Merge tag 'for-5.18/drivers-2022-04-01' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 struct workqueue_struct *zbd_wq;
20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
21 static DEFINE_IDA(cntlid_ida);
22
23 struct workqueue_struct *nvmet_wq;
24 EXPORT_SYMBOL_GPL(nvmet_wq);
25
26 /*
27  * This read/write semaphore is used to synchronize access to configuration
28  * information on a target system that will result in discovery log page
29  * information change for at least one host.
30  * The full list of resources to protected by this semaphore is:
31  *
32  *  - subsystems list
33  *  - per-subsystem allowed hosts list
34  *  - allow_any_host subsystem attribute
35  *  - nvmet_genctr
36  *  - the nvmet_transports array
37  *
38  * When updating any of those lists/structures write lock should be obtained,
39  * while when reading (popolating discovery log page or checking host-subsystem
40  * link) read lock is obtained to allow concurrent reads.
41  */
42 DECLARE_RWSEM(nvmet_config_sem);
43
44 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
45 u64 nvmet_ana_chgcnt;
46 DECLARE_RWSEM(nvmet_ana_sem);
47
48 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
49 {
50         switch (errno) {
51         case 0:
52                 return NVME_SC_SUCCESS;
53         case -ENOSPC:
54                 req->error_loc = offsetof(struct nvme_rw_command, length);
55                 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
56         case -EREMOTEIO:
57                 req->error_loc = offsetof(struct nvme_rw_command, slba);
58                 return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
59         case -EOPNOTSUPP:
60                 req->error_loc = offsetof(struct nvme_common_command, opcode);
61                 switch (req->cmd->common.opcode) {
62                 case nvme_cmd_dsm:
63                 case nvme_cmd_write_zeroes:
64                         return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
65                 default:
66                         return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
67                 }
68                 break;
69         case -ENODATA:
70                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
71                 return NVME_SC_ACCESS_DENIED;
72         case -EIO:
73                 fallthrough;
74         default:
75                 req->error_loc = offsetof(struct nvme_common_command, opcode);
76                 return NVME_SC_INTERNAL | NVME_SC_DNR;
77         }
78 }
79
80 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
81 {
82         pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
83                  req->sq->qid);
84
85         req->error_loc = offsetof(struct nvme_common_command, opcode);
86         return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
87 }
88
89 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
90                 const char *subsysnqn);
91
92 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
93                 size_t len)
94 {
95         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
96                 req->error_loc = offsetof(struct nvme_common_command, dptr);
97                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
98         }
99         return 0;
100 }
101
102 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
103 {
104         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
105                 req->error_loc = offsetof(struct nvme_common_command, dptr);
106                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
107         }
108         return 0;
109 }
110
111 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
112 {
113         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
114                 req->error_loc = offsetof(struct nvme_common_command, dptr);
115                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
116         }
117         return 0;
118 }
119
120 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
121 {
122         struct nvmet_ns *cur;
123         unsigned long idx;
124         u32 nsid = 0;
125
126         xa_for_each(&subsys->namespaces, idx, cur)
127                 nsid = cur->nsid;
128
129         return nsid;
130 }
131
132 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
133 {
134         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
135 }
136
137 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
138 {
139         struct nvmet_req *req;
140
141         mutex_lock(&ctrl->lock);
142         while (ctrl->nr_async_event_cmds) {
143                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144                 mutex_unlock(&ctrl->lock);
145                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146                 mutex_lock(&ctrl->lock);
147         }
148         mutex_unlock(&ctrl->lock);
149 }
150
151 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
152 {
153         struct nvmet_async_event *aen;
154         struct nvmet_req *req;
155
156         mutex_lock(&ctrl->lock);
157         while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
158                 aen = list_first_entry(&ctrl->async_events,
159                                        struct nvmet_async_event, entry);
160                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
161                 nvmet_set_result(req, nvmet_async_event_result(aen));
162
163                 list_del(&aen->entry);
164                 kfree(aen);
165
166                 mutex_unlock(&ctrl->lock);
167                 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
168                 nvmet_req_complete(req, 0);
169                 mutex_lock(&ctrl->lock);
170         }
171         mutex_unlock(&ctrl->lock);
172 }
173
174 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
175 {
176         struct nvmet_async_event *aen, *tmp;
177
178         mutex_lock(&ctrl->lock);
179         list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
180                 list_del(&aen->entry);
181                 kfree(aen);
182         }
183         mutex_unlock(&ctrl->lock);
184 }
185
186 static void nvmet_async_event_work(struct work_struct *work)
187 {
188         struct nvmet_ctrl *ctrl =
189                 container_of(work, struct nvmet_ctrl, async_event_work);
190
191         nvmet_async_events_process(ctrl);
192 }
193
194 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
195                 u8 event_info, u8 log_page)
196 {
197         struct nvmet_async_event *aen;
198
199         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
200         if (!aen)
201                 return;
202
203         aen->event_type = event_type;
204         aen->event_info = event_info;
205         aen->log_page = log_page;
206
207         mutex_lock(&ctrl->lock);
208         list_add_tail(&aen->entry, &ctrl->async_events);
209         mutex_unlock(&ctrl->lock);
210
211         queue_work(nvmet_wq, &ctrl->async_event_work);
212 }
213
214 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
215 {
216         u32 i;
217
218         mutex_lock(&ctrl->lock);
219         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
220                 goto out_unlock;
221
222         for (i = 0; i < ctrl->nr_changed_ns; i++) {
223                 if (ctrl->changed_ns_list[i] == nsid)
224                         goto out_unlock;
225         }
226
227         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
228                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
229                 ctrl->nr_changed_ns = U32_MAX;
230                 goto out_unlock;
231         }
232
233         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
234 out_unlock:
235         mutex_unlock(&ctrl->lock);
236 }
237
238 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
239 {
240         struct nvmet_ctrl *ctrl;
241
242         lockdep_assert_held(&subsys->lock);
243
244         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
245                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
246                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
247                         continue;
248                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
249                                 NVME_AER_NOTICE_NS_CHANGED,
250                                 NVME_LOG_CHANGED_NS);
251         }
252 }
253
254 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
255                 struct nvmet_port *port)
256 {
257         struct nvmet_ctrl *ctrl;
258
259         mutex_lock(&subsys->lock);
260         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
261                 if (port && ctrl->port != port)
262                         continue;
263                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
264                         continue;
265                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
266                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
267         }
268         mutex_unlock(&subsys->lock);
269 }
270
271 void nvmet_port_send_ana_event(struct nvmet_port *port)
272 {
273         struct nvmet_subsys_link *p;
274
275         down_read(&nvmet_config_sem);
276         list_for_each_entry(p, &port->subsystems, entry)
277                 nvmet_send_ana_event(p->subsys, port);
278         up_read(&nvmet_config_sem);
279 }
280
281 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
282 {
283         int ret = 0;
284
285         down_write(&nvmet_config_sem);
286         if (nvmet_transports[ops->type])
287                 ret = -EINVAL;
288         else
289                 nvmet_transports[ops->type] = ops;
290         up_write(&nvmet_config_sem);
291
292         return ret;
293 }
294 EXPORT_SYMBOL_GPL(nvmet_register_transport);
295
296 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
297 {
298         down_write(&nvmet_config_sem);
299         nvmet_transports[ops->type] = NULL;
300         up_write(&nvmet_config_sem);
301 }
302 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
303
304 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
305 {
306         struct nvmet_ctrl *ctrl;
307
308         mutex_lock(&subsys->lock);
309         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
310                 if (ctrl->port == port)
311                         ctrl->ops->delete_ctrl(ctrl);
312         }
313         mutex_unlock(&subsys->lock);
314 }
315
316 int nvmet_enable_port(struct nvmet_port *port)
317 {
318         const struct nvmet_fabrics_ops *ops;
319         int ret;
320
321         lockdep_assert_held(&nvmet_config_sem);
322
323         ops = nvmet_transports[port->disc_addr.trtype];
324         if (!ops) {
325                 up_write(&nvmet_config_sem);
326                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
327                 down_write(&nvmet_config_sem);
328                 ops = nvmet_transports[port->disc_addr.trtype];
329                 if (!ops) {
330                         pr_err("transport type %d not supported\n",
331                                 port->disc_addr.trtype);
332                         return -EINVAL;
333                 }
334         }
335
336         if (!try_module_get(ops->owner))
337                 return -EINVAL;
338
339         /*
340          * If the user requested PI support and the transport isn't pi capable,
341          * don't enable the port.
342          */
343         if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
344                 pr_err("T10-PI is not supported by transport type %d\n",
345                        port->disc_addr.trtype);
346                 ret = -EINVAL;
347                 goto out_put;
348         }
349
350         ret = ops->add_port(port);
351         if (ret)
352                 goto out_put;
353
354         /* If the transport didn't set inline_data_size, then disable it. */
355         if (port->inline_data_size < 0)
356                 port->inline_data_size = 0;
357
358         port->enabled = true;
359         port->tr_ops = ops;
360         return 0;
361
362 out_put:
363         module_put(ops->owner);
364         return ret;
365 }
366
367 void nvmet_disable_port(struct nvmet_port *port)
368 {
369         const struct nvmet_fabrics_ops *ops;
370
371         lockdep_assert_held(&nvmet_config_sem);
372
373         port->enabled = false;
374         port->tr_ops = NULL;
375
376         ops = nvmet_transports[port->disc_addr.trtype];
377         ops->remove_port(port);
378         module_put(ops->owner);
379 }
380
381 static void nvmet_keep_alive_timer(struct work_struct *work)
382 {
383         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
384                         struct nvmet_ctrl, ka_work);
385         bool reset_tbkas = ctrl->reset_tbkas;
386
387         ctrl->reset_tbkas = false;
388         if (reset_tbkas) {
389                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
390                         ctrl->cntlid);
391                 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
392                 return;
393         }
394
395         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
396                 ctrl->cntlid, ctrl->kato);
397
398         nvmet_ctrl_fatal_error(ctrl);
399 }
400
401 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
402 {
403         if (unlikely(ctrl->kato == 0))
404                 return;
405
406         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
407                 ctrl->cntlid, ctrl->kato);
408
409         queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
410 }
411
412 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
413 {
414         if (unlikely(ctrl->kato == 0))
415                 return;
416
417         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
418
419         cancel_delayed_work_sync(&ctrl->ka_work);
420 }
421
422 u16 nvmet_req_find_ns(struct nvmet_req *req)
423 {
424         u32 nsid = le32_to_cpu(req->cmd->common.nsid);
425
426         req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
427         if (unlikely(!req->ns)) {
428                 req->error_loc = offsetof(struct nvme_common_command, nsid);
429                 return NVME_SC_INVALID_NS | NVME_SC_DNR;
430         }
431
432         percpu_ref_get(&req->ns->ref);
433         return NVME_SC_SUCCESS;
434 }
435
436 static void nvmet_destroy_namespace(struct percpu_ref *ref)
437 {
438         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
439
440         complete(&ns->disable_done);
441 }
442
443 void nvmet_put_namespace(struct nvmet_ns *ns)
444 {
445         percpu_ref_put(&ns->ref);
446 }
447
448 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
449 {
450         nvmet_bdev_ns_disable(ns);
451         nvmet_file_ns_disable(ns);
452 }
453
454 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
455 {
456         int ret;
457         struct pci_dev *p2p_dev;
458
459         if (!ns->use_p2pmem)
460                 return 0;
461
462         if (!ns->bdev) {
463                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
464                 return -EINVAL;
465         }
466
467         if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
468                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
469                        ns->device_path);
470                 return -EINVAL;
471         }
472
473         if (ns->p2p_dev) {
474                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
475                 if (ret < 0)
476                         return -EINVAL;
477         } else {
478                 /*
479                  * Right now we just check that there is p2pmem available so
480                  * we can report an error to the user right away if there
481                  * is not. We'll find the actual device to use once we
482                  * setup the controller when the port's device is available.
483                  */
484
485                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
486                 if (!p2p_dev) {
487                         pr_err("no peer-to-peer memory is available for %s\n",
488                                ns->device_path);
489                         return -EINVAL;
490                 }
491
492                 pci_dev_put(p2p_dev);
493         }
494
495         return 0;
496 }
497
498 /*
499  * Note: ctrl->subsys->lock should be held when calling this function
500  */
501 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
502                                     struct nvmet_ns *ns)
503 {
504         struct device *clients[2];
505         struct pci_dev *p2p_dev;
506         int ret;
507
508         if (!ctrl->p2p_client || !ns->use_p2pmem)
509                 return;
510
511         if (ns->p2p_dev) {
512                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
513                 if (ret < 0)
514                         return;
515
516                 p2p_dev = pci_dev_get(ns->p2p_dev);
517         } else {
518                 clients[0] = ctrl->p2p_client;
519                 clients[1] = nvmet_ns_dev(ns);
520
521                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
522                 if (!p2p_dev) {
523                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
524                                dev_name(ctrl->p2p_client), ns->device_path);
525                         return;
526                 }
527         }
528
529         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
530         if (ret < 0)
531                 pci_dev_put(p2p_dev);
532
533         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
534                 ns->nsid);
535 }
536
537 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
538 {
539         loff_t oldsize = ns->size;
540
541         if (ns->bdev)
542                 nvmet_bdev_ns_revalidate(ns);
543         else
544                 nvmet_file_ns_revalidate(ns);
545
546         return oldsize != ns->size;
547 }
548
549 int nvmet_ns_enable(struct nvmet_ns *ns)
550 {
551         struct nvmet_subsys *subsys = ns->subsys;
552         struct nvmet_ctrl *ctrl;
553         int ret;
554
555         mutex_lock(&subsys->lock);
556         ret = 0;
557
558         if (nvmet_is_passthru_subsys(subsys)) {
559                 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
560                 goto out_unlock;
561         }
562
563         if (ns->enabled)
564                 goto out_unlock;
565
566         ret = -EMFILE;
567         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
568                 goto out_unlock;
569
570         ret = nvmet_bdev_ns_enable(ns);
571         if (ret == -ENOTBLK)
572                 ret = nvmet_file_ns_enable(ns);
573         if (ret)
574                 goto out_unlock;
575
576         ret = nvmet_p2pmem_ns_enable(ns);
577         if (ret)
578                 goto out_dev_disable;
579
580         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
581                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
582
583         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
584                                 0, GFP_KERNEL);
585         if (ret)
586                 goto out_dev_put;
587
588         if (ns->nsid > subsys->max_nsid)
589                 subsys->max_nsid = ns->nsid;
590
591         ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
592         if (ret)
593                 goto out_restore_subsys_maxnsid;
594
595         subsys->nr_namespaces++;
596
597         nvmet_ns_changed(subsys, ns->nsid);
598         ns->enabled = true;
599         ret = 0;
600 out_unlock:
601         mutex_unlock(&subsys->lock);
602         return ret;
603
604 out_restore_subsys_maxnsid:
605         subsys->max_nsid = nvmet_max_nsid(subsys);
606         percpu_ref_exit(&ns->ref);
607 out_dev_put:
608         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
609                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
610 out_dev_disable:
611         nvmet_ns_dev_disable(ns);
612         goto out_unlock;
613 }
614
615 void nvmet_ns_disable(struct nvmet_ns *ns)
616 {
617         struct nvmet_subsys *subsys = ns->subsys;
618         struct nvmet_ctrl *ctrl;
619
620         mutex_lock(&subsys->lock);
621         if (!ns->enabled)
622                 goto out_unlock;
623
624         ns->enabled = false;
625         xa_erase(&ns->subsys->namespaces, ns->nsid);
626         if (ns->nsid == subsys->max_nsid)
627                 subsys->max_nsid = nvmet_max_nsid(subsys);
628
629         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
630                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
631
632         mutex_unlock(&subsys->lock);
633
634         /*
635          * Now that we removed the namespaces from the lookup list, we
636          * can kill the per_cpu ref and wait for any remaining references
637          * to be dropped, as well as a RCU grace period for anyone only
638          * using the namepace under rcu_read_lock().  Note that we can't
639          * use call_rcu here as we need to ensure the namespaces have
640          * been fully destroyed before unloading the module.
641          */
642         percpu_ref_kill(&ns->ref);
643         synchronize_rcu();
644         wait_for_completion(&ns->disable_done);
645         percpu_ref_exit(&ns->ref);
646
647         mutex_lock(&subsys->lock);
648
649         subsys->nr_namespaces--;
650         nvmet_ns_changed(subsys, ns->nsid);
651         nvmet_ns_dev_disable(ns);
652 out_unlock:
653         mutex_unlock(&subsys->lock);
654 }
655
656 void nvmet_ns_free(struct nvmet_ns *ns)
657 {
658         nvmet_ns_disable(ns);
659
660         down_write(&nvmet_ana_sem);
661         nvmet_ana_group_enabled[ns->anagrpid]--;
662         up_write(&nvmet_ana_sem);
663
664         kfree(ns->device_path);
665         kfree(ns);
666 }
667
668 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
669 {
670         struct nvmet_ns *ns;
671
672         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
673         if (!ns)
674                 return NULL;
675
676         init_completion(&ns->disable_done);
677
678         ns->nsid = nsid;
679         ns->subsys = subsys;
680
681         down_write(&nvmet_ana_sem);
682         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
683         nvmet_ana_group_enabled[ns->anagrpid]++;
684         up_write(&nvmet_ana_sem);
685
686         uuid_gen(&ns->uuid);
687         ns->buffered_io = false;
688         ns->csi = NVME_CSI_NVM;
689
690         return ns;
691 }
692
693 static void nvmet_update_sq_head(struct nvmet_req *req)
694 {
695         if (req->sq->size) {
696                 u32 old_sqhd, new_sqhd;
697
698                 do {
699                         old_sqhd = req->sq->sqhd;
700                         new_sqhd = (old_sqhd + 1) % req->sq->size;
701                 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
702                                         old_sqhd);
703         }
704         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
705 }
706
707 static void nvmet_set_error(struct nvmet_req *req, u16 status)
708 {
709         struct nvmet_ctrl *ctrl = req->sq->ctrl;
710         struct nvme_error_slot *new_error_slot;
711         unsigned long flags;
712
713         req->cqe->status = cpu_to_le16(status << 1);
714
715         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
716                 return;
717
718         spin_lock_irqsave(&ctrl->error_lock, flags);
719         ctrl->err_counter++;
720         new_error_slot =
721                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
722
723         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
724         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
725         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
726         new_error_slot->status_field = cpu_to_le16(status << 1);
727         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
728         new_error_slot->lba = cpu_to_le64(req->error_slba);
729         new_error_slot->nsid = req->cmd->common.nsid;
730         spin_unlock_irqrestore(&ctrl->error_lock, flags);
731
732         /* set the more bit for this request */
733         req->cqe->status |= cpu_to_le16(1 << 14);
734 }
735
736 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
737 {
738         if (!req->sq->sqhd_disabled)
739                 nvmet_update_sq_head(req);
740         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
741         req->cqe->command_id = req->cmd->common.command_id;
742
743         if (unlikely(status))
744                 nvmet_set_error(req, status);
745
746         trace_nvmet_req_complete(req);
747
748         if (req->ns)
749                 nvmet_put_namespace(req->ns);
750         req->ops->queue_response(req);
751 }
752
753 void nvmet_req_complete(struct nvmet_req *req, u16 status)
754 {
755         __nvmet_req_complete(req, status);
756         percpu_ref_put(&req->sq->ref);
757 }
758 EXPORT_SYMBOL_GPL(nvmet_req_complete);
759
760 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
761                 u16 qid, u16 size)
762 {
763         cq->qid = qid;
764         cq->size = size;
765 }
766
767 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
768                 u16 qid, u16 size)
769 {
770         sq->sqhd = 0;
771         sq->qid = qid;
772         sq->size = size;
773
774         ctrl->sqs[qid] = sq;
775 }
776
777 static void nvmet_confirm_sq(struct percpu_ref *ref)
778 {
779         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
780
781         complete(&sq->confirm_done);
782 }
783
784 void nvmet_sq_destroy(struct nvmet_sq *sq)
785 {
786         struct nvmet_ctrl *ctrl = sq->ctrl;
787
788         /*
789          * If this is the admin queue, complete all AERs so that our
790          * queue doesn't have outstanding requests on it.
791          */
792         if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
793                 nvmet_async_events_failall(ctrl);
794         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
795         wait_for_completion(&sq->confirm_done);
796         wait_for_completion(&sq->free_done);
797         percpu_ref_exit(&sq->ref);
798
799         if (ctrl) {
800                 /*
801                  * The teardown flow may take some time, and the host may not
802                  * send us keep-alive during this period, hence reset the
803                  * traffic based keep-alive timer so we don't trigger a
804                  * controller teardown as a result of a keep-alive expiration.
805                  */
806                 ctrl->reset_tbkas = true;
807                 sq->ctrl->sqs[sq->qid] = NULL;
808                 nvmet_ctrl_put(ctrl);
809                 sq->ctrl = NULL; /* allows reusing the queue later */
810         }
811 }
812 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
813
814 static void nvmet_sq_free(struct percpu_ref *ref)
815 {
816         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
817
818         complete(&sq->free_done);
819 }
820
821 int nvmet_sq_init(struct nvmet_sq *sq)
822 {
823         int ret;
824
825         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
826         if (ret) {
827                 pr_err("percpu_ref init failed!\n");
828                 return ret;
829         }
830         init_completion(&sq->free_done);
831         init_completion(&sq->confirm_done);
832
833         return 0;
834 }
835 EXPORT_SYMBOL_GPL(nvmet_sq_init);
836
837 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
838                 struct nvmet_ns *ns)
839 {
840         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
841
842         if (unlikely(state == NVME_ANA_INACCESSIBLE))
843                 return NVME_SC_ANA_INACCESSIBLE;
844         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
845                 return NVME_SC_ANA_PERSISTENT_LOSS;
846         if (unlikely(state == NVME_ANA_CHANGE))
847                 return NVME_SC_ANA_TRANSITION;
848         return 0;
849 }
850
851 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
852 {
853         if (unlikely(req->ns->readonly)) {
854                 switch (req->cmd->common.opcode) {
855                 case nvme_cmd_read:
856                 case nvme_cmd_flush:
857                         break;
858                 default:
859                         return NVME_SC_NS_WRITE_PROTECTED;
860                 }
861         }
862
863         return 0;
864 }
865
866 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
867 {
868         u16 ret;
869
870         ret = nvmet_check_ctrl_status(req);
871         if (unlikely(ret))
872                 return ret;
873
874         if (nvmet_is_passthru_req(req))
875                 return nvmet_parse_passthru_io_cmd(req);
876
877         ret = nvmet_req_find_ns(req);
878         if (unlikely(ret))
879                 return ret;
880
881         ret = nvmet_check_ana_state(req->port, req->ns);
882         if (unlikely(ret)) {
883                 req->error_loc = offsetof(struct nvme_common_command, nsid);
884                 return ret;
885         }
886         ret = nvmet_io_cmd_check_access(req);
887         if (unlikely(ret)) {
888                 req->error_loc = offsetof(struct nvme_common_command, nsid);
889                 return ret;
890         }
891
892         switch (req->ns->csi) {
893         case NVME_CSI_NVM:
894                 if (req->ns->file)
895                         return nvmet_file_parse_io_cmd(req);
896                 return nvmet_bdev_parse_io_cmd(req);
897         case NVME_CSI_ZNS:
898                 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
899                         return nvmet_bdev_zns_parse_io_cmd(req);
900                 return NVME_SC_INVALID_IO_CMD_SET;
901         default:
902                 return NVME_SC_INVALID_IO_CMD_SET;
903         }
904 }
905
906 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
907                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
908 {
909         u8 flags = req->cmd->common.flags;
910         u16 status;
911
912         req->cq = cq;
913         req->sq = sq;
914         req->ops = ops;
915         req->sg = NULL;
916         req->metadata_sg = NULL;
917         req->sg_cnt = 0;
918         req->metadata_sg_cnt = 0;
919         req->transfer_len = 0;
920         req->metadata_len = 0;
921         req->cqe->status = 0;
922         req->cqe->sq_head = 0;
923         req->ns = NULL;
924         req->error_loc = NVMET_NO_ERROR_LOC;
925         req->error_slba = 0;
926
927         /* no support for fused commands yet */
928         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
929                 req->error_loc = offsetof(struct nvme_common_command, flags);
930                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
931                 goto fail;
932         }
933
934         /*
935          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
936          * contains an address of a single contiguous physical buffer that is
937          * byte aligned.
938          */
939         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
940                 req->error_loc = offsetof(struct nvme_common_command, flags);
941                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
942                 goto fail;
943         }
944
945         if (unlikely(!req->sq->ctrl))
946                 /* will return an error for any non-connect command: */
947                 status = nvmet_parse_connect_cmd(req);
948         else if (likely(req->sq->qid != 0))
949                 status = nvmet_parse_io_cmd(req);
950         else
951                 status = nvmet_parse_admin_cmd(req);
952
953         if (status)
954                 goto fail;
955
956         trace_nvmet_req_init(req, req->cmd);
957
958         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
959                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
960                 goto fail;
961         }
962
963         if (sq->ctrl)
964                 sq->ctrl->reset_tbkas = true;
965
966         return true;
967
968 fail:
969         __nvmet_req_complete(req, status);
970         return false;
971 }
972 EXPORT_SYMBOL_GPL(nvmet_req_init);
973
974 void nvmet_req_uninit(struct nvmet_req *req)
975 {
976         percpu_ref_put(&req->sq->ref);
977         if (req->ns)
978                 nvmet_put_namespace(req->ns);
979 }
980 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
981
982 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
983 {
984         if (unlikely(len != req->transfer_len)) {
985                 req->error_loc = offsetof(struct nvme_common_command, dptr);
986                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
987                 return false;
988         }
989
990         return true;
991 }
992 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
993
994 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
995 {
996         if (unlikely(data_len > req->transfer_len)) {
997                 req->error_loc = offsetof(struct nvme_common_command, dptr);
998                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
999                 return false;
1000         }
1001
1002         return true;
1003 }
1004
1005 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1006 {
1007         return req->transfer_len - req->metadata_len;
1008 }
1009
1010 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1011                 struct nvmet_req *req)
1012 {
1013         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1014                         nvmet_data_transfer_len(req));
1015         if (!req->sg)
1016                 goto out_err;
1017
1018         if (req->metadata_len) {
1019                 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1020                                 &req->metadata_sg_cnt, req->metadata_len);
1021                 if (!req->metadata_sg)
1022                         goto out_free_sg;
1023         }
1024
1025         req->p2p_dev = p2p_dev;
1026
1027         return 0;
1028 out_free_sg:
1029         pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1030 out_err:
1031         return -ENOMEM;
1032 }
1033
1034 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1035 {
1036         if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1037             !req->sq->ctrl || !req->sq->qid || !req->ns)
1038                 return NULL;
1039         return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1040 }
1041
1042 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1043 {
1044         struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1045
1046         if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1047                 return 0;
1048
1049         req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1050                             &req->sg_cnt);
1051         if (unlikely(!req->sg))
1052                 goto out;
1053
1054         if (req->metadata_len) {
1055                 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1056                                              &req->metadata_sg_cnt);
1057                 if (unlikely(!req->metadata_sg))
1058                         goto out_free;
1059         }
1060
1061         return 0;
1062 out_free:
1063         sgl_free(req->sg);
1064 out:
1065         return -ENOMEM;
1066 }
1067 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1068
1069 void nvmet_req_free_sgls(struct nvmet_req *req)
1070 {
1071         if (req->p2p_dev) {
1072                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1073                 if (req->metadata_sg)
1074                         pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1075                 req->p2p_dev = NULL;
1076         } else {
1077                 sgl_free(req->sg);
1078                 if (req->metadata_sg)
1079                         sgl_free(req->metadata_sg);
1080         }
1081
1082         req->sg = NULL;
1083         req->metadata_sg = NULL;
1084         req->sg_cnt = 0;
1085         req->metadata_sg_cnt = 0;
1086 }
1087 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1088
1089 static inline bool nvmet_cc_en(u32 cc)
1090 {
1091         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1092 }
1093
1094 static inline u8 nvmet_cc_css(u32 cc)
1095 {
1096         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1097 }
1098
1099 static inline u8 nvmet_cc_mps(u32 cc)
1100 {
1101         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1102 }
1103
1104 static inline u8 nvmet_cc_ams(u32 cc)
1105 {
1106         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1107 }
1108
1109 static inline u8 nvmet_cc_shn(u32 cc)
1110 {
1111         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1112 }
1113
1114 static inline u8 nvmet_cc_iosqes(u32 cc)
1115 {
1116         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1117 }
1118
1119 static inline u8 nvmet_cc_iocqes(u32 cc)
1120 {
1121         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1122 }
1123
1124 static inline bool nvmet_css_supported(u8 cc_css)
1125 {
1126         switch (cc_css << NVME_CC_CSS_SHIFT) {
1127         case NVME_CC_CSS_NVM:
1128         case NVME_CC_CSS_CSI:
1129                 return true;
1130         default:
1131                 return false;
1132         }
1133 }
1134
1135 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1136 {
1137         lockdep_assert_held(&ctrl->lock);
1138
1139         /*
1140          * Only I/O controllers should verify iosqes,iocqes.
1141          * Strictly speaking, the spec says a discovery controller
1142          * should verify iosqes,iocqes are zeroed, however that
1143          * would break backwards compatibility, so don't enforce it.
1144          */
1145         if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1146             (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1147              nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1148                 ctrl->csts = NVME_CSTS_CFS;
1149                 return;
1150         }
1151
1152         if (nvmet_cc_mps(ctrl->cc) != 0 ||
1153             nvmet_cc_ams(ctrl->cc) != 0 ||
1154             !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1155                 ctrl->csts = NVME_CSTS_CFS;
1156                 return;
1157         }
1158
1159         ctrl->csts = NVME_CSTS_RDY;
1160
1161         /*
1162          * Controllers that are not yet enabled should not really enforce the
1163          * keep alive timeout, but we still want to track a timeout and cleanup
1164          * in case a host died before it enabled the controller.  Hence, simply
1165          * reset the keep alive timer when the controller is enabled.
1166          */
1167         if (ctrl->kato)
1168                 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1169 }
1170
1171 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1172 {
1173         lockdep_assert_held(&ctrl->lock);
1174
1175         /* XXX: tear down queues? */
1176         ctrl->csts &= ~NVME_CSTS_RDY;
1177         ctrl->cc = 0;
1178 }
1179
1180 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1181 {
1182         u32 old;
1183
1184         mutex_lock(&ctrl->lock);
1185         old = ctrl->cc;
1186         ctrl->cc = new;
1187
1188         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1189                 nvmet_start_ctrl(ctrl);
1190         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1191                 nvmet_clear_ctrl(ctrl);
1192         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1193                 nvmet_clear_ctrl(ctrl);
1194                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1195         }
1196         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1197                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1198         mutex_unlock(&ctrl->lock);
1199 }
1200
1201 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1202 {
1203         /* command sets supported: NVMe command set: */
1204         ctrl->cap = (1ULL << 37);
1205         /* Controller supports one or more I/O Command Sets */
1206         ctrl->cap |= (1ULL << 43);
1207         /* CC.EN timeout in 500msec units: */
1208         ctrl->cap |= (15ULL << 24);
1209         /* maximum queue entries supported: */
1210         if (ctrl->ops->get_max_queue_size)
1211                 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1212         else
1213                 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1214
1215         if (nvmet_is_passthru_subsys(ctrl->subsys))
1216                 nvmet_passthrough_override_cap(ctrl);
1217 }
1218
1219 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1220                                        const char *hostnqn, u16 cntlid,
1221                                        struct nvmet_req *req)
1222 {
1223         struct nvmet_ctrl *ctrl = NULL;
1224         struct nvmet_subsys *subsys;
1225
1226         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1227         if (!subsys) {
1228                 pr_warn("connect request for invalid subsystem %s!\n",
1229                         subsysnqn);
1230                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1231                 goto out;
1232         }
1233
1234         mutex_lock(&subsys->lock);
1235         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1236                 if (ctrl->cntlid == cntlid) {
1237                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1238                                 pr_warn("hostnqn mismatch.\n");
1239                                 continue;
1240                         }
1241                         if (!kref_get_unless_zero(&ctrl->ref))
1242                                 continue;
1243
1244                         /* ctrl found */
1245                         goto found;
1246                 }
1247         }
1248
1249         ctrl = NULL; /* ctrl not found */
1250         pr_warn("could not find controller %d for subsys %s / host %s\n",
1251                 cntlid, subsysnqn, hostnqn);
1252         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1253
1254 found:
1255         mutex_unlock(&subsys->lock);
1256         nvmet_subsys_put(subsys);
1257 out:
1258         return ctrl;
1259 }
1260
1261 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1262 {
1263         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1264                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1265                        req->cmd->common.opcode, req->sq->qid);
1266                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1267         }
1268
1269         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1270                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1271                        req->cmd->common.opcode, req->sq->qid);
1272                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1273         }
1274         return 0;
1275 }
1276
1277 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1278 {
1279         struct nvmet_host_link *p;
1280
1281         lockdep_assert_held(&nvmet_config_sem);
1282
1283         if (subsys->allow_any_host)
1284                 return true;
1285
1286         if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1287                 return true;
1288
1289         list_for_each_entry(p, &subsys->hosts, entry) {
1290                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1291                         return true;
1292         }
1293
1294         return false;
1295 }
1296
1297 /*
1298  * Note: ctrl->subsys->lock should be held when calling this function
1299  */
1300 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1301                 struct nvmet_req *req)
1302 {
1303         struct nvmet_ns *ns;
1304         unsigned long idx;
1305
1306         if (!req->p2p_client)
1307                 return;
1308
1309         ctrl->p2p_client = get_device(req->p2p_client);
1310
1311         xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1312                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1313 }
1314
1315 /*
1316  * Note: ctrl->subsys->lock should be held when calling this function
1317  */
1318 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1319 {
1320         struct radix_tree_iter iter;
1321         void __rcu **slot;
1322
1323         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1324                 pci_dev_put(radix_tree_deref_slot(slot));
1325
1326         put_device(ctrl->p2p_client);
1327 }
1328
1329 static void nvmet_fatal_error_handler(struct work_struct *work)
1330 {
1331         struct nvmet_ctrl *ctrl =
1332                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1333
1334         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1335         ctrl->ops->delete_ctrl(ctrl);
1336 }
1337
1338 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1339                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1340 {
1341         struct nvmet_subsys *subsys;
1342         struct nvmet_ctrl *ctrl;
1343         int ret;
1344         u16 status;
1345
1346         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1347         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1348         if (!subsys) {
1349                 pr_warn("connect request for invalid subsystem %s!\n",
1350                         subsysnqn);
1351                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1352                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1353                 goto out;
1354         }
1355
1356         down_read(&nvmet_config_sem);
1357         if (!nvmet_host_allowed(subsys, hostnqn)) {
1358                 pr_info("connect by host %s for subsystem %s not allowed\n",
1359                         hostnqn, subsysnqn);
1360                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1361                 up_read(&nvmet_config_sem);
1362                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1363                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1364                 goto out_put_subsystem;
1365         }
1366         up_read(&nvmet_config_sem);
1367
1368         status = NVME_SC_INTERNAL;
1369         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1370         if (!ctrl)
1371                 goto out_put_subsystem;
1372         mutex_init(&ctrl->lock);
1373
1374         ctrl->port = req->port;
1375         ctrl->ops = req->ops;
1376
1377         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1378         INIT_LIST_HEAD(&ctrl->async_events);
1379         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1380         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1381         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1382
1383         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1384         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1385
1386         kref_init(&ctrl->ref);
1387         ctrl->subsys = subsys;
1388         nvmet_init_cap(ctrl);
1389         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1390
1391         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1392                         sizeof(__le32), GFP_KERNEL);
1393         if (!ctrl->changed_ns_list)
1394                 goto out_free_ctrl;
1395
1396         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1397                         sizeof(struct nvmet_sq *),
1398                         GFP_KERNEL);
1399         if (!ctrl->sqs)
1400                 goto out_free_changed_ns_list;
1401
1402         if (subsys->cntlid_min > subsys->cntlid_max)
1403                 goto out_free_sqs;
1404
1405         ret = ida_alloc_range(&cntlid_ida,
1406                              subsys->cntlid_min, subsys->cntlid_max,
1407                              GFP_KERNEL);
1408         if (ret < 0) {
1409                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1410                 goto out_free_sqs;
1411         }
1412         ctrl->cntlid = ret;
1413
1414         /*
1415          * Discovery controllers may use some arbitrary high value
1416          * in order to cleanup stale discovery sessions
1417          */
1418         if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1419                 kato = NVMET_DISC_KATO_MS;
1420
1421         /* keep-alive timeout in seconds */
1422         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1423
1424         ctrl->err_counter = 0;
1425         spin_lock_init(&ctrl->error_lock);
1426
1427         nvmet_start_keep_alive_timer(ctrl);
1428
1429         mutex_lock(&subsys->lock);
1430         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1431         nvmet_setup_p2p_ns_map(ctrl, req);
1432         mutex_unlock(&subsys->lock);
1433
1434         *ctrlp = ctrl;
1435         return 0;
1436
1437 out_free_sqs:
1438         kfree(ctrl->sqs);
1439 out_free_changed_ns_list:
1440         kfree(ctrl->changed_ns_list);
1441 out_free_ctrl:
1442         kfree(ctrl);
1443 out_put_subsystem:
1444         nvmet_subsys_put(subsys);
1445 out:
1446         return status;
1447 }
1448
1449 static void nvmet_ctrl_free(struct kref *ref)
1450 {
1451         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1452         struct nvmet_subsys *subsys = ctrl->subsys;
1453
1454         mutex_lock(&subsys->lock);
1455         nvmet_release_p2p_ns_map(ctrl);
1456         list_del(&ctrl->subsys_entry);
1457         mutex_unlock(&subsys->lock);
1458
1459         nvmet_stop_keep_alive_timer(ctrl);
1460
1461         flush_work(&ctrl->async_event_work);
1462         cancel_work_sync(&ctrl->fatal_err_work);
1463
1464         ida_free(&cntlid_ida, ctrl->cntlid);
1465
1466         nvmet_async_events_free(ctrl);
1467         kfree(ctrl->sqs);
1468         kfree(ctrl->changed_ns_list);
1469         kfree(ctrl);
1470
1471         nvmet_subsys_put(subsys);
1472 }
1473
1474 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1475 {
1476         kref_put(&ctrl->ref, nvmet_ctrl_free);
1477 }
1478
1479 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1480 {
1481         mutex_lock(&ctrl->lock);
1482         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1483                 ctrl->csts |= NVME_CSTS_CFS;
1484                 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1485         }
1486         mutex_unlock(&ctrl->lock);
1487 }
1488 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1489
1490 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1491                 const char *subsysnqn)
1492 {
1493         struct nvmet_subsys_link *p;
1494
1495         if (!port)
1496                 return NULL;
1497
1498         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1499                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1500                         return NULL;
1501                 return nvmet_disc_subsys;
1502         }
1503
1504         down_read(&nvmet_config_sem);
1505         list_for_each_entry(p, &port->subsystems, entry) {
1506                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1507                                 NVMF_NQN_SIZE)) {
1508                         if (!kref_get_unless_zero(&p->subsys->ref))
1509                                 break;
1510                         up_read(&nvmet_config_sem);
1511                         return p->subsys;
1512                 }
1513         }
1514         up_read(&nvmet_config_sem);
1515         return NULL;
1516 }
1517
1518 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1519                 enum nvme_subsys_type type)
1520 {
1521         struct nvmet_subsys *subsys;
1522         char serial[NVMET_SN_MAX_SIZE / 2];
1523         int ret;
1524
1525         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1526         if (!subsys)
1527                 return ERR_PTR(-ENOMEM);
1528
1529         subsys->ver = NVMET_DEFAULT_VS;
1530         /* generate a random serial number as our controllers are ephemeral: */
1531         get_random_bytes(&serial, sizeof(serial));
1532         bin2hex(subsys->serial, &serial, sizeof(serial));
1533
1534         subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1535         if (!subsys->model_number) {
1536                 ret = -ENOMEM;
1537                 goto free_subsys;
1538         }
1539
1540         switch (type) {
1541         case NVME_NQN_NVME:
1542                 subsys->max_qid = NVMET_NR_QUEUES;
1543                 break;
1544         case NVME_NQN_DISC:
1545         case NVME_NQN_CURR:
1546                 subsys->max_qid = 0;
1547                 break;
1548         default:
1549                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1550                 ret = -EINVAL;
1551                 goto free_mn;
1552         }
1553         subsys->type = type;
1554         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1555                         GFP_KERNEL);
1556         if (!subsys->subsysnqn) {
1557                 ret = -ENOMEM;
1558                 goto free_mn;
1559         }
1560         subsys->cntlid_min = NVME_CNTLID_MIN;
1561         subsys->cntlid_max = NVME_CNTLID_MAX;
1562         kref_init(&subsys->ref);
1563
1564         mutex_init(&subsys->lock);
1565         xa_init(&subsys->namespaces);
1566         INIT_LIST_HEAD(&subsys->ctrls);
1567         INIT_LIST_HEAD(&subsys->hosts);
1568
1569         return subsys;
1570
1571 free_mn:
1572         kfree(subsys->model_number);
1573 free_subsys:
1574         kfree(subsys);
1575         return ERR_PTR(ret);
1576 }
1577
1578 static void nvmet_subsys_free(struct kref *ref)
1579 {
1580         struct nvmet_subsys *subsys =
1581                 container_of(ref, struct nvmet_subsys, ref);
1582
1583         WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1584
1585         xa_destroy(&subsys->namespaces);
1586         nvmet_passthru_subsys_free(subsys);
1587
1588         kfree(subsys->subsysnqn);
1589         kfree(subsys->model_number);
1590         kfree(subsys);
1591 }
1592
1593 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1594 {
1595         struct nvmet_ctrl *ctrl;
1596
1597         mutex_lock(&subsys->lock);
1598         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1599                 ctrl->ops->delete_ctrl(ctrl);
1600         mutex_unlock(&subsys->lock);
1601 }
1602
1603 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1604 {
1605         kref_put(&subsys->ref, nvmet_subsys_free);
1606 }
1607
1608 static int __init nvmet_init(void)
1609 {
1610         int error;
1611
1612         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1613
1614         zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1615         if (!zbd_wq)
1616                 return -ENOMEM;
1617
1618         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1619                         WQ_MEM_RECLAIM, 0);
1620         if (!buffered_io_wq) {
1621                 error = -ENOMEM;
1622                 goto out_free_zbd_work_queue;
1623         }
1624
1625         nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1626         if (!nvmet_wq) {
1627                 error = -ENOMEM;
1628                 goto out_free_buffered_work_queue;
1629         }
1630
1631         error = nvmet_init_discovery();
1632         if (error)
1633                 goto out_free_nvmet_work_queue;
1634
1635         error = nvmet_init_configfs();
1636         if (error)
1637                 goto out_exit_discovery;
1638         return 0;
1639
1640 out_exit_discovery:
1641         nvmet_exit_discovery();
1642 out_free_nvmet_work_queue:
1643         destroy_workqueue(nvmet_wq);
1644 out_free_buffered_work_queue:
1645         destroy_workqueue(buffered_io_wq);
1646 out_free_zbd_work_queue:
1647         destroy_workqueue(zbd_wq);
1648         return error;
1649 }
1650
1651 static void __exit nvmet_exit(void)
1652 {
1653         nvmet_exit_configfs();
1654         nvmet_exit_discovery();
1655         ida_destroy(&cntlid_ida);
1656         destroy_workqueue(nvmet_wq);
1657         destroy_workqueue(buffered_io_wq);
1658         destroy_workqueue(zbd_wq);
1659
1660         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1661         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1662 }
1663
1664 module_init(nvmet_init);
1665 module_exit(nvmet_exit);
1666
1667 MODULE_LICENSE("GPL v2");