                         goto out_free_sgtables;
1074                 }
1075
1076                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077
1078                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1079                                 prot_sdb->table.sgl,
1080                                 SCSI_INLINE_PROT_SG_CNT)) {
1081                         ret = BLK_STS_RESOURCE;
1082                         goto out_free_sgtables;
1083                 }
1084
1085                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1086                                                 prot_sdb->table.sgl);
1087                 BUG_ON(count > ivecs);
1088                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1089
1090                 cmd->prot_sdb = prot_sdb;
1091                 cmd->prot_sdb->table.nents = count;
1092         }
1093
1094         return BLK_STS_OK;
1095 out_free_sgtables:
1096         scsi_free_sgtables(cmd);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(scsi_alloc_sgtables);
1100
1101 /**
1102  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1103  * @rq: Request associated with the SCSI command to be initialized.
1104  *
1105  * This function initializes the members of struct scsi_cmnd that must be
1106  * initialized before request processing starts and that won't be
1107  * reinitialized if a SCSI command is requeued.
1108  */
1109 static void scsi_initialize_rq(struct request *rq)
1110 {
1111         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1112
1113         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1114         cmd->cmd_len = MAX_COMMAND_SIZE;
1115         cmd->sense_len = 0;
1116         init_rcu_head(&cmd->rcu);
1117         cmd->jiffies_at_alloc = jiffies;
1118         cmd->retries = 0;
1119 }
1120
1121 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1122                                    blk_mq_req_flags_t flags)
1123 {
1124         struct request *rq;
1125
1126         rq = blk_mq_alloc_request(q, opf, flags);
1127         if (!IS_ERR(rq))
1128                 scsi_initialize_rq(rq);
1129         return rq;
1130 }
1131 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1132
1133 /*
1134  * Only called when the request isn't completed by SCSI, and not freed by
1135  * SCSI
1136  */
1137 static void scsi_cleanup_rq(struct request *rq)
1138 {
1139         if (rq->rq_flags & RQF_DONTPREP) {
1140                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1141                 rq->rq_flags &= ~RQF_DONTPREP;
1142         }
1143 }
1144
1145 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1146 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1147 {
1148         struct request *rq = scsi_cmd_to_rq(cmd);
1149
1150         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1151                 cmd->flags |= SCMD_INITIALIZED;
1152                 scsi_initialize_rq(rq);
1153         }
1154
1155         cmd->device = dev;
1156         INIT_LIST_HEAD(&cmd->eh_entry);
1157         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1158 }
1159
1160 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1161                 struct request *req)
1162 {
1163         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1164
1165         /*
1166          * Passthrough requests may transfer data, in which case they must
1167          * a bio attached to them.  Or they might contain a SCSI command
1168          * that does not transfer data, in which case they may optionally
1169          * submit a request without an attached bio.
1170          */
1171         if (req->bio) {
1172                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1173                 if (unlikely(ret != BLK_STS_OK))
1174                         return ret;
1175         } else {
1176                 BUG_ON(blk_rq_bytes(req));
1177
1178                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1179         }
1180
1181         cmd->transfersize = blk_rq_bytes(req);
1182         return BLK_STS_OK;
1183 }
1184
1185 static blk_status_t
1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1187 {
1188         switch (sdev->sdev_state) {
1189         case SDEV_CREATED:
1190                 return BLK_STS_OK;
1191         case SDEV_OFFLINE:
1192         case SDEV_TRANSPORT_OFFLINE:
1193                 /*
1194                  * If the device is offline we refuse to process any
1195                  * commands.  The device must be brought online
1196                  * before trying any recovery commands.
1197                  */
1198                 if (!sdev->offline_already) {
1199                         sdev->offline_already = true;
1200                         sdev_printk(KERN_ERR, sdev,
1201                                     "rejecting I/O to offline device\n");
1202                 }
1203                 return BLK_STS_IOERR;
1204         case SDEV_DEL:
1205                 /*
1206                  * If the device is fully deleted, we refuse to
1207                  * process any commands as well.
1208                  */
1209                 sdev_printk(KERN_ERR, sdev,
1210                             "rejecting I/O to dead device\n");
1211                 return BLK_STS_IOERR;
1212         case SDEV_BLOCK:
1213         case SDEV_CREATED_BLOCK:
1214                 return BLK_STS_RESOURCE;
1215         case SDEV_QUIESCE:
1216                 /*
1217                  * If the device is blocked we only accept power management
1218                  * commands.
1219                  */
1220                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1221                         return BLK_STS_RESOURCE;
1222                 return BLK_STS_OK;
1223         default:
1224                 /*
1225                  * For any other not fully online state we only allow
1226                  * power management commands.
1227                  */
1228                 if (req && !(req->rq_flags & RQF_PM))
1229                         return BLK_STS_OFFLINE;
1230                 return BLK_STS_OK;
1231         }
1232 }
1233
1234 /*
1235  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1236  * and return the token else return -1.
1237  */
1238 static inline int scsi_dev_queue_ready(struct request_queue *q,
1239                                   struct scsi_device *sdev)
1240 {
1241         int token;
1242
1243         token = sbitmap_get(&sdev->budget_map);
1244         if (atomic_read(&sdev->device_blocked)) {
1245                 if (token < 0)
1246                         goto out;
1247
1248                 if (scsi_device_busy(sdev) > 1)
1249                         goto out_dec;
1250
1251                 /*
1252                  * unblock after device_blocked iterates to zero
1253                  */
1254                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1255                         goto out_dec;
1256                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1257                                    "unblocking device at zero depth\n"));
1258         }
1259
1260         return token;
1261 out_dec:
1262         if (token >= 0)
1263                 sbitmap_put(&sdev->budget_map, token);
1264 out:
1265         return -1;
1266 }
1267
1268 /*
1269  * scsi_target_queue_ready: checks if there we can send commands to target
1270  * @sdev: scsi device on starget to check.
1271  */
1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273                                            struct scsi_device *sdev)
1274 {
1275         struct scsi_target *starget = scsi_target(sdev);
1276         unsigned int busy;
1277
1278         if (starget->single_lun) {
1279                 spin_lock_irq(shost->host_lock);
1280                 if (starget->starget_sdev_user &&
1281                     starget->starget_sdev_user != sdev) {
1282                         spin_unlock_irq(shost->host_lock);
1283                         return 0;
1284                 }
1285                 starget->starget_sdev_user = sdev;
1286                 spin_unlock_irq(shost->host_lock);
1287         }
1288
1289         if (starget->can_queue <= 0)
1290                 return 1;
1291
1292         busy = atomic_inc_return(&starget->target_busy) - 1;
1293         if (atomic_read(&starget->target_blocked) > 0) {
1294                 if (busy)
1295                         goto starved;
1296
1297                 /*
1298                  * unblock after target_blocked iterates to zero
1299                  */
1300                 if (atomic_dec_return(&starget->target_blocked) > 0)
1301                         goto out_dec;
1302
1303                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1304                                  "unblocking target at zero depth\n"));
1305         }
1306
1307         if (busy >= starget->can_queue)
1308                 goto starved;
1309
1310         return 1;
1311
1312 starved:
1313         spin_lock_irq(shost->host_lock);
1314         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1315         spin_unlock_irq(shost->host_lock);
1316 out_dec:
1317         if (starget->can_queue > 0)
1318                 atomic_dec(&starget->target_busy);
1319         return 0;
1320 }
1321
1322 /*
1323  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1324  * return 0. We must end up running the queue again whenever 0 is
1325  * returned, else IO can hang.
1326  */
1327 static inline int scsi_host_queue_ready(struct request_queue *q,
1328                                    struct Scsi_Host *shost,
1329                                    struct scsi_device *sdev,
1330                                    struct scsi_cmnd *cmd)
1331 {
1332         if (scsi_host_in_recovery(shost))
1333                 return 0;
1334
1335         if (atomic_read(&shost->host_blocked) > 0) {
1336                 if (scsi_host_busy(shost) > 0)
1337                         goto starved;
1338
1339                 /*
1340                  * unblock after host_blocked iterates to zero
1341                  */
1342                 if (atomic_dec_return(&shost->host_blocked) > 0)
1343                         goto out_dec;
1344
1345                 SCSI_LOG_MLQUEUE(3,
1346                         shost_printk(KERN_INFO, shost,
1347                                      "unblocking host at zero depth\n"));
1348         }
1349
1350         if (shost->host_self_blocked)
1351                 goto starved;
1352
1353         /* We're OK to process the command, so we can't be starved */
1354         if (!list_empty(&sdev->starved_entry)) {
1355                 spin_lock_irq(shost->host_lock);
1356                 if (!list_empty(&sdev->starved_entry))
1357                         list_del_init(&sdev->starved_entry);
1358                 spin_unlock_irq(shost->host_lock);
1359         }
1360
1361         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1362
1363         return 1;
1364
1365 starved:
1366         spin_lock_irq(shost->host_lock);
1367         if (list_empty(&sdev->starved_entry))
1368                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1369         spin_unlock_irq(shost->host_lock);
1370 out_dec:
1371         scsi_dec_host_busy(shost, cmd);
1372         return 0;
1373 }
1374
1375 /*
1376  * Busy state exporting function for request stacking drivers.
1377  *
1378  * For efficiency, no lock is taken to check the busy state of
1379  * shost/starget/sdev, since the returned value is not guaranteed and
1380  * may be changed after request stacking drivers call the function,
1381  * regardless of taking lock or not.
1382  *
1383  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384  * needs to return 'not busy'. Otherwise, request stacking drivers
1385  * may hold requests forever.
1386  */
1387 static bool scsi_mq_lld_busy(struct request_queue *q)
1388 {
1389         struct scsi_device *sdev = q->queuedata;
1390         struct Scsi_Host *shost;
1391
1392         if (blk_queue_dying(q))
1393                 return false;
1394
1395         shost = sdev->host;
1396
1397         /*
1398          * Ignore host/starget busy state.
1399          * Since block layer does not have a concept of fairness across
1400          * multiple queues, congestion of host/starget needs to be handled
1401          * in SCSI layer.
1402          */
1403         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404                 return true;
1405
1406         return false;
1407 }
1408
1409 /*
1410  * Block layer request completion callback. May be called from interrupt
1411  * context.
1412  */
1413 static void scsi_complete(struct request *rq)
1414 {
1415         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1416         enum scsi_disposition disposition;
1417
1418         INIT_LIST_HEAD(&cmd->eh_entry);
1419
1420         atomic_inc(&cmd->device->iodone_cnt);
1421         if (cmd->result)
1422                 atomic_inc(&cmd->device->ioerr_cnt);
1423
1424         disposition = scsi_decide_disposition(cmd);
1425         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1426                 disposition = SUCCESS;
1427
1428         scsi_log_completion(cmd, disposition);
1429
1430         switch (disposition) {
1431         case SUCCESS:
1432                 scsi_finish_command(cmd);
1433                 break;
1434         case NEEDS_RETRY:
1435                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436                 break;
1437         case ADD_TO_MLQUEUE:
1438                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439                 break;
1440         default:
1441                 scsi_eh_scmd_add(cmd);
1442                 break;
1443         }
1444 }
1445
1446 /**
1447  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448  * @cmd: command block we are dispatching.
1449  *
1450  * Return: nonzero return request was rejected and device's queue needs to be
1451  * plugged.
1452  */
1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455         struct Scsi_Host *host = cmd->device->host;
1456         int rtn = 0;
1457
1458         atomic_inc(&cmd->device->iorequest_cnt);
1459
1460         /* check if the device is still usable */
1461         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463                  * returns an immediate error upwards, and signals
1464                  * that the device is no longer present */
1465                 cmd->result = DID_NO_CONNECT << 16;
1466                 goto done;
1467         }
1468
1469         /* Check to see if the scsi lld made this device blocked. */
1470         if (unlikely(scsi_device_blocked(cmd->device))) {
1471                 /*
1472                  * in blocked state, the command is just put back on
1473                  * the device queue.  The suspend state has already
1474                  * blocked the queue so future requests should not
1475                  * occur until the device transitions out of the
1476                  * suspend state.
1477                  */
1478                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479                         "queuecommand : device blocked\n"));
1480                 return SCSI_MLQUEUE_DEVICE_BUSY;
1481         }
1482
1483         /* Store the LUN value in cmnd, if needed. */
1484         if (cmd->device->lun_in_cdb)
1485                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1486                                (cmd->device->lun << 5 & 0xe0);
1487
1488         scsi_log_send(cmd);
1489
1490         /*
1491          * Before we queue this command, check if the command
1492          * length exceeds what the host adapter can handle.
1493          */
1494         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1495                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496                                "queuecommand : command too long. "
1497                                "cdb_size=%d host->max_cmd_len=%d\n",
1498                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1499                 cmd->result = (DID_ABORT << 16);
1500                 goto done;
1501         }
1502
1503         if (unlikely(host->shost_state == SHOST_DEL)) {
1504                 cmd->result = (DID_NO_CONNECT << 16);
1505                 goto done;
1506
1507         }
1508
1509         trace_scsi_dispatch_cmd_start(cmd);
1510         rtn = host->hostt->queuecommand(host, cmd);
1511         if (rtn) {
1512                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1513                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1514                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1515                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1516
1517                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518                         "queuecommand : request rejected\n"));
1519         }
1520
1521         return rtn;
1522  done:
1523         scsi_done(cmd);
1524         return 0;
1525 }
1526
1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1529 {
1530         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1531                 sizeof(struct scatterlist);
1532 }
1533
1534 static blk_status_t scsi_prepare_cmd(struct request *req)
1535 {
1536         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1537         struct scsi_device *sdev = req->q->queuedata;
1538         struct Scsi_Host *shost = sdev->host;
1539         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1540         struct scatterlist *sg;
1541
1542         scsi_init_command(sdev, cmd);
1543
1544         cmd->eh_eflags = 0;
1545         cmd->allowed = 0;
1546         cmd->prot_type = 0;
1547         cmd->prot_flags = 0;
1548         cmd->submitter = 0;
1549         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1550         cmd->underflow = 0;
1551         cmd->transfersize = 0;
1552         cmd->host_scribble = NULL;
1553         cmd->result = 0;
1554         cmd->extra_len = 0;
1555         cmd->state = 0;
1556         if (in_flight)
1557                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1558
1559         /*
1560          * Only clear the driver-private command data if the LLD does not supply
1561          * a function to initialize that data.
1562          */
1563         if (!shost->hostt->init_cmd_priv)
1564                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1565
1566         cmd->prot_op = SCSI_PROT_NORMAL;
1567         if (blk_rq_bytes(req))
1568                 cmd->sc_data_direction = rq_dma_dir(req);
1569         else
1570                 cmd->sc_data_direction = DMA_NONE;
1571
1572         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1573         cmd->sdb.table.sgl = sg;
1574
1575         if (scsi_host_get_prot(shost)) {
1576                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1577
1578                 cmd->prot_sdb->table.sgl =
1579                         (struct scatterlist *)(cmd->prot_sdb + 1);
1580         }
1581
1582         /*
1583          * Special handling for passthrough commands, which don't go to the ULP
1584          * at all:
1585          */
1586         if (blk_rq_is_passthrough(req))
1587                 return scsi_setup_scsi_cmnd(sdev, req);
1588
1589         if (sdev->handler && sdev->handler->prep_fn) {
1590                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1591
1592                 if (ret != BLK_STS_OK)
1593                         return ret;
1594         }
1595
1596         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1597         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1598 }
1599
1600 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1601 {
1602         struct request *req = scsi_cmd_to_rq(cmd);
1603
1604         switch (cmd->submitter) {
1605         case SUBMITTED_BY_BLOCK_LAYER:
1606                 break;
1607         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1608                 return scsi_eh_done(cmd);
1609         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1610                 return;
1611         }
1612
1613         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1614                 return;
1615         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1616                 return;
1617         trace_scsi_dispatch_cmd_done(cmd);
1618
1619         if (complete_directly)
1620                 blk_mq_complete_request_direct(req, scsi_complete);
1621         else
1622                 blk_mq_complete_request(req);
1623 }
1624
1625 void scsi_done(struct scsi_cmnd *cmd)
1626 {
1627         scsi_done_internal(cmd, false);
1628 }
1629 EXPORT_SYMBOL(scsi_done);
1630
1631 void scsi_done_direct(struct scsi_cmnd *cmd)
1632 {
1633         scsi_done_internal(cmd, true);
1634 }
1635 EXPORT_SYMBOL(scsi_done_direct);
1636
1637 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1638 {
1639         struct scsi_device *sdev = q->queuedata;
1640
1641         sbitmap_put(&sdev->budget_map, budget_token);
1642 }
1643
1644 /*
1645  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1646  * not change behaviour from the previous unplug mechanism, experimentation
1647  * may prove this needs changing.
1648  */
1649 #define SCSI_QUEUE_DELAY 3
1650
1651 static int scsi_mq_get_budget(struct request_queue *q)
1652 {
1653         struct scsi_device *sdev = q->queuedata;
1654         int token = scsi_dev_queue_ready(q, sdev);
1655
1656         if (token >= 0)
1657                 return token;
1658
1659         atomic_inc(&sdev->restarts);
1660
1661         /*
1662          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1663          * .restarts must be incremented before .device_busy is read because the
1664          * code in scsi_run_queue_async() depends on the order of these operations.
1665          */
1666         smp_mb__after_atomic();
1667
1668         /*
1669          * If all in-flight requests originated from this LUN are completed
1670          * before reading .device_busy, sdev->device_busy will be observed as
1671          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1672          * soon. Otherwise, completion of one of these requests will observe
1673          * the .restarts flag, and the request queue will be run for handling
1674          * this request, see scsi_end_request().
1675          */
1676         if (unlikely(scsi_device_busy(sdev) == 0 &&
1677                                 !scsi_device_blocked(sdev)))
1678                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1679         return -1;
1680 }
1681
1682 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1683 {
1684         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1685
1686         cmd->budget_token = token;
1687 }
1688
1689 static int scsi_mq_get_rq_budget_token(struct request *req)
1690 {
1691         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692
1693         return cmd->budget_token;
1694 }
1695
1696 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1697                          const struct blk_mq_queue_data *bd)
1698 {
1699         struct request *req = bd->rq;
1700         struct request_queue *q = req->q;
1701         struct scsi_device *sdev = q->queuedata;
1702         struct Scsi_Host *shost = sdev->host;
1703         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1704         blk_status_t ret;
1705         int reason;
1706
1707         WARN_ON_ONCE(cmd->budget_token < 0);
1708
1709         /*
1710          * If the device is not in running state we will reject some or all
1711          * commands.
1712          */
1713         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1714                 ret = scsi_device_state_check(sdev, req);
1715                 if (ret != BLK_STS_OK)
1716                         goto out_put_budget;
1717         }
1718
1719         ret = BLK_STS_RESOURCE;
1720         if (!scsi_target_queue_ready(shost, sdev))
1721                 goto out_put_budget;
1722         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1723                 goto out_dec_target_busy;
1724
1725         if (!(req->rq_flags & RQF_DONTPREP)) {
1726                 ret = scsi_prepare_cmd(req);
1727                 if (ret != BLK_STS_OK)
1728                         goto out_dec_host_busy;
1729                 req->rq_flags |= RQF_DONTPREP;
1730         } else {
1731                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1732         }
1733
1734         cmd->flags &= SCMD_PRESERVED_FLAGS;
1735         if (sdev->simple_tags)
1736                 cmd->flags |= SCMD_TAGGED;
1737         if (bd->last)
1738                 cmd->flags |= SCMD_LAST;
1739
1740         scsi_set_resid(cmd, 0);
1741         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1742         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1743
1744         blk_mq_start_request(req);
1745         reason = scsi_dispatch_cmd(cmd);
1746         if (reason) {
1747                 scsi_set_blocked(cmd, reason);
1748                 ret = BLK_STS_RESOURCE;
1749                 goto out_dec_host_busy;
1750         }
1751
1752         return BLK_STS_OK;
1753
1754 out_dec_host_busy:
1755         scsi_dec_host_busy(shost, cmd);
1756 out_dec_target_busy:
1757         if (scsi_target(sdev)->can_queue > 0)
1758                 atomic_dec(&scsi_target(sdev)->target_busy);
1759 out_put_budget:
1760         scsi_mq_put_budget(q, cmd->budget_token);
1761         cmd->budget_token = -1;
1762         switch (ret) {
1763         case BLK_STS_OK:
1764                 break;
1765         case BLK_STS_RESOURCE:
1766         case BLK_STS_ZONE_RESOURCE:
1767                 if (scsi_device_blocked(sdev))
1768                         ret = BLK_STS_DEV_RESOURCE;
1769                 break;
1770         case BLK_STS_AGAIN:
1771                 cmd->result = DID_BUS_BUSY << 16;
1772                 if (req->rq_flags & RQF_DONTPREP)
1773                         scsi_mq_uninit_cmd(cmd);
1774                 break;
1775         default:
1776                 if (unlikely(!scsi_device_online(sdev)))
1777                         cmd->result = DID_NO_CONNECT << 16;
1778                 else
1779                         cmd->result = DID_ERROR << 16;
1780                 /*
1781                  * Make sure to release all allocated resources when
1782                  * we hit an error, as we will never see this command
1783                  * again.
1784                  */
1785                 if (req->rq_flags & RQF_DONTPREP)
1786                         scsi_mq_uninit_cmd(cmd);
1787                 scsi_run_queue_async(sdev);
1788                 break;
1789         }
1790         return ret;
1791 }
1792
1793 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1794                                 unsigned int hctx_idx, unsigned int numa_node)
1795 {
1796         struct Scsi_Host *shost = set->driver_data;
1797         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1798         struct scatterlist *sg;
1799         int ret = 0;
1800
1801         cmd->sense_buffer =
1802                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1803         if (!cmd->sense_buffer)
1804                 return -ENOMEM;
1805
1806         if (scsi_host_get_prot(shost)) {
1807                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1808                         shost->hostt->cmd_size;
1809                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1810         }
1811
1812         if (shost->hostt->init_cmd_priv) {
1813                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1814                 if (ret < 0)
1815                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1816         }
1817
1818         return ret;
1819 }
1820
1821 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1822                                  unsigned int hctx_idx)
1823 {
1824         struct Scsi_Host *shost = set->driver_data;
1825         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1826
1827         if (shost->hostt->exit_cmd_priv)
1828                 shost->hostt->exit_cmd_priv(shost, cmd);
1829         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830 }
1831
1832
1833 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1834 {
1835         struct Scsi_Host *shost = hctx->driver_data;
1836
1837         if (shost->hostt->mq_poll)
1838                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1839
1840         return 0;
1841 }
1842
1843 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1844                           unsigned int hctx_idx)
1845 {
1846         struct Scsi_Host *shost = data;
1847
1848         hctx->driver_data = shost;
1849         return 0;
1850 }
1851
1852 static int scsi_map_queues(struct blk_mq_tag_set *set)
1853 {
1854         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1855
1856         if (shost->hostt->map_queues)
1857                 return shost->hostt->map_queues(shost);
1858         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1859 }
1860
1861 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1862 {
1863         struct device *dev = shost->dma_dev;
1864
1865         /*
1866          * this limit is imposed by hardware restrictions
1867          */
1868         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1869                                         SG_MAX_SEGMENTS));
1870
1871         if (scsi_host_prot_dma(shost)) {
1872                 shost->sg_prot_tablesize =
1873                         min_not_zero(shost->sg_prot_tablesize,
1874                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1875                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1876                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1877         }
1878
1879         blk_queue_max_hw_sectors(q, shost->max_sectors);
1880         blk_queue_segment_boundary(q, shost->dma_boundary);
1881         dma_set_seg_boundary(dev, shost->dma_boundary);
1882
1883         blk_queue_max_segment_size(q, shost->max_segment_size);
1884         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1885         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1886
1887         /*
1888          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1889          * which is a common minimum for HBAs, and the minimum DMA alignment,
1890          * which is set by the platform.
1891          *
1892          * Devices that require a bigger alignment can increase it later.
1893          */
1894         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1895 }
1896 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1897
1898 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1899         .get_budget     = scsi_mq_get_budget,
1900         .put_budget     = scsi_mq_put_budget,
1901         .queue_rq       = scsi_queue_rq,
1902         .complete       = scsi_complete,
1903         .timeout        = scsi_timeout,
1904 #ifdef CONFIG_BLK_DEBUG_FS
1905         .show_rq        = scsi_show_rq,
1906 #endif
1907         .init_request   = scsi_mq_init_request,
1908         .exit_request   = scsi_mq_exit_request,
1909         .cleanup_rq     = scsi_cleanup_rq,
1910         .busy           = scsi_mq_lld_busy,
1911         .map_queues     = scsi_map_queues,
1912         .init_hctx      = scsi_init_hctx,
1913         .poll           = scsi_mq_poll,
1914         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1915         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1916 };
1917
1918
1919 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1920 {
1921         struct Scsi_Host *shost = hctx->driver_data;
1922
1923         shost->hostt->commit_rqs(shost, hctx->queue_num);
1924 }
1925
1926 static const struct blk_mq_ops scsi_mq_ops = {
1927         .get_budget     = scsi_mq_get_budget,
1928         .put_budget     = scsi_mq_put_budget,
1929         .queue_rq       = scsi_queue_rq,
1930         .commit_rqs     = scsi_commit_rqs,
1931         .complete       = scsi_complete,
1932         .timeout        = scsi_timeout,
1933 #ifdef CONFIG_BLK_DEBUG_FS
1934         .show_rq        = scsi_show_rq,
1935 #endif
1936         .init_request   = scsi_mq_init_request,
1937         .exit_request   = scsi_mq_exit_request,
1938         .cleanup_rq     = scsi_cleanup_rq,
1939         .busy           = scsi_mq_lld_busy,
1940         .map_queues     = scsi_map_queues,
1941         .init_hctx      = scsi_init_hctx,
1942         .poll           = scsi_mq_poll,
1943         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1944         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1945 };
1946
1947 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1948 {
1949         unsigned int cmd_size, sgl_size;
1950         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1951
1952         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1953                                 scsi_mq_inline_sgl_size(shost));
1954         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1955         if (scsi_host_get_prot(shost))
1956                 cmd_size += sizeof(struct scsi_data_buffer) +
1957                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1958
1959         memset(tag_set, 0, sizeof(*tag_set));
1960         if (shost->hostt->commit_rqs)
1961                 tag_set->ops = &scsi_mq_ops;
1962         else
1963                 tag_set->ops = &scsi_mq_ops_no_commit;
1964         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1965         tag_set->nr_maps = shost->nr_maps ? : 1;
1966         tag_set->queue_depth = shost->can_queue;
1967         tag_set->cmd_size = cmd_size;
1968         tag_set->numa_node = dev_to_node(shost->dma_dev);
1969         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1970         tag_set->flags |=
1971                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1972         tag_set->driver_data = shost;
1973         if (shost->host_tagset)
1974                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1975
1976         return blk_mq_alloc_tag_set(tag_set);
1977 }
1978
1979 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1980 {
1981         blk_mq_free_tag_set(&shost->tag_set);
1982 }
1983
1984 /**
1985  * scsi_device_from_queue - return sdev associated with a request_queue
1986  * @q: The request queue to return the sdev from
1987  *
1988  * Return the sdev associated with a request queue or NULL if the
1989  * request_queue does not reference a SCSI device.
1990  */
1991 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1992 {
1993         struct scsi_device *sdev = NULL;
1994
1995         if (q->mq_ops == &scsi_mq_ops_no_commit ||
1996             q->mq_ops == &scsi_mq_ops)
1997                 sdev = q->queuedata;
1998         if (!sdev || !get_device(&sdev->sdev_gendev))
1999                 sdev = NULL;
2000
2001         return sdev;
2002 }
2003 /*
2004  * pktcdvd should have been integrated into the SCSI layers, but for historical
2005  * reasons like the old IDE driver it isn't.  This export allows it to safely
2006  * probe if a given device is a SCSI one and only attach to that.
2007  */
2008 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2009 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2010 #endif
2011
2012 /**
2013  * scsi_block_requests - Utility function used by low-level drivers to prevent
2014  * further commands from being queued to the device.
2015  * @shost:  host in question
2016  *
2017  * There is no timer nor any other means by which the requests get unblocked
2018  * other than the low-level driver calling scsi_unblock_requests().
2019  */
2020 void scsi_block_requests(struct Scsi_Host *shost)
2021 {
2022         shost->host_self_blocked = 1;
2023 }
2024 EXPORT_SYMBOL(scsi_block_requests);
2025
2026 /**
2027  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2028  * further commands to be queued to the device.
2029  * @shost:  host in question
2030  *
2031  * There is no timer nor any other means by which the requests get unblocked
2032  * other than the low-level driver calling scsi_unblock_requests(). This is done
2033  * as an API function so that changes to the internals of the scsi mid-layer
2034  * won't require wholesale changes to drivers that use this feature.
2035  */
2036 void scsi_unblock_requests(struct Scsi_Host *shost)
2037 {
2038         shost->host_self_blocked = 0;
2039         scsi_run_host_queues(shost);
2040 }
2041 EXPORT_SYMBOL(scsi_unblock_requests);
2042
2043 void scsi_exit_queue(void)
2044 {
2045         kmem_cache_destroy(scsi_sense_cache);
2046 }
2047
2048 /**
2049  *      scsi_mode_select - issue a mode select
2050  *      @sdev:  SCSI device to be queried
2051  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2052  *      @sp:    Save page bit (0 == don't save, 1 == save)
2053  *      @buffer: request buffer (may not be smaller than eight bytes)
2054  *      @len:   length of request buffer.
2055  *      @timeout: command timeout
2056  *      @retries: number of retries before failing
2057  *      @data: returns a structure abstracting the mode header data
2058  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2059  *              must be SCSI_SENSE_BUFFERSIZE big.
2060  *
2061  *      Returns zero if successful; negative error number or scsi
2062  *      status on error
2063  *
2064  */
2065 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2066                      unsigned char *buffer, int len, int timeout, int retries,
2067                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2068 {
2069         unsigned char cmd[10];
2070         unsigned char *real_buffer;
2071         int ret;
2072
2073         memset(cmd, 0, sizeof(cmd));
2074         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2075
2076         /*
2077          * Use MODE SELECT(10) if the device asked for it or if the mode page
2078          * and the mode select header cannot fit within the maximumm 255 bytes
2079          * of the MODE SELECT(6) command.
2080          */
2081         if (sdev->use_10_for_ms ||
2082             len + 4 > 255 ||
2083             data->block_descriptor_length > 255) {
2084                 if (len > 65535 - 8)
2085                         return -EINVAL;
2086                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2087                 if (!real_buffer)
2088                         return -ENOMEM;
2089                 memcpy(real_buffer + 8, buffer, len);
2090                 len += 8;
2091                 real_buffer[0] = 0;
2092                 real_buffer[1] = 0;
2093                 real_buffer[2] = data->medium_type;
2094                 real_buffer[3] = data->device_specific;
2095                 real_buffer[4] = data->longlba ? 0x01 : 0;
2096                 real_buffer[5] = 0;
2097                 put_unaligned_be16(data->block_descriptor_length,
2098                                    &real_buffer[6]);
2099
2100                 cmd[0] = MODE_SELECT_10;
2101                 put_unaligned_be16(len, &cmd[7]);
2102         } else {
2103                 if (data->longlba)
2104                         return -EINVAL;
2105
2106                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2107                 if (!real_buffer)
2108                         return -ENOMEM;
2109                 memcpy(real_buffer + 4, buffer, len);
2110                 len += 4;
2111                 real_buffer[0] = 0;
2112                 real_buffer[1] = data->medium_type;
2113                 real_buffer[2] = data->device_specific;
2114                 real_buffer[3] = data->block_descriptor_length;
2115
2116                 cmd[0] = MODE_SELECT;
2117                 cmd[4] = len;
2118         }
2119
2120         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2121                                sshdr, timeout, retries, NULL);
2122         kfree(real_buffer);
2123         return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(scsi_mode_select);
2126
2127 /**
2128  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2129  *      @sdev:  SCSI device to be queried
2130  *      @dbd:   set to prevent mode sense from returning block descriptors
2131  *      @modepage: mode page being requested
2132  *      @buffer: request buffer (may not be smaller than eight bytes)
2133  *      @len:   length of request buffer.
2134  *      @timeout: command timeout
2135  *      @retries: number of retries before failing
2136  *      @data: returns a structure abstracting the mode header data
2137  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2138  *              must be SCSI_SENSE_BUFFERSIZE big.
2139  *
2140  *      Returns zero if successful, or a negative error number on failure
2141  */
2142 int
2143 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2144                   unsigned char *buffer, int len, int timeout, int retries,
2145                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2146 {
2147         unsigned char cmd[12];
2148         int use_10_for_ms;
2149         int header_length;
2150         int result, retry_count = retries;
2151         struct scsi_sense_hdr my_sshdr;
2152
2153         memset(data, 0, sizeof(*data));
2154         memset(&cmd[0], 0, 12);
2155
2156         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2157         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2158         cmd[2] = modepage;
2159
2160         /* caller might not be interested in sense, but we need it */
2161         if (!sshdr)
2162                 sshdr = &my_sshdr;
2163
2164  retry:
2165         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2166
2167         if (use_10_for_ms) {
2168                 if (len < 8 || len > 65535)
2169                         return -EINVAL;
2170
2171                 cmd[0] = MODE_SENSE_10;
2172                 put_unaligned_be16(len, &cmd[7]);
2173                 header_length = 8;
2174         } else {
2175                 if (len < 4)
2176                         return -EINVAL;
2177
2178                 cmd[0] = MODE_SENSE;
2179                 cmd[4] = len;
2180                 header_length = 4;
2181         }
2182
2183         memset(buffer, 0, len);
2184
2185         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2186                                   sshdr, timeout, retries, NULL);
2187         if (result < 0)
2188                 return result;
2189
2190         /* This code looks awful: what it's doing is making sure an
2191          * ILLEGAL REQUEST sense return identifies the actual command
2192          * byte as the problem.  MODE_SENSE commands can return
2193          * ILLEGAL REQUEST if the code page isn't supported */
2194
2195         if (!scsi_status_is_good(result)) {
2196                 if (scsi_sense_valid(sshdr)) {
2197                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2198                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2199                                 /*
2200                                  * Invalid command operation code: retry using
2201                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2202                                  * request, except if the request mode page is
2203                                  * too large for MODE SENSE single byte
2204                                  * allocation length field.
2205                                  */
2206                                 if (use_10_for_ms) {
2207                                         if (len > 255)
2208                                                 return -EIO;
2209                                         sdev->use_10_for_ms = 0;
2210                                         goto retry;
2211                                 }
2212                         }
2213                         if (scsi_status_is_check_condition(result) &&
2214                             sshdr->sense_key == UNIT_ATTENTION &&
2215                             retry_count) {
2216                                 retry_count--;
2217                                 goto retry;
2218                         }
2219                 }
2220                 return -EIO;
2221         }
2222         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2223                      (modepage == 6 || modepage == 8))) {
2224                 /* Initio breakage? */
2225                 header_length = 0;
2226                 data->length = 13;
2227                 data->medium_type = 0;
2228                 data->device_specific = 0;
2229                 data->longlba = 0;
2230                 data->block_descriptor_length = 0;
2231         } else if (use_10_for_ms) {
2232                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2233                 data->medium_type = buffer[2];
2234                 data->device_specific = buffer[3];
2235                 data->longlba = buffer[4] & 0x01;
2236                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2237         } else {
2238                 data->length = buffer[0] + 1;
2239                 data->medium_type = buffer[1];
2240                 data->device_specific = buffer[2];
2241                 data->block_descriptor_length = buffer[3];
2242         }
2243         data->header_length = header_length;
2244
2245         return 0;
2246 }
2247 EXPORT_SYMBOL(scsi_mode_sense);
2248
2249 /**
2250  *      scsi_test_unit_ready - test if unit is ready
2251  *      @sdev:  scsi device to change the state of.
2252  *      @timeout: command timeout
2253  *      @retries: number of retries before failing
2254  *      @sshdr: outpout pointer for decoded sense information.
2255  *
2256  *      Returns zero if unsuccessful or an error if TUR failed.  For
2257  *      removable media, UNIT_ATTENTION sets ->changed flag.
2258  **/
2259 int
2260 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2261                      struct scsi_sense_hdr *sshdr)
2262 {
2263         char cmd[] = {
2264                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2265         };
2266         int result;
2267
2268         /* try to eat the UNIT_ATTENTION if there are enough retries */
2269         do {
2270                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2271                                           timeout, 1, NULL);
2272                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2273                     sshdr->sense_key == UNIT_ATTENTION)
2274                         sdev->changed = 1;
2275         } while (scsi_sense_valid(sshdr) &&
2276                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2277
2278         return result;
2279 }
2280 EXPORT_SYMBOL(scsi_test_unit_ready);
2281
2282 /**
2283  *      scsi_device_set_state - Take the given device through the device state model.
2284  *      @sdev:  scsi device to change the state of.
2285  *      @state: state to change to.
2286  *
2287  *      Returns zero if successful or an error if the requested
2288  *      transition is illegal.
2289  */
2290 int
2291 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2292 {
2293         enum scsi_device_state oldstate = sdev->sdev_state;
2294
2295         if (state == oldstate)
2296                 return 0;
2297
2298         switch (state) {
2299         case SDEV_CREATED:
2300                 switch (oldstate) {
2301                 case SDEV_CREATED_BLOCK:
2302                         break;
2303                 default:
2304                         goto illegal;
2305                 }
2306                 break;
2307
2308         case SDEV_RUNNING:
2309                 switch (oldstate) {
2310                 case SDEV_CREATED:
2311                 case SDEV_OFFLINE:
2312                 case SDEV_TRANSPORT_OFFLINE:
2313                 case SDEV_QUIESCE:
2314                 case SDEV_BLOCK:
2315                         break;
2316                 default:
2317                         goto illegal;
2318                 }
2319                 break;
2320
2321         case SDEV_QUIESCE:
2322                 switch (oldstate) {
2323                 case SDEV_RUNNING:
2324                 case SDEV_OFFLINE:
2325                 case SDEV_TRANSPORT_OFFLINE:
2326                         break;
2327                 default:
2328                         goto illegal;
2329                 }
2330                 break;
2331
2332         case SDEV_OFFLINE:
2333         case SDEV_TRANSPORT_OFFLINE:
2334                 switch (oldstate) {
2335                 case SDEV_CREATED:
2336                 case SDEV_RUNNING:
2337                 case SDEV_QUIESCE:
2338                 case SDEV_BLOCK:
2339                         break;
2340                 default:
2341                         goto illegal;
2342                 }
2343                 break;
2344
2345         case SDEV_BLOCK:
2346                 switch (oldstate) {
2347                 case SDEV_RUNNING:
2348                 case SDEV_CREATED_BLOCK:
2349                 case SDEV_QUIESCE:
2350                 case SDEV_OFFLINE:
2351                         break;
2352                 default:
2353                         goto illegal;
2354                 }
2355                 break;
2356
2357         case SDEV_CREATED_BLOCK:
2358                 switch (oldstate) {
2359                 case SDEV_CREATED:
2360                         break;
2361                 default:
2362                         goto illegal;
2363                 }
2364                 break;
2365
2366         case SDEV_CANCEL:
2367                 switch (oldstate) {
2368                 case SDEV_CREATED:
2369                 case SDEV_RUNNING:
2370                 case SDEV_QUIESCE:
2371                 case SDEV_OFFLINE:
2372                 case SDEV_TRANSPORT_OFFLINE:
2373                         break;
2374                 default:
2375                         goto illegal;
2376                 }
2377                 break;
2378
2379         case SDEV_DEL:
2380                 switch (oldstate) {
2381                 case SDEV_CREATED:
2382                 case SDEV_RUNNING:
2383                 case SDEV_OFFLINE:
2384                 case SDEV_TRANSPORT_OFFLINE:
2385                 case SDEV_CANCEL:
2386                 case SDEV_BLOCK:
2387                 case SDEV_CREATED_BLOCK:
2388                         break;
2389                 default:
2390                         goto illegal;
2391                 }
2392                 break;
2393
2394         }
2395         sdev->offline_already = false;
2396         sdev->sdev_state = state;
2397         return 0;
2398
2399  illegal:
2400         SCSI_LOG_ERROR_RECOVERY(1,
2401                                 sdev_printk(KERN_ERR, sdev,
2402                                             "Illegal state transition %s->%s",
2403                                             scsi_device_state_name(oldstate),
2404                                             scsi_device_state_name(state))
2405                                 );
2406         return -EINVAL;
2407 }
2408 EXPORT_SYMBOL(scsi_device_set_state);
2409
2410 /**
2411  *      scsi_evt_emit - emit a single SCSI device uevent
2412  *      @sdev: associated SCSI device
2413  *      @evt: event to emit
2414  *
2415  *      Send a single uevent (scsi_event) to the associated scsi_device.
2416  */
2417 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2418 {
2419         int idx = 0;
2420         char *envp[3];
2421
2422         switch (evt->evt_type) {
2423         case SDEV_EVT_MEDIA_CHANGE:
2424                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2425                 break;
2426         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2427                 scsi_rescan_device(&sdev->sdev_gendev);
2428                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2429                 break;
2430         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2431                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2432                 break;
2433         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2434                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2435                 break;
2436         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2437                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2438                 break;
2439         case SDEV_EVT_LUN_CHANGE_REPORTED:
2440                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2441                 break;
2442         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2443                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2444                 break;
2445         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2446                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2447                 break;
2448         default:
2449                 /* do nothing */
2450                 break;
2451         }
2452
2453         envp[idx++] = NULL;
2454
2455         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2456 }
2457
2458 /**
2459  *      scsi_evt_thread - send a uevent for each scsi event
2460  *      @work: work struct for scsi_device
2461  *
2462  *      Dispatch queued events to their associated scsi_device kobjects
2463  *      as uevents.
2464  */
2465 void scsi_evt_thread(struct work_struct *work)
2466 {
2467         struct scsi_device *sdev;
2468         enum scsi_device_event evt_type;
2469         LIST_HEAD(event_list);
2470
2471         sdev = container_of(work, struct scsi_device, event_work);
2472
2473         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2474                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2475                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2476
2477         while (1) {
2478                 struct scsi_event *evt;
2479                 struct list_head *this, *tmp;
2480                 unsigned long flags;
2481
2482                 spin_lock_irqsave(&sdev->list_lock, flags);
2483                 list_splice_init(&sdev->event_list, &event_list);
2484                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2485
2486                 if (list_empty(&event_list))
2487                         break;
2488
2489                 list_for_each_safe(this, tmp, &event_list) {
2490                         evt = list_entry(this, struct scsi_event, node);
2491                         list_del(&evt->node);
2492                         scsi_evt_emit(sdev, evt);
2493                         kfree(evt);
2494                 }
2495         }
2496 }
2497
2498 /**
2499  *      sdev_evt_send - send asserted event to uevent thread
2500  *      @sdev: scsi_device event occurred on
2501  *      @evt: event to send
2502  *
2503  *      Assert scsi device event asynchronously.
2504  */
2505 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2506 {
2507         unsigned long flags;
2508
2509 #if 0
2510         /* FIXME: currently this check eliminates all media change events
2511          * for polled devices.  Need to update to discriminate between AN
2512          * and polled events */
2513         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2514                 kfree(evt);
2515                 return;
2516         }
2517 #endif
2518
2519         spin_lock_irqsave(&sdev->list_lock, flags);
2520         list_add_tail(&evt->node, &sdev->event_list);
2521         schedule_work(&sdev->event_work);
2522         spin_unlock_irqrestore(&sdev->list_lock, flags);
2523 }
2524 EXPORT_SYMBOL_GPL(sdev_evt_send);
2525
2526 /**
2527  *      sdev_evt_alloc - allocate a new scsi event
2528  *      @evt_type: type of event to allocate
2529  *      @gfpflags: GFP flags for allocation
2530  *
2531  *      Allocates and returns a new scsi_event.
2532  */
2533 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2534                                   gfp_t gfpflags)
2535 {
2536         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2537         if (!evt)
2538                 return NULL;
2539
2540         evt->evt_type = evt_type;
2541         INIT_LIST_HEAD(&evt->node);
2542
2543         /* evt_type-specific initialization, if any */
2544         switch (evt_type) {
2545         case SDEV_EVT_MEDIA_CHANGE:
2546         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2547         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2548         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2549         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2550         case SDEV_EVT_LUN_CHANGE_REPORTED:
2551         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2552         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2553         default:
2554                 /* do nothing */
2555                 break;
2556         }
2557
2558         return evt;
2559 }
2560 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2561
2562 /**
2563  *      sdev_evt_send_simple - send asserted event to uevent thread
2564  *      @sdev: scsi_device event occurred on
2565  *      @evt_type: type of event to send
2566  *      @gfpflags: GFP flags for allocation
2567  *
2568  *      Assert scsi device event asynchronously, given an event type.
2569  */
2570 void sdev_evt_send_simple(struct scsi_device *sdev,
2571                           enum scsi_device_event evt_type, gfp_t gfpflags)
2572 {
2573         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2574         if (!evt) {
2575                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2576                             evt_type);
2577                 return;
2578         }
2579
2580         sdev_evt_send(sdev, evt);
2581 }
2582 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2583
2584 /**
2585  *      scsi_device_quiesce - Block all commands except power management.
2586  *      @sdev:  scsi device to quiesce.
2587  *
2588  *      This works by trying to transition to the SDEV_QUIESCE state
2589  *      (which must be a legal transition).  When the device is in this
2590  *      state, only power management requests will be accepted, all others will
2591  *      be deferred.
2592  *
2593  *      Must be called with user context, may sleep.
2594  *
2595  *      Returns zero if unsuccessful or an error if not.
2596  */
2597 int
2598 scsi_device_quiesce(struct scsi_device *sdev)
2599 {
2600         struct request_queue *q = sdev->request_queue;
2601         int err;
2602
2603         /*
2604          * It is allowed to call scsi_device_quiesce() multiple times from
2605          * the same context but concurrent scsi_device_quiesce() calls are
2606          * not allowed.
2607          */
2608         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2609
2610         if (sdev->quiesced_by == current)
2611                 return 0;
2612
2613         blk_set_pm_only(q);
2614
2615         blk_mq_freeze_queue(q);
2616         /*
2617          * Ensure that the effect of blk_set_pm_only() will be visible
2618          * for percpu_ref_tryget() callers that occur after the queue
2619          * unfreeze even if the queue was already frozen before this function
2620          * was called. See also https://lwn.net/Articles/573497/.
2621          */
2622         synchronize_rcu();
2623         blk_mq_unfreeze_queue(q);
2624
2625         mutex_lock(&sdev->state_mutex);
2626         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2627         if (err == 0)
2628                 sdev->quiesced_by = current;
2629         else
2630                 blk_clear_pm_only(q);
2631         mutex_unlock(&sdev->state_mutex);
2632
2633         return err;
2634 }
2635 EXPORT_SYMBOL(scsi_device_quiesce);
2636
2637 /**
2638  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2639  *      @sdev:  scsi device to resume.
2640  *
2641  *      Moves the device from quiesced back to running and restarts the
2642  *      queues.
2643  *
2644  *      Must be called with user context, may sleep.
2645  */
2646 void scsi_device_resume(struct scsi_device *sdev)
2647 {
2648         /* check if the device state was mutated prior to resume, and if
2649          * so assume the state is being managed elsewhere (for example
2650          * device deleted during suspend)
2651          */
2652         mutex_lock(&sdev->state_mutex);
2653         if (sdev->sdev_state == SDEV_QUIESCE)
2654                 scsi_device_set_state(sdev, SDEV_RUNNING);
2655         if (sdev->quiesced_by) {
2656                 sdev->quiesced_by = NULL;
2657                 blk_clear_pm_only(sdev->request_queue);
2658         }
2659         mutex_unlock(&sdev->state_mutex);
2660 }
2661 EXPORT_SYMBOL(scsi_device_resume);
2662
2663 static void
2664 device_quiesce_fn(struct scsi_device *sdev, void *data)
2665 {
2666         scsi_device_quiesce(sdev);
2667 }
2668
2669 void
2670 scsi_target_quiesce(struct scsi_target *starget)
2671 {
2672         starget_for_each_device(starget, NULL, device_quiesce_fn);
2673 }
2674 EXPORT_SYMBOL(scsi_target_quiesce);
2675
2676 static void
2677 device_resume_fn(struct scsi_device *sdev, void *data)
2678 {
2679         scsi_device_resume(sdev);
2680 }
2681
2682 void
2683 scsi_target_resume(struct scsi_target *starget)
2684 {
2685         starget_for_each_device(starget, NULL, device_resume_fn);
2686 }
2687 EXPORT_SYMBOL(scsi_target_resume);
2688
2689 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2690 {
2691         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2692                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2693
2694         return 0;
2695 }
2696
2697 void scsi_start_queue(struct scsi_device *sdev)
2698 {
2699         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2700                 blk_mq_unquiesce_queue(sdev->request_queue);
2701 }
2702
2703 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2704 {
2705         /*
2706          * The atomic variable of ->queue_stopped covers that
2707          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2708          *
2709          * However, we still need to wait until quiesce is done
2710          * in case that queue has been stopped.
2711          */
2712         if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2713                 if (nowait)
2714                         blk_mq_quiesce_queue_nowait(sdev->request_queue);
2715                 else
2716                         blk_mq_quiesce_queue(sdev->request_queue);
2717         } else {
2718                 if (!nowait)
2719                         blk_mq_wait_quiesce_done(sdev->request_queue);
2720         }
2721 }
2722
2723 /**
2724  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2725  * @sdev: device to block
2726  *
2727  * Pause SCSI command processing on the specified device. Does not sleep.
2728  *
2729  * Returns zero if successful or a negative error code upon failure.
2730  *
2731  * Notes:
2732  * This routine transitions the device to the SDEV_BLOCK state (which must be
2733  * a legal transition). When the device is in this state, command processing
2734  * is paused until the device leaves the SDEV_BLOCK state. See also
2735  * scsi_internal_device_unblock_nowait().
2736  */
2737 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2738 {
2739         int ret = __scsi_internal_device_block_nowait(sdev);
2740
2741         /*
2742          * The device has transitioned to SDEV_BLOCK.  Stop the
2743          * block layer from calling the midlayer with this device's
2744          * request queue.
2745          */
2746         if (!ret)
2747                 scsi_stop_queue(sdev, true);
2748         return ret;
2749 }
2750 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2751
2752 /**
2753  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2754  * @sdev: device to block
2755  *
2756  * Pause SCSI command processing on the specified device and wait until all
2757  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2758  *
2759  * Returns zero if successful or a negative error code upon failure.
2760  *
2761  * Note:
2762  * This routine transitions the device to the SDEV_BLOCK state (which must be
2763  * a legal transition). When the device is in this state, command processing
2764  * is paused until the device leaves the SDEV_BLOCK state. See also
2765  * scsi_internal_device_unblock().
2766  */
2767 static int scsi_internal_device_block(struct scsi_device *sdev)
2768 {
2769         int err;
2770
2771         mutex_lock(&sdev->state_mutex);
2772         err = __scsi_internal_device_block_nowait(sdev);
2773         if (err == 0)
2774                 scsi_stop_queue(sdev, false);
2775         mutex_unlock(&sdev->state_mutex);
2776
2777         return err;
2778 }
2779
2780 /**
2781  * scsi_internal_device_unblock_nowait - resume a device after a block request
2782  * @sdev:       device to resume
2783  * @new_state:  state to set the device to after unblocking
2784  *
2785  * Restart the device queue for a previously suspended SCSI device. Does not
2786  * sleep.
2787  *
2788  * Returns zero if successful or a negative error code upon failure.
2789  *
2790  * Notes:
2791  * This routine transitions the device to the SDEV_RUNNING state or to one of
2792  * the offline states (which must be a legal transition) allowing the midlayer
2793  * to goose the queue for this device.
2794  */
2795 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2796                                         enum scsi_device_state new_state)
2797 {
2798         switch (new_state) {
2799         case SDEV_RUNNING:
2800         case SDEV_TRANSPORT_OFFLINE:
2801                 break;
2802         default:
2803                 return -EINVAL;
2804         }
2805
2806         /*
2807          * Try to transition the scsi device to SDEV_RUNNING or one of the
2808          * offlined states and goose the device queue if successful.
2809          */
2810         switch (sdev->sdev_state) {
2811         case SDEV_BLOCK:
2812         case SDEV_TRANSPORT_OFFLINE:
2813                 sdev->sdev_state = new_state;
2814                 break;
2815         case SDEV_CREATED_BLOCK:
2816                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2817                     new_state == SDEV_OFFLINE)
2818                         sdev->sdev_state = new_state;
2819                 else
2820                         sdev->sdev_state = SDEV_CREATED;
2821                 break;
2822         case SDEV_CANCEL:
2823         case SDEV_OFFLINE:
2824                 break;
2825         default:
2826                 return -EINVAL;
2827         }
2828         scsi_start_queue(sdev);
2829
2830         return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2833
2834 /**
2835  * scsi_internal_device_unblock - resume a device after a block request
2836  * @sdev:       device to resume
2837  * @new_state:  state to set the device to after unblocking
2838  *
2839  * Restart the device queue for a previously suspended SCSI device. May sleep.
2840  *
2841  * Returns zero if successful or a negative error code upon failure.
2842  *
2843  * Notes:
2844  * This routine transitions the device to the SDEV_RUNNING state or to one of
2845  * the offline states (which must be a legal transition) allowing the midlayer
2846  * to goose the queue for this device.
2847  */
2848 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2849                                         enum scsi_device_state new_state)
2850 {
2851         int ret;
2852
2853         mutex_lock(&sdev->state_mutex);
2854         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2855         mutex_unlock(&sdev->state_mutex);
2856
2857         return ret;
2858 }
2859
2860 static void
2861 device_block(struct scsi_device *sdev, void *data)
2862 {
2863         int ret;
2864
2865         ret = scsi_internal_device_block(sdev);
2866
2867         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2868                   dev_name(&sdev->sdev_gendev), ret);
2869 }
2870
2871 static int
2872 target_block(struct device *dev, void *data)
2873 {
2874         if (scsi_is_target_device(dev))
2875                 starget_for_each_device(to_scsi_target(dev), NULL,
2876                                         device_block);
2877         return 0;
2878 }
2879
2880 void
2881 scsi_target_block(struct device *dev)
2882 {
2883         if (scsi_is_target_device(dev))
2884                 starget_for_each_device(to_scsi_target(dev), NULL,
2885                                         device_block);
2886         else
2887                 device_for_each_child(dev, NULL, target_block);
2888 }
2889 EXPORT_SYMBOL_GPL(scsi_target_block);
2890
2891 static void
2892 device_unblock(struct scsi_device *sdev, void *data)
2893 {
2894         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2895 }
2896
2897 static int
2898 target_unblock(struct device *dev, void *data)
2899 {
2900         if (scsi_is_target_device(dev))
2901                 starget_for_each_device(to_scsi_target(dev), data,
2902                                         device_unblock);
2903         return 0;
2904 }
2905
2906 void
2907 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2908 {
2909         if (scsi_is_target_device(dev))
2910                 starget_for_each_device(to_scsi_target(dev), &new_state,
2911                                         device_unblock);
2912         else
2913                 device_for_each_child(dev, &new_state, target_unblock);
2914 }
2915 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2916
2917 int
2918 scsi_host_block(struct Scsi_Host *shost)
2919 {
2920         struct scsi_device *sdev;
2921         int ret = 0;
2922
2923         /*
2924          * Call scsi_internal_device_block_nowait so we can avoid
2925          * calling synchronize_rcu() for each LUN.
2926          */
2927         shost_for_each_device(sdev, shost) {
2928                 mutex_lock(&sdev->state_mutex);
2929                 ret = scsi_internal_device_block_nowait(sdev);
2930                 mutex_unlock(&sdev->state_mutex);
2931                 if (ret) {
2932                         scsi_device_put(sdev);
2933                         break;
2934                 }
2935         }
2936
2937         /*
2938          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2939          * calling synchronize_rcu() once is enough.
2940          */
2941         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2942
2943         if (!ret)
2944                 synchronize_rcu();
2945
2946         return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(scsi_host_block);
2949
2950 int
2951 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2952 {
2953         struct scsi_device *sdev;
2954         int ret = 0;
2955
2956         shost_for_each_device(sdev, shost) {
2957                 ret = scsi_internal_device_unblock(sdev, new_state);
2958                 if (ret) {
2959                         scsi_device_put(sdev);
2960                         break;
2961                 }
2962         }
2963         return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2966
2967 /**
2968  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2969  * @sgl:        scatter-gather list
2970  * @sg_count:   number of segments in sg
2971  * @offset:     offset in bytes into sg, on return offset into the mapped area
2972  * @len:        bytes to map, on return number of bytes mapped
2973  *
2974  * Returns virtual address of the start of the mapped page
2975  */
2976 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2977                           size_t *offset, size_t *len)
2978 {
2979         int i;
2980         size_t sg_len = 0, len_complete = 0;
2981         struct scatterlist *sg;
2982         struct page *page;
2983
2984         WARN_ON(!irqs_disabled());
2985
2986         for_each_sg(sgl, sg, sg_count, i) {
2987                 len_complete = sg_len; /* Complete sg-entries */
2988                 sg_len += sg->length;
2989                 if (sg_len > *offset)
2990                         break;
2991         }
2992
2993         if (unlikely(i == sg_count)) {
2994                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2995                         "elements %d\n",
2996                        __func__, sg_len, *offset, sg_count);
2997                 WARN_ON(1);
2998                 return NULL;
2999         }
3000
3001         /* Offset starting from the beginning of first page in this sg-entry */
3002         *offset = *offset - len_complete + sg->offset;
3003
3004         /* Assumption: contiguous pages can be accessed as "page + i" */
3005         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3006         *offset &= ~PAGE_MASK;
3007
3008         /* Bytes in this sg-entry from *offset to the end of the page */
3009         sg_len = PAGE_SIZE - *offset;
3010         if (*len > sg_len)
3011                 *len = sg_len;
3012
3013         return kmap_atomic(page);
3014 }
3015 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3016
3017 /**
3018  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3019  * @virt:       virtual address to be unmapped
3020  */
3021 void scsi_kunmap_atomic_sg(void *virt)
3022 {
3023         kunmap_atomic(virt);
3024 }
3025 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3026
3027 void sdev_disable_disk_events(struct scsi_device *sdev)
3028 {
3029         atomic_inc(&sdev->disk_events_disable_depth);
3030 }
3031 EXPORT_SYMBOL(sdev_disable_disk_events);
3032
3033 void sdev_enable_disk_events(struct scsi_device *sdev)
3034 {
3035         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3036                 return;
3037         atomic_dec(&sdev->disk_events_disable_depth);
3038 }
3039 EXPORT_SYMBOL(sdev_enable_disk_events);
3040
3041 static unsigned char designator_prio(const unsigned char *d)
3042 {
3043         if (d[1] & 0x30)
3044                 /* not associated with LUN */
3045                 return 0;
3046
3047         if (d[3] == 0)
3048                 /* invalid length */
3049                 return 0;
3050
3051         /*
3052          * Order of preference for lun descriptor:
3053          * - SCSI name string
3054          * - NAA IEEE Registered Extended
3055          * - EUI-64 based 16-byte
3056          * - EUI-64 based 12-byte
3057          * - NAA IEEE Registered
3058          * - NAA IEEE Extended
3059          * - EUI-64 based 8-byte
3060          * - SCSI name string (truncated)
3061          * - T10 Vendor ID
3062          * as longer descriptors reduce the likelyhood
3063          * of identification clashes.
3064          */
3065
3066         switch (d[1] & 0xf) {
3067         case 8:
3068                 /* SCSI name string, variable-length UTF-8 */
3069                 return 9;
3070         case 3:
3071                 switch (d[4] >> 4) {
3072                 case 6:
3073                         /* NAA registered extended */
3074                         return 8;
3075                 case 5:
3076                         /* NAA registered */
3077                         return 5;
3078                 case 4:
3079                         /* NAA extended */
3080                         return 4;
3081                 case 3:
3082                         /* NAA locally assigned */
3083                         return 1;
3084                 default:
3085                         break;
3086                 }
3087                 break;
3088         case 2:
3089                 switch (d[3]) {
3090                 case 16:
3091                         /* EUI64-based, 16 byte */
3092                         return 7;
3093                 case 12:
3094                         /* EUI64-based, 12 byte */
3095                         return 6;
3096                 case 8:
3097                         /* EUI64-based, 8 byte */
3098                         return 3;
3099                 default:
3100                         break;
3101                 }
3102                 break;
3103         case 1:
3104                 /* T10 vendor ID */
3105                 return 1;
3106         default:
3107                 break;
3108         }
3109
3110         return 0;
3111 }
3112
3113 /**
3114  * scsi_vpd_lun_id - return a unique device identification
3115  * @sdev: SCSI device
3116  * @id:   buffer for the identification
3117  * @id_len:  length of the buffer
3118  *
3119  * Copies a unique device identification into @id based
3120  * on the information in the VPD page 0x83 of the device.
3121  * The string will be formatted as a SCSI name string.
3122  *
3123  * Returns the length of the identification or error on failure.
3124  * If the identifier is longer than the supplied buffer the actual
3125  * identifier length is returned and the buffer is not zero-padded.
3126  */
3127 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3128 {
3129         u8 cur_id_prio = 0;
3130         u8 cur_id_size = 0;
3131         const unsigned char *d, *cur_id_str;
3132         const struct scsi_vpd *vpd_pg83;
3133         int id_size = -EINVAL;
3134
3135         rcu_read_lock();
3136         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3137         if (!vpd_pg83) {
3138                 rcu_read_unlock();
3139                 return -ENXIO;
3140         }
3141
3142         /* The id string must be at least 20 bytes + terminating NULL byte */
3143         if (id_len < 21) {
3144                 rcu_read_unlock();
3145                 return -EINVAL;
3146         }
3147
3148         memset(id, 0, id_len);
3149         for (d = vpd_pg83->data + 4;
3150              d < vpd_pg83->data + vpd_pg83->len;
3151              d += d[3] + 4) {
3152                 u8 prio = designator_prio(d);
3153
3154                 if (prio == 0 || cur_id_prio > prio)
3155                         continue;
3156
3157                 switch (d[1] & 0xf) {
3158                 case 0x1:
3159                         /* T10 Vendor ID */
3160                         if (cur_id_size > d[3])
3161                                 break;
3162                         cur_id_prio = prio;
3163                         cur_id_size = d[3];
3164                         if (cur_id_size + 4 > id_len)
3165                                 cur_id_size = id_len - 4;
3166                         cur_id_str = d + 4;
3167                         id_size = snprintf(id, id_len, "t10.%*pE",
3168                                            cur_id_size, cur_id_str);
3169                         break;
3170                 case 0x2:
3171                         /* EUI-64 */
3172                         cur_id_prio = prio;
3173                         cur_id_size = d[3];
3174                         cur_id_str = d + 4;
3175                         switch (cur_id_size) {
3176                         case 8:
3177                                 id_size = snprintf(id, id_len,
3178                                                    "eui.%8phN",
3179                                                    cur_id_str);
3180                                 break;
3181                         case 12:
3182                                 id_size = snprintf(id, id_len,
3183                                                    "eui.%12phN",
3184                                                    cur_id_str);
3185                                 break;
3186                         case 16:
3187                                 id_size = snprintf(id, id_len,
3188                                                    "eui.%16phN",
3189                                                    cur_id_str);
3190                                 break;
3191                         default:
3192                                 break;
3193                         }
3194                         break;
3195                 case 0x3:
3196                         /* NAA */
3197                         cur_id_prio = prio;
3198                         cur_id_size = d[3];
3199                         cur_id_str = d + 4;
3200                         switch (cur_id_size) {
3201                         case 8:
3202                                 id_size = snprintf(id, id_len,
3203                                                    "naa.%8phN",
3204                                                    cur_id_str);
3205                                 break;
3206                         case 16:
3207                                 id_size = snprintf(id, id_len,
3208                                                    "naa.%16phN",
3209                                                    cur_id_str);
3210                                 break;
3211                         default:
3212                                 break;
3213                         }
3214                         break;
3215                 case 0x8:
3216                         /* SCSI name string */
3217                         if (cur_id_size > d[3])
3218                                 break;
3219                         /* Prefer others for truncated descriptor */
3220                         if (d[3] > id_len) {
3221                                 prio = 2;
3222                                 if (cur_id_prio > prio)
3223                                         break;
3224                         }
3225                         cur_id_prio = prio;
3226                         cur_id_size = id_size = d[3];
3227                         cur_id_str = d + 4;
3228                         if (cur_id_size >= id_len)
3229                                 cur_id_size = id_len - 1;
3230                         memcpy(id, cur_id_str, cur_id_size);
3231                         break;
3232                 default:
3233                         break;
3234                 }
3235         }
3236         rcu_read_unlock();
3237
3238         return id_size;
3239 }
3240 EXPORT_SYMBOL(scsi_vpd_lun_id);
3241
3242 /*
3243  * scsi_vpd_tpg_id - return a target port group identifier
3244  * @sdev: SCSI device
3245  *
3246  * Returns the Target Port Group identifier from the information
3247  * froom VPD page 0x83 of the device.
3248  *
3249  * Returns the identifier or error on failure.
3250  */
3251 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3252 {
3253         const unsigned char *d;
3254         const struct scsi_vpd *vpd_pg83;
3255         int group_id = -EAGAIN, rel_port = -1;
3256
3257         rcu_read_lock();
3258         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3259         if (!vpd_pg83) {
3260                 rcu_read_unlock();
3261                 return -ENXIO;
3262         }
3263
3264         d = vpd_pg83->data + 4;
3265         while (d < vpd_pg83->data + vpd_pg83->len) {
3266                 switch (d[1] & 0xf) {
3267                 case 0x4:
3268                         /* Relative target port */
3269                         rel_port = get_unaligned_be16(&d[6]);
3270                         break;
3271                 case 0x5:
3272                         /* Target port group */
3273                         group_id = get_unaligned_be16(&d[6]);
3274                         break;
3275                 default:
3276                         break;
3277                 }
3278                 d += d[3] + 4;
3279         }
3280         rcu_read_unlock();
3281
3282         if (group_id >= 0 && rel_id && rel_port != -1)
3283                 *rel_id = rel_port;
3284
3285         return group_id;
3286 }
3287 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3288
3289 /**
3290  * scsi_build_sense - build sense data for a command
3291  * @scmd:       scsi command for which the sense should be formatted
3292  * @desc:       Sense format (non-zero == descriptor format,
3293  *              0 == fixed format)
3294  * @key:        Sense key
3295  * @asc:        Additional sense code
3296  * @ascq:       Additional sense code qualifier
3297  *
3298  **/
3299 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3300 {
3301         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3302         scmd->result = SAM_STAT_CHECK_CONDITION;
3303 }
3304 EXPORT_SYMBOL_GPL(scsi_build_sense);