Merge tag 'pci-v5.13-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70
71 #define BNXT_TX_TIMEOUT         (5 * HZ)
72 #define BNXT_DEF_MSG_ENABLE     (NETIF_MSG_DRV | NETIF_MSG_HW)
73
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76
77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
79 #define BNXT_RX_COPY_THRESH 256
80
81 #define BNXT_TX_PUSH_THRESH 164
82
83 enum board_idx {
84         BCM57301,
85         BCM57302,
86         BCM57304,
87         BCM57417_NPAR,
88         BCM58700,
89         BCM57311,
90         BCM57312,
91         BCM57402,
92         BCM57404,
93         BCM57406,
94         BCM57402_NPAR,
95         BCM57407,
96         BCM57412,
97         BCM57414,
98         BCM57416,
99         BCM57417,
100         BCM57412_NPAR,
101         BCM57314,
102         BCM57417_SFP,
103         BCM57416_SFP,
104         BCM57404_NPAR,
105         BCM57406_NPAR,
106         BCM57407_SFP,
107         BCM57407_NPAR,
108         BCM57414_NPAR,
109         BCM57416_NPAR,
110         BCM57452,
111         BCM57454,
112         BCM5745x_NPAR,
113         BCM57508,
114         BCM57504,
115         BCM57502,
116         BCM57508_NPAR,
117         BCM57504_NPAR,
118         BCM57502_NPAR,
119         BCM58802,
120         BCM58804,
121         BCM58808,
122         NETXTREME_E_VF,
123         NETXTREME_C_VF,
124         NETXTREME_S_VF,
125         NETXTREME_C_VF_HV,
126         NETXTREME_E_VF_HV,
127         NETXTREME_E_P5_VF,
128         NETXTREME_E_P5_VF_HV,
129 };
130
131 /* indexed by enum above */
132 static const struct {
133         char *name;
134 } board_info[] = {
135         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
136         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
137         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
138         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
139         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
140         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
141         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
142         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
143         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
144         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
145         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
146         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
147         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
148         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
149         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
150         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
151         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
152         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
153         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
154         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
155         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
156         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
157         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
158         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
159         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
160         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
161         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
162         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
163         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
164         [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
165         [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
166         [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
167         [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
168         [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
169         [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
170         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
171         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
172         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
173         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
174         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
175         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
176         [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
177         [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
178         [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
179         [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
180 };
181
182 static const struct pci_device_id bnxt_pci_tbl[] = {
183         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
184         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
185         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
186         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
187         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
188         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
189         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
190         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
191         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
192         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
193         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
194         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
195         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
196         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
197         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
198         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
199         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
200         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
201         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
202         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
203         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
204         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
205         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
206         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
207         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
208         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
209         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
210         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
211         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
212         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
213         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
214         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
215         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
216         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
217         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
218         { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
219         { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
220         { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
221         { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
222         { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
223         { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
224         { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
225         { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
226         { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
227         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
228         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
229 #ifdef CONFIG_BNXT_SRIOV
230         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
231         { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
232         { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
233         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
234         { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
235         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
236         { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
237         { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
238         { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
239         { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
240         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
241         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
242         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
243         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
244         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
245         { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
246         { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
247         { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
248         { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
249         { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
250         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
251 #endif
252         { 0 }
253 };
254
255 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
256
257 static const u16 bnxt_vf_req_snif[] = {
258         HWRM_FUNC_CFG,
259         HWRM_FUNC_VF_CFG,
260         HWRM_PORT_PHY_QCFG,
261         HWRM_CFA_L2_FILTER_ALLOC,
262 };
263
264 static const u16 bnxt_async_events_arr[] = {
265         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
266         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
267         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
268         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
269         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
270         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
271         ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
272         ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
273         ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
274         ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
275         ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
276         ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
277 };
278
279 static struct workqueue_struct *bnxt_pf_wq;
280
281 static bool bnxt_vf_pciid(enum board_idx idx)
282 {
283         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
284                 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
285                 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF);
286 }
287
288 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
289 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
290 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
291
292 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
293                 writel(DB_CP_IRQ_DIS_FLAGS, db)
294
295 #define BNXT_DB_CQ(db, idx)                                             \
296         writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
297
298 #define BNXT_DB_NQ_P5(db, idx)                                          \
299         writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
300
301 #define BNXT_DB_CQ_ARM(db, idx)                                         \
302         writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
303
304 #define BNXT_DB_NQ_ARM_P5(db, idx)                                      \
305         writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
306
307 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
308 {
309         if (bp->flags & BNXT_FLAG_CHIP_P5)
310                 BNXT_DB_NQ_P5(db, idx);
311         else
312                 BNXT_DB_CQ(db, idx);
313 }
314
315 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
316 {
317         if (bp->flags & BNXT_FLAG_CHIP_P5)
318                 BNXT_DB_NQ_ARM_P5(db, idx);
319         else
320                 BNXT_DB_CQ_ARM(db, idx);
321 }
322
323 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
324 {
325         if (bp->flags & BNXT_FLAG_CHIP_P5)
326                 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
327                        db->doorbell);
328         else
329                 BNXT_DB_CQ(db, idx);
330 }
331
332 const u16 bnxt_lhint_arr[] = {
333         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
334         TX_BD_FLAGS_LHINT_512_TO_1023,
335         TX_BD_FLAGS_LHINT_1024_TO_2047,
336         TX_BD_FLAGS_LHINT_1024_TO_2047,
337         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
338         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
339         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
340         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
341         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
342         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
343         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
344         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
345         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
346         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
347         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
348         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
349         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
350         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
351         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
352 };
353
354 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
355 {
356         struct metadata_dst *md_dst = skb_metadata_dst(skb);
357
358         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
359                 return 0;
360
361         return md_dst->u.port_info.port_id;
362 }
363
364 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
365 {
366         struct bnxt *bp = netdev_priv(dev);
367         struct tx_bd *txbd;
368         struct tx_bd_ext *txbd1;
369         struct netdev_queue *txq;
370         int i;
371         dma_addr_t mapping;
372         unsigned int length, pad = 0;
373         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
374         u16 prod, last_frag;
375         struct pci_dev *pdev = bp->pdev;
376         struct bnxt_tx_ring_info *txr;
377         struct bnxt_sw_tx_bd *tx_buf;
378         __le32 lflags = 0;
379
380         i = skb_get_queue_mapping(skb);
381         if (unlikely(i >= bp->tx_nr_rings)) {
382                 dev_kfree_skb_any(skb);
383                 return NETDEV_TX_OK;
384         }
385
386         txq = netdev_get_tx_queue(dev, i);
387         txr = &bp->tx_ring[bp->tx_ring_map[i]];
388         prod = txr->tx_prod;
389
390         free_size = bnxt_tx_avail(bp, txr);
391         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
392                 netif_tx_stop_queue(txq);
393                 return NETDEV_TX_BUSY;
394         }
395
396         length = skb->len;
397         len = skb_headlen(skb);
398         last_frag = skb_shinfo(skb)->nr_frags;
399
400         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
401
402         txbd->tx_bd_opaque = prod;
403
404         tx_buf = &txr->tx_buf_ring[prod];
405         tx_buf->skb = skb;
406         tx_buf->nr_frags = last_frag;
407
408         vlan_tag_flags = 0;
409         cfa_action = bnxt_xmit_get_cfa_action(skb);
410         if (skb_vlan_tag_present(skb)) {
411                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
412                                  skb_vlan_tag_get(skb);
413                 /* Currently supports 8021Q, 8021AD vlan offloads
414                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
415                  */
416                 if (skb->vlan_proto == htons(ETH_P_8021Q))
417                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
418         }
419
420         if (unlikely(skb->no_fcs)) {
421                 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
422                 goto normal_tx;
423         }
424
425         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
426                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
427                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
428                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
429                 void __iomem *db = txr->tx_db.doorbell;
430                 void *pdata = tx_push_buf->data;
431                 u64 *end;
432                 int j, push_len;
433
434                 /* Set COAL_NOW to be ready quickly for the next push */
435                 tx_push->tx_bd_len_flags_type =
436                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
437                                         TX_BD_TYPE_LONG_TX_BD |
438                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
439                                         TX_BD_FLAGS_COAL_NOW |
440                                         TX_BD_FLAGS_PACKET_END |
441                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
442
443                 if (skb->ip_summed == CHECKSUM_PARTIAL)
444                         tx_push1->tx_bd_hsize_lflags =
445                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
446                 else
447                         tx_push1->tx_bd_hsize_lflags = 0;
448
449                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
450                 tx_push1->tx_bd_cfa_action =
451                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
452
453                 end = pdata + length;
454                 end = PTR_ALIGN(end, 8) - 1;
455                 *end = 0;
456
457                 skb_copy_from_linear_data(skb, pdata, len);
458                 pdata += len;
459                 for (j = 0; j < last_frag; j++) {
460                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
461                         void *fptr;
462
463                         fptr = skb_frag_address_safe(frag);
464                         if (!fptr)
465                                 goto normal_tx;
466
467                         memcpy(pdata, fptr, skb_frag_size(frag));
468                         pdata += skb_frag_size(frag);
469                 }
470
471                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
472                 txbd->tx_bd_haddr = txr->data_mapping;
473                 prod = NEXT_TX(prod);
474                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
475                 memcpy(txbd, tx_push1, sizeof(*txbd));
476                 prod = NEXT_TX(prod);
477                 tx_push->doorbell =
478                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
479                 txr->tx_prod = prod;
480
481                 tx_buf->is_push = 1;
482                 netdev_tx_sent_queue(txq, skb->len);
483                 wmb();  /* Sync is_push and byte queue before pushing data */
484
485                 push_len = (length + sizeof(*tx_push) + 7) / 8;
486                 if (push_len > 16) {
487                         __iowrite64_copy(db, tx_push_buf, 16);
488                         __iowrite32_copy(db + 4, tx_push_buf + 1,
489                                          (push_len - 16) << 1);
490                 } else {
491                         __iowrite64_copy(db, tx_push_buf, push_len);
492                 }
493
494                 goto tx_done;
495         }
496
497 normal_tx:
498         if (length < BNXT_MIN_PKT_SIZE) {
499                 pad = BNXT_MIN_PKT_SIZE - length;
500                 if (skb_pad(skb, pad)) {
501                         /* SKB already freed. */
502                         tx_buf->skb = NULL;
503                         return NETDEV_TX_OK;
504                 }
505                 length = BNXT_MIN_PKT_SIZE;
506         }
507
508         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
509
510         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
511                 dev_kfree_skb_any(skb);
512                 tx_buf->skb = NULL;
513                 return NETDEV_TX_OK;
514         }
515
516         dma_unmap_addr_set(tx_buf, mapping, mapping);
517         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
518                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
519
520         txbd->tx_bd_haddr = cpu_to_le64(mapping);
521
522         prod = NEXT_TX(prod);
523         txbd1 = (struct tx_bd_ext *)
524                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
525
526         txbd1->tx_bd_hsize_lflags = lflags;
527         if (skb_is_gso(skb)) {
528                 u32 hdr_len;
529
530                 if (skb->encapsulation)
531                         hdr_len = skb_inner_network_offset(skb) +
532                                 skb_inner_network_header_len(skb) +
533                                 inner_tcp_hdrlen(skb);
534                 else
535                         hdr_len = skb_transport_offset(skb) +
536                                 tcp_hdrlen(skb);
537
538                 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
539                                         TX_BD_FLAGS_T_IPID |
540                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
541                 length = skb_shinfo(skb)->gso_size;
542                 txbd1->tx_bd_mss = cpu_to_le32(length);
543                 length += hdr_len;
544         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
545                 txbd1->tx_bd_hsize_lflags |=
546                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
547                 txbd1->tx_bd_mss = 0;
548         }
549
550         length >>= 9;
551         if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
552                 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
553                                      skb->len);
554                 i = 0;
555                 goto tx_dma_error;
556         }
557         flags |= bnxt_lhint_arr[length];
558         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
559
560         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
561         txbd1->tx_bd_cfa_action =
562                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
563         for (i = 0; i < last_frag; i++) {
564                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
565
566                 prod = NEXT_TX(prod);
567                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
568
569                 len = skb_frag_size(frag);
570                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
571                                            DMA_TO_DEVICE);
572
573                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
574                         goto tx_dma_error;
575
576                 tx_buf = &txr->tx_buf_ring[prod];
577                 dma_unmap_addr_set(tx_buf, mapping, mapping);
578
579                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
580
581                 flags = len << TX_BD_LEN_SHIFT;
582                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
583         }
584
585         flags &= ~TX_BD_LEN;
586         txbd->tx_bd_len_flags_type =
587                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
588                             TX_BD_FLAGS_PACKET_END);
589
590         netdev_tx_sent_queue(txq, skb->len);
591
592         /* Sync BD data before updating doorbell */
593         wmb();
594
595         prod = NEXT_TX(prod);
596         txr->tx_prod = prod;
597
598         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
599                 bnxt_db_write(bp, &txr->tx_db, prod);
600
601 tx_done:
602
603         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
604                 if (netdev_xmit_more() && !tx_buf->is_push)
605                         bnxt_db_write(bp, &txr->tx_db, prod);
606
607                 netif_tx_stop_queue(txq);
608
609                 /* netif_tx_stop_queue() must be done before checking
610                  * tx index in bnxt_tx_avail() below, because in
611                  * bnxt_tx_int(), we update tx index before checking for
612                  * netif_tx_queue_stopped().
613                  */
614                 smp_mb();
615                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
616                         netif_tx_wake_queue(txq);
617         }
618         return NETDEV_TX_OK;
619
620 tx_dma_error:
621         last_frag = i;
622
623         /* start back at beginning and unmap skb */
624         prod = txr->tx_prod;
625         tx_buf = &txr->tx_buf_ring[prod];
626         tx_buf->skb = NULL;
627         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
628                          skb_headlen(skb), PCI_DMA_TODEVICE);
629         prod = NEXT_TX(prod);
630
631         /* unmap remaining mapped pages */
632         for (i = 0; i < last_frag; i++) {
633                 prod = NEXT_TX(prod);
634                 tx_buf = &txr->tx_buf_ring[prod];
635                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
636                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
637                                PCI_DMA_TODEVICE);
638         }
639
640         dev_kfree_skb_any(skb);
641         return NETDEV_TX_OK;
642 }
643
644 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
645 {
646         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
647         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
648         u16 cons = txr->tx_cons;
649         struct pci_dev *pdev = bp->pdev;
650         int i;
651         unsigned int tx_bytes = 0;
652
653         for (i = 0; i < nr_pkts; i++) {
654                 struct bnxt_sw_tx_bd *tx_buf;
655                 struct sk_buff *skb;
656                 int j, last;
657
658                 tx_buf = &txr->tx_buf_ring[cons];
659                 cons = NEXT_TX(cons);
660                 skb = tx_buf->skb;
661                 tx_buf->skb = NULL;
662
663                 if (tx_buf->is_push) {
664                         tx_buf->is_push = 0;
665                         goto next_tx_int;
666                 }
667
668                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
669                                  skb_headlen(skb), PCI_DMA_TODEVICE);
670                 last = tx_buf->nr_frags;
671
672                 for (j = 0; j < last; j++) {
673                         cons = NEXT_TX(cons);
674                         tx_buf = &txr->tx_buf_ring[cons];
675                         dma_unmap_page(
676                                 &pdev->dev,
677                                 dma_unmap_addr(tx_buf, mapping),
678                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
679                                 PCI_DMA_TODEVICE);
680                 }
681
682 next_tx_int:
683                 cons = NEXT_TX(cons);
684
685                 tx_bytes += skb->len;
686                 dev_kfree_skb_any(skb);
687         }
688
689         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
690         txr->tx_cons = cons;
691
692         /* Need to make the tx_cons update visible to bnxt_start_xmit()
693          * before checking for netif_tx_queue_stopped().  Without the
694          * memory barrier, there is a small possibility that bnxt_start_xmit()
695          * will miss it and cause the queue to be stopped forever.
696          */
697         smp_mb();
698
699         if (unlikely(netif_tx_queue_stopped(txq)) &&
700             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
701                 __netif_tx_lock(txq, smp_processor_id());
702                 if (netif_tx_queue_stopped(txq) &&
703                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
704                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
705                         netif_tx_wake_queue(txq);
706                 __netif_tx_unlock(txq);
707         }
708 }
709
710 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
711                                          struct bnxt_rx_ring_info *rxr,
712                                          gfp_t gfp)
713 {
714         struct device *dev = &bp->pdev->dev;
715         struct page *page;
716
717         page = page_pool_dev_alloc_pages(rxr->page_pool);
718         if (!page)
719                 return NULL;
720
721         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
722                                       DMA_ATTR_WEAK_ORDERING);
723         if (dma_mapping_error(dev, *mapping)) {
724                 page_pool_recycle_direct(rxr->page_pool, page);
725                 return NULL;
726         }
727         *mapping += bp->rx_dma_offset;
728         return page;
729 }
730
731 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
732                                        gfp_t gfp)
733 {
734         u8 *data;
735         struct pci_dev *pdev = bp->pdev;
736
737         data = kmalloc(bp->rx_buf_size, gfp);
738         if (!data)
739                 return NULL;
740
741         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
742                                         bp->rx_buf_use_size, bp->rx_dir,
743                                         DMA_ATTR_WEAK_ORDERING);
744
745         if (dma_mapping_error(&pdev->dev, *mapping)) {
746                 kfree(data);
747                 data = NULL;
748         }
749         return data;
750 }
751
752 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
753                        u16 prod, gfp_t gfp)
754 {
755         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
756         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
757         dma_addr_t mapping;
758
759         if (BNXT_RX_PAGE_MODE(bp)) {
760                 struct page *page =
761                         __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
762
763                 if (!page)
764                         return -ENOMEM;
765
766                 rx_buf->data = page;
767                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
768         } else {
769                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
770
771                 if (!data)
772                         return -ENOMEM;
773
774                 rx_buf->data = data;
775                 rx_buf->data_ptr = data + bp->rx_offset;
776         }
777         rx_buf->mapping = mapping;
778
779         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
780         return 0;
781 }
782
783 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
784 {
785         u16 prod = rxr->rx_prod;
786         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
787         struct rx_bd *cons_bd, *prod_bd;
788
789         prod_rx_buf = &rxr->rx_buf_ring[prod];
790         cons_rx_buf = &rxr->rx_buf_ring[cons];
791
792         prod_rx_buf->data = data;
793         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
794
795         prod_rx_buf->mapping = cons_rx_buf->mapping;
796
797         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
798         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
799
800         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
801 }
802
803 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
804 {
805         u16 next, max = rxr->rx_agg_bmap_size;
806
807         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
808         if (next >= max)
809                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
810         return next;
811 }
812
813 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
814                                      struct bnxt_rx_ring_info *rxr,
815                                      u16 prod, gfp_t gfp)
816 {
817         struct rx_bd *rxbd =
818                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
819         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
820         struct pci_dev *pdev = bp->pdev;
821         struct page *page;
822         dma_addr_t mapping;
823         u16 sw_prod = rxr->rx_sw_agg_prod;
824         unsigned int offset = 0;
825
826         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
827                 page = rxr->rx_page;
828                 if (!page) {
829                         page = alloc_page(gfp);
830                         if (!page)
831                                 return -ENOMEM;
832                         rxr->rx_page = page;
833                         rxr->rx_page_offset = 0;
834                 }
835                 offset = rxr->rx_page_offset;
836                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
837                 if (rxr->rx_page_offset == PAGE_SIZE)
838                         rxr->rx_page = NULL;
839                 else
840                         get_page(page);
841         } else {
842                 page = alloc_page(gfp);
843                 if (!page)
844                         return -ENOMEM;
845         }
846
847         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
848                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
849                                      DMA_ATTR_WEAK_ORDERING);
850         if (dma_mapping_error(&pdev->dev, mapping)) {
851                 __free_page(page);
852                 return -EIO;
853         }
854
855         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
856                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
857
858         __set_bit(sw_prod, rxr->rx_agg_bmap);
859         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
860         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
861
862         rx_agg_buf->page = page;
863         rx_agg_buf->offset = offset;
864         rx_agg_buf->mapping = mapping;
865         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
866         rxbd->rx_bd_opaque = sw_prod;
867         return 0;
868 }
869
870 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
871                                        struct bnxt_cp_ring_info *cpr,
872                                        u16 cp_cons, u16 curr)
873 {
874         struct rx_agg_cmp *agg;
875
876         cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
877         agg = (struct rx_agg_cmp *)
878                 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
879         return agg;
880 }
881
882 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
883                                               struct bnxt_rx_ring_info *rxr,
884                                               u16 agg_id, u16 curr)
885 {
886         struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
887
888         return &tpa_info->agg_arr[curr];
889 }
890
891 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
892                                    u16 start, u32 agg_bufs, bool tpa)
893 {
894         struct bnxt_napi *bnapi = cpr->bnapi;
895         struct bnxt *bp = bnapi->bp;
896         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
897         u16 prod = rxr->rx_agg_prod;
898         u16 sw_prod = rxr->rx_sw_agg_prod;
899         bool p5_tpa = false;
900         u32 i;
901
902         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
903                 p5_tpa = true;
904
905         for (i = 0; i < agg_bufs; i++) {
906                 u16 cons;
907                 struct rx_agg_cmp *agg;
908                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
909                 struct rx_bd *prod_bd;
910                 struct page *page;
911
912                 if (p5_tpa)
913                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
914                 else
915                         agg = bnxt_get_agg(bp, cpr, idx, start + i);
916                 cons = agg->rx_agg_cmp_opaque;
917                 __clear_bit(cons, rxr->rx_agg_bmap);
918
919                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
920                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
921
922                 __set_bit(sw_prod, rxr->rx_agg_bmap);
923                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
924                 cons_rx_buf = &rxr->rx_agg_ring[cons];
925
926                 /* It is possible for sw_prod to be equal to cons, so
927                  * set cons_rx_buf->page to NULL first.
928                  */
929                 page = cons_rx_buf->page;
930                 cons_rx_buf->page = NULL;
931                 prod_rx_buf->page = page;
932                 prod_rx_buf->offset = cons_rx_buf->offset;
933
934                 prod_rx_buf->mapping = cons_rx_buf->mapping;
935
936                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
937
938                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
939                 prod_bd->rx_bd_opaque = sw_prod;
940
941                 prod = NEXT_RX_AGG(prod);
942                 sw_prod = NEXT_RX_AGG(sw_prod);
943         }
944         rxr->rx_agg_prod = prod;
945         rxr->rx_sw_agg_prod = sw_prod;
946 }
947
948 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
949                                         struct bnxt_rx_ring_info *rxr,
950                                         u16 cons, void *data, u8 *data_ptr,
951                                         dma_addr_t dma_addr,
952                                         unsigned int offset_and_len)
953 {
954         unsigned int payload = offset_and_len >> 16;
955         unsigned int len = offset_and_len & 0xffff;
956         skb_frag_t *frag;
957         struct page *page = data;
958         u16 prod = rxr->rx_prod;
959         struct sk_buff *skb;
960         int off, err;
961
962         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
963         if (unlikely(err)) {
964                 bnxt_reuse_rx_data(rxr, cons, data);
965                 return NULL;
966         }
967         dma_addr -= bp->rx_dma_offset;
968         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
969                              DMA_ATTR_WEAK_ORDERING);
970         page_pool_release_page(rxr->page_pool, page);
971
972         if (unlikely(!payload))
973                 payload = eth_get_headlen(bp->dev, data_ptr, len);
974
975         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
976         if (!skb) {
977                 __free_page(page);
978                 return NULL;
979         }
980
981         off = (void *)data_ptr - page_address(page);
982         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
983         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
984                payload + NET_IP_ALIGN);
985
986         frag = &skb_shinfo(skb)->frags[0];
987         skb_frag_size_sub(frag, payload);
988         skb_frag_off_add(frag, payload);
989         skb->data_len -= payload;
990         skb->tail += payload;
991
992         return skb;
993 }
994
995 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
996                                    struct bnxt_rx_ring_info *rxr, u16 cons,
997                                    void *data, u8 *data_ptr,
998                                    dma_addr_t dma_addr,
999                                    unsigned int offset_and_len)
1000 {
1001         u16 prod = rxr->rx_prod;
1002         struct sk_buff *skb;
1003         int err;
1004
1005         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1006         if (unlikely(err)) {
1007                 bnxt_reuse_rx_data(rxr, cons, data);
1008                 return NULL;
1009         }
1010
1011         skb = build_skb(data, 0);
1012         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1013                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1014         if (!skb) {
1015                 kfree(data);
1016                 return NULL;
1017         }
1018
1019         skb_reserve(skb, bp->rx_offset);
1020         skb_put(skb, offset_and_len & 0xffff);
1021         return skb;
1022 }
1023
1024 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1025                                      struct bnxt_cp_ring_info *cpr,
1026                                      struct sk_buff *skb, u16 idx,
1027                                      u32 agg_bufs, bool tpa)
1028 {
1029         struct bnxt_napi *bnapi = cpr->bnapi;
1030         struct pci_dev *pdev = bp->pdev;
1031         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1032         u16 prod = rxr->rx_agg_prod;
1033         bool p5_tpa = false;
1034         u32 i;
1035
1036         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1037                 p5_tpa = true;
1038
1039         for (i = 0; i < agg_bufs; i++) {
1040                 u16 cons, frag_len;
1041                 struct rx_agg_cmp *agg;
1042                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1043                 struct page *page;
1044                 dma_addr_t mapping;
1045
1046                 if (p5_tpa)
1047                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1048                 else
1049                         agg = bnxt_get_agg(bp, cpr, idx, i);
1050                 cons = agg->rx_agg_cmp_opaque;
1051                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1052                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1053
1054                 cons_rx_buf = &rxr->rx_agg_ring[cons];
1055                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
1056                                    cons_rx_buf->offset, frag_len);
1057                 __clear_bit(cons, rxr->rx_agg_bmap);
1058
1059                 /* It is possible for bnxt_alloc_rx_page() to allocate
1060                  * a sw_prod index that equals the cons index, so we
1061                  * need to clear the cons entry now.
1062                  */
1063                 mapping = cons_rx_buf->mapping;
1064                 page = cons_rx_buf->page;
1065                 cons_rx_buf->page = NULL;
1066
1067                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1068                         struct skb_shared_info *shinfo;
1069                         unsigned int nr_frags;
1070
1071                         shinfo = skb_shinfo(skb);
1072                         nr_frags = --shinfo->nr_frags;
1073                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1074
1075                         dev_kfree_skb(skb);
1076
1077                         cons_rx_buf->page = page;
1078
1079                         /* Update prod since possibly some pages have been
1080                          * allocated already.
1081                          */
1082                         rxr->rx_agg_prod = prod;
1083                         bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1084                         return NULL;
1085                 }
1086
1087                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1088                                      PCI_DMA_FROMDEVICE,
1089                                      DMA_ATTR_WEAK_ORDERING);
1090
1091                 skb->data_len += frag_len;
1092                 skb->len += frag_len;
1093                 skb->truesize += PAGE_SIZE;
1094
1095                 prod = NEXT_RX_AGG(prod);
1096         }
1097         rxr->rx_agg_prod = prod;
1098         return skb;
1099 }
1100
1101 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1102                                u8 agg_bufs, u32 *raw_cons)
1103 {
1104         u16 last;
1105         struct rx_agg_cmp *agg;
1106
1107         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1108         last = RING_CMP(*raw_cons);
1109         agg = (struct rx_agg_cmp *)
1110                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1111         return RX_AGG_CMP_VALID(agg, *raw_cons);
1112 }
1113
1114 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1115                                             unsigned int len,
1116                                             dma_addr_t mapping)
1117 {
1118         struct bnxt *bp = bnapi->bp;
1119         struct pci_dev *pdev = bp->pdev;
1120         struct sk_buff *skb;
1121
1122         skb = napi_alloc_skb(&bnapi->napi, len);
1123         if (!skb)
1124                 return NULL;
1125
1126         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1127                                 bp->rx_dir);
1128
1129         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1130                len + NET_IP_ALIGN);
1131
1132         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1133                                    bp->rx_dir);
1134
1135         skb_put(skb, len);
1136         return skb;
1137 }
1138
1139 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1140                            u32 *raw_cons, void *cmp)
1141 {
1142         struct rx_cmp *rxcmp = cmp;
1143         u32 tmp_raw_cons = *raw_cons;
1144         u8 cmp_type, agg_bufs = 0;
1145
1146         cmp_type = RX_CMP_TYPE(rxcmp);
1147
1148         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1149                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1150                             RX_CMP_AGG_BUFS) >>
1151                            RX_CMP_AGG_BUFS_SHIFT;
1152         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1153                 struct rx_tpa_end_cmp *tpa_end = cmp;
1154
1155                 if (bp->flags & BNXT_FLAG_CHIP_P5)
1156                         return 0;
1157
1158                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1159         }
1160
1161         if (agg_bufs) {
1162                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1163                         return -EBUSY;
1164         }
1165         *raw_cons = tmp_raw_cons;
1166         return 0;
1167 }
1168
1169 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1170 {
1171         if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1172                 return;
1173
1174         if (BNXT_PF(bp))
1175                 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1176         else
1177                 schedule_delayed_work(&bp->fw_reset_task, delay);
1178 }
1179
1180 static void bnxt_queue_sp_work(struct bnxt *bp)
1181 {
1182         if (BNXT_PF(bp))
1183                 queue_work(bnxt_pf_wq, &bp->sp_task);
1184         else
1185                 schedule_work(&bp->sp_task);
1186 }
1187
1188 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1189 {
1190         if (!rxr->bnapi->in_reset) {
1191                 rxr->bnapi->in_reset = true;
1192                 if (bp->flags & BNXT_FLAG_CHIP_P5)
1193                         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1194                 else
1195                         set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1196                 bnxt_queue_sp_work(bp);
1197         }
1198         rxr->rx_next_cons = 0xffff;
1199 }
1200
1201 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1202 {
1203         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1204         u16 idx = agg_id & MAX_TPA_P5_MASK;
1205
1206         if (test_bit(idx, map->agg_idx_bmap))
1207                 idx = find_first_zero_bit(map->agg_idx_bmap,
1208                                           BNXT_AGG_IDX_BMAP_SIZE);
1209         __set_bit(idx, map->agg_idx_bmap);
1210         map->agg_id_tbl[agg_id] = idx;
1211         return idx;
1212 }
1213
1214 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1215 {
1216         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1217
1218         __clear_bit(idx, map->agg_idx_bmap);
1219 }
1220
1221 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1222 {
1223         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1224
1225         return map->agg_id_tbl[agg_id];
1226 }
1227
1228 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1229                            struct rx_tpa_start_cmp *tpa_start,
1230                            struct rx_tpa_start_cmp_ext *tpa_start1)
1231 {
1232         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1233         struct bnxt_tpa_info *tpa_info;
1234         u16 cons, prod, agg_id;
1235         struct rx_bd *prod_bd;
1236         dma_addr_t mapping;
1237
1238         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1239                 agg_id = TPA_START_AGG_ID_P5(tpa_start);
1240                 agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1241         } else {
1242                 agg_id = TPA_START_AGG_ID(tpa_start);
1243         }
1244         cons = tpa_start->rx_tpa_start_cmp_opaque;
1245         prod = rxr->rx_prod;
1246         cons_rx_buf = &rxr->rx_buf_ring[cons];
1247         prod_rx_buf = &rxr->rx_buf_ring[prod];
1248         tpa_info = &rxr->rx_tpa[agg_id];
1249
1250         if (unlikely(cons != rxr->rx_next_cons ||
1251                      TPA_START_ERROR(tpa_start))) {
1252                 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1253                             cons, rxr->rx_next_cons,
1254                             TPA_START_ERROR_CODE(tpa_start1));
1255                 bnxt_sched_reset(bp, rxr);
1256                 return;
1257         }
1258         /* Store cfa_code in tpa_info to use in tpa_end
1259          * completion processing.
1260          */
1261         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1262         prod_rx_buf->data = tpa_info->data;
1263         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1264
1265         mapping = tpa_info->mapping;
1266         prod_rx_buf->mapping = mapping;
1267
1268         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1269
1270         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1271
1272         tpa_info->data = cons_rx_buf->data;
1273         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1274         cons_rx_buf->data = NULL;
1275         tpa_info->mapping = cons_rx_buf->mapping;
1276
1277         tpa_info->len =
1278                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1279                                 RX_TPA_START_CMP_LEN_SHIFT;
1280         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1281                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1282
1283                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1284                 tpa_info->gso_type = SKB_GSO_TCPV4;
1285                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1286                 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1287                         tpa_info->gso_type = SKB_GSO_TCPV6;
1288                 tpa_info->rss_hash =
1289                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1290         } else {
1291                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1292                 tpa_info->gso_type = 0;
1293                 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1294         }
1295         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1296         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1297         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1298         tpa_info->agg_count = 0;
1299
1300         rxr->rx_prod = NEXT_RX(prod);
1301         cons = NEXT_RX(cons);
1302         rxr->rx_next_cons = NEXT_RX(cons);
1303         cons_rx_buf = &rxr->rx_buf_ring[cons];
1304
1305         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1306         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1307         cons_rx_buf->data = NULL;
1308 }
1309
1310 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1311 {
1312         if (agg_bufs)
1313                 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1314 }
1315
1316 #ifdef CONFIG_INET
1317 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1318 {
1319         struct udphdr *uh = NULL;
1320
1321         if (ip_proto == htons(ETH_P_IP)) {
1322                 struct iphdr *iph = (struct iphdr *)skb->data;
1323
1324                 if (iph->protocol == IPPROTO_UDP)
1325                         uh = (struct udphdr *)(iph + 1);
1326         } else {
1327                 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1328
1329                 if (iph->nexthdr == IPPROTO_UDP)
1330                         uh = (struct udphdr *)(iph + 1);
1331         }
1332         if (uh) {
1333                 if (uh->check)
1334                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1335                 else
1336                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1337         }
1338 }
1339 #endif
1340
1341 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1342                                            int payload_off, int tcp_ts,
1343                                            struct sk_buff *skb)
1344 {
1345 #ifdef CONFIG_INET
1346         struct tcphdr *th;
1347         int len, nw_off;
1348         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1349         u32 hdr_info = tpa_info->hdr_info;
1350         bool loopback = false;
1351
1352         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1353         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1354         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1355
1356         /* If the packet is an internal loopback packet, the offsets will
1357          * have an extra 4 bytes.
1358          */
1359         if (inner_mac_off == 4) {
1360                 loopback = true;
1361         } else if (inner_mac_off > 4) {
1362                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1363                                             ETH_HLEN - 2));
1364
1365                 /* We only support inner iPv4/ipv6.  If we don't see the
1366                  * correct protocol ID, it must be a loopback packet where
1367                  * the offsets are off by 4.
1368                  */
1369                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1370                         loopback = true;
1371         }
1372         if (loopback) {
1373                 /* internal loopback packet, subtract all offsets by 4 */
1374                 inner_ip_off -= 4;
1375                 inner_mac_off -= 4;
1376                 outer_ip_off -= 4;
1377         }
1378
1379         nw_off = inner_ip_off - ETH_HLEN;
1380         skb_set_network_header(skb, nw_off);
1381         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1382                 struct ipv6hdr *iph = ipv6_hdr(skb);
1383
1384                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1385                 len = skb->len - skb_transport_offset(skb);
1386                 th = tcp_hdr(skb);
1387                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1388         } else {
1389                 struct iphdr *iph = ip_hdr(skb);
1390
1391                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1392                 len = skb->len - skb_transport_offset(skb);
1393                 th = tcp_hdr(skb);
1394                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1395         }
1396
1397         if (inner_mac_off) { /* tunnel */
1398                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1399                                             ETH_HLEN - 2));
1400
1401                 bnxt_gro_tunnel(skb, proto);
1402         }
1403 #endif
1404         return skb;
1405 }
1406
1407 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1408                                            int payload_off, int tcp_ts,
1409                                            struct sk_buff *skb)
1410 {
1411 #ifdef CONFIG_INET
1412         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1413         u32 hdr_info = tpa_info->hdr_info;
1414         int iphdr_len, nw_off;
1415
1416         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1417         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1418         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1419
1420         nw_off = inner_ip_off - ETH_HLEN;
1421         skb_set_network_header(skb, nw_off);
1422         iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1423                      sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1424         skb_set_transport_header(skb, nw_off + iphdr_len);
1425
1426         if (inner_mac_off) { /* tunnel */
1427                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1428                                             ETH_HLEN - 2));
1429
1430                 bnxt_gro_tunnel(skb, proto);
1431         }
1432 #endif
1433         return skb;
1434 }
1435
1436 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1437 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1438
1439 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1440                                            int payload_off, int tcp_ts,
1441                                            struct sk_buff *skb)
1442 {
1443 #ifdef CONFIG_INET
1444         struct tcphdr *th;
1445         int len, nw_off, tcp_opt_len = 0;
1446
1447         if (tcp_ts)
1448                 tcp_opt_len = 12;
1449
1450         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1451                 struct iphdr *iph;
1452
1453                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1454                          ETH_HLEN;
1455                 skb_set_network_header(skb, nw_off);
1456                 iph = ip_hdr(skb);
1457                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1458                 len = skb->len - skb_transport_offset(skb);
1459                 th = tcp_hdr(skb);
1460                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1461         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1462                 struct ipv6hdr *iph;
1463
1464                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1465                          ETH_HLEN;
1466                 skb_set_network_header(skb, nw_off);
1467                 iph = ipv6_hdr(skb);
1468                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1469                 len = skb->len - skb_transport_offset(skb);
1470                 th = tcp_hdr(skb);
1471                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1472         } else {
1473                 dev_kfree_skb_any(skb);
1474                 return NULL;
1475         }
1476
1477         if (nw_off) /* tunnel */
1478                 bnxt_gro_tunnel(skb, skb->protocol);
1479 #endif
1480         return skb;
1481 }
1482
1483 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1484                                            struct bnxt_tpa_info *tpa_info,
1485                                            struct rx_tpa_end_cmp *tpa_end,
1486                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1487                                            struct sk_buff *skb)
1488 {
1489 #ifdef CONFIG_INET
1490         int payload_off;
1491         u16 segs;
1492
1493         segs = TPA_END_TPA_SEGS(tpa_end);
1494         if (segs == 1)
1495                 return skb;
1496
1497         NAPI_GRO_CB(skb)->count = segs;
1498         skb_shinfo(skb)->gso_size =
1499                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1500         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1501         if (bp->flags & BNXT_FLAG_CHIP_P5)
1502                 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1503         else
1504                 payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1505         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1506         if (likely(skb))
1507                 tcp_gro_complete(skb);
1508 #endif
1509         return skb;
1510 }
1511
1512 /* Given the cfa_code of a received packet determine which
1513  * netdev (vf-rep or PF) the packet is destined to.
1514  */
1515 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1516 {
1517         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1518
1519         /* if vf-rep dev is NULL, the must belongs to the PF */
1520         return dev ? dev : bp->dev;
1521 }
1522
1523 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1524                                            struct bnxt_cp_ring_info *cpr,
1525                                            u32 *raw_cons,
1526                                            struct rx_tpa_end_cmp *tpa_end,
1527                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1528                                            u8 *event)
1529 {
1530         struct bnxt_napi *bnapi = cpr->bnapi;
1531         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1532         u8 *data_ptr, agg_bufs;
1533         unsigned int len;
1534         struct bnxt_tpa_info *tpa_info;
1535         dma_addr_t mapping;
1536         struct sk_buff *skb;
1537         u16 idx = 0, agg_id;
1538         void *data;
1539         bool gro;
1540
1541         if (unlikely(bnapi->in_reset)) {
1542                 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1543
1544                 if (rc < 0)
1545                         return ERR_PTR(-EBUSY);
1546                 return NULL;
1547         }
1548
1549         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1550                 agg_id = TPA_END_AGG_ID_P5(tpa_end);
1551                 agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1552                 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1553                 tpa_info = &rxr->rx_tpa[agg_id];
1554                 if (unlikely(agg_bufs != tpa_info->agg_count)) {
1555                         netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1556                                     agg_bufs, tpa_info->agg_count);
1557                         agg_bufs = tpa_info->agg_count;
1558                 }
1559                 tpa_info->agg_count = 0;
1560                 *event |= BNXT_AGG_EVENT;
1561                 bnxt_free_agg_idx(rxr, agg_id);
1562                 idx = agg_id;
1563                 gro = !!(bp->flags & BNXT_FLAG_GRO);
1564         } else {
1565                 agg_id = TPA_END_AGG_ID(tpa_end);
1566                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1567                 tpa_info = &rxr->rx_tpa[agg_id];
1568                 idx = RING_CMP(*raw_cons);
1569                 if (agg_bufs) {
1570                         if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1571                                 return ERR_PTR(-EBUSY);
1572
1573                         *event |= BNXT_AGG_EVENT;
1574                         idx = NEXT_CMP(idx);
1575                 }
1576                 gro = !!TPA_END_GRO(tpa_end);
1577         }
1578         data = tpa_info->data;
1579         data_ptr = tpa_info->data_ptr;
1580         prefetch(data_ptr);
1581         len = tpa_info->len;
1582         mapping = tpa_info->mapping;
1583
1584         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1585                 bnxt_abort_tpa(cpr, idx, agg_bufs);
1586                 if (agg_bufs > MAX_SKB_FRAGS)
1587                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1588                                     agg_bufs, (int)MAX_SKB_FRAGS);
1589                 return NULL;
1590         }
1591
1592         if (len <= bp->rx_copy_thresh) {
1593                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1594                 if (!skb) {
1595                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1596                         return NULL;
1597                 }
1598         } else {
1599                 u8 *new_data;
1600                 dma_addr_t new_mapping;
1601
1602                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1603                 if (!new_data) {
1604                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1605                         return NULL;
1606                 }
1607
1608                 tpa_info->data = new_data;
1609                 tpa_info->data_ptr = new_data + bp->rx_offset;
1610                 tpa_info->mapping = new_mapping;
1611
1612                 skb = build_skb(data, 0);
1613                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1614                                        bp->rx_buf_use_size, bp->rx_dir,
1615                                        DMA_ATTR_WEAK_ORDERING);
1616
1617                 if (!skb) {
1618                         kfree(data);
1619                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1620                         return NULL;
1621                 }
1622                 skb_reserve(skb, bp->rx_offset);
1623                 skb_put(skb, len);
1624         }
1625
1626         if (agg_bufs) {
1627                 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1628                 if (!skb) {
1629                         /* Page reuse already handled by bnxt_rx_pages(). */
1630                         return NULL;
1631                 }
1632         }
1633
1634         skb->protocol =
1635                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1636
1637         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1638                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1639
1640         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1641             (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1642                 u16 vlan_proto = tpa_info->metadata >>
1643                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1644                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1645
1646                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1647         }
1648
1649         skb_checksum_none_assert(skb);
1650         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1651                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1652                 skb->csum_level =
1653                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1654         }
1655
1656         if (gro)
1657                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1658
1659         return skb;
1660 }
1661
1662 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1663                          struct rx_agg_cmp *rx_agg)
1664 {
1665         u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1666         struct bnxt_tpa_info *tpa_info;
1667
1668         agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1669         tpa_info = &rxr->rx_tpa[agg_id];
1670         BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1671         tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1672 }
1673
1674 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1675                              struct sk_buff *skb)
1676 {
1677         if (skb->dev != bp->dev) {
1678                 /* this packet belongs to a vf-rep */
1679                 bnxt_vf_rep_rx(bp, skb);
1680                 return;
1681         }
1682         skb_record_rx_queue(skb, bnapi->index);
1683         napi_gro_receive(&bnapi->napi, skb);
1684 }
1685
1686 /* returns the following:
1687  * 1       - 1 packet successfully received
1688  * 0       - successful TPA_START, packet not completed yet
1689  * -EBUSY  - completion ring does not have all the agg buffers yet
1690  * -ENOMEM - packet aborted due to out of memory
1691  * -EIO    - packet aborted due to hw error indicated in BD
1692  */
1693 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1694                        u32 *raw_cons, u8 *event)
1695 {
1696         struct bnxt_napi *bnapi = cpr->bnapi;
1697         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1698         struct net_device *dev = bp->dev;
1699         struct rx_cmp *rxcmp;
1700         struct rx_cmp_ext *rxcmp1;
1701         u32 tmp_raw_cons = *raw_cons;
1702         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1703         struct bnxt_sw_rx_bd *rx_buf;
1704         unsigned int len;
1705         u8 *data_ptr, agg_bufs, cmp_type;
1706         dma_addr_t dma_addr;
1707         struct sk_buff *skb;
1708         void *data;
1709         int rc = 0;
1710         u32 misc;
1711
1712         rxcmp = (struct rx_cmp *)
1713                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1714
1715         cmp_type = RX_CMP_TYPE(rxcmp);
1716
1717         if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1718                 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1719                 goto next_rx_no_prod_no_len;
1720         }
1721
1722         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1723         cp_cons = RING_CMP(tmp_raw_cons);
1724         rxcmp1 = (struct rx_cmp_ext *)
1725                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1726
1727         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1728                 return -EBUSY;
1729
1730         prod = rxr->rx_prod;
1731
1732         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1733                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1734                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1735
1736                 *event |= BNXT_RX_EVENT;
1737                 goto next_rx_no_prod_no_len;
1738
1739         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1740                 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1741                                    (struct rx_tpa_end_cmp *)rxcmp,
1742                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1743
1744                 if (IS_ERR(skb))
1745                         return -EBUSY;
1746
1747                 rc = -ENOMEM;
1748                 if (likely(skb)) {
1749                         bnxt_deliver_skb(bp, bnapi, skb);
1750                         rc = 1;
1751                 }
1752                 *event |= BNXT_RX_EVENT;
1753                 goto next_rx_no_prod_no_len;
1754         }
1755
1756         cons = rxcmp->rx_cmp_opaque;
1757         if (unlikely(cons != rxr->rx_next_cons)) {
1758                 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1759
1760                 /* 0xffff is forced error, don't print it */
1761                 if (rxr->rx_next_cons != 0xffff)
1762                         netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1763                                     cons, rxr->rx_next_cons);
1764                 bnxt_sched_reset(bp, rxr);
1765                 if (rc1)
1766                         return rc1;
1767                 goto next_rx_no_prod_no_len;
1768         }
1769         rx_buf = &rxr->rx_buf_ring[cons];
1770         data = rx_buf->data;
1771         data_ptr = rx_buf->data_ptr;
1772         prefetch(data_ptr);
1773
1774         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1775         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1776
1777         if (agg_bufs) {
1778                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1779                         return -EBUSY;
1780
1781                 cp_cons = NEXT_CMP(cp_cons);
1782                 *event |= BNXT_AGG_EVENT;
1783         }
1784         *event |= BNXT_RX_EVENT;
1785
1786         rx_buf->data = NULL;
1787         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1788                 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1789
1790                 bnxt_reuse_rx_data(rxr, cons, data);
1791                 if (agg_bufs)
1792                         bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1793                                                false);
1794
1795                 rc = -EIO;
1796                 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1797                         bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1798                         if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1799                             !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1800                                 netdev_warn_once(bp->dev, "RX buffer error %x\n",
1801                                                  rx_err);
1802                                 bnxt_sched_reset(bp, rxr);
1803                         }
1804                 }
1805                 goto next_rx_no_len;
1806         }
1807
1808         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1809         dma_addr = rx_buf->mapping;
1810
1811         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1812                 rc = 1;
1813                 goto next_rx;
1814         }
1815
1816         if (len <= bp->rx_copy_thresh) {
1817                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1818                 bnxt_reuse_rx_data(rxr, cons, data);
1819                 if (!skb) {
1820                         if (agg_bufs)
1821                                 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1822                                                        agg_bufs, false);
1823                         rc = -ENOMEM;
1824                         goto next_rx;
1825                 }
1826         } else {
1827                 u32 payload;
1828
1829                 if (rx_buf->data_ptr == data_ptr)
1830                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1831                 else
1832                         payload = 0;
1833                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1834                                       payload | len);
1835                 if (!skb) {
1836                         rc = -ENOMEM;
1837                         goto next_rx;
1838                 }
1839         }
1840
1841         if (agg_bufs) {
1842                 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1843                 if (!skb) {
1844                         rc = -ENOMEM;
1845                         goto next_rx;
1846                 }
1847         }
1848
1849         if (RX_CMP_HASH_VALID(rxcmp)) {
1850                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1851                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1852
1853                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1854                 if (hash_type != 1 && hash_type != 3)
1855                         type = PKT_HASH_TYPE_L3;
1856                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1857         }
1858
1859         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1860         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1861
1862         if ((rxcmp1->rx_cmp_flags2 &
1863              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1864             (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1865                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1866                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1867                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1868
1869                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1870         }
1871
1872         skb_checksum_none_assert(skb);
1873         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1874                 if (dev->features & NETIF_F_RXCSUM) {
1875                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1876                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1877                 }
1878         } else {
1879                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1880                         if (dev->features & NETIF_F_RXCSUM)
1881                                 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1882                 }
1883         }
1884
1885         bnxt_deliver_skb(bp, bnapi, skb);
1886         rc = 1;
1887
1888 next_rx:
1889         cpr->rx_packets += 1;
1890         cpr->rx_bytes += len;
1891
1892 next_rx_no_len:
1893         rxr->rx_prod = NEXT_RX(prod);
1894         rxr->rx_next_cons = NEXT_RX(cons);
1895
1896 next_rx_no_prod_no_len:
1897         *raw_cons = tmp_raw_cons;
1898
1899         return rc;
1900 }
1901
1902 /* In netpoll mode, if we are using a combined completion ring, we need to
1903  * discard the rx packets and recycle the buffers.
1904  */
1905 static int bnxt_force_rx_discard(struct bnxt *bp,
1906                                  struct bnxt_cp_ring_info *cpr,
1907                                  u32 *raw_cons, u8 *event)
1908 {
1909         u32 tmp_raw_cons = *raw_cons;
1910         struct rx_cmp_ext *rxcmp1;
1911         struct rx_cmp *rxcmp;
1912         u16 cp_cons;
1913         u8 cmp_type;
1914
1915         cp_cons = RING_CMP(tmp_raw_cons);
1916         rxcmp = (struct rx_cmp *)
1917                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1918
1919         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1920         cp_cons = RING_CMP(tmp_raw_cons);
1921         rxcmp1 = (struct rx_cmp_ext *)
1922                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1923
1924         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1925                 return -EBUSY;
1926
1927         cmp_type = RX_CMP_TYPE(rxcmp);
1928         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1929                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1930                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1931         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1932                 struct rx_tpa_end_cmp_ext *tpa_end1;
1933
1934                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1935                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1936                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1937         }
1938         return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1939 }
1940
1941 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1942 {
1943         struct bnxt_fw_health *fw_health = bp->fw_health;
1944         u32 reg = fw_health->regs[reg_idx];
1945         u32 reg_type, reg_off, val = 0;
1946
1947         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1948         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1949         switch (reg_type) {
1950         case BNXT_FW_HEALTH_REG_TYPE_CFG:
1951                 pci_read_config_dword(bp->pdev, reg_off, &val);
1952                 break;
1953         case BNXT_FW_HEALTH_REG_TYPE_GRC:
1954                 reg_off = fw_health->mapped_regs[reg_idx];
1955                 fallthrough;
1956         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1957                 val = readl(bp->bar0 + reg_off);
1958                 break;
1959         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1960                 val = readl(bp->bar1 + reg_off);
1961                 break;
1962         }
1963         if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1964                 val &= fw_health->fw_reset_inprog_reg_mask;
1965         return val;
1966 }
1967
1968 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
1969 {
1970         int i;
1971
1972         for (i = 0; i < bp->rx_nr_rings; i++) {
1973                 u16 grp_idx = bp->rx_ring[i].bnapi->index;
1974                 struct bnxt_ring_grp_info *grp_info;
1975
1976                 grp_info = &bp->grp_info[grp_idx];
1977                 if (grp_info->agg_fw_ring_id == ring_id)
1978                         return grp_idx;
1979         }
1980         return INVALID_HW_RING_ID;
1981 }
1982
1983 #define BNXT_GET_EVENT_PORT(data)       \
1984         ((data) &                       \
1985          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1986
1987 #define BNXT_EVENT_RING_TYPE(data2)     \
1988         ((data2) &                      \
1989          ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
1990
1991 #define BNXT_EVENT_RING_TYPE_RX(data2)  \
1992         (BNXT_EVENT_RING_TYPE(data2) == \
1993          ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
1994
1995 static int bnxt_async_event_process(struct bnxt *bp,
1996                                     struct hwrm_async_event_cmpl *cmpl)
1997 {
1998         u16 event_id = le16_to_cpu(cmpl->event_id);
1999         u32 data1 = le32_to_cpu(cmpl->event_data1);
2000         u32 data2 = le32_to_cpu(cmpl->event_data2);
2001
2002         /* TODO CHIMP_FW: Define event id's for link change, error etc */
2003         switch (event_id) {
2004         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2005                 struct bnxt_link_info *link_info = &bp->link_info;
2006
2007                 if (BNXT_VF(bp))
2008                         goto async_event_process_exit;
2009
2010                 /* print unsupported speed warning in forced speed mode only */
2011                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2012                     (data1 & 0x20000)) {
2013                         u16 fw_speed = link_info->force_link_speed;
2014                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2015
2016                         if (speed != SPEED_UNKNOWN)
2017                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2018                                             speed);
2019                 }
2020                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2021         }
2022                 fallthrough;
2023         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2024         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2025                 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2026                 fallthrough;
2027         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2028                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2029                 break;
2030         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2031                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2032                 break;
2033         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2034                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
2035
2036                 if (BNXT_VF(bp))
2037                         break;
2038
2039                 if (bp->pf.port_id != port_id)
2040                         break;
2041
2042                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2043                 break;
2044         }
2045         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2046                 if (BNXT_PF(bp))
2047                         goto async_event_process_exit;
2048                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2049                 break;
2050         case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2051                 char *fatal_str = "non-fatal";
2052
2053                 if (!bp->fw_health)
2054                         goto async_event_process_exit;
2055
2056                 bp->fw_reset_timestamp = jiffies;
2057                 bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2058                 if (!bp->fw_reset_min_dsecs)
2059                         bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2060                 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2061                 if (!bp->fw_reset_max_dsecs)
2062                         bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2063                 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2064                         fatal_str = "fatal";
2065                         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2066                 }
2067                 netif_warn(bp, hw, bp->dev,
2068                            "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2069                            fatal_str, data1, data2,
2070                            bp->fw_reset_min_dsecs * 100,
2071                            bp->fw_reset_max_dsecs * 100);
2072                 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2073                 break;
2074         }
2075         case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2076                 struct bnxt_fw_health *fw_health = bp->fw_health;
2077
2078                 if (!fw_health)
2079                         goto async_event_process_exit;
2080
2081                 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2082                 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2083                 if (!fw_health->enabled) {
2084                         netif_info(bp, drv, bp->dev,
2085                                    "Error recovery info: error recovery[0]\n");
2086                         break;
2087                 }
2088                 fw_health->tmr_multiplier =
2089                         DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2090                                      bp->current_interval * 10);
2091                 fw_health->tmr_counter = fw_health->tmr_multiplier;
2092                 fw_health->last_fw_heartbeat =
2093                         bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2094                 fw_health->last_fw_reset_cnt =
2095                         bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2096                 netif_info(bp, drv, bp->dev,
2097                            "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n",
2098                            fw_health->master, fw_health->last_fw_reset_cnt,
2099                            bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG));
2100                 goto async_event_process_exit;
2101         }
2102         case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2103                 netif_notice(bp, hw, bp->dev,
2104                              "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2105                              data1, data2);
2106                 goto async_event_process_exit;
2107         case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2108                 struct bnxt_rx_ring_info *rxr;
2109                 u16 grp_idx;
2110
2111                 if (bp->flags & BNXT_FLAG_CHIP_P5)
2112                         goto async_event_process_exit;
2113
2114                 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2115                             BNXT_EVENT_RING_TYPE(data2), data1);
2116                 if (!BNXT_EVENT_RING_TYPE_RX(data2))
2117                         goto async_event_process_exit;
2118
2119                 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2120                 if (grp_idx == INVALID_HW_RING_ID) {
2121                         netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2122                                     data1);
2123                         goto async_event_process_exit;
2124                 }
2125                 rxr = bp->bnapi[grp_idx]->rx_ring;
2126                 bnxt_sched_reset(bp, rxr);
2127                 goto async_event_process_exit;
2128         }
2129         case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2130                 struct bnxt_fw_health *fw_health = bp->fw_health;
2131
2132                 netif_notice(bp, hw, bp->dev,
2133                              "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2134                              data1, data2);
2135                 if (fw_health) {
2136                         fw_health->echo_req_data1 = data1;
2137                         fw_health->echo_req_data2 = data2;
2138                         set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2139                         break;
2140                 }
2141                 goto async_event_process_exit;
2142         }
2143         default:
2144                 goto async_event_process_exit;
2145         }
2146         bnxt_queue_sp_work(bp);
2147 async_event_process_exit:
2148         bnxt_ulp_async_events(bp, cmpl);
2149         return 0;
2150 }
2151
2152 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2153 {
2154         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2155         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2156         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2157                                 (struct hwrm_fwd_req_cmpl *)txcmp;
2158
2159         switch (cmpl_type) {
2160         case CMPL_BASE_TYPE_HWRM_DONE:
2161                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
2162                 if (seq_id == bp->hwrm_intr_seq_id)
2163                         bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2164                 else
2165                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2166                 break;
2167
2168         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2169                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2170
2171                 if ((vf_id < bp->pf.first_vf_id) ||
2172                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2173                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2174                                    vf_id);
2175                         return -EINVAL;
2176                 }
2177
2178                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2179                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2180                 bnxt_queue_sp_work(bp);
2181                 break;
2182
2183         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2184                 bnxt_async_event_process(bp,
2185                                          (struct hwrm_async_event_cmpl *)txcmp);
2186
2187         default:
2188                 break;
2189         }
2190
2191         return 0;
2192 }
2193
2194 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2195 {
2196         struct bnxt_napi *bnapi = dev_instance;
2197         struct bnxt *bp = bnapi->bp;
2198         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2199         u32 cons = RING_CMP(cpr->cp_raw_cons);
2200
2201         cpr->event_ctr++;
2202         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2203         napi_schedule(&bnapi->napi);
2204         return IRQ_HANDLED;
2205 }
2206
2207 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2208 {
2209         u32 raw_cons = cpr->cp_raw_cons;
2210         u16 cons = RING_CMP(raw_cons);
2211         struct tx_cmp *txcmp;
2212
2213         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2214
2215         return TX_CMP_VALID(txcmp, raw_cons);
2216 }
2217
2218 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2219 {
2220         struct bnxt_napi *bnapi = dev_instance;
2221         struct bnxt *bp = bnapi->bp;
2222         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2223         u32 cons = RING_CMP(cpr->cp_raw_cons);
2224         u32 int_status;
2225
2226         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2227
2228         if (!bnxt_has_work(bp, cpr)) {
2229                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2230                 /* return if erroneous interrupt */
2231                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2232                         return IRQ_NONE;
2233         }
2234
2235         /* disable ring IRQ */
2236         BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2237
2238         /* Return here if interrupt is shared and is disabled. */
2239         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2240                 return IRQ_HANDLED;
2241
2242         napi_schedule(&bnapi->napi);
2243         return IRQ_HANDLED;
2244 }
2245
2246 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2247                             int budget)
2248 {
2249         struct bnxt_napi *bnapi = cpr->bnapi;
2250         u32 raw_cons = cpr->cp_raw_cons;
2251         u32 cons;
2252         int tx_pkts = 0;
2253         int rx_pkts = 0;
2254         u8 event = 0;
2255         struct tx_cmp *txcmp;
2256
2257         cpr->has_more_work = 0;
2258         cpr->had_work_done = 1;
2259         while (1) {
2260                 int rc;
2261
2262                 cons = RING_CMP(raw_cons);
2263                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2264
2265                 if (!TX_CMP_VALID(txcmp, raw_cons))
2266                         break;
2267
2268                 /* The valid test of the entry must be done first before
2269                  * reading any further.
2270                  */
2271                 dma_rmb();
2272                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2273                         tx_pkts++;
2274                         /* return full budget so NAPI will complete. */
2275                         if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2276                                 rx_pkts = budget;
2277                                 raw_cons = NEXT_RAW_CMP(raw_cons);
2278                                 if (budget)
2279                                         cpr->has_more_work = 1;
2280                                 break;
2281                         }
2282                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2283                         if (likely(budget))
2284                                 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2285                         else
2286                                 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2287                                                            &event);
2288                         if (likely(rc >= 0))
2289                                 rx_pkts += rc;
2290                         /* Increment rx_pkts when rc is -ENOMEM to count towards
2291                          * the NAPI budget.  Otherwise, we may potentially loop
2292                          * here forever if we consistently cannot allocate
2293                          * buffers.
2294                          */
2295                         else if (rc == -ENOMEM && budget)
2296                                 rx_pkts++;
2297                         else if (rc == -EBUSY)  /* partial completion */
2298                                 break;
2299                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
2300                                      CMPL_BASE_TYPE_HWRM_DONE) ||
2301                                     (TX_CMP_TYPE(txcmp) ==
2302                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2303                                     (TX_CMP_TYPE(txcmp) ==
2304                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2305                         bnxt_hwrm_handler(bp, txcmp);
2306                 }
2307                 raw_cons = NEXT_RAW_CMP(raw_cons);
2308
2309                 if (rx_pkts && rx_pkts == budget) {
2310                         cpr->has_more_work = 1;
2311                         break;
2312                 }
2313         }
2314
2315         if (event & BNXT_REDIRECT_EVENT)
2316                 xdp_do_flush_map();
2317
2318         if (event & BNXT_TX_EVENT) {
2319                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2320                 u16 prod = txr->tx_prod;
2321
2322                 /* Sync BD data before updating doorbell */
2323                 wmb();
2324
2325                 bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2326         }
2327
2328         cpr->cp_raw_cons = raw_cons;
2329         bnapi->tx_pkts += tx_pkts;
2330         bnapi->events |= event;
2331         return rx_pkts;
2332 }
2333
2334 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2335 {
2336         if (bnapi->tx_pkts) {
2337                 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2338                 bnapi->tx_pkts = 0;
2339         }
2340
2341         if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2342                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2343
2344                 if (bnapi->events & BNXT_AGG_EVENT)
2345                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2346                 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2347         }
2348         bnapi->events = 0;
2349 }
2350
2351 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2352                           int budget)
2353 {
2354         struct bnxt_napi *bnapi = cpr->bnapi;
2355         int rx_pkts;
2356
2357         rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2358
2359         /* ACK completion ring before freeing tx ring and producing new
2360          * buffers in rx/agg rings to prevent overflowing the completion
2361          * ring.
2362          */
2363         bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2364
2365         __bnxt_poll_work_done(bp, bnapi);
2366         return rx_pkts;
2367 }
2368
2369 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2370 {
2371         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2372         struct bnxt *bp = bnapi->bp;
2373         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2374         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2375         struct tx_cmp *txcmp;
2376         struct rx_cmp_ext *rxcmp1;
2377         u32 cp_cons, tmp_raw_cons;
2378         u32 raw_cons = cpr->cp_raw_cons;
2379         u32 rx_pkts = 0;
2380         u8 event = 0;
2381
2382         while (1) {
2383                 int rc;
2384
2385                 cp_cons = RING_CMP(raw_cons);
2386                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2387
2388                 if (!TX_CMP_VALID(txcmp, raw_cons))
2389                         break;
2390
2391                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2392                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2393                         cp_cons = RING_CMP(tmp_raw_cons);
2394                         rxcmp1 = (struct rx_cmp_ext *)
2395                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2396
2397                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2398                                 break;
2399
2400                         /* force an error to recycle the buffer */
2401                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2402                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2403
2404                         rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2405                         if (likely(rc == -EIO) && budget)
2406                                 rx_pkts++;
2407                         else if (rc == -EBUSY)  /* partial completion */
2408                                 break;
2409                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
2410                                     CMPL_BASE_TYPE_HWRM_DONE)) {
2411                         bnxt_hwrm_handler(bp, txcmp);
2412                 } else {
2413                         netdev_err(bp->dev,
2414                                    "Invalid completion received on special ring\n");
2415                 }
2416                 raw_cons = NEXT_RAW_CMP(raw_cons);
2417
2418                 if (rx_pkts == budget)
2419                         break;
2420         }
2421
2422         cpr->cp_raw_cons = raw_cons;
2423         BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2424         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2425
2426         if (event & BNXT_AGG_EVENT)
2427                 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2428
2429         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2430                 napi_complete_done(napi, rx_pkts);
2431                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2432         }
2433         return rx_pkts;
2434 }
2435
2436 static int bnxt_poll(struct napi_struct *napi, int budget)
2437 {
2438         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2439         struct bnxt *bp = bnapi->bp;
2440         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2441         int work_done = 0;
2442
2443         if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2444                 napi_complete(napi);
2445                 return 0;
2446         }
2447         while (1) {
2448                 work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2449
2450                 if (work_done >= budget) {
2451                         if (!budget)
2452                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2453                         break;
2454                 }
2455
2456                 if (!bnxt_has_work(bp, cpr)) {
2457                         if (napi_complete_done(napi, work_done))
2458                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2459                         break;
2460                 }
2461         }
2462         if (bp->flags & BNXT_FLAG_DIM) {
2463                 struct dim_sample dim_sample = {};
2464
2465                 dim_update_sample(cpr->event_ctr,
2466                                   cpr->rx_packets,
2467                                   cpr->rx_bytes,
2468                                   &dim_sample);
2469                 net_dim(&cpr->dim, dim_sample);
2470         }
2471         return work_done;
2472 }
2473
2474 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2475 {
2476         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2477         int i, work_done = 0;
2478
2479         for (i = 0; i < 2; i++) {
2480                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2481
2482                 if (cpr2) {
2483                         work_done += __bnxt_poll_work(bp, cpr2,
2484                                                       budget - work_done);
2485                         cpr->has_more_work |= cpr2->has_more_work;
2486                 }
2487         }
2488         return work_done;
2489 }
2490
2491 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2492                                  u64 dbr_type)
2493 {
2494         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2495         int i;
2496
2497         for (i = 0; i < 2; i++) {
2498                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2499                 struct bnxt_db_info *db;
2500
2501                 if (cpr2 && cpr2->had_work_done) {
2502                         db = &cpr2->cp_db;
2503                         writeq(db->db_key64 | dbr_type |
2504                                RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2505                         cpr2->had_work_done = 0;
2506                 }
2507         }
2508         __bnxt_poll_work_done(bp, bnapi);
2509 }
2510
2511 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2512 {
2513         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2514         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2515         u32 raw_cons = cpr->cp_raw_cons;
2516         struct bnxt *bp = bnapi->bp;
2517         struct nqe_cn *nqcmp;
2518         int work_done = 0;
2519         u32 cons;
2520
2521         if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2522                 napi_complete(napi);
2523                 return 0;
2524         }
2525         if (cpr->has_more_work) {
2526                 cpr->has_more_work = 0;
2527                 work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2528         }
2529         while (1) {
2530                 cons = RING_CMP(raw_cons);
2531                 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2532
2533                 if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2534                         if (cpr->has_more_work)
2535                                 break;
2536
2537                         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2538                         cpr->cp_raw_cons = raw_cons;
2539                         if (napi_complete_done(napi, work_done))
2540                                 BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2541                                                   cpr->cp_raw_cons);
2542                         return work_done;
2543                 }
2544
2545                 /* The valid test of the entry must be done first before
2546                  * reading any further.
2547                  */
2548                 dma_rmb();
2549
2550                 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2551                         u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2552                         struct bnxt_cp_ring_info *cpr2;
2553
2554                         cpr2 = cpr->cp_ring_arr[idx];
2555                         work_done += __bnxt_poll_work(bp, cpr2,
2556                                                       budget - work_done);
2557                         cpr->has_more_work |= cpr2->has_more_work;
2558                 } else {
2559                         bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2560                 }
2561                 raw_cons = NEXT_RAW_CMP(raw_cons);
2562         }
2563         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2564         if (raw_cons != cpr->cp_raw_cons) {
2565                 cpr->cp_raw_cons = raw_cons;
2566                 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2567         }
2568         return work_done;
2569 }
2570
2571 static void bnxt_free_tx_skbs(struct bnxt *bp)
2572 {
2573         int i, max_idx;
2574         struct pci_dev *pdev = bp->pdev;
2575
2576         if (!bp->tx_ring)
2577                 return;
2578
2579         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2580         for (i = 0; i < bp->tx_nr_rings; i++) {
2581                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2582                 int j;
2583
2584                 for (j = 0; j < max_idx;) {
2585                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2586                         struct sk_buff *skb;
2587                         int k, last;
2588
2589                         if (i < bp->tx_nr_rings_xdp &&
2590                             tx_buf->action == XDP_REDIRECT) {
2591                                 dma_unmap_single(&pdev->dev,
2592                                         dma_unmap_addr(tx_buf, mapping),
2593                                         dma_unmap_len(tx_buf, len),
2594                                         PCI_DMA_TODEVICE);
2595                                 xdp_return_frame(tx_buf->xdpf);
2596                                 tx_buf->action = 0;
2597                                 tx_buf->xdpf = NULL;
2598                                 j++;
2599                                 continue;
2600                         }
2601
2602                         skb = tx_buf->skb;
2603                         if (!skb) {
2604                                 j++;
2605                                 continue;
2606                         }
2607
2608                         tx_buf->skb = NULL;
2609
2610                         if (tx_buf->is_push) {
2611                                 dev_kfree_skb(skb);
2612                                 j += 2;
2613                                 continue;
2614                         }
2615
2616                         dma_unmap_single(&pdev->dev,
2617                                          dma_unmap_addr(tx_buf, mapping),
2618                                          skb_headlen(skb),
2619                                          PCI_DMA_TODEVICE);
2620
2621                         last = tx_buf->nr_frags;
2622                         j += 2;
2623                         for (k = 0; k < last; k++, j++) {
2624                                 int ring_idx = j & bp->tx_ring_mask;
2625                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2626
2627                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2628                                 dma_unmap_page(
2629                                         &pdev->dev,
2630                                         dma_unmap_addr(tx_buf, mapping),
2631                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2632                         }
2633                         dev_kfree_skb(skb);
2634                 }
2635                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2636         }
2637 }
2638
2639 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2640 {
2641         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2642         struct pci_dev *pdev = bp->pdev;
2643         struct bnxt_tpa_idx_map *map;
2644         int i, max_idx, max_agg_idx;
2645
2646         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2647         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2648         if (!rxr->rx_tpa)
2649                 goto skip_rx_tpa_free;
2650
2651         for (i = 0; i < bp->max_tpa; i++) {
2652                 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2653                 u8 *data = tpa_info->data;
2654
2655                 if (!data)
2656                         continue;
2657
2658                 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2659                                        bp->rx_buf_use_size, bp->rx_dir,
2660                                        DMA_ATTR_WEAK_ORDERING);
2661
2662                 tpa_info->data = NULL;
2663
2664                 kfree(data);
2665         }
2666
2667 skip_rx_tpa_free:
2668         for (i = 0; i < max_idx; i++) {
2669                 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2670                 dma_addr_t mapping = rx_buf->mapping;
2671                 void *data = rx_buf->data;
2672
2673                 if (!data)
2674                         continue;
2675
2676                 rx_buf->data = NULL;
2677                 if (BNXT_RX_PAGE_MODE(bp)) {
2678                         mapping -= bp->rx_dma_offset;
2679                         dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2680                                              bp->rx_dir,
2681                                              DMA_ATTR_WEAK_ORDERING);
2682                         page_pool_recycle_direct(rxr->page_pool, data);
2683                 } else {
2684                         dma_unmap_single_attrs(&pdev->dev, mapping,
2685                                                bp->rx_buf_use_size, bp->rx_dir,
2686                                                DMA_ATTR_WEAK_ORDERING);
2687                         kfree(data);
2688                 }
2689         }
2690         for (i = 0; i < max_agg_idx; i++) {
2691                 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2692                 struct page *page = rx_agg_buf->page;
2693
2694                 if (!page)
2695                         continue;
2696
2697                 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2698                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
2699                                      DMA_ATTR_WEAK_ORDERING);
2700
2701                 rx_agg_buf->page = NULL;
2702                 __clear_bit(i, rxr->rx_agg_bmap);
2703
2704                 __free_page(page);
2705         }
2706         if (rxr->rx_page) {
2707                 __free_page(rxr->rx_page);
2708                 rxr->rx_page = NULL;
2709         }
2710         map = rxr->rx_tpa_idx_map;
2711         if (map)
2712                 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2713 }
2714
2715 static void bnxt_free_rx_skbs(struct bnxt *bp)
2716 {
2717         int i;
2718
2719         if (!bp->rx_ring)
2720                 return;
2721
2722         for (i = 0; i < bp->rx_nr_rings; i++)
2723                 bnxt_free_one_rx_ring_skbs(bp, i);
2724 }
2725
2726 static void bnxt_free_skbs(struct bnxt *bp)
2727 {
2728         bnxt_free_tx_skbs(bp);
2729         bnxt_free_rx_skbs(bp);
2730 }
2731
2732 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2733 {
2734         u8 init_val = mem_init->init_val;
2735         u16 offset = mem_init->offset;
2736         u8 *p2 = p;
2737         int i;
2738
2739         if (!init_val)
2740                 return;
2741         if (offset == BNXT_MEM_INVALID_OFFSET) {
2742                 memset(p, init_val, len);
2743                 return;
2744         }
2745         for (i = 0; i < len; i += mem_init->size)
2746                 *(p2 + i + offset) = init_val;
2747 }
2748
2749 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2750 {
2751         struct pci_dev *pdev = bp->pdev;
2752         int i;
2753
2754         for (i = 0; i < rmem->nr_pages; i++) {
2755                 if (!rmem->pg_arr[i])
2756                         continue;
2757
2758                 dma_free_coherent(&pdev->dev, rmem->page_size,
2759                                   rmem->pg_arr[i], rmem->dma_arr[i]);
2760
2761                 rmem->pg_arr[i] = NULL;
2762         }
2763         if (rmem->pg_tbl) {
2764                 size_t pg_tbl_size = rmem->nr_pages * 8;
2765
2766                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2767                         pg_tbl_size = rmem->page_size;
2768                 dma_free_coherent(&pdev->dev, pg_tbl_size,
2769                                   rmem->pg_tbl, rmem->pg_tbl_map);
2770                 rmem->pg_tbl = NULL;
2771         }
2772         if (rmem->vmem_size && *rmem->vmem) {
2773                 vfree(*rmem->vmem);
2774                 *rmem->vmem = NULL;
2775         }
2776 }
2777
2778 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2779 {
2780         struct pci_dev *pdev = bp->pdev;
2781         u64 valid_bit = 0;
2782         int i;
2783
2784         if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2785                 valid_bit = PTU_PTE_VALID;
2786         if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2787                 size_t pg_tbl_size = rmem->nr_pages * 8;
2788
2789                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2790                         pg_tbl_size = rmem->page_size;
2791                 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2792                                                   &rmem->pg_tbl_map,
2793                                                   GFP_KERNEL);
2794                 if (!rmem->pg_tbl)
2795                         return -ENOMEM;
2796         }
2797
2798         for (i = 0; i < rmem->nr_pages; i++) {
2799                 u64 extra_bits = valid_bit;
2800
2801                 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2802                                                      rmem->page_size,
2803                                                      &rmem->dma_arr[i],
2804                                                      GFP_KERNEL);
2805                 if (!rmem->pg_arr[i])
2806                         return -ENOMEM;
2807
2808                 if (rmem->mem_init)
2809                         bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2810                                           rmem->page_size);
2811                 if (rmem->nr_pages > 1 || rmem->depth > 0) {
2812                         if (i == rmem->nr_pages - 2 &&
2813                             (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2814                                 extra_bits |= PTU_PTE_NEXT_TO_LAST;
2815                         else if (i == rmem->nr_pages - 1 &&
2816                                  (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2817                                 extra_bits |= PTU_PTE_LAST;
2818                         rmem->pg_tbl[i] =
2819                                 cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2820                 }
2821         }
2822
2823         if (rmem->vmem_size) {
2824                 *rmem->vmem = vzalloc(rmem->vmem_size);
2825                 if (!(*rmem->vmem))
2826                         return -ENOMEM;
2827         }
2828         return 0;
2829 }
2830
2831 static void bnxt_free_tpa_info(struct bnxt *bp)
2832 {
2833         int i;
2834
2835         for (i = 0; i < bp->rx_nr_rings; i++) {
2836                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2837
2838                 kfree(rxr->rx_tpa_idx_map);
2839                 rxr->rx_tpa_idx_map = NULL;
2840                 if (rxr->rx_tpa) {
2841                         kfree(rxr->rx_tpa[0].agg_arr);
2842                         rxr->rx_tpa[0].agg_arr = NULL;
2843                 }
2844                 kfree(rxr->rx_tpa);
2845                 rxr->rx_tpa = NULL;
2846         }
2847 }
2848
2849 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2850 {
2851         int i, j, total_aggs = 0;
2852
2853         bp->max_tpa = MAX_TPA;
2854         if (bp->flags & BNXT_FLAG_CHIP_P5) {
2855                 if (!bp->max_tpa_v2)
2856                         return 0;
2857                 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2858                 total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2859         }
2860
2861         for (i = 0; i < bp->rx_nr_rings; i++) {
2862                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2863                 struct rx_agg_cmp *agg;
2864
2865                 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2866                                       GFP_KERNEL);
2867                 if (!rxr->rx_tpa)
2868                         return -ENOMEM;
2869
2870                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2871                         continue;
2872                 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2873                 rxr->rx_tpa[0].agg_arr = agg;
2874                 if (!agg)
2875                         return -ENOMEM;
2876                 for (j = 1; j < bp->max_tpa; j++)
2877                         rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2878                 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2879                                               GFP_KERNEL);
2880                 if (!rxr->rx_tpa_idx_map)
2881                         return -ENOMEM;
2882         }
2883         return 0;
2884 }
2885
2886 static void bnxt_free_rx_rings(struct bnxt *bp)
2887 {
2888         int i;
2889
2890         if (!bp->rx_ring)
2891                 return;
2892
2893         bnxt_free_tpa_info(bp);
2894         for (i = 0; i < bp->rx_nr_rings; i++) {
2895                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2896                 struct bnxt_ring_struct *ring;
2897
2898                 if (rxr->xdp_prog)
2899                         bpf_prog_put(rxr->xdp_prog);
2900
2901                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2902                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2903
2904                 page_pool_destroy(rxr->page_pool);
2905                 rxr->page_pool = NULL;
2906
2907                 kfree(rxr->rx_agg_bmap);
2908                 rxr->rx_agg_bmap = NULL;
2909
2910                 ring = &rxr->rx_ring_struct;
2911                 bnxt_free_ring(bp, &ring->ring_mem);
2912
2913                 ring = &rxr->rx_agg_ring_struct;
2914                 bnxt_free_ring(bp, &ring->ring_mem);
2915         }
2916 }
2917
2918 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2919                                    struct bnxt_rx_ring_info *rxr)
2920 {
2921         struct page_pool_params pp = { 0 };
2922
2923         pp.pool_size = bp->rx_ring_size;
2924         pp.nid = dev_to_node(&bp->pdev->dev);
2925         pp.dev = &bp->pdev->dev;
2926         pp.dma_dir = DMA_BIDIRECTIONAL;
2927
2928         rxr->page_pool = page_pool_create(&pp);
2929         if (IS_ERR(rxr->page_pool)) {
2930                 int err = PTR_ERR(rxr->page_pool);
2931
2932                 rxr->page_pool = NULL;
2933                 return err;
2934         }
2935         return 0;
2936 }
2937
2938 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2939 {
2940         int i, rc = 0, agg_rings = 0;
2941
2942         if (!bp->rx_ring)
2943                 return -ENOMEM;
2944
2945         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2946                 agg_rings = 1;
2947
2948         for (i = 0; i < bp->rx_nr_rings; i++) {
2949                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2950                 struct bnxt_ring_struct *ring;
2951
2952                 ring = &rxr->rx_ring_struct;
2953
2954                 rc = bnxt_alloc_rx_page_pool(bp, rxr);
2955                 if (rc)
2956                         return rc;
2957
2958                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
2959                 if (rc < 0)
2960                         return rc;
2961
2962                 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2963                                                 MEM_TYPE_PAGE_POOL,
2964                                                 rxr->page_pool);
2965                 if (rc) {
2966                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2967                         return rc;
2968                 }
2969
2970                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2971                 if (rc)
2972                         return rc;
2973
2974                 ring->grp_idx = i;
2975                 if (agg_rings) {
2976                         u16 mem_size;
2977
2978                         ring = &rxr->rx_agg_ring_struct;
2979                         rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2980                         if (rc)
2981                                 return rc;
2982
2983                         ring->grp_idx = i;
2984                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2985                         mem_size = rxr->rx_agg_bmap_size / 8;
2986                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2987                         if (!rxr->rx_agg_bmap)
2988                                 return -ENOMEM;
2989                 }
2990         }
2991         if (bp->flags & BNXT_FLAG_TPA)
2992                 rc = bnxt_alloc_tpa_info(bp);
2993         return rc;
2994 }
2995
2996 static void bnxt_free_tx_rings(struct bnxt *bp)
2997 {
2998         int i;
2999         struct pci_dev *pdev = bp->pdev;
3000
3001         if (!bp->tx_ring)
3002                 return;
3003
3004         for (i = 0; i < bp->tx_nr_rings; i++) {
3005                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3006                 struct bnxt_ring_struct *ring;
3007
3008                 if (txr->tx_push) {
3009                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
3010                                           txr->tx_push, txr->tx_push_mapping);
3011                         txr->tx_push = NULL;
3012                 }
3013
3014                 ring = &txr->tx_ring_struct;
3015
3016                 bnxt_free_ring(bp, &ring->ring_mem);
3017         }
3018 }
3019
3020 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3021 {
3022         int i, j, rc;
3023         struct pci_dev *pdev = bp->pdev;
3024
3025         bp->tx_push_size = 0;
3026         if (bp->tx_push_thresh) {
3027                 int push_size;
3028
3029                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3030                                         bp->tx_push_thresh);
3031
3032                 if (push_size > 256) {
3033                         push_size = 0;
3034                         bp->tx_push_thresh = 0;
3035                 }
3036
3037                 bp->tx_push_size = push_size;
3038         }
3039
3040         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3041                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3042                 struct bnxt_ring_struct *ring;
3043                 u8 qidx;
3044
3045                 ring = &txr->tx_ring_struct;
3046
3047                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3048                 if (rc)
3049                         return rc;
3050
3051                 ring->grp_idx = txr->bnapi->index;
3052                 if (bp->tx_push_size) {
3053                         dma_addr_t mapping;
3054
3055                         /* One pre-allocated DMA buffer to backup
3056                          * TX push operation
3057                          */
3058                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
3059                                                 bp->tx_push_size,
3060                                                 &txr->tx_push_mapping,
3061                                                 GFP_KERNEL);
3062
3063                         if (!txr->tx_push)
3064                                 return -ENOMEM;
3065
3066                         mapping = txr->tx_push_mapping +
3067                                 sizeof(struct tx_push_bd);
3068                         txr->data_mapping = cpu_to_le64(mapping);
3069                 }
3070                 qidx = bp->tc_to_qidx[j];
3071                 ring->queue_id = bp->q_info[qidx].queue_id;
3072                 if (i < bp->tx_nr_rings_xdp)
3073                         continue;
3074                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3075                         j++;
3076         }
3077         return 0;
3078 }
3079
3080 static void bnxt_free_cp_rings(struct bnxt *bp)
3081 {
3082         int i;
3083
3084         if (!bp->bnapi)
3085                 return;
3086
3087         for (i = 0; i < bp->cp_nr_rings; i++) {
3088                 struct bnxt_napi *bnapi = bp->bnapi[i];
3089                 struct bnxt_cp_ring_info *cpr;
3090                 struct bnxt_ring_struct *ring;
3091                 int j;
3092
3093                 if (!bnapi)
3094                         continue;
3095
3096                 cpr = &bnapi->cp_ring;
3097                 ring = &cpr->cp_ring_struct;
3098
3099                 bnxt_free_ring(bp, &ring->ring_mem);
3100
3101                 for (j = 0; j < 2; j++) {
3102                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3103
3104                         if (cpr2) {
3105                                 ring = &cpr2->cp_ring_struct;
3106                                 bnxt_free_ring(bp, &ring->ring_mem);
3107                                 kfree(cpr2);
3108                                 cpr->cp_ring_arr[j] = NULL;
3109                         }
3110                 }
3111         }
3112 }
3113
3114 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3115 {
3116         struct bnxt_ring_mem_info *rmem;
3117         struct bnxt_ring_struct *ring;
3118         struct bnxt_cp_ring_info *cpr;
3119         int rc;
3120
3121         cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3122         if (!cpr)
3123                 return NULL;
3124
3125         ring = &cpr->cp_ring_struct;
3126         rmem = &ring->ring_mem;
3127         rmem->nr_pages = bp->cp_nr_pages;
3128         rmem->page_size = HW_CMPD_RING_SIZE;
3129         rmem->pg_arr = (void **)cpr->cp_desc_ring;
3130         rmem->dma_arr = cpr->cp_desc_mapping;
3131         rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3132         rc = bnxt_alloc_ring(bp, rmem);
3133         if (rc) {
3134                 bnxt_free_ring(bp, rmem);
3135                 kfree(cpr);
3136                 cpr = NULL;
3137         }
3138         return cpr;
3139 }
3140
3141 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3142 {
3143         bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3144         int i, rc, ulp_base_vec, ulp_msix;
3145
3146         ulp_msix = bnxt_get_ulp_msix_num(bp);
3147         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3148         for (i = 0; i < bp->cp_nr_rings; i++) {
3149                 struct bnxt_napi *bnapi = bp->bnapi[i];
3150                 struct bnxt_cp_ring_info *cpr;
3151                 struct bnxt_ring_struct *ring;
3152
3153                 if (!bnapi)
3154                         continue;
3155
3156                 cpr = &bnapi->cp_ring;
3157                 cpr->bnapi = bnapi;
3158                 ring = &cpr->cp_ring_struct;
3159
3160                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3161                 if (rc)
3162                         return rc;
3163
3164                 if (ulp_msix && i >= ulp_base_vec)
3165                         ring->map_idx = i + ulp_msix;
3166                 else
3167                         ring->map_idx = i;
3168
3169                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3170                         continue;
3171
3172                 if (i < bp->rx_nr_rings) {
3173                         struct bnxt_cp_ring_info *cpr2 =
3174                                 bnxt_alloc_cp_sub_ring(bp);
3175
3176                         cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3177                         if (!cpr2)
3178                                 return -ENOMEM;
3179                         cpr2->bnapi = bnapi;
3180                 }
3181                 if ((sh && i < bp->tx_nr_rings) ||
3182                     (!sh && i >= bp->rx_nr_rings)) {
3183                         struct bnxt_cp_ring_info *cpr2 =
3184                                 bnxt_alloc_cp_sub_ring(bp);
3185
3186                         cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3187                         if (!cpr2)
3188                                 return -ENOMEM;
3189                         cpr2->bnapi = bnapi;
3190                 }
3191         }
3192         return 0;
3193 }
3194
3195 static void bnxt_init_ring_struct(struct bnxt *bp)
3196 {
3197         int i;
3198
3199         for (i = 0; i < bp->cp_nr_rings; i++) {
3200                 struct bnxt_napi *bnapi = bp->bnapi[i];
3201                 struct bnxt_ring_mem_info *rmem;
3202                 struct bnxt_cp_ring_info *cpr;
3203                 struct bnxt_rx_ring_info *rxr;
3204                 struct bnxt_tx_ring_info *txr;
3205                 struct bnxt_ring_struct *ring;
3206
3207                 if (!bnapi)
3208                         continue;
3209
3210                 cpr = &bnapi->cp_ring;
3211                 ring = &cpr->cp_ring_struct;
3212                 rmem = &ring->ring_mem;
3213                 rmem->nr_pages = bp->cp_nr_pages;
3214                 rmem->page_size = HW_CMPD_RING_SIZE;
3215                 rmem->pg_arr = (void **)cpr->cp_desc_ring;
3216                 rmem->dma_arr = cpr->cp_desc_mapping;
3217                 rmem->vmem_size = 0;
3218
3219                 rxr = bnapi->rx_ring;
3220                 if (!rxr)
3221                         goto skip_rx;
3222
3223                 ring = &rxr->rx_ring_struct;
3224                 rmem = &ring->ring_mem;
3225                 rmem->nr_pages = bp->rx_nr_pages;
3226                 rmem->page_size = HW_RXBD_RING_SIZE;
3227                 rmem->pg_arr = (void **)rxr->rx_desc_ring;
3228                 rmem->dma_arr = rxr->rx_desc_mapping;
3229                 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3230                 rmem->vmem = (void **)&rxr->rx_buf_ring;
3231
3232                 ring = &rxr->rx_agg_ring_struct;
3233                 rmem = &ring->ring_mem;
3234                 rmem->nr_pages = bp->rx_agg_nr_pages;
3235                 rmem->page_size = HW_RXBD_RING_SIZE;
3236                 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3237                 rmem->dma_arr = rxr->rx_agg_desc_mapping;
3238                 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3239                 rmem->vmem = (void **)&rxr->rx_agg_ring;
3240
3241 skip_rx:
3242                 txr = bnapi->tx_ring;
3243                 if (!txr)
3244                         continue;
3245
3246                 ring = &txr->tx_ring_struct;
3247                 rmem = &ring->ring_mem;
3248                 rmem->nr_pages = bp->tx_nr_pages;
3249                 rmem->page_size = HW_RXBD_RING_SIZE;
3250                 rmem->pg_arr = (void **)txr->tx_desc_ring;
3251                 rmem->dma_arr = txr->tx_desc_mapping;
3252                 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3253                 rmem->vmem = (void **)&txr->tx_buf_ring;
3254         }
3255 }
3256
3257 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3258 {
3259         int i;
3260         u32 prod;
3261         struct rx_bd **rx_buf_ring;
3262
3263         rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3264         for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3265                 int j;
3266                 struct rx_bd *rxbd;
3267
3268                 rxbd = rx_buf_ring[i];
3269                 if (!rxbd)
3270                         continue;
3271
3272                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3273                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3274                         rxbd->rx_bd_opaque = prod;
3275                 }
3276         }
3277 }
3278
3279 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3280 {
3281         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3282         struct net_device *dev = bp->dev;
3283         u32 prod;
3284         int i;
3285
3286         prod = rxr->rx_prod;
3287         for (i = 0; i < bp->rx_ring_size; i++) {
3288                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3289                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3290                                     ring_nr, i, bp->rx_ring_size);
3291                         break;
3292                 }
3293                 prod = NEXT_RX(prod);
3294         }
3295         rxr->rx_prod = prod;
3296
3297         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3298                 return 0;
3299
3300         prod = rxr->rx_agg_prod;
3301         for (i = 0; i < bp->rx_agg_ring_size; i++) {
3302                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3303                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3304                                     ring_nr, i, bp->rx_ring_size);
3305                         break;
3306                 }
3307                 prod = NEXT_RX_AGG(prod);
3308         }
3309         rxr->rx_agg_prod = prod;
3310
3311         if (rxr->rx_tpa) {
3312                 dma_addr_t mapping;
3313                 u8 *data;
3314
3315                 for (i = 0; i < bp->max_tpa; i++) {
3316                         data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3317                         if (!data)
3318                                 return -ENOMEM;
3319
3320                         rxr->rx_tpa[i].data = data;
3321                         rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3322                         rxr->rx_tpa[i].mapping = mapping;
3323                 }
3324         }
3325         return 0;
3326 }
3327
3328 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3329 {
3330         struct bnxt_rx_ring_info *rxr;
3331         struct bnxt_ring_struct *ring;
3332         u32 type;
3333
3334         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3335                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3336
3337         if (NET_IP_ALIGN == 2)
3338                 type |= RX_BD_FLAGS_SOP;
3339
3340         rxr = &bp->rx_ring[ring_nr];
3341         ring = &rxr->rx_ring_struct;
3342         bnxt_init_rxbd_pages(ring, type);
3343
3344         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3345                 bpf_prog_add(bp->xdp_prog, 1);
3346                 rxr->xdp_prog = bp->xdp_prog;
3347         }
3348         ring->fw_ring_id = INVALID_HW_RING_ID;
3349
3350         ring = &rxr->rx_agg_ring_struct;
3351         ring->fw_ring_id = INVALID_HW_RING_ID;
3352
3353         if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3354                 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3355                         RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3356
3357                 bnxt_init_rxbd_pages(ring, type);
3358         }
3359
3360         return bnxt_alloc_one_rx_ring(bp, ring_nr);
3361 }
3362
3363 static void bnxt_init_cp_rings(struct bnxt *bp)
3364 {
3365         int i, j;
3366
3367         for (i = 0; i < bp->cp_nr_rings; i++) {
3368                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3369                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3370
3371                 ring->fw_ring_id = INVALID_HW_RING_ID;
3372                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3373                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3374                 for (j = 0; j < 2; j++) {
3375                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3376
3377                         if (!cpr2)
3378                                 continue;
3379
3380                         ring = &cpr2->cp_ring_struct;
3381                         ring->fw_ring_id = INVALID_HW_RING_ID;
3382                         cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3383                         cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3384                 }
3385         }
3386 }
3387
3388 static int bnxt_init_rx_rings(struct bnxt *bp)
3389 {
3390         int i, rc = 0;
3391
3392         if (BNXT_RX_PAGE_MODE(bp)) {
3393                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3394                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3395         } else {
3396                 bp->rx_offset = BNXT_RX_OFFSET;
3397                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3398         }
3399
3400         for (i = 0; i < bp->rx_nr_rings; i++) {
3401                 rc = bnxt_init_one_rx_ring(bp, i);
3402                 if (rc)
3403                         break;
3404         }
3405
3406         return rc;
3407 }
3408
3409 static int bnxt_init_tx_rings(struct bnxt *bp)
3410 {
3411         u16 i;
3412
3413         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3414                                    MAX_SKB_FRAGS + 1);
3415
3416         for (i = 0; i < bp->tx_nr_rings; i++) {
3417                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3418                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3419
3420                 ring->fw_ring_id = INVALID_HW_RING_ID;
3421         }
3422
3423         return 0;
3424 }
3425
3426 static void bnxt_free_ring_grps(struct bnxt *bp)
3427 {
3428         kfree(bp->grp_info);
3429         bp->grp_info = NULL;
3430 }
3431
3432 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3433 {
3434         int i;
3435
3436         if (irq_re_init) {
3437                 bp->grp_info = kcalloc(bp->cp_nr_rings,
3438                                        sizeof(struct bnxt_ring_grp_info),
3439                                        GFP_KERNEL);
3440                 if (!bp->grp_info)
3441                         return -ENOMEM;
3442         }
3443         for (i = 0; i < bp->cp_nr_rings; i++) {
3444                 if (irq_re_init)
3445                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3446                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3447                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3448                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3449                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3450         }
3451         return 0;
3452 }
3453
3454 static void bnxt_free_vnics(struct bnxt *bp)
3455 {
3456         kfree(bp->vnic_info);
3457         bp->vnic_info = NULL;
3458         bp->nr_vnics = 0;
3459 }
3460
3461 static int bnxt_alloc_vnics(struct bnxt *bp)
3462 {
3463         int num_vnics = 1;
3464
3465 #ifdef CONFIG_RFS_ACCEL
3466         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3467                 num_vnics += bp->rx_nr_rings;
3468 #endif
3469
3470         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3471                 num_vnics++;
3472
3473         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3474                                 GFP_KERNEL);
3475         if (!bp->vnic_info)
3476                 return -ENOMEM;
3477
3478         bp->nr_vnics = num_vnics;
3479         return 0;
3480 }
3481
3482 static void bnxt_init_vnics(struct bnxt *bp)
3483 {
3484         int i;
3485
3486         for (i = 0; i < bp->nr_vnics; i++) {
3487                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3488                 int j;
3489
3490                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
3491                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3492                         vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3493
3494                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3495
3496                 if (bp->vnic_info[i].rss_hash_key) {
3497                         if (i == 0)
3498                                 prandom_bytes(vnic->rss_hash_key,
3499                                               HW_HASH_KEY_SIZE);
3500                         else
3501                                 memcpy(vnic->rss_hash_key,
3502                                        bp->vnic_info[0].rss_hash_key,
3503                                        HW_HASH_KEY_SIZE);
3504                 }
3505         }
3506 }
3507
3508 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3509 {
3510         int pages;
3511
3512         pages = ring_size / desc_per_pg;
3513
3514         if (!pages)
3515                 return 1;
3516
3517         pages++;
3518
3519         while (pages & (pages - 1))
3520                 pages++;
3521
3522         return pages;
3523 }
3524
3525 void bnxt_set_tpa_flags(struct bnxt *bp)
3526 {
3527         bp->flags &= ~BNXT_FLAG_TPA;
3528         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3529                 return;
3530         if (bp->dev->features & NETIF_F_LRO)
3531                 bp->flags |= BNXT_FLAG_LRO;
3532         else if (bp->dev->features & NETIF_F_GRO_HW)
3533                 bp->flags |= BNXT_FLAG_GRO;
3534 }
3535
3536 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3537  * be set on entry.
3538  */
3539 void bnxt_set_ring_params(struct bnxt *bp)
3540 {
3541         u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3542         u32 agg_factor = 0, agg_ring_size = 0;
3543
3544         /* 8 for CRC and VLAN */
3545         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3546
3547         rx_space = rx_size + NET_SKB_PAD +
3548                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3549
3550         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3551         ring_size = bp->rx_ring_size;
3552         bp->rx_agg_ring_size = 0;
3553         bp->rx_agg_nr_pages = 0;
3554
3555         if (bp->flags & BNXT_FLAG_TPA)
3556                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3557
3558         bp->flags &= ~BNXT_FLAG_JUMBO;
3559         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3560                 u32 jumbo_factor;
3561
3562                 bp->flags |= BNXT_FLAG_JUMBO;
3563                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3564                 if (jumbo_factor > agg_factor)
3565                         agg_factor = jumbo_factor;
3566         }
3567         agg_ring_size = ring_size * agg_factor;
3568
3569         if (agg_ring_size) {
3570                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3571                                                         RX_DESC_CNT);
3572                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3573                         u32 tmp = agg_ring_size;
3574
3575                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3576                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3577                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3578                                     tmp, agg_ring_size);
3579                 }
3580                 bp->rx_agg_ring_size = agg_ring_size;
3581                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3582                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3583                 rx_space = rx_size + NET_SKB_PAD +
3584                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3585         }
3586
3587         bp->rx_buf_use_size = rx_size;
3588         bp->rx_buf_size = rx_space;
3589
3590         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3591         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3592
3593         ring_size = bp->tx_ring_size;
3594         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3595         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3596
3597         max_rx_cmpl = bp->rx_ring_size;
3598         /* MAX TPA needs to be added because TPA_START completions are
3599          * immediately recycled, so the TPA completions are not bound by
3600          * the RX ring size.
3601          */
3602         if (bp->flags & BNXT_FLAG_TPA)
3603                 max_rx_cmpl += bp->max_tpa;
3604         /* RX and TPA completions are 32-byte, all others are 16-byte */
3605         ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3606         bp->cp_ring_size = ring_size;
3607
3608         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3609         if (bp->cp_nr_pages > MAX_CP_PAGES) {
3610                 bp->cp_nr_pages = MAX_CP_PAGES;
3611                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3612                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3613                             ring_size, bp->cp_ring_size);
3614         }
3615         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3616         bp->cp_ring_mask = bp->cp_bit - 1;
3617 }
3618
3619 /* Changing allocation mode of RX rings.
3620  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3621  */
3622 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3623 {
3624         if (page_mode) {
3625                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3626                         return -EOPNOTSUPP;
3627                 bp->dev->max_mtu =
3628                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3629                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3630                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3631                 bp->rx_dir = DMA_BIDIRECTIONAL;
3632                 bp->rx_skb_func = bnxt_rx_page_skb;
3633                 /* Disable LRO or GRO_HW */
3634                 netdev_update_features(bp->dev);
3635         } else {
3636                 bp->dev->max_mtu = bp->max_mtu;
3637                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3638                 bp->rx_dir = DMA_FROM_DEVICE;
3639                 bp->rx_skb_func = bnxt_rx_skb;
3640         }
3641         return 0;
3642 }
3643
3644 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3645 {
3646         int i;
3647         struct bnxt_vnic_info *vnic;
3648         struct pci_dev *pdev = bp->pdev;
3649
3650         if (!bp->vnic_info)
3651                 return;
3652
3653         for (i = 0; i < bp->nr_vnics; i++) {
3654                 vnic = &bp->vnic_info[i];
3655
3656                 kfree(vnic->fw_grp_ids);
3657                 vnic->fw_grp_ids = NULL;
3658
3659                 kfree(vnic->uc_list);
3660                 vnic->uc_list = NULL;
3661
3662                 if (vnic->mc_list) {
3663                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3664                                           vnic->mc_list, vnic->mc_list_mapping);
3665                         vnic->mc_list = NULL;
3666                 }
3667
3668                 if (vnic->rss_table) {
3669                         dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3670                                           vnic->rss_table,
3671                                           vnic->rss_table_dma_addr);
3672                         vnic->rss_table = NULL;
3673                 }
3674
3675                 vnic->rss_hash_key = NULL;
3676                 vnic->flags = 0;
3677         }
3678 }
3679
3680 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3681 {
3682         int i, rc = 0, size;
3683         struct bnxt_vnic_info *vnic;
3684         struct pci_dev *pdev = bp->pdev;
3685         int max_rings;
3686
3687         for (i = 0; i < bp->nr_vnics; i++) {
3688                 vnic = &bp->vnic_info[i];
3689
3690                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3691                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3692
3693                         if (mem_size > 0) {
3694                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3695                                 if (!vnic->uc_list) {
3696                                         rc = -ENOMEM;
3697                                         goto out;
3698                                 }
3699                         }
3700                 }
3701
3702                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3703                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3704                         vnic->mc_list =
3705                                 dma_alloc_coherent(&pdev->dev,
3706                                                    vnic->mc_list_size,
3707                                                    &vnic->mc_list_mapping,
3708                                                    GFP_KERNEL);
3709                         if (!vnic->mc_list) {
3710                                 rc = -ENOMEM;
3711                                 goto out;
3712                         }
3713                 }
3714
3715                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3716                         goto vnic_skip_grps;
3717
3718                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3719                         max_rings = bp->rx_nr_rings;
3720                 else
3721                         max_rings = 1;
3722
3723                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3724                 if (!vnic->fw_grp_ids) {
3725                         rc = -ENOMEM;
3726                         goto out;
3727                 }
3728 vnic_skip_grps:
3729                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3730                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3731                         continue;
3732
3733                 /* Allocate rss table and hash key */
3734                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3735                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3736                         size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3737
3738                 vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3739                 vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3740                                                      vnic->rss_table_size,
3741                                                      &vnic->rss_table_dma_addr,
3742                                                      GFP_KERNEL);
3743                 if (!vnic->rss_table) {
3744                         rc = -ENOMEM;
3745                         goto out;
3746                 }
3747
3748                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3749                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3750         }
3751         return 0;
3752
3753 out:
3754         return rc;
3755 }
3756
3757 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3758 {
3759         struct pci_dev *pdev = bp->pdev;
3760
3761         if (bp->hwrm_cmd_resp_addr) {
3762                 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3763                                   bp->hwrm_cmd_resp_dma_addr);
3764                 bp->hwrm_cmd_resp_addr = NULL;
3765         }
3766
3767         if (bp->hwrm_cmd_kong_resp_addr) {
3768                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
3769                                   bp->hwrm_cmd_kong_resp_addr,
3770                                   bp->hwrm_cmd_kong_resp_dma_addr);
3771                 bp->hwrm_cmd_kong_resp_addr = NULL;
3772         }
3773 }
3774
3775 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3776 {
3777         struct pci_dev *pdev = bp->pdev;
3778
3779         if (bp->hwrm_cmd_kong_resp_addr)
3780                 return 0;
3781
3782         bp->hwrm_cmd_kong_resp_addr =
3783                 dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3784                                    &bp->hwrm_cmd_kong_resp_dma_addr,
3785                                    GFP_KERNEL);
3786         if (!bp->hwrm_cmd_kong_resp_addr)
3787                 return -ENOMEM;
3788
3789         return 0;
3790 }
3791
3792 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3793 {
3794         struct pci_dev *pdev = bp->pdev;
3795
3796         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3797                                                    &bp->hwrm_cmd_resp_dma_addr,
3798                                                    GFP_KERNEL);
3799         if (!bp->hwrm_cmd_resp_addr)
3800                 return -ENOMEM;
3801
3802         return 0;
3803 }
3804
3805 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3806 {
3807         if (bp->hwrm_short_cmd_req_addr) {
3808                 struct pci_dev *pdev = bp->pdev;
3809
3810                 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3811                                   bp->hwrm_short_cmd_req_addr,
3812                                   bp->hwrm_short_cmd_req_dma_addr);
3813                 bp->hwrm_short_cmd_req_addr = NULL;
3814         }
3815 }
3816
3817 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3818 {
3819         struct pci_dev *pdev = bp->pdev;
3820
3821         if (bp->hwrm_short_cmd_req_addr)
3822                 return 0;
3823
3824         bp->hwrm_short_cmd_req_addr =
3825                 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3826                                    &bp->hwrm_short_cmd_req_dma_addr,
3827                                    GFP_KERNEL);
3828         if (!bp->hwrm_short_cmd_req_addr)
3829                 return -ENOMEM;
3830
3831         return 0;
3832 }
3833
3834 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3835 {
3836         kfree(stats->hw_masks);
3837         stats->hw_masks = NULL;
3838         kfree(stats->sw_stats);
3839         stats->sw_stats = NULL;
3840         if (stats->hw_stats) {
3841                 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3842                                   stats->hw_stats_map);
3843                 stats->hw_stats = NULL;
3844         }
3845 }
3846
3847 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3848                                 bool alloc_masks)
3849 {
3850         stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3851                                              &stats->hw_stats_map, GFP_KERNEL);
3852         if (!stats->hw_stats)
3853                 return -ENOMEM;
3854
3855         stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3856         if (!stats->sw_stats)
3857                 goto stats_mem_err;
3858
3859         if (alloc_masks) {
3860                 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3861                 if (!stats->hw_masks)
3862                         goto stats_mem_err;
3863         }
3864         return 0;
3865
3866 stats_mem_err:
3867         bnxt_free_stats_mem(bp, stats);
3868         return -ENOMEM;
3869 }
3870
3871 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3872 {
3873         int i;
3874
3875         for (i = 0; i < count; i++)
3876                 mask_arr[i] = mask;
3877 }
3878
3879 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3880 {
3881         int i;
3882
3883         for (i = 0; i < count; i++)
3884                 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3885 }
3886
3887 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3888                                     struct bnxt_stats_mem *stats)
3889 {
3890         struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3891         struct hwrm_func_qstats_ext_input req = {0};
3892         __le64 *hw_masks;
3893         int rc;
3894
3895         if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3896             !(bp->flags & BNXT_FLAG_CHIP_P5))
3897                 return -EOPNOTSUPP;
3898
3899         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3900         req.fid = cpu_to_le16(0xffff);
3901         req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3902         mutex_lock(&bp->hwrm_cmd_lock);
3903         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3904         if (rc)
3905                 goto qstat_exit;
3906
3907         hw_masks = &resp->rx_ucast_pkts;
3908         bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3909
3910 qstat_exit:
3911         mutex_unlock(&bp->hwrm_cmd_lock);
3912         return rc;
3913 }
3914
3915 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3916 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3917
3918 static void bnxt_init_stats(struct bnxt *bp)
3919 {
3920         struct bnxt_napi *bnapi = bp->bnapi[0];
3921         struct bnxt_cp_ring_info *cpr;
3922         struct bnxt_stats_mem *stats;
3923         __le64 *rx_stats, *tx_stats;
3924         int rc, rx_count, tx_count;
3925         u64 *rx_masks, *tx_masks;
3926         u64 mask;
3927         u8 flags;
3928
3929         cpr = &bnapi->cp_ring;
3930         stats = &cpr->stats;
3931         rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3932         if (rc) {
3933                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3934                         mask = (1ULL << 48) - 1;
3935                 else
3936                         mask = -1ULL;
3937                 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3938         }
3939         if (bp->flags & BNXT_FLAG_PORT_STATS) {
3940                 stats = &bp->port_stats;
3941                 rx_stats = stats->hw_stats;
3942                 rx_masks = stats->hw_masks;
3943                 rx_count = sizeof(struct rx_port_stats) / 8;
3944                 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3945                 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3946                 tx_count = sizeof(struct tx_port_stats) / 8;
3947
3948                 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3949                 rc = bnxt_hwrm_port_qstats(bp, flags);
3950                 if (rc) {
3951                         mask = (1ULL << 40) - 1;
3952
3953                         bnxt_fill_masks(rx_masks, mask, rx_count);
3954                         bnxt_fill_masks(tx_masks, mask, tx_count);
3955                 } else {
3956                         bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3957                         bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3958                         bnxt_hwrm_port_qstats(bp, 0);
3959                 }
3960         }
3961         if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3962                 stats = &bp->rx_port_stats_ext;
3963                 rx_stats = stats->hw_stats;
3964                 rx_masks = stats->hw_masks;
3965                 rx_count = sizeof(struct rx_port_stats_ext) / 8;
3966                 stats = &bp->tx_port_stats_ext;
3967                 tx_stats = stats->hw_stats;
3968                 tx_masks = stats->hw_masks;
3969                 tx_count = sizeof(struct tx_port_stats_ext) / 8;
3970
3971                 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3972                 rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3973                 if (rc) {
3974                         mask = (1ULL << 40) - 1;
3975
3976                         bnxt_fill_masks(rx_masks, mask, rx_count);
3977                         if (tx_stats)
3978                                 bnxt_fill_masks(tx_masks, mask, tx_count);
3979                 } else {
3980                         bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3981                         if (tx_stats)
3982                                 bnxt_copy_hw_masks(tx_masks, tx_stats,
3983                                                    tx_count);
3984                         bnxt_hwrm_port_qstats_ext(bp, 0);
3985                 }
3986         }
3987 }
3988
3989 static void bnxt_free_port_stats(struct bnxt *bp)
3990 {
3991         bp->flags &= ~BNXT_FLAG_PORT_STATS;
3992         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3993
3994         bnxt_free_stats_mem(bp, &bp->port_stats);
3995         bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3996         bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3997 }
3998
3999 static void bnxt_free_ring_stats(struct bnxt *bp)
4000 {
4001         int i;
4002
4003         if (!bp->bnapi)
4004                 return;
4005
4006         for (i = 0; i < bp->cp_nr_rings; i++) {
4007                 struct bnxt_napi *bnapi = bp->bnapi[i];
4008                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4009
4010                 bnxt_free_stats_mem(bp, &cpr->stats);
4011         }
4012 }
4013
4014 static int bnxt_alloc_stats(struct bnxt *bp)
4015 {
4016         u32 size, i;
4017         int rc;
4018
4019         size = bp->hw_ring_stats_size;
4020
4021         for (i = 0; i < bp->cp_nr_rings; i++) {
4022                 struct bnxt_napi *bnapi = bp->bnapi[i];
4023                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4024
4025                 cpr->stats.len = size;
4026                 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4027                 if (rc)
4028                         return rc;
4029
4030                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4031         }
4032
4033         if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4034                 return 0;
4035
4036         if (bp->port_stats.hw_stats)
4037                 goto alloc_ext_stats;
4038
4039         bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4040         rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4041         if (rc)
4042                 return rc;
4043
4044         bp->flags |= BNXT_FLAG_PORT_STATS;
4045
4046 alloc_ext_stats:
4047         /* Display extended statistics only if FW supports it */
4048         if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4049                 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4050                         return 0;
4051
4052         if (bp->rx_port_stats_ext.hw_stats)
4053                 goto alloc_tx_ext_stats;
4054
4055         bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4056         rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4057         /* Extended stats are optional */
4058         if (rc)
4059                 return 0;
4060
4061 alloc_tx_ext_stats:
4062         if (bp->tx_port_stats_ext.hw_stats)
4063                 return 0;
4064
4065         if (bp->hwrm_spec_code >= 0x10902 ||
4066             (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4067                 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4068                 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4069                 /* Extended stats are optional */
4070                 if (rc)
4071                         return 0;
4072         }
4073         bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4074         return 0;
4075 }
4076
4077 static void bnxt_clear_ring_indices(struct bnxt *bp)
4078 {
4079         int i;
4080
4081         if (!bp->bnapi)
4082                 return;
4083
4084         for (i = 0; i < bp->cp_nr_rings; i++) {
4085                 struct bnxt_napi *bnapi = bp->bnapi[i];
4086                 struct bnxt_cp_ring_info *cpr;
4087                 struct bnxt_rx_ring_info *rxr;
4088                 struct bnxt_tx_ring_info *txr;
4089
4090                 if (!bnapi)
4091                         continue;
4092
4093                 cpr = &bnapi->cp_ring;
4094                 cpr->cp_raw_cons = 0;
4095
4096                 txr = bnapi->tx_ring;
4097                 if (txr) {
4098                         txr->tx_prod = 0;
4099                         txr->tx_cons = 0;
4100                 }
4101
4102                 rxr = bnapi->rx_ring;
4103                 if (rxr) {
4104                         rxr->rx_prod = 0;
4105                         rxr->rx_agg_prod = 0;
4106                         rxr->rx_sw_agg_prod = 0;
4107                         rxr->rx_next_cons = 0;
4108                 }
4109         }
4110 }
4111
4112 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4113 {
4114 #ifdef CONFIG_RFS_ACCEL
4115         int i;
4116
4117         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
4118          * safe to delete the hash table.
4119          */
4120         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4121                 struct hlist_head *head;
4122                 struct hlist_node *tmp;
4123                 struct bnxt_ntuple_filter *fltr;
4124
4125                 head = &bp->ntp_fltr_hash_tbl[i];
4126                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4127                         hlist_del(&fltr->hash);
4128                         kfree(fltr);
4129                 }
4130         }
4131         if (irq_reinit) {
4132                 kfree(bp->ntp_fltr_bmap);
4133                 bp->ntp_fltr_bmap = NULL;
4134         }
4135         bp->ntp_fltr_count = 0;
4136 #endif
4137 }
4138
4139 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4140 {
4141 #ifdef CONFIG_RFS_ACCEL
4142         int i, rc = 0;
4143
4144         if (!(bp->flags & BNXT_FLAG_RFS))
4145                 return 0;
4146
4147         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4148                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4149
4150         bp->ntp_fltr_count = 0;
4151         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4152                                     sizeof(long),
4153                                     GFP_KERNEL);
4154
4155         if (!bp->ntp_fltr_bmap)
4156                 rc = -ENOMEM;
4157
4158         return rc;
4159 #else
4160         return 0;
4161 #endif
4162 }
4163
4164 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4165 {
4166         bnxt_free_vnic_attributes(bp);
4167         bnxt_free_tx_rings(bp);
4168         bnxt_free_rx_rings(bp);
4169         bnxt_free_cp_rings(bp);
4170         bnxt_free_ntp_fltrs(bp, irq_re_init);
4171         if (irq_re_init) {
4172                 bnxt_free_ring_stats(bp);
4173                 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4174                     test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4175                         bnxt_free_port_stats(bp);
4176                 bnxt_free_ring_grps(bp);
4177                 bnxt_free_vnics(bp);
4178                 kfree(bp->tx_ring_map);
4179                 bp->tx_ring_map = NULL;
4180                 kfree(bp->tx_ring);
4181                 bp->tx_ring = NULL;
4182                 kfree(bp->rx_ring);
4183                 bp->rx_ring = NULL;
4184                 kfree(bp->bnapi);
4185                 bp->bnapi = NULL;
4186         } else {
4187                 bnxt_clear_ring_indices(bp);
4188         }
4189 }
4190
4191 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4192 {
4193         int i, j, rc, size, arr_size;
4194         void *bnapi;
4195
4196         if (irq_re_init) {
4197                 /* Allocate bnapi mem pointer array and mem block for
4198                  * all queues
4199                  */
4200                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4201                                 bp->cp_nr_rings);
4202                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4203                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4204                 if (!bnapi)
4205                         return -ENOMEM;
4206
4207                 bp->bnapi = bnapi;
4208                 bnapi += arr_size;
4209                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4210                         bp->bnapi[i] = bnapi;
4211                         bp->bnapi[i]->index = i;
4212                         bp->bnapi[i]->bp = bp;
4213                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4214                                 struct bnxt_cp_ring_info *cpr =
4215                                         &bp->bnapi[i]->cp_ring;
4216
4217                                 cpr->cp_ring_struct.ring_mem.flags =
4218                                         BNXT_RMEM_RING_PTE_FLAG;
4219                         }
4220                 }
4221
4222                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
4223                                       sizeof(struct bnxt_rx_ring_info),
4224                                       GFP_KERNEL);
4225                 if (!bp->rx_ring)
4226                         return -ENOMEM;
4227
4228                 for (i = 0; i < bp->rx_nr_rings; i++) {
4229                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4230
4231                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4232                                 rxr->rx_ring_struct.ring_mem.flags =
4233                                         BNXT_RMEM_RING_PTE_FLAG;
4234                                 rxr->rx_agg_ring_struct.ring_mem.flags =
4235                                         BNXT_RMEM_RING_PTE_FLAG;
4236                         }
4237                         rxr->bnapi = bp->bnapi[i];
4238                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4239                 }
4240
4241                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
4242                                       sizeof(struct bnxt_tx_ring_info),
4243                                       GFP_KERNEL);
4244                 if (!bp->tx_ring)
4245                         return -ENOMEM;
4246
4247                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4248                                           GFP_KERNEL);
4249
4250                 if (!bp->tx_ring_map)
4251                         return -ENOMEM;
4252
4253                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4254                         j = 0;
4255                 else
4256                         j = bp->rx_nr_rings;
4257
4258                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4259                         struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4260
4261                         if (bp->flags & BNXT_FLAG_CHIP_P5)
4262                                 txr->tx_ring_struct.ring_mem.flags =
4263                                         BNXT_RMEM_RING_PTE_FLAG;
4264                         txr->bnapi = bp->bnapi[j];
4265                         bp->bnapi[j]->tx_ring = txr;
4266                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4267                         if (i >= bp->tx_nr_rings_xdp) {
4268                                 txr->txq_index = i - bp->tx_nr_rings_xdp;
4269                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
4270                         } else {
4271                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4272                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4273                         }
4274                 }
4275
4276                 rc = bnxt_alloc_stats(bp);
4277                 if (rc)
4278                         goto alloc_mem_err;
4279                 bnxt_init_stats(bp);
4280
4281                 rc = bnxt_alloc_ntp_fltrs(bp);
4282                 if (rc)
4283                         goto alloc_mem_err;
4284
4285                 rc = bnxt_alloc_vnics(bp);
4286                 if (rc)
4287                         goto alloc_mem_err;
4288         }
4289
4290         bnxt_init_ring_struct(bp);
4291
4292         rc = bnxt_alloc_rx_rings(bp);
4293         if (rc)
4294                 goto alloc_mem_err;
4295
4296         rc = bnxt_alloc_tx_rings(bp);
4297         if (rc)
4298                 goto alloc_mem_err;
4299
4300         rc = bnxt_alloc_cp_rings(bp);
4301         if (rc)
4302                 goto alloc_mem_err;
4303
4304         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4305                                   BNXT_VNIC_UCAST_FLAG;
4306         rc = bnxt_alloc_vnic_attributes(bp);
4307         if (rc)
4308                 goto alloc_mem_err;
4309         return 0;
4310
4311 alloc_mem_err:
4312         bnxt_free_mem(bp, true);
4313         return rc;
4314 }
4315
4316 static void bnxt_disable_int(struct bnxt *bp)
4317 {
4318         int i;
4319
4320         if (!bp->bnapi)
4321                 return;
4322
4323         for (i = 0; i < bp->cp_nr_rings; i++) {
4324                 struct bnxt_napi *bnapi = bp->bnapi[i];
4325                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4326                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4327
4328                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
4329                         bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4330         }
4331 }
4332
4333 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4334 {
4335         struct bnxt_napi *bnapi = bp->bnapi[n];
4336         struct bnxt_cp_ring_info *cpr;
4337
4338         cpr = &bnapi->cp_ring;
4339         return cpr->cp_ring_struct.map_idx;
4340 }
4341
4342 static void bnxt_disable_int_sync(struct bnxt *bp)
4343 {
4344         int i;
4345
4346         if (!bp->irq_tbl)
4347                 return;
4348
4349         atomic_inc(&bp->intr_sem);
4350
4351         bnxt_disable_int(bp);
4352         for (i = 0; i < bp->cp_nr_rings; i++) {
4353                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4354
4355                 synchronize_irq(bp->irq_tbl[map_idx].vector);
4356         }
4357 }
4358
4359 static void bnxt_enable_int(struct bnxt *bp)
4360 {
4361         int i;
4362
4363         atomic_set(&bp->intr_sem, 0);
4364         for (i = 0; i < bp->cp_nr_rings; i++) {
4365                 struct bnxt_napi *bnapi = bp->bnapi[i];
4366                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4367
4368                 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4369         }
4370 }
4371
4372 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4373                             u16 cmpl_ring, u16 target_id)
4374 {
4375         struct input *req = request;
4376
4377         req->req_type = cpu_to_le16(req_type);
4378         req->cmpl_ring = cpu_to_le16(cmpl_ring);
4379         req->target_id = cpu_to_le16(target_id);
4380         if (bnxt_kong_hwrm_message(bp, req))
4381                 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4382         else
4383                 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4384 }
4385
4386 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4387 {
4388         switch (hwrm_err) {
4389         case HWRM_ERR_CODE_SUCCESS:
4390                 return 0;
4391         case HWRM_ERR_CODE_RESOURCE_LOCKED:
4392                 return -EROFS;
4393         case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4394                 return -EACCES;
4395         case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4396                 return -ENOSPC;
4397         case HWRM_ERR_CODE_INVALID_PARAMS:
4398         case HWRM_ERR_CODE_INVALID_FLAGS:
4399         case HWRM_ERR_CODE_INVALID_ENABLES:
4400         case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4401         case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4402                 return -EINVAL;
4403         case HWRM_ERR_CODE_NO_BUFFER:
4404                 return -ENOMEM;
4405         case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4406         case HWRM_ERR_CODE_BUSY:
4407                 return -EAGAIN;
4408         case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4409                 return -EOPNOTSUPP;
4410         default:
4411                 return -EIO;
4412         }
4413 }
4414
4415 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4416                                  int timeout, bool silent)
4417 {
4418         int i, intr_process, rc, tmo_count;
4419         struct input *req = msg;
4420         u32 *data = msg;
4421         u8 *valid;
4422         u16 cp_ring_id, len = 0;
4423         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4424         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4425         struct hwrm_short_input short_input = {0};
4426         u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4427         u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4428         u16 dst = BNXT_HWRM_CHNL_CHIMP;
4429
4430         if (BNXT_NO_FW_ACCESS(bp) &&
4431             le16_to_cpu(req->req_type) != HWRM_FUNC_RESET)
4432                 return -EBUSY;
4433
4434         if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4435                 if (msg_len > bp->hwrm_max_ext_req_len ||
4436                     !bp->hwrm_short_cmd_req_addr)
4437                         return -EINVAL;
4438         }
4439
4440         if (bnxt_hwrm_kong_chnl(bp, req)) {
4441                 dst = BNXT_HWRM_CHNL_KONG;
4442                 bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4443                 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4444                 resp = bp->hwrm_cmd_kong_resp_addr;
4445         }
4446
4447         memset(resp, 0, PAGE_SIZE);
4448         cp_ring_id = le16_to_cpu(req->cmpl_ring);
4449         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4450
4451         req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4452         /* currently supports only one outstanding message */
4453         if (intr_process)
4454                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4455
4456         if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4457             msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4458                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4459                 u16 max_msg_len;
4460
4461                 /* Set boundary for maximum extended request length for short
4462                  * cmd format. If passed up from device use the max supported
4463                  * internal req length.
4464                  */
4465                 max_msg_len = bp->hwrm_max_ext_req_len;
4466
4467                 memcpy(short_cmd_req, req, msg_len);
4468                 if (msg_len < max_msg_len)
4469                         memset(short_cmd_req + msg_len, 0,
4470                                max_msg_len - msg_len);
4471
4472                 short_input.req_type = req->req_type;
4473                 short_input.signature =
4474                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4475                 short_input.size = cpu_to_le16(msg_len);
4476                 short_input.req_addr =
4477                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4478
4479                 data = (u32 *)&short_input;
4480                 msg_len = sizeof(short_input);
4481
4482                 /* Sync memory write before updating doorbell */
4483                 wmb();
4484
4485                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4486         }
4487
4488         /* Write request msg to hwrm channel */
4489         __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4490
4491         for (i = msg_len; i < max_req_len; i += 4)
4492                 writel(0, bp->bar0 + bar_offset + i);
4493
4494         /* Ring channel doorbell */
4495         writel(1, bp->bar0 + doorbell_offset);
4496
4497         if (!pci_is_enabled(bp->pdev))
4498                 return -ENODEV;
4499
4500         if (!timeout)
4501                 timeout = DFLT_HWRM_CMD_TIMEOUT;
4502         /* Limit timeout to an upper limit */
4503         timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT);
4504         /* convert timeout to usec */
4505         timeout *= 1000;
4506
4507         i = 0;
4508         /* Short timeout for the first few iterations:
4509          * number of loops = number of loops for short timeout +
4510          * number of loops for standard timeout.
4511          */
4512         tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4513         timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4514         tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4515
4516         if (intr_process) {
4517                 u16 seq_id = bp->hwrm_intr_seq_id;
4518
4519                 /* Wait until hwrm response cmpl interrupt is processed */
4520                 while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4521                        i++ < tmo_count) {
4522                         /* Abort the wait for completion if the FW health
4523                          * check has failed.
4524                          */
4525                         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4526                                 return -EBUSY;
4527                         /* on first few passes, just barely sleep */
4528                         if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
4529                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4530                                              HWRM_SHORT_MAX_TIMEOUT);
4531                         } else {
4532                                 if (HWRM_WAIT_MUST_ABORT(bp, req))
4533                                         break;
4534                                 usleep_range(HWRM_MIN_TIMEOUT,
4535                                              HWRM_MAX_TIMEOUT);
4536                         }
4537                 }
4538
4539                 if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4540                         if (!silent)
4541                                 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4542                                            le16_to_cpu(req->req_type));
4543                         return -EBUSY;
4544                 }
4545                 len = le16_to_cpu(resp->resp_len);
4546                 valid = ((u8 *)resp) + len - 1;
4547         } else {
4548                 int j;
4549
4550                 /* Check if response len is updated */
4551                 for (i = 0; i < tmo_count; i++) {
4552                         /* Abort the wait for completion if the FW health
4553                          * check has failed.
4554                          */
4555                         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4556                                 return -EBUSY;
4557                         len = le16_to_cpu(resp->resp_len);
4558                         if (len)
4559                                 break;
4560                         /* on first few passes, just barely sleep */
4561                         if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
4562                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4563                                              HWRM_SHORT_MAX_TIMEOUT);
4564                         } else {
4565                                 if (HWRM_WAIT_MUST_ABORT(bp, req))
4566                                         goto timeout_abort;
4567                                 usleep_range(HWRM_MIN_TIMEOUT,
4568                                              HWRM_MAX_TIMEOUT);
4569                         }
4570                 }
4571
4572                 if (i >= tmo_count) {
4573 timeout_abort:
4574                         if (!silent)
4575                                 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4576                                            HWRM_TOTAL_TIMEOUT(i),
4577                                            le16_to_cpu(req->req_type),
4578                                            le16_to_cpu(req->seq_id), len);
4579                         return -EBUSY;
4580                 }
4581
4582                 /* Last byte of resp contains valid bit */
4583                 valid = ((u8 *)resp) + len - 1;
4584                 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4585                         /* make sure we read from updated DMA memory */
4586                         dma_rmb();
4587                         if (*valid)
4588                                 break;
4589                         usleep_range(1, 5);
4590                 }
4591
4592                 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4593                         if (!silent)
4594                                 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4595                                            HWRM_TOTAL_TIMEOUT(i),
4596                                            le16_to_cpu(req->req_type),
4597                                            le16_to_cpu(req->seq_id), len,
4598                                            *valid);
4599                         return -EBUSY;
4600                 }
4601         }
4602
4603         /* Zero valid bit for compatibility.  Valid bit in an older spec
4604          * may become a new field in a newer spec.  We must make sure that
4605          * a new field not implemented by old spec will read zero.
4606          */
4607         *valid = 0;
4608         rc = le16_to_cpu(resp->error_code);
4609         if (rc && !silent)
4610                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4611                            le16_to_cpu(resp->req_type),
4612                            le16_to_cpu(resp->seq_id), rc);
4613         return bnxt_hwrm_to_stderr(rc);
4614 }
4615
4616 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4617 {
4618         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4619 }
4620
4621 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4622                               int timeout)
4623 {
4624         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4625 }
4626
4627 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4628 {
4629         int rc;
4630
4631         mutex_lock(&bp->hwrm_cmd_lock);
4632         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4633         mutex_unlock(&bp->hwrm_cmd_lock);
4634         return rc;
4635 }
4636
4637 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4638                              int timeout)
4639 {
4640         int rc;
4641
4642         mutex_lock(&bp->hwrm_cmd_lock);
4643         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4644         mutex_unlock(&bp->hwrm_cmd_lock);
4645         return rc;
4646 }
4647
4648 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4649                             bool async_only)
4650 {
4651         struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4652         struct hwrm_func_drv_rgtr_input req = {0};
4653         DECLARE_BITMAP(async_events_bmap, 256);
4654         u32 *events = (u32 *)async_events_bmap;
4655         u32 flags;
4656         int rc, i;
4657
4658         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4659
4660         req.enables =
4661                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4662                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
4663                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4664
4665         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4666         flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4667         if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4668                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4669         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4670                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4671                          FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4672         req.flags = cpu_to_le32(flags);
4673         req.ver_maj_8b = DRV_VER_MAJ;
4674         req.ver_min_8b = DRV_VER_MIN;
4675         req.ver_upd_8b = DRV_VER_UPD;
4676         req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4677         req.ver_min = cpu_to_le16(DRV_VER_MIN);
4678         req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4679
4680         if (BNXT_PF(bp)) {
4681                 u32 data[8];
4682                 int i;
4683
4684                 memset(data, 0, sizeof(data));
4685                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4686                         u16 cmd = bnxt_vf_req_snif[i];
4687                         unsigned int bit, idx;
4688
4689                         idx = cmd / 32;
4690                         bit = cmd % 32;
4691                         data[idx] |= 1 << bit;
4692                 }
4693
4694                 for (i = 0; i < 8; i++)
4695                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4696
4697                 req.enables |=
4698                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4699         }
4700
4701         if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4702                 req.flags |= cpu_to_le32(
4703                         FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4704
4705         memset(async_events_bmap, 0, sizeof(async_events_bmap));
4706         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4707                 u16 event_id = bnxt_async_events_arr[i];
4708
4709                 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4710                     !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4711                         continue;
4712                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
4713         }
4714         if (bmap && bmap_size) {
4715                 for (i = 0; i < bmap_size; i++) {
4716                         if (test_bit(i, bmap))
4717                                 __set_bit(i, async_events_bmap);
4718                 }
4719         }
4720         for (i = 0; i < 8; i++)
4721                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4722
4723         if (async_only)
4724                 req.enables =
4725                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4726
4727         mutex_lock(&bp->hwrm_cmd_lock);
4728         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4729         if (!rc) {
4730                 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4731                 if (resp->flags &
4732                     cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4733                         bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4734         }
4735         mutex_unlock(&bp->hwrm_cmd_lock);
4736         return rc;
4737 }
4738
4739 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4740 {
4741         struct hwrm_func_drv_unrgtr_input req = {0};
4742
4743         if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4744                 return 0;
4745
4746         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4747         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4748 }
4749
4750 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4751 {
4752         u32 rc = 0;
4753         struct hwrm_tunnel_dst_port_free_input req = {0};
4754
4755         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4756         req.tunnel_type = tunnel_type;
4757
4758         switch (tunnel_type) {
4759         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4760                 req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4761                 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4762                 break;
4763         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4764                 req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4765                 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4766                 break;
4767         default:
4768                 break;
4769         }
4770
4771         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4772         if (rc)
4773                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4774                            rc);
4775         return rc;
4776 }
4777
4778 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4779                                            u8 tunnel_type)
4780 {
4781         u32 rc = 0;
4782         struct hwrm_tunnel_dst_port_alloc_input req = {0};
4783         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4784
4785         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4786
4787         req.tunnel_type = tunnel_type;
4788         req.tunnel_dst_port_val = port;
4789
4790         mutex_lock(&bp->hwrm_cmd_lock);
4791         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4792         if (rc) {
4793                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4794                            rc);
4795                 goto err_out;
4796         }
4797
4798         switch (tunnel_type) {
4799         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4800                 bp->vxlan_fw_dst_port_id =
4801                         le16_to_cpu(resp->tunnel_dst_port_id);
4802                 break;
4803         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4804                 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4805                 break;
4806         default:
4807                 break;
4808         }
4809
4810 err_out:
4811         mutex_unlock(&bp->hwrm_cmd_lock);
4812         return rc;
4813 }
4814
4815 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4816 {
4817         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4818         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4819
4820         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4821         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4822
4823         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4824         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4825         req.mask = cpu_to_le32(vnic->rx_mask);
4826         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4827 }
4828
4829 #ifdef CONFIG_RFS_ACCEL
4830 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4831                                             struct bnxt_ntuple_filter *fltr)
4832 {
4833         struct hwrm_cfa_ntuple_filter_free_input req = {0};
4834
4835         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4836         req.ntuple_filter_id = fltr->filter_id;
4837         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4838 }
4839
4840 #define BNXT_NTP_FLTR_FLAGS                                     \
4841         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
4842          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
4843          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
4844          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
4845          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
4846          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
4847          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
4848          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
4849          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
4850          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
4851          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
4852          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
4853          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
4854          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4855
4856 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
4857                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4858
4859 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4860                                              struct bnxt_ntuple_filter *fltr)
4861 {
4862         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4863         struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4864         struct flow_keys *keys = &fltr->fkeys;
4865         struct bnxt_vnic_info *vnic;
4866         u32 flags = 0;
4867         int rc = 0;
4868
4869         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4870         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4871
4872         if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4873                 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4874                 req.dst_id = cpu_to_le16(fltr->rxq);
4875         } else {
4876                 vnic = &bp->vnic_info[fltr->rxq + 1];
4877                 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4878         }
4879         req.flags = cpu_to_le32(flags);
4880         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4881
4882         req.ethertype = htons(ETH_P_IP);
4883         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4884         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4885         req.ip_protocol = keys->basic.ip_proto;
4886
4887         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4888                 int i;
4889
4890                 req.ethertype = htons(ETH_P_IPV6);
4891                 req.ip_addr_type =
4892                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4893                 *(struct in6_addr *)&req.src_ipaddr[0] =
4894                         keys->addrs.v6addrs.src;
4895                 *(struct in6_addr *)&req.dst_ipaddr[0] =
4896                         keys->addrs.v6addrs.dst;
4897                 for (i = 0; i < 4; i++) {
4898                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4899                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4900                 }
4901         } else {
4902                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4903                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4904                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4905                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4906         }
4907         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4908                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4909                 req.tunnel_type =
4910                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4911         }
4912
4913         req.src_port = keys->ports.src;
4914         req.src_port_mask = cpu_to_be16(0xffff);
4915         req.dst_port = keys->ports.dst;
4916         req.dst_port_mask = cpu_to_be16(0xffff);
4917
4918         mutex_lock(&bp->hwrm_cmd_lock);
4919         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4920         if (!rc) {
4921                 resp = bnxt_get_hwrm_resp_addr(bp, &req);
4922                 fltr->filter_id = resp->ntuple_filter_id;
4923         }
4924         mutex_unlock(&bp->hwrm_cmd_lock);
4925         return rc;
4926 }
4927 #endif
4928
4929 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4930                                      u8 *mac_addr)
4931 {
4932         u32 rc = 0;
4933         struct hwrm_cfa_l2_filter_alloc_input req = {0};
4934         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4935
4936         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4937         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4938         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4939                 req.flags |=
4940                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4941         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4942         req.enables =
4943                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4944                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4945                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4946         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4947         req.l2_addr_mask[0] = 0xff;
4948         req.l2_addr_mask[1] = 0xff;
4949         req.l2_addr_mask[2] = 0xff;
4950         req.l2_addr_mask[3] = 0xff;
4951         req.l2_addr_mask[4] = 0xff;
4952         req.l2_addr_mask[5] = 0xff;
4953
4954         mutex_lock(&bp->hwrm_cmd_lock);
4955         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4956         if (!rc)
4957                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4958                                                         resp->l2_filter_id;
4959         mutex_unlock(&bp->hwrm_cmd_lock);
4960         return rc;
4961 }
4962
4963 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4964 {
4965         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4966         int rc = 0;
4967
4968         /* Any associated ntuple filters will also be cleared by firmware. */
4969         mutex_lock(&bp->hwrm_cmd_lock);
4970         for (i = 0; i < num_of_vnics; i++) {
4971                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4972
4973                 for (j = 0; j < vnic->uc_filter_count; j++) {
4974                         struct hwrm_cfa_l2_filter_free_input req = {0};
4975
4976                         bnxt_hwrm_cmd_hdr_init(bp, &req,
4977                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
4978
4979                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
4980
4981                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4982                                                 HWRM_CMD_TIMEOUT);
4983                 }
4984                 vnic->uc_filter_count = 0;
4985         }
4986         mutex_unlock(&bp->hwrm_cmd_lock);
4987
4988         return rc;
4989 }
4990
4991 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4992 {
4993         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4994         u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4995         struct hwrm_vnic_tpa_cfg_input req = {0};
4996
4997         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4998                 return 0;
4999
5000         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
5001
5002         if (tpa_flags) {
5003                 u16 mss = bp->dev->mtu - 40;
5004                 u32 nsegs, n, segs = 0, flags;
5005
5006                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5007                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5008                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5009                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5010                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5011                 if (tpa_flags & BNXT_FLAG_GRO)
5012                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5013
5014                 req.flags = cpu_to_le32(flags);
5015
5016                 req.enables =
5017                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5018                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5019                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5020
5021                 /* Number of segs are log2 units, and first packet is not
5022                  * included as part of this units.
5023                  */
5024                 if (mss <= BNXT_RX_PAGE_SIZE) {
5025                         n = BNXT_RX_PAGE_SIZE / mss;
5026                         nsegs = (MAX_SKB_FRAGS - 1) * n;
5027                 } else {
5028                         n = mss / BNXT_RX_PAGE_SIZE;
5029                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
5030                                 n++;
5031                         nsegs = (MAX_SKB_FRAGS - n) / n;
5032                 }
5033
5034                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5035                         segs = MAX_TPA_SEGS_P5;
5036                         max_aggs = bp->max_tpa;
5037                 } else {
5038                         segs = ilog2(nsegs);
5039                 }
5040                 req.max_agg_segs = cpu_to_le16(segs);
5041                 req.max_aggs = cpu_to_le16(max_aggs);
5042
5043                 req.min_agg_len = cpu_to_le32(512);
5044         }
5045         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5046
5047         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5048 }
5049
5050 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5051 {
5052         struct bnxt_ring_grp_info *grp_info;
5053
5054         grp_info = &bp->grp_info[ring->grp_idx];
5055         return grp_info->cp_fw_ring_id;
5056 }
5057
5058 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5059 {
5060         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5061                 struct bnxt_napi *bnapi = rxr->bnapi;
5062                 struct bnxt_cp_ring_info *cpr;
5063
5064                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5065                 return cpr->cp_ring_struct.fw_ring_id;
5066         } else {
5067                 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5068         }
5069 }
5070
5071 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5072 {
5073         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5074                 struct bnxt_napi *bnapi = txr->bnapi;
5075                 struct bnxt_cp_ring_info *cpr;
5076
5077                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5078                 return cpr->cp_ring_struct.fw_ring_id;
5079         } else {
5080                 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5081         }
5082 }
5083
5084 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5085 {
5086         int entries;
5087
5088         if (bp->flags & BNXT_FLAG_CHIP_P5)
5089                 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5090         else
5091                 entries = HW_HASH_INDEX_SIZE;
5092
5093         bp->rss_indir_tbl_entries = entries;
5094         bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5095                                           GFP_KERNEL);
5096         if (!bp->rss_indir_tbl)
5097                 return -ENOMEM;
5098         return 0;
5099 }
5100
5101 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5102 {
5103         u16 max_rings, max_entries, pad, i;
5104
5105         if (!bp->rx_nr_rings)
5106                 return;
5107
5108         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5109                 max_rings = bp->rx_nr_rings - 1;
5110         else
5111                 max_rings = bp->rx_nr_rings;
5112
5113         max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5114
5115         for (i = 0; i < max_entries; i++)
5116                 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5117
5118         pad = bp->rss_indir_tbl_entries - max_entries;
5119         if (pad)
5120                 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5121 }
5122
5123 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5124 {
5125         u16 i, tbl_size, max_ring = 0;
5126
5127         if (!bp->rss_indir_tbl)
5128                 return 0;
5129
5130         tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5131         for (i = 0; i < tbl_size; i++)
5132                 max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5133         return max_ring;
5134 }
5135
5136 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5137 {
5138         if (bp->flags & BNXT_FLAG_CHIP_P5)
5139                 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5140         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5141                 return 2;
5142         return 1;
5143 }
5144
5145 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5146 {
5147         bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5148         u16 i, j;
5149
5150         /* Fill the RSS indirection table with ring group ids */
5151         for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5152                 if (!no_rss)
5153                         j = bp->rss_indir_tbl[i];
5154                 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5155         }
5156 }
5157
5158 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5159                                       struct bnxt_vnic_info *vnic)
5160 {
5161         __le16 *ring_tbl = vnic->rss_table;
5162         struct bnxt_rx_ring_info *rxr;
5163         u16 tbl_size, i;
5164
5165         tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5166
5167         for (i = 0; i < tbl_size; i++) {
5168                 u16 ring_id, j;
5169
5170                 j = bp->rss_indir_tbl[i];
5171                 rxr = &bp->rx_ring[j];
5172
5173                 ring_id = rxr->rx_ring_struct.fw_ring_id;
5174                 *ring_tbl++ = cpu_to_le16(ring_id);
5175                 ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5176                 *ring_tbl++ = cpu_to_le16(ring_id);
5177         }
5178 }
5179
5180 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5181 {
5182         if (bp->flags & BNXT_FLAG_CHIP_P5)
5183                 __bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5184         else
5185                 __bnxt_fill_hw_rss_tbl(bp, vnic);
5186 }
5187
5188 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5189 {
5190         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5191         struct hwrm_vnic_rss_cfg_input req = {0};
5192
5193         if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5194             vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5195                 return 0;
5196
5197         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5198         if (set_rss) {
5199                 bnxt_fill_hw_rss_tbl(bp, vnic);
5200                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5201                 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5202                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5203                 req.hash_key_tbl_addr =
5204                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
5205         }
5206         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5207         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5208 }
5209
5210 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5211 {
5212         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5213         struct hwrm_vnic_rss_cfg_input req = {0};
5214         dma_addr_t ring_tbl_map;
5215         u32 i, nr_ctxs;
5216
5217         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5218         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5219         if (!set_rss) {
5220                 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5221                 return 0;
5222         }
5223         bnxt_fill_hw_rss_tbl(bp, vnic);
5224         req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5225         req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5226         req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5227         ring_tbl_map = vnic->rss_table_dma_addr;
5228         nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5229         for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5230                 int rc;
5231
5232                 req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5233                 req.ring_table_pair_index = i;
5234                 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5235                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5236                 if (rc)
5237                         return rc;
5238         }
5239         return 0;
5240 }
5241
5242 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5243 {
5244         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5245         struct hwrm_vnic_plcmodes_cfg_input req = {0};
5246
5247         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5248         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5249                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5250                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5251         req.enables =
5252                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5253                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5254         /* thresholds not implemented in firmware yet */
5255         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5256         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5257         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5258         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5259 }
5260
5261 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5262                                         u16 ctx_idx)
5263 {
5264         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5265
5266         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5267         req.rss_cos_lb_ctx_id =
5268                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5269
5270         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5271         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5272 }
5273
5274 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5275 {
5276         int i, j;
5277
5278         for (i = 0; i < bp->nr_vnics; i++) {
5279                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5280
5281                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5282                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5283                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5284                 }
5285         }
5286         bp->rsscos_nr_ctxs = 0;
5287 }
5288
5289 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5290 {
5291         int rc;
5292         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5293         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5294                                                 bp->hwrm_cmd_resp_addr;
5295
5296         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5297                                -1);
5298
5299         mutex_lock(&bp->hwrm_cmd_lock);
5300         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5301         if (!rc)
5302                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5303                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
5304         mutex_unlock(&bp->hwrm_cmd_lock);
5305
5306         return rc;
5307 }
5308
5309 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5310 {
5311         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5312                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5313         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5314 }
5315
5316 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5317 {
5318         unsigned int ring = 0, grp_idx;
5319         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5320         struct hwrm_vnic_cfg_input req = {0};
5321         u16 def_vlan = 0;
5322
5323         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5324
5325         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5326                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5327
5328                 req.default_rx_ring_id =
5329                         cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5330                 req.default_cmpl_ring_id =
5331                         cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5332                 req.enables =
5333                         cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5334                                     VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5335                 goto vnic_mru;
5336         }
5337         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5338         /* Only RSS support for now TBD: COS & LB */
5339         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5340                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5341                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5342                                            VNIC_CFG_REQ_ENABLES_MRU);
5343         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5344                 req.rss_rule =
5345                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5346                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5347                                            VNIC_CFG_REQ_ENABLES_MRU);
5348                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5349         } else {
5350                 req.rss_rule = cpu_to_le16(0xffff);
5351         }
5352
5353         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5354             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5355                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5356                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5357         } else {
5358                 req.cos_rule = cpu_to_le16(0xffff);
5359         }
5360
5361         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5362                 ring = 0;
5363         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5364                 ring = vnic_id - 1;
5365         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5366                 ring = bp->rx_nr_rings - 1;
5367
5368         grp_idx = bp->rx_ring[ring].bnapi->index;
5369         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5370         req.lb_rule = cpu_to_le16(0xffff);
5371 vnic_mru:
5372         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5373
5374         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5375 #ifdef CONFIG_BNXT_SRIOV
5376         if (BNXT_VF(bp))
5377                 def_vlan = bp->vf.vlan;
5378 #endif
5379         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5380                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5381         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5382                 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5383
5384         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5385 }
5386
5387 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5388 {
5389         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5390                 struct hwrm_vnic_free_input req = {0};
5391
5392                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5393                 req.vnic_id =
5394                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5395
5396                 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5397                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5398         }
5399 }
5400
5401 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5402 {
5403         u16 i;
5404
5405         for (i = 0; i < bp->nr_vnics; i++)
5406                 bnxt_hwrm_vnic_free_one(bp, i);
5407 }
5408
5409 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5410                                 unsigned int start_rx_ring_idx,
5411                                 unsigned int nr_rings)
5412 {
5413         int rc = 0;
5414         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5415         struct hwrm_vnic_alloc_input req = {0};
5416         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5417         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5418
5419         if (bp->flags & BNXT_FLAG_CHIP_P5)
5420                 goto vnic_no_ring_grps;
5421
5422         /* map ring groups to this vnic */
5423         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5424                 grp_idx = bp->rx_ring[i].bnapi->index;
5425                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5426                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5427                                    j, nr_rings);
5428                         break;
5429                 }
5430                 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5431         }
5432
5433 vnic_no_ring_grps:
5434         for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5435                 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5436         if (vnic_id == 0)
5437                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5438
5439         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5440
5441         mutex_lock(&bp->hwrm_cmd_lock);
5442         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5443         if (!rc)
5444                 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5445         mutex_unlock(&bp->hwrm_cmd_lock);
5446         return rc;
5447 }
5448
5449 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5450 {
5451         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5452         struct hwrm_vnic_qcaps_input req = {0};
5453         int rc;
5454
5455         bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5456         bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5457         if (bp->hwrm_spec_code < 0x10600)
5458                 return 0;
5459
5460         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5461         mutex_lock(&bp->hwrm_cmd_lock);
5462         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5463         if (!rc) {
5464                 u32 flags = le32_to_cpu(resp->flags);
5465
5466                 if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5467                     (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5468                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5469                 if (flags &
5470                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5471                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5472
5473                 /* Older P5 fw before EXT_HW_STATS support did not set
5474                  * VLAN_STRIP_CAP properly.
5475                  */
5476                 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5477                     (BNXT_CHIP_P5_THOR(bp) &&
5478                      !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5479                         bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5480                 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5481                 if (bp->max_tpa_v2) {
5482                         if (BNXT_CHIP_P5_THOR(bp))
5483                                 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5484                         else
5485                                 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5486                 }
5487         }
5488         mutex_unlock(&bp->hwrm_cmd_lock);
5489         return rc;
5490 }
5491
5492 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5493 {
5494         u16 i;
5495         u32 rc = 0;
5496
5497         if (bp->flags & BNXT_FLAG_CHIP_P5)
5498                 return 0;
5499
5500         mutex_lock(&bp->hwrm_cmd_lock);
5501         for (i = 0; i < bp->rx_nr_rings; i++) {
5502                 struct hwrm_ring_grp_alloc_input req = {0};
5503                 struct hwrm_ring_grp_alloc_output *resp =
5504                                         bp->hwrm_cmd_resp_addr;
5505                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5506
5507                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5508
5509                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5510                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5511                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5512                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5513
5514                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5515                                         HWRM_CMD_TIMEOUT);
5516                 if (rc)
5517                         break;
5518
5519                 bp->grp_info[grp_idx].fw_grp_id =
5520                         le32_to_cpu(resp->ring_group_id);
5521         }
5522         mutex_unlock(&bp->hwrm_cmd_lock);
5523         return rc;
5524 }
5525
5526 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5527 {
5528         u16 i;
5529         struct hwrm_ring_grp_free_input req = {0};
5530
5531         if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5532                 return;
5533
5534         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5535
5536         mutex_lock(&bp->hwrm_cmd_lock);
5537         for (i = 0; i < bp->cp_nr_rings; i++) {
5538                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5539                         continue;
5540                 req.ring_group_id =
5541                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
5542
5543                 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5544                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5545         }
5546         mutex_unlock(&bp->hwrm_cmd_lock);
5547 }
5548
5549 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5550                                     struct bnxt_ring_struct *ring,
5551                                     u32 ring_type, u32 map_index)
5552 {
5553         int rc = 0, err = 0;
5554         struct hwrm_ring_alloc_input req = {0};
5555         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5556         struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5557         struct bnxt_ring_grp_info *grp_info;
5558         u16 ring_id;
5559
5560         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5561
5562         req.enables = 0;
5563         if (rmem->nr_pages > 1) {
5564                 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5565                 /* Page size is in log2 units */
5566                 req.page_size = BNXT_PAGE_SHIFT;
5567                 req.page_tbl_depth = 1;
5568         } else {
5569                 req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5570         }
5571         req.fbo = 0;
5572         /* Association of ring index with doorbell index and MSIX number */
5573         req.logical_id = cpu_to_le16(map_index);
5574
5575         switch (ring_type) {
5576         case HWRM_RING_ALLOC_TX: {
5577                 struct bnxt_tx_ring_info *txr;
5578
5579                 txr = container_of(ring, struct bnxt_tx_ring_info,
5580                                    tx_ring_struct);
5581                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5582                 /* Association of transmit ring with completion ring */
5583                 grp_info = &bp->grp_info[ring->grp_idx];
5584                 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5585                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5586                 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5587                 req.queue_id = cpu_to_le16(ring->queue_id);
5588                 break;
5589         }
5590         case HWRM_RING_ALLOC_RX:
5591                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5592                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5593                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5594                         u16 flags = 0;
5595
5596                         /* Association of rx ring with stats context */
5597                         grp_info = &bp->grp_info[ring->grp_idx];
5598                         req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5599                         req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5600                         req.enables |= cpu_to_le32(
5601                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5602                         if (NET_IP_ALIGN == 2)
5603                                 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5604                         req.flags = cpu_to_le16(flags);
5605                 }
5606                 break;
5607         case HWRM_RING_ALLOC_AGG:
5608                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5609                         req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5610                         /* Association of agg ring with rx ring */
5611                         grp_info = &bp->grp_info[ring->grp_idx];
5612                         req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5613                         req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5614                         req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5615                         req.enables |= cpu_to_le32(
5616                                 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5617                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5618                 } else {
5619                         req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5620                 }
5621                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5622                 break;
5623         case HWRM_RING_ALLOC_CMPL:
5624                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5625                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5626                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5627                         /* Association of cp ring with nq */
5628                         grp_info = &bp->grp_info[map_index];
5629                         req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5630                         req.cq_handle = cpu_to_le64(ring->handle);
5631                         req.enables |= cpu_to_le32(
5632                                 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5633                 } else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5634                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5635                 }
5636                 break;
5637         case HWRM_RING_ALLOC_NQ:
5638                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5639                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5640                 if (bp->flags & BNXT_FLAG_USING_MSIX)
5641                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5642                 break;
5643         default:
5644                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5645                            ring_type);
5646                 return -1;
5647         }
5648
5649         mutex_lock(&bp->hwrm_cmd_lock);
5650         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5651         err = le16_to_cpu(resp->error_code);
5652         ring_id = le16_to_cpu(resp->ring_id);
5653         mutex_unlock(&bp->hwrm_cmd_lock);
5654
5655         if (rc || err) {
5656                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5657                            ring_type, rc, err);
5658                 return -EIO;
5659         }
5660         ring->fw_ring_id = ring_id;
5661         return rc;
5662 }
5663
5664 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5665 {
5666         int rc;
5667
5668         if (BNXT_PF(bp)) {
5669                 struct hwrm_func_cfg_input req = {0};
5670
5671                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5672                 req.fid = cpu_to_le16(0xffff);
5673                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5674                 req.async_event_cr = cpu_to_le16(idx);
5675                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5676         } else {
5677                 struct hwrm_func_vf_cfg_input req = {0};
5678
5679                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5680                 req.enables =
5681                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5682                 req.async_event_cr = cpu_to_le16(idx);
5683                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5684         }
5685         return rc;
5686 }
5687
5688 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5689                         u32 map_idx, u32 xid)
5690 {
5691         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5692                 if (BNXT_PF(bp))
5693                         db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5694                 else
5695                         db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5696                 switch (ring_type) {
5697                 case HWRM_RING_ALLOC_TX:
5698                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5699                         break;
5700                 case HWRM_RING_ALLOC_RX:
5701                 case HWRM_RING_ALLOC_AGG:
5702                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5703                         break;
5704                 case HWRM_RING_ALLOC_CMPL:
5705                         db->db_key64 = DBR_PATH_L2;
5706                         break;
5707                 case HWRM_RING_ALLOC_NQ:
5708                         db->db_key64 = DBR_PATH_L2;
5709                         break;
5710                 }
5711                 db->db_key64 |= (u64)xid << DBR_XID_SFT;
5712         } else {
5713                 db->doorbell = bp->bar1 + map_idx * 0x80;
5714                 switch (ring_type) {
5715                 case HWRM_RING_ALLOC_TX:
5716                         db->db_key32 = DB_KEY_TX;
5717                         break;
5718                 case HWRM_RING_ALLOC_RX:
5719                 case HWRM_RING_ALLOC_AGG:
5720                         db->db_key32 = DB_KEY_RX;
5721                         break;
5722                 case HWRM_RING_ALLOC_CMPL:
5723                         db->db_key32 = DB_KEY_CP;
5724                         break;
5725                 }
5726         }
5727 }
5728
5729 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5730 {
5731         bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5732         int i, rc = 0;
5733         u32 type;
5734
5735         if (bp->flags & BNXT_FLAG_CHIP_P5)
5736                 type = HWRM_RING_ALLOC_NQ;
5737         else
5738                 type = HWRM_RING_ALLOC_CMPL;
5739         for (i = 0; i < bp->cp_nr_rings; i++) {
5740                 struct bnxt_napi *bnapi = bp->bnapi[i];
5741                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5742                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5743                 u32 map_idx = ring->map_idx;
5744                 unsigned int vector;
5745
5746                 vector = bp->irq_tbl[map_idx].vector;
5747                 disable_irq_nosync(vector);
5748                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5749                 if (rc) {
5750                         enable_irq(vector);
5751                         goto err_out;
5752                 }
5753                 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5754                 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5755                 enable_irq(vector);
5756                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5757
5758                 if (!i) {
5759                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5760                         if (rc)
5761                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5762                 }
5763         }
5764
5765         type = HWRM_RING_ALLOC_TX;
5766         for (i = 0; i < bp->tx_nr_rings; i++) {
5767                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5768                 struct bnxt_ring_struct *ring;
5769                 u32 map_idx;
5770
5771                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5772                         struct bnxt_napi *bnapi = txr->bnapi;
5773                         struct bnxt_cp_ring_info *cpr, *cpr2;
5774                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5775
5776                         cpr = &bnapi->cp_ring;
5777                         cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5778                         ring = &cpr2->cp_ring_struct;
5779                         ring->handle = BNXT_TX_HDL;
5780                         map_idx = bnapi->index;
5781                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5782                         if (rc)
5783                                 goto err_out;
5784                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5785                                     ring->fw_ring_id);
5786                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5787                 }
5788                 ring = &txr->tx_ring_struct;
5789                 map_idx = i;
5790                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5791                 if (rc)
5792                         goto err_out;
5793                 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5794         }
5795
5796         type = HWRM_RING_ALLOC_RX;
5797         for (i = 0; i < bp->rx_nr_rings; i++) {
5798                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5799                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5800                 struct bnxt_napi *bnapi = rxr->bnapi;
5801                 u32 map_idx = bnapi->index;
5802
5803                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5804                 if (rc)
5805                         goto err_out;
5806                 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5807                 /* If we have agg rings, post agg buffers first. */
5808                 if (!agg_rings)
5809                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5810                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5811                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5812                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5813                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5814                         struct bnxt_cp_ring_info *cpr2;
5815
5816                         cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5817                         ring = &cpr2->cp_ring_struct;
5818                         ring->handle = BNXT_RX_HDL;
5819                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5820                         if (rc)
5821                                 goto err_out;
5822                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5823                                     ring->fw_ring_id);
5824                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5825                 }
5826         }
5827
5828         if (agg_rings) {
5829                 type = HWRM_RING_ALLOC_AGG;
5830                 for (i = 0; i < bp->rx_nr_rings; i++) {
5831                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5832                         struct bnxt_ring_struct *ring =
5833                                                 &rxr->rx_agg_ring_struct;
5834                         u32 grp_idx = ring->grp_idx;
5835                         u32 map_idx = grp_idx + bp->rx_nr_rings;
5836
5837                         rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5838                         if (rc)
5839                                 goto err_out;
5840
5841                         bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5842                                     ring->fw_ring_id);
5843                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5844                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5845                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5846                 }
5847         }
5848 err_out:
5849         return rc;
5850 }
5851
5852 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5853                                    struct bnxt_ring_struct *ring,
5854                                    u32 ring_type, int cmpl_ring_id)
5855 {
5856         int rc;
5857         struct hwrm_ring_free_input req = {0};
5858         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5859         u16 error_code;
5860
5861         if (BNXT_NO_FW_ACCESS(bp))
5862                 return 0;
5863
5864         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5865         req.ring_type = ring_type;
5866         req.ring_id = cpu_to_le16(ring->fw_ring_id);
5867
5868         mutex_lock(&bp->hwrm_cmd_lock);
5869         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5870         error_code = le16_to_cpu(resp->error_code);
5871         mutex_unlock(&bp->hwrm_cmd_lock);
5872
5873         if (rc || error_code) {
5874                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5875                            ring_type, rc, error_code);
5876                 return -EIO;
5877         }
5878         return 0;
5879 }
5880
5881 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5882 {
5883         u32 type;
5884         int i;
5885
5886         if (!bp->bnapi)
5887                 return;
5888
5889         for (i = 0; i < bp->tx_nr_rings; i++) {
5890                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5891                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5892
5893                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5894                         u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5895
5896                         hwrm_ring_free_send_msg(bp, ring,
5897                                                 RING_FREE_REQ_RING_TYPE_TX,
5898                                                 close_path ? cmpl_ring_id :
5899                                                 INVALID_HW_RING_ID);
5900                         ring->fw_ring_id = INVALID_HW_RING_ID;
5901                 }
5902         }
5903
5904         for (i = 0; i < bp->rx_nr_rings; i++) {
5905                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5906                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5907                 u32 grp_idx = rxr->bnapi->index;
5908
5909                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5910                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5911
5912                         hwrm_ring_free_send_msg(bp, ring,
5913                                                 RING_FREE_REQ_RING_TYPE_RX,
5914                                                 close_path ? cmpl_ring_id :
5915                                                 INVALID_HW_RING_ID);
5916                         ring->fw_ring_id = INVALID_HW_RING_ID;
5917                         bp->grp_info[grp_idx].rx_fw_ring_id =
5918                                 INVALID_HW_RING_ID;
5919                 }
5920         }
5921
5922         if (bp->flags & BNXT_FLAG_CHIP_P5)
5923                 type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5924         else
5925                 type = RING_FREE_REQ_RING_TYPE_RX;
5926         for (i = 0; i < bp->rx_nr_rings; i++) {
5927                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5928                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5929                 u32 grp_idx = rxr->bnapi->index;
5930
5931                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5932                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5933
5934                         hwrm_ring_free_send_msg(bp, ring, type,
5935                                                 close_path ? cmpl_ring_id :
5936                                                 INVALID_HW_RING_ID);
5937                         ring->fw_ring_id = INVALID_HW_RING_ID;
5938                         bp->grp_info[grp_idx].agg_fw_ring_id =
5939                                 INVALID_HW_RING_ID;
5940                 }
5941         }
5942
5943         /* The completion rings are about to be freed.  After that the
5944          * IRQ doorbell will not work anymore.  So we need to disable
5945          * IRQ here.
5946          */
5947         bnxt_disable_int_sync(bp);
5948
5949         if (bp->flags & BNXT_FLAG_CHIP_P5)
5950                 type = RING_FREE_REQ_RING_TYPE_NQ;
5951         else
5952                 type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5953         for (i = 0; i < bp->cp_nr_rings; i++) {
5954                 struct bnxt_napi *bnapi = bp->bnapi[i];
5955                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5956                 struct bnxt_ring_struct *ring;
5957                 int j;
5958
5959                 for (j = 0; j < 2; j++) {
5960                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5961
5962                         if (cpr2) {
5963                                 ring = &cpr2->cp_ring_struct;
5964                                 if (ring->fw_ring_id == INVALID_HW_RING_ID)
5965                                         continue;
5966                                 hwrm_ring_free_send_msg(bp, ring,
5967                                         RING_FREE_REQ_RING_TYPE_L2_CMPL,
5968                                         INVALID_HW_RING_ID);
5969                                 ring->fw_ring_id = INVALID_HW_RING_ID;
5970                         }
5971                 }
5972                 ring = &cpr->cp_ring_struct;
5973                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5974                         hwrm_ring_free_send_msg(bp, ring, type,
5975                                                 INVALID_HW_RING_ID);
5976                         ring->fw_ring_id = INVALID_HW_RING_ID;
5977                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5978                 }
5979         }
5980 }
5981
5982 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5983                            bool shared);
5984
5985 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5986 {
5987         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5988         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5989         struct hwrm_func_qcfg_input req = {0};
5990         int rc;
5991
5992         if (bp->hwrm_spec_code < 0x10601)
5993                 return 0;
5994
5995         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5996         req.fid = cpu_to_le16(0xffff);
5997         mutex_lock(&bp->hwrm_cmd_lock);
5998         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5999         if (rc) {
6000                 mutex_unlock(&bp->hwrm_cmd_lock);
6001                 return rc;
6002         }
6003
6004         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6005         if (BNXT_NEW_RM(bp)) {
6006                 u16 cp, stats;
6007
6008                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6009                 hw_resc->resv_hw_ring_grps =
6010                         le32_to_cpu(resp->alloc_hw_ring_grps);
6011                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6012                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
6013                 stats = le16_to_cpu(resp->alloc_stat_ctx);
6014                 hw_resc->resv_irqs = cp;
6015                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6016                         int rx = hw_resc->resv_rx_rings;
6017                         int tx = hw_resc->resv_tx_rings;
6018
6019                         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6020                                 rx >>= 1;
6021                         if (cp < (rx + tx)) {
6022                                 bnxt_trim_rings(bp, &rx, &tx, cp, false);
6023                                 if (bp->flags & BNXT_FLAG_AGG_RINGS)
6024                                         rx <<= 1;
6025                                 hw_resc->resv_rx_rings = rx;
6026                                 hw_resc->resv_tx_rings = tx;
6027                         }
6028                         hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6029                         hw_resc->resv_hw_ring_grps = rx;
6030                 }
6031                 hw_resc->resv_cp_rings = cp;
6032                 hw_resc->resv_stat_ctxs = stats;
6033         }
6034         mutex_unlock(&bp->hwrm_cmd_lock);
6035         return 0;
6036 }
6037
6038 /* Caller must hold bp->hwrm_cmd_lock */
6039 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6040 {
6041         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6042         struct hwrm_func_qcfg_input req = {0};
6043         int rc;
6044
6045         if (bp->hwrm_spec_code < 0x10601)
6046                 return 0;
6047
6048         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6049         req.fid = cpu_to_le16(fid);
6050         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6051         if (!rc)
6052                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6053
6054         return rc;
6055 }
6056
6057 static bool bnxt_rfs_supported(struct bnxt *bp);
6058
6059 static void
6060 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
6061                              int tx_rings, int rx_rings, int ring_grps,
6062                              int cp_rings, int stats, int vnics)
6063 {
6064         u32 enables = 0;
6065
6066         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
6067         req->fid = cpu_to_le16(0xffff);
6068         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6069         req->num_tx_rings = cpu_to_le16(tx_rings);
6070         if (BNXT_NEW_RM(bp)) {
6071                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6072                 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6073                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6074                         enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6075                         enables |= tx_rings + ring_grps ?
6076                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6077                         enables |= rx_rings ?
6078                                 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6079                 } else {
6080                         enables |= cp_rings ?
6081                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6082                         enables |= ring_grps ?
6083                                    FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6084                                    FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6085                 }
6086                 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6087
6088                 req->num_rx_rings = cpu_to_le16(rx_rings);
6089                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6090                         req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6091                         req->num_msix = cpu_to_le16(cp_rings);
6092                         req->num_rsscos_ctxs =
6093                                 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6094                 } else {
6095                         req->num_cmpl_rings = cpu_to_le16(cp_rings);
6096                         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6097                         req->num_rsscos_ctxs = cpu_to_le16(1);
6098                         if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6099                             bnxt_rfs_supported(bp))
6100                                 req->num_rsscos_ctxs =
6101                                         cpu_to_le16(ring_grps + 1);
6102                 }
6103                 req->num_stat_ctxs = cpu_to_le16(stats);
6104                 req->num_vnics = cpu_to_le16(vnics);
6105         }
6106         req->enables = cpu_to_le32(enables);
6107 }
6108
6109 static void
6110 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
6111                              struct hwrm_func_vf_cfg_input *req, int tx_rings,
6112                              int rx_rings, int ring_grps, int cp_rings,
6113                              int stats, int vnics)
6114 {
6115         u32 enables = 0;
6116
6117         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
6118         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6119         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6120                               FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6121         enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6122         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6123                 enables |= tx_rings + ring_grps ?
6124                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6125         } else {
6126                 enables |= cp_rings ?
6127                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6128                 enables |= ring_grps ?
6129                            FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6130         }
6131         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6132         enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6133
6134         req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6135         req->num_tx_rings = cpu_to_le16(tx_rings);
6136         req->num_rx_rings = cpu_to_le16(rx_rings);
6137         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6138                 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6139                 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6140         } else {
6141                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
6142                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6143                 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6144         }
6145         req->num_stat_ctxs = cpu_to_le16(stats);
6146         req->num_vnics = cpu_to_le16(vnics);
6147
6148         req->enables = cpu_to_le32(enables);
6149 }
6150
6151 static int
6152 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6153                            int ring_grps, int cp_rings, int stats, int vnics)
6154 {
6155         struct hwrm_func_cfg_input req = {0};
6156         int rc;
6157
6158         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6159                                      cp_rings, stats, vnics);
6160         if (!req.enables)
6161                 return 0;
6162
6163         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6164         if (rc)
6165                 return rc;
6166
6167         if (bp->hwrm_spec_code < 0x10601)
6168                 bp->hw_resc.resv_tx_rings = tx_rings;
6169
6170         return bnxt_hwrm_get_rings(bp);
6171 }
6172
6173 static int
6174 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6175                            int ring_grps, int cp_rings, int stats, int vnics)
6176 {
6177         struct hwrm_func_vf_cfg_input req = {0};
6178         int rc;
6179
6180         if (!BNXT_NEW_RM(bp)) {
6181                 bp->hw_resc.resv_tx_rings = tx_rings;
6182                 return 0;
6183         }
6184
6185         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6186                                      cp_rings, stats, vnics);
6187         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6188         if (rc)
6189                 return rc;
6190
6191         return bnxt_hwrm_get_rings(bp);
6192 }
6193
6194 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6195                                    int cp, int stat, int vnic)
6196 {
6197         if (BNXT_PF(bp))
6198                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6199                                                   vnic);
6200         else
6201                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6202                                                   vnic);
6203 }
6204
6205 int bnxt_nq_rings_in_use(struct bnxt *bp)
6206 {
6207         int cp = bp->cp_nr_rings;
6208         int ulp_msix, ulp_base;
6209
6210         ulp_msix = bnxt_get_ulp_msix_num(bp);
6211         if (ulp_msix) {
6212                 ulp_base = bnxt_get_ulp_msix_base(bp);
6213                 cp += ulp_msix;
6214                 if ((ulp_base + ulp_msix) > cp)
6215                         cp = ulp_base + ulp_msix;
6216         }
6217         return cp;
6218 }
6219
6220 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6221 {
6222         int cp;
6223
6224         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6225                 return bnxt_nq_rings_in_use(bp);
6226
6227         cp = bp->tx_nr_rings + bp->rx_nr_rings;
6228         return cp;
6229 }
6230
6231 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6232 {
6233         int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6234         int cp = bp->cp_nr_rings;
6235
6236         if (!ulp_stat)
6237                 return cp;
6238
6239         if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6240                 return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6241
6242         return cp + ulp_stat;
6243 }
6244
6245 /* Check if a default RSS map needs to be setup.  This function is only
6246  * used on older firmware that does not require reserving RX rings.
6247  */
6248 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6249 {
6250         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6251
6252         /* The RSS map is valid for RX rings set to resv_rx_rings */
6253         if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6254                 hw_resc->resv_rx_rings = bp->rx_nr_rings;
6255                 if (!netif_is_rxfh_configured(bp->dev))
6256                         bnxt_set_dflt_rss_indir_tbl(bp);
6257         }
6258 }
6259
6260 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6261 {
6262         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6263         int cp = bnxt_cp_rings_in_use(bp);
6264         int nq = bnxt_nq_rings_in_use(bp);
6265         int rx = bp->rx_nr_rings, stat;
6266         int vnic = 1, grp = rx;
6267
6268         if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6269             bp->hwrm_spec_code >= 0x10601)
6270                 return true;
6271
6272         /* Old firmware does not need RX ring reservations but we still
6273          * need to setup a default RSS map when needed.  With new firmware
6274          * we go through RX ring reservations first and then set up the
6275          * RSS map for the successfully reserved RX rings when needed.
6276          */
6277         if (!BNXT_NEW_RM(bp)) {
6278                 bnxt_check_rss_tbl_no_rmgr(bp);
6279                 return false;
6280         }
6281         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6282                 vnic = rx + 1;
6283         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6284                 rx <<= 1;
6285         stat = bnxt_get_func_stat_ctxs(bp);
6286         if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6287             hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6288             (hw_resc->resv_hw_ring_grps != grp &&
6289              !(bp->flags & BNXT_FLAG_CHIP_P5)))
6290                 return true;
6291         if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6292             hw_resc->resv_irqs != nq)
6293                 return true;
6294         return false;
6295 }
6296
6297 static int __bnxt_reserve_rings(struct bnxt *bp)
6298 {
6299         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6300         int cp = bnxt_nq_rings_in_use(bp);
6301         int tx = bp->tx_nr_rings;
6302         int rx = bp->rx_nr_rings;
6303         int grp, rx_rings, rc;
6304         int vnic = 1, stat;
6305         bool sh = false;
6306
6307         if (!bnxt_need_reserve_rings(bp))
6308                 return 0;
6309
6310         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6311                 sh = true;
6312         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6313                 vnic = rx + 1;
6314         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6315                 rx <<= 1;
6316         grp = bp->rx_nr_rings;
6317         stat = bnxt_get_func_stat_ctxs(bp);
6318
6319         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6320         if (rc)
6321                 return rc;
6322
6323         tx = hw_resc->resv_tx_rings;
6324         if (BNXT_NEW_RM(bp)) {
6325                 rx = hw_resc->resv_rx_rings;
6326                 cp = hw_resc->resv_irqs;
6327                 grp = hw_resc->resv_hw_ring_grps;
6328                 vnic = hw_resc->resv_vnics;
6329                 stat = hw_resc->resv_stat_ctxs;
6330         }
6331
6332         rx_rings = rx;
6333         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6334                 if (rx >= 2) {
6335                         rx_rings = rx >> 1;
6336                 } else {
6337                         if (netif_running(bp->dev))
6338                                 return -ENOMEM;
6339
6340                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6341                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6342                         bp->dev->hw_features &= ~NETIF_F_LRO;
6343                         bp->dev->features &= ~NETIF_F_LRO;
6344                         bnxt_set_ring_params(bp);
6345                 }
6346         }
6347         rx_rings = min_t(int, rx_rings, grp);
6348         cp = min_t(int, cp, bp->cp_nr_rings);
6349         if (stat > bnxt_get_ulp_stat_ctxs(bp))
6350                 stat -= bnxt_get_ulp_stat_ctxs(bp);
6351         cp = min_t(int, cp, stat);
6352         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6353         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6354                 rx = rx_rings << 1;
6355         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6356         bp->tx_nr_rings = tx;
6357
6358         /* If we cannot reserve all the RX rings, reset the RSS map only
6359          * if absolutely necessary
6360          */
6361         if (rx_rings != bp->rx_nr_rings) {
6362                 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6363                             rx_rings, bp->rx_nr_rings);
6364                 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6365                     (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6366                      bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6367                      bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6368                         netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6369                         bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6370                 }
6371         }
6372         bp->rx_nr_rings = rx_rings;
6373         bp->cp_nr_rings = cp;
6374
6375         if (!tx || !rx || !cp || !grp || !vnic || !stat)
6376                 return -ENOMEM;
6377
6378         if (!netif_is_rxfh_configured(bp->dev))
6379                 bnxt_set_dflt_rss_indir_tbl(bp);
6380
6381         return rc;
6382 }
6383
6384 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6385                                     int ring_grps, int cp_rings, int stats,
6386                                     int vnics)
6387 {
6388         struct hwrm_func_vf_cfg_input req = {0};
6389         u32 flags;
6390
6391         if (!BNXT_NEW_RM(bp))
6392                 return 0;
6393
6394         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6395                                      cp_rings, stats, vnics);
6396         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6397                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6398                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6399                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6400                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6401                 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6402         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6403                 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6404
6405         req.flags = cpu_to_le32(flags);
6406         return hwrm_send_message_silent(bp, &req, sizeof(req),
6407                                         HWRM_CMD_TIMEOUT);
6408 }
6409
6410 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6411                                     int ring_grps, int cp_rings, int stats,
6412                                     int vnics)
6413 {
6414         struct hwrm_func_cfg_input req = {0};
6415         u32 flags;
6416
6417         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6418                                      cp_rings, stats, vnics);
6419         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6420         if (BNXT_NEW_RM(bp)) {
6421                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6422                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6423                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6424                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6425                 if (bp->flags & BNXT_FLAG_CHIP_P5)
6426                         flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6427                                  FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6428                 else
6429                         flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6430         }
6431
6432         req.flags = cpu_to_le32(flags);
6433         return hwrm_send_message_silent(bp, &req, sizeof(req),
6434                                         HWRM_CMD_TIMEOUT);
6435 }
6436
6437 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6438                                  int ring_grps, int cp_rings, int stats,
6439                                  int vnics)
6440 {
6441         if (bp->hwrm_spec_code < 0x10801)
6442                 return 0;
6443
6444         if (BNXT_PF(bp))
6445                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6446                                                 ring_grps, cp_rings, stats,
6447                                                 vnics);
6448
6449         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6450                                         cp_rings, stats, vnics);
6451 }
6452
6453 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6454 {
6455         struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6456         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6457         struct hwrm_ring_aggint_qcaps_input req = {0};
6458         int rc;
6459
6460         coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6461         coal_cap->num_cmpl_dma_aggr_max = 63;
6462         coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6463         coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6464         coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6465         coal_cap->int_lat_tmr_min_max = 65535;
6466         coal_cap->int_lat_tmr_max_max = 65535;
6467         coal_cap->num_cmpl_aggr_int_max = 65535;
6468         coal_cap->timer_units = 80;
6469
6470         if (bp->hwrm_spec_code < 0x10902)
6471                 return;
6472
6473         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6474         mutex_lock(&bp->hwrm_cmd_lock);
6475         rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6476         if (!rc) {
6477                 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6478                 coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6479                 coal_cap->num_cmpl_dma_aggr_max =
6480                         le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6481                 coal_cap->num_cmpl_dma_aggr_during_int_max =
6482                         le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6483                 coal_cap->cmpl_aggr_dma_tmr_max =
6484                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6485                 coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6486                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6487                 coal_cap->int_lat_tmr_min_max =
6488                         le16_to_cpu(resp->int_lat_tmr_min_max);
6489                 coal_cap->int_lat_tmr_max_max =
6490                         le16_to_cpu(resp->int_lat_tmr_max_max);
6491                 coal_cap->num_cmpl_aggr_int_max =
6492                         le16_to_cpu(resp->num_cmpl_aggr_int_max);
6493                 coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6494         }
6495         mutex_unlock(&bp->hwrm_cmd_lock);
6496 }
6497
6498 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6499 {
6500         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6501
6502         return usec * 1000 / coal_cap->timer_units;
6503 }
6504
6505 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6506         struct bnxt_coal *hw_coal,
6507         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6508 {
6509         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6510         u32 cmpl_params = coal_cap->cmpl_params;
6511         u16 val, tmr, max, flags = 0;
6512
6513         max = hw_coal->bufs_per_record * 128;
6514         if (hw_coal->budget)
6515                 max = hw_coal->bufs_per_record * hw_coal->budget;
6516         max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6517
6518         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6519         req->num_cmpl_aggr_int = cpu_to_le16(val);
6520
6521         val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6522         req->num_cmpl_dma_aggr = cpu_to_le16(val);
6523
6524         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6525                       coal_cap->num_cmpl_dma_aggr_during_int_max);
6526         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6527
6528         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6529         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6530         req->int_lat_tmr_max = cpu_to_le16(tmr);
6531
6532         /* min timer set to 1/2 of interrupt timer */
6533         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6534                 val = tmr / 2;
6535                 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6536                 req->int_lat_tmr_min = cpu_to_le16(val);
6537                 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6538         }
6539
6540         /* buf timer set to 1/4 of interrupt timer */
6541         val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6542         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6543
6544         if (cmpl_params &
6545             RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6546                 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6547                 val = clamp_t(u16, tmr, 1,
6548                               coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6549                 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6550                 req->enables |=
6551                         cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6552         }
6553
6554         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6555                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6556         if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6557             hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6558                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6559         req->flags = cpu_to_le16(flags);
6560         req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6561 }
6562
6563 /* Caller holds bp->hwrm_cmd_lock */
6564 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6565                                    struct bnxt_coal *hw_coal)
6566 {
6567         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6568         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6569         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6570         u32 nq_params = coal_cap->nq_params;
6571         u16 tmr;
6572
6573         if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6574                 return 0;
6575
6576         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6577                                -1, -1);
6578         req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6579         req.flags =
6580                 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6581
6582         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6583         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6584         req.int_lat_tmr_min = cpu_to_le16(tmr);
6585         req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6586         return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6587 }
6588
6589 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6590 {
6591         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6592         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6593         struct bnxt_coal coal;
6594
6595         /* Tick values in micro seconds.
6596          * 1 coal_buf x bufs_per_record = 1 completion record.
6597          */
6598         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6599
6600         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6601         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6602
6603         if (!bnapi->rx_ring)
6604                 return -ENODEV;
6605
6606         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6607                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6608
6609         bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6610
6611         req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6612
6613         return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6614                                  HWRM_CMD_TIMEOUT);
6615 }
6616
6617 int bnxt_hwrm_set_coal(struct bnxt *bp)
6618 {
6619         int i, rc = 0;
6620         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6621                                                            req_tx = {0}, *req;
6622
6623         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6624                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6625         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6626                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6627
6628         bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6629         bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6630
6631         mutex_lock(&bp->hwrm_cmd_lock);
6632         for (i = 0; i < bp->cp_nr_rings; i++) {
6633                 struct bnxt_napi *bnapi = bp->bnapi[i];
6634                 struct bnxt_coal *hw_coal;
6635                 u16 ring_id;
6636
6637                 req = &req_rx;
6638                 if (!bnapi->rx_ring) {
6639                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6640                         req = &req_tx;
6641                 } else {
6642                         ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6643                 }
6644                 req->ring_id = cpu_to_le16(ring_id);
6645
6646                 rc = _hwrm_send_message(bp, req, sizeof(*req),
6647                                         HWRM_CMD_TIMEOUT);
6648                 if (rc)
6649                         break;
6650
6651                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6652                         continue;
6653
6654                 if (bnapi->rx_ring && bnapi->tx_ring) {
6655                         req = &req_tx;
6656                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6657                         req->ring_id = cpu_to_le16(ring_id);
6658                         rc = _hwrm_send_message(bp, req, sizeof(*req),
6659                                                 HWRM_CMD_TIMEOUT);
6660                         if (rc)
6661                                 break;
6662                 }
6663                 if (bnapi->rx_ring)
6664                         hw_coal = &bp->rx_coal;
6665                 else
6666                         hw_coal = &bp->tx_coal;
6667                 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6668         }
6669         mutex_unlock(&bp->hwrm_cmd_lock);
6670         return rc;
6671 }
6672
6673 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6674 {
6675         struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6676         struct hwrm_stat_ctx_free_input req = {0};
6677         int i;
6678
6679         if (!bp->bnapi)
6680                 return;
6681
6682         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6683                 return;
6684
6685         bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6686         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6687
6688         mutex_lock(&bp->hwrm_cmd_lock);
6689         for (i = 0; i < bp->cp_nr_rings; i++) {
6690                 struct bnxt_napi *bnapi = bp->bnapi[i];
6691                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6692
6693                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6694                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6695                         if (BNXT_FW_MAJ(bp) <= 20) {
6696                                 req0.stat_ctx_id = req.stat_ctx_id;
6697                                 _hwrm_send_message(bp, &req0, sizeof(req0),
6698                                                    HWRM_CMD_TIMEOUT);
6699                         }
6700                         _hwrm_send_message(bp, &req, sizeof(req),
6701                                            HWRM_CMD_TIMEOUT);
6702
6703                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6704                 }
6705         }
6706         mutex_unlock(&bp->hwrm_cmd_lock);
6707 }
6708
6709 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6710 {
6711         int rc = 0, i;
6712         struct hwrm_stat_ctx_alloc_input req = {0};
6713         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6714
6715         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6716                 return 0;
6717
6718         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6719
6720         req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6721         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6722
6723         mutex_lock(&bp->hwrm_cmd_lock);
6724         for (i = 0; i < bp->cp_nr_rings; i++) {
6725                 struct bnxt_napi *bnapi = bp->bnapi[i];
6726                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6727
6728                 req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6729
6730                 rc = _hwrm_send_message(bp, &req, sizeof(req),
6731                                         HWRM_CMD_TIMEOUT);
6732                 if (rc)
6733                         break;
6734
6735                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6736
6737                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6738         }
6739         mutex_unlock(&bp->hwrm_cmd_lock);
6740         return rc;
6741 }
6742
6743 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6744 {
6745         struct hwrm_func_qcfg_input req = {0};
6746         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6747         u32 min_db_offset = 0;
6748         u16 flags;
6749         int rc;
6750
6751         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6752         req.fid = cpu_to_le16(0xffff);
6753         mutex_lock(&bp->hwrm_cmd_lock);
6754         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6755         if (rc)
6756                 goto func_qcfg_exit;
6757
6758 #ifdef CONFIG_BNXT_SRIOV
6759         if (BNXT_VF(bp)) {
6760                 struct bnxt_vf_info *vf = &bp->vf;
6761
6762                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6763         } else {
6764                 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6765         }
6766 #endif
6767         flags = le16_to_cpu(resp->flags);
6768         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6769                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6770                 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6771                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6772                         bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6773         }
6774         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6775                 bp->flags |= BNXT_FLAG_MULTI_HOST;
6776         if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6777                 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6778
6779         switch (resp->port_partition_type) {
6780         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6781         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6782         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6783                 bp->port_partition_type = resp->port_partition_type;
6784                 break;
6785         }
6786         if (bp->hwrm_spec_code < 0x10707 ||
6787             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6788                 bp->br_mode = BRIDGE_MODE_VEB;
6789         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6790                 bp->br_mode = BRIDGE_MODE_VEPA;
6791         else
6792                 bp->br_mode = BRIDGE_MODE_UNDEF;
6793
6794         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6795         if (!bp->max_mtu)
6796                 bp->max_mtu = BNXT_MAX_MTU;
6797
6798         if (bp->db_size)
6799                 goto func_qcfg_exit;
6800
6801         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6802                 if (BNXT_PF(bp))
6803                         min_db_offset = DB_PF_OFFSET_P5;
6804                 else
6805                         min_db_offset = DB_VF_OFFSET_P5;
6806         }
6807         bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6808                                  1024);
6809         if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6810             bp->db_size <= min_db_offset)
6811                 bp->db_size = pci_resource_len(bp->pdev, 2);
6812
6813 func_qcfg_exit:
6814         mutex_unlock(&bp->hwrm_cmd_lock);
6815         return rc;
6816 }
6817
6818 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6819                         struct hwrm_func_backing_store_qcaps_output *resp)
6820 {
6821         struct bnxt_mem_init *mem_init;
6822         u16 init_mask;
6823         u8 init_val;
6824         u8 *offset;
6825         int i;
6826
6827         init_val = resp->ctx_kind_initializer;
6828         init_mask = le16_to_cpu(resp->ctx_init_mask);
6829         offset = &resp->qp_init_offset;
6830         mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6831         for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6832                 mem_init->init_val = init_val;
6833                 mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6834                 if (!init_mask)
6835                         continue;
6836                 if (i == BNXT_CTX_MEM_INIT_STAT)
6837                         offset = &resp->stat_init_offset;
6838                 if (init_mask & (1 << i))
6839                         mem_init->offset = *offset * 4;
6840                 else
6841                         mem_init->init_val = 0;
6842         }
6843         ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6844         ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6845         ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6846         ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6847         ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6848         ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6849 }
6850
6851 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6852 {
6853         struct hwrm_func_backing_store_qcaps_input req = {0};
6854         struct hwrm_func_backing_store_qcaps_output *resp =
6855                 bp->hwrm_cmd_resp_addr;
6856         int rc;
6857
6858         if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6859                 return 0;
6860
6861         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6862         mutex_lock(&bp->hwrm_cmd_lock);
6863         rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6864         if (!rc) {
6865                 struct bnxt_ctx_pg_info *ctx_pg;
6866                 struct bnxt_ctx_mem_info *ctx;
6867                 int i, tqm_rings;
6868
6869                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6870                 if (!ctx) {
6871                         rc = -ENOMEM;
6872                         goto ctx_err;
6873                 }
6874                 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6875                 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6876                 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6877                 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6878                 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6879                 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6880                 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6881                 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6882                 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6883                 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6884                 ctx->vnic_max_vnic_entries =
6885                         le16_to_cpu(resp->vnic_max_vnic_entries);
6886                 ctx->vnic_max_ring_table_entries =
6887                         le16_to_cpu(resp->vnic_max_ring_table_entries);
6888                 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6889                 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6890                 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6891                 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6892                 ctx->tqm_min_entries_per_ring =
6893                         le32_to_cpu(resp->tqm_min_entries_per_ring);
6894                 ctx->tqm_max_entries_per_ring =
6895                         le32_to_cpu(resp->tqm_max_entries_per_ring);
6896                 ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6897                 if (!ctx->tqm_entries_multiple)
6898                         ctx->tqm_entries_multiple = 1;
6899                 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6900                 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6901                 ctx->mrav_num_entries_units =
6902                         le16_to_cpu(resp->mrav_num_entries_units);
6903                 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6904                 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6905
6906                 bnxt_init_ctx_initializer(ctx, resp);
6907
6908                 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6909                 if (!ctx->tqm_fp_rings_count)
6910                         ctx->tqm_fp_rings_count = bp->max_q;
6911                 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6912                         ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6913
6914                 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6915                 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6916                 if (!ctx_pg) {
6917                         kfree(ctx);
6918                         rc = -ENOMEM;
6919                         goto ctx_err;
6920                 }
6921                 for (i = 0; i < tqm_rings; i++, ctx_pg++)
6922                         ctx->tqm_mem[i] = ctx_pg;
6923                 bp->ctx = ctx;
6924         } else {
6925                 rc = 0;
6926         }
6927 ctx_err:
6928         mutex_unlock(&bp->hwrm_cmd_lock);
6929         return rc;
6930 }
6931
6932 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6933                                   __le64 *pg_dir)
6934 {
6935         u8 pg_size = 0;
6936
6937         if (!rmem->nr_pages)
6938                 return;
6939
6940         if (BNXT_PAGE_SHIFT == 13)
6941                 pg_size = 1 << 4;
6942         else if (BNXT_PAGE_SIZE == 16)
6943                 pg_size = 2 << 4;
6944
6945         *pg_attr = pg_size;
6946         if (rmem->depth >= 1) {
6947                 if (rmem->depth == 2)
6948                         *pg_attr |= 2;
6949                 else
6950                         *pg_attr |= 1;
6951                 *pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6952         } else {
6953                 *pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6954         }
6955 }
6956
6957 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES                 \
6958         (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |                \
6959          FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |               \
6960          FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |                \
6961          FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |              \
6962          FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6963
6964 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6965 {
6966         struct hwrm_func_backing_store_cfg_input req = {0};
6967         struct bnxt_ctx_mem_info *ctx = bp->ctx;
6968         struct bnxt_ctx_pg_info *ctx_pg;
6969         u32 req_len = sizeof(req);
6970         __le32 *num_entries;
6971         __le64 *pg_dir;
6972         u32 flags = 0;
6973         u8 *pg_attr;
6974         u32 ena;
6975         int i;
6976
6977         if (!ctx)
6978                 return 0;
6979
6980         if (req_len > bp->hwrm_max_ext_req_len)
6981                 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
6982         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6983         req.enables = cpu_to_le32(enables);
6984
6985         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6986                 ctx_pg = &ctx->qp_mem;
6987                 req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6988                 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6989                 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6990                 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6991                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6992                                       &req.qpc_pg_size_qpc_lvl,
6993                                       &req.qpc_page_dir);
6994         }
6995         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6996                 ctx_pg = &ctx->srq_mem;
6997                 req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6998                 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6999                 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7000                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7001                                       &req.srq_pg_size_srq_lvl,
7002                                       &req.srq_page_dir);
7003         }
7004         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7005                 ctx_pg = &ctx->cq_mem;
7006                 req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
7007                 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7008                 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7009                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
7010                                       &req.cq_page_dir);
7011         }
7012         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7013                 ctx_pg = &ctx->vnic_mem;
7014                 req.vnic_num_vnic_entries =
7015                         cpu_to_le16(ctx->vnic_max_vnic_entries);
7016                 req.vnic_num_ring_table_entries =
7017                         cpu_to_le16(ctx->vnic_max_ring_table_entries);
7018                 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7019                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7020                                       &req.vnic_pg_size_vnic_lvl,
7021                                       &req.vnic_page_dir);
7022         }
7023         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7024                 ctx_pg = &ctx->stat_mem;
7025                 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7026                 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7027                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7028                                       &req.stat_pg_size_stat_lvl,
7029                                       &req.stat_page_dir);
7030         }
7031         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7032                 ctx_pg = &ctx->mrav_mem;
7033                 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7034                 if (ctx->mrav_num_entries_units)
7035                         flags |=
7036                         FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7037                 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7038                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7039                                       &req.mrav_pg_size_mrav_lvl,
7040                                       &req.mrav_page_dir);
7041         }
7042         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7043                 ctx_pg = &ctx->tim_mem;
7044                 req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
7045                 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7046                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7047                                       &req.tim_pg_size_tim_lvl,
7048                                       &req.tim_page_dir);
7049         }
7050         for (i = 0, num_entries = &req.tqm_sp_num_entries,
7051              pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
7052              pg_dir = &req.tqm_sp_page_dir,
7053              ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7054              i < BNXT_MAX_TQM_RINGS;
7055              i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7056                 if (!(enables & ena))
7057                         continue;
7058
7059                 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7060                 ctx_pg = ctx->tqm_mem[i];
7061                 *num_entries = cpu_to_le32(ctx_pg->entries);
7062                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7063         }
7064         req.flags = cpu_to_le32(flags);
7065         return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT);
7066 }
7067
7068 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7069                                   struct bnxt_ctx_pg_info *ctx_pg)
7070 {
7071         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7072
7073         rmem->page_size = BNXT_PAGE_SIZE;
7074         rmem->pg_arr = ctx_pg->ctx_pg_arr;
7075         rmem->dma_arr = ctx_pg->ctx_dma_arr;
7076         rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7077         if (rmem->depth >= 1)
7078                 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7079         return bnxt_alloc_ring(bp, rmem);
7080 }
7081
7082 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7083                                   struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7084                                   u8 depth, struct bnxt_mem_init *mem_init)
7085 {
7086         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7087         int rc;
7088
7089         if (!mem_size)
7090                 return -EINVAL;
7091
7092         ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7093         if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7094                 ctx_pg->nr_pages = 0;
7095                 return -EINVAL;
7096         }
7097         if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7098                 int nr_tbls, i;
7099
7100                 rmem->depth = 2;
7101                 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7102                                              GFP_KERNEL);
7103                 if (!ctx_pg->ctx_pg_tbl)
7104                         return -ENOMEM;
7105                 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7106                 rmem->nr_pages = nr_tbls;
7107                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7108                 if (rc)
7109                         return rc;
7110                 for (i = 0; i < nr_tbls; i++) {
7111                         struct bnxt_ctx_pg_info *pg_tbl;
7112
7113                         pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7114                         if (!pg_tbl)
7115                                 return -ENOMEM;
7116                         ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7117                         rmem = &pg_tbl->ring_mem;
7118                         rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7119                         rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7120                         rmem->depth = 1;
7121                         rmem->nr_pages = MAX_CTX_PAGES;
7122                         rmem->mem_init = mem_init;
7123                         if (i == (nr_tbls - 1)) {
7124                                 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7125
7126                                 if (rem)
7127                                         rmem->nr_pages = rem;
7128                         }
7129                         rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7130                         if (rc)
7131                                 break;
7132                 }
7133         } else {
7134                 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7135                 if (rmem->nr_pages > 1 || depth)
7136                         rmem->depth = 1;
7137                 rmem->mem_init = mem_init;
7138                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7139         }
7140         return rc;
7141 }
7142
7143 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7144                                   struct bnxt_ctx_pg_info *ctx_pg)
7145 {
7146         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7147
7148         if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7149             ctx_pg->ctx_pg_tbl) {
7150                 int i, nr_tbls = rmem->nr_pages;
7151
7152                 for (i = 0; i < nr_tbls; i++) {
7153                         struct bnxt_ctx_pg_info *pg_tbl;
7154                         struct bnxt_ring_mem_info *rmem2;
7155
7156                         pg_tbl = ctx_pg->ctx_pg_tbl[i];
7157                         if (!pg_tbl)
7158                                 continue;
7159                         rmem2 = &pg_tbl->ring_mem;
7160                         bnxt_free_ring(bp, rmem2);
7161                         ctx_pg->ctx_pg_arr[i] = NULL;
7162                         kfree(pg_tbl);
7163                         ctx_pg->ctx_pg_tbl[i] = NULL;
7164                 }
7165                 kfree(ctx_pg->ctx_pg_tbl);
7166                 ctx_pg->ctx_pg_tbl = NULL;
7167         }
7168         bnxt_free_ring(bp, rmem);
7169         ctx_pg->nr_pages = 0;
7170 }
7171
7172 static void bnxt_free_ctx_mem(struct bnxt *bp)
7173 {
7174         struct bnxt_ctx_mem_info *ctx = bp->ctx;
7175         int i;
7176
7177         if (!ctx)
7178                 return;
7179
7180         if (ctx->tqm_mem[0]) {
7181                 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7182                         bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7183                 kfree(ctx->tqm_mem[0]);
7184                 ctx->tqm_mem[0] = NULL;
7185         }
7186
7187         bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7188         bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7189         bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7190         bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7191         bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7192         bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7193         bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7194         ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7195 }
7196
7197 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7198 {
7199         struct bnxt_ctx_pg_info *ctx_pg;
7200         struct bnxt_ctx_mem_info *ctx;
7201         struct bnxt_mem_init *init;
7202         u32 mem_size, ena, entries;
7203         u32 entries_sp, min;
7204         u32 num_mr, num_ah;
7205         u32 extra_srqs = 0;
7206         u32 extra_qps = 0;
7207         u8 pg_lvl = 1;
7208         int i, rc;
7209
7210         rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7211         if (rc) {
7212                 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7213                            rc);
7214                 return rc;
7215         }
7216         ctx = bp->ctx;
7217         if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7218                 return 0;
7219
7220         if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7221                 pg_lvl = 2;
7222                 extra_qps = 65536;
7223                 extra_srqs = 8192;
7224         }
7225
7226         ctx_pg = &ctx->qp_mem;
7227         ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7228                           extra_qps;
7229         if (ctx->qp_entry_size) {
7230                 mem_size = ctx->qp_entry_size * ctx_pg->entries;
7231                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7232                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7233                 if (rc)
7234                         return rc;
7235         }
7236
7237         ctx_pg = &ctx->srq_mem;
7238         ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7239         if (ctx->srq_entry_size) {
7240                 mem_size = ctx->srq_entry_size * ctx_pg->entries;
7241                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7242                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7243                 if (rc)
7244                         return rc;
7245         }
7246
7247         ctx_pg = &ctx->cq_mem;
7248         ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7249         if (ctx->cq_entry_size) {
7250                 mem_size = ctx->cq_entry_size * ctx_pg->entries;
7251                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7252                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7253                 if (rc)
7254                         return rc;
7255         }
7256
7257         ctx_pg = &ctx->vnic_mem;
7258         ctx_pg->entries = ctx->vnic_max_vnic_entries +
7259                           ctx->vnic_max_ring_table_entries;
7260         if (ctx->vnic_entry_size) {
7261                 mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7262                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7263                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7264                 if (rc)
7265                         return rc;
7266         }
7267
7268         ctx_pg = &ctx->stat_mem;
7269         ctx_pg->entries = ctx->stat_max_entries;
7270         if (ctx->stat_entry_size) {
7271                 mem_size = ctx->stat_entry_size * ctx_pg->entries;
7272                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7273                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7274                 if (rc)
7275                         return rc;
7276         }
7277
7278         ena = 0;
7279         if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7280                 goto skip_rdma;
7281
7282         ctx_pg = &ctx->mrav_mem;
7283         /* 128K extra is needed to accommodate static AH context
7284          * allocation by f/w.
7285          */
7286         num_mr = 1024 * 256;
7287         num_ah = 1024 * 128;
7288         ctx_pg->entries = num_mr + num_ah;
7289         if (ctx->mrav_entry_size) {
7290                 mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7291                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7292                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7293                 if (rc)
7294                         return rc;
7295         }
7296         ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7297         if (ctx->mrav_num_entries_units)
7298                 ctx_pg->entries =
7299                         ((num_mr / ctx->mrav_num_entries_units) << 16) |
7300                          (num_ah / ctx->mrav_num_entries_units);
7301
7302         ctx_pg = &ctx->tim_mem;
7303         ctx_pg->entries = ctx->qp_mem.entries;
7304         if (ctx->tim_entry_size) {
7305                 mem_size = ctx->tim_entry_size * ctx_pg->entries;
7306                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7307                 if (rc)
7308                         return rc;
7309         }
7310         ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7311
7312 skip_rdma:
7313         min = ctx->tqm_min_entries_per_ring;
7314         entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7315                      2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7316         entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7317         entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7318         entries = roundup(entries, ctx->tqm_entries_multiple);
7319         entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7320         for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7321                 ctx_pg = ctx->tqm_mem[i];
7322                 ctx_pg->entries = i ? entries : entries_sp;
7323                 if (ctx->tqm_entry_size) {
7324                         mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7325                         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7326                                                     NULL);
7327                         if (rc)
7328                                 return rc;
7329                 }
7330                 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7331         }
7332         ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7333         rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7334         if (rc) {
7335                 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7336                            rc);
7337                 return rc;
7338         }
7339         ctx->flags |= BNXT_CTX_FLAG_INITED;
7340         return 0;
7341 }
7342
7343 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7344 {
7345         struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7346         struct hwrm_func_resource_qcaps_input req = {0};
7347         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7348         int rc;
7349
7350         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7351         req.fid = cpu_to_le16(0xffff);
7352
7353         mutex_lock(&bp->hwrm_cmd_lock);
7354         rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7355                                        HWRM_CMD_TIMEOUT);
7356         if (rc)
7357                 goto hwrm_func_resc_qcaps_exit;
7358
7359         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7360         if (!all)
7361                 goto hwrm_func_resc_qcaps_exit;
7362
7363         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7364         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7365         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7366         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7367         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7368         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7369         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7370         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7371         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7372         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7373         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7374         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7375         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7376         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7377         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7378         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7379
7380         if (bp->flags & BNXT_FLAG_CHIP_P5) {
7381                 u16 max_msix = le16_to_cpu(resp->max_msix);
7382
7383                 hw_resc->max_nqs = max_msix;
7384                 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7385         }
7386
7387         if (BNXT_PF(bp)) {
7388                 struct bnxt_pf_info *pf = &bp->pf;
7389
7390                 pf->vf_resv_strategy =
7391                         le16_to_cpu(resp->vf_reservation_strategy);
7392                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7393                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7394         }
7395 hwrm_func_resc_qcaps_exit:
7396         mutex_unlock(&bp->hwrm_cmd_lock);
7397         return rc;
7398 }
7399
7400 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7401 {
7402         int rc = 0;
7403         struct hwrm_func_qcaps_input req = {0};
7404         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7405         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7406         u32 flags, flags_ext;
7407
7408         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7409         req.fid = cpu_to_le16(0xffff);
7410
7411         mutex_lock(&bp->hwrm_cmd_lock);
7412         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7413         if (rc)
7414                 goto hwrm_func_qcaps_exit;
7415
7416         flags = le32_to_cpu(resp->flags);
7417         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7418                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7419         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7420                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7421         if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7422                 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7423         if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7424                 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7425         if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7426                 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7427         if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7428                 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7429         if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7430                 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7431         if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7432                 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7433
7434         flags_ext = le32_to_cpu(resp->flags_ext);
7435         if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7436                 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7437
7438         bp->tx_push_thresh = 0;
7439         if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7440             BNXT_FW_MAJ(bp) > 217)
7441                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7442
7443         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7444         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7445         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7446         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7447         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7448         if (!hw_resc->max_hw_ring_grps)
7449                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7450         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7451         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7452         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7453
7454         if (BNXT_PF(bp)) {
7455                 struct bnxt_pf_info *pf = &bp->pf;
7456
7457                 pf->fw_fid = le16_to_cpu(resp->fid);
7458                 pf->port_id = le16_to_cpu(resp->port_id);
7459                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7460                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7461                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
7462                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7463                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7464                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7465                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7466                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7467                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7468                 bp->flags &= ~BNXT_FLAG_WOL_CAP;
7469                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7470                         bp->flags |= BNXT_FLAG_WOL_CAP;
7471         } else {
7472 #ifdef CONFIG_BNXT_SRIOV
7473                 struct bnxt_vf_info *vf = &bp->vf;
7474
7475                 vf->fw_fid = le16_to_cpu(resp->fid);
7476                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7477 #endif
7478         }
7479
7480 hwrm_func_qcaps_exit:
7481         mutex_unlock(&bp->hwrm_cmd_lock);
7482         return rc;
7483 }
7484
7485 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7486
7487 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7488 {
7489         int rc;
7490
7491         rc = __bnxt_hwrm_func_qcaps(bp);
7492         if (rc)
7493                 return rc;
7494         rc = bnxt_hwrm_queue_qportcfg(bp);
7495         if (rc) {
7496                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7497                 return rc;
7498         }
7499         if (bp->hwrm_spec_code >= 0x10803) {
7500                 rc = bnxt_alloc_ctx_mem(bp);
7501                 if (rc)
7502                         return rc;
7503                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7504                 if (!rc)
7505                         bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7506         }
7507         return 0;
7508 }
7509
7510 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7511 {
7512         struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7513         struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7514         int rc = 0;
7515         u32 flags;
7516
7517         if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7518                 return 0;
7519
7520         resp = bp->hwrm_cmd_resp_addr;
7521         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7522
7523         mutex_lock(&bp->hwrm_cmd_lock);
7524         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7525         if (rc)
7526                 goto hwrm_cfa_adv_qcaps_exit;
7527
7528         flags = le32_to_cpu(resp->flags);
7529         if (flags &
7530             CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7531                 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7532
7533 hwrm_cfa_adv_qcaps_exit:
7534         mutex_unlock(&bp->hwrm_cmd_lock);
7535         return rc;
7536 }
7537
7538 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7539 {
7540         if (bp->fw_health)
7541                 return 0;
7542
7543         bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7544         if (!bp->fw_health)
7545                 return -ENOMEM;
7546
7547         return 0;
7548 }
7549
7550 static int bnxt_alloc_fw_health(struct bnxt *bp)
7551 {
7552         int rc;
7553
7554         if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7555             !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7556                 return 0;
7557
7558         rc = __bnxt_alloc_fw_health(bp);
7559         if (rc) {
7560                 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7561                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7562                 return rc;
7563         }
7564
7565         return 0;
7566 }
7567
7568 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7569 {
7570         writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7571                                          BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7572                                          BNXT_FW_HEALTH_WIN_MAP_OFF);
7573 }
7574
7575 bool bnxt_is_fw_healthy(struct bnxt *bp)
7576 {
7577         if (bp->fw_health && bp->fw_health->status_reliable) {
7578                 u32 fw_status;
7579
7580                 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
7581                 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status))
7582                         return false;
7583         }
7584
7585         return true;
7586 }
7587
7588 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7589 {
7590         struct bnxt_fw_health *fw_health = bp->fw_health;
7591         u32 reg_type;
7592
7593         if (!fw_health || !fw_health->status_reliable)
7594                 return;
7595
7596         reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7597         if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7598                 fw_health->status_reliable = false;
7599 }
7600
7601 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7602 {
7603         void __iomem *hs;
7604         u32 status_loc;
7605         u32 reg_type;
7606         u32 sig;
7607
7608         if (bp->fw_health)
7609                 bp->fw_health->status_reliable = false;
7610
7611         __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7612         hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7613
7614         sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7615         if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7616                 if (!bp->chip_num) {
7617                         __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7618                         bp->chip_num = readl(bp->bar0 +
7619                                              BNXT_FW_HEALTH_WIN_BASE +
7620                                              BNXT_GRC_REG_CHIP_NUM);
7621                 }
7622                 if (!BNXT_CHIP_P5(bp))
7623                         return;
7624
7625                 status_loc = BNXT_GRC_REG_STATUS_P5 |
7626                              BNXT_FW_HEALTH_REG_TYPE_BAR0;
7627         } else {
7628                 status_loc = readl(hs + offsetof(struct hcomm_status,
7629                                                  fw_status_loc));
7630         }
7631
7632         if (__bnxt_alloc_fw_health(bp)) {
7633                 netdev_warn(bp->dev, "no memory for firmware status checks\n");
7634                 return;
7635         }
7636
7637         bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7638         reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7639         if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7640                 __bnxt_map_fw_health_reg(bp, status_loc);
7641                 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7642                         BNXT_FW_HEALTH_WIN_OFF(status_loc);
7643         }
7644
7645         bp->fw_health->status_reliable = true;
7646 }
7647
7648 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7649 {
7650         struct bnxt_fw_health *fw_health = bp->fw_health;
7651         u32 reg_base = 0xffffffff;
7652         int i;
7653
7654         bp->fw_health->status_reliable = false;
7655         /* Only pre-map the monitoring GRC registers using window 3 */
7656         for (i = 0; i < 4; i++) {
7657                 u32 reg = fw_health->regs[i];
7658
7659                 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7660                         continue;
7661                 if (reg_base == 0xffffffff)
7662                         reg_base = reg & BNXT_GRC_BASE_MASK;
7663                 if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7664                         return -ERANGE;
7665                 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7666         }
7667         bp->fw_health->status_reliable = true;
7668         if (reg_base == 0xffffffff)
7669                 return 0;
7670
7671         __bnxt_map_fw_health_reg(bp, reg_base);
7672         return 0;
7673 }
7674
7675 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7676 {
7677         struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7678         struct bnxt_fw_health *fw_health = bp->fw_health;
7679         struct hwrm_error_recovery_qcfg_input req = {0};
7680         int rc, i;
7681
7682         if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7683                 return 0;
7684
7685         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7686         mutex_lock(&bp->hwrm_cmd_lock);
7687         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7688         if (rc)
7689                 goto err_recovery_out;
7690         fw_health->flags = le32_to_cpu(resp->flags);
7691         if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7692             !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7693                 rc = -EINVAL;
7694                 goto err_recovery_out;
7695         }
7696         fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7697         fw_health->master_func_wait_dsecs =
7698                 le32_to_cpu(resp->master_func_wait_period);
7699         fw_health->normal_func_wait_dsecs =
7700                 le32_to_cpu(resp->normal_func_wait_period);
7701         fw_health->post_reset_wait_dsecs =
7702                 le32_to_cpu(resp->master_func_wait_period_after_reset);
7703         fw_health->post_reset_max_wait_dsecs =
7704                 le32_to_cpu(resp->max_bailout_time_after_reset);
7705         fw_health->regs[BNXT_FW_HEALTH_REG] =
7706                 le32_to_cpu(resp->fw_health_status_reg);
7707         fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7708                 le32_to_cpu(resp->fw_heartbeat_reg);
7709         fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7710                 le32_to_cpu(resp->fw_reset_cnt_reg);
7711         fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7712                 le32_to_cpu(resp->reset_inprogress_reg);
7713         fw_health->fw_reset_inprog_reg_mask =
7714                 le32_to_cpu(resp->reset_inprogress_reg_mask);
7715         fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7716         if (fw_health->fw_reset_seq_cnt >= 16) {
7717                 rc = -EINVAL;
7718                 goto err_recovery_out;
7719         }
7720         for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7721                 fw_health->fw_reset_seq_regs[i] =
7722                         le32_to_cpu(resp->reset_reg[i]);
7723                 fw_health->fw_reset_seq_vals[i] =
7724                         le32_to_cpu(resp->reset_reg_val[i]);
7725                 fw_health->fw_reset_seq_delay_msec[i] =
7726                         resp->delay_after_reset[i];
7727         }
7728 err_recovery_out:
7729         mutex_unlock(&bp->hwrm_cmd_lock);
7730         if (!rc)
7731                 rc = bnxt_map_fw_health_regs(bp);
7732         if (rc)
7733                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7734         return rc;
7735 }
7736
7737 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7738 {
7739         struct hwrm_func_reset_input req = {0};
7740
7741         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7742         req.enables = 0;
7743
7744         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7745 }
7746
7747 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7748 {
7749         struct hwrm_nvm_get_dev_info_output nvm_info;
7750
7751         if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7752                 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7753                          nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7754                          nvm_info.nvm_cfg_ver_upd);
7755 }
7756
7757 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7758 {
7759         int rc = 0;
7760         struct hwrm_queue_qportcfg_input req = {0};
7761         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7762         u8 i, j, *qptr;
7763         bool no_rdma;
7764
7765         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7766
7767         mutex_lock(&bp->hwrm_cmd_lock);
7768         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7769         if (rc)
7770                 goto qportcfg_exit;
7771
7772         if (!resp->max_configurable_queues) {
7773                 rc = -EINVAL;
7774                 goto qportcfg_exit;
7775         }
7776         bp->max_tc = resp->max_configurable_queues;
7777         bp->max_lltc = resp->max_configurable_lossless_queues;
7778         if (bp->max_tc > BNXT_MAX_QUEUE)
7779                 bp->max_tc = BNXT_MAX_QUEUE;
7780
7781         no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7782         qptr = &resp->queue_id0;
7783         for (i = 0, j = 0; i < bp->max_tc; i++) {
7784                 bp->q_info[j].queue_id = *qptr;
7785                 bp->q_ids[i] = *qptr++;
7786                 bp->q_info[j].queue_profile = *qptr++;
7787                 bp->tc_to_qidx[j] = j;
7788                 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7789                     (no_rdma && BNXT_PF(bp)))
7790                         j++;
7791         }
7792         bp->max_q = bp->max_tc;
7793         bp->max_tc = max_t(u8, j, 1);
7794
7795         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7796                 bp->max_tc = 1;
7797
7798         if (bp->max_lltc > bp->max_tc)
7799                 bp->max_lltc = bp->max_tc;
7800
7801 qportcfg_exit:
7802         mutex_unlock(&bp->hwrm_cmd_lock);
7803         return rc;
7804 }
7805
7806 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7807 {
7808         struct hwrm_ver_get_input req = {0};
7809         int rc;
7810
7811         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7812         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7813         req.hwrm_intf_min = HWRM_VERSION_MINOR;
7814         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7815
7816         rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7817                                    silent);
7818         return rc;
7819 }
7820
7821 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7822 {
7823         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7824         u16 fw_maj, fw_min, fw_bld, fw_rsv;
7825         u32 dev_caps_cfg, hwrm_ver;
7826         int rc, len;
7827
7828         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7829         mutex_lock(&bp->hwrm_cmd_lock);
7830         rc = __bnxt_hwrm_ver_get(bp, false);
7831         if (rc)
7832                 goto hwrm_ver_get_exit;
7833
7834         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7835
7836         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7837                              resp->hwrm_intf_min_8b << 8 |
7838                              resp->hwrm_intf_upd_8b;
7839         if (resp->hwrm_intf_maj_8b < 1) {
7840                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7841                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7842                             resp->hwrm_intf_upd_8b);
7843                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7844         }
7845
7846         hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7847                         HWRM_VERSION_UPDATE;
7848
7849         if (bp->hwrm_spec_code > hwrm_ver)
7850                 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7851                          HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7852                          HWRM_VERSION_UPDATE);
7853         else
7854                 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7855                          resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7856                          resp->hwrm_intf_upd_8b);
7857
7858         fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7859         if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7860                 fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7861                 fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7862                 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7863                 len = FW_VER_STR_LEN;
7864         } else {
7865                 fw_maj = resp->hwrm_fw_maj_8b;
7866                 fw_min = resp->hwrm_fw_min_8b;
7867                 fw_bld = resp->hwrm_fw_bld_8b;
7868                 fw_rsv = resp->hwrm_fw_rsvd_8b;
7869                 len = BC_HWRM_STR_LEN;
7870         }
7871         bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7872         snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7873                  fw_rsv);
7874
7875         if (strlen(resp->active_pkg_name)) {
7876                 int fw_ver_len = strlen(bp->fw_ver_str);
7877
7878                 snprintf(bp->fw_ver_str + fw_ver_len,
7879                          FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7880                          resp->active_pkg_name);
7881                 bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7882         }
7883
7884         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7885         if (!bp->hwrm_cmd_timeout)
7886                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7887
7888         if (resp->hwrm_intf_maj_8b >= 1) {
7889                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7890                 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7891         }
7892         if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7893                 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7894
7895         bp->chip_num = le16_to_cpu(resp->chip_num);
7896         bp->chip_rev = resp->chip_rev;
7897         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7898             !resp->chip_metal)
7899                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7900
7901         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7902         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7903             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7904                 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7905
7906         if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7907                 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7908
7909         if (dev_caps_cfg &
7910             VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7911                 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7912
7913         if (dev_caps_cfg &
7914             VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7915                 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7916
7917         if (dev_caps_cfg &
7918             VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7919                 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7920
7921 hwrm_ver_get_exit:
7922         mutex_unlock(&bp->hwrm_cmd_lock);
7923         return rc;
7924 }
7925
7926 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7927 {
7928         struct hwrm_fw_set_time_input req = {0};
7929         struct tm tm;
7930         time64_t now = ktime_get_real_seconds();
7931
7932         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7933             bp->hwrm_spec_code < 0x10400)
7934                 return -EOPNOTSUPP;
7935
7936         time64_to_tm(now, 0, &tm);
7937         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7938         req.year = cpu_to_le16(1900 + tm.tm_year);
7939         req.month = 1 + tm.tm_mon;
7940         req.day = tm.tm_mday;
7941         req.hour = tm.tm_hour;
7942         req.minute = tm.tm_min;
7943         req.second = tm.tm_sec;
7944         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7945 }
7946
7947 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7948 {
7949         u64 sw_tmp;
7950
7951         hw &= mask;
7952         sw_tmp = (*sw & ~mask) | hw;
7953         if (hw < (*sw & mask))
7954                 sw_tmp += mask + 1;
7955         WRITE_ONCE(*sw, sw_tmp);
7956 }
7957
7958 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7959                                     int count, bool ignore_zero)
7960 {
7961         int i;
7962
7963         for (i = 0; i < count; i++) {
7964                 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7965
7966                 if (ignore_zero && !hw)
7967                         continue;
7968
7969                 if (masks[i] == -1ULL)
7970                         sw_stats[i] = hw;
7971                 else
7972                         bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7973         }
7974 }
7975
7976 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7977 {
7978         if (!stats->hw_stats)
7979                 return;
7980
7981         __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7982                                 stats->hw_masks, stats->len / 8, false);
7983 }
7984
7985 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7986 {
7987         struct bnxt_stats_mem *ring0_stats;
7988         bool ignore_zero = false;
7989         int i;
7990
7991         /* Chip bug.  Counter intermittently becomes 0. */
7992         if (bp->flags & BNXT_FLAG_CHIP_P5)
7993                 ignore_zero = true;
7994
7995         for (i = 0; i < bp->cp_nr_rings; i++) {
7996                 struct bnxt_napi *bnapi = bp->bnapi[i];
7997                 struct bnxt_cp_ring_info *cpr;
7998                 struct bnxt_stats_mem *stats;
7999
8000                 cpr = &bnapi->cp_ring;
8001                 stats = &cpr->stats;
8002                 if (!i)
8003                         ring0_stats = stats;
8004                 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8005                                         ring0_stats->hw_masks,
8006                                         ring0_stats->len / 8, ignore_zero);
8007         }
8008         if (bp->flags & BNXT_FLAG_PORT_STATS) {
8009                 struct bnxt_stats_mem *stats = &bp->port_stats;
8010                 __le64 *hw_stats = stats->hw_stats;
8011                 u64 *sw_stats = stats->sw_stats;
8012                 u64 *masks = stats->hw_masks;
8013                 int cnt;
8014
8015                 cnt = sizeof(struct rx_port_stats) / 8;
8016                 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8017
8018                 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8019                 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8020                 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8021                 cnt = sizeof(struct tx_port_stats) / 8;
8022                 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8023         }
8024         if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8025                 bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8026                 bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8027         }
8028 }
8029
8030 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8031 {
8032         struct bnxt_pf_info *pf = &bp->pf;
8033         struct hwrm_port_qstats_input req = {0};
8034
8035         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8036                 return 0;
8037
8038         if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8039                 return -EOPNOTSUPP;
8040
8041         req.flags = flags;
8042         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
8043         req.port_id = cpu_to_le16(pf->port_id);
8044         req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8045                                             BNXT_TX_PORT_STATS_BYTE_OFFSET);
8046         req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8047         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8048 }
8049
8050 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8051 {
8052         struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
8053         struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
8054         struct hwrm_port_qstats_ext_input req = {0};
8055         struct bnxt_pf_info *pf = &bp->pf;
8056         u32 tx_stat_size;
8057         int rc;
8058
8059         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8060                 return 0;
8061
8062         if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8063                 return -EOPNOTSUPP;
8064
8065         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
8066         req.flags = flags;
8067         req.port_id = cpu_to_le16(pf->port_id);
8068         req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8069         req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8070         tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8071                        sizeof(struct tx_port_stats_ext) : 0;
8072         req.tx_stat_size = cpu_to_le16(tx_stat_size);
8073         req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8074         mutex_lock(&bp->hwrm_cmd_lock);
8075         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8076         if (!rc) {
8077                 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
8078                 bp->fw_tx_stats_ext_size = tx_stat_size ?
8079                         le16_to_cpu(resp->tx_stat_size) / 8 : 0;
8080         } else {
8081                 bp->fw_rx_stats_ext_size = 0;
8082                 bp->fw_tx_stats_ext_size = 0;
8083         }
8084         if (flags)
8085                 goto qstats_done;
8086
8087         if (bp->fw_tx_stats_ext_size <=
8088             offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8089                 mutex_unlock(&bp->hwrm_cmd_lock);
8090                 bp->pri2cos_valid = 0;
8091                 return rc;
8092         }
8093
8094         bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
8095         req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8096
8097         rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
8098         if (!rc) {
8099                 struct hwrm_queue_pri2cos_qcfg_output *resp2;
8100                 u8 *pri2cos;
8101                 int i, j;
8102
8103                 resp2 = bp->hwrm_cmd_resp_addr;
8104                 pri2cos = &resp2->pri0_cos_queue_id;
8105                 for (i = 0; i < 8; i++) {
8106                         u8 queue_id = pri2cos[i];
8107                         u8 queue_idx;
8108
8109                         /* Per port queue IDs start from 0, 10, 20, etc */
8110                         queue_idx = queue_id % 10;
8111                         if (queue_idx > BNXT_MAX_QUEUE) {
8112                                 bp->pri2cos_valid = false;
8113                                 goto qstats_done;
8114                         }
8115                         for (j = 0; j < bp->max_q; j++) {
8116                                 if (bp->q_ids[j] == queue_id)
8117                                         bp->pri2cos_idx[i] = queue_idx;
8118                         }
8119                 }
8120                 bp->pri2cos_valid = 1;
8121         }
8122 qstats_done:
8123         mutex_unlock(&bp->hwrm_cmd_lock);
8124         return rc;
8125 }
8126
8127 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8128 {
8129         if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
8130                 bnxt_hwrm_tunnel_dst_port_free(
8131                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8132         if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
8133                 bnxt_hwrm_tunnel_dst_port_free(
8134                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8135 }
8136
8137 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8138 {
8139         int rc, i;
8140         u32 tpa_flags = 0;
8141
8142         if (set_tpa)
8143                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
8144         else if (BNXT_NO_FW_ACCESS(bp))
8145                 return 0;
8146         for (i = 0; i < bp->nr_vnics; i++) {
8147                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8148                 if (rc) {
8149                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8150                                    i, rc);
8151                         return rc;
8152                 }
8153         }
8154         return 0;
8155 }
8156
8157 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8158 {
8159         int i;
8160
8161         for (i = 0; i < bp->nr_vnics; i++)
8162                 bnxt_hwrm_vnic_set_rss(bp, i, false);
8163 }
8164
8165 static void bnxt_clear_vnic(struct bnxt *bp)
8166 {
8167         if (!bp->vnic_info)
8168                 return;
8169
8170         bnxt_hwrm_clear_vnic_filter(bp);
8171         if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8172                 /* clear all RSS setting before free vnic ctx */
8173                 bnxt_hwrm_clear_vnic_rss(bp);
8174                 bnxt_hwrm_vnic_ctx_free(bp);
8175         }
8176         /* before free the vnic, undo the vnic tpa settings */
8177         if (bp->flags & BNXT_FLAG_TPA)
8178                 bnxt_set_tpa(bp, false);
8179         bnxt_hwrm_vnic_free(bp);
8180         if (bp->flags & BNXT_FLAG_CHIP_P5)
8181                 bnxt_hwrm_vnic_ctx_free(bp);
8182 }
8183
8184 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8185                                     bool irq_re_init)
8186 {
8187         bnxt_clear_vnic(bp);
8188         bnxt_hwrm_ring_free(bp, close_path);
8189         bnxt_hwrm_ring_grp_free(bp);
8190         if (irq_re_init) {
8191                 bnxt_hwrm_stat_ctx_free(bp);
8192                 bnxt_hwrm_free_tunnel_ports(bp);
8193         }
8194 }
8195
8196 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8197 {
8198         struct hwrm_func_cfg_input req = {0};
8199
8200         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8201         req.fid = cpu_to_le16(0xffff);
8202         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8203         if (br_mode == BRIDGE_MODE_VEB)
8204                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8205         else if (br_mode == BRIDGE_MODE_VEPA)
8206                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8207         else
8208                 return -EINVAL;
8209         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8210 }
8211
8212 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8213 {
8214         struct hwrm_func_cfg_input req = {0};
8215
8216         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8217                 return 0;
8218
8219         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8220         req.fid = cpu_to_le16(0xffff);
8221         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8222         req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8223         if (size == 128)
8224                 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8225
8226         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8227 }
8228
8229 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8230 {
8231         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8232         int rc;
8233
8234         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8235                 goto skip_rss_ctx;
8236
8237         /* allocate context for vnic */
8238         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8239         if (rc) {
8240                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8241                            vnic_id, rc);
8242                 goto vnic_setup_err;
8243         }
8244         bp->rsscos_nr_ctxs++;
8245
8246         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8247                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8248                 if (rc) {
8249                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8250                                    vnic_id, rc);
8251                         goto vnic_setup_err;
8252                 }
8253                 bp->rsscos_nr_ctxs++;
8254         }
8255
8256 skip_rss_ctx:
8257         /* configure default vnic, ring grp */
8258         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8259         if (rc) {
8260                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8261                            vnic_id, rc);
8262                 goto vnic_setup_err;
8263         }
8264
8265         /* Enable RSS hashing on vnic */
8266         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8267         if (rc) {
8268                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8269                            vnic_id, rc);
8270                 goto vnic_setup_err;
8271         }
8272
8273         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8274                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8275                 if (rc) {
8276                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8277                                    vnic_id, rc);
8278                 }
8279         }
8280
8281 vnic_setup_err:
8282         return rc;
8283 }
8284
8285 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8286 {
8287         int rc, i, nr_ctxs;
8288
8289         nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8290         for (i = 0; i < nr_ctxs; i++) {
8291                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8292                 if (rc) {
8293                         netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8294                                    vnic_id, i, rc);
8295                         break;
8296                 }
8297                 bp->rsscos_nr_ctxs++;
8298         }
8299         if (i < nr_ctxs)
8300                 return -ENOMEM;
8301
8302         rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8303         if (rc) {
8304                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8305                            vnic_id, rc);
8306                 return rc;
8307         }
8308         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8309         if (rc) {
8310                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8311                            vnic_id, rc);
8312                 return rc;
8313         }
8314         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8315                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8316                 if (rc) {
8317                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8318                                    vnic_id, rc);
8319                 }
8320         }
8321         return rc;
8322 }
8323
8324 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8325 {
8326         if (bp->flags & BNXT_FLAG_CHIP_P5)
8327                 return __bnxt_setup_vnic_p5(bp, vnic_id);
8328         else
8329                 return __bnxt_setup_vnic(bp, vnic_id);
8330 }
8331
8332 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8333 {
8334 #ifdef CONFIG_RFS_ACCEL
8335         int i, rc = 0;
8336
8337         if (bp->flags & BNXT_FLAG_CHIP_P5)
8338                 return 0;
8339
8340         for (i = 0; i < bp->rx_nr_rings; i++) {
8341                 struct bnxt_vnic_info *vnic;
8342                 u16 vnic_id = i + 1;
8343                 u16 ring_id = i;
8344
8345                 if (vnic_id >= bp->nr_vnics)
8346                         break;
8347
8348                 vnic = &bp->vnic_info[vnic_id];
8349                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
8350                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8351                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8352                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8353                 if (rc) {
8354                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8355                                    vnic_id, rc);
8356                         break;
8357                 }
8358                 rc = bnxt_setup_vnic(bp, vnic_id);
8359                 if (rc)
8360                         break;
8361         }
8362         return rc;
8363 #else
8364         return 0;
8365 #endif
8366 }
8367
8368 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8369 static bool bnxt_promisc_ok(struct bnxt *bp)
8370 {
8371 #ifdef CONFIG_BNXT_SRIOV
8372         if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8373                 return false;
8374 #endif
8375         return true;
8376 }
8377
8378 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8379 {
8380         unsigned int rc = 0;
8381
8382         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8383         if (rc) {
8384                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8385                            rc);
8386                 return rc;
8387         }
8388
8389         rc = bnxt_hwrm_vnic_cfg(bp, 1);
8390         if (rc) {
8391                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8392                            rc);
8393                 return rc;
8394         }
8395         return rc;
8396 }
8397
8398 static int bnxt_cfg_rx_mode(struct bnxt *);
8399 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8400
8401 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8402 {
8403         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8404         int rc = 0;
8405         unsigned int rx_nr_rings = bp->rx_nr_rings;
8406
8407         if (irq_re_init) {
8408                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
8409                 if (rc) {
8410                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8411                                    rc);
8412                         goto err_out;
8413                 }
8414         }
8415
8416         rc = bnxt_hwrm_ring_alloc(bp);
8417         if (rc) {
8418                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8419                 goto err_out;
8420         }
8421
8422         rc = bnxt_hwrm_ring_grp_alloc(bp);
8423         if (rc) {
8424                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8425                 goto err_out;
8426         }
8427
8428         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8429                 rx_nr_rings--;
8430
8431         /* default vnic 0 */
8432         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8433         if (rc) {
8434                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8435                 goto err_out;
8436         }
8437
8438         rc = bnxt_setup_vnic(bp, 0);
8439         if (rc)
8440                 goto err_out;
8441
8442         if (bp->flags & BNXT_FLAG_RFS) {
8443                 rc = bnxt_alloc_rfs_vnics(bp);
8444                 if (rc)
8445                         goto err_out;
8446         }
8447
8448         if (bp->flags & BNXT_FLAG_TPA) {
8449                 rc = bnxt_set_tpa(bp, true);
8450                 if (rc)
8451                         goto err_out;
8452         }
8453
8454         if (BNXT_VF(bp))
8455                 bnxt_update_vf_mac(bp);
8456
8457         /* Filter for default vnic 0 */
8458         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8459         if (rc) {
8460                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8461                 goto err_out;
8462         }
8463         vnic->uc_filter_count = 1;
8464
8465         vnic->rx_mask = 0;
8466         if (bp->dev->flags & IFF_BROADCAST)
8467                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8468
8469         if (bp->dev->flags & IFF_PROMISC)
8470                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8471
8472         if (bp->dev->flags & IFF_ALLMULTI) {
8473                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8474                 vnic->mc_list_count = 0;
8475         } else {
8476                 u32 mask = 0;
8477
8478                 bnxt_mc_list_updated(bp, &mask);
8479                 vnic->rx_mask |= mask;
8480         }
8481
8482         rc = bnxt_cfg_rx_mode(bp);
8483         if (rc)
8484                 goto err_out;
8485
8486         rc = bnxt_hwrm_set_coal(bp);
8487         if (rc)
8488                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8489                                 rc);
8490
8491         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8492                 rc = bnxt_setup_nitroa0_vnic(bp);
8493                 if (rc)
8494                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8495                                    rc);
8496         }
8497
8498         if (BNXT_VF(bp)) {
8499                 bnxt_hwrm_func_qcfg(bp);
8500                 netdev_update_features(bp->dev);
8501         }
8502
8503         return 0;
8504
8505 err_out:
8506         bnxt_hwrm_resource_free(bp, 0, true);
8507
8508         return rc;
8509 }
8510
8511 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8512 {
8513         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8514         return 0;
8515 }
8516
8517 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8518 {
8519         bnxt_init_cp_rings(bp);
8520         bnxt_init_rx_rings(bp);
8521         bnxt_init_tx_rings(bp);
8522         bnxt_init_ring_grps(bp, irq_re_init);
8523         bnxt_init_vnics(bp);
8524
8525         return bnxt_init_chip(bp, irq_re_init);
8526 }
8527
8528 static int bnxt_set_real_num_queues(struct bnxt *bp)
8529 {
8530         int rc;
8531         struct net_device *dev = bp->dev;
8532
8533         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8534                                           bp->tx_nr_rings_xdp);
8535         if (rc)
8536                 return rc;
8537
8538         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8539         if (rc)
8540                 return rc;
8541
8542 #ifdef CONFIG_RFS_ACCEL
8543         if (bp->flags & BNXT_FLAG_RFS)
8544                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8545 #endif
8546
8547         return rc;
8548 }
8549
8550 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8551                            bool shared)
8552 {
8553         int _rx = *rx, _tx = *tx;
8554
8555         if (shared) {
8556                 *rx = min_t(int, _rx, max);
8557                 *tx = min_t(int, _tx, max);
8558         } else {
8559                 if (max < 2)
8560                         return -ENOMEM;
8561
8562                 while (_rx + _tx > max) {
8563                         if (_rx > _tx && _rx > 1)
8564                                 _rx--;
8565                         else if (_tx > 1)
8566                                 _tx--;
8567                 }
8568                 *rx = _rx;
8569                 *tx = _tx;
8570         }
8571         return 0;
8572 }
8573
8574 static void bnxt_setup_msix(struct bnxt *bp)
8575 {
8576         const int len = sizeof(bp->irq_tbl[0].name);
8577         struct net_device *dev = bp->dev;
8578         int tcs, i;
8579
8580         tcs = netdev_get_num_tc(dev);
8581         if (tcs) {
8582                 int i, off, count;
8583
8584                 for (i = 0; i < tcs; i++) {
8585                         count = bp->tx_nr_rings_per_tc;
8586                         off = i * count;
8587                         netdev_set_tc_queue(dev, i, count, off);
8588                 }
8589         }
8590
8591         for (i = 0; i < bp->cp_nr_rings; i++) {
8592                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8593                 char *attr;
8594
8595                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8596                         attr = "TxRx";
8597                 else if (i < bp->rx_nr_rings)
8598                         attr = "rx";
8599                 else
8600                         attr = "tx";
8601
8602                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8603                          attr, i);
8604                 bp->irq_tbl[map_idx].handler = bnxt_msix;
8605         }
8606 }
8607
8608 static void bnxt_setup_inta(struct bnxt *bp)
8609 {
8610         const int len = sizeof(bp->irq_tbl[0].name);
8611
8612         if (netdev_get_num_tc(bp->dev))
8613                 netdev_reset_tc(bp->dev);
8614
8615         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8616                  0);
8617         bp->irq_tbl[0].handler = bnxt_inta;
8618 }
8619
8620 static int bnxt_init_int_mode(struct bnxt *bp);
8621
8622 static int bnxt_setup_int_mode(struct bnxt *bp)
8623 {
8624         int rc;
8625
8626         if (!bp->irq_tbl) {
8627                 rc = bnxt_init_int_mode(bp);
8628                 if (rc || !bp->irq_tbl)
8629                         return rc ?: -ENODEV;
8630         }
8631
8632         if (bp->flags & BNXT_FLAG_USING_MSIX)
8633                 bnxt_setup_msix(bp);
8634         else
8635                 bnxt_setup_inta(bp);
8636
8637         rc = bnxt_set_real_num_queues(bp);
8638         return rc;
8639 }
8640
8641 #ifdef CONFIG_RFS_ACCEL
8642 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8643 {
8644         return bp->hw_resc.max_rsscos_ctxs;
8645 }
8646
8647 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8648 {
8649         return bp->hw_resc.max_vnics;
8650 }
8651 #endif
8652
8653 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8654 {
8655         return bp->hw_resc.max_stat_ctxs;
8656 }
8657
8658 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8659 {
8660         return bp->hw_resc.max_cp_rings;
8661 }
8662
8663 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8664 {
8665         unsigned int cp = bp->hw_resc.max_cp_rings;
8666
8667         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8668                 cp -= bnxt_get_ulp_msix_num(bp);
8669
8670         return cp;
8671 }
8672
8673 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8674 {
8675         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8676
8677         if (bp->flags & BNXT_FLAG_CHIP_P5)
8678                 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8679
8680         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8681 }
8682
8683 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8684 {
8685         bp->hw_resc.max_irqs = max_irqs;
8686 }
8687
8688 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8689 {
8690         unsigned int cp;
8691
8692         cp = bnxt_get_max_func_cp_rings_for_en(bp);
8693         if (bp->flags & BNXT_FLAG_CHIP_P5)
8694                 return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8695         else
8696                 return cp - bp->cp_nr_rings;
8697 }
8698
8699 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8700 {
8701         return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8702 }
8703
8704 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8705 {
8706         int max_cp = bnxt_get_max_func_cp_rings(bp);
8707         int max_irq = bnxt_get_max_func_irqs(bp);
8708         int total_req = bp->cp_nr_rings + num;
8709         int max_idx, avail_msix;
8710
8711         max_idx = bp->total_irqs;
8712         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8713                 max_idx = min_t(int, bp->total_irqs, max_cp);
8714         avail_msix = max_idx - bp->cp_nr_rings;
8715         if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8716                 return avail_msix;
8717
8718         if (max_irq < total_req) {
8719                 num = max_irq - bp->cp_nr_rings;
8720                 if (num <= 0)
8721                         return 0;
8722         }
8723         return num;
8724 }
8725
8726 static int bnxt_get_num_msix(struct bnxt *bp)
8727 {
8728         if (!BNXT_NEW_RM(bp))
8729                 return bnxt_get_max_func_irqs(bp);
8730
8731         return bnxt_nq_rings_in_use(bp);
8732 }
8733
8734 static int bnxt_init_msix(struct bnxt *bp)
8735 {
8736         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8737         struct msix_entry *msix_ent;
8738
8739         total_vecs = bnxt_get_num_msix(bp);
8740         max = bnxt_get_max_func_irqs(bp);
8741         if (total_vecs > max)
8742                 total_vecs = max;
8743
8744         if (!total_vecs)
8745                 return 0;
8746
8747         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8748         if (!msix_ent)
8749                 return -ENOMEM;
8750
8751         for (i = 0; i < total_vecs; i++) {
8752                 msix_ent[i].entry = i;
8753                 msix_ent[i].vector = 0;
8754         }
8755
8756         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8757                 min = 2;
8758
8759         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8760         ulp_msix = bnxt_get_ulp_msix_num(bp);
8761         if (total_vecs < 0 || total_vecs < ulp_msix) {
8762                 rc = -ENODEV;
8763                 goto msix_setup_exit;
8764         }
8765
8766         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8767         if (bp->irq_tbl) {
8768                 for (i = 0; i < total_vecs; i++)
8769                         bp->irq_tbl[i].vector = msix_ent[i].vector;
8770
8771                 bp->total_irqs = total_vecs;
8772                 /* Trim rings based upon num of vectors allocated */
8773                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8774                                      total_vecs - ulp_msix, min == 1);
8775                 if (rc)
8776                         goto msix_setup_exit;
8777
8778                 bp->cp_nr_rings = (min == 1) ?
8779                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8780                                   bp->tx_nr_rings + bp->rx_nr_rings;
8781
8782         } else {
8783                 rc = -ENOMEM;
8784                 goto msix_setup_exit;
8785         }
8786         bp->flags |= BNXT_FLAG_USING_MSIX;
8787         kfree(msix_ent);
8788         return 0;
8789
8790 msix_setup_exit:
8791         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8792         kfree(bp->irq_tbl);
8793         bp->irq_tbl = NULL;
8794         pci_disable_msix(bp->pdev);
8795         kfree(msix_ent);
8796         return rc;
8797 }
8798
8799 static int bnxt_init_inta(struct bnxt *bp)
8800 {
8801         bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8802         if (!bp->irq_tbl)
8803                 return -ENOMEM;
8804
8805         bp->total_irqs = 1;
8806         bp->rx_nr_rings = 1;
8807         bp->tx_nr_rings = 1;
8808         bp->cp_nr_rings = 1;
8809         bp->flags |= BNXT_FLAG_SHARED_RINGS;
8810         bp->irq_tbl[0].vector = bp->pdev->irq;
8811         return 0;
8812 }
8813
8814 static int bnxt_init_int_mode(struct bnxt *bp)
8815 {
8816         int rc = -ENODEV;
8817
8818         if (bp->flags & BNXT_FLAG_MSIX_CAP)
8819                 rc = bnxt_init_msix(bp);
8820
8821         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8822                 /* fallback to INTA */
8823                 rc = bnxt_init_inta(bp);
8824         }
8825         return rc;
8826 }
8827
8828 static void bnxt_clear_int_mode(struct bnxt *bp)
8829 {
8830         if (bp->flags & BNXT_FLAG_USING_MSIX)
8831                 pci_disable_msix(bp->pdev);
8832
8833         kfree(bp->irq_tbl);
8834         bp->irq_tbl = NULL;
8835         bp->flags &= ~BNXT_FLAG_USING_MSIX;
8836 }
8837
8838 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8839 {
8840         int tcs = netdev_get_num_tc(bp->dev);
8841         bool irq_cleared = false;
8842         int rc;
8843
8844         if (!bnxt_need_reserve_rings(bp))
8845                 return 0;
8846
8847         if (irq_re_init && BNXT_NEW_RM(bp) &&
8848             bnxt_get_num_msix(bp) != bp->total_irqs) {
8849                 bnxt_ulp_irq_stop(bp);
8850                 bnxt_clear_int_mode(bp);
8851                 irq_cleared = true;
8852         }
8853         rc = __bnxt_reserve_rings(bp);
8854         if (irq_cleared) {
8855                 if (!rc)
8856                         rc = bnxt_init_int_mode(bp);
8857                 bnxt_ulp_irq_restart(bp, rc);
8858         }
8859         if (rc) {
8860                 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8861                 return rc;
8862         }
8863         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8864                 netdev_err(bp->dev, "tx ring reservation failure\n");
8865                 netdev_reset_tc(bp->dev);
8866                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8867                 return -ENOMEM;
8868         }
8869         return 0;
8870 }
8871
8872 static void bnxt_free_irq(struct bnxt *bp)
8873 {
8874         struct bnxt_irq *irq;
8875         int i;
8876
8877 #ifdef CONFIG_RFS_ACCEL
8878         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8879         bp->dev->rx_cpu_rmap = NULL;
8880 #endif
8881         if (!bp->irq_tbl || !bp->bnapi)
8882                 return;
8883
8884         for (i = 0; i < bp->cp_nr_rings; i++) {
8885                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8886
8887                 irq = &bp->irq_tbl[map_idx];
8888                 if (irq->requested) {
8889                         if (irq->have_cpumask) {
8890                                 irq_set_affinity_hint(irq->vector, NULL);
8891                                 free_cpumask_var(irq->cpu_mask);
8892                                 irq->have_cpumask = 0;
8893                         }
8894                         free_irq(irq->vector, bp->bnapi[i]);
8895                 }
8896
8897                 irq->requested = 0;
8898         }
8899 }
8900
8901 static int bnxt_request_irq(struct bnxt *bp)
8902 {
8903         int i, j, rc = 0;
8904         unsigned long flags = 0;
8905 #ifdef CONFIG_RFS_ACCEL
8906         struct cpu_rmap *rmap;
8907 #endif
8908
8909         rc = bnxt_setup_int_mode(bp);
8910         if (rc) {
8911                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8912                            rc);
8913                 return rc;
8914         }
8915 #ifdef CONFIG_RFS_ACCEL
8916         rmap = bp->dev->rx_cpu_rmap;
8917 #endif
8918         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8919                 flags = IRQF_SHARED;
8920
8921         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8922                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8923                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8924
8925 #ifdef CONFIG_RFS_ACCEL
8926                 if (rmap && bp->bnapi[i]->rx_ring) {
8927                         rc = irq_cpu_rmap_add(rmap, irq->vector);
8928                         if (rc)
8929                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8930                                             j);
8931                         j++;
8932                 }
8933 #endif
8934                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8935                                  bp->bnapi[i]);
8936                 if (rc)
8937                         break;
8938
8939                 irq->requested = 1;
8940
8941                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8942                         int numa_node = dev_to_node(&bp->pdev->dev);
8943
8944                         irq->have_cpumask = 1;
8945                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8946                                         irq->cpu_mask);
8947                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8948                         if (rc) {
8949                                 netdev_warn(bp->dev,
8950                                             "Set affinity failed, IRQ = %d\n",
8951                                             irq->vector);
8952                                 break;
8953                         }
8954                 }
8955         }
8956         return rc;
8957 }
8958
8959 static void bnxt_del_napi(struct bnxt *bp)
8960 {
8961         int i;
8962
8963         if (!bp->bnapi)
8964                 return;
8965
8966         for (i = 0; i < bp->cp_nr_rings; i++) {
8967                 struct bnxt_napi *bnapi = bp->bnapi[i];
8968
8969                 __netif_napi_del(&bnapi->napi);
8970         }
8971         /* We called __netif_napi_del(), we need
8972          * to respect an RCU grace period before freeing napi structures.
8973          */
8974         synchronize_net();
8975 }
8976
8977 static void bnxt_init_napi(struct bnxt *bp)
8978 {
8979         int i;
8980         unsigned int cp_nr_rings = bp->cp_nr_rings;
8981         struct bnxt_napi *bnapi;
8982
8983         if (bp->flags & BNXT_FLAG_USING_MSIX) {
8984                 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8985
8986                 if (bp->flags & BNXT_FLAG_CHIP_P5)
8987                         poll_fn = bnxt_poll_p5;
8988                 else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8989                         cp_nr_rings--;
8990                 for (i = 0; i < cp_nr_rings; i++) {
8991                         bnapi = bp->bnapi[i];
8992                         netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8993                 }
8994                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8995                         bnapi = bp->bnapi[cp_nr_rings];
8996                         netif_napi_add(bp->dev, &bnapi->napi,
8997                                        bnxt_poll_nitroa0, 64);
8998                 }
8999         } else {
9000                 bnapi = bp->bnapi[0];
9001                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9002         }
9003 }
9004
9005 static void bnxt_disable_napi(struct bnxt *bp)
9006 {
9007         int i;
9008
9009         if (!bp->bnapi ||
9010             test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9011                 return;
9012
9013         for (i = 0; i < bp->cp_nr_rings; i++) {
9014                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9015
9016                 if (bp->bnapi[i]->rx_ring)
9017                         cancel_work_sync(&cpr->dim.work);
9018
9019                 napi_disable(&bp->bnapi[i]->napi);
9020         }
9021 }
9022
9023 static void bnxt_enable_napi(struct bnxt *bp)
9024 {
9025         int i;
9026
9027         clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9028         for (i = 0; i < bp->cp_nr_rings; i++) {
9029                 struct bnxt_napi *bnapi = bp->bnapi[i];
9030                 struct bnxt_cp_ring_info *cpr;
9031
9032                 cpr = &bnapi->cp_ring;
9033                 if (bnapi->in_reset)
9034                         cpr->sw_stats.rx.rx_resets++;
9035                 bnapi->in_reset = false;
9036
9037                 if (bnapi->rx_ring) {
9038                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9039                         cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9040                 }
9041                 napi_enable(&bnapi->napi);
9042         }
9043 }
9044
9045 void bnxt_tx_disable(struct bnxt *bp)
9046 {
9047         int i;
9048         struct bnxt_tx_ring_info *txr;
9049
9050         if (bp->tx_ring) {
9051                 for (i = 0; i < bp->tx_nr_rings; i++) {
9052                         txr = &bp->tx_ring[i];
9053                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
9054                 }
9055         }
9056         /* Drop carrier first to prevent TX timeout */
9057         netif_carrier_off(bp->dev);
9058         /* Stop all TX queues */
9059         netif_tx_disable(bp->dev);
9060 }
9061
9062 void bnxt_tx_enable(struct bnxt *bp)
9063 {
9064         int i;
9065         struct bnxt_tx_ring_info *txr;
9066
9067         for (i = 0; i < bp->tx_nr_rings; i++) {
9068                 txr = &bp->tx_ring[i];
9069                 txr->dev_state = 0;
9070         }
9071         netif_tx_wake_all_queues(bp->dev);
9072         if (bp->link_info.link_up)
9073                 netif_carrier_on(bp->dev);
9074 }
9075
9076 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9077 {
9078         u8 active_fec = link_info->active_fec_sig_mode &
9079                         PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9080
9081         switch (active_fec) {
9082         default:
9083         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9084                 return "None";
9085         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9086                 return "Clause 74 BaseR";
9087         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9088                 return "Clause 91 RS(528,514)";
9089         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9090                 return "Clause 91 RS544_1XN";
9091         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9092                 return "Clause 91 RS(544,514)";
9093         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9094                 return "Clause 91 RS272_1XN";
9095         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9096                 return "Clause 91 RS(272,257)";
9097         }
9098 }
9099
9100 static void bnxt_report_link(struct bnxt *bp)
9101 {
9102         if (bp->link_info.link_up) {
9103                 const char *signal = "";
9104                 const char *flow_ctrl;
9105                 const char *duplex;
9106                 u32 speed;
9107                 u16 fec;
9108
9109                 netif_carrier_on(bp->dev);
9110                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9111                 if (speed == SPEED_UNKNOWN) {
9112                         netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9113                         return;
9114                 }
9115                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9116                         duplex = "full";
9117                 else
9118                         duplex = "half";
9119                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9120                         flow_ctrl = "ON - receive & transmit";
9121                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9122                         flow_ctrl = "ON - transmit";
9123                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9124                         flow_ctrl = "ON - receive";
9125                 else
9126                         flow_ctrl = "none";
9127                 if (bp->link_info.phy_qcfg_resp.option_flags &
9128                     PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9129                         u8 sig_mode = bp->link_info.active_fec_sig_mode &
9130                                       PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9131                         switch (sig_mode) {
9132                         case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9133                                 signal = "(NRZ) ";
9134                                 break;
9135                         case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9136                                 signal = "(PAM4) ";
9137                                 break;
9138                         default:
9139                                 break;
9140                         }
9141                 }
9142                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9143                             speed, signal, duplex, flow_ctrl);
9144                 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9145                         netdev_info(bp->dev, "EEE is %s\n",
9146                                     bp->eee.eee_active ? "active" :
9147                                                          "not active");
9148                 fec = bp->link_info.fec_cfg;
9149                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9150                         netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9151                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9152                                     bnxt_report_fec(&bp->link_info));
9153         } else {
9154                 netif_carrier_off(bp->dev);
9155                 netdev_err(bp->dev, "NIC Link is Down\n");
9156         }
9157 }
9158
9159 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9160 {
9161         if (!resp->supported_speeds_auto_mode &&
9162             !resp->supported_speeds_force_mode &&
9163             !resp->supported_pam4_speeds_auto_mode &&
9164             !resp->supported_pam4_speeds_force_mode)
9165                 return true;
9166         return false;
9167 }
9168
9169 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9170 {
9171         int rc = 0;
9172         struct hwrm_port_phy_qcaps_input req = {0};
9173         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9174         struct bnxt_link_info *link_info = &bp->link_info;
9175
9176         if (bp->hwrm_spec_code < 0x10201)
9177                 return 0;
9178
9179         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
9180
9181         mutex_lock(&bp->hwrm_cmd_lock);
9182         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9183         if (rc)
9184                 goto hwrm_phy_qcaps_exit;
9185
9186         bp->phy_flags = resp->flags;
9187         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9188                 struct ethtool_eee *eee = &bp->eee;
9189                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9190
9191                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9192                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9193                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9194                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9195                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9196         }
9197
9198         if (bp->hwrm_spec_code >= 0x10a01) {
9199                 if (bnxt_phy_qcaps_no_speed(resp)) {
9200                         link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9201                         netdev_warn(bp->dev, "Ethernet link disabled\n");
9202                 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9203                         link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9204                         netdev_info(bp->dev, "Ethernet link enabled\n");
9205                         /* Phy re-enabled, reprobe the speeds */
9206                         link_info->support_auto_speeds = 0;
9207                         link_info->support_pam4_auto_speeds = 0;
9208                 }
9209         }
9210         if (resp->supported_speeds_auto_mode)
9211                 link_info->support_auto_speeds =
9212                         le16_to_cpu(resp->supported_speeds_auto_mode);
9213         if (resp->supported_pam4_speeds_auto_mode)
9214                 link_info->support_pam4_auto_speeds =
9215                         le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9216
9217         bp->port_count = resp->port_cnt;
9218
9219 hwrm_phy_qcaps_exit:
9220         mutex_unlock(&bp->hwrm_cmd_lock);
9221         return rc;
9222 }
9223
9224 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9225 {
9226         u16 diff = advertising ^ supported;
9227
9228         return ((supported | diff) != supported);
9229 }
9230
9231 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9232 {
9233         int rc = 0;
9234         struct bnxt_link_info *link_info = &bp->link_info;
9235         struct hwrm_port_phy_qcfg_input req = {0};
9236         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9237         u8 link_up = link_info->link_up;
9238         bool support_changed = false;
9239
9240         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
9241
9242         mutex_lock(&bp->hwrm_cmd_lock);
9243         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9244         if (rc) {
9245                 mutex_unlock(&bp->hwrm_cmd_lock);
9246                 return rc;
9247         }
9248
9249         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9250         link_info->phy_link_status = resp->link;
9251         link_info->duplex = resp->duplex_cfg;
9252         if (bp->hwrm_spec_code >= 0x10800)
9253                 link_info->duplex = resp->duplex_state;
9254         link_info->pause = resp->pause;
9255         link_info->auto_mode = resp->auto_mode;
9256         link_info->auto_pause_setting = resp->auto_pause;
9257         link_info->lp_pause = resp->link_partner_adv_pause;
9258         link_info->force_pause_setting = resp->force_pause;
9259         link_info->duplex_setting = resp->duplex_cfg;
9260         if (link_info->phy_link_status == BNXT_LINK_LINK)
9261                 link_info->link_speed = le16_to_cpu(resp->link_speed);
9262         else
9263                 link_info->link_speed = 0;
9264         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9265         link_info->force_pam4_link_speed =
9266                 le16_to_cpu(resp->force_pam4_link_speed);
9267         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9268         link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9269         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9270         link_info->auto_pam4_link_speeds =
9271                 le16_to_cpu(resp->auto_pam4_link_speed_mask);
9272         link_info->lp_auto_link_speeds =
9273                 le16_to_cpu(resp->link_partner_adv_speeds);
9274         link_info->lp_auto_pam4_link_speeds =
9275                 resp->link_partner_pam4_adv_speeds;
9276         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9277         link_info->phy_ver[0] = resp->phy_maj;
9278         link_info->phy_ver[1] = resp->phy_min;
9279         link_info->phy_ver[2] = resp->phy_bld;
9280         link_info->media_type = resp->media_type;
9281         link_info->phy_type = resp->phy_type;
9282         link_info->transceiver = resp->xcvr_pkg_type;
9283         link_info->phy_addr = resp->eee_config_phy_addr &
9284                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9285         link_info->module_status = resp->module_status;
9286
9287         if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9288                 struct ethtool_eee *eee = &bp->eee;
9289                 u16 fw_speeds;
9290
9291                 eee->eee_active = 0;
9292                 if (resp->eee_config_phy_addr &
9293                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9294                         eee->eee_active = 1;
9295                         fw_speeds = le16_to_cpu(
9296                                 resp->link_partner_adv_eee_link_speed_mask);
9297                         eee->lp_advertised =
9298                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9299                 }
9300
9301                 /* Pull initial EEE config */
9302                 if (!chng_link_state) {
9303                         if (resp->eee_config_phy_addr &
9304                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9305                                 eee->eee_enabled = 1;
9306
9307                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9308                         eee->advertised =
9309                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9310
9311                         if (resp->eee_config_phy_addr &
9312                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9313                                 __le32 tmr;
9314
9315                                 eee->tx_lpi_enabled = 1;
9316                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9317                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
9318                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9319                         }
9320                 }
9321         }
9322
9323         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9324         if (bp->hwrm_spec_code >= 0x10504) {
9325                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9326                 link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9327         }
9328         /* TODO: need to add more logic to report VF link */
9329         if (chng_link_state) {
9330                 if (link_info->phy_link_status == BNXT_LINK_LINK)
9331                         link_info->link_up = 1;
9332                 else
9333                         link_info->link_up = 0;
9334                 if (link_up != link_info->link_up)
9335                         bnxt_report_link(bp);
9336         } else {
9337                 /* alwasy link down if not require to update link state */
9338                 link_info->link_up = 0;
9339         }
9340         mutex_unlock(&bp->hwrm_cmd_lock);
9341
9342         if (!BNXT_PHY_CFG_ABLE(bp))
9343                 return 0;
9344
9345         /* Check if any advertised speeds are no longer supported. The caller
9346          * holds the link_lock mutex, so we can modify link_info settings.
9347          */
9348         if (bnxt_support_dropped(link_info->advertising,
9349                                  link_info->support_auto_speeds)) {
9350                 link_info->advertising = link_info->support_auto_speeds;
9351                 support_changed = true;
9352         }
9353         if (bnxt_support_dropped(link_info->advertising_pam4,
9354                                  link_info->support_pam4_auto_speeds)) {
9355                 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9356                 support_changed = true;
9357         }
9358         if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9359                 bnxt_hwrm_set_link_setting(bp, true, false);
9360         return 0;
9361 }
9362
9363 static void bnxt_get_port_module_status(struct bnxt *bp)
9364 {
9365         struct bnxt_link_info *link_info = &bp->link_info;
9366         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9367         u8 module_status;
9368
9369         if (bnxt_update_link(bp, true))
9370                 return;
9371
9372         module_status = link_info->module_status;
9373         switch (module_status) {
9374         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9375         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9376         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9377                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9378                             bp->pf.port_id);
9379                 if (bp->hwrm_spec_code >= 0x10201) {
9380                         netdev_warn(bp->dev, "Module part number %s\n",
9381                                     resp->phy_vendor_partnumber);
9382                 }
9383                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9384                         netdev_warn(bp->dev, "TX is disabled\n");
9385                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9386                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9387         }
9388 }
9389
9390 static void
9391 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9392 {
9393         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9394                 if (bp->hwrm_spec_code >= 0x10201)
9395                         req->auto_pause =
9396                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9397                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9398                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9399                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9400                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9401                 req->enables |=
9402                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9403         } else {
9404                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9405                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9406                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9407                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9408                 req->enables |=
9409                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9410                 if (bp->hwrm_spec_code >= 0x10201) {
9411                         req->auto_pause = req->force_pause;
9412                         req->enables |= cpu_to_le32(
9413                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9414                 }
9415         }
9416 }
9417
9418 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9419 {
9420         if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9421                 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9422                 if (bp->link_info.advertising) {
9423                         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9424                         req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9425                 }
9426                 if (bp->link_info.advertising_pam4) {
9427                         req->enables |=
9428                                 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9429                         req->auto_link_pam4_speed_mask =
9430                                 cpu_to_le16(bp->link_info.advertising_pam4);
9431                 }
9432                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9433                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9434         } else {
9435                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9436                 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9437                         req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9438                         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9439                 } else {
9440                         req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9441                 }
9442         }
9443
9444         /* tell chimp that the setting takes effect immediately */
9445         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9446 }
9447
9448 int bnxt_hwrm_set_pause(struct bnxt *bp)
9449 {
9450         struct hwrm_port_phy_cfg_input req = {0};
9451         int rc;
9452
9453         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9454         bnxt_hwrm_set_pause_common(bp, &req);
9455
9456         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9457             bp->link_info.force_link_chng)
9458                 bnxt_hwrm_set_link_common(bp, &req);
9459
9460         mutex_lock(&bp->hwrm_cmd_lock);
9461         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9462         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9463                 /* since changing of pause setting doesn't trigger any link
9464                  * change event, the driver needs to update the current pause
9465                  * result upon successfully return of the phy_cfg command
9466                  */
9467                 bp->link_info.pause =
9468                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9469                 bp->link_info.auto_pause_setting = 0;
9470                 if (!bp->link_info.force_link_chng)
9471                         bnxt_report_link(bp);
9472         }
9473         bp->link_info.force_link_chng = false;
9474         mutex_unlock(&bp->hwrm_cmd_lock);
9475         return rc;
9476 }
9477
9478 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9479                               struct hwrm_port_phy_cfg_input *req)
9480 {
9481         struct ethtool_eee *eee = &bp->eee;
9482
9483         if (eee->eee_enabled) {
9484                 u16 eee_speeds;
9485                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9486
9487                 if (eee->tx_lpi_enabled)
9488                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9489                 else
9490                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9491
9492                 req->flags |= cpu_to_le32(flags);
9493                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9494                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9495                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9496         } else {
9497                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9498         }
9499 }
9500
9501 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9502 {
9503         struct hwrm_port_phy_cfg_input req = {0};
9504
9505         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9506         if (set_pause)
9507                 bnxt_hwrm_set_pause_common(bp, &req);
9508
9509         bnxt_hwrm_set_link_common(bp, &req);
9510
9511         if (set_eee)
9512                 bnxt_hwrm_set_eee(bp, &req);
9513         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9514 }
9515
9516 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9517 {
9518         struct hwrm_port_phy_cfg_input req = {0};
9519
9520         if (!BNXT_SINGLE_PF(bp))
9521                 return 0;
9522
9523         if (pci_num_vf(bp->pdev) &&
9524             !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9525                 return 0;
9526
9527         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9528         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9529         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9530 }
9531
9532 static int bnxt_fw_init_one(struct bnxt *bp);
9533
9534 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9535 {
9536 #ifdef CONFIG_TEE_BNXT_FW
9537         int rc = tee_bnxt_fw_load();
9538
9539         if (rc)
9540                 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9541
9542         return rc;
9543 #else
9544         netdev_err(bp->dev, "OP-TEE not supported\n");
9545         return -ENODEV;
9546 #endif
9547 }
9548
9549 static int bnxt_try_recover_fw(struct bnxt *bp)
9550 {
9551         if (bp->fw_health && bp->fw_health->status_reliable) {
9552                 int retry = 0, rc;
9553                 u32 sts;
9554
9555                 mutex_lock(&bp->hwrm_cmd_lock);
9556                 do {
9557                         sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9558                         rc = __bnxt_hwrm_ver_get(bp, true);
9559                         if (!BNXT_FW_IS_BOOTING(sts) &&
9560                             !BNXT_FW_IS_RECOVERING(sts))
9561                                 break;
9562                         retry++;
9563                 } while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9564                 mutex_unlock(&bp->hwrm_cmd_lock);
9565
9566                 if (!BNXT_FW_IS_HEALTHY(sts)) {
9567                         netdev_err(bp->dev,
9568                                    "Firmware not responding, status: 0x%x\n",
9569                                    sts);
9570                         rc = -ENODEV;
9571                 }
9572                 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9573                         netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9574                         return bnxt_fw_reset_via_optee(bp);
9575                 }
9576                 return rc;
9577         }
9578
9579         return -ENODEV;
9580 }
9581
9582 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9583 {
9584         struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9585         struct hwrm_func_drv_if_change_input req = {0};
9586         bool fw_reset = !bp->irq_tbl;
9587         bool resc_reinit = false;
9588         int rc, retry = 0;
9589         u32 flags = 0;
9590
9591         if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9592                 return 0;
9593
9594         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9595         if (up)
9596                 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9597         mutex_lock(&bp->hwrm_cmd_lock);
9598         while (retry < BNXT_FW_IF_RETRY) {
9599                 rc = _hwrm_send_message(bp, &req, sizeof(req),
9600                                         HWRM_CMD_TIMEOUT);
9601                 if (rc != -EAGAIN)
9602                         break;
9603
9604                 msleep(50);
9605                 retry++;
9606         }
9607         if (!rc)
9608                 flags = le32_to_cpu(resp->flags);
9609         mutex_unlock(&bp->hwrm_cmd_lock);
9610
9611         if (rc == -EAGAIN)
9612                 return rc;
9613         if (rc && up) {
9614                 rc = bnxt_try_recover_fw(bp);
9615                 fw_reset = true;
9616         }
9617         if (rc)
9618                 return rc;
9619
9620         if (!up) {
9621                 bnxt_inv_fw_health_reg(bp);
9622                 return 0;
9623         }
9624
9625         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9626                 resc_reinit = true;
9627         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9628                 fw_reset = true;
9629         else if (bp->fw_health && !bp->fw_health->status_reliable)
9630                 bnxt_try_map_fw_health_reg(bp);
9631
9632         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9633                 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9634                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9635                 return -ENODEV;
9636         }
9637         if (resc_reinit || fw_reset) {
9638                 if (fw_reset) {
9639                         set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9640                         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9641                                 bnxt_ulp_stop(bp);
9642                         bnxt_free_ctx_mem(bp);
9643                         kfree(bp->ctx);
9644                         bp->ctx = NULL;
9645                         bnxt_dcb_free(bp);
9646                         rc = bnxt_fw_init_one(bp);
9647                         if (rc) {
9648                                 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9649                                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9650                                 return rc;
9651                         }
9652                         bnxt_clear_int_mode(bp);
9653                         rc = bnxt_init_int_mode(bp);
9654                         if (rc) {
9655                                 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9656                                 netdev_err(bp->dev, "init int mode failed\n");
9657                                 return rc;
9658                         }
9659                 }
9660                 if (BNXT_NEW_RM(bp)) {
9661                         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9662
9663                         rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9664                         if (rc)
9665                                 netdev_err(bp->dev, "resc_qcaps failed\n");
9666
9667                         hw_resc->resv_cp_rings = 0;
9668                         hw_resc->resv_stat_ctxs = 0;
9669                         hw_resc->resv_irqs = 0;
9670                         hw_resc->resv_tx_rings = 0;
9671                         hw_resc->resv_rx_rings = 0;
9672                         hw_resc->resv_hw_ring_grps = 0;
9673                         hw_resc->resv_vnics = 0;
9674                         if (!fw_reset) {
9675                                 bp->tx_nr_rings = 0;
9676                                 bp->rx_nr_rings = 0;
9677                         }
9678                 }
9679         }
9680         return rc;
9681 }
9682
9683 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9684 {
9685         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9686         struct hwrm_port_led_qcaps_input req = {0};
9687         struct bnxt_pf_info *pf = &bp->pf;
9688         int rc;
9689
9690         bp->num_leds = 0;
9691         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9692                 return 0;
9693
9694         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9695         req.port_id = cpu_to_le16(pf->port_id);
9696         mutex_lock(&bp->hwrm_cmd_lock);
9697         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9698         if (rc) {
9699                 mutex_unlock(&bp->hwrm_cmd_lock);
9700                 return rc;
9701         }
9702         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9703                 int i;
9704
9705                 bp->num_leds = resp->num_leds;
9706                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9707                                                  bp->num_leds);
9708                 for (i = 0; i < bp->num_leds; i++) {
9709                         struct bnxt_led_info *led = &bp->leds[i];
9710                         __le16 caps = led->led_state_caps;
9711
9712                         if (!led->led_group_id ||
9713                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
9714                                 bp->num_leds = 0;
9715                                 break;
9716                         }
9717                 }
9718         }
9719         mutex_unlock(&bp->hwrm_cmd_lock);
9720         return 0;
9721 }
9722
9723 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9724 {
9725         struct hwrm_wol_filter_alloc_input req = {0};
9726         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9727         int rc;
9728
9729         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9730         req.port_id = cpu_to_le16(bp->pf.port_id);
9731         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9732         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9733         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9734         mutex_lock(&bp->hwrm_cmd_lock);
9735         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9736         if (!rc)
9737                 bp->wol_filter_id = resp->wol_filter_id;
9738         mutex_unlock(&bp->hwrm_cmd_lock);
9739         return rc;
9740 }
9741
9742 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9743 {
9744         struct hwrm_wol_filter_free_input req = {0};
9745
9746         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9747         req.port_id = cpu_to_le16(bp->pf.port_id);
9748         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9749         req.wol_filter_id = bp->wol_filter_id;
9750         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9751 }
9752
9753 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9754 {
9755         struct hwrm_wol_filter_qcfg_input req = {0};
9756         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9757         u16 next_handle = 0;
9758         int rc;
9759
9760         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9761         req.port_id = cpu_to_le16(bp->pf.port_id);
9762         req.handle = cpu_to_le16(handle);
9763         mutex_lock(&bp->hwrm_cmd_lock);
9764         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9765         if (!rc) {
9766                 next_handle = le16_to_cpu(resp->next_handle);
9767                 if (next_handle != 0) {
9768                         if (resp->wol_type ==
9769                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9770                                 bp->wol = 1;
9771                                 bp->wol_filter_id = resp->wol_filter_id;
9772                         }
9773                 }
9774         }
9775         mutex_unlock(&bp->hwrm_cmd_lock);
9776         return next_handle;
9777 }
9778
9779 static void bnxt_get_wol_settings(struct bnxt *bp)
9780 {
9781         u16 handle = 0;
9782
9783         bp->wol = 0;
9784         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9785                 return;
9786
9787         do {
9788                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9789         } while (handle && handle != 0xffff);
9790 }
9791
9792 #ifdef CONFIG_BNXT_HWMON
9793 static ssize_t bnxt_show_temp(struct device *dev,
9794                               struct device_attribute *devattr, char *buf)
9795 {
9796         struct hwrm_temp_monitor_query_input req = {0};
9797         struct hwrm_temp_monitor_query_output *resp;
9798         struct bnxt *bp = dev_get_drvdata(dev);
9799         u32 len = 0;
9800         int rc;
9801
9802         resp = bp->hwrm_cmd_resp_addr;
9803         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9804         mutex_lock(&bp->hwrm_cmd_lock);
9805         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9806         if (!rc)
9807                 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9808         mutex_unlock(&bp->hwrm_cmd_lock);
9809         if (rc)
9810                 return rc;
9811         return len;
9812 }
9813 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9814
9815 static struct attribute *bnxt_attrs[] = {
9816         &sensor_dev_attr_temp1_input.dev_attr.attr,
9817         NULL
9818 };
9819 ATTRIBUTE_GROUPS(bnxt);
9820
9821 static void bnxt_hwmon_close(struct bnxt *bp)
9822 {
9823         if (bp->hwmon_dev) {
9824                 hwmon_device_unregister(bp->hwmon_dev);
9825                 bp->hwmon_dev = NULL;
9826         }
9827 }
9828
9829 static void bnxt_hwmon_open(struct bnxt *bp)
9830 {
9831         struct hwrm_temp_monitor_query_input req = {0};
9832         struct pci_dev *pdev = bp->pdev;
9833         int rc;
9834
9835         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9836         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9837         if (rc == -EACCES || rc == -EOPNOTSUPP) {
9838                 bnxt_hwmon_close(bp);
9839                 return;
9840         }
9841
9842         if (bp->hwmon_dev)
9843                 return;
9844
9845         bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9846                                                           DRV_MODULE_NAME, bp,
9847                                                           bnxt_groups);
9848         if (IS_ERR(bp->hwmon_dev)) {
9849                 bp->hwmon_dev = NULL;
9850                 dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9851         }
9852 }
9853 #else
9854 static void bnxt_hwmon_close(struct bnxt *bp)
9855 {
9856 }
9857
9858 static void bnxt_hwmon_open(struct bnxt *bp)
9859 {
9860 }
9861 #endif
9862
9863 static bool bnxt_eee_config_ok(struct bnxt *bp)
9864 {
9865         struct ethtool_eee *eee = &bp->eee;
9866         struct bnxt_link_info *link_info = &bp->link_info;
9867
9868         if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
9869                 return true;
9870
9871         if (eee->eee_enabled) {
9872                 u32 advertising =
9873                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9874
9875                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9876                         eee->eee_enabled = 0;
9877                         return false;
9878                 }
9879                 if (eee->advertised & ~advertising) {
9880                         eee->advertised = advertising & eee->supported;
9881                         return false;
9882                 }
9883         }
9884         return true;
9885 }
9886
9887 static int bnxt_update_phy_setting(struct bnxt *bp)
9888 {
9889         int rc;
9890         bool update_link = false;
9891         bool update_pause = false;
9892         bool update_eee = false;
9893         struct bnxt_link_info *link_info = &bp->link_info;
9894
9895         rc = bnxt_update_link(bp, true);
9896         if (rc) {
9897                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9898                            rc);
9899                 return rc;
9900         }
9901         if (!BNXT_SINGLE_PF(bp))
9902                 return 0;
9903
9904         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9905             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9906             link_info->req_flow_ctrl)
9907                 update_pause = true;
9908         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9909             link_info->force_pause_setting != link_info->req_flow_ctrl)
9910                 update_pause = true;
9911         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9912                 if (BNXT_AUTO_MODE(link_info->auto_mode))
9913                         update_link = true;
9914                 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
9915                     link_info->req_link_speed != link_info->force_link_speed)
9916                         update_link = true;
9917                 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
9918                          link_info->req_link_speed != link_info->force_pam4_link_speed)
9919                         update_link = true;
9920                 if (link_info->req_duplex != link_info->duplex_setting)
9921                         update_link = true;
9922         } else {
9923                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9924                         update_link = true;
9925                 if (link_info->advertising != link_info->auto_link_speeds ||
9926                     link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
9927                         update_link = true;
9928         }
9929
9930         /* The last close may have shutdown the link, so need to call
9931          * PHY_CFG to bring it back up.
9932          */
9933         if (!bp->link_info.link_up)
9934                 update_link = true;
9935
9936         if (!bnxt_eee_config_ok(bp))
9937                 update_eee = true;
9938
9939         if (update_link)
9940                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9941         else if (update_pause)
9942                 rc = bnxt_hwrm_set_pause(bp);
9943         if (rc) {
9944                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9945                            rc);
9946                 return rc;
9947         }
9948
9949         return rc;
9950 }
9951
9952 /* Common routine to pre-map certain register block to different GRC window.
9953  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9954  * in PF and 3 windows in VF that can be customized to map in different
9955  * register blocks.
9956  */
9957 static void bnxt_preset_reg_win(struct bnxt *bp)
9958 {
9959         if (BNXT_PF(bp)) {
9960                 /* CAG registers map to GRC window #4 */
9961                 writel(BNXT_CAG_REG_BASE,
9962                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9963         }
9964 }
9965
9966 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9967
9968 static int bnxt_reinit_after_abort(struct bnxt *bp)
9969 {
9970         int rc;
9971
9972         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9973                 return -EBUSY;
9974
9975         if (bp->dev->reg_state == NETREG_UNREGISTERED)
9976                 return -ENODEV;
9977
9978         rc = bnxt_fw_init_one(bp);
9979         if (!rc) {
9980                 bnxt_clear_int_mode(bp);
9981                 rc = bnxt_init_int_mode(bp);
9982                 if (!rc) {
9983                         clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9984                         set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9985                 }
9986         }
9987         return rc;
9988 }
9989
9990 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9991 {
9992         int rc = 0;
9993
9994         bnxt_preset_reg_win(bp);
9995         netif_carrier_off(bp->dev);
9996         if (irq_re_init) {
9997                 /* Reserve rings now if none were reserved at driver probe. */
9998                 rc = bnxt_init_dflt_ring_mode(bp);
9999                 if (rc) {
10000                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10001                         return rc;
10002                 }
10003         }
10004         rc = bnxt_reserve_rings(bp, irq_re_init);
10005         if (rc)
10006                 return rc;
10007         if ((bp->flags & BNXT_FLAG_RFS) &&
10008             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10009                 /* disable RFS if falling back to INTA */
10010                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10011                 bp->flags &= ~BNXT_FLAG_RFS;
10012         }
10013
10014         rc = bnxt_alloc_mem(bp, irq_re_init);
10015         if (rc) {
10016                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10017                 goto open_err_free_mem;
10018         }
10019
10020         if (irq_re_init) {
10021                 bnxt_init_napi(bp);
10022                 rc = bnxt_request_irq(bp);
10023                 if (rc) {
10024                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10025                         goto open_err_irq;
10026                 }
10027         }
10028
10029         rc = bnxt_init_nic(bp, irq_re_init);
10030         if (rc) {
10031                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10032                 goto open_err_irq;
10033         }
10034
10035         bnxt_enable_napi(bp);
10036         bnxt_debug_dev_init(bp);
10037
10038         if (link_re_init) {
10039                 mutex_lock(&bp->link_lock);
10040                 rc = bnxt_update_phy_setting(bp);
10041                 mutex_unlock(&bp->link_lock);
10042                 if (rc) {
10043                         netdev_warn(bp->dev, "failed to update phy settings\n");
10044                         if (BNXT_SINGLE_PF(bp)) {
10045                                 bp->link_info.phy_retry = true;
10046                                 bp->link_info.phy_retry_expires =
10047                                         jiffies + 5 * HZ;
10048                         }
10049                 }
10050         }
10051
10052         if (irq_re_init)
10053                 udp_tunnel_nic_reset_ntf(bp->dev);
10054
10055         set_bit(BNXT_STATE_OPEN, &bp->state);
10056         bnxt_enable_int(bp);
10057         /* Enable TX queues */
10058         bnxt_tx_enable(bp);
10059         mod_timer(&bp->timer, jiffies + bp->current_interval);
10060         /* Poll link status and check for SFP+ module status */
10061         bnxt_get_port_module_status(bp);
10062
10063         /* VF-reps may need to be re-opened after the PF is re-opened */
10064         if (BNXT_PF(bp))
10065                 bnxt_vf_reps_open(bp);
10066         return 0;
10067
10068 open_err_irq:
10069         bnxt_del_napi(bp);
10070
10071 open_err_free_mem:
10072         bnxt_free_skbs(bp);
10073         bnxt_free_irq(bp);
10074         bnxt_free_mem(bp, true);
10075         return rc;
10076 }
10077
10078 /* rtnl_lock held */
10079 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10080 {
10081         int rc = 0;
10082
10083         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10084                 rc = -EIO;
10085         if (!rc)
10086                 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10087         if (rc) {
10088                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10089                 dev_close(bp->dev);
10090         }
10091         return rc;
10092 }
10093
10094 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10095  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10096  * self tests.
10097  */
10098 int bnxt_half_open_nic(struct bnxt *bp)
10099 {
10100         int rc = 0;
10101
10102         rc = bnxt_alloc_mem(bp, false);
10103         if (rc) {
10104                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10105                 goto half_open_err;
10106         }
10107         rc = bnxt_init_nic(bp, false);
10108         if (rc) {
10109                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10110                 goto half_open_err;
10111         }
10112         return 0;
10113
10114 half_open_err:
10115         bnxt_free_skbs(bp);
10116         bnxt_free_mem(bp, false);
10117         dev_close(bp->dev);
10118         return rc;
10119 }
10120
10121 /* rtnl_lock held, this call can only be made after a previous successful
10122  * call to bnxt_half_open_nic().
10123  */
10124 void bnxt_half_close_nic(struct bnxt *bp)
10125 {
10126         bnxt_hwrm_resource_free(bp, false, false);
10127         bnxt_free_skbs(bp);
10128         bnxt_free_mem(bp, false);
10129 }
10130
10131 static void bnxt_reenable_sriov(struct bnxt *bp)
10132 {
10133         if (BNXT_PF(bp)) {
10134                 struct bnxt_pf_info *pf = &bp->pf;
10135                 int n = pf->active_vfs;
10136
10137                 if (n)
10138                         bnxt_cfg_hw_sriov(bp, &n, true);
10139         }
10140 }
10141
10142 static int bnxt_open(struct net_device *dev)
10143 {
10144         struct bnxt *bp = netdev_priv(dev);
10145         int rc;
10146
10147         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10148                 rc = bnxt_reinit_after_abort(bp);
10149                 if (rc) {
10150                         if (rc == -EBUSY)
10151                                 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10152                         else
10153                                 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10154                         return -ENODEV;
10155                 }
10156         }
10157
10158         rc = bnxt_hwrm_if_change(bp, true);
10159         if (rc)
10160                 return rc;
10161         rc = __bnxt_open_nic(bp, true, true);
10162         if (rc) {
10163                 bnxt_hwrm_if_change(bp, false);
10164         } else {
10165                 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10166                         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10167                                 bnxt_ulp_start(bp, 0);
10168                                 bnxt_reenable_sriov(bp);
10169                         }
10170                 }
10171                 bnxt_hwmon_open(bp);
10172         }
10173
10174         return rc;
10175 }
10176
10177 static bool bnxt_drv_busy(struct bnxt *bp)
10178 {
10179         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10180                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
10181 }
10182
10183 static void bnxt_get_ring_stats(struct bnxt *bp,
10184                                 struct rtnl_link_stats64 *stats);
10185
10186 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10187                              bool link_re_init)
10188 {
10189         /* Close the VF-reps before closing PF */
10190         if (BNXT_PF(bp))
10191                 bnxt_vf_reps_close(bp);
10192
10193         /* Change device state to avoid TX queue wake up's */
10194         bnxt_tx_disable(bp);
10195
10196         clear_bit(BNXT_STATE_OPEN, &bp->state);
10197         smp_mb__after_atomic();
10198         while (bnxt_drv_busy(bp))
10199                 msleep(20);
10200
10201         /* Flush rings and and disable interrupts */
10202         bnxt_shutdown_nic(bp, irq_re_init);
10203
10204         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10205
10206         bnxt_debug_dev_exit(bp);
10207         bnxt_disable_napi(bp);
10208         del_timer_sync(&bp->timer);
10209         bnxt_free_skbs(bp);
10210
10211         /* Save ring stats before shutdown */
10212         if (bp->bnapi && irq_re_init)
10213                 bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10214         if (irq_re_init) {
10215                 bnxt_free_irq(bp);
10216                 bnxt_del_napi(bp);
10217         }
10218         bnxt_free_mem(bp, irq_re_init);
10219 }
10220
10221 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10222 {
10223         int rc = 0;
10224
10225         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10226                 /* If we get here, it means firmware reset is in progress
10227                  * while we are trying to close.  We can safely proceed with
10228                  * the close because we are holding rtnl_lock().  Some firmware
10229                  * messages may fail as we proceed to close.  We set the
10230                  * ABORT_ERR flag here so that the FW reset thread will later
10231                  * abort when it gets the rtnl_lock() and sees the flag.
10232                  */
10233                 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10234                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10235         }
10236
10237 #ifdef CONFIG_BNXT_SRIOV
10238         if (bp->sriov_cfg) {
10239                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10240                                                       !bp->sriov_cfg,
10241                                                       BNXT_SRIOV_CFG_WAIT_TMO);
10242                 if (rc)
10243                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10244         }
10245 #endif
10246         __bnxt_close_nic(bp, irq_re_init, link_re_init);
10247         return rc;
10248 }
10249
10250 static int bnxt_close(struct net_device *dev)
10251 {
10252         struct bnxt *bp = netdev_priv(dev);
10253
10254         bnxt_hwmon_close(bp);
10255         bnxt_close_nic(bp, true, true);
10256         bnxt_hwrm_shutdown_link(bp);
10257         bnxt_hwrm_if_change(bp, false);
10258         return 0;
10259 }
10260
10261 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10262                                    u16 *val)
10263 {
10264         struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
10265         struct hwrm_port_phy_mdio_read_input req = {0};
10266         int rc;
10267
10268         if (bp->hwrm_spec_code < 0x10a00)
10269                 return -EOPNOTSUPP;
10270
10271         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
10272         req.port_id = cpu_to_le16(bp->pf.port_id);
10273         req.phy_addr = phy_addr;
10274         req.reg_addr = cpu_to_le16(reg & 0x1f);
10275         if (mdio_phy_id_is_c45(phy_addr)) {
10276                 req.cl45_mdio = 1;
10277                 req.phy_addr = mdio_phy_id_prtad(phy_addr);
10278                 req.dev_addr = mdio_phy_id_devad(phy_addr);
10279                 req.reg_addr = cpu_to_le16(reg);
10280         }
10281
10282         mutex_lock(&bp->hwrm_cmd_lock);
10283         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10284         if (!rc)
10285                 *val = le16_to_cpu(resp->reg_data);
10286         mutex_unlock(&bp->hwrm_cmd_lock);
10287         return rc;
10288 }
10289
10290 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10291                                     u16 val)
10292 {
10293         struct hwrm_port_phy_mdio_write_input req = {0};
10294
10295         if (bp->hwrm_spec_code < 0x10a00)
10296                 return -EOPNOTSUPP;
10297
10298         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
10299         req.port_id = cpu_to_le16(bp->pf.port_id);
10300         req.phy_addr = phy_addr;
10301         req.reg_addr = cpu_to_le16(reg & 0x1f);
10302         if (mdio_phy_id_is_c45(phy_addr)) {
10303                 req.cl45_mdio = 1;
10304                 req.phy_addr = mdio_phy_id_prtad(phy_addr);
10305                 req.dev_addr = mdio_phy_id_devad(phy_addr);
10306                 req.reg_addr = cpu_to_le16(reg);
10307         }
10308         req.reg_data = cpu_to_le16(val);
10309
10310         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10311 }
10312
10313 /* rtnl_lock held */
10314 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10315 {
10316         struct mii_ioctl_data *mdio = if_mii(ifr);
10317         struct bnxt *bp = netdev_priv(dev);
10318         int rc;
10319
10320         switch (cmd) {
10321         case SIOCGMIIPHY:
10322                 mdio->phy_id = bp->link_info.phy_addr;
10323
10324                 fallthrough;
10325         case SIOCGMIIREG: {
10326                 u16 mii_regval = 0;
10327
10328                 if (!netif_running(dev))
10329                         return -EAGAIN;
10330
10331                 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10332                                              &mii_regval);
10333                 mdio->val_out = mii_regval;
10334                 return rc;
10335         }
10336
10337         case SIOCSMIIREG:
10338                 if (!netif_running(dev))
10339                         return -EAGAIN;
10340
10341                 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10342                                                 mdio->val_in);
10343
10344         default:
10345                 /* do nothing */
10346                 break;
10347         }
10348         return -EOPNOTSUPP;
10349 }
10350
10351 static void bnxt_get_ring_stats(struct bnxt *bp,
10352                                 struct rtnl_link_stats64 *stats)
10353 {
10354         int i;
10355
10356         for (i = 0; i < bp->cp_nr_rings; i++) {
10357                 struct bnxt_napi *bnapi = bp->bnapi[i];
10358                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10359                 u64 *sw = cpr->stats.sw_stats;
10360
10361                 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10362                 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10363                 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10364
10365                 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10366                 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10367                 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10368
10369                 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10370                 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10371                 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10372
10373                 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10374                 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10375                 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10376
10377                 stats->rx_missed_errors +=
10378                         BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10379
10380                 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10381
10382                 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10383         }
10384 }
10385
10386 static void bnxt_add_prev_stats(struct bnxt *bp,
10387                                 struct rtnl_link_stats64 *stats)
10388 {
10389         struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10390
10391         stats->rx_packets += prev_stats->rx_packets;
10392         stats->tx_packets += prev_stats->tx_packets;
10393         stats->rx_bytes += prev_stats->rx_bytes;
10394         stats->tx_bytes += prev_stats->tx_bytes;
10395         stats->rx_missed_errors += prev_stats->rx_missed_errors;
10396         stats->multicast += prev_stats->multicast;
10397         stats->tx_dropped += prev_stats->tx_dropped;
10398 }
10399
10400 static void
10401 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10402 {
10403         struct bnxt *bp = netdev_priv(dev);
10404
10405         set_bit(BNXT_STATE_READ_STATS, &bp->state);
10406         /* Make sure bnxt_close_nic() sees that we are reading stats before
10407          * we check the BNXT_STATE_OPEN flag.
10408          */
10409         smp_mb__after_atomic();
10410         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10411                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10412                 *stats = bp->net_stats_prev;
10413                 return;
10414         }
10415
10416         bnxt_get_ring_stats(bp, stats);
10417         bnxt_add_prev_stats(bp, stats);
10418
10419         if (bp->flags & BNXT_FLAG_PORT_STATS) {
10420                 u64 *rx = bp->port_stats.sw_stats;
10421                 u64 *tx = bp->port_stats.sw_stats +
10422                           BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10423
10424                 stats->rx_crc_errors =
10425                         BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10426                 stats->rx_frame_errors =
10427                         BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10428                 stats->rx_length_errors =
10429                         BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10430                         BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10431                         BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10432                 stats->rx_errors =
10433                         BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10434                         BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10435                 stats->collisions =
10436                         BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10437                 stats->tx_fifo_errors =
10438                         BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10439                 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10440         }
10441         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10442 }
10443
10444 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10445 {
10446         struct net_device *dev = bp->dev;
10447         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10448         struct netdev_hw_addr *ha;
10449         u8 *haddr;
10450         int mc_count = 0;
10451         bool update = false;
10452         int off = 0;
10453
10454         netdev_for_each_mc_addr(ha, dev) {
10455                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
10456                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10457                         vnic->mc_list_count = 0;
10458                         return false;
10459                 }
10460                 haddr = ha->addr;
10461                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10462                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10463                         update = true;
10464                 }
10465                 off += ETH_ALEN;
10466                 mc_count++;
10467         }
10468         if (mc_count)
10469                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10470
10471         if (mc_count != vnic->mc_list_count) {
10472                 vnic->mc_list_count = mc_count;
10473                 update = true;
10474         }
10475         return update;
10476 }
10477
10478 static bool bnxt_uc_list_updated(struct bnxt *bp)
10479 {
10480         struct net_device *dev = bp->dev;
10481         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10482         struct netdev_hw_addr *ha;
10483         int off = 0;
10484
10485         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10486                 return true;
10487
10488         netdev_for_each_uc_addr(ha, dev) {
10489                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10490                         return true;
10491
10492                 off += ETH_ALEN;
10493         }
10494         return false;
10495 }
10496
10497 static void bnxt_set_rx_mode(struct net_device *dev)
10498 {
10499         struct bnxt *bp = netdev_priv(dev);
10500         struct bnxt_vnic_info *vnic;
10501         bool mc_update = false;
10502         bool uc_update;
10503         u32 mask;
10504
10505         if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10506                 return;
10507
10508         vnic = &bp->vnic_info[0];
10509         mask = vnic->rx_mask;
10510         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10511                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10512                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10513                   CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10514
10515         if (dev->flags & IFF_PROMISC)
10516                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10517
10518         uc_update = bnxt_uc_list_updated(bp);
10519
10520         if (dev->flags & IFF_BROADCAST)
10521                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10522         if (dev->flags & IFF_ALLMULTI) {
10523                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10524                 vnic->mc_list_count = 0;
10525         } else {
10526                 mc_update = bnxt_mc_list_updated(bp, &mask);
10527         }
10528
10529         if (mask != vnic->rx_mask || uc_update || mc_update) {
10530                 vnic->rx_mask = mask;
10531
10532                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10533                 bnxt_queue_sp_work(bp);
10534         }
10535 }
10536
10537 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10538 {
10539         struct net_device *dev = bp->dev;
10540         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10541         struct netdev_hw_addr *ha;
10542         int i, off = 0, rc;
10543         bool uc_update;
10544
10545         netif_addr_lock_bh(dev);
10546         uc_update = bnxt_uc_list_updated(bp);
10547         netif_addr_unlock_bh(dev);
10548
10549         if (!uc_update)
10550                 goto skip_uc;
10551
10552         mutex_lock(&bp->hwrm_cmd_lock);
10553         for (i = 1; i < vnic->uc_filter_count; i++) {
10554                 struct hwrm_cfa_l2_filter_free_input req = {0};
10555
10556                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10557                                        -1);
10558
10559                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
10560
10561                 rc = _hwrm_send_message(bp, &req, sizeof(req),
10562                                         HWRM_CMD_TIMEOUT);
10563         }
10564         mutex_unlock(&bp->hwrm_cmd_lock);
10565
10566         vnic->uc_filter_count = 1;
10567
10568         netif_addr_lock_bh(dev);
10569         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10570                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10571         } else {
10572                 netdev_for_each_uc_addr(ha, dev) {
10573                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10574                         off += ETH_ALEN;
10575                         vnic->uc_filter_count++;
10576                 }
10577         }
10578         netif_addr_unlock_bh(dev);
10579
10580         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10581                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10582                 if (rc) {
10583                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10584                                    rc);
10585                         vnic->uc_filter_count = i;
10586                         return rc;
10587                 }
10588         }
10589
10590 skip_uc:
10591         if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10592             !bnxt_promisc_ok(bp))
10593                 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10594         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10595         if (rc && vnic->mc_list_count) {
10596                 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10597                             rc);
10598                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10599                 vnic->mc_list_count = 0;
10600                 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10601         }
10602         if (rc)
10603                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10604                            rc);
10605
10606         return rc;
10607 }
10608
10609 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10610 {
10611 #ifdef CONFIG_BNXT_SRIOV
10612         if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10613                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10614
10615                 /* No minimum rings were provisioned by the PF.  Don't
10616                  * reserve rings by default when device is down.
10617                  */
10618                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10619                         return true;
10620
10621                 if (!netif_running(bp->dev))
10622                         return false;
10623         }
10624 #endif
10625         return true;
10626 }
10627
10628 /* If the chip and firmware supports RFS */
10629 static bool bnxt_rfs_supported(struct bnxt *bp)
10630 {
10631         if (bp->flags & BNXT_FLAG_CHIP_P5) {
10632                 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10633                         return true;
10634                 return false;
10635         }
10636         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10637                 return true;
10638         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10639                 return true;
10640         return false;
10641 }
10642
10643 /* If runtime conditions support RFS */
10644 static bool bnxt_rfs_capable(struct bnxt *bp)
10645 {
10646 #ifdef CONFIG_RFS_ACCEL
10647         int vnics, max_vnics, max_rss_ctxs;
10648
10649         if (bp->flags & BNXT_FLAG_CHIP_P5)
10650                 return bnxt_rfs_supported(bp);
10651         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10652                 return false;
10653
10654         vnics = 1 + bp->rx_nr_rings;
10655         max_vnics = bnxt_get_max_func_vnics(bp);
10656         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10657
10658         /* RSS contexts not a limiting factor */
10659         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10660                 max_rss_ctxs = max_vnics;
10661         if (vnics > max_vnics || vnics > max_rss_ctxs) {
10662                 if (bp->rx_nr_rings > 1)
10663                         netdev_warn(bp->dev,
10664                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10665                                     min(max_rss_ctxs - 1, max_vnics - 1));
10666                 return false;
10667         }
10668
10669         if (!BNXT_NEW_RM(bp))
10670                 return true;
10671
10672         if (vnics == bp->hw_resc.resv_vnics)
10673                 return true;
10674
10675         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10676         if (vnics <= bp->hw_resc.resv_vnics)
10677                 return true;
10678
10679         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10680         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10681         return false;
10682 #else
10683         return false;
10684 #endif
10685 }
10686
10687 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10688                                            netdev_features_t features)
10689 {
10690         struct bnxt *bp = netdev_priv(dev);
10691         netdev_features_t vlan_features;
10692
10693         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10694                 features &= ~NETIF_F_NTUPLE;
10695
10696         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10697                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10698
10699         if (!(features & NETIF_F_GRO))
10700                 features &= ~NETIF_F_GRO_HW;
10701
10702         if (features & NETIF_F_GRO_HW)
10703                 features &= ~NETIF_F_LRO;
10704
10705         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
10706          * turned on or off together.
10707          */
10708         vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10709         if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10710                 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10711                         features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10712                 else if (vlan_features)
10713                         features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10714         }
10715 #ifdef CONFIG_BNXT_SRIOV
10716         if (BNXT_VF(bp) && bp->vf.vlan)
10717                 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10718 #endif
10719         return features;
10720 }
10721
10722 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10723 {
10724         struct bnxt *bp = netdev_priv(dev);
10725         u32 flags = bp->flags;
10726         u32 changes;
10727         int rc = 0;
10728         bool re_init = false;
10729         bool update_tpa = false;
10730
10731         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10732         if (features & NETIF_F_GRO_HW)
10733                 flags |= BNXT_FLAG_GRO;
10734         else if (features & NETIF_F_LRO)
10735                 flags |= BNXT_FLAG_LRO;
10736
10737         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10738                 flags &= ~BNXT_FLAG_TPA;
10739
10740         if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10741                 flags |= BNXT_FLAG_STRIP_VLAN;
10742
10743         if (features & NETIF_F_NTUPLE)
10744                 flags |= BNXT_FLAG_RFS;
10745
10746         changes = flags ^ bp->flags;
10747         if (changes & BNXT_FLAG_TPA) {
10748                 update_tpa = true;
10749                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10750                     (flags & BNXT_FLAG_TPA) == 0 ||
10751                     (bp->flags & BNXT_FLAG_CHIP_P5))
10752                         re_init = true;
10753         }
10754
10755         if (changes & ~BNXT_FLAG_TPA)
10756                 re_init = true;
10757
10758         if (flags != bp->flags) {
10759                 u32 old_flags = bp->flags;
10760
10761                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10762                         bp->flags = flags;
10763                         if (update_tpa)
10764                                 bnxt_set_ring_params(bp);
10765                         return rc;
10766                 }
10767
10768                 if (re_init) {
10769                         bnxt_close_nic(bp, false, false);
10770                         bp->flags = flags;
10771                         if (update_tpa)
10772                                 bnxt_set_ring_params(bp);
10773
10774                         return bnxt_open_nic(bp, false, false);
10775                 }
10776                 if (update_tpa) {
10777                         bp->flags = flags;
10778                         rc = bnxt_set_tpa(bp,
10779                                           (flags & BNXT_FLAG_TPA) ?
10780                                           true : false);
10781                         if (rc)
10782                                 bp->flags = old_flags;
10783                 }
10784         }
10785         return rc;
10786 }
10787
10788 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
10789                                              struct net_device *dev,
10790                                              netdev_features_t features)
10791 {
10792         struct bnxt *bp;
10793         __be16 udp_port;
10794         u8 l4_proto = 0;
10795
10796         features = vlan_features_check(skb, features);
10797         if (!skb->encapsulation)
10798                 return features;
10799
10800         switch (vlan_get_protocol(skb)) {
10801         case htons(ETH_P_IP):
10802                 l4_proto = ip_hdr(skb)->protocol;
10803                 break;
10804         case htons(ETH_P_IPV6):
10805                 l4_proto = ipv6_hdr(skb)->nexthdr;
10806                 break;
10807         default:
10808                 return features;
10809         }
10810
10811         if (l4_proto != IPPROTO_UDP)
10812                 return features;
10813
10814         bp = netdev_priv(dev);
10815         /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
10816         udp_port = udp_hdr(skb)->dest;
10817         if (udp_port == bp->vxlan_port || udp_port == bp->nge_port)
10818                 return features;
10819         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
10820 }
10821
10822 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10823                          u32 *reg_buf)
10824 {
10825         struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10826         struct hwrm_dbg_read_direct_input req = {0};
10827         __le32 *dbg_reg_buf;
10828         dma_addr_t mapping;
10829         int rc, i;
10830
10831         dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10832                                          &mapping, GFP_KERNEL);
10833         if (!dbg_reg_buf)
10834                 return -ENOMEM;
10835         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10836         req.host_dest_addr = cpu_to_le64(mapping);
10837         req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10838         req.read_len32 = cpu_to_le32(num_words);
10839         mutex_lock(&bp->hwrm_cmd_lock);
10840         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10841         if (rc || resp->error_code) {
10842                 rc = -EIO;
10843                 goto dbg_rd_reg_exit;
10844         }
10845         for (i = 0; i < num_words; i++)
10846                 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10847
10848 dbg_rd_reg_exit:
10849         mutex_unlock(&bp->hwrm_cmd_lock);
10850         dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10851         return rc;
10852 }
10853
10854 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10855                                        u32 ring_id, u32 *prod, u32 *cons)
10856 {
10857         struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10858         struct hwrm_dbg_ring_info_get_input req = {0};
10859         int rc;
10860
10861         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10862         req.ring_type = ring_type;
10863         req.fw_ring_id = cpu_to_le32(ring_id);
10864         mutex_lock(&bp->hwrm_cmd_lock);
10865         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10866         if (!rc) {
10867                 *prod = le32_to_cpu(resp->producer_index);
10868                 *cons = le32_to_cpu(resp->consumer_index);
10869         }
10870         mutex_unlock(&bp->hwrm_cmd_lock);
10871         return rc;
10872 }
10873
10874 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10875 {
10876         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10877         int i = bnapi->index;
10878
10879         if (!txr)
10880                 return;
10881
10882         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10883                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10884                     txr->tx_cons);
10885 }
10886
10887 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10888 {
10889         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10890         int i = bnapi->index;
10891
10892         if (!rxr)
10893                 return;
10894
10895         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10896                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10897                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10898                     rxr->rx_sw_agg_prod);
10899 }
10900
10901 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10902 {
10903         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10904         int i = bnapi->index;
10905
10906         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10907                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10908 }
10909
10910 static void bnxt_dbg_dump_states(struct bnxt *bp)
10911 {
10912         int i;
10913         struct bnxt_napi *bnapi;
10914
10915         for (i = 0; i < bp->cp_nr_rings; i++) {
10916                 bnapi = bp->bnapi[i];
10917                 if (netif_msg_drv(bp)) {
10918                         bnxt_dump_tx_sw_state(bnapi);
10919                         bnxt_dump_rx_sw_state(bnapi);
10920                         bnxt_dump_cp_sw_state(bnapi);
10921                 }
10922         }
10923 }
10924
10925 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
10926 {
10927         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
10928         struct hwrm_ring_reset_input req = {0};
10929         struct bnxt_napi *bnapi = rxr->bnapi;
10930         struct bnxt_cp_ring_info *cpr;
10931         u16 cp_ring_id;
10932
10933         cpr = &bnapi->cp_ring;
10934         cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
10935         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1);
10936         req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
10937         req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
10938         return hwrm_send_message_silent(bp, &req, sizeof(req),
10939                                         HWRM_CMD_TIMEOUT);
10940 }
10941
10942 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10943 {
10944         if (!silent)
10945                 bnxt_dbg_dump_states(bp);
10946         if (netif_running(bp->dev)) {
10947                 int rc;
10948
10949                 if (silent) {
10950                         bnxt_close_nic(bp, false, false);
10951                         bnxt_open_nic(bp, false, false);
10952                 } else {
10953                         bnxt_ulp_stop(bp);
10954                         bnxt_close_nic(bp, true, false);
10955                         rc = bnxt_open_nic(bp, true, false);
10956                         bnxt_ulp_start(bp, rc);
10957                 }
10958         }
10959 }
10960
10961 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10962 {
10963         struct bnxt *bp = netdev_priv(dev);
10964
10965         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10966         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10967         bnxt_queue_sp_work(bp);
10968 }
10969
10970 static void bnxt_fw_health_check(struct bnxt *bp)
10971 {
10972         struct bnxt_fw_health *fw_health = bp->fw_health;
10973         u32 val;
10974
10975         if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10976                 return;
10977
10978         if (fw_health->tmr_counter) {
10979                 fw_health->tmr_counter--;
10980                 return;
10981         }
10982
10983         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10984         if (val == fw_health->last_fw_heartbeat)
10985                 goto fw_reset;
10986
10987         fw_health->last_fw_heartbeat = val;
10988
10989         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10990         if (val != fw_health->last_fw_reset_cnt)
10991                 goto fw_reset;
10992
10993         fw_health->tmr_counter = fw_health->tmr_multiplier;
10994         return;
10995
10996 fw_reset:
10997         set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10998         bnxt_queue_sp_work(bp);
10999 }
11000
11001 static void bnxt_timer(struct timer_list *t)
11002 {
11003         struct bnxt *bp = from_timer(bp, t, timer);
11004         struct net_device *dev = bp->dev;
11005
11006         if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11007                 return;
11008
11009         if (atomic_read(&bp->intr_sem) != 0)
11010                 goto bnxt_restart_timer;
11011
11012         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11013                 bnxt_fw_health_check(bp);
11014
11015         if (bp->link_info.link_up && bp->stats_coal_ticks) {
11016                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11017                 bnxt_queue_sp_work(bp);
11018         }
11019
11020         if (bnxt_tc_flower_enabled(bp)) {
11021                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11022                 bnxt_queue_sp_work(bp);
11023         }
11024
11025 #ifdef CONFIG_RFS_ACCEL
11026         if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11027                 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11028                 bnxt_queue_sp_work(bp);
11029         }
11030 #endif /*CONFIG_RFS_ACCEL*/
11031
11032         if (bp->link_info.phy_retry) {
11033                 if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11034                         bp->link_info.phy_retry = false;
11035                         netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11036                 } else {
11037                         set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11038                         bnxt_queue_sp_work(bp);
11039                 }
11040         }
11041
11042         if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11043             netif_carrier_ok(dev)) {
11044                 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11045                 bnxt_queue_sp_work(bp);
11046         }
11047 bnxt_restart_timer:
11048         mod_timer(&bp->timer, jiffies + bp->current_interval);
11049 }
11050
11051 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11052 {
11053         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11054          * set.  If the device is being closed, bnxt_close() may be holding
11055          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11056          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11057          */
11058         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11059         rtnl_lock();
11060 }
11061
11062 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11063 {
11064         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11065         rtnl_unlock();
11066 }
11067
11068 /* Only called from bnxt_sp_task() */
11069 static void bnxt_reset(struct bnxt *bp, bool silent)
11070 {
11071         bnxt_rtnl_lock_sp(bp);
11072         if (test_bit(BNXT_STATE_OPEN, &bp->state))
11073                 bnxt_reset_task(bp, silent);
11074         bnxt_rtnl_unlock_sp(bp);
11075 }
11076
11077 /* Only called from bnxt_sp_task() */
11078 static void bnxt_rx_ring_reset(struct bnxt *bp)
11079 {
11080         int i;
11081
11082         bnxt_rtnl_lock_sp(bp);
11083         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11084                 bnxt_rtnl_unlock_sp(bp);
11085                 return;
11086         }
11087         /* Disable and flush TPA before resetting the RX ring */
11088         if (bp->flags & BNXT_FLAG_TPA)
11089                 bnxt_set_tpa(bp, false);
11090         for (i = 0; i < bp->rx_nr_rings; i++) {
11091                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11092                 struct bnxt_cp_ring_info *cpr;
11093                 int rc;
11094
11095                 if (!rxr->bnapi->in_reset)
11096                         continue;
11097
11098                 rc = bnxt_hwrm_rx_ring_reset(bp, i);
11099                 if (rc) {
11100                         if (rc == -EINVAL || rc == -EOPNOTSUPP)
11101                                 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11102                         else
11103                                 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11104                                             rc);
11105                         bnxt_reset_task(bp, true);
11106                         break;
11107                 }
11108                 bnxt_free_one_rx_ring_skbs(bp, i);
11109                 rxr->rx_prod = 0;
11110                 rxr->rx_agg_prod = 0;
11111                 rxr->rx_sw_agg_prod = 0;
11112                 rxr->rx_next_cons = 0;
11113                 rxr->bnapi->in_reset = false;
11114                 bnxt_alloc_one_rx_ring(bp, i);
11115                 cpr = &rxr->bnapi->cp_ring;
11116                 cpr->sw_stats.rx.rx_resets++;
11117                 if (bp->flags & BNXT_FLAG_AGG_RINGS)
11118                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11119                 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11120         }
11121         if (bp->flags & BNXT_FLAG_TPA)
11122                 bnxt_set_tpa(bp, true);
11123         bnxt_rtnl_unlock_sp(bp);
11124 }
11125
11126 static void bnxt_fw_reset_close(struct bnxt *bp)
11127 {
11128         bnxt_ulp_stop(bp);
11129         /* When firmware is in fatal state, quiesce device and disable
11130          * bus master to prevent any potential bad DMAs before freeing
11131          * kernel memory.
11132          */
11133         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11134                 u16 val = 0;
11135
11136                 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11137                 if (val == 0xffff)
11138                         bp->fw_reset_min_dsecs = 0;
11139                 bnxt_tx_disable(bp);
11140                 bnxt_disable_napi(bp);
11141                 bnxt_disable_int_sync(bp);
11142                 bnxt_free_irq(bp);
11143                 bnxt_clear_int_mode(bp);
11144                 pci_disable_device(bp->pdev);
11145         }
11146         __bnxt_close_nic(bp, true, false);
11147         bnxt_vf_reps_free(bp);
11148         bnxt_clear_int_mode(bp);
11149         bnxt_hwrm_func_drv_unrgtr(bp);
11150         if (pci_is_enabled(bp->pdev))
11151                 pci_disable_device(bp->pdev);
11152         bnxt_free_ctx_mem(bp);
11153         kfree(bp->ctx);
11154         bp->ctx = NULL;
11155 }
11156
11157 static bool is_bnxt_fw_ok(struct bnxt *bp)
11158 {
11159         struct bnxt_fw_health *fw_health = bp->fw_health;
11160         bool no_heartbeat = false, has_reset = false;
11161         u32 val;
11162
11163         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11164         if (val == fw_health->last_fw_heartbeat)
11165                 no_heartbeat = true;
11166
11167         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11168         if (val != fw_health->last_fw_reset_cnt)
11169                 has_reset = true;
11170
11171         if (!no_heartbeat && has_reset)
11172                 return true;
11173
11174         return false;
11175 }
11176
11177 /* rtnl_lock is acquired before calling this function */
11178 static void bnxt_force_fw_reset(struct bnxt *bp)
11179 {
11180         struct bnxt_fw_health *fw_health = bp->fw_health;
11181         u32 wait_dsecs;
11182
11183         if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11184             test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11185                 return;
11186
11187         set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11188         bnxt_fw_reset_close(bp);
11189         wait_dsecs = fw_health->master_func_wait_dsecs;
11190         if (fw_health->master) {
11191                 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11192                         wait_dsecs = 0;
11193                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11194         } else {
11195                 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11196                 wait_dsecs = fw_health->normal_func_wait_dsecs;
11197                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11198         }
11199
11200         bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11201         bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11202         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11203 }
11204
11205 void bnxt_fw_exception(struct bnxt *bp)
11206 {
11207         netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11208         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11209         bnxt_rtnl_lock_sp(bp);
11210         bnxt_force_fw_reset(bp);
11211         bnxt_rtnl_unlock_sp(bp);
11212 }
11213
11214 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11215  * < 0 on error.
11216  */
11217 static int bnxt_get_registered_vfs(struct bnxt *bp)
11218 {
11219 #ifdef CONFIG_BNXT_SRIOV
11220         int rc;
11221
11222         if (!BNXT_PF(bp))
11223                 return 0;
11224
11225         rc = bnxt_hwrm_func_qcfg(bp);
11226         if (rc) {
11227                 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11228                 return rc;
11229         }
11230         if (bp->pf.registered_vfs)
11231                 return bp->pf.registered_vfs;
11232         if (bp->sriov_cfg)
11233                 return 1;
11234 #endif
11235         return 0;
11236 }
11237
11238 void bnxt_fw_reset(struct bnxt *bp)
11239 {
11240         bnxt_rtnl_lock_sp(bp);
11241         if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11242             !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11243                 int n = 0, tmo;
11244
11245                 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11246                 if (bp->pf.active_vfs &&
11247                     !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11248                         n = bnxt_get_registered_vfs(bp);
11249                 if (n < 0) {
11250                         netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11251                                    n);
11252                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11253                         dev_close(bp->dev);
11254                         goto fw_reset_exit;
11255                 } else if (n > 0) {
11256                         u16 vf_tmo_dsecs = n * 10;
11257
11258                         if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11259                                 bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11260                         bp->fw_reset_state =
11261                                 BNXT_FW_RESET_STATE_POLL_VF;
11262                         bnxt_queue_fw_reset_work(bp, HZ / 10);
11263                         goto fw_reset_exit;
11264                 }
11265                 bnxt_fw_reset_close(bp);
11266                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11267                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11268                         tmo = HZ / 10;
11269                 } else {
11270                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11271                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
11272                 }
11273                 bnxt_queue_fw_reset_work(bp, tmo);
11274         }
11275 fw_reset_exit:
11276         bnxt_rtnl_unlock_sp(bp);
11277 }
11278
11279 static void bnxt_chk_missed_irq(struct bnxt *bp)
11280 {
11281         int i;
11282
11283         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11284                 return;
11285
11286         for (i = 0; i < bp->cp_nr_rings; i++) {
11287                 struct bnxt_napi *bnapi = bp->bnapi[i];
11288                 struct bnxt_cp_ring_info *cpr;
11289                 u32 fw_ring_id;
11290                 int j;
11291
11292                 if (!bnapi)
11293                         continue;
11294
11295                 cpr = &bnapi->cp_ring;
11296                 for (j = 0; j < 2; j++) {
11297                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11298                         u32 val[2];
11299
11300                         if (!cpr2 || cpr2->has_more_work ||
11301                             !bnxt_has_work(bp, cpr2))
11302                                 continue;
11303
11304                         if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11305                                 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11306                                 continue;
11307                         }
11308                         fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11309                         bnxt_dbg_hwrm_ring_info_get(bp,
11310                                 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11311                                 fw_ring_id, &val[0], &val[1]);
11312                         cpr->sw_stats.cmn.missed_irqs++;
11313                 }
11314         }
11315 }
11316
11317 static void bnxt_cfg_ntp_filters(struct bnxt *);
11318
11319 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11320 {
11321         struct bnxt_link_info *link_info = &bp->link_info;
11322
11323         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11324                 link_info->autoneg = BNXT_AUTONEG_SPEED;
11325                 if (bp->hwrm_spec_code >= 0x10201) {
11326                         if (link_info->auto_pause_setting &
11327                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11328                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11329                 } else {
11330                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11331                 }
11332                 link_info->advertising = link_info->auto_link_speeds;
11333                 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11334         } else {
11335                 link_info->req_link_speed = link_info->force_link_speed;
11336                 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11337                 if (link_info->force_pam4_link_speed) {
11338                         link_info->req_link_speed =
11339                                 link_info->force_pam4_link_speed;
11340                         link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11341                 }
11342                 link_info->req_duplex = link_info->duplex_setting;
11343         }
11344         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11345                 link_info->req_flow_ctrl =
11346                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11347         else
11348                 link_info->req_flow_ctrl = link_info->force_pause_setting;
11349 }
11350
11351 static void bnxt_fw_echo_reply(struct bnxt *bp)
11352 {
11353         struct bnxt_fw_health *fw_health = bp->fw_health;
11354         struct hwrm_func_echo_response_input req = {0};
11355
11356         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1);
11357         req.event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11358         req.event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11359         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11360 }
11361
11362 static void bnxt_sp_task(struct work_struct *work)
11363 {
11364         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11365
11366         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11367         smp_mb__after_atomic();
11368         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11369                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11370                 return;
11371         }
11372
11373         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11374                 bnxt_cfg_rx_mode(bp);
11375
11376         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11377                 bnxt_cfg_ntp_filters(bp);
11378         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11379                 bnxt_hwrm_exec_fwd_req(bp);
11380         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11381                 bnxt_hwrm_port_qstats(bp, 0);
11382                 bnxt_hwrm_port_qstats_ext(bp, 0);
11383                 bnxt_accumulate_all_stats(bp);
11384         }
11385
11386         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11387                 int rc;
11388
11389                 mutex_lock(&bp->link_lock);
11390                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11391                                        &bp->sp_event))
11392                         bnxt_hwrm_phy_qcaps(bp);
11393
11394                 rc = bnxt_update_link(bp, true);
11395                 if (rc)
11396                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11397                                    rc);
11398
11399                 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11400                                        &bp->sp_event))
11401                         bnxt_init_ethtool_link_settings(bp);
11402                 mutex_unlock(&bp->link_lock);
11403         }
11404         if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11405                 int rc;
11406
11407                 mutex_lock(&bp->link_lock);
11408                 rc = bnxt_update_phy_setting(bp);
11409                 mutex_unlock(&bp->link_lock);
11410                 if (rc) {
11411                         netdev_warn(bp->dev, "update phy settings retry failed\n");
11412                 } else {
11413                         bp->link_info.phy_retry = false;
11414                         netdev_info(bp->dev, "update phy settings retry succeeded\n");
11415                 }
11416         }
11417         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11418                 mutex_lock(&bp->link_lock);
11419                 bnxt_get_port_module_status(bp);
11420                 mutex_unlock(&bp->link_lock);
11421         }
11422
11423         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11424                 bnxt_tc_flow_stats_work(bp);
11425
11426         if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11427                 bnxt_chk_missed_irq(bp);
11428
11429         if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11430                 bnxt_fw_echo_reply(bp);
11431
11432         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11433          * must be the last functions to be called before exiting.
11434          */
11435         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11436                 bnxt_reset(bp, false);
11437
11438         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11439                 bnxt_reset(bp, true);
11440
11441         if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11442                 bnxt_rx_ring_reset(bp);
11443
11444         if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11445                 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11446
11447         if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11448                 if (!is_bnxt_fw_ok(bp))
11449                         bnxt_devlink_health_report(bp,
11450                                                    BNXT_FW_EXCEPTION_SP_EVENT);
11451         }
11452
11453         smp_mb__before_atomic();
11454         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11455 }
11456
11457 /* Under rtnl_lock */
11458 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11459                      int tx_xdp)
11460 {
11461         int max_rx, max_tx, tx_sets = 1;
11462         int tx_rings_needed, stats;
11463         int rx_rings = rx;
11464         int cp, vnics, rc;
11465
11466         if (tcs)
11467                 tx_sets = tcs;
11468
11469         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11470         if (rc)
11471                 return rc;
11472
11473         if (max_rx < rx)
11474                 return -ENOMEM;
11475
11476         tx_rings_needed = tx * tx_sets + tx_xdp;
11477         if (max_tx < tx_rings_needed)
11478                 return -ENOMEM;
11479
11480         vnics = 1;
11481         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11482                 vnics += rx_rings;
11483
11484         if (bp->flags & BNXT_FLAG_AGG_RINGS)
11485                 rx_rings <<= 1;
11486         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11487         stats = cp;
11488         if (BNXT_NEW_RM(bp)) {
11489                 cp += bnxt_get_ulp_msix_num(bp);
11490                 stats += bnxt_get_ulp_stat_ctxs(bp);
11491         }
11492         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11493                                      stats, vnics);
11494 }
11495
11496 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11497 {
11498         if (bp->bar2) {
11499                 pci_iounmap(pdev, bp->bar2);
11500                 bp->bar2 = NULL;
11501         }
11502
11503         if (bp->bar1) {
11504                 pci_iounmap(pdev, bp->bar1);
11505                 bp->bar1 = NULL;
11506         }
11507
11508         if (bp->bar0) {
11509                 pci_iounmap(pdev, bp->bar0);
11510                 bp->bar0 = NULL;
11511         }
11512 }
11513
11514 static void bnxt_cleanup_pci(struct bnxt *bp)
11515 {
11516         bnxt_unmap_bars(bp, bp->pdev);
11517         pci_release_regions(bp->pdev);
11518         if (pci_is_enabled(bp->pdev))
11519                 pci_disable_device(bp->pdev);
11520 }
11521
11522 static void bnxt_init_dflt_coal(struct bnxt *bp)
11523 {
11524         struct bnxt_coal *coal;
11525
11526         /* Tick values in micro seconds.
11527          * 1 coal_buf x bufs_per_record = 1 completion record.
11528          */
11529         coal = &bp->rx_coal;
11530         coal->coal_ticks = 10;
11531         coal->coal_bufs = 30;
11532         coal->coal_ticks_irq = 1;
11533         coal->coal_bufs_irq = 2;
11534         coal->idle_thresh = 50;
11535         coal->bufs_per_record = 2;
11536         coal->budget = 64;              /* NAPI budget */
11537
11538         coal = &bp->tx_coal;
11539         coal->coal_ticks = 28;
11540         coal->coal_bufs = 30;
11541         coal->coal_ticks_irq = 2;
11542         coal->coal_bufs_irq = 2;
11543         coal->bufs_per_record = 1;
11544
11545         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11546 }
11547
11548 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11549 {
11550         int rc;
11551
11552         bp->fw_cap = 0;
11553         rc = bnxt_hwrm_ver_get(bp);
11554         bnxt_try_map_fw_health_reg(bp);
11555         if (rc) {
11556                 rc = bnxt_try_recover_fw(bp);
11557                 if (rc)
11558                         return rc;
11559                 rc = bnxt_hwrm_ver_get(bp);
11560                 if (rc)
11561                         return rc;
11562         }
11563
11564         if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
11565                 rc = bnxt_alloc_kong_hwrm_resources(bp);
11566                 if (rc)
11567                         bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
11568         }
11569
11570         if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
11571             bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
11572                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
11573                 if (rc)
11574                         return rc;
11575         }
11576         bnxt_nvm_cfg_ver_get(bp);
11577
11578         rc = bnxt_hwrm_func_reset(bp);
11579         if (rc)
11580                 return -ENODEV;
11581
11582         bnxt_hwrm_fw_set_time(bp);
11583         return 0;
11584 }
11585
11586 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11587 {
11588         int rc;
11589
11590         /* Get the MAX capabilities for this function */
11591         rc = bnxt_hwrm_func_qcaps(bp);
11592         if (rc) {
11593                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11594                            rc);
11595                 return -ENODEV;
11596         }
11597
11598         rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11599         if (rc)
11600                 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11601                             rc);
11602
11603         if (bnxt_alloc_fw_health(bp)) {
11604                 netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11605         } else {
11606                 rc = bnxt_hwrm_error_recovery_qcfg(bp);
11607                 if (rc)
11608                         netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11609                                     rc);
11610         }
11611
11612         rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11613         if (rc)
11614                 return -ENODEV;
11615
11616         bnxt_hwrm_func_qcfg(bp);
11617         bnxt_hwrm_vnic_qcaps(bp);
11618         bnxt_hwrm_port_led_qcaps(bp);
11619         bnxt_ethtool_init(bp);
11620         bnxt_dcb_init(bp);
11621         return 0;
11622 }
11623
11624 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11625 {
11626         bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11627         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11628                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11629                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11630                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11631         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11632                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11633                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11634                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11635         }
11636 }
11637
11638 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11639 {
11640         struct net_device *dev = bp->dev;
11641
11642         dev->hw_features &= ~NETIF_F_NTUPLE;
11643         dev->features &= ~NETIF_F_NTUPLE;
11644         bp->flags &= ~BNXT_FLAG_RFS;
11645         if (bnxt_rfs_supported(bp)) {
11646                 dev->hw_features |= NETIF_F_NTUPLE;
11647                 if (bnxt_rfs_capable(bp)) {
11648                         bp->flags |= BNXT_FLAG_RFS;
11649                         dev->features |= NETIF_F_NTUPLE;
11650                 }
11651         }
11652 }
11653
11654 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11655 {
11656         struct pci_dev *pdev = bp->pdev;
11657
11658         bnxt_set_dflt_rss_hash_type(bp);
11659         bnxt_set_dflt_rfs(bp);
11660
11661         bnxt_get_wol_settings(bp);
11662         if (bp->flags & BNXT_FLAG_WOL_CAP)
11663                 device_set_wakeup_enable(&pdev->dev, bp->wol);
11664         else
11665                 device_set_wakeup_capable(&pdev->dev, false);
11666
11667         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11668         bnxt_hwrm_coal_params_qcaps(bp);
11669 }
11670
11671 static int bnxt_fw_init_one(struct bnxt *bp)
11672 {
11673         int rc;
11674
11675         rc = bnxt_fw_init_one_p1(bp);
11676         if (rc) {
11677                 netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11678                 return rc;
11679         }
11680         rc = bnxt_fw_init_one_p2(bp);
11681         if (rc) {
11682                 netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11683                 return rc;
11684         }
11685         rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11686         if (rc)
11687                 return rc;
11688
11689         /* In case fw capabilities have changed, destroy the unneeded
11690          * reporters and create newly capable ones.
11691          */
11692         bnxt_dl_fw_reporters_destroy(bp, false);
11693         bnxt_dl_fw_reporters_create(bp);
11694         bnxt_fw_init_one_p3(bp);
11695         return 0;
11696 }
11697
11698 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11699 {
11700         struct bnxt_fw_health *fw_health = bp->fw_health;
11701         u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11702         u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11703         u32 reg_type, reg_off, delay_msecs;
11704
11705         delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11706         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11707         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11708         switch (reg_type) {
11709         case BNXT_FW_HEALTH_REG_TYPE_CFG:
11710                 pci_write_config_dword(bp->pdev, reg_off, val);
11711                 break;
11712         case BNXT_FW_HEALTH_REG_TYPE_GRC:
11713                 writel(reg_off & BNXT_GRC_BASE_MASK,
11714                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11715                 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11716                 fallthrough;
11717         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11718                 writel(val, bp->bar0 + reg_off);
11719                 break;
11720         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11721                 writel(val, bp->bar1 + reg_off);
11722                 break;
11723         }
11724         if (delay_msecs) {
11725                 pci_read_config_dword(bp->pdev, 0, &val);
11726                 msleep(delay_msecs);
11727         }
11728 }
11729
11730 static void bnxt_reset_all(struct bnxt *bp)
11731 {
11732         struct bnxt_fw_health *fw_health = bp->fw_health;
11733         int i, rc;
11734
11735         if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11736                 bnxt_fw_reset_via_optee(bp);
11737                 bp->fw_reset_timestamp = jiffies;
11738                 return;
11739         }
11740
11741         if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11742                 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11743                         bnxt_fw_reset_writel(bp, i);
11744         } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11745                 struct hwrm_fw_reset_input req = {0};
11746
11747                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11748                 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11749                 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11750                 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11751                 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11752                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11753                 if (rc != -ENODEV)
11754                         netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11755         }
11756         bp->fw_reset_timestamp = jiffies;
11757 }
11758
11759 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
11760 {
11761         return time_after(jiffies, bp->fw_reset_timestamp +
11762                           (bp->fw_reset_max_dsecs * HZ / 10));
11763 }
11764
11765 static void bnxt_fw_reset_task(struct work_struct *work)
11766 {
11767         struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11768         int rc;
11769
11770         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11771                 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11772                 return;
11773         }
11774
11775         switch (bp->fw_reset_state) {
11776         case BNXT_FW_RESET_STATE_POLL_VF: {
11777                 int n = bnxt_get_registered_vfs(bp);
11778                 int tmo;
11779
11780                 if (n < 0) {
11781                         netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11782                                    n, jiffies_to_msecs(jiffies -
11783                                    bp->fw_reset_timestamp));
11784                         goto fw_reset_abort;
11785                 } else if (n > 0) {
11786                         if (bnxt_fw_reset_timeout(bp)) {
11787                                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11788                                 bp->fw_reset_state = 0;
11789                                 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11790                                            n);
11791                                 return;
11792                         }
11793                         bnxt_queue_fw_reset_work(bp, HZ / 10);
11794                         return;
11795                 }
11796                 bp->fw_reset_timestamp = jiffies;
11797                 rtnl_lock();
11798                 bnxt_fw_reset_close(bp);
11799                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11800                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11801                         tmo = HZ / 10;
11802                 } else {
11803                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11804                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
11805                 }
11806                 rtnl_unlock();
11807                 bnxt_queue_fw_reset_work(bp, tmo);
11808                 return;
11809         }
11810         case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11811                 u32 val;
11812
11813                 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11814                 if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11815                     !bnxt_fw_reset_timeout(bp)) {
11816                         bnxt_queue_fw_reset_work(bp, HZ / 5);
11817                         return;
11818                 }
11819
11820                 if (!bp->fw_health->master) {
11821                         u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11822
11823                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11824                         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11825                         return;
11826                 }
11827                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11828         }
11829                 fallthrough;
11830         case BNXT_FW_RESET_STATE_RESET_FW:
11831                 bnxt_reset_all(bp);
11832                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11833                 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11834                 return;
11835         case BNXT_FW_RESET_STATE_ENABLE_DEV:
11836                 bnxt_inv_fw_health_reg(bp);
11837                 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
11838                     !bp->fw_reset_min_dsecs) {
11839                         u16 val;
11840
11841                         pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11842                         if (val == 0xffff) {
11843                                 if (bnxt_fw_reset_timeout(bp)) {
11844                                         netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
11845                                         goto fw_reset_abort;
11846                                 }
11847                                 bnxt_queue_fw_reset_work(bp, HZ / 1000);
11848                                 return;
11849                         }
11850                 }
11851                 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11852                 if (pci_enable_device(bp->pdev)) {
11853                         netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11854                         goto fw_reset_abort;
11855                 }
11856                 pci_set_master(bp->pdev);
11857                 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11858                 fallthrough;
11859         case BNXT_FW_RESET_STATE_POLL_FW:
11860                 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11861                 rc = __bnxt_hwrm_ver_get(bp, true);
11862                 if (rc) {
11863                         if (bnxt_fw_reset_timeout(bp)) {
11864                                 netdev_err(bp->dev, "Firmware reset aborted\n");
11865                                 goto fw_reset_abort_status;
11866                         }
11867                         bnxt_queue_fw_reset_work(bp, HZ / 5);
11868                         return;
11869                 }
11870                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11871                 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11872                 fallthrough;
11873         case BNXT_FW_RESET_STATE_OPENING:
11874                 while (!rtnl_trylock()) {
11875                         bnxt_queue_fw_reset_work(bp, HZ / 10);
11876                         return;
11877                 }
11878                 rc = bnxt_open(bp->dev);
11879                 if (rc) {
11880                         netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11881                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11882                         dev_close(bp->dev);
11883                 }
11884
11885                 bp->fw_reset_state = 0;
11886                 /* Make sure fw_reset_state is 0 before clearing the flag */
11887                 smp_mb__before_atomic();
11888                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11889                 bnxt_ulp_start(bp, rc);
11890                 if (!rc)
11891                         bnxt_reenable_sriov(bp);
11892                 bnxt_vf_reps_alloc(bp);
11893                 bnxt_vf_reps_open(bp);
11894                 bnxt_dl_health_recovery_done(bp);
11895                 bnxt_dl_health_status_update(bp, true);
11896                 rtnl_unlock();
11897                 break;
11898         }
11899         return;
11900
11901 fw_reset_abort_status:
11902         if (bp->fw_health->status_reliable ||
11903             (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
11904                 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11905
11906                 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
11907         }
11908 fw_reset_abort:
11909         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11910         if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11911                 bnxt_dl_health_status_update(bp, false);
11912         bp->fw_reset_state = 0;
11913         rtnl_lock();
11914         dev_close(bp->dev);
11915         rtnl_unlock();
11916 }
11917
11918 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
11919 {
11920         int rc;
11921         struct bnxt *bp = netdev_priv(dev);
11922
11923         SET_NETDEV_DEV(dev, &pdev->dev);
11924
11925         /* enable device (incl. PCI PM wakeup), and bus-mastering */
11926         rc = pci_enable_device(pdev);
11927         if (rc) {
11928                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
11929                 goto init_err;
11930         }
11931
11932         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11933                 dev_err(&pdev->dev,
11934                         "Cannot find PCI device base address, aborting\n");
11935                 rc = -ENODEV;
11936                 goto init_err_disable;
11937         }
11938
11939         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11940         if (rc) {
11941                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
11942                 goto init_err_disable;
11943         }
11944
11945         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
11946             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
11947                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
11948                 rc = -EIO;
11949                 goto init_err_release;
11950         }
11951
11952         pci_set_master(pdev);
11953
11954         bp->dev = dev;
11955         bp->pdev = pdev;
11956
11957         /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
11958          * determines the BAR size.
11959          */
11960         bp->bar0 = pci_ioremap_bar(pdev, 0);
11961         if (!bp->bar0) {
11962                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
11963                 rc = -ENOMEM;
11964                 goto init_err_release;
11965         }
11966
11967         bp->bar2 = pci_ioremap_bar(pdev, 4);
11968         if (!bp->bar2) {
11969                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
11970                 rc = -ENOMEM;
11971                 goto init_err_release;
11972         }
11973
11974         pci_enable_pcie_error_reporting(pdev);
11975
11976         INIT_WORK(&bp->sp_task, bnxt_sp_task);
11977         INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
11978
11979         spin_lock_init(&bp->ntp_fltr_lock);
11980 #if BITS_PER_LONG == 32
11981         spin_lock_init(&bp->db_lock);
11982 #endif
11983
11984         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
11985         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
11986
11987         bnxt_init_dflt_coal(bp);
11988
11989         timer_setup(&bp->timer, bnxt_timer, 0);
11990         bp->current_interval = BNXT_TIMER_INTERVAL;
11991
11992         bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
11993         bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
11994
11995         clear_bit(BNXT_STATE_OPEN, &bp->state);
11996         return 0;
11997
11998 init_err_release:
11999         bnxt_unmap_bars(bp, pdev);
12000         pci_release_regions(pdev);
12001
12002 init_err_disable:
12003         pci_disable_device(pdev);
12004
12005 init_err:
12006         return rc;
12007 }
12008
12009 /* rtnl_lock held */
12010 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12011 {
12012         struct sockaddr *addr = p;
12013         struct bnxt *bp = netdev_priv(dev);
12014         int rc = 0;
12015
12016         if (!is_valid_ether_addr(addr->sa_data))
12017                 return -EADDRNOTAVAIL;
12018
12019         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12020                 return 0;
12021
12022         rc = bnxt_approve_mac(bp, addr->sa_data, true);
12023         if (rc)
12024                 return rc;
12025
12026         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
12027         if (netif_running(dev)) {
12028                 bnxt_close_nic(bp, false, false);
12029                 rc = bnxt_open_nic(bp, false, false);
12030         }
12031
12032         return rc;
12033 }
12034
12035 /* rtnl_lock held */
12036 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12037 {
12038         struct bnxt *bp = netdev_priv(dev);
12039
12040         if (netif_running(dev))
12041                 bnxt_close_nic(bp, true, false);
12042
12043         dev->mtu = new_mtu;
12044         bnxt_set_ring_params(bp);
12045
12046         if (netif_running(dev))
12047                 return bnxt_open_nic(bp, true, false);
12048
12049         return 0;
12050 }
12051
12052 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12053 {
12054         struct bnxt *bp = netdev_priv(dev);
12055         bool sh = false;
12056         int rc;
12057
12058         if (tc > bp->max_tc) {
12059                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12060                            tc, bp->max_tc);
12061                 return -EINVAL;
12062         }
12063
12064         if (netdev_get_num_tc(dev) == tc)
12065                 return 0;
12066
12067         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12068                 sh = true;
12069
12070         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12071                               sh, tc, bp->tx_nr_rings_xdp);
12072         if (rc)
12073                 return rc;
12074
12075         /* Needs to close the device and do hw resource re-allocations */
12076         if (netif_running(bp->dev))
12077                 bnxt_close_nic(bp, true, false);
12078
12079         if (tc) {
12080                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12081                 netdev_set_num_tc(dev, tc);
12082         } else {
12083                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12084                 netdev_reset_tc(dev);
12085         }
12086         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12087         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12088                                bp->tx_nr_rings + bp->rx_nr_rings;
12089
12090         if (netif_running(bp->dev))
12091                 return bnxt_open_nic(bp, true, false);
12092
12093         return 0;
12094 }
12095
12096 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12097                                   void *cb_priv)
12098 {
12099         struct bnxt *bp = cb_priv;
12100
12101         if (!bnxt_tc_flower_enabled(bp) ||
12102             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12103                 return -EOPNOTSUPP;
12104
12105         switch (type) {
12106         case TC_SETUP_CLSFLOWER:
12107                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12108         default:
12109                 return -EOPNOTSUPP;
12110         }
12111 }
12112
12113 LIST_HEAD(bnxt_block_cb_list);
12114
12115 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12116                          void *type_data)
12117 {
12118         struct bnxt *bp = netdev_priv(dev);
12119
12120         switch (type) {
12121         case TC_SETUP_BLOCK:
12122                 return flow_block_cb_setup_simple(type_data,
12123                                                   &bnxt_block_cb_list,
12124                                                   bnxt_setup_tc_block_cb,
12125                                                   bp, bp, true);
12126         case TC_SETUP_QDISC_MQPRIO: {
12127                 struct tc_mqprio_qopt *mqprio = type_data;
12128
12129                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12130
12131                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12132         }
12133         default:
12134                 return -EOPNOTSUPP;
12135         }
12136 }
12137
12138 #ifdef CONFIG_RFS_ACCEL
12139 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12140                             struct bnxt_ntuple_filter *f2)
12141 {
12142         struct flow_keys *keys1 = &f1->fkeys;
12143         struct flow_keys *keys2 = &f2->fkeys;
12144
12145         if (keys1->basic.n_proto != keys2->basic.n_proto ||
12146             keys1->basic.ip_proto != keys2->basic.ip_proto)
12147                 return false;
12148
12149         if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12150                 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12151                     keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12152                         return false;
12153         } else {
12154                 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12155                            sizeof(keys1->addrs.v6addrs.src)) ||
12156                     memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12157                            sizeof(keys1->addrs.v6addrs.dst)))
12158                         return false;
12159         }
12160
12161         if (keys1->ports.ports == keys2->ports.ports &&
12162             keys1->control.flags == keys2->control.flags &&
12163             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12164             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12165                 return true;
12166
12167         return false;
12168 }
12169
12170 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12171                               u16 rxq_index, u32 flow_id)
12172 {
12173         struct bnxt *bp = netdev_priv(dev);
12174         struct bnxt_ntuple_filter *fltr, *new_fltr;
12175         struct flow_keys *fkeys;
12176         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12177         int rc = 0, idx, bit_id, l2_idx = 0;
12178         struct hlist_head *head;
12179         u32 flags;
12180
12181         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12182                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12183                 int off = 0, j;
12184
12185                 netif_addr_lock_bh(dev);
12186                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12187                         if (ether_addr_equal(eth->h_dest,
12188                                              vnic->uc_list + off)) {
12189                                 l2_idx = j + 1;
12190                                 break;
12191                         }
12192                 }
12193                 netif_addr_unlock_bh(dev);
12194                 if (!l2_idx)
12195                         return -EINVAL;
12196         }
12197         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12198         if (!new_fltr)
12199                 return -ENOMEM;
12200
12201         fkeys = &new_fltr->fkeys;
12202         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12203                 rc = -EPROTONOSUPPORT;
12204                 goto err_free;
12205         }
12206
12207         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12208              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12209             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12210              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12211                 rc = -EPROTONOSUPPORT;
12212                 goto err_free;
12213         }
12214         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12215             bp->hwrm_spec_code < 0x10601) {
12216                 rc = -EPROTONOSUPPORT;
12217                 goto err_free;
12218         }
12219         flags = fkeys->control.flags;
12220         if (((flags & FLOW_DIS_ENCAPSULATION) &&
12221              bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12222                 rc = -EPROTONOSUPPORT;
12223                 goto err_free;
12224         }
12225
12226         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12227         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12228
12229         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12230         head = &bp->ntp_fltr_hash_tbl[idx];
12231         rcu_read_lock();
12232         hlist_for_each_entry_rcu(fltr, head, hash) {
12233                 if (bnxt_fltr_match(fltr, new_fltr)) {
12234                         rcu_read_unlock();
12235                         rc = 0;
12236                         goto err_free;
12237                 }
12238         }
12239         rcu_read_unlock();
12240
12241         spin_lock_bh(&bp->ntp_fltr_lock);
12242         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12243                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
12244         if (bit_id < 0) {
12245                 spin_unlock_bh(&bp->ntp_fltr_lock);
12246                 rc = -ENOMEM;
12247                 goto err_free;
12248         }
12249
12250         new_fltr->sw_id = (u16)bit_id;
12251         new_fltr->flow_id = flow_id;
12252         new_fltr->l2_fltr_idx = l2_idx;
12253         new_fltr->rxq = rxq_index;
12254         hlist_add_head_rcu(&new_fltr->hash, head);
12255         bp->ntp_fltr_count++;
12256         spin_unlock_bh(&bp->ntp_fltr_lock);
12257
12258         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12259         bnxt_queue_sp_work(bp);
12260
12261         return new_fltr->sw_id;
12262
12263 err_free:
12264         kfree(new_fltr);
12265         return rc;
12266 }
12267
12268 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12269 {
12270         int i;
12271
12272         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12273                 struct hlist_head *head;
12274                 struct hlist_node *tmp;
12275                 struct bnxt_ntuple_filter *fltr;
12276                 int rc;
12277
12278                 head = &bp->ntp_fltr_hash_tbl[i];
12279                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12280                         bool del = false;
12281
12282                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12283                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
12284                                                         fltr->flow_id,
12285                                                         fltr->sw_id)) {
12286                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
12287                                                                          fltr);
12288                                         del = true;
12289                                 }
12290                         } else {
12291                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12292                                                                        fltr);
12293                                 if (rc)
12294                                         del = true;
12295                                 else
12296                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
12297                         }
12298
12299                         if (del) {
12300                                 spin_lock_bh(&bp->ntp_fltr_lock);
12301                                 hlist_del_rcu(&fltr->hash);
12302                                 bp->ntp_fltr_count--;
12303                                 spin_unlock_bh(&bp->ntp_fltr_lock);
12304                                 synchronize_rcu();
12305                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12306                                 kfree(fltr);
12307                         }
12308                 }
12309         }
12310         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12311                 netdev_info(bp->dev, "Receive PF driver unload event!\n");
12312 }
12313
12314 #else
12315
12316 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12317 {
12318 }
12319
12320 #endif /* CONFIG_RFS_ACCEL */
12321
12322 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12323 {
12324         struct bnxt *bp = netdev_priv(netdev);
12325         struct udp_tunnel_info ti;
12326         unsigned int cmd;
12327
12328         udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12329         if (ti.type == UDP_TUNNEL_TYPE_VXLAN) {
12330                 bp->vxlan_port = ti.port;
12331                 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12332         } else {
12333                 bp->nge_port = ti.port;
12334                 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12335         }
12336
12337         if (ti.port)
12338                 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12339
12340         return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12341 }
12342
12343 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12344         .sync_table     = bnxt_udp_tunnel_sync,
12345         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12346                           UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12347         .tables         = {
12348                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12349                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12350         },
12351 };
12352
12353 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12354                                struct net_device *dev, u32 filter_mask,
12355                                int nlflags)
12356 {
12357         struct bnxt *bp = netdev_priv(dev);
12358
12359         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12360                                        nlflags, filter_mask, NULL);
12361 }
12362
12363 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12364                                u16 flags, struct netlink_ext_ack *extack)
12365 {
12366         struct bnxt *bp = netdev_priv(dev);
12367         struct nlattr *attr, *br_spec;
12368         int rem, rc = 0;
12369
12370         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12371                 return -EOPNOTSUPP;
12372
12373         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12374         if (!br_spec)
12375                 return -EINVAL;
12376
12377         nla_for_each_nested(attr, br_spec, rem) {
12378                 u16 mode;
12379
12380                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
12381                         continue;
12382
12383                 if (nla_len(attr) < sizeof(mode))
12384                         return -EINVAL;
12385
12386                 mode = nla_get_u16(attr);
12387                 if (mode == bp->br_mode)
12388                         break;
12389
12390                 rc = bnxt_hwrm_set_br_mode(bp, mode);
12391                 if (!rc)
12392                         bp->br_mode = mode;
12393                 break;
12394         }
12395         return rc;
12396 }
12397
12398 int bnxt_get_port_parent_id(struct net_device *dev,
12399                             struct netdev_phys_item_id *ppid)
12400 {
12401         struct bnxt *bp = netdev_priv(dev);
12402
12403         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12404                 return -EOPNOTSUPP;
12405
12406         /* The PF and it's VF-reps only support the switchdev framework */
12407         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12408                 return -EOPNOTSUPP;
12409
12410         ppid->id_len = sizeof(bp->dsn);
12411         memcpy(ppid->id, bp->dsn, ppid->id_len);
12412
12413         return 0;
12414 }
12415
12416 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12417 {
12418         struct bnxt *bp = netdev_priv(dev);
12419
12420         return &bp->dl_port;
12421 }
12422
12423 static const struct net_device_ops bnxt_netdev_ops = {
12424         .ndo_open               = bnxt_open,
12425         .ndo_start_xmit         = bnxt_start_xmit,
12426         .ndo_stop               = bnxt_close,
12427         .ndo_get_stats64        = bnxt_get_stats64,
12428         .ndo_set_rx_mode        = bnxt_set_rx_mode,
12429         .ndo_do_ioctl           = bnxt_ioctl,
12430         .ndo_validate_addr      = eth_validate_addr,
12431         .ndo_set_mac_address    = bnxt_change_mac_addr,
12432         .ndo_change_mtu         = bnxt_change_mtu,
12433         .ndo_fix_features       = bnxt_fix_features,
12434         .ndo_set_features       = bnxt_set_features,
12435         .ndo_features_check     = bnxt_features_check,
12436         .ndo_tx_timeout         = bnxt_tx_timeout,
12437 #ifdef CONFIG_BNXT_SRIOV
12438         .ndo_get_vf_config      = bnxt_get_vf_config,
12439         .ndo_set_vf_mac         = bnxt_set_vf_mac,
12440         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
12441         .ndo_set_vf_rate        = bnxt_set_vf_bw,
12442         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
12443         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
12444         .ndo_set_vf_trust       = bnxt_set_vf_trust,
12445 #endif
12446         .ndo_setup_tc           = bnxt_setup_tc,
12447 #ifdef CONFIG_RFS_ACCEL
12448         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
12449 #endif
12450         .ndo_bpf                = bnxt_xdp,
12451         .ndo_xdp_xmit           = bnxt_xdp_xmit,
12452         .ndo_bridge_getlink     = bnxt_bridge_getlink,
12453         .ndo_bridge_setlink     = bnxt_bridge_setlink,
12454         .ndo_get_devlink_port   = bnxt_get_devlink_port,
12455 };
12456
12457 static void bnxt_remove_one(struct pci_dev *pdev)
12458 {
12459         struct net_device *dev = pci_get_drvdata(pdev);
12460         struct bnxt *bp = netdev_priv(dev);
12461
12462         if (BNXT_PF(bp))
12463                 bnxt_sriov_disable(bp);
12464
12465         if (BNXT_PF(bp))
12466                 devlink_port_type_clear(&bp->dl_port);
12467         pci_disable_pcie_error_reporting(pdev);
12468         unregister_netdev(dev);
12469         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12470         /* Flush any pending tasks */
12471         cancel_work_sync(&bp->sp_task);
12472         cancel_delayed_work_sync(&bp->fw_reset_task);
12473         bp->sp_event = 0;
12474
12475         bnxt_dl_fw_reporters_destroy(bp, true);
12476         bnxt_dl_unregister(bp);
12477         bnxt_shutdown_tc(bp);
12478
12479         bnxt_clear_int_mode(bp);
12480         bnxt_hwrm_func_drv_unrgtr(bp);
12481         bnxt_free_hwrm_resources(bp);
12482         bnxt_free_hwrm_short_cmd_req(bp);
12483         bnxt_ethtool_free(bp);
12484         bnxt_dcb_free(bp);
12485         kfree(bp->edev);
12486         bp->edev = NULL;
12487         kfree(bp->fw_health);
12488         bp->fw_health = NULL;
12489         bnxt_cleanup_pci(bp);
12490         bnxt_free_ctx_mem(bp);
12491         kfree(bp->ctx);
12492         bp->ctx = NULL;
12493         kfree(bp->rss_indir_tbl);
12494         bp->rss_indir_tbl = NULL;
12495         bnxt_free_port_stats(bp);
12496         free_netdev(dev);
12497 }
12498
12499 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12500 {
12501         int rc = 0;
12502         struct bnxt_link_info *link_info = &bp->link_info;
12503
12504         bp->phy_flags = 0;
12505         rc = bnxt_hwrm_phy_qcaps(bp);
12506         if (rc) {
12507                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12508                            rc);
12509                 return rc;
12510         }
12511         if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
12512                 bp->dev->priv_flags |= IFF_SUPP_NOFCS;
12513         else
12514                 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
12515         if (!fw_dflt)
12516                 return 0;
12517
12518         rc = bnxt_update_link(bp, false);
12519         if (rc) {
12520                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12521                            rc);
12522                 return rc;
12523         }
12524
12525         /* Older firmware does not have supported_auto_speeds, so assume
12526          * that all supported speeds can be autonegotiated.
12527          */
12528         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12529                 link_info->support_auto_speeds = link_info->support_speeds;
12530
12531         bnxt_init_ethtool_link_settings(bp);
12532         return 0;
12533 }
12534
12535 static int bnxt_get_max_irq(struct pci_dev *pdev)
12536 {
12537         u16 ctrl;
12538
12539         if (!pdev->msix_cap)
12540                 return 1;
12541
12542         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12543         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12544 }
12545
12546 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12547                                 int *max_cp)
12548 {
12549         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12550         int max_ring_grps = 0, max_irq;
12551
12552         *max_tx = hw_resc->max_tx_rings;
12553         *max_rx = hw_resc->max_rx_rings;
12554         *max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12555         max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12556                         bnxt_get_ulp_msix_num(bp),
12557                         hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12558         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12559                 *max_cp = min_t(int, *max_cp, max_irq);
12560         max_ring_grps = hw_resc->max_hw_ring_grps;
12561         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12562                 *max_cp -= 1;
12563                 *max_rx -= 2;
12564         }
12565         if (bp->flags & BNXT_FLAG_AGG_RINGS)
12566                 *max_rx >>= 1;
12567         if (bp->flags & BNXT_FLAG_CHIP_P5) {
12568                 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12569                 /* On P5 chips, max_cp output param should be available NQs */
12570                 *max_cp = max_irq;
12571         }
12572         *max_rx = min_t(int, *max_rx, max_ring_grps);
12573 }
12574
12575 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12576 {
12577         int rx, tx, cp;
12578
12579         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
12580         *max_rx = rx;
12581         *max_tx = tx;
12582         if (!rx || !tx || !cp)
12583                 return -ENOMEM;
12584
12585         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12586 }
12587
12588 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12589                                bool shared)
12590 {
12591         int rc;
12592
12593         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12594         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12595                 /* Not enough rings, try disabling agg rings. */
12596                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12597                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12598                 if (rc) {
12599                         /* set BNXT_FLAG_AGG_RINGS back for consistency */
12600                         bp->flags |= BNXT_FLAG_AGG_RINGS;
12601                         return rc;
12602                 }
12603                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12604                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12605                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12606                 bnxt_set_ring_params(bp);
12607         }
12608
12609         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12610                 int max_cp, max_stat, max_irq;
12611
12612                 /* Reserve minimum resources for RoCE */
12613                 max_cp = bnxt_get_max_func_cp_rings(bp);
12614                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
12615                 max_irq = bnxt_get_max_func_irqs(bp);
12616                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12617                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12618                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12619                         return 0;
12620
12621                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12622                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12623                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12624                 max_cp = min_t(int, max_cp, max_irq);
12625                 max_cp = min_t(int, max_cp, max_stat);
12626                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12627                 if (rc)
12628                         rc = 0;
12629         }
12630         return rc;
12631 }
12632
12633 /* In initial default shared ring setting, each shared ring must have a
12634  * RX/TX ring pair.
12635  */
12636 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12637 {
12638         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12639         bp->rx_nr_rings = bp->cp_nr_rings;
12640         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12641         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12642 }
12643
12644 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12645 {
12646         int dflt_rings, max_rx_rings, max_tx_rings, rc;
12647
12648         if (!bnxt_can_reserve_rings(bp))
12649                 return 0;
12650
12651         if (sh)
12652                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
12653         dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
12654         /* Reduce default rings on multi-port cards so that total default
12655          * rings do not exceed CPU count.
12656          */
12657         if (bp->port_count > 1) {
12658                 int max_rings =
12659                         max_t(int, num_online_cpus() / bp->port_count, 1);
12660
12661                 dflt_rings = min_t(int, dflt_rings, max_rings);
12662         }
12663         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
12664         if (rc)
12665                 return rc;
12666         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
12667         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
12668         if (sh)
12669                 bnxt_trim_dflt_sh_rings(bp);
12670         else
12671                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
12672         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12673
12674         rc = __bnxt_reserve_rings(bp);
12675         if (rc)
12676                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
12677         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12678         if (sh)
12679                 bnxt_trim_dflt_sh_rings(bp);
12680
12681         /* Rings may have been trimmed, re-reserve the trimmed rings. */
12682         if (bnxt_need_reserve_rings(bp)) {
12683                 rc = __bnxt_reserve_rings(bp);
12684                 if (rc)
12685                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12686                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12687         }
12688         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12689                 bp->rx_nr_rings++;
12690                 bp->cp_nr_rings++;
12691         }
12692         if (rc) {
12693                 bp->tx_nr_rings = 0;
12694                 bp->rx_nr_rings = 0;
12695         }
12696         return rc;
12697 }
12698
12699 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
12700 {
12701         int rc;
12702
12703         if (bp->tx_nr_rings)
12704                 return 0;
12705
12706         bnxt_ulp_irq_stop(bp);
12707         bnxt_clear_int_mode(bp);
12708         rc = bnxt_set_dflt_rings(bp, true);
12709         if (rc) {
12710                 netdev_err(bp->dev, "Not enough rings available.\n");
12711                 goto init_dflt_ring_err;
12712         }
12713         rc = bnxt_init_int_mode(bp);
12714         if (rc)
12715                 goto init_dflt_ring_err;
12716
12717         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12718         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12719                 bp->flags |= BNXT_FLAG_RFS;
12720                 bp->dev->features |= NETIF_F_NTUPLE;
12721         }
12722 init_dflt_ring_err:
12723         bnxt_ulp_irq_restart(bp, rc);
12724         return rc;
12725 }
12726
12727 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12728 {
12729         int rc;
12730
12731         ASSERT_RTNL();
12732         bnxt_hwrm_func_qcaps(bp);
12733
12734         if (netif_running(bp->dev))
12735                 __bnxt_close_nic(bp, true, false);
12736
12737         bnxt_ulp_irq_stop(bp);
12738         bnxt_clear_int_mode(bp);
12739         rc = bnxt_init_int_mode(bp);
12740         bnxt_ulp_irq_restart(bp, rc);
12741
12742         if (netif_running(bp->dev)) {
12743                 if (rc)
12744                         dev_close(bp->dev);
12745                 else
12746                         rc = bnxt_open_nic(bp, true, false);
12747         }
12748
12749         return rc;
12750 }
12751
12752 static int bnxt_init_mac_addr(struct bnxt *bp)
12753 {
12754         int rc = 0;
12755
12756         if (BNXT_PF(bp)) {
12757                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12758         } else {
12759 #ifdef CONFIG_BNXT_SRIOV
12760                 struct bnxt_vf_info *vf = &bp->vf;
12761                 bool strict_approval = true;
12762
12763                 if (is_valid_ether_addr(vf->mac_addr)) {
12764                         /* overwrite netdev dev_addr with admin VF MAC */
12765                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12766                         /* Older PF driver or firmware may not approve this
12767                          * correctly.
12768                          */
12769                         strict_approval = false;
12770                 } else {
12771                         eth_hw_addr_random(bp->dev);
12772                 }
12773                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12774 #endif
12775         }
12776         return rc;
12777 }
12778
12779 #define BNXT_VPD_LEN    512
12780 static void bnxt_vpd_read_info(struct bnxt *bp)
12781 {
12782         struct pci_dev *pdev = bp->pdev;
12783         int i, len, pos, ro_size, size;
12784         ssize_t vpd_size;
12785         u8 *vpd_data;
12786
12787         vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12788         if (!vpd_data)
12789                 return;
12790
12791         vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12792         if (vpd_size <= 0) {
12793                 netdev_err(bp->dev, "Unable to read VPD\n");
12794                 goto exit;
12795         }
12796
12797         i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA);
12798         if (i < 0) {
12799                 netdev_err(bp->dev, "VPD READ-Only not found\n");
12800                 goto exit;
12801         }
12802
12803         ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12804         i += PCI_VPD_LRDT_TAG_SIZE;
12805         if (i + ro_size > vpd_size)
12806                 goto exit;
12807
12808         pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12809                                         PCI_VPD_RO_KEYWORD_PARTNO);
12810         if (pos < 0)
12811                 goto read_sn;
12812
12813         len = pci_vpd_info_field_size(&vpd_data[pos]);
12814         pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12815         if (len + pos > vpd_size)
12816                 goto read_sn;
12817
12818         size = min(len, BNXT_VPD_FLD_LEN - 1);
12819         memcpy(bp->board_partno, &vpd_data[pos], size);
12820
12821 read_sn:
12822         pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12823                                         PCI_VPD_RO_KEYWORD_SERIALNO);
12824         if (pos < 0)
12825                 goto exit;
12826
12827         len = pci_vpd_info_field_size(&vpd_data[pos]);
12828         pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12829         if (len + pos > vpd_size)
12830                 goto exit;
12831
12832         size = min(len, BNXT_VPD_FLD_LEN - 1);
12833         memcpy(bp->board_serialno, &vpd_data[pos], size);
12834 exit:
12835         kfree(vpd_data);
12836 }
12837
12838 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12839 {
12840         struct pci_dev *pdev = bp->pdev;
12841         u64 qword;
12842
12843         qword = pci_get_dsn(pdev);
12844         if (!qword) {
12845                 netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12846                 return -EOPNOTSUPP;
12847         }
12848
12849         put_unaligned_le64(qword, dsn);
12850
12851         bp->flags |= BNXT_FLAG_DSN_VALID;
12852         return 0;
12853 }
12854
12855 static int bnxt_map_db_bar(struct bnxt *bp)
12856 {
12857         if (!bp->db_size)
12858                 return -ENODEV;
12859         bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12860         if (!bp->bar1)
12861                 return -ENOMEM;
12862         return 0;
12863 }
12864
12865 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12866 {
12867         struct net_device *dev;
12868         struct bnxt *bp;
12869         int rc, max_irqs;
12870
12871         if (pci_is_bridge(pdev))
12872                 return -ENODEV;
12873
12874         /* Clear any pending DMA transactions from crash kernel
12875          * while loading driver in capture kernel.
12876          */
12877         if (is_kdump_kernel()) {
12878                 pci_clear_master(pdev);
12879                 pcie_flr(pdev);
12880         }
12881
12882         max_irqs = bnxt_get_max_irq(pdev);
12883         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12884         if (!dev)
12885                 return -ENOMEM;
12886
12887         bp = netdev_priv(dev);
12888         bp->msg_enable = BNXT_DEF_MSG_ENABLE;
12889         bnxt_set_max_func_irqs(bp, max_irqs);
12890
12891         if (bnxt_vf_pciid(ent->driver_data))
12892                 bp->flags |= BNXT_FLAG_VF;
12893
12894         if (pdev->msix_cap)
12895                 bp->flags |= BNXT_FLAG_MSIX_CAP;
12896
12897         rc = bnxt_init_board(pdev, dev);
12898         if (rc < 0)
12899                 goto init_err_free;
12900
12901         dev->netdev_ops = &bnxt_netdev_ops;
12902         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12903         dev->ethtool_ops = &bnxt_ethtool_ops;
12904         pci_set_drvdata(pdev, dev);
12905
12906         rc = bnxt_alloc_hwrm_resources(bp);
12907         if (rc)
12908                 goto init_err_pci_clean;
12909
12910         mutex_init(&bp->hwrm_cmd_lock);
12911         mutex_init(&bp->link_lock);
12912
12913         rc = bnxt_fw_init_one_p1(bp);
12914         if (rc)
12915                 goto init_err_pci_clean;
12916
12917         if (BNXT_PF(bp))
12918                 bnxt_vpd_read_info(bp);
12919
12920         if (BNXT_CHIP_P5(bp)) {
12921                 bp->flags |= BNXT_FLAG_CHIP_P5;
12922                 if (BNXT_CHIP_SR2(bp))
12923                         bp->flags |= BNXT_FLAG_CHIP_SR2;
12924         }
12925
12926         rc = bnxt_alloc_rss_indir_tbl(bp);
12927         if (rc)
12928                 goto init_err_pci_clean;
12929
12930         rc = bnxt_fw_init_one_p2(bp);
12931         if (rc)
12932                 goto init_err_pci_clean;
12933
12934         rc = bnxt_map_db_bar(bp);
12935         if (rc) {
12936                 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
12937                         rc);
12938                 goto init_err_pci_clean;
12939         }
12940
12941         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12942                            NETIF_F_TSO | NETIF_F_TSO6 |
12943                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12944                            NETIF_F_GSO_IPXIP4 |
12945                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12946                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
12947                            NETIF_F_RXCSUM | NETIF_F_GRO;
12948
12949         if (BNXT_SUPPORTS_TPA(bp))
12950                 dev->hw_features |= NETIF_F_LRO;
12951
12952         dev->hw_enc_features =
12953                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12954                         NETIF_F_TSO | NETIF_F_TSO6 |
12955                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12956                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12957                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
12958         dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
12959
12960         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
12961                                     NETIF_F_GSO_GRE_CSUM;
12962         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
12963         if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
12964                 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12965         if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
12966                 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
12967         if (BNXT_SUPPORTS_TPA(bp))
12968                 dev->hw_features |= NETIF_F_GRO_HW;
12969         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
12970         if (dev->features & NETIF_F_GRO_HW)
12971                 dev->features &= ~NETIF_F_LRO;
12972         dev->priv_flags |= IFF_UNICAST_FLT;
12973
12974 #ifdef CONFIG_BNXT_SRIOV
12975         init_waitqueue_head(&bp->sriov_cfg_wait);
12976         mutex_init(&bp->sriov_lock);
12977 #endif
12978         if (BNXT_SUPPORTS_TPA(bp)) {
12979                 bp->gro_func = bnxt_gro_func_5730x;
12980                 if (BNXT_CHIP_P4(bp))
12981                         bp->gro_func = bnxt_gro_func_5731x;
12982                 else if (BNXT_CHIP_P5(bp))
12983                         bp->gro_func = bnxt_gro_func_5750x;
12984         }
12985         if (!BNXT_CHIP_P4_PLUS(bp))
12986                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
12987
12988         rc = bnxt_init_mac_addr(bp);
12989         if (rc) {
12990                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12991                 rc = -EADDRNOTAVAIL;
12992                 goto init_err_pci_clean;
12993         }
12994
12995         if (BNXT_PF(bp)) {
12996                 /* Read the adapter's DSN to use as the eswitch switch_id */
12997                 rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12998         }
12999
13000         /* MTU range: 60 - FW defined max */
13001         dev->min_mtu = ETH_ZLEN;
13002         dev->max_mtu = bp->max_mtu;
13003
13004         rc = bnxt_probe_phy(bp, true);
13005         if (rc)
13006                 goto init_err_pci_clean;
13007
13008         bnxt_set_rx_skb_mode(bp, false);
13009         bnxt_set_tpa_flags(bp);
13010         bnxt_set_ring_params(bp);
13011         rc = bnxt_set_dflt_rings(bp, true);
13012         if (rc) {
13013                 netdev_err(bp->dev, "Not enough rings available.\n");
13014                 rc = -ENOMEM;
13015                 goto init_err_pci_clean;
13016         }
13017
13018         bnxt_fw_init_one_p3(bp);
13019
13020         if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13021                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
13022
13023         rc = bnxt_init_int_mode(bp);
13024         if (rc)
13025                 goto init_err_pci_clean;
13026
13027         /* No TC has been set yet and rings may have been trimmed due to
13028          * limited MSIX, so we re-initialize the TX rings per TC.
13029          */
13030         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13031
13032         if (BNXT_PF(bp)) {
13033                 if (!bnxt_pf_wq) {
13034                         bnxt_pf_wq =
13035                                 create_singlethread_workqueue("bnxt_pf_wq");
13036                         if (!bnxt_pf_wq) {
13037                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
13038                                 rc = -ENOMEM;
13039                                 goto init_err_pci_clean;
13040                         }
13041                 }
13042                 rc = bnxt_init_tc(bp);
13043                 if (rc)
13044                         netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13045                                    rc);
13046         }
13047
13048         bnxt_inv_fw_health_reg(bp);
13049         bnxt_dl_register(bp);
13050
13051         rc = register_netdev(dev);
13052         if (rc)
13053                 goto init_err_cleanup;
13054
13055         if (BNXT_PF(bp))
13056                 devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13057         bnxt_dl_fw_reporters_create(bp);
13058
13059         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
13060                     board_info[ent->driver_data].name,
13061                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
13062         pcie_print_link_status(pdev);
13063
13064         pci_save_state(pdev);
13065         return 0;
13066
13067 init_err_cleanup:
13068         bnxt_dl_unregister(bp);
13069         bnxt_shutdown_tc(bp);
13070         bnxt_clear_int_mode(bp);
13071
13072 init_err_pci_clean:
13073         bnxt_hwrm_func_drv_unrgtr(bp);
13074         bnxt_free_hwrm_short_cmd_req(bp);
13075         bnxt_free_hwrm_resources(bp);
13076         kfree(bp->fw_health);
13077         bp->fw_health = NULL;
13078         bnxt_cleanup_pci(bp);
13079         bnxt_free_ctx_mem(bp);
13080         kfree(bp->ctx);
13081         bp->ctx = NULL;
13082         kfree(bp->rss_indir_tbl);
13083         bp->rss_indir_tbl = NULL;
13084
13085 init_err_free:
13086         free_netdev(dev);
13087         return rc;
13088 }
13089
13090 static void bnxt_shutdown(struct pci_dev *pdev)
13091 {
13092         struct net_device *dev = pci_get_drvdata(pdev);
13093         struct bnxt *bp;
13094
13095         if (!dev)
13096                 return;
13097
13098         rtnl_lock();
13099         bp = netdev_priv(dev);
13100         if (!bp)
13101                 goto shutdown_exit;
13102
13103         if (netif_running(dev))
13104                 dev_close(dev);
13105
13106         bnxt_ulp_shutdown(bp);
13107         bnxt_clear_int_mode(bp);
13108         pci_disable_device(pdev);
13109
13110         if (system_state == SYSTEM_POWER_OFF) {
13111                 pci_wake_from_d3(pdev, bp->wol);
13112                 pci_set_power_state(pdev, PCI_D3hot);
13113         }
13114
13115 shutdown_exit:
13116         rtnl_unlock();
13117 }
13118
13119 #ifdef CONFIG_PM_SLEEP
13120 static int bnxt_suspend(struct device *device)
13121 {
13122         struct net_device *dev = dev_get_drvdata(device);
13123         struct bnxt *bp = netdev_priv(dev);
13124         int rc = 0;
13125
13126         rtnl_lock();
13127         bnxt_ulp_stop(bp);
13128         if (netif_running(dev)) {
13129                 netif_device_detach(dev);
13130                 rc = bnxt_close(dev);
13131         }
13132         bnxt_hwrm_func_drv_unrgtr(bp);
13133         pci_disable_device(bp->pdev);
13134         bnxt_free_ctx_mem(bp);
13135         kfree(bp->ctx);
13136         bp->ctx = NULL;
13137         rtnl_unlock();
13138         return rc;
13139 }
13140
13141 static int bnxt_resume(struct device *device)
13142 {
13143         struct net_device *dev = dev_get_drvdata(device);
13144         struct bnxt *bp = netdev_priv(dev);
13145         int rc = 0;
13146
13147         rtnl_lock();
13148         rc = pci_enable_device(bp->pdev);
13149         if (rc) {
13150                 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13151                            rc);
13152                 goto resume_exit;
13153         }
13154         pci_set_master(bp->pdev);
13155         if (bnxt_hwrm_ver_get(bp)) {
13156                 rc = -ENODEV;
13157                 goto resume_exit;
13158         }
13159         rc = bnxt_hwrm_func_reset(bp);
13160         if (rc) {
13161                 rc = -EBUSY;
13162                 goto resume_exit;
13163         }
13164
13165         rc = bnxt_hwrm_func_qcaps(bp);
13166         if (rc)
13167                 goto resume_exit;
13168
13169         if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13170                 rc = -ENODEV;
13171                 goto resume_exit;
13172         }
13173
13174         bnxt_get_wol_settings(bp);
13175         if (netif_running(dev)) {
13176                 rc = bnxt_open(dev);
13177                 if (!rc)
13178                         netif_device_attach(dev);
13179         }
13180
13181 resume_exit:
13182         bnxt_ulp_start(bp, rc);
13183         if (!rc)
13184                 bnxt_reenable_sriov(bp);
13185         rtnl_unlock();
13186         return rc;
13187 }
13188
13189 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13190 #define BNXT_PM_OPS (&bnxt_pm_ops)
13191
13192 #else
13193
13194 #define BNXT_PM_OPS NULL
13195
13196 #endif /* CONFIG_PM_SLEEP */
13197
13198 /**
13199  * bnxt_io_error_detected - called when PCI error is detected
13200  * @pdev: Pointer to PCI device
13201  * @state: The current pci connection state
13202  *
13203  * This function is called after a PCI bus error affecting
13204  * this device has been detected.
13205  */
13206 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13207                                                pci_channel_state_t state)
13208 {
13209         struct net_device *netdev = pci_get_drvdata(pdev);
13210         struct bnxt *bp = netdev_priv(netdev);
13211
13212         netdev_info(netdev, "PCI I/O error detected\n");
13213
13214         rtnl_lock();
13215         netif_device_detach(netdev);
13216
13217         bnxt_ulp_stop(bp);
13218
13219         if (state == pci_channel_io_perm_failure) {
13220                 rtnl_unlock();
13221                 return PCI_ERS_RESULT_DISCONNECT;
13222         }
13223
13224         if (state == pci_channel_io_frozen)
13225                 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13226
13227         if (netif_running(netdev))
13228                 bnxt_close(netdev);
13229
13230         pci_disable_device(pdev);
13231         bnxt_free_ctx_mem(bp);
13232         kfree(bp->ctx);
13233         bp->ctx = NULL;
13234         rtnl_unlock();
13235
13236         /* Request a slot slot reset. */
13237         return PCI_ERS_RESULT_NEED_RESET;
13238 }
13239
13240 /**
13241  * bnxt_io_slot_reset - called after the pci bus has been reset.
13242  * @pdev: Pointer to PCI device
13243  *
13244  * Restart the card from scratch, as if from a cold-boot.
13245  * At this point, the card has exprienced a hard reset,
13246  * followed by fixups by BIOS, and has its config space
13247  * set up identically to what it was at cold boot.
13248  */
13249 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13250 {
13251         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13252         struct net_device *netdev = pci_get_drvdata(pdev);
13253         struct bnxt *bp = netdev_priv(netdev);
13254         int err = 0, off;
13255
13256         netdev_info(bp->dev, "PCI Slot Reset\n");
13257
13258         rtnl_lock();
13259
13260         if (pci_enable_device(pdev)) {
13261                 dev_err(&pdev->dev,
13262                         "Cannot re-enable PCI device after reset.\n");
13263         } else {
13264                 pci_set_master(pdev);
13265                 /* Upon fatal error, our device internal logic that latches to
13266                  * BAR value is getting reset and will restore only upon
13267                  * rewritting the BARs.
13268                  *
13269                  * As pci_restore_state() does not re-write the BARs if the
13270                  * value is same as saved value earlier, driver needs to
13271                  * write the BARs to 0 to force restore, in case of fatal error.
13272                  */
13273                 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13274                                        &bp->state)) {
13275                         for (off = PCI_BASE_ADDRESS_0;
13276                              off <= PCI_BASE_ADDRESS_5; off += 4)
13277                                 pci_write_config_dword(bp->pdev, off, 0);
13278                 }
13279                 pci_restore_state(pdev);
13280                 pci_save_state(pdev);
13281
13282                 err = bnxt_hwrm_func_reset(bp);
13283                 if (!err)
13284                         result = PCI_ERS_RESULT_RECOVERED;
13285         }
13286
13287         rtnl_unlock();
13288
13289         return result;
13290 }
13291
13292 /**
13293  * bnxt_io_resume - called when traffic can start flowing again.
13294  * @pdev: Pointer to PCI device
13295  *
13296  * This callback is called when the error recovery driver tells
13297  * us that its OK to resume normal operation.
13298  */
13299 static void bnxt_io_resume(struct pci_dev *pdev)
13300 {
13301         struct net_device *netdev = pci_get_drvdata(pdev);
13302         struct bnxt *bp = netdev_priv(netdev);
13303         int err;
13304
13305         netdev_info(bp->dev, "PCI Slot Resume\n");
13306         rtnl_lock();
13307
13308         err = bnxt_hwrm_func_qcaps(bp);
13309         if (!err && netif_running(netdev))
13310                 err = bnxt_open(netdev);
13311
13312         bnxt_ulp_start(bp, err);
13313         if (!err) {
13314                 bnxt_reenable_sriov(bp);
13315                 netif_device_attach(netdev);
13316         }
13317
13318         rtnl_unlock();
13319 }
13320
13321 static const struct pci_error_handlers bnxt_err_handler = {
13322         .error_detected = bnxt_io_error_detected,
13323         .slot_reset     = bnxt_io_slot_reset,
13324         .resume         = bnxt_io_resume
13325 };
13326
13327 static struct pci_driver bnxt_pci_driver = {
13328         .name           = DRV_MODULE_NAME,
13329         .id_table       = bnxt_pci_tbl,
13330         .probe          = bnxt_init_one,
13331         .remove         = bnxt_remove_one,
13332         .shutdown       = bnxt_shutdown,
13333         .driver.pm      = BNXT_PM_OPS,
13334         .err_handler    = &bnxt_err_handler,
13335 #if defined(CONFIG_BNXT_SRIOV)
13336         .sriov_configure = bnxt_sriov_configure,
13337 #endif
13338 };
13339
13340 static int __init bnxt_init(void)
13341 {
13342         bnxt_debug_init();
13343         return pci_register_driver(&bnxt_pci_driver);
13344 }
13345
13346 static void __exit bnxt_exit(void)
13347 {
13348         pci_unregister_driver(&bnxt_pci_driver);
13349         if (bnxt_pf_wq)
13350                 destroy_workqueue(bnxt_pf_wq);
13351         bnxt_debug_exit();
13352 }
13353
13354 module_init(bnxt_init);
13355 module_exit(bnxt_exit);