Merge tag 'drm-intel-gt-next-2024-02-28' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/kstrtox.h>
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/hash.h>
12 #include <linux/sort.h>
13 #include <linux/io.h>
14 #include <linux/nd.h>
15 #include "nd-core.h"
16 #include "nd.h"
17
18 /*
19  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
20  * irrelevant.
21  */
22 #include <linux/io-64-nonatomic-hi-lo.h>
23
24 static DEFINE_PER_CPU(int, flush_idx);
25
26 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
27                 struct nd_region_data *ndrd)
28 {
29         int i, j;
30
31         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
32                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
33         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
34                 struct resource *res = &nvdimm->flush_wpq[i];
35                 unsigned long pfn = PHYS_PFN(res->start);
36                 void __iomem *flush_page;
37
38                 /* check if flush hints share a page */
39                 for (j = 0; j < i; j++) {
40                         struct resource *res_j = &nvdimm->flush_wpq[j];
41                         unsigned long pfn_j = PHYS_PFN(res_j->start);
42
43                         if (pfn == pfn_j)
44                                 break;
45                 }
46
47                 if (j < i)
48                         flush_page = (void __iomem *) ((unsigned long)
49                                         ndrd_get_flush_wpq(ndrd, dimm, j)
50                                         & PAGE_MASK);
51                 else
52                         flush_page = devm_nvdimm_ioremap(dev,
53                                         PFN_PHYS(pfn), PAGE_SIZE);
54                 if (!flush_page)
55                         return -ENXIO;
56                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
57                                 + (res->start & ~PAGE_MASK));
58         }
59
60         return 0;
61 }
62
63 static int nd_region_invalidate_memregion(struct nd_region *nd_region)
64 {
65         int i, incoherent = 0;
66
67         for (i = 0; i < nd_region->ndr_mappings; i++) {
68                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
69                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
70
71                 if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
72                         incoherent++;
73                         break;
74                 }
75         }
76
77         if (!incoherent)
78                 return 0;
79
80         if (!cpu_cache_has_invalidate_memregion()) {
81                 if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
82                         dev_warn(
83                                 &nd_region->dev,
84                                 "Bypassing cpu_cache_invalidate_memergion() for testing!\n");
85                         goto out;
86                 } else {
87                         dev_err(&nd_region->dev,
88                                 "Failed to synchronize CPU cache state\n");
89                         return -ENXIO;
90                 }
91         }
92
93         cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
94 out:
95         for (i = 0; i < nd_region->ndr_mappings; i++) {
96                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
97                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
98
99                 clear_bit(NDD_INCOHERENT, &nvdimm->flags);
100         }
101
102         return 0;
103 }
104
105 int nd_region_activate(struct nd_region *nd_region)
106 {
107         int i, j, rc, num_flush = 0;
108         struct nd_region_data *ndrd;
109         struct device *dev = &nd_region->dev;
110         size_t flush_data_size = sizeof(void *);
111
112         nvdimm_bus_lock(&nd_region->dev);
113         for (i = 0; i < nd_region->ndr_mappings; i++) {
114                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
115                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
116
117                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
118                         nvdimm_bus_unlock(&nd_region->dev);
119                         return -EBUSY;
120                 }
121
122                 /* at least one null hint slot per-dimm for the "no-hint" case */
123                 flush_data_size += sizeof(void *);
124                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
125                 if (!nvdimm->num_flush)
126                         continue;
127                 flush_data_size += nvdimm->num_flush * sizeof(void *);
128         }
129         nvdimm_bus_unlock(&nd_region->dev);
130
131         rc = nd_region_invalidate_memregion(nd_region);
132         if (rc)
133                 return rc;
134
135         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
136         if (!ndrd)
137                 return -ENOMEM;
138         dev_set_drvdata(dev, ndrd);
139
140         if (!num_flush)
141                 return 0;
142
143         ndrd->hints_shift = ilog2(num_flush);
144         for (i = 0; i < nd_region->ndr_mappings; i++) {
145                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
146                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
147                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
148
149                 if (rc)
150                         return rc;
151         }
152
153         /*
154          * Clear out entries that are duplicates. This should prevent the
155          * extra flushings.
156          */
157         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
158                 /* ignore if NULL already */
159                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
160                         continue;
161
162                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
163                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
164                             ndrd_get_flush_wpq(ndrd, j, 0))
165                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
166         }
167
168         return 0;
169 }
170
171 static void nd_region_release(struct device *dev)
172 {
173         struct nd_region *nd_region = to_nd_region(dev);
174         u16 i;
175
176         for (i = 0; i < nd_region->ndr_mappings; i++) {
177                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
178                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
179
180                 put_device(&nvdimm->dev);
181         }
182         free_percpu(nd_region->lane);
183         if (!test_bit(ND_REGION_CXL, &nd_region->flags))
184                 memregion_free(nd_region->id);
185         kfree(nd_region);
186 }
187
188 struct nd_region *to_nd_region(struct device *dev)
189 {
190         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
191
192         WARN_ON(dev->type->release != nd_region_release);
193         return nd_region;
194 }
195 EXPORT_SYMBOL_GPL(to_nd_region);
196
197 struct device *nd_region_dev(struct nd_region *nd_region)
198 {
199         if (!nd_region)
200                 return NULL;
201         return &nd_region->dev;
202 }
203 EXPORT_SYMBOL_GPL(nd_region_dev);
204
205 void *nd_region_provider_data(struct nd_region *nd_region)
206 {
207         return nd_region->provider_data;
208 }
209 EXPORT_SYMBOL_GPL(nd_region_provider_data);
210
211 /**
212  * nd_region_to_nstype() - region to an integer namespace type
213  * @nd_region: region-device to interrogate
214  *
215  * This is the 'nstype' attribute of a region as well, an input to the
216  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
217  * namespace devices with namespace drivers.
218  */
219 int nd_region_to_nstype(struct nd_region *nd_region)
220 {
221         if (is_memory(&nd_region->dev)) {
222                 u16 i, label;
223
224                 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
225                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
226                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
227
228                         if (test_bit(NDD_LABELING, &nvdimm->flags))
229                                 label++;
230                 }
231                 if (label)
232                         return ND_DEVICE_NAMESPACE_PMEM;
233                 else
234                         return ND_DEVICE_NAMESPACE_IO;
235         }
236
237         return 0;
238 }
239 EXPORT_SYMBOL(nd_region_to_nstype);
240
241 static unsigned long long region_size(struct nd_region *nd_region)
242 {
243         if (is_memory(&nd_region->dev)) {
244                 return nd_region->ndr_size;
245         } else if (nd_region->ndr_mappings == 1) {
246                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
247
248                 return nd_mapping->size;
249         }
250
251         return 0;
252 }
253
254 static ssize_t size_show(struct device *dev,
255                 struct device_attribute *attr, char *buf)
256 {
257         struct nd_region *nd_region = to_nd_region(dev);
258
259         return sprintf(buf, "%llu\n", region_size(nd_region));
260 }
261 static DEVICE_ATTR_RO(size);
262
263 static ssize_t deep_flush_show(struct device *dev,
264                 struct device_attribute *attr, char *buf)
265 {
266         struct nd_region *nd_region = to_nd_region(dev);
267
268         /*
269          * NOTE: in the nvdimm_has_flush() error case this attribute is
270          * not visible.
271          */
272         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
273 }
274
275 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
276                 const char *buf, size_t len)
277 {
278         bool flush;
279         int rc = kstrtobool(buf, &flush);
280         struct nd_region *nd_region = to_nd_region(dev);
281
282         if (rc)
283                 return rc;
284         if (!flush)
285                 return -EINVAL;
286         rc = nvdimm_flush(nd_region, NULL);
287         if (rc)
288                 return rc;
289
290         return len;
291 }
292 static DEVICE_ATTR_RW(deep_flush);
293
294 static ssize_t mappings_show(struct device *dev,
295                 struct device_attribute *attr, char *buf)
296 {
297         struct nd_region *nd_region = to_nd_region(dev);
298
299         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
300 }
301 static DEVICE_ATTR_RO(mappings);
302
303 static ssize_t nstype_show(struct device *dev,
304                 struct device_attribute *attr, char *buf)
305 {
306         struct nd_region *nd_region = to_nd_region(dev);
307
308         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
309 }
310 static DEVICE_ATTR_RO(nstype);
311
312 static ssize_t set_cookie_show(struct device *dev,
313                 struct device_attribute *attr, char *buf)
314 {
315         struct nd_region *nd_region = to_nd_region(dev);
316         struct nd_interleave_set *nd_set = nd_region->nd_set;
317         ssize_t rc = 0;
318
319         if (is_memory(dev) && nd_set)
320                 /* pass, should be precluded by region_visible */;
321         else
322                 return -ENXIO;
323
324         /*
325          * The cookie to show depends on which specification of the
326          * labels we are using. If there are not labels then default to
327          * the v1.1 namespace label cookie definition. To read all this
328          * data we need to wait for probing to settle.
329          */
330         device_lock(dev);
331         nvdimm_bus_lock(dev);
332         wait_nvdimm_bus_probe_idle(dev);
333         if (nd_region->ndr_mappings) {
334                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
335                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
336
337                 if (ndd) {
338                         struct nd_namespace_index *nsindex;
339
340                         nsindex = to_namespace_index(ndd, ndd->ns_current);
341                         rc = sprintf(buf, "%#llx\n",
342                                         nd_region_interleave_set_cookie(nd_region,
343                                                 nsindex));
344                 }
345         }
346         nvdimm_bus_unlock(dev);
347         device_unlock(dev);
348
349         if (rc)
350                 return rc;
351         return sprintf(buf, "%#llx\n", nd_set->cookie1);
352 }
353 static DEVICE_ATTR_RO(set_cookie);
354
355 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
356 {
357         resource_size_t available;
358         int i;
359
360         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
361
362         available = 0;
363         for (i = 0; i < nd_region->ndr_mappings; i++) {
364                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
365                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
366
367                 /* if a dimm is disabled the available capacity is zero */
368                 if (!ndd)
369                         return 0;
370
371                 available += nd_pmem_available_dpa(nd_region, nd_mapping);
372         }
373
374         return available;
375 }
376
377 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
378 {
379         resource_size_t avail = 0;
380         int i;
381
382         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
383         for (i = 0; i < nd_region->ndr_mappings; i++) {
384                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
385
386                 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
387                                                     nd_region, nd_mapping));
388         }
389         return avail * nd_region->ndr_mappings;
390 }
391
392 static ssize_t available_size_show(struct device *dev,
393                 struct device_attribute *attr, char *buf)
394 {
395         struct nd_region *nd_region = to_nd_region(dev);
396         unsigned long long available = 0;
397
398         /*
399          * Flush in-flight updates and grab a snapshot of the available
400          * size.  Of course, this value is potentially invalidated the
401          * memory nvdimm_bus_lock() is dropped, but that's userspace's
402          * problem to not race itself.
403          */
404         device_lock(dev);
405         nvdimm_bus_lock(dev);
406         wait_nvdimm_bus_probe_idle(dev);
407         available = nd_region_available_dpa(nd_region);
408         nvdimm_bus_unlock(dev);
409         device_unlock(dev);
410
411         return sprintf(buf, "%llu\n", available);
412 }
413 static DEVICE_ATTR_RO(available_size);
414
415 static ssize_t max_available_extent_show(struct device *dev,
416                 struct device_attribute *attr, char *buf)
417 {
418         struct nd_region *nd_region = to_nd_region(dev);
419         unsigned long long available = 0;
420
421         device_lock(dev);
422         nvdimm_bus_lock(dev);
423         wait_nvdimm_bus_probe_idle(dev);
424         available = nd_region_allocatable_dpa(nd_region);
425         nvdimm_bus_unlock(dev);
426         device_unlock(dev);
427
428         return sprintf(buf, "%llu\n", available);
429 }
430 static DEVICE_ATTR_RO(max_available_extent);
431
432 static ssize_t init_namespaces_show(struct device *dev,
433                 struct device_attribute *attr, char *buf)
434 {
435         struct nd_region_data *ndrd = dev_get_drvdata(dev);
436         ssize_t rc;
437
438         nvdimm_bus_lock(dev);
439         if (ndrd)
440                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
441         else
442                 rc = -ENXIO;
443         nvdimm_bus_unlock(dev);
444
445         return rc;
446 }
447 static DEVICE_ATTR_RO(init_namespaces);
448
449 static ssize_t namespace_seed_show(struct device *dev,
450                 struct device_attribute *attr, char *buf)
451 {
452         struct nd_region *nd_region = to_nd_region(dev);
453         ssize_t rc;
454
455         nvdimm_bus_lock(dev);
456         if (nd_region->ns_seed)
457                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
458         else
459                 rc = sprintf(buf, "\n");
460         nvdimm_bus_unlock(dev);
461         return rc;
462 }
463 static DEVICE_ATTR_RO(namespace_seed);
464
465 static ssize_t btt_seed_show(struct device *dev,
466                 struct device_attribute *attr, char *buf)
467 {
468         struct nd_region *nd_region = to_nd_region(dev);
469         ssize_t rc;
470
471         nvdimm_bus_lock(dev);
472         if (nd_region->btt_seed)
473                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
474         else
475                 rc = sprintf(buf, "\n");
476         nvdimm_bus_unlock(dev);
477
478         return rc;
479 }
480 static DEVICE_ATTR_RO(btt_seed);
481
482 static ssize_t pfn_seed_show(struct device *dev,
483                 struct device_attribute *attr, char *buf)
484 {
485         struct nd_region *nd_region = to_nd_region(dev);
486         ssize_t rc;
487
488         nvdimm_bus_lock(dev);
489         if (nd_region->pfn_seed)
490                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
491         else
492                 rc = sprintf(buf, "\n");
493         nvdimm_bus_unlock(dev);
494
495         return rc;
496 }
497 static DEVICE_ATTR_RO(pfn_seed);
498
499 static ssize_t dax_seed_show(struct device *dev,
500                 struct device_attribute *attr, char *buf)
501 {
502         struct nd_region *nd_region = to_nd_region(dev);
503         ssize_t rc;
504
505         nvdimm_bus_lock(dev);
506         if (nd_region->dax_seed)
507                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
508         else
509                 rc = sprintf(buf, "\n");
510         nvdimm_bus_unlock(dev);
511
512         return rc;
513 }
514 static DEVICE_ATTR_RO(dax_seed);
515
516 static ssize_t read_only_show(struct device *dev,
517                 struct device_attribute *attr, char *buf)
518 {
519         struct nd_region *nd_region = to_nd_region(dev);
520
521         return sprintf(buf, "%d\n", nd_region->ro);
522 }
523
524 static int revalidate_read_only(struct device *dev, void *data)
525 {
526         nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
527         return 0;
528 }
529
530 static ssize_t read_only_store(struct device *dev,
531                 struct device_attribute *attr, const char *buf, size_t len)
532 {
533         bool ro;
534         int rc = kstrtobool(buf, &ro);
535         struct nd_region *nd_region = to_nd_region(dev);
536
537         if (rc)
538                 return rc;
539
540         nd_region->ro = ro;
541         device_for_each_child(dev, NULL, revalidate_read_only);
542         return len;
543 }
544 static DEVICE_ATTR_RW(read_only);
545
546 static ssize_t align_show(struct device *dev,
547                 struct device_attribute *attr, char *buf)
548 {
549         struct nd_region *nd_region = to_nd_region(dev);
550
551         return sprintf(buf, "%#lx\n", nd_region->align);
552 }
553
554 static ssize_t align_store(struct device *dev,
555                 struct device_attribute *attr, const char *buf, size_t len)
556 {
557         struct nd_region *nd_region = to_nd_region(dev);
558         unsigned long val, dpa;
559         u32 mappings, remainder;
560         int rc;
561
562         rc = kstrtoul(buf, 0, &val);
563         if (rc)
564                 return rc;
565
566         /*
567          * Ensure space-align is evenly divisible by the region
568          * interleave-width because the kernel typically has no facility
569          * to determine which DIMM(s), dimm-physical-addresses, would
570          * contribute to the tail capacity in system-physical-address
571          * space for the namespace.
572          */
573         mappings = max_t(u32, 1, nd_region->ndr_mappings);
574         dpa = div_u64_rem(val, mappings, &remainder);
575         if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
576                         || val > region_size(nd_region) || remainder)
577                 return -EINVAL;
578
579         /*
580          * Given that space allocation consults this value multiple
581          * times ensure it does not change for the duration of the
582          * allocation.
583          */
584         nvdimm_bus_lock(dev);
585         nd_region->align = val;
586         nvdimm_bus_unlock(dev);
587
588         return len;
589 }
590 static DEVICE_ATTR_RW(align);
591
592 static ssize_t region_badblocks_show(struct device *dev,
593                 struct device_attribute *attr, char *buf)
594 {
595         struct nd_region *nd_region = to_nd_region(dev);
596         ssize_t rc;
597
598         device_lock(dev);
599         if (dev->driver)
600                 rc = badblocks_show(&nd_region->bb, buf, 0);
601         else
602                 rc = -ENXIO;
603         device_unlock(dev);
604
605         return rc;
606 }
607 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
608
609 static ssize_t resource_show(struct device *dev,
610                 struct device_attribute *attr, char *buf)
611 {
612         struct nd_region *nd_region = to_nd_region(dev);
613
614         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
615 }
616 static DEVICE_ATTR_ADMIN_RO(resource);
617
618 static ssize_t persistence_domain_show(struct device *dev,
619                 struct device_attribute *attr, char *buf)
620 {
621         struct nd_region *nd_region = to_nd_region(dev);
622
623         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
624                 return sprintf(buf, "cpu_cache\n");
625         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
626                 return sprintf(buf, "memory_controller\n");
627         else
628                 return sprintf(buf, "\n");
629 }
630 static DEVICE_ATTR_RO(persistence_domain);
631
632 static struct attribute *nd_region_attributes[] = {
633         &dev_attr_size.attr,
634         &dev_attr_align.attr,
635         &dev_attr_nstype.attr,
636         &dev_attr_mappings.attr,
637         &dev_attr_btt_seed.attr,
638         &dev_attr_pfn_seed.attr,
639         &dev_attr_dax_seed.attr,
640         &dev_attr_deep_flush.attr,
641         &dev_attr_read_only.attr,
642         &dev_attr_set_cookie.attr,
643         &dev_attr_available_size.attr,
644         &dev_attr_max_available_extent.attr,
645         &dev_attr_namespace_seed.attr,
646         &dev_attr_init_namespaces.attr,
647         &dev_attr_badblocks.attr,
648         &dev_attr_resource.attr,
649         &dev_attr_persistence_domain.attr,
650         NULL,
651 };
652
653 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
654 {
655         struct device *dev = container_of(kobj, typeof(*dev), kobj);
656         struct nd_region *nd_region = to_nd_region(dev);
657         struct nd_interleave_set *nd_set = nd_region->nd_set;
658         int type = nd_region_to_nstype(nd_region);
659
660         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
661                 return 0;
662
663         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
664                 return 0;
665
666         if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
667                 return 0;
668
669         if (a == &dev_attr_resource.attr && !is_memory(dev))
670                 return 0;
671
672         if (a == &dev_attr_deep_flush.attr) {
673                 int has_flush = nvdimm_has_flush(nd_region);
674
675                 if (has_flush == 1)
676                         return a->mode;
677                 else if (has_flush == 0)
678                         return 0444;
679                 else
680                         return 0;
681         }
682
683         if (a == &dev_attr_persistence_domain.attr) {
684                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
685                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
686                         return 0;
687                 return a->mode;
688         }
689
690         if (a == &dev_attr_align.attr)
691                 return a->mode;
692
693         if (a != &dev_attr_set_cookie.attr
694                         && a != &dev_attr_available_size.attr)
695                 return a->mode;
696
697         if (type == ND_DEVICE_NAMESPACE_PMEM &&
698             a == &dev_attr_available_size.attr)
699                 return a->mode;
700         else if (is_memory(dev) && nd_set)
701                 return a->mode;
702
703         return 0;
704 }
705
706 static ssize_t mappingN(struct device *dev, char *buf, int n)
707 {
708         struct nd_region *nd_region = to_nd_region(dev);
709         struct nd_mapping *nd_mapping;
710         struct nvdimm *nvdimm;
711
712         if (n >= nd_region->ndr_mappings)
713                 return -ENXIO;
714         nd_mapping = &nd_region->mapping[n];
715         nvdimm = nd_mapping->nvdimm;
716
717         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
718                         nd_mapping->start, nd_mapping->size,
719                         nd_mapping->position);
720 }
721
722 #define REGION_MAPPING(idx) \
723 static ssize_t mapping##idx##_show(struct device *dev,          \
724                 struct device_attribute *attr, char *buf)       \
725 {                                                               \
726         return mappingN(dev, buf, idx);                         \
727 }                                                               \
728 static DEVICE_ATTR_RO(mapping##idx)
729
730 /*
731  * 32 should be enough for a while, even in the presence of socket
732  * interleave a 32-way interleave set is a degenerate case.
733  */
734 REGION_MAPPING(0);
735 REGION_MAPPING(1);
736 REGION_MAPPING(2);
737 REGION_MAPPING(3);
738 REGION_MAPPING(4);
739 REGION_MAPPING(5);
740 REGION_MAPPING(6);
741 REGION_MAPPING(7);
742 REGION_MAPPING(8);
743 REGION_MAPPING(9);
744 REGION_MAPPING(10);
745 REGION_MAPPING(11);
746 REGION_MAPPING(12);
747 REGION_MAPPING(13);
748 REGION_MAPPING(14);
749 REGION_MAPPING(15);
750 REGION_MAPPING(16);
751 REGION_MAPPING(17);
752 REGION_MAPPING(18);
753 REGION_MAPPING(19);
754 REGION_MAPPING(20);
755 REGION_MAPPING(21);
756 REGION_MAPPING(22);
757 REGION_MAPPING(23);
758 REGION_MAPPING(24);
759 REGION_MAPPING(25);
760 REGION_MAPPING(26);
761 REGION_MAPPING(27);
762 REGION_MAPPING(28);
763 REGION_MAPPING(29);
764 REGION_MAPPING(30);
765 REGION_MAPPING(31);
766
767 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
768 {
769         struct device *dev = container_of(kobj, struct device, kobj);
770         struct nd_region *nd_region = to_nd_region(dev);
771
772         if (n < nd_region->ndr_mappings)
773                 return a->mode;
774         return 0;
775 }
776
777 static struct attribute *mapping_attributes[] = {
778         &dev_attr_mapping0.attr,
779         &dev_attr_mapping1.attr,
780         &dev_attr_mapping2.attr,
781         &dev_attr_mapping3.attr,
782         &dev_attr_mapping4.attr,
783         &dev_attr_mapping5.attr,
784         &dev_attr_mapping6.attr,
785         &dev_attr_mapping7.attr,
786         &dev_attr_mapping8.attr,
787         &dev_attr_mapping9.attr,
788         &dev_attr_mapping10.attr,
789         &dev_attr_mapping11.attr,
790         &dev_attr_mapping12.attr,
791         &dev_attr_mapping13.attr,
792         &dev_attr_mapping14.attr,
793         &dev_attr_mapping15.attr,
794         &dev_attr_mapping16.attr,
795         &dev_attr_mapping17.attr,
796         &dev_attr_mapping18.attr,
797         &dev_attr_mapping19.attr,
798         &dev_attr_mapping20.attr,
799         &dev_attr_mapping21.attr,
800         &dev_attr_mapping22.attr,
801         &dev_attr_mapping23.attr,
802         &dev_attr_mapping24.attr,
803         &dev_attr_mapping25.attr,
804         &dev_attr_mapping26.attr,
805         &dev_attr_mapping27.attr,
806         &dev_attr_mapping28.attr,
807         &dev_attr_mapping29.attr,
808         &dev_attr_mapping30.attr,
809         &dev_attr_mapping31.attr,
810         NULL,
811 };
812
813 static const struct attribute_group nd_mapping_attribute_group = {
814         .is_visible = mapping_visible,
815         .attrs = mapping_attributes,
816 };
817
818 static const struct attribute_group nd_region_attribute_group = {
819         .attrs = nd_region_attributes,
820         .is_visible = region_visible,
821 };
822
823 static const struct attribute_group *nd_region_attribute_groups[] = {
824         &nd_device_attribute_group,
825         &nd_region_attribute_group,
826         &nd_numa_attribute_group,
827         &nd_mapping_attribute_group,
828         NULL,
829 };
830
831 static const struct device_type nd_pmem_device_type = {
832         .name = "nd_pmem",
833         .release = nd_region_release,
834         .groups = nd_region_attribute_groups,
835 };
836
837 static const struct device_type nd_volatile_device_type = {
838         .name = "nd_volatile",
839         .release = nd_region_release,
840         .groups = nd_region_attribute_groups,
841 };
842
843 bool is_nd_pmem(const struct device *dev)
844 {
845         return dev ? dev->type == &nd_pmem_device_type : false;
846 }
847
848 bool is_nd_volatile(const struct device *dev)
849 {
850         return dev ? dev->type == &nd_volatile_device_type : false;
851 }
852
853 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
854                 struct nd_namespace_index *nsindex)
855 {
856         struct nd_interleave_set *nd_set = nd_region->nd_set;
857
858         if (!nd_set)
859                 return 0;
860
861         if (nsindex && __le16_to_cpu(nsindex->major) == 1
862                         && __le16_to_cpu(nsindex->minor) == 1)
863                 return nd_set->cookie1;
864         return nd_set->cookie2;
865 }
866
867 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
868 {
869         struct nd_interleave_set *nd_set = nd_region->nd_set;
870
871         if (nd_set)
872                 return nd_set->altcookie;
873         return 0;
874 }
875
876 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
877 {
878         struct nd_label_ent *label_ent, *e;
879
880         lockdep_assert_held(&nd_mapping->lock);
881         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
882                 list_del(&label_ent->list);
883                 kfree(label_ent);
884         }
885 }
886
887 /*
888  * When a namespace is activated create new seeds for the next
889  * namespace, or namespace-personality to be configured.
890  */
891 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
892 {
893         nvdimm_bus_lock(dev);
894         if (nd_region->ns_seed == dev) {
895                 nd_region_create_ns_seed(nd_region);
896         } else if (is_nd_btt(dev)) {
897                 struct nd_btt *nd_btt = to_nd_btt(dev);
898
899                 if (nd_region->btt_seed == dev)
900                         nd_region_create_btt_seed(nd_region);
901                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
902                         nd_region_create_ns_seed(nd_region);
903         } else if (is_nd_pfn(dev)) {
904                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
905
906                 if (nd_region->pfn_seed == dev)
907                         nd_region_create_pfn_seed(nd_region);
908                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
909                         nd_region_create_ns_seed(nd_region);
910         } else if (is_nd_dax(dev)) {
911                 struct nd_dax *nd_dax = to_nd_dax(dev);
912
913                 if (nd_region->dax_seed == dev)
914                         nd_region_create_dax_seed(nd_region);
915                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
916                         nd_region_create_ns_seed(nd_region);
917         }
918         nvdimm_bus_unlock(dev);
919 }
920
921 /**
922  * nd_region_acquire_lane - allocate and lock a lane
923  * @nd_region: region id and number of lanes possible
924  *
925  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
926  * We optimize for the common case where there are 256 lanes, one
927  * per-cpu.  For larger systems we need to lock to share lanes.  For now
928  * this implementation assumes the cost of maintaining an allocator for
929  * free lanes is on the order of the lock hold time, so it implements a
930  * static lane = cpu % num_lanes mapping.
931  *
932  * In the case of a BTT instance on top of a BLK namespace a lane may be
933  * acquired recursively.  We lock on the first instance.
934  *
935  * In the case of a BTT instance on top of PMEM, we only acquire a lane
936  * for the BTT metadata updates.
937  */
938 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
939 {
940         unsigned int cpu, lane;
941
942         migrate_disable();
943         cpu = smp_processor_id();
944         if (nd_region->num_lanes < nr_cpu_ids) {
945                 struct nd_percpu_lane *ndl_lock, *ndl_count;
946
947                 lane = cpu % nd_region->num_lanes;
948                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
949                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
950                 if (ndl_count->count++ == 0)
951                         spin_lock(&ndl_lock->lock);
952         } else
953                 lane = cpu;
954
955         return lane;
956 }
957 EXPORT_SYMBOL(nd_region_acquire_lane);
958
959 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
960 {
961         if (nd_region->num_lanes < nr_cpu_ids) {
962                 unsigned int cpu = smp_processor_id();
963                 struct nd_percpu_lane *ndl_lock, *ndl_count;
964
965                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
966                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
967                 if (--ndl_count->count == 0)
968                         spin_unlock(&ndl_lock->lock);
969         }
970         migrate_enable();
971 }
972 EXPORT_SYMBOL(nd_region_release_lane);
973
974 /*
975  * PowerPC requires this alignment for memremap_pages(). All other archs
976  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
977  */
978 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
979
980 static unsigned long default_align(struct nd_region *nd_region)
981 {
982         unsigned long align;
983         u32 remainder;
984         int mappings;
985
986         align = MEMREMAP_COMPAT_ALIGN_MAX;
987         if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
988                 align = PAGE_SIZE;
989
990         mappings = max_t(u16, 1, nd_region->ndr_mappings);
991         div_u64_rem(align, mappings, &remainder);
992         if (remainder)
993                 align *= mappings;
994
995         return align;
996 }
997
998 static struct lock_class_key nvdimm_region_key;
999
1000 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1001                 struct nd_region_desc *ndr_desc,
1002                 const struct device_type *dev_type, const char *caller)
1003 {
1004         struct nd_region *nd_region;
1005         struct device *dev;
1006         unsigned int i;
1007         int ro = 0;
1008
1009         for (i = 0; i < ndr_desc->num_mappings; i++) {
1010                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1011                 struct nvdimm *nvdimm = mapping->nvdimm;
1012
1013                 if ((mapping->start | mapping->size) % PAGE_SIZE) {
1014                         dev_err(&nvdimm_bus->dev,
1015                                 "%s: %s mapping%d is not %ld aligned\n",
1016                                 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1017                         return NULL;
1018                 }
1019
1020                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1021                         ro = 1;
1022
1023         }
1024
1025         nd_region =
1026                 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
1027                         GFP_KERNEL);
1028
1029         if (!nd_region)
1030                 return NULL;
1031         nd_region->ndr_mappings = ndr_desc->num_mappings;
1032         /* CXL pre-assigns memregion ids before creating nvdimm regions */
1033         if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
1034                 nd_region->id = ndr_desc->memregion;
1035         } else {
1036                 nd_region->id = memregion_alloc(GFP_KERNEL);
1037                 if (nd_region->id < 0)
1038                         goto err_id;
1039         }
1040
1041         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1042         if (!nd_region->lane)
1043                 goto err_percpu;
1044
1045         for (i = 0; i < nr_cpu_ids; i++) {
1046                 struct nd_percpu_lane *ndl;
1047
1048                 ndl = per_cpu_ptr(nd_region->lane, i);
1049                 spin_lock_init(&ndl->lock);
1050                 ndl->count = 0;
1051         }
1052
1053         for (i = 0; i < ndr_desc->num_mappings; i++) {
1054                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1055                 struct nvdimm *nvdimm = mapping->nvdimm;
1056
1057                 nd_region->mapping[i].nvdimm = nvdimm;
1058                 nd_region->mapping[i].start = mapping->start;
1059                 nd_region->mapping[i].size = mapping->size;
1060                 nd_region->mapping[i].position = mapping->position;
1061                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1062                 mutex_init(&nd_region->mapping[i].lock);
1063
1064                 get_device(&nvdimm->dev);
1065         }
1066         nd_region->provider_data = ndr_desc->provider_data;
1067         nd_region->nd_set = ndr_desc->nd_set;
1068         nd_region->num_lanes = ndr_desc->num_lanes;
1069         nd_region->flags = ndr_desc->flags;
1070         nd_region->ro = ro;
1071         nd_region->numa_node = ndr_desc->numa_node;
1072         nd_region->target_node = ndr_desc->target_node;
1073         ida_init(&nd_region->ns_ida);
1074         ida_init(&nd_region->btt_ida);
1075         ida_init(&nd_region->pfn_ida);
1076         ida_init(&nd_region->dax_ida);
1077         dev = &nd_region->dev;
1078         dev_set_name(dev, "region%d", nd_region->id);
1079         dev->parent = &nvdimm_bus->dev;
1080         dev->type = dev_type;
1081         dev->groups = ndr_desc->attr_groups;
1082         dev->of_node = ndr_desc->of_node;
1083         nd_region->ndr_size = resource_size(ndr_desc->res);
1084         nd_region->ndr_start = ndr_desc->res->start;
1085         nd_region->align = default_align(nd_region);
1086         if (ndr_desc->flush)
1087                 nd_region->flush = ndr_desc->flush;
1088         else
1089                 nd_region->flush = NULL;
1090
1091         device_initialize(dev);
1092         lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1093         nd_device_register(dev);
1094
1095         return nd_region;
1096
1097 err_percpu:
1098         if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1099                 memregion_free(nd_region->id);
1100 err_id:
1101         kfree(nd_region);
1102         return NULL;
1103 }
1104
1105 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1106                 struct nd_region_desc *ndr_desc)
1107 {
1108         ndr_desc->num_lanes = ND_MAX_LANES;
1109         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1110                         __func__);
1111 }
1112 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1113
1114 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1115                 struct nd_region_desc *ndr_desc)
1116 {
1117         ndr_desc->num_lanes = ND_MAX_LANES;
1118         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1119                         __func__);
1120 }
1121 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1122
1123 void nvdimm_region_delete(struct nd_region *nd_region)
1124 {
1125         if (nd_region)
1126                 nd_device_unregister(&nd_region->dev, ND_SYNC);
1127 }
1128 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1129
1130 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1131 {
1132         int rc = 0;
1133
1134         if (!nd_region->flush)
1135                 rc = generic_nvdimm_flush(nd_region);
1136         else {
1137                 if (nd_region->flush(nd_region, bio))
1138                         rc = -EIO;
1139         }
1140
1141         return rc;
1142 }
1143 /**
1144  * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1145  * @nd_region: interleaved pmem region
1146  */
1147 int generic_nvdimm_flush(struct nd_region *nd_region)
1148 {
1149         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1150         int i, idx;
1151
1152         /*
1153          * Try to encourage some diversity in flush hint addresses
1154          * across cpus assuming a limited number of flush hints.
1155          */
1156         idx = this_cpu_read(flush_idx);
1157         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1158
1159         /*
1160          * The pmem_wmb() is needed to 'sfence' all
1161          * previous writes such that they are architecturally visible for
1162          * the platform buffer flush. Note that we've already arranged for pmem
1163          * writes to avoid the cache via memcpy_flushcache().  The final
1164          * wmb() ensures ordering for the NVDIMM flush write.
1165          */
1166         pmem_wmb();
1167         for (i = 0; i < nd_region->ndr_mappings; i++)
1168                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1169                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1170         wmb();
1171
1172         return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(nvdimm_flush);
1175
1176 /**
1177  * nvdimm_has_flush - determine write flushing requirements
1178  * @nd_region: interleaved pmem region
1179  *
1180  * Returns 1 if writes require flushing
1181  * Returns 0 if writes do not require flushing
1182  * Returns -ENXIO if flushing capability can not be determined
1183  */
1184 int nvdimm_has_flush(struct nd_region *nd_region)
1185 {
1186         int i;
1187
1188         /* no nvdimm or pmem api == flushing capability unknown */
1189         if (nd_region->ndr_mappings == 0
1190                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1191                 return -ENXIO;
1192
1193         /* Test if an explicit flush function is defined */
1194         if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1195                 return 1;
1196
1197         /* Test if any flush hints for the region are available */
1198         for (i = 0; i < nd_region->ndr_mappings; i++) {
1199                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1200                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1201
1202                 /* flush hints present / available */
1203                 if (nvdimm->num_flush)
1204                         return 1;
1205         }
1206
1207         /*
1208          * The platform defines dimm devices without hints nor explicit flush,
1209          * assume platform persistence mechanism like ADR
1210          */
1211         return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1214
1215 int nvdimm_has_cache(struct nd_region *nd_region)
1216 {
1217         return is_nd_pmem(&nd_region->dev) &&
1218                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1219 }
1220 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1221
1222 bool is_nvdimm_sync(struct nd_region *nd_region)
1223 {
1224         if (is_nd_volatile(&nd_region->dev))
1225                 return true;
1226
1227         return is_nd_pmem(&nd_region->dev) &&
1228                 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1229 }
1230 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1231
1232 struct conflict_context {
1233         struct nd_region *nd_region;
1234         resource_size_t start, size;
1235 };
1236
1237 static int region_conflict(struct device *dev, void *data)
1238 {
1239         struct nd_region *nd_region;
1240         struct conflict_context *ctx = data;
1241         resource_size_t res_end, region_end, region_start;
1242
1243         if (!is_memory(dev))
1244                 return 0;
1245
1246         nd_region = to_nd_region(dev);
1247         if (nd_region == ctx->nd_region)
1248                 return 0;
1249
1250         res_end = ctx->start + ctx->size;
1251         region_start = nd_region->ndr_start;
1252         region_end = region_start + nd_region->ndr_size;
1253         if (ctx->start >= region_start && ctx->start < region_end)
1254                 return -EBUSY;
1255         if (res_end > region_start && res_end <= region_end)
1256                 return -EBUSY;
1257         return 0;
1258 }
1259
1260 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1261                 resource_size_t size)
1262 {
1263         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1264         struct conflict_context ctx = {
1265                 .nd_region = nd_region,
1266                 .start = start,
1267                 .size = size,
1268         };
1269
1270         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1271 }
1272
1273 MODULE_IMPORT_NS(DEVMEM);