1f319c9cee468aca92198a35abb4f3035837d468
[sfrench/cifs-2.6.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO        5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK     256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
91                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER        1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123         if (unlikely(watchdog < 0))
124                 watchdog = TX_TIMEO;
125         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126                 buf_sz = DEFAULT_BUFSIZE;
127         if (unlikely(flow_ctrl > 1))
128                 flow_ctrl = FLOW_AUTO;
129         else if (likely(flow_ctrl < 0))
130                 flow_ctrl = FLOW_OFF;
131         if (unlikely((pause < 0) || (pause > 0xffff)))
132                 pause = PAUSE_TIME;
133         if (eee_timer < 0)
134                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146         u32 queue;
147
148         for (queue = 0; queue < maxq; queue++) {
149                 struct stmmac_channel *ch = &priv->channel[queue];
150
151                 if (queue < rx_queues_cnt)
152                         napi_disable(&ch->rx_napi);
153                 if (queue < tx_queues_cnt)
154                         napi_disable(&ch->tx_napi);
155         }
156 }
157
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167         u32 queue;
168
169         for (queue = 0; queue < maxq; queue++) {
170                 struct stmmac_channel *ch = &priv->channel[queue];
171
172                 if (queue < rx_queues_cnt)
173                         napi_enable(&ch->rx_napi);
174                 if (queue < tx_queues_cnt)
175                         napi_enable(&ch->tx_napi);
176         }
177 }
178
179 /**
180  * stmmac_stop_all_queues - Stop all queues
181  * @priv: driver private structure
182  */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186         u32 queue;
187
188         for (queue = 0; queue < tx_queues_cnt; queue++)
189                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191
192 /**
193  * stmmac_start_all_queues - Start all queues
194  * @priv: driver private structure
195  */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199         u32 queue;
200
201         for (queue = 0; queue < tx_queues_cnt; queue++)
202                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207         if (!test_bit(STMMAC_DOWN, &priv->state) &&
208             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209                 queue_work(priv->wq, &priv->service_task);
210 }
211
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214         netif_carrier_off(priv->dev);
215         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216         stmmac_service_event_schedule(priv);
217 }
218
219 /**
220  * stmmac_clk_csr_set - dynamically set the MDC clock
221  * @priv: driver private structure
222  * Description: this is to dynamically set the MDC clock according to the csr
223  * clock input.
224  * Note:
225  *      If a specific clk_csr value is passed from the platform
226  *      this means that the CSR Clock Range selection cannot be
227  *      changed at run-time and it is fixed (as reported in the driver
228  *      documentation). Viceversa the driver will try to set the MDC
229  *      clock dynamically according to the actual clock input.
230  */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233         u32 clk_rate;
234
235         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236
237         /* Platform provided default clk_csr would be assumed valid
238          * for all other cases except for the below mentioned ones.
239          * For values higher than the IEEE 802.3 specified frequency
240          * we can not estimate the proper divider as it is not known
241          * the frequency of clk_csr_i. So we do not change the default
242          * divider.
243          */
244         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245                 if (clk_rate < CSR_F_35M)
246                         priv->clk_csr = STMMAC_CSR_20_35M;
247                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248                         priv->clk_csr = STMMAC_CSR_35_60M;
249                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250                         priv->clk_csr = STMMAC_CSR_60_100M;
251                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252                         priv->clk_csr = STMMAC_CSR_100_150M;
253                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254                         priv->clk_csr = STMMAC_CSR_150_250M;
255                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256                         priv->clk_csr = STMMAC_CSR_250_300M;
257         }
258
259         if (priv->plat->has_sun8i) {
260                 if (clk_rate > 160000000)
261                         priv->clk_csr = 0x03;
262                 else if (clk_rate > 80000000)
263                         priv->clk_csr = 0x02;
264                 else if (clk_rate > 40000000)
265                         priv->clk_csr = 0x01;
266                 else
267                         priv->clk_csr = 0;
268         }
269
270         if (priv->plat->has_xgmac) {
271                 if (clk_rate > 400000000)
272                         priv->clk_csr = 0x5;
273                 else if (clk_rate > 350000000)
274                         priv->clk_csr = 0x4;
275                 else if (clk_rate > 300000000)
276                         priv->clk_csr = 0x3;
277                 else if (clk_rate > 250000000)
278                         priv->clk_csr = 0x2;
279                 else if (clk_rate > 150000000)
280                         priv->clk_csr = 0x1;
281                 else
282                         priv->clk_csr = 0x0;
283         }
284 }
285
286 static void print_pkt(unsigned char *buf, int len)
287 {
288         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295         u32 avail;
296
297         if (tx_q->dirty_tx > tx_q->cur_tx)
298                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299         else
300                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301
302         return avail;
303 }
304
305 /**
306  * stmmac_rx_dirty - Get RX queue dirty
307  * @priv: driver private structure
308  * @queue: RX queue index
309  */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313         u32 dirty;
314
315         if (rx_q->dirty_rx <= rx_q->cur_rx)
316                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
317         else
318                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319
320         return dirty;
321 }
322
323 /**
324  * stmmac_enable_eee_mode - check and enter in LPI mode
325  * @priv: driver private structure
326  * Description: this function is to verify and enter in LPI mode in case of
327  * EEE.
328  */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331         u32 tx_cnt = priv->plat->tx_queues_to_use;
332         u32 queue;
333
334         /* check if all TX queues have the work finished */
335         for (queue = 0; queue < tx_cnt; queue++) {
336                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337
338                 if (tx_q->dirty_tx != tx_q->cur_tx)
339                         return; /* still unfinished work */
340         }
341
342         /* Check and enter in LPI mode */
343         if (!priv->tx_path_in_lpi_mode)
344                 stmmac_set_eee_mode(priv, priv->hw,
345                                 priv->plat->en_tx_lpi_clockgating);
346 }
347
348 /**
349  * stmmac_disable_eee_mode - disable and exit from LPI mode
350  * @priv: driver private structure
351  * Description: this function is to exit and disable EEE in case of
352  * LPI state is true. This is called by the xmit.
353  */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356         stmmac_reset_eee_mode(priv, priv->hw);
357         del_timer_sync(&priv->eee_ctrl_timer);
358         priv->tx_path_in_lpi_mode = false;
359 }
360
361 /**
362  * stmmac_eee_ctrl_timer - EEE TX SW timer.
363  * @arg : data hook
364  * Description:
365  *  if there is no data transfer and if we are not in LPI state,
366  *  then MAC Transmitter can be moved to LPI state.
367  */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371
372         stmmac_enable_eee_mode(priv);
373         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
374 }
375
376 /**
377  * stmmac_eee_init - init EEE
378  * @priv: driver private structure
379  * Description:
380  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
381  *  can also manage EEE, this function enable the LPI state and start related
382  *  timer.
383  */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386         int tx_lpi_timer = priv->tx_lpi_timer;
387
388         /* Using PCS we cannot dial with the phy registers at this stage
389          * so we do not support extra feature like EEE.
390          */
391         if (priv->hw->pcs == STMMAC_PCS_TBI ||
392             priv->hw->pcs == STMMAC_PCS_RTBI)
393                 return false;
394
395         /* Check if MAC core supports the EEE feature. */
396         if (!priv->dma_cap.eee)
397                 return false;
398
399         mutex_lock(&priv->lock);
400
401         /* Check if it needs to be deactivated */
402         if (!priv->eee_active) {
403                 if (priv->eee_enabled) {
404                         netdev_dbg(priv->dev, "disable EEE\n");
405                         del_timer_sync(&priv->eee_ctrl_timer);
406                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407                 }
408                 mutex_unlock(&priv->lock);
409                 return false;
410         }
411
412         if (priv->eee_active && !priv->eee_enabled) {
413                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416                                      tx_lpi_timer);
417         }
418
419         mutex_unlock(&priv->lock);
420         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421         return true;
422 }
423
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433                                    struct dma_desc *p, struct sk_buff *skb)
434 {
435         struct skb_shared_hwtstamps shhwtstamp;
436         bool found = false;
437         u64 ns = 0;
438
439         if (!priv->hwts_tx_en)
440                 return;
441
442         /* exit if skb doesn't support hw tstamp */
443         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444                 return;
445
446         /* check tx tstamp status */
447         if (stmmac_get_tx_timestamp_status(priv, p)) {
448                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449                 found = true;
450         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451                 found = true;
452         }
453
454         if (found) {
455                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
457
458                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459                 /* pass tstamp to stack */
460                 skb_tstamp_tx(skb, &shhwtstamp);
461         }
462 }
463
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474                                    struct dma_desc *np, struct sk_buff *skb)
475 {
476         struct skb_shared_hwtstamps *shhwtstamp = NULL;
477         struct dma_desc *desc = p;
478         u64 ns = 0;
479
480         if (!priv->hwts_rx_en)
481                 return;
482         /* For GMAC4, the valid timestamp is from CTX next desc. */
483         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484                 desc = np;
485
486         /* Check if timestamp is available */
487         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490                 shhwtstamp = skb_hwtstamps(skb);
491                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493         } else  {
494                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495         }
496 }
497
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511         struct stmmac_priv *priv = netdev_priv(dev);
512         struct hwtstamp_config config;
513         struct timespec64 now;
514         u64 temp = 0;
515         u32 ptp_v2 = 0;
516         u32 tstamp_all = 0;
517         u32 ptp_over_ipv4_udp = 0;
518         u32 ptp_over_ipv6_udp = 0;
519         u32 ptp_over_ethernet = 0;
520         u32 snap_type_sel = 0;
521         u32 ts_master_en = 0;
522         u32 ts_event_en = 0;
523         u32 sec_inc = 0;
524         u32 value = 0;
525         bool xmac;
526
527         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528
529         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530                 netdev_alert(priv->dev, "No support for HW time stamping\n");
531                 priv->hwts_tx_en = 0;
532                 priv->hwts_rx_en = 0;
533
534                 return -EOPNOTSUPP;
535         }
536
537         if (copy_from_user(&config, ifr->ifr_data,
538                            sizeof(config)))
539                 return -EFAULT;
540
541         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542                    __func__, config.flags, config.tx_type, config.rx_filter);
543
544         /* reserved for future extensions */
545         if (config.flags)
546                 return -EINVAL;
547
548         if (config.tx_type != HWTSTAMP_TX_OFF &&
549             config.tx_type != HWTSTAMP_TX_ON)
550                 return -ERANGE;
551
552         if (priv->adv_ts) {
553                 switch (config.rx_filter) {
554                 case HWTSTAMP_FILTER_NONE:
555                         /* time stamp no incoming packet at all */
556                         config.rx_filter = HWTSTAMP_FILTER_NONE;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560                         /* PTP v1, UDP, any kind of event packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562                         /* 'xmac' hardware can support Sync, Pdelay_Req and
563                          * Pdelay_resp by setting bit14 and bits17/16 to 01
564                          * This leaves Delay_Req timestamps out.
565                          * Enable all events *and* general purpose message
566                          * timestamping
567                          */
568                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571                         break;
572
573                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574                         /* PTP v1, UDP, Sync packet */
575                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576                         /* take time stamp for SYNC messages only */
577                         ts_event_en = PTP_TCR_TSEVNTENA;
578
579                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581                         break;
582
583                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584                         /* PTP v1, UDP, Delay_req packet */
585                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586                         /* take time stamp for Delay_Req messages only */
587                         ts_master_en = PTP_TCR_TSMSTRENA;
588                         ts_event_en = PTP_TCR_TSEVNTENA;
589
590                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592                         break;
593
594                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595                         /* PTP v2, UDP, any kind of event packet */
596                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597                         ptp_v2 = PTP_TCR_TSVER2ENA;
598                         /* take time stamp for all event messages */
599                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600
601                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603                         break;
604
605                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606                         /* PTP v2, UDP, Sync packet */
607                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608                         ptp_v2 = PTP_TCR_TSVER2ENA;
609                         /* take time stamp for SYNC messages only */
610                         ts_event_en = PTP_TCR_TSEVNTENA;
611
612                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614                         break;
615
616                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617                         /* PTP v2, UDP, Delay_req packet */
618                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619                         ptp_v2 = PTP_TCR_TSVER2ENA;
620                         /* take time stamp for Delay_Req messages only */
621                         ts_master_en = PTP_TCR_TSMSTRENA;
622                         ts_event_en = PTP_TCR_TSEVNTENA;
623
624                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626                         break;
627
628                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629                         /* PTP v2/802.AS1 any layer, any kind of event packet */
630                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631                         ptp_v2 = PTP_TCR_TSVER2ENA;
632                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633                         ts_event_en = PTP_TCR_TSEVNTENA;
634                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636                         ptp_over_ethernet = PTP_TCR_TSIPENA;
637                         break;
638
639                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
640                         /* PTP v2/802.AS1, any layer, Sync packet */
641                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642                         ptp_v2 = PTP_TCR_TSVER2ENA;
643                         /* take time stamp for SYNC messages only */
644                         ts_event_en = PTP_TCR_TSEVNTENA;
645
646                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648                         ptp_over_ethernet = PTP_TCR_TSIPENA;
649                         break;
650
651                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652                         /* PTP v2/802.AS1, any layer, Delay_req packet */
653                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654                         ptp_v2 = PTP_TCR_TSVER2ENA;
655                         /* take time stamp for Delay_Req messages only */
656                         ts_master_en = PTP_TCR_TSMSTRENA;
657                         ts_event_en = PTP_TCR_TSEVNTENA;
658
659                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661                         ptp_over_ethernet = PTP_TCR_TSIPENA;
662                         break;
663
664                 case HWTSTAMP_FILTER_NTP_ALL:
665                 case HWTSTAMP_FILTER_ALL:
666                         /* time stamp any incoming packet */
667                         config.rx_filter = HWTSTAMP_FILTER_ALL;
668                         tstamp_all = PTP_TCR_TSENALL;
669                         break;
670
671                 default:
672                         return -ERANGE;
673                 }
674         } else {
675                 switch (config.rx_filter) {
676                 case HWTSTAMP_FILTER_NONE:
677                         config.rx_filter = HWTSTAMP_FILTER_NONE;
678                         break;
679                 default:
680                         /* PTP v1, UDP, any kind of event packet */
681                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682                         break;
683                 }
684         }
685         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687
688         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690         else {
691                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692                          tstamp_all | ptp_v2 | ptp_over_ethernet |
693                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694                          ts_master_en | snap_type_sel);
695                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696
697                 /* program Sub Second Increment reg */
698                 stmmac_config_sub_second_increment(priv,
699                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
700                                 xmac, &sec_inc);
701                 temp = div_u64(1000000000ULL, sec_inc);
702
703                 /* Store sub second increment and flags for later use */
704                 priv->sub_second_inc = sec_inc;
705                 priv->systime_flags = value;
706
707                 /* calculate default added value:
708                  * formula is :
709                  * addend = (2^32)/freq_div_ratio;
710                  * where, freq_div_ratio = 1e9ns/sec_inc
711                  */
712                 temp = (u64)(temp << 32);
713                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715
716                 /* initialize system time */
717                 ktime_get_real_ts64(&now);
718
719                 /* lower 32 bits of tv_sec are safe until y2106 */
720                 stmmac_init_systime(priv, priv->ptpaddr,
721                                 (u32)now.tv_sec, now.tv_nsec);
722         }
723
724         memcpy(&priv->tstamp_config, &config, sizeof(config));
725
726         return copy_to_user(ifr->ifr_data, &config,
727                             sizeof(config)) ? -EFAULT : 0;
728 }
729
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741         struct stmmac_priv *priv = netdev_priv(dev);
742         struct hwtstamp_config *config = &priv->tstamp_config;
743
744         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745                 return -EOPNOTSUPP;
746
747         return copy_to_user(ifr->ifr_data, config,
748                             sizeof(*config)) ? -EFAULT : 0;
749 }
750
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761
762         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763                 return -EOPNOTSUPP;
764
765         priv->adv_ts = 0;
766         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767         if (xmac && priv->dma_cap.atime_stamp)
768                 priv->adv_ts = 1;
769         /* Dwmac 3.x core with extend_desc can support adv_ts */
770         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771                 priv->adv_ts = 1;
772
773         if (priv->dma_cap.time_stamp)
774                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775
776         if (priv->adv_ts)
777                 netdev_info(priv->dev,
778                             "IEEE 1588-2008 Advanced Timestamp supported\n");
779
780         priv->hwts_tx_en = 0;
781         priv->hwts_rx_en = 0;
782
783         stmmac_ptp_register(priv);
784
785         return 0;
786 }
787
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790         if (priv->plat->clk_ptp_ref)
791                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
792         stmmac_ptp_unregister(priv);
793 }
794
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802         u32 tx_cnt = priv->plat->tx_queues_to_use;
803
804         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805                         priv->pause, tx_cnt);
806 }
807
808 static void stmmac_validate(struct phylink_config *config,
809                             unsigned long *supported,
810                             struct phylink_link_state *state)
811 {
812         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815         int tx_cnt = priv->plat->tx_queues_to_use;
816         int max_speed = priv->plat->max_speed;
817
818         phylink_set(mac_supported, 10baseT_Half);
819         phylink_set(mac_supported, 10baseT_Full);
820         phylink_set(mac_supported, 100baseT_Half);
821         phylink_set(mac_supported, 100baseT_Full);
822         phylink_set(mac_supported, 1000baseT_Half);
823         phylink_set(mac_supported, 1000baseT_Full);
824         phylink_set(mac_supported, 1000baseKX_Full);
825
826         phylink_set(mac_supported, Autoneg);
827         phylink_set(mac_supported, Pause);
828         phylink_set(mac_supported, Asym_Pause);
829         phylink_set_port_modes(mac_supported);
830
831         /* Cut down 1G if asked to */
832         if ((max_speed > 0) && (max_speed < 1000)) {
833                 phylink_set(mask, 1000baseT_Full);
834                 phylink_set(mask, 1000baseX_Full);
835         } else if (priv->plat->has_xgmac) {
836                 if (!max_speed || (max_speed >= 2500)) {
837                         phylink_set(mac_supported, 2500baseT_Full);
838                         phylink_set(mac_supported, 2500baseX_Full);
839                 }
840                 if (!max_speed || (max_speed >= 5000)) {
841                         phylink_set(mac_supported, 5000baseT_Full);
842                 }
843                 if (!max_speed || (max_speed >= 10000)) {
844                         phylink_set(mac_supported, 10000baseSR_Full);
845                         phylink_set(mac_supported, 10000baseLR_Full);
846                         phylink_set(mac_supported, 10000baseER_Full);
847                         phylink_set(mac_supported, 10000baseLRM_Full);
848                         phylink_set(mac_supported, 10000baseT_Full);
849                         phylink_set(mac_supported, 10000baseKX4_Full);
850                         phylink_set(mac_supported, 10000baseKR_Full);
851                 }
852                 if (!max_speed || (max_speed >= 25000)) {
853                         phylink_set(mac_supported, 25000baseCR_Full);
854                         phylink_set(mac_supported, 25000baseKR_Full);
855                         phylink_set(mac_supported, 25000baseSR_Full);
856                 }
857                 if (!max_speed || (max_speed >= 40000)) {
858                         phylink_set(mac_supported, 40000baseKR4_Full);
859                         phylink_set(mac_supported, 40000baseCR4_Full);
860                         phylink_set(mac_supported, 40000baseSR4_Full);
861                         phylink_set(mac_supported, 40000baseLR4_Full);
862                 }
863                 if (!max_speed || (max_speed >= 50000)) {
864                         phylink_set(mac_supported, 50000baseCR2_Full);
865                         phylink_set(mac_supported, 50000baseKR2_Full);
866                         phylink_set(mac_supported, 50000baseSR2_Full);
867                         phylink_set(mac_supported, 50000baseKR_Full);
868                         phylink_set(mac_supported, 50000baseSR_Full);
869                         phylink_set(mac_supported, 50000baseCR_Full);
870                         phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
871                         phylink_set(mac_supported, 50000baseDR_Full);
872                 }
873                 if (!max_speed || (max_speed >= 100000)) {
874                         phylink_set(mac_supported, 100000baseKR4_Full);
875                         phylink_set(mac_supported, 100000baseSR4_Full);
876                         phylink_set(mac_supported, 100000baseCR4_Full);
877                         phylink_set(mac_supported, 100000baseLR4_ER4_Full);
878                         phylink_set(mac_supported, 100000baseKR2_Full);
879                         phylink_set(mac_supported, 100000baseSR2_Full);
880                         phylink_set(mac_supported, 100000baseCR2_Full);
881                         phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
882                         phylink_set(mac_supported, 100000baseDR2_Full);
883                 }
884         }
885
886         /* Half-Duplex can only work with single queue */
887         if (tx_cnt > 1) {
888                 phylink_set(mask, 10baseT_Half);
889                 phylink_set(mask, 100baseT_Half);
890                 phylink_set(mask, 1000baseT_Half);
891         }
892
893         linkmode_and(supported, supported, mac_supported);
894         linkmode_andnot(supported, supported, mask);
895
896         linkmode_and(state->advertising, state->advertising, mac_supported);
897         linkmode_andnot(state->advertising, state->advertising, mask);
898
899         /* If PCS is supported, check which modes it supports. */
900         stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
901 }
902
903 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
904                                      struct phylink_link_state *state)
905 {
906         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
907
908         state->link = 0;
909         stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
910 }
911
912 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
913                               const struct phylink_link_state *state)
914 {
915         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
916
917         stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
918 }
919
920 static void stmmac_mac_an_restart(struct phylink_config *config)
921 {
922         /* Not Supported */
923 }
924
925 static void stmmac_mac_link_down(struct phylink_config *config,
926                                  unsigned int mode, phy_interface_t interface)
927 {
928         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
929
930         stmmac_mac_set(priv, priv->ioaddr, false);
931         priv->eee_active = false;
932         stmmac_eee_init(priv);
933         stmmac_set_eee_pls(priv, priv->hw, false);
934 }
935
936 static void stmmac_mac_link_up(struct phylink_config *config,
937                                struct phy_device *phy,
938                                unsigned int mode, phy_interface_t interface,
939                                int speed, int duplex,
940                                bool tx_pause, bool rx_pause)
941 {
942         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943         u32 ctrl;
944
945         stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
946
947         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
948         ctrl &= ~priv->hw->link.speed_mask;
949
950         if (interface == PHY_INTERFACE_MODE_USXGMII) {
951                 switch (speed) {
952                 case SPEED_10000:
953                         ctrl |= priv->hw->link.xgmii.speed10000;
954                         break;
955                 case SPEED_5000:
956                         ctrl |= priv->hw->link.xgmii.speed5000;
957                         break;
958                 case SPEED_2500:
959                         ctrl |= priv->hw->link.xgmii.speed2500;
960                         break;
961                 default:
962                         return;
963                 }
964         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
965                 switch (speed) {
966                 case SPEED_100000:
967                         ctrl |= priv->hw->link.xlgmii.speed100000;
968                         break;
969                 case SPEED_50000:
970                         ctrl |= priv->hw->link.xlgmii.speed50000;
971                         break;
972                 case SPEED_40000:
973                         ctrl |= priv->hw->link.xlgmii.speed40000;
974                         break;
975                 case SPEED_25000:
976                         ctrl |= priv->hw->link.xlgmii.speed25000;
977                         break;
978                 case SPEED_10000:
979                         ctrl |= priv->hw->link.xgmii.speed10000;
980                         break;
981                 case SPEED_2500:
982                         ctrl |= priv->hw->link.speed2500;
983                         break;
984                 case SPEED_1000:
985                         ctrl |= priv->hw->link.speed1000;
986                         break;
987                 default:
988                         return;
989                 }
990         } else {
991                 switch (speed) {
992                 case SPEED_2500:
993                         ctrl |= priv->hw->link.speed2500;
994                         break;
995                 case SPEED_1000:
996                         ctrl |= priv->hw->link.speed1000;
997                         break;
998                 case SPEED_100:
999                         ctrl |= priv->hw->link.speed100;
1000                         break;
1001                 case SPEED_10:
1002                         ctrl |= priv->hw->link.speed10;
1003                         break;
1004                 default:
1005                         return;
1006                 }
1007         }
1008
1009         priv->speed = speed;
1010
1011         if (priv->plat->fix_mac_speed)
1012                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1013
1014         if (!duplex)
1015                 ctrl &= ~priv->hw->link.duplex;
1016         else
1017                 ctrl |= priv->hw->link.duplex;
1018
1019         /* Flow Control operation */
1020         if (tx_pause && rx_pause)
1021                 stmmac_mac_flow_ctrl(priv, duplex);
1022
1023         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1024
1025         stmmac_mac_set(priv, priv->ioaddr, true);
1026         if (phy && priv->dma_cap.eee) {
1027                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1028                 priv->eee_enabled = stmmac_eee_init(priv);
1029                 stmmac_set_eee_pls(priv, priv->hw, true);
1030         }
1031 }
1032
1033 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1034         .validate = stmmac_validate,
1035         .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1036         .mac_config = stmmac_mac_config,
1037         .mac_an_restart = stmmac_mac_an_restart,
1038         .mac_link_down = stmmac_mac_link_down,
1039         .mac_link_up = stmmac_mac_link_up,
1040 };
1041
1042 /**
1043  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1044  * @priv: driver private structure
1045  * Description: this is to verify if the HW supports the PCS.
1046  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1047  * configured for the TBI, RTBI, or SGMII PHY interface.
1048  */
1049 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1050 {
1051         int interface = priv->plat->interface;
1052
1053         if (priv->dma_cap.pcs) {
1054                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1055                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1056                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1057                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1058                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1059                         priv->hw->pcs = STMMAC_PCS_RGMII;
1060                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1061                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1062                         priv->hw->pcs = STMMAC_PCS_SGMII;
1063                 }
1064         }
1065 }
1066
1067 /**
1068  * stmmac_init_phy - PHY initialization
1069  * @dev: net device structure
1070  * Description: it initializes the driver's PHY state, and attaches the PHY
1071  * to the mac driver.
1072  *  Return value:
1073  *  0 on success
1074  */
1075 static int stmmac_init_phy(struct net_device *dev)
1076 {
1077         struct stmmac_priv *priv = netdev_priv(dev);
1078         struct device_node *node;
1079         int ret;
1080
1081         node = priv->plat->phylink_node;
1082
1083         if (node)
1084                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1085
1086         /* Some DT bindings do not set-up the PHY handle. Let's try to
1087          * manually parse it
1088          */
1089         if (!node || ret) {
1090                 int addr = priv->plat->phy_addr;
1091                 struct phy_device *phydev;
1092
1093                 phydev = mdiobus_get_phy(priv->mii, addr);
1094                 if (!phydev) {
1095                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1096                         return -ENODEV;
1097                 }
1098
1099                 ret = phylink_connect_phy(priv->phylink, phydev);
1100         }
1101
1102         return ret;
1103 }
1104
1105 static int stmmac_phy_setup(struct stmmac_priv *priv)
1106 {
1107         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1108         int mode = priv->plat->phy_interface;
1109         struct phylink *phylink;
1110
1111         priv->phylink_config.dev = &priv->dev->dev;
1112         priv->phylink_config.type = PHYLINK_NETDEV;
1113         priv->phylink_config.pcs_poll = true;
1114
1115         if (!fwnode)
1116                 fwnode = dev_fwnode(priv->device);
1117
1118         phylink = phylink_create(&priv->phylink_config, fwnode,
1119                                  mode, &stmmac_phylink_mac_ops);
1120         if (IS_ERR(phylink))
1121                 return PTR_ERR(phylink);
1122
1123         priv->phylink = phylink;
1124         return 0;
1125 }
1126
1127 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1128 {
1129         u32 rx_cnt = priv->plat->rx_queues_to_use;
1130         void *head_rx;
1131         u32 queue;
1132
1133         /* Display RX rings */
1134         for (queue = 0; queue < rx_cnt; queue++) {
1135                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1136
1137                 pr_info("\tRX Queue %u rings\n", queue);
1138
1139                 if (priv->extend_desc)
1140                         head_rx = (void *)rx_q->dma_erx;
1141                 else
1142                         head_rx = (void *)rx_q->dma_rx;
1143
1144                 /* Display RX ring */
1145                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1146         }
1147 }
1148
1149 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1150 {
1151         u32 tx_cnt = priv->plat->tx_queues_to_use;
1152         void *head_tx;
1153         u32 queue;
1154
1155         /* Display TX rings */
1156         for (queue = 0; queue < tx_cnt; queue++) {
1157                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1158
1159                 pr_info("\tTX Queue %d rings\n", queue);
1160
1161                 if (priv->extend_desc)
1162                         head_tx = (void *)tx_q->dma_etx;
1163                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1164                         head_tx = (void *)tx_q->dma_entx;
1165                 else
1166                         head_tx = (void *)tx_q->dma_tx;
1167
1168                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1169         }
1170 }
1171
1172 static void stmmac_display_rings(struct stmmac_priv *priv)
1173 {
1174         /* Display RX ring */
1175         stmmac_display_rx_rings(priv);
1176
1177         /* Display TX ring */
1178         stmmac_display_tx_rings(priv);
1179 }
1180
1181 static int stmmac_set_bfsize(int mtu, int bufsize)
1182 {
1183         int ret = bufsize;
1184
1185         if (mtu >= BUF_SIZE_8KiB)
1186                 ret = BUF_SIZE_16KiB;
1187         else if (mtu >= BUF_SIZE_4KiB)
1188                 ret = BUF_SIZE_8KiB;
1189         else if (mtu >= BUF_SIZE_2KiB)
1190                 ret = BUF_SIZE_4KiB;
1191         else if (mtu > DEFAULT_BUFSIZE)
1192                 ret = BUF_SIZE_2KiB;
1193         else
1194                 ret = DEFAULT_BUFSIZE;
1195
1196         return ret;
1197 }
1198
1199 /**
1200  * stmmac_clear_rx_descriptors - clear RX descriptors
1201  * @priv: driver private structure
1202  * @queue: RX queue index
1203  * Description: this function is called to clear the RX descriptors
1204  * in case of both basic and extended descriptors are used.
1205  */
1206 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1207 {
1208         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1209         int i;
1210
1211         /* Clear the RX descriptors */
1212         for (i = 0; i < DMA_RX_SIZE; i++)
1213                 if (priv->extend_desc)
1214                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1215                                         priv->use_riwt, priv->mode,
1216                                         (i == DMA_RX_SIZE - 1),
1217                                         priv->dma_buf_sz);
1218                 else
1219                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1220                                         priv->use_riwt, priv->mode,
1221                                         (i == DMA_RX_SIZE - 1),
1222                                         priv->dma_buf_sz);
1223 }
1224
1225 /**
1226  * stmmac_clear_tx_descriptors - clear tx descriptors
1227  * @priv: driver private structure
1228  * @queue: TX queue index.
1229  * Description: this function is called to clear the TX descriptors
1230  * in case of both basic and extended descriptors are used.
1231  */
1232 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1233 {
1234         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1235         int i;
1236
1237         /* Clear the TX descriptors */
1238         for (i = 0; i < DMA_TX_SIZE; i++) {
1239                 int last = (i == (DMA_TX_SIZE - 1));
1240                 struct dma_desc *p;
1241
1242                 if (priv->extend_desc)
1243                         p = &tx_q->dma_etx[i].basic;
1244                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1245                         p = &tx_q->dma_entx[i].basic;
1246                 else
1247                         p = &tx_q->dma_tx[i];
1248
1249                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1250         }
1251 }
1252
1253 /**
1254  * stmmac_clear_descriptors - clear descriptors
1255  * @priv: driver private structure
1256  * Description: this function is called to clear the TX and RX descriptors
1257  * in case of both basic and extended descriptors are used.
1258  */
1259 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1260 {
1261         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1262         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1263         u32 queue;
1264
1265         /* Clear the RX descriptors */
1266         for (queue = 0; queue < rx_queue_cnt; queue++)
1267                 stmmac_clear_rx_descriptors(priv, queue);
1268
1269         /* Clear the TX descriptors */
1270         for (queue = 0; queue < tx_queue_cnt; queue++)
1271                 stmmac_clear_tx_descriptors(priv, queue);
1272 }
1273
1274 /**
1275  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1276  * @priv: driver private structure
1277  * @p: descriptor pointer
1278  * @i: descriptor index
1279  * @flags: gfp flag
1280  * @queue: RX queue index
1281  * Description: this function is called to allocate a receive buffer, perform
1282  * the DMA mapping and init the descriptor.
1283  */
1284 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1285                                   int i, gfp_t flags, u32 queue)
1286 {
1287         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1289
1290         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1291         if (!buf->page)
1292                 return -ENOMEM;
1293
1294         if (priv->sph) {
1295                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1296                 if (!buf->sec_page)
1297                         return -ENOMEM;
1298
1299                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1300                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1301         } else {
1302                 buf->sec_page = NULL;
1303         }
1304
1305         buf->addr = page_pool_get_dma_addr(buf->page);
1306         stmmac_set_desc_addr(priv, p, buf->addr);
1307         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1308                 stmmac_init_desc3(priv, p);
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * stmmac_free_rx_buffer - free RX dma buffers
1315  * @priv: private structure
1316  * @queue: RX queue index
1317  * @i: buffer index.
1318  */
1319 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1320 {
1321         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1322         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1323
1324         if (buf->page)
1325                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1326         buf->page = NULL;
1327
1328         if (buf->sec_page)
1329                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1330         buf->sec_page = NULL;
1331 }
1332
1333 /**
1334  * stmmac_free_tx_buffer - free RX dma buffers
1335  * @priv: private structure
1336  * @queue: RX queue index
1337  * @i: buffer index.
1338  */
1339 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1340 {
1341         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1342
1343         if (tx_q->tx_skbuff_dma[i].buf) {
1344                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1345                         dma_unmap_page(priv->device,
1346                                        tx_q->tx_skbuff_dma[i].buf,
1347                                        tx_q->tx_skbuff_dma[i].len,
1348                                        DMA_TO_DEVICE);
1349                 else
1350                         dma_unmap_single(priv->device,
1351                                          tx_q->tx_skbuff_dma[i].buf,
1352                                          tx_q->tx_skbuff_dma[i].len,
1353                                          DMA_TO_DEVICE);
1354         }
1355
1356         if (tx_q->tx_skbuff[i]) {
1357                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1358                 tx_q->tx_skbuff[i] = NULL;
1359                 tx_q->tx_skbuff_dma[i].buf = 0;
1360                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1361         }
1362 }
1363
1364 /**
1365  * init_dma_rx_desc_rings - init the RX descriptor rings
1366  * @dev: net device structure
1367  * @flags: gfp flag.
1368  * Description: this function initializes the DMA RX descriptors
1369  * and allocates the socket buffers. It supports the chained and ring
1370  * modes.
1371  */
1372 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1373 {
1374         struct stmmac_priv *priv = netdev_priv(dev);
1375         u32 rx_count = priv->plat->rx_queues_to_use;
1376         int ret = -ENOMEM;
1377         int queue;
1378         int i;
1379
1380         /* RX INITIALIZATION */
1381         netif_dbg(priv, probe, priv->dev,
1382                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1383
1384         for (queue = 0; queue < rx_count; queue++) {
1385                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1386
1387                 netif_dbg(priv, probe, priv->dev,
1388                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1389                           (u32)rx_q->dma_rx_phy);
1390
1391                 stmmac_clear_rx_descriptors(priv, queue);
1392
1393                 for (i = 0; i < DMA_RX_SIZE; i++) {
1394                         struct dma_desc *p;
1395
1396                         if (priv->extend_desc)
1397                                 p = &((rx_q->dma_erx + i)->basic);
1398                         else
1399                                 p = rx_q->dma_rx + i;
1400
1401                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1402                                                      queue);
1403                         if (ret)
1404                                 goto err_init_rx_buffers;
1405                 }
1406
1407                 rx_q->cur_rx = 0;
1408                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1409
1410                 /* Setup the chained descriptor addresses */
1411                 if (priv->mode == STMMAC_CHAIN_MODE) {
1412                         if (priv->extend_desc)
1413                                 stmmac_mode_init(priv, rx_q->dma_erx,
1414                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1415                         else
1416                                 stmmac_mode_init(priv, rx_q->dma_rx,
1417                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1418                 }
1419         }
1420
1421         return 0;
1422
1423 err_init_rx_buffers:
1424         while (queue >= 0) {
1425                 while (--i >= 0)
1426                         stmmac_free_rx_buffer(priv, queue, i);
1427
1428                 if (queue == 0)
1429                         break;
1430
1431                 i = DMA_RX_SIZE;
1432                 queue--;
1433         }
1434
1435         return ret;
1436 }
1437
1438 /**
1439  * init_dma_tx_desc_rings - init the TX descriptor rings
1440  * @dev: net device structure.
1441  * Description: this function initializes the DMA TX descriptors
1442  * and allocates the socket buffers. It supports the chained and ring
1443  * modes.
1444  */
1445 static int init_dma_tx_desc_rings(struct net_device *dev)
1446 {
1447         struct stmmac_priv *priv = netdev_priv(dev);
1448         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1449         u32 queue;
1450         int i;
1451
1452         for (queue = 0; queue < tx_queue_cnt; queue++) {
1453                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1454
1455                 netif_dbg(priv, probe, priv->dev,
1456                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1457                          (u32)tx_q->dma_tx_phy);
1458
1459                 /* Setup the chained descriptor addresses */
1460                 if (priv->mode == STMMAC_CHAIN_MODE) {
1461                         if (priv->extend_desc)
1462                                 stmmac_mode_init(priv, tx_q->dma_etx,
1463                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1464                         else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1465                                 stmmac_mode_init(priv, tx_q->dma_tx,
1466                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1467                 }
1468
1469                 for (i = 0; i < DMA_TX_SIZE; i++) {
1470                         struct dma_desc *p;
1471                         if (priv->extend_desc)
1472                                 p = &((tx_q->dma_etx + i)->basic);
1473                         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1474                                 p = &((tx_q->dma_entx + i)->basic);
1475                         else
1476                                 p = tx_q->dma_tx + i;
1477
1478                         stmmac_clear_desc(priv, p);
1479
1480                         tx_q->tx_skbuff_dma[i].buf = 0;
1481                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1482                         tx_q->tx_skbuff_dma[i].len = 0;
1483                         tx_q->tx_skbuff_dma[i].last_segment = false;
1484                         tx_q->tx_skbuff[i] = NULL;
1485                 }
1486
1487                 tx_q->dirty_tx = 0;
1488                 tx_q->cur_tx = 0;
1489                 tx_q->mss = 0;
1490
1491                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1492         }
1493
1494         return 0;
1495 }
1496
1497 /**
1498  * init_dma_desc_rings - init the RX/TX descriptor rings
1499  * @dev: net device structure
1500  * @flags: gfp flag.
1501  * Description: this function initializes the DMA RX/TX descriptors
1502  * and allocates the socket buffers. It supports the chained and ring
1503  * modes.
1504  */
1505 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1506 {
1507         struct stmmac_priv *priv = netdev_priv(dev);
1508         int ret;
1509
1510         ret = init_dma_rx_desc_rings(dev, flags);
1511         if (ret)
1512                 return ret;
1513
1514         ret = init_dma_tx_desc_rings(dev);
1515
1516         stmmac_clear_descriptors(priv);
1517
1518         if (netif_msg_hw(priv))
1519                 stmmac_display_rings(priv);
1520
1521         return ret;
1522 }
1523
1524 /**
1525  * dma_free_rx_skbufs - free RX dma buffers
1526  * @priv: private structure
1527  * @queue: RX queue index
1528  */
1529 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1530 {
1531         int i;
1532
1533         for (i = 0; i < DMA_RX_SIZE; i++)
1534                 stmmac_free_rx_buffer(priv, queue, i);
1535 }
1536
1537 /**
1538  * dma_free_tx_skbufs - free TX dma buffers
1539  * @priv: private structure
1540  * @queue: TX queue index
1541  */
1542 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1543 {
1544         int i;
1545
1546         for (i = 0; i < DMA_TX_SIZE; i++)
1547                 stmmac_free_tx_buffer(priv, queue, i);
1548 }
1549
1550 /**
1551  * free_dma_rx_desc_resources - free RX dma desc resources
1552  * @priv: private structure
1553  */
1554 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1555 {
1556         u32 rx_count = priv->plat->rx_queues_to_use;
1557         u32 queue;
1558
1559         /* Free RX queue resources */
1560         for (queue = 0; queue < rx_count; queue++) {
1561                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562
1563                 /* Release the DMA RX socket buffers */
1564                 dma_free_rx_skbufs(priv, queue);
1565
1566                 /* Free DMA regions of consistent memory previously allocated */
1567                 if (!priv->extend_desc)
1568                         dma_free_coherent(priv->device,
1569                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1570                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1571                 else
1572                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1573                                           sizeof(struct dma_extended_desc),
1574                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1575
1576                 kfree(rx_q->buf_pool);
1577                 if (rx_q->page_pool)
1578                         page_pool_destroy(rx_q->page_pool);
1579         }
1580 }
1581
1582 /**
1583  * free_dma_tx_desc_resources - free TX dma desc resources
1584  * @priv: private structure
1585  */
1586 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1587 {
1588         u32 tx_count = priv->plat->tx_queues_to_use;
1589         u32 queue;
1590
1591         /* Free TX queue resources */
1592         for (queue = 0; queue < tx_count; queue++) {
1593                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1594                 size_t size;
1595                 void *addr;
1596
1597                 /* Release the DMA TX socket buffers */
1598                 dma_free_tx_skbufs(priv, queue);
1599
1600                 if (priv->extend_desc) {
1601                         size = sizeof(struct dma_extended_desc);
1602                         addr = tx_q->dma_etx;
1603                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1604                         size = sizeof(struct dma_edesc);
1605                         addr = tx_q->dma_entx;
1606                 } else {
1607                         size = sizeof(struct dma_desc);
1608                         addr = tx_q->dma_tx;
1609                 }
1610
1611                 size *= DMA_TX_SIZE;
1612
1613                 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1614
1615                 kfree(tx_q->tx_skbuff_dma);
1616                 kfree(tx_q->tx_skbuff);
1617         }
1618 }
1619
1620 /**
1621  * alloc_dma_rx_desc_resources - alloc RX resources.
1622  * @priv: private structure
1623  * Description: according to which descriptor can be used (extend or basic)
1624  * this function allocates the resources for TX and RX paths. In case of
1625  * reception, for example, it pre-allocated the RX socket buffer in order to
1626  * allow zero-copy mechanism.
1627  */
1628 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1629 {
1630         u32 rx_count = priv->plat->rx_queues_to_use;
1631         int ret = -ENOMEM;
1632         u32 queue;
1633
1634         /* RX queues buffers and DMA */
1635         for (queue = 0; queue < rx_count; queue++) {
1636                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1637                 struct page_pool_params pp_params = { 0 };
1638                 unsigned int num_pages;
1639
1640                 rx_q->queue_index = queue;
1641                 rx_q->priv_data = priv;
1642
1643                 pp_params.flags = PP_FLAG_DMA_MAP;
1644                 pp_params.pool_size = DMA_RX_SIZE;
1645                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1646                 pp_params.order = ilog2(num_pages);
1647                 pp_params.nid = dev_to_node(priv->device);
1648                 pp_params.dev = priv->device;
1649                 pp_params.dma_dir = DMA_FROM_DEVICE;
1650
1651                 rx_q->page_pool = page_pool_create(&pp_params);
1652                 if (IS_ERR(rx_q->page_pool)) {
1653                         ret = PTR_ERR(rx_q->page_pool);
1654                         rx_q->page_pool = NULL;
1655                         goto err_dma;
1656                 }
1657
1658                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1659                                          GFP_KERNEL);
1660                 if (!rx_q->buf_pool)
1661                         goto err_dma;
1662
1663                 if (priv->extend_desc) {
1664                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1665                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1666                                                            &rx_q->dma_rx_phy,
1667                                                            GFP_KERNEL);
1668                         if (!rx_q->dma_erx)
1669                                 goto err_dma;
1670
1671                 } else {
1672                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1673                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1674                                                           &rx_q->dma_rx_phy,
1675                                                           GFP_KERNEL);
1676                         if (!rx_q->dma_rx)
1677                                 goto err_dma;
1678                 }
1679         }
1680
1681         return 0;
1682
1683 err_dma:
1684         free_dma_rx_desc_resources(priv);
1685
1686         return ret;
1687 }
1688
1689 /**
1690  * alloc_dma_tx_desc_resources - alloc TX resources.
1691  * @priv: private structure
1692  * Description: according to which descriptor can be used (extend or basic)
1693  * this function allocates the resources for TX and RX paths. In case of
1694  * reception, for example, it pre-allocated the RX socket buffer in order to
1695  * allow zero-copy mechanism.
1696  */
1697 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1698 {
1699         u32 tx_count = priv->plat->tx_queues_to_use;
1700         int ret = -ENOMEM;
1701         u32 queue;
1702
1703         /* TX queues buffers and DMA */
1704         for (queue = 0; queue < tx_count; queue++) {
1705                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1706                 size_t size;
1707                 void *addr;
1708
1709                 tx_q->queue_index = queue;
1710                 tx_q->priv_data = priv;
1711
1712                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1713                                               sizeof(*tx_q->tx_skbuff_dma),
1714                                               GFP_KERNEL);
1715                 if (!tx_q->tx_skbuff_dma)
1716                         goto err_dma;
1717
1718                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1719                                           sizeof(struct sk_buff *),
1720                                           GFP_KERNEL);
1721                 if (!tx_q->tx_skbuff)
1722                         goto err_dma;
1723
1724                 if (priv->extend_desc)
1725                         size = sizeof(struct dma_extended_desc);
1726                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1727                         size = sizeof(struct dma_edesc);
1728                 else
1729                         size = sizeof(struct dma_desc);
1730
1731                 size *= DMA_TX_SIZE;
1732
1733                 addr = dma_alloc_coherent(priv->device, size,
1734                                           &tx_q->dma_tx_phy, GFP_KERNEL);
1735                 if (!addr)
1736                         goto err_dma;
1737
1738                 if (priv->extend_desc)
1739                         tx_q->dma_etx = addr;
1740                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1741                         tx_q->dma_entx = addr;
1742                 else
1743                         tx_q->dma_tx = addr;
1744         }
1745
1746         return 0;
1747
1748 err_dma:
1749         free_dma_tx_desc_resources(priv);
1750         return ret;
1751 }
1752
1753 /**
1754  * alloc_dma_desc_resources - alloc TX/RX resources.
1755  * @priv: private structure
1756  * Description: according to which descriptor can be used (extend or basic)
1757  * this function allocates the resources for TX and RX paths. In case of
1758  * reception, for example, it pre-allocated the RX socket buffer in order to
1759  * allow zero-copy mechanism.
1760  */
1761 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1762 {
1763         /* RX Allocation */
1764         int ret = alloc_dma_rx_desc_resources(priv);
1765
1766         if (ret)
1767                 return ret;
1768
1769         ret = alloc_dma_tx_desc_resources(priv);
1770
1771         return ret;
1772 }
1773
1774 /**
1775  * free_dma_desc_resources - free dma desc resources
1776  * @priv: private structure
1777  */
1778 static void free_dma_desc_resources(struct stmmac_priv *priv)
1779 {
1780         /* Release the DMA RX socket buffers */
1781         free_dma_rx_desc_resources(priv);
1782
1783         /* Release the DMA TX socket buffers */
1784         free_dma_tx_desc_resources(priv);
1785 }
1786
1787 /**
1788  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1789  *  @priv: driver private structure
1790  *  Description: It is used for enabling the rx queues in the MAC
1791  */
1792 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1793 {
1794         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1795         int queue;
1796         u8 mode;
1797
1798         for (queue = 0; queue < rx_queues_count; queue++) {
1799                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1800                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1801         }
1802 }
1803
1804 /**
1805  * stmmac_start_rx_dma - start RX DMA channel
1806  * @priv: driver private structure
1807  * @chan: RX channel index
1808  * Description:
1809  * This starts a RX DMA channel
1810  */
1811 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1812 {
1813         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1814         stmmac_start_rx(priv, priv->ioaddr, chan);
1815 }
1816
1817 /**
1818  * stmmac_start_tx_dma - start TX DMA channel
1819  * @priv: driver private structure
1820  * @chan: TX channel index
1821  * Description:
1822  * This starts a TX DMA channel
1823  */
1824 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1825 {
1826         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1827         stmmac_start_tx(priv, priv->ioaddr, chan);
1828 }
1829
1830 /**
1831  * stmmac_stop_rx_dma - stop RX DMA channel
1832  * @priv: driver private structure
1833  * @chan: RX channel index
1834  * Description:
1835  * This stops a RX DMA channel
1836  */
1837 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1838 {
1839         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1840         stmmac_stop_rx(priv, priv->ioaddr, chan);
1841 }
1842
1843 /**
1844  * stmmac_stop_tx_dma - stop TX DMA channel
1845  * @priv: driver private structure
1846  * @chan: TX channel index
1847  * Description:
1848  * This stops a TX DMA channel
1849  */
1850 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1851 {
1852         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1853         stmmac_stop_tx(priv, priv->ioaddr, chan);
1854 }
1855
1856 /**
1857  * stmmac_start_all_dma - start all RX and TX DMA channels
1858  * @priv: driver private structure
1859  * Description:
1860  * This starts all the RX and TX DMA channels
1861  */
1862 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1863 {
1864         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1865         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1866         u32 chan = 0;
1867
1868         for (chan = 0; chan < rx_channels_count; chan++)
1869                 stmmac_start_rx_dma(priv, chan);
1870
1871         for (chan = 0; chan < tx_channels_count; chan++)
1872                 stmmac_start_tx_dma(priv, chan);
1873 }
1874
1875 /**
1876  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1877  * @priv: driver private structure
1878  * Description:
1879  * This stops the RX and TX DMA channels
1880  */
1881 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1882 {
1883         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1884         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1885         u32 chan = 0;
1886
1887         for (chan = 0; chan < rx_channels_count; chan++)
1888                 stmmac_stop_rx_dma(priv, chan);
1889
1890         for (chan = 0; chan < tx_channels_count; chan++)
1891                 stmmac_stop_tx_dma(priv, chan);
1892 }
1893
1894 /**
1895  *  stmmac_dma_operation_mode - HW DMA operation mode
1896  *  @priv: driver private structure
1897  *  Description: it is used for configuring the DMA operation mode register in
1898  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1899  */
1900 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1901 {
1902         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1903         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1904         int rxfifosz = priv->plat->rx_fifo_size;
1905         int txfifosz = priv->plat->tx_fifo_size;
1906         u32 txmode = 0;
1907         u32 rxmode = 0;
1908         u32 chan = 0;
1909         u8 qmode = 0;
1910
1911         if (rxfifosz == 0)
1912                 rxfifosz = priv->dma_cap.rx_fifo_size;
1913         if (txfifosz == 0)
1914                 txfifosz = priv->dma_cap.tx_fifo_size;
1915
1916         /* Adjust for real per queue fifo size */
1917         rxfifosz /= rx_channels_count;
1918         txfifosz /= tx_channels_count;
1919
1920         if (priv->plat->force_thresh_dma_mode) {
1921                 txmode = tc;
1922                 rxmode = tc;
1923         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1924                 /*
1925                  * In case of GMAC, SF mode can be enabled
1926                  * to perform the TX COE in HW. This depends on:
1927                  * 1) TX COE if actually supported
1928                  * 2) There is no bugged Jumbo frame support
1929                  *    that needs to not insert csum in the TDES.
1930                  */
1931                 txmode = SF_DMA_MODE;
1932                 rxmode = SF_DMA_MODE;
1933                 priv->xstats.threshold = SF_DMA_MODE;
1934         } else {
1935                 txmode = tc;
1936                 rxmode = SF_DMA_MODE;
1937         }
1938
1939         /* configure all channels */
1940         for (chan = 0; chan < rx_channels_count; chan++) {
1941                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1942
1943                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1944                                 rxfifosz, qmode);
1945                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1946                                 chan);
1947         }
1948
1949         for (chan = 0; chan < tx_channels_count; chan++) {
1950                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1951
1952                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1953                                 txfifosz, qmode);
1954         }
1955 }
1956
1957 /**
1958  * stmmac_tx_clean - to manage the transmission completion
1959  * @priv: driver private structure
1960  * @queue: TX queue index
1961  * Description: it reclaims the transmit resources after transmission completes.
1962  */
1963 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1964 {
1965         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1966         unsigned int bytes_compl = 0, pkts_compl = 0;
1967         unsigned int entry, count = 0;
1968
1969         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1970
1971         priv->xstats.tx_clean++;
1972
1973         entry = tx_q->dirty_tx;
1974         while ((entry != tx_q->cur_tx) && (count < budget)) {
1975                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1976                 struct dma_desc *p;
1977                 int status;
1978
1979                 if (priv->extend_desc)
1980                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1981                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1982                         p = &tx_q->dma_entx[entry].basic;
1983                 else
1984                         p = tx_q->dma_tx + entry;
1985
1986                 status = stmmac_tx_status(priv, &priv->dev->stats,
1987                                 &priv->xstats, p, priv->ioaddr);
1988                 /* Check if the descriptor is owned by the DMA */
1989                 if (unlikely(status & tx_dma_own))
1990                         break;
1991
1992                 count++;
1993
1994                 /* Make sure descriptor fields are read after reading
1995                  * the own bit.
1996                  */
1997                 dma_rmb();
1998
1999                 /* Just consider the last segment and ...*/
2000                 if (likely(!(status & tx_not_ls))) {
2001                         /* ... verify the status error condition */
2002                         if (unlikely(status & tx_err)) {
2003                                 priv->dev->stats.tx_errors++;
2004                         } else {
2005                                 priv->dev->stats.tx_packets++;
2006                                 priv->xstats.tx_pkt_n++;
2007                         }
2008                         stmmac_get_tx_hwtstamp(priv, p, skb);
2009                 }
2010
2011                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2012                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2013                                 dma_unmap_page(priv->device,
2014                                                tx_q->tx_skbuff_dma[entry].buf,
2015                                                tx_q->tx_skbuff_dma[entry].len,
2016                                                DMA_TO_DEVICE);
2017                         else
2018                                 dma_unmap_single(priv->device,
2019                                                  tx_q->tx_skbuff_dma[entry].buf,
2020                                                  tx_q->tx_skbuff_dma[entry].len,
2021                                                  DMA_TO_DEVICE);
2022                         tx_q->tx_skbuff_dma[entry].buf = 0;
2023                         tx_q->tx_skbuff_dma[entry].len = 0;
2024                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2025                 }
2026
2027                 stmmac_clean_desc3(priv, tx_q, p);
2028
2029                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2030                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2031
2032                 if (likely(skb != NULL)) {
2033                         pkts_compl++;
2034                         bytes_compl += skb->len;
2035                         dev_consume_skb_any(skb);
2036                         tx_q->tx_skbuff[entry] = NULL;
2037                 }
2038
2039                 stmmac_release_tx_desc(priv, p, priv->mode);
2040
2041                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2042         }
2043         tx_q->dirty_tx = entry;
2044
2045         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2046                                   pkts_compl, bytes_compl);
2047
2048         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2049                                                                 queue))) &&
2050             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
2051
2052                 netif_dbg(priv, tx_done, priv->dev,
2053                           "%s: restart transmit\n", __func__);
2054                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2055         }
2056
2057         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2058                 stmmac_enable_eee_mode(priv);
2059                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
2060         }
2061
2062         /* We still have pending packets, let's call for a new scheduling */
2063         if (tx_q->dirty_tx != tx_q->cur_tx)
2064                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2065
2066         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2067
2068         return count;
2069 }
2070
2071 /**
2072  * stmmac_tx_err - to manage the tx error
2073  * @priv: driver private structure
2074  * @chan: channel index
2075  * Description: it cleans the descriptors and restarts the transmission
2076  * in case of transmission errors.
2077  */
2078 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2079 {
2080         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2081
2082         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2083
2084         stmmac_stop_tx_dma(priv, chan);
2085         dma_free_tx_skbufs(priv, chan);
2086         stmmac_clear_tx_descriptors(priv, chan);
2087         tx_q->dirty_tx = 0;
2088         tx_q->cur_tx = 0;
2089         tx_q->mss = 0;
2090         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2091         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2092                             tx_q->dma_tx_phy, chan);
2093         stmmac_start_tx_dma(priv, chan);
2094
2095         priv->dev->stats.tx_errors++;
2096         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2097 }
2098
2099 /**
2100  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2101  *  @priv: driver private structure
2102  *  @txmode: TX operating mode
2103  *  @rxmode: RX operating mode
2104  *  @chan: channel index
2105  *  Description: it is used for configuring of the DMA operation mode in
2106  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2107  *  mode.
2108  */
2109 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2110                                           u32 rxmode, u32 chan)
2111 {
2112         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2113         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2114         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2115         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2116         int rxfifosz = priv->plat->rx_fifo_size;
2117         int txfifosz = priv->plat->tx_fifo_size;
2118
2119         if (rxfifosz == 0)
2120                 rxfifosz = priv->dma_cap.rx_fifo_size;
2121         if (txfifosz == 0)
2122                 txfifosz = priv->dma_cap.tx_fifo_size;
2123
2124         /* Adjust for real per queue fifo size */
2125         rxfifosz /= rx_channels_count;
2126         txfifosz /= tx_channels_count;
2127
2128         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2129         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2130 }
2131
2132 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2133 {
2134         int ret;
2135
2136         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2137                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2138         if (ret && (ret != -EINVAL)) {
2139                 stmmac_global_err(priv);
2140                 return true;
2141         }
2142
2143         return false;
2144 }
2145
2146 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2147 {
2148         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2149                                                  &priv->xstats, chan);
2150         struct stmmac_channel *ch = &priv->channel[chan];
2151         unsigned long flags;
2152
2153         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2154                 if (napi_schedule_prep(&ch->rx_napi)) {
2155                         spin_lock_irqsave(&ch->lock, flags);
2156                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2157                         spin_unlock_irqrestore(&ch->lock, flags);
2158                         __napi_schedule_irqoff(&ch->rx_napi);
2159                 }
2160         }
2161
2162         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2163                 if (napi_schedule_prep(&ch->tx_napi)) {
2164                         spin_lock_irqsave(&ch->lock, flags);
2165                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2166                         spin_unlock_irqrestore(&ch->lock, flags);
2167                         __napi_schedule_irqoff(&ch->tx_napi);
2168                 }
2169         }
2170
2171         return status;
2172 }
2173
2174 /**
2175  * stmmac_dma_interrupt - DMA ISR
2176  * @priv: driver private structure
2177  * Description: this is the DMA ISR. It is called by the main ISR.
2178  * It calls the dwmac dma routine and schedule poll method in case of some
2179  * work can be done.
2180  */
2181 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2182 {
2183         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2184         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2185         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2186                                 tx_channel_count : rx_channel_count;
2187         u32 chan;
2188         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2189
2190         /* Make sure we never check beyond our status buffer. */
2191         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2192                 channels_to_check = ARRAY_SIZE(status);
2193
2194         for (chan = 0; chan < channels_to_check; chan++)
2195                 status[chan] = stmmac_napi_check(priv, chan);
2196
2197         for (chan = 0; chan < tx_channel_count; chan++) {
2198                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2199                         /* Try to bump up the dma threshold on this failure */
2200                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2201                             (tc <= 256)) {
2202                                 tc += 64;
2203                                 if (priv->plat->force_thresh_dma_mode)
2204                                         stmmac_set_dma_operation_mode(priv,
2205                                                                       tc,
2206                                                                       tc,
2207                                                                       chan);
2208                                 else
2209                                         stmmac_set_dma_operation_mode(priv,
2210                                                                     tc,
2211                                                                     SF_DMA_MODE,
2212                                                                     chan);
2213                                 priv->xstats.threshold = tc;
2214                         }
2215                 } else if (unlikely(status[chan] == tx_hard_error)) {
2216                         stmmac_tx_err(priv, chan);
2217                 }
2218         }
2219 }
2220
2221 /**
2222  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2223  * @priv: driver private structure
2224  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2225  */
2226 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2227 {
2228         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2229                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2230
2231         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2232
2233         if (priv->dma_cap.rmon) {
2234                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2235                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2236         } else
2237                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2238 }
2239
2240 /**
2241  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2242  * @priv: driver private structure
2243  * Description:
2244  *  new GMAC chip generations have a new register to indicate the
2245  *  presence of the optional feature/functions.
2246  *  This can be also used to override the value passed through the
2247  *  platform and necessary for old MAC10/100 and GMAC chips.
2248  */
2249 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2250 {
2251         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2252 }
2253
2254 /**
2255  * stmmac_check_ether_addr - check if the MAC addr is valid
2256  * @priv: driver private structure
2257  * Description:
2258  * it is to verify if the MAC address is valid, in case of failures it
2259  * generates a random MAC address
2260  */
2261 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2262 {
2263         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2264                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2265                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2266                         eth_hw_addr_random(priv->dev);
2267                 dev_info(priv->device, "device MAC address %pM\n",
2268                          priv->dev->dev_addr);
2269         }
2270 }
2271
2272 /**
2273  * stmmac_init_dma_engine - DMA init.
2274  * @priv: driver private structure
2275  * Description:
2276  * It inits the DMA invoking the specific MAC/GMAC callback.
2277  * Some DMA parameters can be passed from the platform;
2278  * in case of these are not passed a default is kept for the MAC or GMAC.
2279  */
2280 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2281 {
2282         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2283         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2284         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2285         struct stmmac_rx_queue *rx_q;
2286         struct stmmac_tx_queue *tx_q;
2287         u32 chan = 0;
2288         int atds = 0;
2289         int ret = 0;
2290
2291         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2292                 dev_err(priv->device, "Invalid DMA configuration\n");
2293                 return -EINVAL;
2294         }
2295
2296         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2297                 atds = 1;
2298
2299         ret = stmmac_reset(priv, priv->ioaddr);
2300         if (ret) {
2301                 dev_err(priv->device, "Failed to reset the dma\n");
2302                 return ret;
2303         }
2304
2305         /* DMA Configuration */
2306         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2307
2308         if (priv->plat->axi)
2309                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2310
2311         /* DMA CSR Channel configuration */
2312         for (chan = 0; chan < dma_csr_ch; chan++)
2313                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2314
2315         /* DMA RX Channel Configuration */
2316         for (chan = 0; chan < rx_channels_count; chan++) {
2317                 rx_q = &priv->rx_queue[chan];
2318
2319                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2320                                     rx_q->dma_rx_phy, chan);
2321
2322                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2323                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2324                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2325                                        rx_q->rx_tail_addr, chan);
2326         }
2327
2328         /* DMA TX Channel Configuration */
2329         for (chan = 0; chan < tx_channels_count; chan++) {
2330                 tx_q = &priv->tx_queue[chan];
2331
2332                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2333                                     tx_q->dma_tx_phy, chan);
2334
2335                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2336                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2337                                        tx_q->tx_tail_addr, chan);
2338         }
2339
2340         return ret;
2341 }
2342
2343 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2344 {
2345         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2346
2347         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2348 }
2349
2350 /**
2351  * stmmac_tx_timer - mitigation sw timer for tx.
2352  * @data: data pointer
2353  * Description:
2354  * This is the timer handler to directly invoke the stmmac_tx_clean.
2355  */
2356 static void stmmac_tx_timer(struct timer_list *t)
2357 {
2358         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2359         struct stmmac_priv *priv = tx_q->priv_data;
2360         struct stmmac_channel *ch;
2361
2362         ch = &priv->channel[tx_q->queue_index];
2363
2364         if (likely(napi_schedule_prep(&ch->tx_napi))) {
2365                 unsigned long flags;
2366
2367                 spin_lock_irqsave(&ch->lock, flags);
2368                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2369                 spin_unlock_irqrestore(&ch->lock, flags);
2370                 __napi_schedule(&ch->tx_napi);
2371         }
2372 }
2373
2374 /**
2375  * stmmac_init_coalesce - init mitigation options.
2376  * @priv: driver private structure
2377  * Description:
2378  * This inits the coalesce parameters: i.e. timer rate,
2379  * timer handler and default threshold used for enabling the
2380  * interrupt on completion bit.
2381  */
2382 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2383 {
2384         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2385         u32 chan;
2386
2387         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2388         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2389         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2390
2391         for (chan = 0; chan < tx_channel_count; chan++) {
2392                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2393
2394                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2395         }
2396 }
2397
2398 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2399 {
2400         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2401         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2402         u32 chan;
2403
2404         /* set TX ring length */
2405         for (chan = 0; chan < tx_channels_count; chan++)
2406                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2407                                 (DMA_TX_SIZE - 1), chan);
2408
2409         /* set RX ring length */
2410         for (chan = 0; chan < rx_channels_count; chan++)
2411                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2412                                 (DMA_RX_SIZE - 1), chan);
2413 }
2414
2415 /**
2416  *  stmmac_set_tx_queue_weight - Set TX queue weight
2417  *  @priv: driver private structure
2418  *  Description: It is used for setting TX queues weight
2419  */
2420 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2421 {
2422         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2423         u32 weight;
2424         u32 queue;
2425
2426         for (queue = 0; queue < tx_queues_count; queue++) {
2427                 weight = priv->plat->tx_queues_cfg[queue].weight;
2428                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2429         }
2430 }
2431
2432 /**
2433  *  stmmac_configure_cbs - Configure CBS in TX queue
2434  *  @priv: driver private structure
2435  *  Description: It is used for configuring CBS in AVB TX queues
2436  */
2437 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2438 {
2439         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2440         u32 mode_to_use;
2441         u32 queue;
2442
2443         /* queue 0 is reserved for legacy traffic */
2444         for (queue = 1; queue < tx_queues_count; queue++) {
2445                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2446                 if (mode_to_use == MTL_QUEUE_DCB)
2447                         continue;
2448
2449                 stmmac_config_cbs(priv, priv->hw,
2450                                 priv->plat->tx_queues_cfg[queue].send_slope,
2451                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2452                                 priv->plat->tx_queues_cfg[queue].high_credit,
2453                                 priv->plat->tx_queues_cfg[queue].low_credit,
2454                                 queue);
2455         }
2456 }
2457
2458 /**
2459  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2460  *  @priv: driver private structure
2461  *  Description: It is used for mapping RX queues to RX dma channels
2462  */
2463 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2464 {
2465         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2466         u32 queue;
2467         u32 chan;
2468
2469         for (queue = 0; queue < rx_queues_count; queue++) {
2470                 chan = priv->plat->rx_queues_cfg[queue].chan;
2471                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2472         }
2473 }
2474
2475 /**
2476  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2477  *  @priv: driver private structure
2478  *  Description: It is used for configuring the RX Queue Priority
2479  */
2480 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2481 {
2482         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2483         u32 queue;
2484         u32 prio;
2485
2486         for (queue = 0; queue < rx_queues_count; queue++) {
2487                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2488                         continue;
2489
2490                 prio = priv->plat->rx_queues_cfg[queue].prio;
2491                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2492         }
2493 }
2494
2495 /**
2496  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2497  *  @priv: driver private structure
2498  *  Description: It is used for configuring the TX Queue Priority
2499  */
2500 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2501 {
2502         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2503         u32 queue;
2504         u32 prio;
2505
2506         for (queue = 0; queue < tx_queues_count; queue++) {
2507                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2508                         continue;
2509
2510                 prio = priv->plat->tx_queues_cfg[queue].prio;
2511                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2512         }
2513 }
2514
2515 /**
2516  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2517  *  @priv: driver private structure
2518  *  Description: It is used for configuring the RX queue routing
2519  */
2520 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2521 {
2522         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2523         u32 queue;
2524         u8 packet;
2525
2526         for (queue = 0; queue < rx_queues_count; queue++) {
2527                 /* no specific packet type routing specified for the queue */
2528                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2529                         continue;
2530
2531                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2532                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2533         }
2534 }
2535
2536 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2537 {
2538         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2539                 priv->rss.enable = false;
2540                 return;
2541         }
2542
2543         if (priv->dev->features & NETIF_F_RXHASH)
2544                 priv->rss.enable = true;
2545         else
2546                 priv->rss.enable = false;
2547
2548         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2549                              priv->plat->rx_queues_to_use);
2550 }
2551
2552 /**
2553  *  stmmac_mtl_configuration - Configure MTL
2554  *  @priv: driver private structure
2555  *  Description: It is used for configurring MTL
2556  */
2557 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2558 {
2559         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2560         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2561
2562         if (tx_queues_count > 1)
2563                 stmmac_set_tx_queue_weight(priv);
2564
2565         /* Configure MTL RX algorithms */
2566         if (rx_queues_count > 1)
2567                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2568                                 priv->plat->rx_sched_algorithm);
2569
2570         /* Configure MTL TX algorithms */
2571         if (tx_queues_count > 1)
2572                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2573                                 priv->plat->tx_sched_algorithm);
2574
2575         /* Configure CBS in AVB TX queues */
2576         if (tx_queues_count > 1)
2577                 stmmac_configure_cbs(priv);
2578
2579         /* Map RX MTL to DMA channels */
2580         stmmac_rx_queue_dma_chan_map(priv);
2581
2582         /* Enable MAC RX Queues */
2583         stmmac_mac_enable_rx_queues(priv);
2584
2585         /* Set RX priorities */
2586         if (rx_queues_count > 1)
2587                 stmmac_mac_config_rx_queues_prio(priv);
2588
2589         /* Set TX priorities */
2590         if (tx_queues_count > 1)
2591                 stmmac_mac_config_tx_queues_prio(priv);
2592
2593         /* Set RX routing */
2594         if (rx_queues_count > 1)
2595                 stmmac_mac_config_rx_queues_routing(priv);
2596
2597         /* Receive Side Scaling */
2598         if (rx_queues_count > 1)
2599                 stmmac_mac_config_rss(priv);
2600 }
2601
2602 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2603 {
2604         if (priv->dma_cap.asp) {
2605                 netdev_info(priv->dev, "Enabling Safety Features\n");
2606                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2607         } else {
2608                 netdev_info(priv->dev, "No Safety Features support found\n");
2609         }
2610 }
2611
2612 /**
2613  * stmmac_hw_setup - setup mac in a usable state.
2614  *  @dev : pointer to the device structure.
2615  *  Description:
2616  *  this is the main function to setup the HW in a usable state because the
2617  *  dma engine is reset, the core registers are configured (e.g. AXI,
2618  *  Checksum features, timers). The DMA is ready to start receiving and
2619  *  transmitting.
2620  *  Return value:
2621  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2622  *  file on failure.
2623  */
2624 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2625 {
2626         struct stmmac_priv *priv = netdev_priv(dev);
2627         u32 rx_cnt = priv->plat->rx_queues_to_use;
2628         u32 tx_cnt = priv->plat->tx_queues_to_use;
2629         u32 chan;
2630         int ret;
2631
2632         /* DMA initialization and SW reset */
2633         ret = stmmac_init_dma_engine(priv);
2634         if (ret < 0) {
2635                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2636                            __func__);
2637                 return ret;
2638         }
2639
2640         /* Copy the MAC addr into the HW  */
2641         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2642
2643         /* PS and related bits will be programmed according to the speed */
2644         if (priv->hw->pcs) {
2645                 int speed = priv->plat->mac_port_sel_speed;
2646
2647                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2648                     (speed == SPEED_1000)) {
2649                         priv->hw->ps = speed;
2650                 } else {
2651                         dev_warn(priv->device, "invalid port speed\n");
2652                         priv->hw->ps = 0;
2653                 }
2654         }
2655
2656         /* Initialize the MAC Core */
2657         stmmac_core_init(priv, priv->hw, dev);
2658
2659         /* Initialize MTL*/
2660         stmmac_mtl_configuration(priv);
2661
2662         /* Initialize Safety Features */
2663         stmmac_safety_feat_configuration(priv);
2664
2665         ret = stmmac_rx_ipc(priv, priv->hw);
2666         if (!ret) {
2667                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2668                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2669                 priv->hw->rx_csum = 0;
2670         }
2671
2672         /* Enable the MAC Rx/Tx */
2673         stmmac_mac_set(priv, priv->ioaddr, true);
2674
2675         /* Set the HW DMA mode and the COE */
2676         stmmac_dma_operation_mode(priv);
2677
2678         stmmac_mmc_setup(priv);
2679
2680         if (init_ptp) {
2681                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2682                 if (ret < 0)
2683                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2684
2685                 ret = stmmac_init_ptp(priv);
2686                 if (ret == -EOPNOTSUPP)
2687                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2688                 else if (ret)
2689                         netdev_warn(priv->dev, "PTP init failed\n");
2690         }
2691
2692         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2693
2694         if (priv->use_riwt) {
2695                 if (!priv->rx_riwt)
2696                         priv->rx_riwt = DEF_DMA_RIWT;
2697
2698                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2699         }
2700
2701         if (priv->hw->pcs)
2702                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2703
2704         /* set TX and RX rings length */
2705         stmmac_set_rings_length(priv);
2706
2707         /* Enable TSO */
2708         if (priv->tso) {
2709                 for (chan = 0; chan < tx_cnt; chan++)
2710                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2711         }
2712
2713         /* Enable Split Header */
2714         if (priv->sph && priv->hw->rx_csum) {
2715                 for (chan = 0; chan < rx_cnt; chan++)
2716                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2717         }
2718
2719         /* VLAN Tag Insertion */
2720         if (priv->dma_cap.vlins)
2721                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2722
2723         /* TBS */
2724         for (chan = 0; chan < tx_cnt; chan++) {
2725                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2726                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2727
2728                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2729         }
2730
2731         /* Start the ball rolling... */
2732         stmmac_start_all_dma(priv);
2733
2734         return 0;
2735 }
2736
2737 static void stmmac_hw_teardown(struct net_device *dev)
2738 {
2739         struct stmmac_priv *priv = netdev_priv(dev);
2740
2741         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2742 }
2743
2744 /**
2745  *  stmmac_open - open entry point of the driver
2746  *  @dev : pointer to the device structure.
2747  *  Description:
2748  *  This function is the open entry point of the driver.
2749  *  Return value:
2750  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2751  *  file on failure.
2752  */
2753 static int stmmac_open(struct net_device *dev)
2754 {
2755         struct stmmac_priv *priv = netdev_priv(dev);
2756         int bfsize = 0;
2757         u32 chan;
2758         int ret;
2759
2760         if (priv->hw->pcs != STMMAC_PCS_TBI &&
2761             priv->hw->pcs != STMMAC_PCS_RTBI &&
2762             priv->hw->xpcs == NULL) {
2763                 ret = stmmac_init_phy(dev);
2764                 if (ret) {
2765                         netdev_err(priv->dev,
2766                                    "%s: Cannot attach to PHY (error: %d)\n",
2767                                    __func__, ret);
2768                         return ret;
2769                 }
2770         }
2771
2772         /* Extra statistics */
2773         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2774         priv->xstats.threshold = tc;
2775
2776         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2777         if (bfsize < 0)
2778                 bfsize = 0;
2779
2780         if (bfsize < BUF_SIZE_16KiB)
2781                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2782
2783         priv->dma_buf_sz = bfsize;
2784         buf_sz = bfsize;
2785
2786         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2787
2788         /* Earlier check for TBS */
2789         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2790                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2791                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2792
2793                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2794                 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2795                         tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2796         }
2797
2798         ret = alloc_dma_desc_resources(priv);
2799         if (ret < 0) {
2800                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2801                            __func__);
2802                 goto dma_desc_error;
2803         }
2804
2805         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2806         if (ret < 0) {
2807                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2808                            __func__);
2809                 goto init_error;
2810         }
2811
2812         ret = stmmac_hw_setup(dev, true);
2813         if (ret < 0) {
2814                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2815                 goto init_error;
2816         }
2817
2818         stmmac_init_coalesce(priv);
2819
2820         phylink_start(priv->phylink);
2821
2822         /* Request the IRQ lines */
2823         ret = request_irq(dev->irq, stmmac_interrupt,
2824                           IRQF_SHARED, dev->name, dev);
2825         if (unlikely(ret < 0)) {
2826                 netdev_err(priv->dev,
2827                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2828                            __func__, dev->irq, ret);
2829                 goto irq_error;
2830         }
2831
2832         /* Request the Wake IRQ in case of another line is used for WoL */
2833         if (priv->wol_irq != dev->irq) {
2834                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2835                                   IRQF_SHARED, dev->name, dev);
2836                 if (unlikely(ret < 0)) {
2837                         netdev_err(priv->dev,
2838                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2839                                    __func__, priv->wol_irq, ret);
2840                         goto wolirq_error;
2841                 }
2842         }
2843
2844         /* Request the IRQ lines */
2845         if (priv->lpi_irq > 0) {
2846                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2847                                   dev->name, dev);
2848                 if (unlikely(ret < 0)) {
2849                         netdev_err(priv->dev,
2850                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2851                                    __func__, priv->lpi_irq, ret);
2852                         goto lpiirq_error;
2853                 }
2854         }
2855
2856         stmmac_enable_all_queues(priv);
2857         stmmac_start_all_queues(priv);
2858
2859         return 0;
2860
2861 lpiirq_error:
2862         if (priv->wol_irq != dev->irq)
2863                 free_irq(priv->wol_irq, dev);
2864 wolirq_error:
2865         free_irq(dev->irq, dev);
2866 irq_error:
2867         phylink_stop(priv->phylink);
2868
2869         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2870                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2871
2872         stmmac_hw_teardown(dev);
2873 init_error:
2874         free_dma_desc_resources(priv);
2875 dma_desc_error:
2876         phylink_disconnect_phy(priv->phylink);
2877         return ret;
2878 }
2879
2880 /**
2881  *  stmmac_release - close entry point of the driver
2882  *  @dev : device pointer.
2883  *  Description:
2884  *  This is the stop entry point of the driver.
2885  */
2886 static int stmmac_release(struct net_device *dev)
2887 {
2888         struct stmmac_priv *priv = netdev_priv(dev);
2889         u32 chan;
2890
2891         if (priv->eee_enabled)
2892                 del_timer_sync(&priv->eee_ctrl_timer);
2893
2894         /* Stop and disconnect the PHY */
2895         phylink_stop(priv->phylink);
2896         phylink_disconnect_phy(priv->phylink);
2897
2898         stmmac_stop_all_queues(priv);
2899
2900         stmmac_disable_all_queues(priv);
2901
2902         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2903                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2904
2905         /* Free the IRQ lines */
2906         free_irq(dev->irq, dev);
2907         if (priv->wol_irq != dev->irq)
2908                 free_irq(priv->wol_irq, dev);
2909         if (priv->lpi_irq > 0)
2910                 free_irq(priv->lpi_irq, dev);
2911
2912         /* Stop TX/RX DMA and clear the descriptors */
2913         stmmac_stop_all_dma(priv);
2914
2915         /* Release and free the Rx/Tx resources */
2916         free_dma_desc_resources(priv);
2917
2918         /* Disable the MAC Rx/Tx */
2919         stmmac_mac_set(priv, priv->ioaddr, false);
2920
2921         netif_carrier_off(dev);
2922
2923         stmmac_release_ptp(priv);
2924
2925         return 0;
2926 }
2927
2928 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2929                                struct stmmac_tx_queue *tx_q)
2930 {
2931         u16 tag = 0x0, inner_tag = 0x0;
2932         u32 inner_type = 0x0;
2933         struct dma_desc *p;
2934
2935         if (!priv->dma_cap.vlins)
2936                 return false;
2937         if (!skb_vlan_tag_present(skb))
2938                 return false;
2939         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2940                 inner_tag = skb_vlan_tag_get(skb);
2941                 inner_type = STMMAC_VLAN_INSERT;
2942         }
2943
2944         tag = skb_vlan_tag_get(skb);
2945
2946         if (tx_q->tbs & STMMAC_TBS_AVAIL)
2947                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2948         else
2949                 p = &tx_q->dma_tx[tx_q->cur_tx];
2950
2951         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2952                 return false;
2953
2954         stmmac_set_tx_owner(priv, p);
2955         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2956         return true;
2957 }
2958
2959 /**
2960  *  stmmac_tso_allocator - close entry point of the driver
2961  *  @priv: driver private structure
2962  *  @des: buffer start address
2963  *  @total_len: total length to fill in descriptors
2964  *  @last_segmant: condition for the last descriptor
2965  *  @queue: TX queue index
2966  *  Description:
2967  *  This function fills descriptor and request new descriptors according to
2968  *  buffer length to fill
2969  */
2970 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2971                                  int total_len, bool last_segment, u32 queue)
2972 {
2973         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2974         struct dma_desc *desc;
2975         u32 buff_size;
2976         int tmp_len;
2977
2978         tmp_len = total_len;
2979
2980         while (tmp_len > 0) {
2981                 dma_addr_t curr_addr;
2982
2983                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2984                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2985
2986                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2987                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2988                 else
2989                         desc = &tx_q->dma_tx[tx_q->cur_tx];
2990
2991                 curr_addr = des + (total_len - tmp_len);
2992                 if (priv->dma_cap.addr64 <= 32)
2993                         desc->des0 = cpu_to_le32(curr_addr);
2994                 else
2995                         stmmac_set_desc_addr(priv, desc, curr_addr);
2996
2997                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2998                             TSO_MAX_BUFF_SIZE : tmp_len;
2999
3000                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3001                                 0, 1,
3002                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3003                                 0, 0);
3004
3005                 tmp_len -= TSO_MAX_BUFF_SIZE;
3006         }
3007 }
3008
3009 /**
3010  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3011  *  @skb : the socket buffer
3012  *  @dev : device pointer
3013  *  Description: this is the transmit function that is called on TSO frames
3014  *  (support available on GMAC4 and newer chips).
3015  *  Diagram below show the ring programming in case of TSO frames:
3016  *
3017  *  First Descriptor
3018  *   --------
3019  *   | DES0 |---> buffer1 = L2/L3/L4 header
3020  *   | DES1 |---> TCP Payload (can continue on next descr...)
3021  *   | DES2 |---> buffer 1 and 2 len
3022  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3023  *   --------
3024  *      |
3025  *     ...
3026  *      |
3027  *   --------
3028  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3029  *   | DES1 | --|
3030  *   | DES2 | --> buffer 1 and 2 len
3031  *   | DES3 |
3032  *   --------
3033  *
3034  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3035  */
3036 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3037 {
3038         struct dma_desc *desc, *first, *mss_desc = NULL;
3039         struct stmmac_priv *priv = netdev_priv(dev);
3040         int desc_size, tmp_pay_len = 0, first_tx;
3041         int nfrags = skb_shinfo(skb)->nr_frags;
3042         u32 queue = skb_get_queue_mapping(skb);
3043         unsigned int first_entry, tx_packets;
3044         struct stmmac_tx_queue *tx_q;
3045         bool has_vlan, set_ic;
3046         u8 proto_hdr_len, hdr;
3047         u32 pay_len, mss;
3048         dma_addr_t des;
3049         int i;
3050
3051         tx_q = &priv->tx_queue[queue];
3052         first_tx = tx_q->cur_tx;
3053
3054         /* Compute header lengths */
3055         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3056                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3057                 hdr = sizeof(struct udphdr);
3058         } else {
3059                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3060                 hdr = tcp_hdrlen(skb);
3061         }
3062
3063         /* Desc availability based on threshold should be enough safe */
3064         if (unlikely(stmmac_tx_avail(priv, queue) <
3065                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3066                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3067                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3068                                                                 queue));
3069                         /* This is a hard error, log it. */
3070                         netdev_err(priv->dev,
3071                                    "%s: Tx Ring full when queue awake\n",
3072                                    __func__);
3073                 }
3074                 return NETDEV_TX_BUSY;
3075         }
3076
3077         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3078
3079         mss = skb_shinfo(skb)->gso_size;
3080
3081         /* set new MSS value if needed */
3082         if (mss != tx_q->mss) {
3083                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3084                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3085                 else
3086                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3087
3088                 stmmac_set_mss(priv, mss_desc, mss);
3089                 tx_q->mss = mss;
3090                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3091                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3092         }
3093
3094         if (netif_msg_tx_queued(priv)) {
3095                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3096                         __func__, hdr, proto_hdr_len, pay_len, mss);
3097                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3098                         skb->data_len);
3099         }
3100
3101         /* Check if VLAN can be inserted by HW */
3102         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3103
3104         first_entry = tx_q->cur_tx;
3105         WARN_ON(tx_q->tx_skbuff[first_entry]);
3106
3107         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3108                 desc = &tx_q->dma_entx[first_entry].basic;
3109         else
3110                 desc = &tx_q->dma_tx[first_entry];
3111         first = desc;
3112
3113         if (has_vlan)
3114                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3115
3116         /* first descriptor: fill Headers on Buf1 */
3117         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3118                              DMA_TO_DEVICE);
3119         if (dma_mapping_error(priv->device, des))
3120                 goto dma_map_err;
3121
3122         tx_q->tx_skbuff_dma[first_entry].buf = des;
3123         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3124
3125         if (priv->dma_cap.addr64 <= 32) {
3126                 first->des0 = cpu_to_le32(des);
3127
3128                 /* Fill start of payload in buff2 of first descriptor */
3129                 if (pay_len)
3130                         first->des1 = cpu_to_le32(des + proto_hdr_len);
3131
3132                 /* If needed take extra descriptors to fill the remaining payload */
3133                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3134         } else {
3135                 stmmac_set_desc_addr(priv, first, des);
3136                 tmp_pay_len = pay_len;
3137                 des += proto_hdr_len;
3138                 pay_len = 0;
3139         }
3140
3141         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3142
3143         /* Prepare fragments */
3144         for (i = 0; i < nfrags; i++) {
3145                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3146
3147                 des = skb_frag_dma_map(priv->device, frag, 0,
3148                                        skb_frag_size(frag),
3149                                        DMA_TO_DEVICE);
3150                 if (dma_mapping_error(priv->device, des))
3151                         goto dma_map_err;
3152
3153                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3154                                      (i == nfrags - 1), queue);
3155
3156                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3157                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3158                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3159         }
3160
3161         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3162
3163         /* Only the last descriptor gets to point to the skb. */
3164         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3165
3166         /* Manage tx mitigation */
3167         tx_packets = (tx_q->cur_tx + 1) - first_tx;
3168         tx_q->tx_count_frames += tx_packets;
3169
3170         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3171                 set_ic = true;
3172         else if (!priv->tx_coal_frames)
3173                 set_ic = false;
3174         else if (tx_packets > priv->tx_coal_frames)
3175                 set_ic = true;
3176         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3177                 set_ic = true;
3178         else
3179                 set_ic = false;
3180
3181         if (set_ic) {
3182                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3183                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3184                 else
3185                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3186
3187                 tx_q->tx_count_frames = 0;
3188                 stmmac_set_tx_ic(priv, desc);
3189                 priv->xstats.tx_set_ic_bit++;
3190         }
3191
3192         /* We've used all descriptors we need for this skb, however,
3193          * advance cur_tx so that it references a fresh descriptor.
3194          * ndo_start_xmit will fill this descriptor the next time it's
3195          * called and stmmac_tx_clean may clean up to this descriptor.
3196          */
3197         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3198
3199         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3200                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3201                           __func__);
3202                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3203         }
3204
3205         dev->stats.tx_bytes += skb->len;
3206         priv->xstats.tx_tso_frames++;
3207         priv->xstats.tx_tso_nfrags += nfrags;
3208
3209         if (priv->sarc_type)
3210                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3211
3212         skb_tx_timestamp(skb);
3213
3214         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3215                      priv->hwts_tx_en)) {
3216                 /* declare that device is doing timestamping */
3217                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3218                 stmmac_enable_tx_timestamp(priv, first);
3219         }
3220
3221         /* Complete the first descriptor before granting the DMA */
3222         stmmac_prepare_tso_tx_desc(priv, first, 1,
3223                         proto_hdr_len,
3224                         pay_len,
3225                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3226                         hdr / 4, (skb->len - proto_hdr_len));
3227
3228         /* If context desc is used to change MSS */
3229         if (mss_desc) {
3230                 /* Make sure that first descriptor has been completely
3231                  * written, including its own bit. This is because MSS is
3232                  * actually before first descriptor, so we need to make
3233                  * sure that MSS's own bit is the last thing written.
3234                  */
3235                 dma_wmb();
3236                 stmmac_set_tx_owner(priv, mss_desc);
3237         }
3238
3239         /* The own bit must be the latest setting done when prepare the
3240          * descriptor and then barrier is needed to make sure that
3241          * all is coherent before granting the DMA engine.
3242          */
3243         wmb();
3244
3245         if (netif_msg_pktdata(priv)) {
3246                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3247                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3248                         tx_q->cur_tx, first, nfrags);
3249                 pr_info(">>> frame to be transmitted: ");
3250                 print_pkt(skb->data, skb_headlen(skb));
3251         }
3252
3253         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3254
3255         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3256                 desc_size = sizeof(struct dma_edesc);
3257         else
3258                 desc_size = sizeof(struct dma_desc);
3259
3260         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3261         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3262         stmmac_tx_timer_arm(priv, queue);
3263
3264         return NETDEV_TX_OK;
3265
3266 dma_map_err:
3267         dev_err(priv->device, "Tx dma map failed\n");
3268         dev_kfree_skb(skb);
3269         priv->dev->stats.tx_dropped++;
3270         return NETDEV_TX_OK;
3271 }
3272
3273 /**
3274  *  stmmac_xmit - Tx entry point of the driver
3275  *  @skb : the socket buffer
3276  *  @dev : device pointer
3277  *  Description : this is the tx entry point of the driver.
3278  *  It programs the chain or the ring and supports oversized frames
3279  *  and SG feature.
3280  */
3281 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3282 {
3283         unsigned int first_entry, tx_packets, enh_desc;
3284         struct stmmac_priv *priv = netdev_priv(dev);
3285         unsigned int nopaged_len = skb_headlen(skb);
3286         int i, csum_insertion = 0, is_jumbo = 0;
3287         u32 queue = skb_get_queue_mapping(skb);
3288         int nfrags = skb_shinfo(skb)->nr_frags;
3289         int gso = skb_shinfo(skb)->gso_type;
3290         struct dma_edesc *tbs_desc = NULL;
3291         int entry, desc_size, first_tx;
3292         struct dma_desc *desc, *first;
3293         struct stmmac_tx_queue *tx_q;
3294         bool has_vlan, set_ic;
3295         dma_addr_t des;
3296
3297         tx_q = &priv->tx_queue[queue];
3298         first_tx = tx_q->cur_tx;
3299
3300         if (priv->tx_path_in_lpi_mode)
3301                 stmmac_disable_eee_mode(priv);
3302
3303         /* Manage oversized TCP frames for GMAC4 device */
3304         if (skb_is_gso(skb) && priv->tso) {
3305                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3306                         return stmmac_tso_xmit(skb, dev);
3307                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3308                         return stmmac_tso_xmit(skb, dev);
3309         }
3310
3311         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3312                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3313                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3314                                                                 queue));
3315                         /* This is a hard error, log it. */
3316                         netdev_err(priv->dev,
3317                                    "%s: Tx Ring full when queue awake\n",
3318                                    __func__);
3319                 }
3320                 return NETDEV_TX_BUSY;
3321         }
3322
3323         /* Check if VLAN can be inserted by HW */
3324         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3325
3326         entry = tx_q->cur_tx;
3327         first_entry = entry;
3328         WARN_ON(tx_q->tx_skbuff[first_entry]);
3329
3330         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3331
3332         if (likely(priv->extend_desc))
3333                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3334         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3335                 desc = &tx_q->dma_entx[entry].basic;
3336         else
3337                 desc = tx_q->dma_tx + entry;
3338
3339         first = desc;
3340
3341         if (has_vlan)
3342                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3343
3344         enh_desc = priv->plat->enh_desc;
3345         /* To program the descriptors according to the size of the frame */
3346         if (enh_desc)
3347                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3348
3349         if (unlikely(is_jumbo)) {
3350                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3351                 if (unlikely(entry < 0) && (entry != -EINVAL))
3352                         goto dma_map_err;
3353         }
3354
3355         for (i = 0; i < nfrags; i++) {
3356                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3357                 int len = skb_frag_size(frag);
3358                 bool last_segment = (i == (nfrags - 1));
3359
3360                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3361                 WARN_ON(tx_q->tx_skbuff[entry]);
3362
3363                 if (likely(priv->extend_desc))
3364                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3365                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3366                         desc = &tx_q->dma_entx[entry].basic;
3367                 else
3368                         desc = tx_q->dma_tx + entry;
3369
3370                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3371                                        DMA_TO_DEVICE);
3372                 if (dma_mapping_error(priv->device, des))
3373                         goto dma_map_err; /* should reuse desc w/o issues */
3374
3375                 tx_q->tx_skbuff_dma[entry].buf = des;
3376
3377                 stmmac_set_desc_addr(priv, desc, des);
3378
3379                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3380                 tx_q->tx_skbuff_dma[entry].len = len;
3381                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3382
3383                 /* Prepare the descriptor and set the own bit too */
3384                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3385                                 priv->mode, 1, last_segment, skb->len);
3386         }
3387
3388         /* Only the last descriptor gets to point to the skb. */
3389         tx_q->tx_skbuff[entry] = skb;
3390
3391         /* According to the coalesce parameter the IC bit for the latest
3392          * segment is reset and the timer re-started to clean the tx status.
3393          * This approach takes care about the fragments: desc is the first
3394          * element in case of no SG.
3395          */
3396         tx_packets = (entry + 1) - first_tx;
3397         tx_q->tx_count_frames += tx_packets;
3398
3399         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3400                 set_ic = true;
3401         else if (!priv->tx_coal_frames)
3402                 set_ic = false;
3403         else if (tx_packets > priv->tx_coal_frames)
3404                 set_ic = true;
3405         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3406                 set_ic = true;
3407         else
3408                 set_ic = false;
3409
3410         if (set_ic) {
3411                 if (likely(priv->extend_desc))
3412                         desc = &tx_q->dma_etx[entry].basic;
3413                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3414                         desc = &tx_q->dma_entx[entry].basic;
3415                 else
3416                         desc = &tx_q->dma_tx[entry];
3417
3418                 tx_q->tx_count_frames = 0;
3419                 stmmac_set_tx_ic(priv, desc);
3420                 priv->xstats.tx_set_ic_bit++;
3421         }
3422
3423         /* We've used all descriptors we need for this skb, however,
3424          * advance cur_tx so that it references a fresh descriptor.
3425          * ndo_start_xmit will fill this descriptor the next time it's
3426          * called and stmmac_tx_clean may clean up to this descriptor.
3427          */
3428         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3429         tx_q->cur_tx = entry;
3430
3431         if (netif_msg_pktdata(priv)) {
3432                 netdev_dbg(priv->dev,
3433                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3434                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3435                            entry, first, nfrags);
3436
3437                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3438                 print_pkt(skb->data, skb->len);
3439         }
3440
3441         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3442                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3443                           __func__);
3444                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3445         }
3446
3447         dev->stats.tx_bytes += skb->len;
3448
3449         if (priv->sarc_type)
3450                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3451
3452         skb_tx_timestamp(skb);
3453
3454         /* Ready to fill the first descriptor and set the OWN bit w/o any
3455          * problems because all the descriptors are actually ready to be
3456          * passed to the DMA engine.
3457          */
3458         if (likely(!is_jumbo)) {
3459                 bool last_segment = (nfrags == 0);
3460
3461                 des = dma_map_single(priv->device, skb->data,
3462                                      nopaged_len, DMA_TO_DEVICE);
3463                 if (dma_mapping_error(priv->device, des))
3464                         goto dma_map_err;
3465
3466                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3467
3468                 stmmac_set_desc_addr(priv, first, des);
3469
3470                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3471                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3472
3473                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3474                              priv->hwts_tx_en)) {
3475                         /* declare that device is doing timestamping */
3476                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3477                         stmmac_enable_tx_timestamp(priv, first);
3478                 }
3479
3480                 /* Prepare the first descriptor setting the OWN bit too */
3481                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3482                                 csum_insertion, priv->mode, 0, last_segment,
3483                                 skb->len);
3484         }
3485
3486         if (tx_q->tbs & STMMAC_TBS_EN) {
3487                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3488
3489                 tbs_desc = &tx_q->dma_entx[first_entry];
3490                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3491         }
3492
3493         stmmac_set_tx_owner(priv, first);
3494
3495         /* The own bit must be the latest setting done when prepare the
3496          * descriptor and then barrier is needed to make sure that
3497          * all is coherent before granting the DMA engine.
3498          */
3499         wmb();
3500
3501         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3502
3503         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3504
3505         if (likely(priv->extend_desc))
3506                 desc_size = sizeof(struct dma_extended_desc);
3507         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3508                 desc_size = sizeof(struct dma_edesc);
3509         else
3510                 desc_size = sizeof(struct dma_desc);
3511
3512         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3513         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3514         stmmac_tx_timer_arm(priv, queue);
3515
3516         return NETDEV_TX_OK;
3517
3518 dma_map_err:
3519         netdev_err(priv->dev, "Tx DMA map failed\n");
3520         dev_kfree_skb(skb);
3521         priv->dev->stats.tx_dropped++;
3522         return NETDEV_TX_OK;
3523 }
3524
3525 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3526 {
3527         struct vlan_ethhdr *veth;
3528         __be16 vlan_proto;
3529         u16 vlanid;
3530
3531         veth = (struct vlan_ethhdr *)skb->data;
3532         vlan_proto = veth->h_vlan_proto;
3533
3534         if ((vlan_proto == htons(ETH_P_8021Q) &&
3535              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3536             (vlan_proto == htons(ETH_P_8021AD) &&
3537              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3538                 /* pop the vlan tag */
3539                 vlanid = ntohs(veth->h_vlan_TCI);
3540                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3541                 skb_pull(skb, VLAN_HLEN);
3542                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3543         }
3544 }
3545
3546
3547 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3548 {
3549         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3550                 return 0;
3551
3552         return 1;
3553 }
3554
3555 /**
3556  * stmmac_rx_refill - refill used skb preallocated buffers
3557  * @priv: driver private structure
3558  * @queue: RX queue index
3559  * Description : this is to reallocate the skb for the reception process
3560  * that is based on zero-copy.
3561  */
3562 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3563 {
3564         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3565         int len, dirty = stmmac_rx_dirty(priv, queue);
3566         unsigned int entry = rx_q->dirty_rx;
3567
3568         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3569
3570         while (dirty-- > 0) {
3571                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3572                 struct dma_desc *p;
3573                 bool use_rx_wd;
3574
3575                 if (priv->extend_desc)
3576                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3577                 else
3578                         p = rx_q->dma_rx + entry;
3579
3580                 if (!buf->page) {
3581                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3582                         if (!buf->page)
3583                                 break;
3584                 }
3585
3586                 if (priv->sph && !buf->sec_page) {
3587                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3588                         if (!buf->sec_page)
3589                                 break;
3590
3591                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3592
3593                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3594                                                    len, DMA_FROM_DEVICE);
3595                 }
3596
3597                 buf->addr = page_pool_get_dma_addr(buf->page);
3598
3599                 /* Sync whole allocation to device. This will invalidate old
3600                  * data.
3601                  */
3602                 dma_sync_single_for_device(priv->device, buf->addr, len,
3603                                            DMA_FROM_DEVICE);
3604
3605                 stmmac_set_desc_addr(priv, p, buf->addr);
3606                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3607                 stmmac_refill_desc3(priv, rx_q, p);
3608
3609                 rx_q->rx_count_frames++;
3610                 rx_q->rx_count_frames += priv->rx_coal_frames;
3611                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3612                         rx_q->rx_count_frames = 0;
3613
3614                 use_rx_wd = !priv->rx_coal_frames;
3615                 use_rx_wd |= rx_q->rx_count_frames > 0;
3616                 if (!priv->use_riwt)
3617                         use_rx_wd = false;
3618
3619                 dma_wmb();
3620                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3621
3622                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3623         }
3624         rx_q->dirty_rx = entry;
3625         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3626                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3627         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3628 }
3629
3630 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3631                                        struct dma_desc *p,
3632                                        int status, unsigned int len)
3633 {
3634         int ret, coe = priv->hw->rx_csum;
3635         unsigned int plen = 0, hlen = 0;
3636
3637         /* Not first descriptor, buffer is always zero */
3638         if (priv->sph && len)
3639                 return 0;
3640
3641         /* First descriptor, get split header length */
3642         ret = stmmac_get_rx_header_len(priv, p, &hlen);
3643         if (priv->sph && hlen) {
3644                 priv->xstats.rx_split_hdr_pkt_n++;
3645                 return hlen;
3646         }
3647
3648         /* First descriptor, not last descriptor and not split header */
3649         if (status & rx_not_ls)
3650                 return priv->dma_buf_sz;
3651
3652         plen = stmmac_get_rx_frame_len(priv, p, coe);
3653
3654         /* First descriptor and last descriptor and not split header */
3655         return min_t(unsigned int, priv->dma_buf_sz, plen);
3656 }
3657
3658 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3659                                        struct dma_desc *p,
3660                                        int status, unsigned int len)
3661 {
3662         int coe = priv->hw->rx_csum;
3663         unsigned int plen = 0;
3664
3665         /* Not split header, buffer is not available */
3666         if (!priv->sph)
3667                 return 0;
3668
3669         /* Not last descriptor */
3670         if (status & rx_not_ls)
3671                 return priv->dma_buf_sz;
3672
3673         plen = stmmac_get_rx_frame_len(priv, p, coe);
3674
3675         /* Last descriptor */
3676         return plen - len;
3677 }
3678
3679 /**
3680  * stmmac_rx - manage the receive process
3681  * @priv: driver private structure
3682  * @limit: napi bugget
3683  * @queue: RX queue index.
3684  * Description :  this the function called by the napi poll method.
3685  * It gets all the frames inside the ring.
3686  */
3687 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3688 {
3689         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3690         struct stmmac_channel *ch = &priv->channel[queue];
3691         unsigned int count = 0, error = 0, len = 0;
3692         int status = 0, coe = priv->hw->rx_csum;
3693         unsigned int next_entry = rx_q->cur_rx;
3694         struct sk_buff *skb = NULL;
3695
3696         if (netif_msg_rx_status(priv)) {
3697                 void *rx_head;
3698
3699                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3700                 if (priv->extend_desc)
3701                         rx_head = (void *)rx_q->dma_erx;
3702                 else
3703                         rx_head = (void *)rx_q->dma_rx;
3704
3705                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3706         }
3707         while (count < limit) {
3708                 unsigned int buf1_len = 0, buf2_len = 0;
3709                 enum pkt_hash_types hash_type;
3710                 struct stmmac_rx_buffer *buf;
3711                 struct dma_desc *np, *p;
3712                 int entry;
3713                 u32 hash;
3714
3715                 if (!count && rx_q->state_saved) {
3716                         skb = rx_q->state.skb;
3717                         error = rx_q->state.error;
3718                         len = rx_q->state.len;
3719                 } else {
3720                         rx_q->state_saved = false;
3721                         skb = NULL;
3722                         error = 0;
3723                         len = 0;
3724                 }
3725
3726                 if (count >= limit)
3727                         break;
3728
3729 read_again:
3730                 buf1_len = 0;
3731                 buf2_len = 0;
3732                 entry = next_entry;
3733                 buf = &rx_q->buf_pool[entry];
3734
3735                 if (priv->extend_desc)
3736                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3737                 else
3738                         p = rx_q->dma_rx + entry;
3739
3740                 /* read the status of the incoming frame */
3741                 status = stmmac_rx_status(priv, &priv->dev->stats,
3742                                 &priv->xstats, p);
3743                 /* check if managed by the DMA otherwise go ahead */
3744                 if (unlikely(status & dma_own))
3745                         break;
3746
3747                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3748                 next_entry = rx_q->cur_rx;
3749
3750                 if (priv->extend_desc)
3751                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3752                 else
3753                         np = rx_q->dma_rx + next_entry;
3754
3755                 prefetch(np);
3756
3757                 if (priv->extend_desc)
3758                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3759                                         &priv->xstats, rx_q->dma_erx + entry);
3760                 if (unlikely(status == discard_frame)) {
3761                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3762                         buf->page = NULL;
3763                         error = 1;
3764                         if (!priv->hwts_rx_en)
3765                                 priv->dev->stats.rx_errors++;
3766                 }
3767
3768                 if (unlikely(error && (status & rx_not_ls)))
3769                         goto read_again;
3770                 if (unlikely(error)) {
3771                         dev_kfree_skb(skb);
3772                         skb = NULL;
3773                         count++;
3774                         continue;
3775                 }
3776
3777                 /* Buffer is good. Go on. */
3778
3779                 prefetch(page_address(buf->page));
3780                 if (buf->sec_page)
3781                         prefetch(page_address(buf->sec_page));
3782
3783                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3784                 len += buf1_len;
3785                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3786                 len += buf2_len;
3787
3788                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3789                  * Type frames (LLC/LLC-SNAP)
3790                  *
3791                  * llc_snap is never checked in GMAC >= 4, so this ACS
3792                  * feature is always disabled and packets need to be
3793                  * stripped manually.
3794                  */
3795                 if (likely(!(status & rx_not_ls)) &&
3796                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3797                      unlikely(status != llc_snap))) {
3798                         if (buf2_len)
3799                                 buf2_len -= ETH_FCS_LEN;
3800                         else
3801                                 buf1_len -= ETH_FCS_LEN;
3802
3803                         len -= ETH_FCS_LEN;
3804                 }
3805
3806                 if (!skb) {
3807                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3808                         if (!skb) {
3809                                 priv->dev->stats.rx_dropped++;
3810                                 count++;
3811                                 goto drain_data;
3812                         }
3813
3814                         dma_sync_single_for_cpu(priv->device, buf->addr,
3815                                                 buf1_len, DMA_FROM_DEVICE);
3816                         skb_copy_to_linear_data(skb, page_address(buf->page),
3817                                                 buf1_len);
3818                         skb_put(skb, buf1_len);
3819
3820                         /* Data payload copied into SKB, page ready for recycle */
3821                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3822                         buf->page = NULL;
3823                 } else if (buf1_len) {
3824                         dma_sync_single_for_cpu(priv->device, buf->addr,
3825                                                 buf1_len, DMA_FROM_DEVICE);
3826                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3827                                         buf->page, 0, buf1_len,
3828                                         priv->dma_buf_sz);
3829
3830                         /* Data payload appended into SKB */
3831                         page_pool_release_page(rx_q->page_pool, buf->page);
3832                         buf->page = NULL;
3833                 }
3834
3835                 if (buf2_len) {
3836                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3837                                                 buf2_len, DMA_FROM_DEVICE);
3838                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3839                                         buf->sec_page, 0, buf2_len,
3840                                         priv->dma_buf_sz);
3841
3842                         /* Data payload appended into SKB */
3843                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3844                         buf->sec_page = NULL;
3845                 }
3846
3847 drain_data:
3848                 if (likely(status & rx_not_ls))
3849                         goto read_again;
3850                 if (!skb)
3851                         continue;
3852
3853                 /* Got entire packet into SKB. Finish it. */
3854
3855                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3856                 stmmac_rx_vlan(priv->dev, skb);
3857                 skb->protocol = eth_type_trans(skb, priv->dev);
3858
3859                 if (unlikely(!coe))
3860                         skb_checksum_none_assert(skb);
3861                 else
3862                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3863
3864                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3865                         skb_set_hash(skb, hash, hash_type);
3866
3867                 skb_record_rx_queue(skb, queue);
3868                 napi_gro_receive(&ch->rx_napi, skb);
3869                 skb = NULL;
3870
3871                 priv->dev->stats.rx_packets++;
3872                 priv->dev->stats.rx_bytes += len;
3873                 count++;
3874         }
3875
3876         if (status & rx_not_ls || skb) {
3877                 rx_q->state_saved = true;
3878                 rx_q->state.skb = skb;
3879                 rx_q->state.error = error;
3880                 rx_q->state.len = len;
3881         }
3882
3883         stmmac_rx_refill(priv, queue);
3884
3885         priv->xstats.rx_pkt_n += count;
3886
3887         return count;
3888 }
3889
3890 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3891 {
3892         struct stmmac_channel *ch =
3893                 container_of(napi, struct stmmac_channel, rx_napi);
3894         struct stmmac_priv *priv = ch->priv_data;
3895         u32 chan = ch->index;
3896         int work_done;
3897
3898         priv->xstats.napi_poll++;
3899
3900         work_done = stmmac_rx(priv, budget, chan);
3901         if (work_done < budget && napi_complete_done(napi, work_done)) {
3902                 unsigned long flags;
3903
3904                 spin_lock_irqsave(&ch->lock, flags);
3905                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3906                 spin_unlock_irqrestore(&ch->lock, flags);
3907         }
3908
3909         return work_done;
3910 }
3911
3912 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3913 {
3914         struct stmmac_channel *ch =
3915                 container_of(napi, struct stmmac_channel, tx_napi);
3916         struct stmmac_priv *priv = ch->priv_data;
3917         u32 chan = ch->index;
3918         int work_done;
3919
3920         priv->xstats.napi_poll++;
3921
3922         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3923         work_done = min(work_done, budget);
3924
3925         if (work_done < budget && napi_complete_done(napi, work_done)) {
3926                 unsigned long flags;
3927
3928                 spin_lock_irqsave(&ch->lock, flags);
3929                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3930                 spin_unlock_irqrestore(&ch->lock, flags);
3931         }
3932
3933         return work_done;
3934 }
3935
3936 /**
3937  *  stmmac_tx_timeout
3938  *  @dev : Pointer to net device structure
3939  *  Description: this function is called when a packet transmission fails to
3940  *   complete within a reasonable time. The driver will mark the error in the
3941  *   netdev structure and arrange for the device to be reset to a sane state
3942  *   in order to transmit a new packet.
3943  */
3944 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3945 {
3946         struct stmmac_priv *priv = netdev_priv(dev);
3947
3948         stmmac_global_err(priv);
3949 }
3950
3951 /**
3952  *  stmmac_set_rx_mode - entry point for multicast addressing
3953  *  @dev : pointer to the device structure
3954  *  Description:
3955  *  This function is a driver entry point which gets called by the kernel
3956  *  whenever multicast addresses must be enabled/disabled.
3957  *  Return value:
3958  *  void.
3959  */
3960 static void stmmac_set_rx_mode(struct net_device *dev)
3961 {
3962         struct stmmac_priv *priv = netdev_priv(dev);
3963
3964         stmmac_set_filter(priv, priv->hw, dev);
3965 }
3966
3967 /**
3968  *  stmmac_change_mtu - entry point to change MTU size for the device.
3969  *  @dev : device pointer.
3970  *  @new_mtu : the new MTU size for the device.
3971  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3972  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3973  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3974  *  Return value:
3975  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3976  *  file on failure.
3977  */
3978 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3979 {
3980         struct stmmac_priv *priv = netdev_priv(dev);
3981         int txfifosz = priv->plat->tx_fifo_size;
3982
3983         if (txfifosz == 0)
3984                 txfifosz = priv->dma_cap.tx_fifo_size;
3985
3986         txfifosz /= priv->plat->tx_queues_to_use;
3987
3988         if (netif_running(dev)) {
3989                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3990                 return -EBUSY;
3991         }
3992
3993         new_mtu = STMMAC_ALIGN(new_mtu);
3994
3995         /* If condition true, FIFO is too small or MTU too large */
3996         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3997                 return -EINVAL;
3998
3999         dev->mtu = new_mtu;
4000
4001         netdev_update_features(dev);
4002
4003         return 0;
4004 }
4005
4006 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4007                                              netdev_features_t features)
4008 {
4009         struct stmmac_priv *priv = netdev_priv(dev);
4010
4011         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4012                 features &= ~NETIF_F_RXCSUM;
4013
4014         if (!priv->plat->tx_coe)
4015                 features &= ~NETIF_F_CSUM_MASK;
4016
4017         /* Some GMAC devices have a bugged Jumbo frame support that
4018          * needs to have the Tx COE disabled for oversized frames
4019          * (due to limited buffer sizes). In this case we disable
4020          * the TX csum insertion in the TDES and not use SF.
4021          */
4022         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4023                 features &= ~NETIF_F_CSUM_MASK;
4024
4025         /* Disable tso if asked by ethtool */
4026         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4027                 if (features & NETIF_F_TSO)
4028                         priv->tso = true;
4029                 else
4030                         priv->tso = false;
4031         }
4032
4033         return features;
4034 }
4035
4036 static int stmmac_set_features(struct net_device *netdev,
4037                                netdev_features_t features)
4038 {
4039         struct stmmac_priv *priv = netdev_priv(netdev);
4040         bool sph_en;
4041         u32 chan;
4042
4043         /* Keep the COE Type in case of csum is supporting */
4044         if (features & NETIF_F_RXCSUM)
4045                 priv->hw->rx_csum = priv->plat->rx_coe;
4046         else
4047                 priv->hw->rx_csum = 0;
4048         /* No check needed because rx_coe has been set before and it will be
4049          * fixed in case of issue.
4050          */
4051         stmmac_rx_ipc(priv, priv->hw);
4052
4053         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4054         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4055                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4056
4057         return 0;
4058 }
4059
4060 /**
4061  *  stmmac_interrupt - main ISR
4062  *  @irq: interrupt number.
4063  *  @dev_id: to pass the net device pointer (must be valid).
4064  *  Description: this is the main driver interrupt service routine.
4065  *  It can call:
4066  *  o DMA service routine (to manage incoming frame reception and transmission
4067  *    status)
4068  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4069  *    interrupts.
4070  */
4071 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4072 {
4073         struct net_device *dev = (struct net_device *)dev_id;
4074         struct stmmac_priv *priv = netdev_priv(dev);
4075         u32 rx_cnt = priv->plat->rx_queues_to_use;
4076         u32 tx_cnt = priv->plat->tx_queues_to_use;
4077         u32 queues_count;
4078         u32 queue;
4079         bool xmac;
4080
4081         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4082         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4083
4084         if (priv->irq_wake)
4085                 pm_wakeup_event(priv->device, 0);
4086
4087         /* Check if adapter is up */
4088         if (test_bit(STMMAC_DOWN, &priv->state))
4089                 return IRQ_HANDLED;
4090         /* Check if a fatal error happened */
4091         if (stmmac_safety_feat_interrupt(priv))
4092                 return IRQ_HANDLED;
4093
4094         /* To handle GMAC own interrupts */
4095         if ((priv->plat->has_gmac) || xmac) {
4096                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4097                 int mtl_status;
4098
4099                 if (unlikely(status)) {
4100                         /* For LPI we need to save the tx status */
4101                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4102                                 priv->tx_path_in_lpi_mode = true;
4103                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4104                                 priv->tx_path_in_lpi_mode = false;
4105                 }
4106
4107                 for (queue = 0; queue < queues_count; queue++) {
4108                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4109
4110                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4111                                                                 queue);
4112                         if (mtl_status != -EINVAL)
4113                                 status |= mtl_status;
4114
4115                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4116                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4117                                                        rx_q->rx_tail_addr,
4118                                                        queue);
4119                 }
4120
4121                 /* PCS link status */
4122                 if (priv->hw->pcs) {
4123                         if (priv->xstats.pcs_link)
4124                                 netif_carrier_on(dev);
4125                         else
4126                                 netif_carrier_off(dev);
4127                 }
4128         }
4129
4130         /* To handle DMA interrupts */
4131         stmmac_dma_interrupt(priv);
4132
4133         return IRQ_HANDLED;
4134 }
4135
4136 #ifdef CONFIG_NET_POLL_CONTROLLER
4137 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4138  * to allow network I/O with interrupts disabled.
4139  */
4140 static void stmmac_poll_controller(struct net_device *dev)
4141 {
4142         disable_irq(dev->irq);
4143         stmmac_interrupt(dev->irq, dev);
4144         enable_irq(dev->irq);
4145 }
4146 #endif
4147
4148 /**
4149  *  stmmac_ioctl - Entry point for the Ioctl
4150  *  @dev: Device pointer.
4151  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4152  *  a proprietary structure used to pass information to the driver.
4153  *  @cmd: IOCTL command
4154  *  Description:
4155  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4156  */
4157 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4158 {
4159         struct stmmac_priv *priv = netdev_priv (dev);
4160         int ret = -EOPNOTSUPP;
4161
4162         if (!netif_running(dev))
4163                 return -EINVAL;
4164
4165         switch (cmd) {
4166         case SIOCGMIIPHY:
4167         case SIOCGMIIREG:
4168         case SIOCSMIIREG:
4169                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4170                 break;
4171         case SIOCSHWTSTAMP:
4172                 ret = stmmac_hwtstamp_set(dev, rq);
4173                 break;
4174         case SIOCGHWTSTAMP:
4175                 ret = stmmac_hwtstamp_get(dev, rq);
4176                 break;
4177         default:
4178                 break;
4179         }
4180
4181         return ret;
4182 }
4183
4184 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4185                                     void *cb_priv)
4186 {
4187         struct stmmac_priv *priv = cb_priv;
4188         int ret = -EOPNOTSUPP;
4189
4190         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4191                 return ret;
4192
4193         stmmac_disable_all_queues(priv);
4194
4195         switch (type) {
4196         case TC_SETUP_CLSU32:
4197                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4198                 break;
4199         case TC_SETUP_CLSFLOWER:
4200                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4201                 break;
4202         default:
4203                 break;
4204         }
4205
4206         stmmac_enable_all_queues(priv);
4207         return ret;
4208 }
4209
4210 static LIST_HEAD(stmmac_block_cb_list);
4211
4212 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4213                            void *type_data)
4214 {
4215         struct stmmac_priv *priv = netdev_priv(ndev);
4216
4217         switch (type) {
4218         case TC_SETUP_BLOCK:
4219                 return flow_block_cb_setup_simple(type_data,
4220                                                   &stmmac_block_cb_list,
4221                                                   stmmac_setup_tc_block_cb,
4222                                                   priv, priv, true);
4223         case TC_SETUP_QDISC_CBS:
4224                 return stmmac_tc_setup_cbs(priv, priv, type_data);
4225         case TC_SETUP_QDISC_TAPRIO:
4226                 return stmmac_tc_setup_taprio(priv, priv, type_data);
4227         case TC_SETUP_QDISC_ETF:
4228                 return stmmac_tc_setup_etf(priv, priv, type_data);
4229         default:
4230                 return -EOPNOTSUPP;
4231         }
4232 }
4233
4234 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4235                                struct net_device *sb_dev)
4236 {
4237         int gso = skb_shinfo(skb)->gso_type;
4238
4239         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4240                 /*
4241                  * There is no way to determine the number of TSO/USO
4242                  * capable Queues. Let's use always the Queue 0
4243                  * because if TSO/USO is supported then at least this
4244                  * one will be capable.
4245                  */
4246                 return 0;
4247         }
4248
4249         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4250 }
4251
4252 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4253 {
4254         struct stmmac_priv *priv = netdev_priv(ndev);
4255         int ret = 0;
4256
4257         ret = eth_mac_addr(ndev, addr);
4258         if (ret)
4259                 return ret;
4260
4261         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4262
4263         return ret;
4264 }
4265
4266 #ifdef CONFIG_DEBUG_FS
4267 static struct dentry *stmmac_fs_dir;
4268
4269 static void sysfs_display_ring(void *head, int size, int extend_desc,
4270                                struct seq_file *seq)
4271 {
4272         int i;
4273         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4274         struct dma_desc *p = (struct dma_desc *)head;
4275
4276         for (i = 0; i < size; i++) {
4277                 if (extend_desc) {
4278                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4279                                    i, (unsigned int)virt_to_phys(ep),
4280                                    le32_to_cpu(ep->basic.des0),
4281                                    le32_to_cpu(ep->basic.des1),
4282                                    le32_to_cpu(ep->basic.des2),
4283                                    le32_to_cpu(ep->basic.des3));
4284                         ep++;
4285                 } else {
4286                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4287                                    i, (unsigned int)virt_to_phys(p),
4288                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4289                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4290                         p++;
4291                 }
4292                 seq_printf(seq, "\n");
4293         }
4294 }
4295
4296 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4297 {
4298         struct net_device *dev = seq->private;
4299         struct stmmac_priv *priv = netdev_priv(dev);
4300         u32 rx_count = priv->plat->rx_queues_to_use;
4301         u32 tx_count = priv->plat->tx_queues_to_use;
4302         u32 queue;
4303
4304         if ((dev->flags & IFF_UP) == 0)
4305                 return 0;
4306
4307         for (queue = 0; queue < rx_count; queue++) {
4308                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4309
4310                 seq_printf(seq, "RX Queue %d:\n", queue);
4311
4312                 if (priv->extend_desc) {
4313                         seq_printf(seq, "Extended descriptor ring:\n");
4314                         sysfs_display_ring((void *)rx_q->dma_erx,
4315                                            DMA_RX_SIZE, 1, seq);
4316                 } else {
4317                         seq_printf(seq, "Descriptor ring:\n");
4318                         sysfs_display_ring((void *)rx_q->dma_rx,
4319                                            DMA_RX_SIZE, 0, seq);
4320                 }
4321         }
4322
4323         for (queue = 0; queue < tx_count; queue++) {
4324                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4325
4326                 seq_printf(seq, "TX Queue %d:\n", queue);
4327
4328                 if (priv->extend_desc) {
4329                         seq_printf(seq, "Extended descriptor ring:\n");
4330                         sysfs_display_ring((void *)tx_q->dma_etx,
4331                                            DMA_TX_SIZE, 1, seq);
4332                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4333                         seq_printf(seq, "Descriptor ring:\n");
4334                         sysfs_display_ring((void *)tx_q->dma_tx,
4335                                            DMA_TX_SIZE, 0, seq);
4336                 }
4337         }
4338
4339         return 0;
4340 }
4341 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4342
4343 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4344 {
4345         struct net_device *dev = seq->private;
4346         struct stmmac_priv *priv = netdev_priv(dev);
4347
4348         if (!priv->hw_cap_support) {
4349                 seq_printf(seq, "DMA HW features not supported\n");
4350                 return 0;
4351         }
4352
4353         seq_printf(seq, "==============================\n");
4354         seq_printf(seq, "\tDMA HW features\n");
4355         seq_printf(seq, "==============================\n");
4356
4357         seq_printf(seq, "\t10/100 Mbps: %s\n",
4358                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4359         seq_printf(seq, "\t1000 Mbps: %s\n",
4360                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4361         seq_printf(seq, "\tHalf duplex: %s\n",
4362                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4363         seq_printf(seq, "\tHash Filter: %s\n",
4364                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4365         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4366                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4367         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4368                    (priv->dma_cap.pcs) ? "Y" : "N");
4369         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4370                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4371         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4372                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4373         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4374                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4375         seq_printf(seq, "\tRMON module: %s\n",
4376                    (priv->dma_cap.rmon) ? "Y" : "N");
4377         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4378                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4379         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4380                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4381         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4382                    (priv->dma_cap.eee) ? "Y" : "N");
4383         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4384         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4385                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4386         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4387                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4388                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4389         } else {
4390                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4391                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4392                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4393                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4394         }
4395         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4396                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4397         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4398                    priv->dma_cap.number_rx_channel);
4399         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4400                    priv->dma_cap.number_tx_channel);
4401         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4402                    priv->dma_cap.number_rx_queues);
4403         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4404                    priv->dma_cap.number_tx_queues);
4405         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4406                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4407         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4408         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4409         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4410         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4411         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4412                    priv->dma_cap.pps_out_num);
4413         seq_printf(seq, "\tSafety Features: %s\n",
4414                    priv->dma_cap.asp ? "Y" : "N");
4415         seq_printf(seq, "\tFlexible RX Parser: %s\n",
4416                    priv->dma_cap.frpsel ? "Y" : "N");
4417         seq_printf(seq, "\tEnhanced Addressing: %d\n",
4418                    priv->dma_cap.addr64);
4419         seq_printf(seq, "\tReceive Side Scaling: %s\n",
4420                    priv->dma_cap.rssen ? "Y" : "N");
4421         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4422                    priv->dma_cap.vlhash ? "Y" : "N");
4423         seq_printf(seq, "\tSplit Header: %s\n",
4424                    priv->dma_cap.sphen ? "Y" : "N");
4425         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4426                    priv->dma_cap.vlins ? "Y" : "N");
4427         seq_printf(seq, "\tDouble VLAN: %s\n",
4428                    priv->dma_cap.dvlan ? "Y" : "N");
4429         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4430                    priv->dma_cap.l3l4fnum);
4431         seq_printf(seq, "\tARP Offloading: %s\n",
4432                    priv->dma_cap.arpoffsel ? "Y" : "N");
4433         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4434                    priv->dma_cap.estsel ? "Y" : "N");
4435         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4436                    priv->dma_cap.fpesel ? "Y" : "N");
4437         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4438                    priv->dma_cap.tbssel ? "Y" : "N");
4439         return 0;
4440 }
4441 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4442
4443 /* Use network device events to rename debugfs file entries.
4444  */
4445 static int stmmac_device_event(struct notifier_block *unused,
4446                                unsigned long event, void *ptr)
4447 {
4448         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4449         struct stmmac_priv *priv = netdev_priv(dev);
4450
4451         if (dev->netdev_ops != &stmmac_netdev_ops)
4452                 goto done;
4453
4454         switch (event) {
4455         case NETDEV_CHANGENAME:
4456                 if (priv->dbgfs_dir)
4457                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4458                                                          priv->dbgfs_dir,
4459                                                          stmmac_fs_dir,
4460                                                          dev->name);
4461                 break;
4462         }
4463 done:
4464         return NOTIFY_DONE;
4465 }
4466
4467 static struct notifier_block stmmac_notifier = {
4468         .notifier_call = stmmac_device_event,
4469 };
4470
4471 static void stmmac_init_fs(struct net_device *dev)
4472 {
4473         struct stmmac_priv *priv = netdev_priv(dev);
4474
4475         rtnl_lock();
4476
4477         /* Create per netdev entries */
4478         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4479
4480         /* Entry to report DMA RX/TX rings */
4481         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4482                             &stmmac_rings_status_fops);
4483
4484         /* Entry to report the DMA HW features */
4485         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4486                             &stmmac_dma_cap_fops);
4487
4488         rtnl_unlock();
4489 }
4490
4491 static void stmmac_exit_fs(struct net_device *dev)
4492 {
4493         struct stmmac_priv *priv = netdev_priv(dev);
4494
4495         debugfs_remove_recursive(priv->dbgfs_dir);
4496 }
4497 #endif /* CONFIG_DEBUG_FS */
4498
4499 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4500 {
4501         unsigned char *data = (unsigned char *)&vid_le;
4502         unsigned char data_byte = 0;
4503         u32 crc = ~0x0;
4504         u32 temp = 0;
4505         int i, bits;
4506
4507         bits = get_bitmask_order(VLAN_VID_MASK);
4508         for (i = 0; i < bits; i++) {
4509                 if ((i % 8) == 0)
4510                         data_byte = data[i / 8];
4511
4512                 temp = ((crc & 1) ^ data_byte) & 1;
4513                 crc >>= 1;
4514                 data_byte >>= 1;
4515
4516                 if (temp)
4517                         crc ^= 0xedb88320;
4518         }
4519
4520         return crc;
4521 }
4522
4523 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4524 {
4525         u32 crc, hash = 0;
4526         __le16 pmatch = 0;
4527         int count = 0;
4528         u16 vid = 0;
4529
4530         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4531                 __le16 vid_le = cpu_to_le16(vid);
4532                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4533                 hash |= (1 << crc);
4534                 count++;
4535         }
4536
4537         if (!priv->dma_cap.vlhash) {
4538                 if (count > 2) /* VID = 0 always passes filter */
4539                         return -EOPNOTSUPP;
4540
4541                 pmatch = cpu_to_le16(vid);
4542                 hash = 0;
4543         }
4544
4545         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4546 }
4547
4548 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4549 {
4550         struct stmmac_priv *priv = netdev_priv(ndev);
4551         bool is_double = false;
4552         int ret;
4553
4554         if (be16_to_cpu(proto) == ETH_P_8021AD)
4555                 is_double = true;
4556
4557         set_bit(vid, priv->active_vlans);
4558         ret = stmmac_vlan_update(priv, is_double);
4559         if (ret) {
4560                 clear_bit(vid, priv->active_vlans);
4561                 return ret;
4562         }
4563
4564         if (priv->hw->num_vlan) {
4565                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4566                 if (ret)
4567                         return ret;
4568         }
4569
4570         return 0;
4571 }
4572
4573 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4574 {
4575         struct stmmac_priv *priv = netdev_priv(ndev);
4576         bool is_double = false;
4577         int ret;
4578
4579         if (be16_to_cpu(proto) == ETH_P_8021AD)
4580                 is_double = true;
4581
4582         clear_bit(vid, priv->active_vlans);
4583
4584         if (priv->hw->num_vlan) {
4585                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4586                 if (ret)
4587                         return ret;
4588         }
4589
4590         return stmmac_vlan_update(priv, is_double);
4591 }
4592
4593 static const struct net_device_ops stmmac_netdev_ops = {
4594         .ndo_open = stmmac_open,
4595         .ndo_start_xmit = stmmac_xmit,
4596         .ndo_stop = stmmac_release,
4597         .ndo_change_mtu = stmmac_change_mtu,
4598         .ndo_fix_features = stmmac_fix_features,
4599         .ndo_set_features = stmmac_set_features,
4600         .ndo_set_rx_mode = stmmac_set_rx_mode,
4601         .ndo_tx_timeout = stmmac_tx_timeout,
4602         .ndo_do_ioctl = stmmac_ioctl,
4603         .ndo_setup_tc = stmmac_setup_tc,
4604         .ndo_select_queue = stmmac_select_queue,
4605 #ifdef CONFIG_NET_POLL_CONTROLLER
4606         .ndo_poll_controller = stmmac_poll_controller,
4607 #endif
4608         .ndo_set_mac_address = stmmac_set_mac_address,
4609         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4610         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4611 };
4612
4613 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4614 {
4615         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4616                 return;
4617         if (test_bit(STMMAC_DOWN, &priv->state))
4618                 return;
4619
4620         netdev_err(priv->dev, "Reset adapter.\n");
4621
4622         rtnl_lock();
4623         netif_trans_update(priv->dev);
4624         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4625                 usleep_range(1000, 2000);
4626
4627         set_bit(STMMAC_DOWN, &priv->state);
4628         dev_close(priv->dev);
4629         dev_open(priv->dev, NULL);
4630         clear_bit(STMMAC_DOWN, &priv->state);
4631         clear_bit(STMMAC_RESETING, &priv->state);
4632         rtnl_unlock();
4633 }
4634
4635 static void stmmac_service_task(struct work_struct *work)
4636 {
4637         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4638                         service_task);
4639
4640         stmmac_reset_subtask(priv);
4641         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4642 }
4643
4644 /**
4645  *  stmmac_hw_init - Init the MAC device
4646  *  @priv: driver private structure
4647  *  Description: this function is to configure the MAC device according to
4648  *  some platform parameters or the HW capability register. It prepares the
4649  *  driver to use either ring or chain modes and to setup either enhanced or
4650  *  normal descriptors.
4651  */
4652 static int stmmac_hw_init(struct stmmac_priv *priv)
4653 {
4654         int ret;
4655
4656         /* dwmac-sun8i only work in chain mode */
4657         if (priv->plat->has_sun8i)
4658                 chain_mode = 1;
4659         priv->chain_mode = chain_mode;
4660
4661         /* Initialize HW Interface */
4662         ret = stmmac_hwif_init(priv);
4663         if (ret)
4664                 return ret;
4665
4666         /* Get the HW capability (new GMAC newer than 3.50a) */
4667         priv->hw_cap_support = stmmac_get_hw_features(priv);
4668         if (priv->hw_cap_support) {
4669                 dev_info(priv->device, "DMA HW capability register supported\n");
4670
4671                 /* We can override some gmac/dma configuration fields: e.g.
4672                  * enh_desc, tx_coe (e.g. that are passed through the
4673                  * platform) with the values from the HW capability
4674                  * register (if supported).
4675                  */
4676                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4677                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4678                 priv->hw->pmt = priv->plat->pmt;
4679                 if (priv->dma_cap.hash_tb_sz) {
4680                         priv->hw->multicast_filter_bins =
4681                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4682                         priv->hw->mcast_bits_log2 =
4683                                         ilog2(priv->hw->multicast_filter_bins);
4684                 }
4685
4686                 /* TXCOE doesn't work in thresh DMA mode */
4687                 if (priv->plat->force_thresh_dma_mode)
4688                         priv->plat->tx_coe = 0;
4689                 else
4690                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4691
4692                 /* In case of GMAC4 rx_coe is from HW cap register. */
4693                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4694
4695                 if (priv->dma_cap.rx_coe_type2)
4696                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4697                 else if (priv->dma_cap.rx_coe_type1)
4698                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4699
4700         } else {
4701                 dev_info(priv->device, "No HW DMA feature register supported\n");
4702         }
4703
4704         if (priv->plat->rx_coe) {
4705                 priv->hw->rx_csum = priv->plat->rx_coe;
4706                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4707                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4708                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4709         }
4710         if (priv->plat->tx_coe)
4711                 dev_info(priv->device, "TX Checksum insertion supported\n");
4712
4713         if (priv->plat->pmt) {
4714                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4715                 device_set_wakeup_capable(priv->device, 1);
4716         }
4717
4718         if (priv->dma_cap.tsoen)
4719                 dev_info(priv->device, "TSO supported\n");
4720
4721         /* Run HW quirks, if any */
4722         if (priv->hwif_quirks) {
4723                 ret = priv->hwif_quirks(priv);
4724                 if (ret)
4725                         return ret;
4726         }
4727
4728         /* Rx Watchdog is available in the COREs newer than the 3.40.
4729          * In some case, for example on bugged HW this feature
4730          * has to be disable and this can be done by passing the
4731          * riwt_off field from the platform.
4732          */
4733         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4734             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4735                 priv->use_riwt = 1;
4736                 dev_info(priv->device,
4737                          "Enable RX Mitigation via HW Watchdog Timer\n");
4738         }
4739
4740         return 0;
4741 }
4742
4743 /**
4744  * stmmac_dvr_probe
4745  * @device: device pointer
4746  * @plat_dat: platform data pointer
4747  * @res: stmmac resource pointer
4748  * Description: this is the main probe function used to
4749  * call the alloc_etherdev, allocate the priv structure.
4750  * Return:
4751  * returns 0 on success, otherwise errno.
4752  */
4753 int stmmac_dvr_probe(struct device *device,
4754                      struct plat_stmmacenet_data *plat_dat,
4755                      struct stmmac_resources *res)
4756 {
4757         struct net_device *ndev = NULL;
4758         struct stmmac_priv *priv;
4759         u32 queue, rxq, maxq;
4760         int i, ret = 0;
4761
4762         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4763                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4764         if (!ndev)
4765                 return -ENOMEM;
4766
4767         SET_NETDEV_DEV(ndev, device);
4768
4769         priv = netdev_priv(ndev);
4770         priv->device = device;
4771         priv->dev = ndev;
4772
4773         stmmac_set_ethtool_ops(ndev);
4774         priv->pause = pause;
4775         priv->plat = plat_dat;
4776         priv->ioaddr = res->addr;
4777         priv->dev->base_addr = (unsigned long)res->addr;
4778
4779         priv->dev->irq = res->irq;
4780         priv->wol_irq = res->wol_irq;
4781         priv->lpi_irq = res->lpi_irq;
4782
4783         if (!IS_ERR_OR_NULL(res->mac))
4784                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4785
4786         dev_set_drvdata(device, priv->dev);
4787
4788         /* Verify driver arguments */
4789         stmmac_verify_args();
4790
4791         /* Allocate workqueue */
4792         priv->wq = create_singlethread_workqueue("stmmac_wq");
4793         if (!priv->wq) {
4794                 dev_err(priv->device, "failed to create workqueue\n");
4795                 return -ENOMEM;
4796         }
4797
4798         INIT_WORK(&priv->service_task, stmmac_service_task);
4799
4800         /* Override with kernel parameters if supplied XXX CRS XXX
4801          * this needs to have multiple instances
4802          */
4803         if ((phyaddr >= 0) && (phyaddr <= 31))
4804                 priv->plat->phy_addr = phyaddr;
4805
4806         if (priv->plat->stmmac_rst) {
4807                 ret = reset_control_assert(priv->plat->stmmac_rst);
4808                 reset_control_deassert(priv->plat->stmmac_rst);
4809                 /* Some reset controllers have only reset callback instead of
4810                  * assert + deassert callbacks pair.
4811                  */
4812                 if (ret == -ENOTSUPP)
4813                         reset_control_reset(priv->plat->stmmac_rst);
4814         }
4815
4816         /* Init MAC and get the capabilities */
4817         ret = stmmac_hw_init(priv);
4818         if (ret)
4819                 goto error_hw_init;
4820
4821         stmmac_check_ether_addr(priv);
4822
4823         /* Configure real RX and TX queues */
4824         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4825         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4826
4827         ndev->netdev_ops = &stmmac_netdev_ops;
4828
4829         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4830                             NETIF_F_RXCSUM;
4831
4832         ret = stmmac_tc_init(priv, priv);
4833         if (!ret) {
4834                 ndev->hw_features |= NETIF_F_HW_TC;
4835         }
4836
4837         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4838                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4839                 if (priv->plat->has_gmac4)
4840                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4841                 priv->tso = true;
4842                 dev_info(priv->device, "TSO feature enabled\n");
4843         }
4844
4845         if (priv->dma_cap.sphen) {
4846                 ndev->hw_features |= NETIF_F_GRO;
4847                 priv->sph = true;
4848                 dev_info(priv->device, "SPH feature enabled\n");
4849         }
4850
4851         if (priv->dma_cap.addr64) {
4852                 ret = dma_set_mask_and_coherent(device,
4853                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4854                 if (!ret) {
4855                         dev_info(priv->device, "Using %d bits DMA width\n",
4856                                  priv->dma_cap.addr64);
4857
4858                         /*
4859                          * If more than 32 bits can be addressed, make sure to
4860                          * enable enhanced addressing mode.
4861                          */
4862                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4863                                 priv->plat->dma_cfg->eame = true;
4864                 } else {
4865                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4866                         if (ret) {
4867                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4868                                 goto error_hw_init;
4869                         }
4870
4871                         priv->dma_cap.addr64 = 32;
4872                 }
4873         }
4874
4875         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4876         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4877 #ifdef STMMAC_VLAN_TAG_USED
4878         /* Both mac100 and gmac support receive VLAN tag detection */
4879         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4880         if (priv->dma_cap.vlhash) {
4881                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4882                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4883         }
4884         if (priv->dma_cap.vlins) {
4885                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4886                 if (priv->dma_cap.dvlan)
4887                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4888         }
4889 #endif
4890         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4891
4892         /* Initialize RSS */
4893         rxq = priv->plat->rx_queues_to_use;
4894         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4895         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4896                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4897
4898         if (priv->dma_cap.rssen && priv->plat->rss_en)
4899                 ndev->features |= NETIF_F_RXHASH;
4900
4901         /* MTU range: 46 - hw-specific max */
4902         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4903         if (priv->plat->has_xgmac)
4904                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4905         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4906                 ndev->max_mtu = JUMBO_LEN;
4907         else
4908                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4909         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4910          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4911          */
4912         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4913             (priv->plat->maxmtu >= ndev->min_mtu))
4914                 ndev->max_mtu = priv->plat->maxmtu;
4915         else if (priv->plat->maxmtu < ndev->min_mtu)
4916                 dev_warn(priv->device,
4917                          "%s: warning: maxmtu having invalid value (%d)\n",
4918                          __func__, priv->plat->maxmtu);
4919
4920         if (flow_ctrl)
4921                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4922
4923         /* Setup channels NAPI */
4924         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4925
4926         for (queue = 0; queue < maxq; queue++) {
4927                 struct stmmac_channel *ch = &priv->channel[queue];
4928
4929                 spin_lock_init(&ch->lock);
4930                 ch->priv_data = priv;
4931                 ch->index = queue;
4932
4933                 if (queue < priv->plat->rx_queues_to_use) {
4934                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4935                                        NAPI_POLL_WEIGHT);
4936                 }
4937                 if (queue < priv->plat->tx_queues_to_use) {
4938                         netif_tx_napi_add(ndev, &ch->tx_napi,
4939                                           stmmac_napi_poll_tx,
4940                                           NAPI_POLL_WEIGHT);
4941                 }
4942         }
4943
4944         mutex_init(&priv->lock);
4945
4946         /* If a specific clk_csr value is passed from the platform
4947          * this means that the CSR Clock Range selection cannot be
4948          * changed at run-time and it is fixed. Viceversa the driver'll try to
4949          * set the MDC clock dynamically according to the csr actual
4950          * clock input.
4951          */
4952         if (priv->plat->clk_csr >= 0)
4953                 priv->clk_csr = priv->plat->clk_csr;
4954         else
4955                 stmmac_clk_csr_set(priv);
4956
4957         stmmac_check_pcs_mode(priv);
4958
4959         if (priv->hw->pcs != STMMAC_PCS_TBI &&
4960             priv->hw->pcs != STMMAC_PCS_RTBI) {
4961                 /* MDIO bus Registration */
4962                 ret = stmmac_mdio_register(ndev);
4963                 if (ret < 0) {
4964                         dev_err(priv->device,
4965                                 "%s: MDIO bus (id: %d) registration failed",
4966                                 __func__, priv->plat->bus_id);
4967                         goto error_mdio_register;
4968                 }
4969         }
4970
4971         ret = stmmac_phy_setup(priv);
4972         if (ret) {
4973                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4974                 goto error_phy_setup;
4975         }
4976
4977         ret = register_netdev(ndev);
4978         if (ret) {
4979                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4980                         __func__, ret);
4981                 goto error_netdev_register;
4982         }
4983
4984         if (priv->plat->serdes_powerup) {
4985                 ret = priv->plat->serdes_powerup(ndev,
4986                                                  priv->plat->bsp_priv);
4987
4988                 if (ret < 0)
4989                         goto error_serdes_powerup;
4990         }
4991
4992 #ifdef CONFIG_DEBUG_FS
4993         stmmac_init_fs(ndev);
4994 #endif
4995
4996         return ret;
4997
4998 error_serdes_powerup:
4999         unregister_netdev(ndev);
5000 error_netdev_register:
5001         phylink_destroy(priv->phylink);
5002 error_phy_setup:
5003         if (priv->hw->pcs != STMMAC_PCS_TBI &&
5004             priv->hw->pcs != STMMAC_PCS_RTBI)
5005                 stmmac_mdio_unregister(ndev);
5006 error_mdio_register:
5007         for (queue = 0; queue < maxq; queue++) {
5008                 struct stmmac_channel *ch = &priv->channel[queue];
5009
5010                 if (queue < priv->plat->rx_queues_to_use)
5011                         netif_napi_del(&ch->rx_napi);
5012                 if (queue < priv->plat->tx_queues_to_use)
5013                         netif_napi_del(&ch->tx_napi);
5014         }
5015 error_hw_init:
5016         destroy_workqueue(priv->wq);
5017
5018         return ret;
5019 }
5020 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5021
5022 /**
5023  * stmmac_dvr_remove
5024  * @dev: device pointer
5025  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5026  * changes the link status, releases the DMA descriptor rings.
5027  */
5028 int stmmac_dvr_remove(struct device *dev)
5029 {
5030         struct net_device *ndev = dev_get_drvdata(dev);
5031         struct stmmac_priv *priv = netdev_priv(ndev);
5032
5033         netdev_info(priv->dev, "%s: removing driver", __func__);
5034
5035         stmmac_stop_all_dma(priv);
5036
5037         if (priv->plat->serdes_powerdown)
5038                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5039
5040         stmmac_mac_set(priv, priv->ioaddr, false);
5041         netif_carrier_off(ndev);
5042         unregister_netdev(ndev);
5043 #ifdef CONFIG_DEBUG_FS
5044         stmmac_exit_fs(ndev);
5045 #endif
5046         phylink_destroy(priv->phylink);
5047         if (priv->plat->stmmac_rst)
5048                 reset_control_assert(priv->plat->stmmac_rst);
5049         clk_disable_unprepare(priv->plat->pclk);
5050         clk_disable_unprepare(priv->plat->stmmac_clk);
5051         if (priv->hw->pcs != STMMAC_PCS_TBI &&
5052             priv->hw->pcs != STMMAC_PCS_RTBI)
5053                 stmmac_mdio_unregister(ndev);
5054         destroy_workqueue(priv->wq);
5055         mutex_destroy(&priv->lock);
5056
5057         return 0;
5058 }
5059 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5060
5061 /**
5062  * stmmac_suspend - suspend callback
5063  * @dev: device pointer
5064  * Description: this is the function to suspend the device and it is called
5065  * by the platform driver to stop the network queue, release the resources,
5066  * program the PMT register (for WoL), clean and release driver resources.
5067  */
5068 int stmmac_suspend(struct device *dev)
5069 {
5070         struct net_device *ndev = dev_get_drvdata(dev);
5071         struct stmmac_priv *priv = netdev_priv(ndev);
5072         u32 chan;
5073
5074         if (!ndev || !netif_running(ndev))
5075                 return 0;
5076
5077         phylink_mac_change(priv->phylink, false);
5078
5079         mutex_lock(&priv->lock);
5080
5081         netif_device_detach(ndev);
5082         stmmac_stop_all_queues(priv);
5083
5084         stmmac_disable_all_queues(priv);
5085
5086         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5087                 del_timer_sync(&priv->tx_queue[chan].txtimer);
5088
5089         /* Stop TX/RX DMA */
5090         stmmac_stop_all_dma(priv);
5091
5092         if (priv->plat->serdes_powerdown)
5093                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5094
5095         /* Enable Power down mode by programming the PMT regs */
5096         if (device_may_wakeup(priv->device)) {
5097                 stmmac_pmt(priv, priv->hw, priv->wolopts);
5098                 priv->irq_wake = 1;
5099         } else {
5100                 mutex_unlock(&priv->lock);
5101                 rtnl_lock();
5102                 phylink_stop(priv->phylink);
5103                 rtnl_unlock();
5104                 mutex_lock(&priv->lock);
5105
5106                 stmmac_mac_set(priv, priv->ioaddr, false);
5107                 pinctrl_pm_select_sleep_state(priv->device);
5108                 /* Disable clock in case of PWM is off */
5109                 if (priv->plat->clk_ptp_ref)
5110                         clk_disable_unprepare(priv->plat->clk_ptp_ref);
5111                 clk_disable_unprepare(priv->plat->pclk);
5112                 clk_disable_unprepare(priv->plat->stmmac_clk);
5113         }
5114         mutex_unlock(&priv->lock);
5115
5116         priv->speed = SPEED_UNKNOWN;
5117         return 0;
5118 }
5119 EXPORT_SYMBOL_GPL(stmmac_suspend);
5120
5121 /**
5122  * stmmac_reset_queues_param - reset queue parameters
5123  * @dev: device pointer
5124  */
5125 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5126 {
5127         u32 rx_cnt = priv->plat->rx_queues_to_use;
5128         u32 tx_cnt = priv->plat->tx_queues_to_use;
5129         u32 queue;
5130
5131         for (queue = 0; queue < rx_cnt; queue++) {
5132                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5133
5134                 rx_q->cur_rx = 0;
5135                 rx_q->dirty_rx = 0;
5136         }
5137
5138         for (queue = 0; queue < tx_cnt; queue++) {
5139                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5140
5141                 tx_q->cur_tx = 0;
5142                 tx_q->dirty_tx = 0;
5143                 tx_q->mss = 0;
5144         }
5145 }
5146
5147 /**
5148  * stmmac_resume - resume callback
5149  * @dev: device pointer
5150  * Description: when resume this function is invoked to setup the DMA and CORE
5151  * in a usable state.
5152  */
5153 int stmmac_resume(struct device *dev)
5154 {
5155         struct net_device *ndev = dev_get_drvdata(dev);
5156         struct stmmac_priv *priv = netdev_priv(ndev);
5157         int ret;
5158
5159         if (!netif_running(ndev))
5160                 return 0;
5161
5162         /* Power Down bit, into the PM register, is cleared
5163          * automatically as soon as a magic packet or a Wake-up frame
5164          * is received. Anyway, it's better to manually clear
5165          * this bit because it can generate problems while resuming
5166          * from another devices (e.g. serial console).
5167          */
5168         if (device_may_wakeup(priv->device)) {
5169                 mutex_lock(&priv->lock);
5170                 stmmac_pmt(priv, priv->hw, 0);
5171                 mutex_unlock(&priv->lock);
5172                 priv->irq_wake = 0;
5173         } else {
5174                 pinctrl_pm_select_default_state(priv->device);
5175                 /* enable the clk previously disabled */
5176                 clk_prepare_enable(priv->plat->stmmac_clk);
5177                 clk_prepare_enable(priv->plat->pclk);
5178                 if (priv->plat->clk_ptp_ref)
5179                         clk_prepare_enable(priv->plat->clk_ptp_ref);
5180                 /* reset the phy so that it's ready */
5181                 if (priv->mii)
5182                         stmmac_mdio_reset(priv->mii);
5183         }
5184
5185         if (priv->plat->serdes_powerup) {
5186                 ret = priv->plat->serdes_powerup(ndev,
5187                                                  priv->plat->bsp_priv);
5188
5189                 if (ret < 0)
5190                         return ret;
5191         }
5192
5193         mutex_lock(&priv->lock);
5194
5195         stmmac_reset_queues_param(priv);
5196
5197         stmmac_clear_descriptors(priv);
5198
5199         stmmac_hw_setup(ndev, false);
5200         stmmac_init_coalesce(priv);
5201         stmmac_set_rx_mode(ndev);
5202
5203         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5204
5205         stmmac_enable_all_queues(priv);
5206
5207         stmmac_start_all_queues(priv);
5208
5209         mutex_unlock(&priv->lock);
5210
5211         if (!device_may_wakeup(priv->device)) {
5212                 rtnl_lock();
5213                 phylink_start(priv->phylink);
5214                 rtnl_unlock();
5215         }
5216
5217         phylink_mac_change(priv->phylink, true);
5218
5219         netif_device_attach(ndev);
5220
5221         return 0;
5222 }
5223 EXPORT_SYMBOL_GPL(stmmac_resume);
5224
5225 #ifndef MODULE
5226 static int __init stmmac_cmdline_opt(char *str)
5227 {
5228         char *opt;
5229
5230         if (!str || !*str)
5231                 return -EINVAL;
5232         while ((opt = strsep(&str, ",")) != NULL) {
5233                 if (!strncmp(opt, "debug:", 6)) {
5234                         if (kstrtoint(opt + 6, 0, &debug))
5235                                 goto err;
5236                 } else if (!strncmp(opt, "phyaddr:", 8)) {
5237                         if (kstrtoint(opt + 8, 0, &phyaddr))
5238                                 goto err;
5239                 } else if (!strncmp(opt, "buf_sz:", 7)) {
5240                         if (kstrtoint(opt + 7, 0, &buf_sz))
5241                                 goto err;
5242                 } else if (!strncmp(opt, "tc:", 3)) {
5243                         if (kstrtoint(opt + 3, 0, &tc))
5244                                 goto err;
5245                 } else if (!strncmp(opt, "watchdog:", 9)) {
5246                         if (kstrtoint(opt + 9, 0, &watchdog))
5247                                 goto err;
5248                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5249                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
5250                                 goto err;
5251                 } else if (!strncmp(opt, "pause:", 6)) {
5252                         if (kstrtoint(opt + 6, 0, &pause))
5253                                 goto err;
5254                 } else if (!strncmp(opt, "eee_timer:", 10)) {
5255                         if (kstrtoint(opt + 10, 0, &eee_timer))
5256                                 goto err;
5257                 } else if (!strncmp(opt, "chain_mode:", 11)) {
5258                         if (kstrtoint(opt + 11, 0, &chain_mode))
5259                                 goto err;
5260                 }
5261         }
5262         return 0;
5263
5264 err:
5265         pr_err("%s: ERROR broken module parameter conversion", __func__);
5266         return -EINVAL;
5267 }
5268
5269 __setup("stmmaceth=", stmmac_cmdline_opt);
5270 #endif /* MODULE */
5271
5272 static int __init stmmac_init(void)
5273 {
5274 #ifdef CONFIG_DEBUG_FS
5275         /* Create debugfs main directory if it doesn't exist yet */
5276         if (!stmmac_fs_dir)
5277                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5278         register_netdevice_notifier(&stmmac_notifier);
5279 #endif
5280
5281         return 0;
5282 }
5283
5284 static void __exit stmmac_exit(void)
5285 {
5286 #ifdef CONFIG_DEBUG_FS
5287         unregister_netdevice_notifier(&stmmac_notifier);
5288         debugfs_remove_recursive(stmmac_fs_dir);
5289 #endif
5290 }
5291
5292 module_init(stmmac_init)
5293 module_exit(stmmac_exit)
5294
5295 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5296 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5297 MODULE_LICENSE("GPL");