13d5ff4e0e0200dba853182bd8dd89be30efcda2
[sfrench/cifs-2.6.git] / drivers / net / ethernet / engleder / tsnep_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29
30 #define TSNEP_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
31 #define TSNEP_HEADROOM ALIGN(TSNEP_SKB_PAD, 4)
32 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
33                                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
34
35 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
36 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
37 #else
38 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
39 #endif
40 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
41
42 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
43 {
44         iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
45 }
46
47 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
48 {
49         mask |= ECM_INT_DISABLE;
50         iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
51 }
52
53 static irqreturn_t tsnep_irq(int irq, void *arg)
54 {
55         struct tsnep_adapter *adapter = arg;
56         u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
57
58         /* acknowledge interrupt */
59         if (active != 0)
60                 iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
61
62         /* handle link interrupt */
63         if ((active & ECM_INT_LINK) != 0)
64                 phy_mac_interrupt(adapter->netdev->phydev);
65
66         /* handle TX/RX queue 0 interrupt */
67         if ((active & adapter->queue[0].irq_mask) != 0) {
68                 tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
69                 napi_schedule(&adapter->queue[0].napi);
70         }
71
72         return IRQ_HANDLED;
73 }
74
75 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
76 {
77         struct tsnep_queue *queue = arg;
78
79         /* handle TX/RX queue interrupt */
80         tsnep_disable_irq(queue->adapter, queue->irq_mask);
81         napi_schedule(&queue->napi);
82
83         return IRQ_HANDLED;
84 }
85
86 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
87 {
88         struct tsnep_adapter *adapter = bus->priv;
89         u32 md;
90         int retval;
91
92         if (regnum & MII_ADDR_C45)
93                 return -EOPNOTSUPP;
94
95         md = ECM_MD_READ;
96         if (!adapter->suppress_preamble)
97                 md |= ECM_MD_PREAMBLE;
98         md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
99         md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
100         iowrite32(md, adapter->addr + ECM_MD_CONTROL);
101         retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
102                                            !(md & ECM_MD_BUSY), 16, 1000);
103         if (retval != 0)
104                 return retval;
105
106         return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
107 }
108
109 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
110                                u16 val)
111 {
112         struct tsnep_adapter *adapter = bus->priv;
113         u32 md;
114         int retval;
115
116         if (regnum & MII_ADDR_C45)
117                 return -EOPNOTSUPP;
118
119         md = ECM_MD_WRITE;
120         if (!adapter->suppress_preamble)
121                 md |= ECM_MD_PREAMBLE;
122         md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
123         md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
124         md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
125         iowrite32(md, adapter->addr + ECM_MD_CONTROL);
126         retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
127                                            !(md & ECM_MD_BUSY), 16, 1000);
128         if (retval != 0)
129                 return retval;
130
131         return 0;
132 }
133
134 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
135 {
136         u32 mode;
137
138         switch (adapter->phydev->speed) {
139         case SPEED_100:
140                 mode = ECM_LINK_MODE_100;
141                 break;
142         case SPEED_1000:
143                 mode = ECM_LINK_MODE_1000;
144                 break;
145         default:
146                 mode = ECM_LINK_MODE_OFF;
147                 break;
148         }
149         iowrite32(mode, adapter->addr + ECM_STATUS);
150 }
151
152 static void tsnep_phy_link_status_change(struct net_device *netdev)
153 {
154         struct tsnep_adapter *adapter = netdev_priv(netdev);
155         struct phy_device *phydev = netdev->phydev;
156
157         if (phydev->link)
158                 tsnep_set_link_mode(adapter);
159
160         phy_print_status(netdev->phydev);
161 }
162
163 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
164 {
165         int retval;
166
167         retval = phy_loopback(adapter->phydev, enable);
168
169         /* PHY link state change is not signaled if loopback is enabled, it
170          * would delay a working loopback anyway, let's ensure that loopback
171          * is working immediately by setting link mode directly
172          */
173         if (!retval && enable)
174                 tsnep_set_link_mode(adapter);
175
176         return retval;
177 }
178
179 static int tsnep_phy_open(struct tsnep_adapter *adapter)
180 {
181         struct phy_device *phydev;
182         struct ethtool_eee ethtool_eee;
183         int retval;
184
185         retval = phy_connect_direct(adapter->netdev, adapter->phydev,
186                                     tsnep_phy_link_status_change,
187                                     adapter->phy_mode);
188         if (retval)
189                 return retval;
190         phydev = adapter->netdev->phydev;
191
192         /* MAC supports only 100Mbps|1000Mbps full duplex
193          * SPE (Single Pair Ethernet) is also an option but not implemented yet
194          */
195         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
196         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
197         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
198         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
199
200         /* disable EEE autoneg, EEE not supported by TSNEP */
201         memset(&ethtool_eee, 0, sizeof(ethtool_eee));
202         phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
203
204         adapter->phydev->irq = PHY_MAC_INTERRUPT;
205         phy_start(adapter->phydev);
206
207         return 0;
208 }
209
210 static void tsnep_phy_close(struct tsnep_adapter *adapter)
211 {
212         phy_stop(adapter->netdev->phydev);
213         phy_disconnect(adapter->netdev->phydev);
214         adapter->netdev->phydev = NULL;
215 }
216
217 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
218 {
219         struct device *dmadev = tx->adapter->dmadev;
220         int i;
221
222         memset(tx->entry, 0, sizeof(tx->entry));
223
224         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
225                 if (tx->page[i]) {
226                         dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
227                                           tx->page_dma[i]);
228                         tx->page[i] = NULL;
229                         tx->page_dma[i] = 0;
230                 }
231         }
232 }
233
234 static int tsnep_tx_ring_init(struct tsnep_tx *tx)
235 {
236         struct device *dmadev = tx->adapter->dmadev;
237         struct tsnep_tx_entry *entry;
238         struct tsnep_tx_entry *next_entry;
239         int i, j;
240         int retval;
241
242         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
243                 tx->page[i] =
244                         dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
245                                            GFP_KERNEL);
246                 if (!tx->page[i]) {
247                         retval = -ENOMEM;
248                         goto alloc_failed;
249                 }
250                 for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
251                         entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
252                         entry->desc_wb = (struct tsnep_tx_desc_wb *)
253                                 (((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
254                         entry->desc = (struct tsnep_tx_desc *)
255                                 (((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
256                         entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
257                 }
258         }
259         for (i = 0; i < TSNEP_RING_SIZE; i++) {
260                 entry = &tx->entry[i];
261                 next_entry = &tx->entry[(i + 1) % TSNEP_RING_SIZE];
262                 entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
263         }
264
265         return 0;
266
267 alloc_failed:
268         tsnep_tx_ring_cleanup(tx);
269         return retval;
270 }
271
272 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
273                               bool last)
274 {
275         struct tsnep_tx_entry *entry = &tx->entry[index];
276
277         entry->properties = 0;
278         if (entry->skb) {
279                 entry->properties = length & TSNEP_DESC_LENGTH_MASK;
280                 entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
281                 if (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS)
282                         entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
283
284                 /* toggle user flag to prevent false acknowledge
285                  *
286                  * Only the first fragment is acknowledged. For all other
287                  * fragments no acknowledge is done and the last written owner
288                  * counter stays in the writeback descriptor. Therefore, it is
289                  * possible that the last written owner counter is identical to
290                  * the new incremented owner counter and a false acknowledge is
291                  * detected before the real acknowledge has been done by
292                  * hardware.
293                  *
294                  * The user flag is used to prevent this situation. The user
295                  * flag is copied to the writeback descriptor by the hardware
296                  * and is used as additional acknowledge data. By toggeling the
297                  * user flag only for the first fragment (which is
298                  * acknowledged), it is guaranteed that the last acknowledge
299                  * done for this descriptor has used a different user flag and
300                  * cannot be detected as false acknowledge.
301                  */
302                 entry->owner_user_flag = !entry->owner_user_flag;
303         }
304         if (last)
305                 entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
306         if (index == tx->increment_owner_counter) {
307                 tx->owner_counter++;
308                 if (tx->owner_counter == 4)
309                         tx->owner_counter = 1;
310                 tx->increment_owner_counter--;
311                 if (tx->increment_owner_counter < 0)
312                         tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
313         }
314         entry->properties |=
315                 (tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
316                 TSNEP_DESC_OWNER_COUNTER_MASK;
317         if (entry->owner_user_flag)
318                 entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
319         entry->desc->more_properties =
320                 __cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
321
322         /* descriptor properties shall be written last, because valid data is
323          * signaled there
324          */
325         dma_wmb();
326
327         entry->desc->properties = __cpu_to_le32(entry->properties);
328 }
329
330 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
331 {
332         if (tx->read <= tx->write)
333                 return TSNEP_RING_SIZE - tx->write + tx->read - 1;
334         else
335                 return tx->read - tx->write - 1;
336 }
337
338 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
339 {
340         struct device *dmadev = tx->adapter->dmadev;
341         struct tsnep_tx_entry *entry;
342         unsigned int len;
343         dma_addr_t dma;
344         int map_len = 0;
345         int i;
346
347         for (i = 0; i < count; i++) {
348                 entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
349
350                 if (i == 0) {
351                         len = skb_headlen(skb);
352                         dma = dma_map_single(dmadev, skb->data, len,
353                                              DMA_TO_DEVICE);
354                 } else {
355                         len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
356                         dma = skb_frag_dma_map(dmadev,
357                                                &skb_shinfo(skb)->frags[i - 1],
358                                                0, len, DMA_TO_DEVICE);
359                 }
360                 if (dma_mapping_error(dmadev, dma))
361                         return -ENOMEM;
362
363                 entry->len = len;
364                 dma_unmap_addr_set(entry, dma, dma);
365
366                 entry->desc->tx = __cpu_to_le64(dma);
367
368                 map_len += len;
369         }
370
371         return map_len;
372 }
373
374 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
375 {
376         struct device *dmadev = tx->adapter->dmadev;
377         struct tsnep_tx_entry *entry;
378         int map_len = 0;
379         int i;
380
381         for (i = 0; i < count; i++) {
382                 entry = &tx->entry[(index + i) % TSNEP_RING_SIZE];
383
384                 if (entry->len) {
385                         if (i == 0)
386                                 dma_unmap_single(dmadev,
387                                                  dma_unmap_addr(entry, dma),
388                                                  dma_unmap_len(entry, len),
389                                                  DMA_TO_DEVICE);
390                         else
391                                 dma_unmap_page(dmadev,
392                                                dma_unmap_addr(entry, dma),
393                                                dma_unmap_len(entry, len),
394                                                DMA_TO_DEVICE);
395                         map_len += entry->len;
396                         entry->len = 0;
397                 }
398         }
399
400         return map_len;
401 }
402
403 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
404                                          struct tsnep_tx *tx)
405 {
406         unsigned long flags;
407         int count = 1;
408         struct tsnep_tx_entry *entry;
409         int length;
410         int i;
411         int retval;
412
413         if (skb_shinfo(skb)->nr_frags > 0)
414                 count += skb_shinfo(skb)->nr_frags;
415
416         spin_lock_irqsave(&tx->lock, flags);
417
418         if (tsnep_tx_desc_available(tx) < count) {
419                 /* ring full, shall not happen because queue is stopped if full
420                  * below
421                  */
422                 netif_stop_queue(tx->adapter->netdev);
423
424                 spin_unlock_irqrestore(&tx->lock, flags);
425
426                 return NETDEV_TX_BUSY;
427         }
428
429         entry = &tx->entry[tx->write];
430         entry->skb = skb;
431
432         retval = tsnep_tx_map(skb, tx, count);
433         if (retval < 0) {
434                 tsnep_tx_unmap(tx, tx->write, count);
435                 dev_kfree_skb_any(entry->skb);
436                 entry->skb = NULL;
437
438                 tx->dropped++;
439
440                 spin_unlock_irqrestore(&tx->lock, flags);
441
442                 netdev_err(tx->adapter->netdev, "TX DMA map failed\n");
443
444                 return NETDEV_TX_OK;
445         }
446         length = retval;
447
448         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
449                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
450
451         for (i = 0; i < count; i++)
452                 tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
453                                   i == (count - 1));
454         tx->write = (tx->write + count) % TSNEP_RING_SIZE;
455
456         skb_tx_timestamp(skb);
457
458         /* descriptor properties shall be valid before hardware is notified */
459         dma_wmb();
460
461         iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
462
463         if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
464                 /* ring can get full with next frame */
465                 netif_stop_queue(tx->adapter->netdev);
466         }
467
468         spin_unlock_irqrestore(&tx->lock, flags);
469
470         return NETDEV_TX_OK;
471 }
472
473 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
474 {
475         unsigned long flags;
476         int budget = 128;
477         struct tsnep_tx_entry *entry;
478         int count;
479         int length;
480
481         spin_lock_irqsave(&tx->lock, flags);
482
483         do {
484                 if (tx->read == tx->write)
485                         break;
486
487                 entry = &tx->entry[tx->read];
488                 if ((__le32_to_cpu(entry->desc_wb->properties) &
489                      TSNEP_TX_DESC_OWNER_MASK) !=
490                     (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
491                         break;
492
493                 /* descriptor properties shall be read first, because valid data
494                  * is signaled there
495                  */
496                 dma_rmb();
497
498                 count = 1;
499                 if (skb_shinfo(entry->skb)->nr_frags > 0)
500                         count += skb_shinfo(entry->skb)->nr_frags;
501
502                 length = tsnep_tx_unmap(tx, tx->read, count);
503
504                 if ((skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
505                     (__le32_to_cpu(entry->desc_wb->properties) &
506                      TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
507                         struct skb_shared_hwtstamps hwtstamps;
508                         u64 timestamp;
509
510                         if (skb_shinfo(entry->skb)->tx_flags &
511                             SKBTX_HW_TSTAMP_USE_CYCLES)
512                                 timestamp =
513                                         __le64_to_cpu(entry->desc_wb->counter);
514                         else
515                                 timestamp =
516                                         __le64_to_cpu(entry->desc_wb->timestamp);
517
518                         memset(&hwtstamps, 0, sizeof(hwtstamps));
519                         hwtstamps.hwtstamp = ns_to_ktime(timestamp);
520
521                         skb_tstamp_tx(entry->skb, &hwtstamps);
522                 }
523
524                 napi_consume_skb(entry->skb, budget);
525                 entry->skb = NULL;
526
527                 tx->read = (tx->read + count) % TSNEP_RING_SIZE;
528
529                 tx->packets++;
530                 tx->bytes += length + ETH_FCS_LEN;
531
532                 budget--;
533         } while (likely(budget));
534
535         if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
536             netif_queue_stopped(tx->adapter->netdev)) {
537                 netif_wake_queue(tx->adapter->netdev);
538         }
539
540         spin_unlock_irqrestore(&tx->lock, flags);
541
542         return (budget != 0);
543 }
544
545 static bool tsnep_tx_pending(struct tsnep_tx *tx)
546 {
547         unsigned long flags;
548         struct tsnep_tx_entry *entry;
549         bool pending = false;
550
551         spin_lock_irqsave(&tx->lock, flags);
552
553         if (tx->read != tx->write) {
554                 entry = &tx->entry[tx->read];
555                 if ((__le32_to_cpu(entry->desc_wb->properties) &
556                      TSNEP_TX_DESC_OWNER_MASK) ==
557                     (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
558                         pending = true;
559         }
560
561         spin_unlock_irqrestore(&tx->lock, flags);
562
563         return pending;
564 }
565
566 static int tsnep_tx_open(struct tsnep_adapter *adapter, void __iomem *addr,
567                          int queue_index, struct tsnep_tx *tx)
568 {
569         dma_addr_t dma;
570         int retval;
571
572         memset(tx, 0, sizeof(*tx));
573         tx->adapter = adapter;
574         tx->addr = addr;
575         tx->queue_index = queue_index;
576
577         retval = tsnep_tx_ring_init(tx);
578         if (retval)
579                 return retval;
580
581         dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
582         iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
583         iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
584         tx->owner_counter = 1;
585         tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
586
587         spin_lock_init(&tx->lock);
588
589         return 0;
590 }
591
592 static void tsnep_tx_close(struct tsnep_tx *tx)
593 {
594         u32 val;
595
596         readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
597                            ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
598                            1000000);
599
600         tsnep_tx_ring_cleanup(tx);
601 }
602
603 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
604 {
605         struct device *dmadev = rx->adapter->dmadev;
606         struct tsnep_rx_entry *entry;
607         int i;
608
609         for (i = 0; i < TSNEP_RING_SIZE; i++) {
610                 entry = &rx->entry[i];
611                 if (entry->page)
612                         page_pool_put_full_page(rx->page_pool, entry->page,
613                                                 false);
614                 entry->page = NULL;
615         }
616
617         if (rx->page_pool)
618                 page_pool_destroy(rx->page_pool);
619
620         memset(rx->entry, 0, sizeof(rx->entry));
621
622         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
623                 if (rx->page[i]) {
624                         dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
625                                           rx->page_dma[i]);
626                         rx->page[i] = NULL;
627                         rx->page_dma[i] = 0;
628                 }
629         }
630 }
631
632 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx,
633                                  struct tsnep_rx_entry *entry)
634 {
635         struct page *page;
636
637         page = page_pool_dev_alloc_pages(rx->page_pool);
638         if (unlikely(!page))
639                 return -ENOMEM;
640
641         entry->page = page;
642         entry->len = TSNEP_MAX_RX_BUF_SIZE;
643         entry->dma = page_pool_get_dma_addr(entry->page);
644         entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_SKB_PAD);
645
646         return 0;
647 }
648
649 static int tsnep_rx_ring_init(struct tsnep_rx *rx)
650 {
651         struct device *dmadev = rx->adapter->dmadev;
652         struct tsnep_rx_entry *entry;
653         struct page_pool_params pp_params = { 0 };
654         struct tsnep_rx_entry *next_entry;
655         int i, j;
656         int retval;
657
658         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
659                 rx->page[i] =
660                         dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
661                                            GFP_KERNEL);
662                 if (!rx->page[i]) {
663                         retval = -ENOMEM;
664                         goto failed;
665                 }
666                 for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
667                         entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
668                         entry->desc_wb = (struct tsnep_rx_desc_wb *)
669                                 (((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
670                         entry->desc = (struct tsnep_rx_desc *)
671                                 (((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
672                         entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
673                 }
674         }
675
676         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
677         pp_params.order = 0;
678         pp_params.pool_size = TSNEP_RING_SIZE;
679         pp_params.nid = dev_to_node(dmadev);
680         pp_params.dev = dmadev;
681         pp_params.dma_dir = DMA_FROM_DEVICE;
682         pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
683         pp_params.offset = TSNEP_SKB_PAD;
684         rx->page_pool = page_pool_create(&pp_params);
685         if (IS_ERR(rx->page_pool)) {
686                 retval = PTR_ERR(rx->page_pool);
687                 rx->page_pool = NULL;
688                 goto failed;
689         }
690
691         for (i = 0; i < TSNEP_RING_SIZE; i++) {
692                 entry = &rx->entry[i];
693                 next_entry = &rx->entry[(i + 1) % TSNEP_RING_SIZE];
694                 entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
695
696                 retval = tsnep_rx_alloc_buffer(rx, entry);
697                 if (retval)
698                         goto failed;
699         }
700
701         return 0;
702
703 failed:
704         tsnep_rx_ring_cleanup(rx);
705         return retval;
706 }
707
708 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
709 {
710         struct tsnep_rx_entry *entry = &rx->entry[index];
711
712         /* TSNEP_MAX_RX_BUF_SIZE is a multiple of 4 */
713         entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
714         entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
715         if (index == rx->increment_owner_counter) {
716                 rx->owner_counter++;
717                 if (rx->owner_counter == 4)
718                         rx->owner_counter = 1;
719                 rx->increment_owner_counter--;
720                 if (rx->increment_owner_counter < 0)
721                         rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
722         }
723         entry->properties |=
724                 (rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
725                 TSNEP_DESC_OWNER_COUNTER_MASK;
726
727         /* descriptor properties shall be written last, because valid data is
728          * signaled there
729          */
730         dma_wmb();
731
732         entry->desc->properties = __cpu_to_le32(entry->properties);
733 }
734
735 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
736                                        int length)
737 {
738         struct sk_buff *skb;
739
740         skb = napi_build_skb(page_address(page), PAGE_SIZE);
741         if (unlikely(!skb))
742                 return NULL;
743
744         /* update pointers within the skb to store the data */
745         skb_reserve(skb, TSNEP_SKB_PAD + TSNEP_RX_INLINE_METADATA_SIZE);
746         __skb_put(skb, length - TSNEP_RX_INLINE_METADATA_SIZE - ETH_FCS_LEN);
747
748         if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
749                 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
750                 struct tsnep_rx_inline *rx_inline =
751                         (struct tsnep_rx_inline *)(page_address(page) +
752                                                    TSNEP_SKB_PAD);
753
754                 skb_shinfo(skb)->tx_flags |=
755                         SKBTX_HW_TSTAMP_NETDEV;
756                 memset(hwtstamps, 0, sizeof(*hwtstamps));
757                 hwtstamps->netdev_data = rx_inline;
758         }
759
760         skb_record_rx_queue(skb, rx->queue_index);
761         skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
762
763         return skb;
764 }
765
766 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
767                          int budget)
768 {
769         struct device *dmadev = rx->adapter->dmadev;
770         int done = 0;
771         enum dma_data_direction dma_dir;
772         struct tsnep_rx_entry *entry;
773         struct page *page;
774         struct sk_buff *skb;
775         int length;
776         bool enable = false;
777         int retval;
778
779         dma_dir = page_pool_get_dma_dir(rx->page_pool);
780
781         while (likely(done < budget)) {
782                 entry = &rx->entry[rx->read];
783                 if ((__le32_to_cpu(entry->desc_wb->properties) &
784                      TSNEP_DESC_OWNER_COUNTER_MASK) !=
785                     (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
786                         break;
787
788                 /* descriptor properties shall be read first, because valid data
789                  * is signaled there
790                  */
791                 dma_rmb();
792
793                 prefetch(page_address(entry->page) + TSNEP_SKB_PAD);
794                 length = __le32_to_cpu(entry->desc_wb->properties) &
795                          TSNEP_DESC_LENGTH_MASK;
796                 dma_sync_single_range_for_cpu(dmadev, entry->dma, TSNEP_SKB_PAD,
797                                               length, dma_dir);
798                 page = entry->page;
799
800                 /* forward skb only if allocation is successful, otherwise
801                  * page is reused and frame dropped
802                  */
803                 retval = tsnep_rx_alloc_buffer(rx, entry);
804                 if (!retval) {
805                         skb = tsnep_build_skb(rx, page, length);
806                         if (skb) {
807                                 page_pool_release_page(rx->page_pool, page);
808
809                                 rx->packets++;
810                                 rx->bytes += length -
811                                              TSNEP_RX_INLINE_METADATA_SIZE;
812                                 if (skb->pkt_type == PACKET_MULTICAST)
813                                         rx->multicast++;
814
815                                 napi_gro_receive(napi, skb);
816                         } else {
817                                 page_pool_recycle_direct(rx->page_pool, page);
818
819                                 rx->dropped++;
820                         }
821                         done++;
822                 } else {
823                         rx->dropped++;
824                 }
825
826                 tsnep_rx_activate(rx, rx->read);
827
828                 enable = true;
829
830                 rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
831         }
832
833         if (enable) {
834                 /* descriptor properties shall be valid before hardware is
835                  * notified
836                  */
837                 dma_wmb();
838
839                 iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
840         }
841
842         return done;
843 }
844
845 static bool tsnep_rx_pending(struct tsnep_rx *rx)
846 {
847         struct tsnep_rx_entry *entry;
848
849         entry = &rx->entry[rx->read];
850         if ((__le32_to_cpu(entry->desc_wb->properties) &
851              TSNEP_DESC_OWNER_COUNTER_MASK) ==
852             (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
853                 return true;
854
855         return false;
856 }
857
858 static int tsnep_rx_open(struct tsnep_adapter *adapter, void __iomem *addr,
859                          int queue_index, struct tsnep_rx *rx)
860 {
861         dma_addr_t dma;
862         int i;
863         int retval;
864
865         memset(rx, 0, sizeof(*rx));
866         rx->adapter = adapter;
867         rx->addr = addr;
868         rx->queue_index = queue_index;
869
870         retval = tsnep_rx_ring_init(rx);
871         if (retval)
872                 return retval;
873
874         dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
875         iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
876         iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
877         rx->owner_counter = 1;
878         rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
879
880         for (i = 0; i < TSNEP_RING_SIZE; i++)
881                 tsnep_rx_activate(rx, i);
882
883         /* descriptor properties shall be valid before hardware is notified */
884         dma_wmb();
885
886         iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
887
888         return 0;
889 }
890
891 static void tsnep_rx_close(struct tsnep_rx *rx)
892 {
893         u32 val;
894
895         iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
896         readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
897                            ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
898                            1000000);
899
900         tsnep_rx_ring_cleanup(rx);
901 }
902
903 static bool tsnep_pending(struct tsnep_queue *queue)
904 {
905         if (queue->tx && tsnep_tx_pending(queue->tx))
906                 return true;
907
908         if (queue->rx && tsnep_rx_pending(queue->rx))
909                 return true;
910
911         return false;
912 }
913
914 static int tsnep_poll(struct napi_struct *napi, int budget)
915 {
916         struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
917                                                  napi);
918         bool complete = true;
919         int done = 0;
920
921         if (queue->tx)
922                 complete = tsnep_tx_poll(queue->tx, budget);
923
924         if (queue->rx) {
925                 done = tsnep_rx_poll(queue->rx, napi, budget);
926                 if (done >= budget)
927                         complete = false;
928         }
929
930         /* if all work not completed, return budget and keep polling */
931         if (!complete)
932                 return budget;
933
934         if (likely(napi_complete_done(napi, done))) {
935                 tsnep_enable_irq(queue->adapter, queue->irq_mask);
936
937                 /* reschedule if work is already pending, prevent rotten packets
938                  * which are transmitted or received after polling but before
939                  * interrupt enable
940                  */
941                 if (tsnep_pending(queue)) {
942                         tsnep_disable_irq(queue->adapter, queue->irq_mask);
943                         napi_schedule(napi);
944                 }
945         }
946
947         return min(done, budget - 1);
948 }
949
950 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
951 {
952         const char *name = netdev_name(queue->adapter->netdev);
953         irq_handler_t handler;
954         void *dev;
955         int retval;
956
957         if (first) {
958                 sprintf(queue->name, "%s-mac", name);
959                 handler = tsnep_irq;
960                 dev = queue->adapter;
961         } else {
962                 if (queue->tx && queue->rx)
963                         sprintf(queue->name, "%s-txrx-%d", name,
964                                 queue->rx->queue_index);
965                 else if (queue->tx)
966                         sprintf(queue->name, "%s-tx-%d", name,
967                                 queue->tx->queue_index);
968                 else
969                         sprintf(queue->name, "%s-rx-%d", name,
970                                 queue->rx->queue_index);
971                 handler = tsnep_irq_txrx;
972                 dev = queue;
973         }
974
975         retval = request_irq(queue->irq, handler, 0, queue->name, dev);
976         if (retval) {
977                 /* if name is empty, then interrupt won't be freed */
978                 memset(queue->name, 0, sizeof(queue->name));
979         }
980
981         return retval;
982 }
983
984 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
985 {
986         void *dev;
987
988         if (!strlen(queue->name))
989                 return;
990
991         if (first)
992                 dev = queue->adapter;
993         else
994                 dev = queue;
995
996         free_irq(queue->irq, dev);
997         memset(queue->name, 0, sizeof(queue->name));
998 }
999
1000 static int tsnep_netdev_open(struct net_device *netdev)
1001 {
1002         struct tsnep_adapter *adapter = netdev_priv(netdev);
1003         int i;
1004         void __iomem *addr;
1005         int tx_queue_index = 0;
1006         int rx_queue_index = 0;
1007         int retval;
1008
1009         for (i = 0; i < adapter->num_queues; i++) {
1010                 adapter->queue[i].adapter = adapter;
1011                 if (adapter->queue[i].tx) {
1012                         addr = adapter->addr + TSNEP_QUEUE(tx_queue_index);
1013                         retval = tsnep_tx_open(adapter, addr, tx_queue_index,
1014                                                adapter->queue[i].tx);
1015                         if (retval)
1016                                 goto failed;
1017                         tx_queue_index++;
1018                 }
1019                 if (adapter->queue[i].rx) {
1020                         addr = adapter->addr + TSNEP_QUEUE(rx_queue_index);
1021                         retval = tsnep_rx_open(adapter, addr,
1022                                                rx_queue_index,
1023                                                adapter->queue[i].rx);
1024                         if (retval)
1025                                 goto failed;
1026                         rx_queue_index++;
1027                 }
1028
1029                 retval = tsnep_request_irq(&adapter->queue[i], i == 0);
1030                 if (retval) {
1031                         netif_err(adapter, drv, adapter->netdev,
1032                                   "can't get assigned irq %d.\n",
1033                                   adapter->queue[i].irq);
1034                         goto failed;
1035                 }
1036         }
1037
1038         retval = netif_set_real_num_tx_queues(adapter->netdev,
1039                                               adapter->num_tx_queues);
1040         if (retval)
1041                 goto failed;
1042         retval = netif_set_real_num_rx_queues(adapter->netdev,
1043                                               adapter->num_rx_queues);
1044         if (retval)
1045                 goto failed;
1046
1047         tsnep_enable_irq(adapter, ECM_INT_LINK);
1048         retval = tsnep_phy_open(adapter);
1049         if (retval)
1050                 goto phy_failed;
1051
1052         for (i = 0; i < adapter->num_queues; i++) {
1053                 netif_napi_add(adapter->netdev, &adapter->queue[i].napi,
1054                                tsnep_poll);
1055                 napi_enable(&adapter->queue[i].napi);
1056
1057                 tsnep_enable_irq(adapter, adapter->queue[i].irq_mask);
1058         }
1059
1060         return 0;
1061
1062 phy_failed:
1063         tsnep_disable_irq(adapter, ECM_INT_LINK);
1064         tsnep_phy_close(adapter);
1065 failed:
1066         for (i = 0; i < adapter->num_queues; i++) {
1067                 tsnep_free_irq(&adapter->queue[i], i == 0);
1068
1069                 if (adapter->queue[i].rx)
1070                         tsnep_rx_close(adapter->queue[i].rx);
1071                 if (adapter->queue[i].tx)
1072                         tsnep_tx_close(adapter->queue[i].tx);
1073         }
1074         return retval;
1075 }
1076
1077 static int tsnep_netdev_close(struct net_device *netdev)
1078 {
1079         struct tsnep_adapter *adapter = netdev_priv(netdev);
1080         int i;
1081
1082         tsnep_disable_irq(adapter, ECM_INT_LINK);
1083         tsnep_phy_close(adapter);
1084
1085         for (i = 0; i < adapter->num_queues; i++) {
1086                 tsnep_disable_irq(adapter, adapter->queue[i].irq_mask);
1087
1088                 napi_disable(&adapter->queue[i].napi);
1089                 netif_napi_del(&adapter->queue[i].napi);
1090
1091                 tsnep_free_irq(&adapter->queue[i], i == 0);
1092
1093                 if (adapter->queue[i].rx)
1094                         tsnep_rx_close(adapter->queue[i].rx);
1095                 if (adapter->queue[i].tx)
1096                         tsnep_tx_close(adapter->queue[i].tx);
1097         }
1098
1099         return 0;
1100 }
1101
1102 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
1103                                            struct net_device *netdev)
1104 {
1105         struct tsnep_adapter *adapter = netdev_priv(netdev);
1106         u16 queue_mapping = skb_get_queue_mapping(skb);
1107
1108         if (queue_mapping >= adapter->num_tx_queues)
1109                 queue_mapping = 0;
1110
1111         return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
1112 }
1113
1114 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
1115                               int cmd)
1116 {
1117         if (!netif_running(netdev))
1118                 return -EINVAL;
1119         if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
1120                 return tsnep_ptp_ioctl(netdev, ifr, cmd);
1121         return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1122 }
1123
1124 static void tsnep_netdev_set_multicast(struct net_device *netdev)
1125 {
1126         struct tsnep_adapter *adapter = netdev_priv(netdev);
1127
1128         u16 rx_filter = 0;
1129
1130         /* configured MAC address and broadcasts are never filtered */
1131         if (netdev->flags & IFF_PROMISC) {
1132                 rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1133                 rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
1134         } else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
1135                 rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1136         }
1137         iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
1138 }
1139
1140 static void tsnep_netdev_get_stats64(struct net_device *netdev,
1141                                      struct rtnl_link_stats64 *stats)
1142 {
1143         struct tsnep_adapter *adapter = netdev_priv(netdev);
1144         u32 reg;
1145         u32 val;
1146         int i;
1147
1148         for (i = 0; i < adapter->num_tx_queues; i++) {
1149                 stats->tx_packets += adapter->tx[i].packets;
1150                 stats->tx_bytes += adapter->tx[i].bytes;
1151                 stats->tx_dropped += adapter->tx[i].dropped;
1152         }
1153         for (i = 0; i < adapter->num_rx_queues; i++) {
1154                 stats->rx_packets += adapter->rx[i].packets;
1155                 stats->rx_bytes += adapter->rx[i].bytes;
1156                 stats->rx_dropped += adapter->rx[i].dropped;
1157                 stats->multicast += adapter->rx[i].multicast;
1158
1159                 reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
1160                                TSNEP_RX_STATISTIC);
1161                 val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
1162                       TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
1163                 stats->rx_dropped += val;
1164                 val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
1165                       TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
1166                 stats->rx_dropped += val;
1167                 val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
1168                       TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
1169                 stats->rx_errors += val;
1170                 stats->rx_fifo_errors += val;
1171                 val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
1172                       TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
1173                 stats->rx_errors += val;
1174                 stats->rx_frame_errors += val;
1175         }
1176
1177         reg = ioread32(adapter->addr + ECM_STAT);
1178         val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
1179         stats->rx_errors += val;
1180         val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
1181         stats->rx_errors += val;
1182         stats->rx_crc_errors += val;
1183         val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
1184         stats->rx_errors += val;
1185 }
1186
1187 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
1188 {
1189         iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1190         iowrite16(*(u16 *)(addr + sizeof(u32)),
1191                   adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1192
1193         ether_addr_copy(adapter->mac_address, addr);
1194         netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
1195                    addr);
1196 }
1197
1198 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
1199 {
1200         struct tsnep_adapter *adapter = netdev_priv(netdev);
1201         struct sockaddr *sock_addr = addr;
1202         int retval;
1203
1204         retval = eth_prepare_mac_addr_change(netdev, sock_addr);
1205         if (retval)
1206                 return retval;
1207         eth_hw_addr_set(netdev, sock_addr->sa_data);
1208         tsnep_mac_set_address(adapter, sock_addr->sa_data);
1209
1210         return 0;
1211 }
1212
1213 static int tsnep_netdev_set_features(struct net_device *netdev,
1214                                      netdev_features_t features)
1215 {
1216         struct tsnep_adapter *adapter = netdev_priv(netdev);
1217         netdev_features_t changed = netdev->features ^ features;
1218         bool enable;
1219         int retval = 0;
1220
1221         if (changed & NETIF_F_LOOPBACK) {
1222                 enable = !!(features & NETIF_F_LOOPBACK);
1223                 retval = tsnep_phy_loopback(adapter, enable);
1224         }
1225
1226         return retval;
1227 }
1228
1229 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
1230                                        const struct skb_shared_hwtstamps *hwtstamps,
1231                                        bool cycles)
1232 {
1233         struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
1234         u64 timestamp;
1235
1236         if (cycles)
1237                 timestamp = __le64_to_cpu(rx_inline->counter);
1238         else
1239                 timestamp = __le64_to_cpu(rx_inline->timestamp);
1240
1241         return ns_to_ktime(timestamp);
1242 }
1243
1244 static const struct net_device_ops tsnep_netdev_ops = {
1245         .ndo_open = tsnep_netdev_open,
1246         .ndo_stop = tsnep_netdev_close,
1247         .ndo_start_xmit = tsnep_netdev_xmit_frame,
1248         .ndo_eth_ioctl = tsnep_netdev_ioctl,
1249         .ndo_set_rx_mode = tsnep_netdev_set_multicast,
1250         .ndo_get_stats64 = tsnep_netdev_get_stats64,
1251         .ndo_set_mac_address = tsnep_netdev_set_mac_address,
1252         .ndo_set_features = tsnep_netdev_set_features,
1253         .ndo_get_tstamp = tsnep_netdev_get_tstamp,
1254         .ndo_setup_tc = tsnep_tc_setup,
1255 };
1256
1257 static int tsnep_mac_init(struct tsnep_adapter *adapter)
1258 {
1259         int retval;
1260
1261         /* initialize RX filtering, at least configured MAC address and
1262          * broadcast are not filtered
1263          */
1264         iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
1265
1266         /* try to get MAC address in the following order:
1267          * - device tree
1268          * - valid MAC address already set
1269          * - MAC address register if valid
1270          * - random MAC address
1271          */
1272         retval = of_get_mac_address(adapter->pdev->dev.of_node,
1273                                     adapter->mac_address);
1274         if (retval == -EPROBE_DEFER)
1275                 return retval;
1276         if (retval && !is_valid_ether_addr(adapter->mac_address)) {
1277                 *(u32 *)adapter->mac_address =
1278                         ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1279                 *(u16 *)(adapter->mac_address + sizeof(u32)) =
1280                         ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1281                 if (!is_valid_ether_addr(adapter->mac_address))
1282                         eth_random_addr(adapter->mac_address);
1283         }
1284
1285         tsnep_mac_set_address(adapter, adapter->mac_address);
1286         eth_hw_addr_set(adapter->netdev, adapter->mac_address);
1287
1288         return 0;
1289 }
1290
1291 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
1292 {
1293         struct device_node *np = adapter->pdev->dev.of_node;
1294         int retval;
1295
1296         if (np) {
1297                 np = of_get_child_by_name(np, "mdio");
1298                 if (!np)
1299                         return 0;
1300
1301                 adapter->suppress_preamble =
1302                         of_property_read_bool(np, "suppress-preamble");
1303         }
1304
1305         adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
1306         if (!adapter->mdiobus) {
1307                 retval = -ENOMEM;
1308
1309                 goto out;
1310         }
1311
1312         adapter->mdiobus->priv = (void *)adapter;
1313         adapter->mdiobus->parent = &adapter->pdev->dev;
1314         adapter->mdiobus->read = tsnep_mdiobus_read;
1315         adapter->mdiobus->write = tsnep_mdiobus_write;
1316         adapter->mdiobus->name = TSNEP "-mdiobus";
1317         snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
1318                  adapter->pdev->name);
1319
1320         /* do not scan broadcast address */
1321         adapter->mdiobus->phy_mask = 0x0000001;
1322
1323         retval = of_mdiobus_register(adapter->mdiobus, np);
1324
1325 out:
1326         of_node_put(np);
1327
1328         return retval;
1329 }
1330
1331 static int tsnep_phy_init(struct tsnep_adapter *adapter)
1332 {
1333         struct device_node *phy_node;
1334         int retval;
1335
1336         retval = of_get_phy_mode(adapter->pdev->dev.of_node,
1337                                  &adapter->phy_mode);
1338         if (retval)
1339                 adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
1340
1341         phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
1342                                     0);
1343         adapter->phydev = of_phy_find_device(phy_node);
1344         of_node_put(phy_node);
1345         if (!adapter->phydev && adapter->mdiobus)
1346                 adapter->phydev = phy_find_first(adapter->mdiobus);
1347         if (!adapter->phydev)
1348                 return -EIO;
1349
1350         return 0;
1351 }
1352
1353 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
1354 {
1355         u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
1356         char name[8];
1357         int i;
1358         int retval;
1359
1360         /* one TX/RX queue pair for netdev is mandatory */
1361         if (platform_irq_count(adapter->pdev) == 1)
1362                 retval = platform_get_irq(adapter->pdev, 0);
1363         else
1364                 retval = platform_get_irq_byname(adapter->pdev, "mac");
1365         if (retval < 0)
1366                 return retval;
1367         adapter->num_tx_queues = 1;
1368         adapter->num_rx_queues = 1;
1369         adapter->num_queues = 1;
1370         adapter->queue[0].irq = retval;
1371         adapter->queue[0].tx = &adapter->tx[0];
1372         adapter->queue[0].rx = &adapter->rx[0];
1373         adapter->queue[0].irq_mask = irq_mask;
1374
1375         adapter->netdev->irq = adapter->queue[0].irq;
1376
1377         /* add additional TX/RX queue pairs only if dedicated interrupt is
1378          * available
1379          */
1380         for (i = 1; i < queue_count; i++) {
1381                 sprintf(name, "txrx-%d", i);
1382                 retval = platform_get_irq_byname_optional(adapter->pdev, name);
1383                 if (retval < 0)
1384                         break;
1385
1386                 adapter->num_tx_queues++;
1387                 adapter->num_rx_queues++;
1388                 adapter->num_queues++;
1389                 adapter->queue[i].irq = retval;
1390                 adapter->queue[i].tx = &adapter->tx[i];
1391                 adapter->queue[i].rx = &adapter->rx[i];
1392                 adapter->queue[i].irq_mask =
1393                         irq_mask << (ECM_INT_TXRX_SHIFT * i);
1394         }
1395
1396         return 0;
1397 }
1398
1399 static int tsnep_probe(struct platform_device *pdev)
1400 {
1401         struct tsnep_adapter *adapter;
1402         struct net_device *netdev;
1403         struct resource *io;
1404         u32 type;
1405         int revision;
1406         int version;
1407         int queue_count;
1408         int retval;
1409
1410         netdev = devm_alloc_etherdev_mqs(&pdev->dev,
1411                                          sizeof(struct tsnep_adapter),
1412                                          TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
1413         if (!netdev)
1414                 return -ENODEV;
1415         SET_NETDEV_DEV(netdev, &pdev->dev);
1416         adapter = netdev_priv(netdev);
1417         platform_set_drvdata(pdev, adapter);
1418         adapter->pdev = pdev;
1419         adapter->dmadev = &pdev->dev;
1420         adapter->netdev = netdev;
1421         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
1422                               NETIF_MSG_LINK | NETIF_MSG_IFUP |
1423                               NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
1424
1425         netdev->min_mtu = ETH_MIN_MTU;
1426         netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
1427
1428         mutex_init(&adapter->gate_control_lock);
1429         mutex_init(&adapter->rxnfc_lock);
1430         INIT_LIST_HEAD(&adapter->rxnfc_rules);
1431
1432         io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1433         adapter->addr = devm_ioremap_resource(&pdev->dev, io);
1434         if (IS_ERR(adapter->addr))
1435                 return PTR_ERR(adapter->addr);
1436         netdev->mem_start = io->start;
1437         netdev->mem_end = io->end;
1438
1439         type = ioread32(adapter->addr + ECM_TYPE);
1440         revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
1441         version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
1442         queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
1443         adapter->gate_control = type & ECM_GATE_CONTROL;
1444         adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
1445
1446         tsnep_disable_irq(adapter, ECM_INT_ALL);
1447
1448         retval = tsnep_queue_init(adapter, queue_count);
1449         if (retval)
1450                 return retval;
1451
1452         retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
1453                                            DMA_BIT_MASK(64));
1454         if (retval) {
1455                 dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
1456                 return retval;
1457         }
1458
1459         retval = tsnep_mac_init(adapter);
1460         if (retval)
1461                 return retval;
1462
1463         retval = tsnep_mdio_init(adapter);
1464         if (retval)
1465                 goto mdio_init_failed;
1466
1467         retval = tsnep_phy_init(adapter);
1468         if (retval)
1469                 goto phy_init_failed;
1470
1471         retval = tsnep_ptp_init(adapter);
1472         if (retval)
1473                 goto ptp_init_failed;
1474
1475         retval = tsnep_tc_init(adapter);
1476         if (retval)
1477                 goto tc_init_failed;
1478
1479         retval = tsnep_rxnfc_init(adapter);
1480         if (retval)
1481                 goto rxnfc_init_failed;
1482
1483         netdev->netdev_ops = &tsnep_netdev_ops;
1484         netdev->ethtool_ops = &tsnep_ethtool_ops;
1485         netdev->features = NETIF_F_SG;
1486         netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
1487
1488         /* carrier off reporting is important to ethtool even BEFORE open */
1489         netif_carrier_off(netdev);
1490
1491         retval = register_netdev(netdev);
1492         if (retval)
1493                 goto register_failed;
1494
1495         dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
1496                  revision);
1497         if (adapter->gate_control)
1498                 dev_info(&adapter->pdev->dev, "gate control detected\n");
1499
1500         return 0;
1501
1502 register_failed:
1503         tsnep_rxnfc_cleanup(adapter);
1504 rxnfc_init_failed:
1505         tsnep_tc_cleanup(adapter);
1506 tc_init_failed:
1507         tsnep_ptp_cleanup(adapter);
1508 ptp_init_failed:
1509 phy_init_failed:
1510         if (adapter->mdiobus)
1511                 mdiobus_unregister(adapter->mdiobus);
1512 mdio_init_failed:
1513         return retval;
1514 }
1515
1516 static int tsnep_remove(struct platform_device *pdev)
1517 {
1518         struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
1519
1520         unregister_netdev(adapter->netdev);
1521
1522         tsnep_rxnfc_cleanup(adapter);
1523
1524         tsnep_tc_cleanup(adapter);
1525
1526         tsnep_ptp_cleanup(adapter);
1527
1528         if (adapter->mdiobus)
1529                 mdiobus_unregister(adapter->mdiobus);
1530
1531         tsnep_disable_irq(adapter, ECM_INT_ALL);
1532
1533         return 0;
1534 }
1535
1536 static const struct of_device_id tsnep_of_match[] = {
1537         { .compatible = "engleder,tsnep", },
1538 { },
1539 };
1540 MODULE_DEVICE_TABLE(of, tsnep_of_match);
1541
1542 static struct platform_driver tsnep_driver = {
1543         .driver = {
1544                 .name = TSNEP,
1545                 .of_match_table = tsnep_of_match,
1546         },
1547         .probe = tsnep_probe,
1548         .remove = tsnep_remove,
1549 };
1550 module_platform_driver(tsnep_driver);
1551
1552 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
1553 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
1554 MODULE_LICENSE("GPL");