Merge tag 'for-6.9/dm-vdo' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[sfrench/cifs-2.6.git] / drivers / md / dm-vdo / block-map.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5
6 #include "block-map.h"
7
8 #include <linux/bio.h>
9 #include <linux/ratelimit.h>
10
11 #include "errors.h"
12 #include "logger.h"
13 #include "memory-alloc.h"
14 #include "permassert.h"
15
16 #include "action-manager.h"
17 #include "admin-state.h"
18 #include "completion.h"
19 #include "constants.h"
20 #include "data-vio.h"
21 #include "encodings.h"
22 #include "io-submitter.h"
23 #include "physical-zone.h"
24 #include "recovery-journal.h"
25 #include "slab-depot.h"
26 #include "status-codes.h"
27 #include "types.h"
28 #include "vdo.h"
29 #include "vio.h"
30 #include "wait-queue.h"
31
32 /**
33  * DOC: Block map eras
34  *
35  * The block map era, or maximum age, is used as follows:
36  *
37  * Each block map page, when dirty, records the earliest recovery journal block sequence number of
38  * the changes reflected in that dirty block. Sequence numbers are classified into eras: every
39  * @maximum_age sequence numbers, we switch to a new era. Block map pages are assigned to eras
40  * according to the sequence number they record.
41  *
42  * In the current (newest) era, block map pages are not written unless there is cache pressure. In
43  * the next oldest era, each time a new journal block is written 1/@maximum_age of the pages in
44  * this era are issued for write. In all older eras, pages are issued for write immediately.
45  */
46
47 struct page_descriptor {
48         root_count_t root_index;
49         height_t height;
50         page_number_t page_index;
51         slot_number_t slot;
52 } __packed;
53
54 union page_key {
55         struct page_descriptor descriptor;
56         u64 key;
57 };
58
59 struct write_if_not_dirtied_context {
60         struct block_map_zone *zone;
61         u8 generation;
62 };
63
64 struct block_map_tree_segment {
65         struct tree_page *levels[VDO_BLOCK_MAP_TREE_HEIGHT];
66 };
67
68 struct block_map_tree {
69         struct block_map_tree_segment *segments;
70 };
71
72 struct forest {
73         struct block_map *map;
74         size_t segments;
75         struct boundary *boundaries;
76         struct tree_page **pages;
77         struct block_map_tree trees[];
78 };
79
80 struct cursor_level {
81         page_number_t page_index;
82         slot_number_t slot;
83 };
84
85 struct cursors;
86
87 struct cursor {
88         struct vdo_waiter waiter;
89         struct block_map_tree *tree;
90         height_t height;
91         struct cursors *parent;
92         struct boundary boundary;
93         struct cursor_level levels[VDO_BLOCK_MAP_TREE_HEIGHT];
94         struct pooled_vio *vio;
95 };
96
97 struct cursors {
98         struct block_map_zone *zone;
99         struct vio_pool *pool;
100         vdo_entry_callback_fn entry_callback;
101         struct vdo_completion *completion;
102         root_count_t active_roots;
103         struct cursor cursors[];
104 };
105
106 static const physical_block_number_t NO_PAGE = 0xFFFFFFFFFFFFFFFF;
107
108 /* Used to indicate that the page holding the location of a tree root has been "loaded". */
109 static const physical_block_number_t VDO_INVALID_PBN = 0xFFFFFFFFFFFFFFFF;
110
111 const struct block_map_entry UNMAPPED_BLOCK_MAP_ENTRY = {
112         .mapping_state = VDO_MAPPING_STATE_UNMAPPED & 0x0F,
113         .pbn_high_nibble = 0,
114         .pbn_low_word = __cpu_to_le32(VDO_ZERO_BLOCK & UINT_MAX),
115 };
116
117 #define LOG_INTERVAL 4000
118 #define DISPLAY_INTERVAL 100000
119
120 /*
121  * For adjusting VDO page cache statistic fields which are only mutated on the logical zone thread.
122  * Prevents any compiler shenanigans from affecting other threads reading those stats.
123  */
124 #define ADD_ONCE(value, delta) WRITE_ONCE(value, (value) + (delta))
125
126 static inline bool is_dirty(const struct page_info *info)
127 {
128         return info->state == PS_DIRTY;
129 }
130
131 static inline bool is_present(const struct page_info *info)
132 {
133         return (info->state == PS_RESIDENT) || (info->state == PS_DIRTY);
134 }
135
136 static inline bool is_in_flight(const struct page_info *info)
137 {
138         return (info->state == PS_INCOMING) || (info->state == PS_OUTGOING);
139 }
140
141 static inline bool is_incoming(const struct page_info *info)
142 {
143         return info->state == PS_INCOMING;
144 }
145
146 static inline bool is_outgoing(const struct page_info *info)
147 {
148         return info->state == PS_OUTGOING;
149 }
150
151 static inline bool is_valid(const struct page_info *info)
152 {
153         return is_present(info) || is_outgoing(info);
154 }
155
156 static char *get_page_buffer(struct page_info *info)
157 {
158         struct vdo_page_cache *cache = info->cache;
159
160         return &cache->pages[(info - cache->infos) * VDO_BLOCK_SIZE];
161 }
162
163 static inline struct vdo_page_completion *page_completion_from_waiter(struct vdo_waiter *waiter)
164 {
165         struct vdo_page_completion *completion;
166
167         if (waiter == NULL)
168                 return NULL;
169
170         completion = container_of(waiter, struct vdo_page_completion, waiter);
171         vdo_assert_completion_type(&completion->completion, VDO_PAGE_COMPLETION);
172         return completion;
173 }
174
175 /**
176  * initialize_info() - Initialize all page info structures and put them on the free list.
177  *
178  * Return: VDO_SUCCESS or an error.
179  */
180 static int initialize_info(struct vdo_page_cache *cache)
181 {
182         struct page_info *info;
183
184         INIT_LIST_HEAD(&cache->free_list);
185         for (info = cache->infos; info < cache->infos + cache->page_count; info++) {
186                 int result;
187
188                 info->cache = cache;
189                 info->state = PS_FREE;
190                 info->pbn = NO_PAGE;
191
192                 result = create_metadata_vio(cache->vdo, VIO_TYPE_BLOCK_MAP,
193                                              VIO_PRIORITY_METADATA, info,
194                                              get_page_buffer(info), &info->vio);
195                 if (result != VDO_SUCCESS)
196                         return result;
197
198                 /* The thread ID should never change. */
199                 info->vio->completion.callback_thread_id = cache->zone->thread_id;
200
201                 INIT_LIST_HEAD(&info->state_entry);
202                 list_add_tail(&info->state_entry, &cache->free_list);
203                 INIT_LIST_HEAD(&info->lru_entry);
204         }
205
206         return VDO_SUCCESS;
207 }
208
209 /**
210  * allocate_cache_components() - Allocate components of the cache which require their own
211  *                               allocation.
212  * @maximum_age: The number of journal blocks before a dirtied page is considered old and must be
213  *               written out.
214  *
215  * The caller is responsible for all clean up on errors.
216  *
217  * Return: VDO_SUCCESS or an error code.
218  */
219 static int __must_check allocate_cache_components(struct vdo_page_cache *cache)
220 {
221         u64 size = cache->page_count * (u64) VDO_BLOCK_SIZE;
222         int result;
223
224         result = vdo_allocate(cache->page_count, struct page_info, "page infos",
225                               &cache->infos);
226         if (result != VDO_SUCCESS)
227                 return result;
228
229         result = vdo_allocate_memory(size, VDO_BLOCK_SIZE, "cache pages", &cache->pages);
230         if (result != VDO_SUCCESS)
231                 return result;
232
233         result = vdo_int_map_create(cache->page_count, &cache->page_map);
234         if (result != VDO_SUCCESS)
235                 return result;
236
237         return initialize_info(cache);
238 }
239
240 /**
241  * assert_on_cache_thread() - Assert that a function has been called on the VDO page cache's
242  *                            thread.
243  */
244 static inline void assert_on_cache_thread(struct vdo_page_cache *cache,
245                                           const char *function_name)
246 {
247         thread_id_t thread_id = vdo_get_callback_thread_id();
248
249         VDO_ASSERT_LOG_ONLY((thread_id == cache->zone->thread_id),
250                             "%s() must only be called on cache thread %d, not thread %d",
251                             function_name, cache->zone->thread_id, thread_id);
252 }
253
254 /** assert_io_allowed() - Assert that a page cache may issue I/O. */
255 static inline void assert_io_allowed(struct vdo_page_cache *cache)
256 {
257         VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&cache->zone->state),
258                             "VDO page cache may issue I/O");
259 }
260
261 /** report_cache_pressure() - Log and, if enabled, report cache pressure. */
262 static void report_cache_pressure(struct vdo_page_cache *cache)
263 {
264         ADD_ONCE(cache->stats.cache_pressure, 1);
265         if (cache->waiter_count > cache->page_count) {
266                 if ((cache->pressure_report % LOG_INTERVAL) == 0)
267                         vdo_log_info("page cache pressure %u", cache->stats.cache_pressure);
268
269                 if (++cache->pressure_report >= DISPLAY_INTERVAL)
270                         cache->pressure_report = 0;
271         }
272 }
273
274 /**
275  * get_page_state_name() - Return the name of a page state.
276  *
277  * If the page state is invalid a static string is returned and the invalid state is logged.
278  *
279  * Return: A pointer to a static page state name.
280  */
281 static const char * __must_check get_page_state_name(enum vdo_page_buffer_state state)
282 {
283         int result;
284         static const char * const state_names[] = {
285                 "FREE", "INCOMING", "FAILED", "RESIDENT", "DIRTY", "OUTGOING"
286         };
287
288         BUILD_BUG_ON(ARRAY_SIZE(state_names) != PAGE_STATE_COUNT);
289
290         result = VDO_ASSERT(state < ARRAY_SIZE(state_names),
291                             "Unknown page_state value %d", state);
292         if (result != VDO_SUCCESS)
293                 return "[UNKNOWN PAGE STATE]";
294
295         return state_names[state];
296 }
297
298 /**
299  * update_counter() - Update the counter associated with a given state.
300  * @info: The page info to count.
301  * @delta: The delta to apply to the counter.
302  */
303 static void update_counter(struct page_info *info, s32 delta)
304 {
305         struct block_map_statistics *stats = &info->cache->stats;
306
307         switch (info->state) {
308         case PS_FREE:
309                 ADD_ONCE(stats->free_pages, delta);
310                 return;
311
312         case PS_INCOMING:
313                 ADD_ONCE(stats->incoming_pages, delta);
314                 return;
315
316         case PS_OUTGOING:
317                 ADD_ONCE(stats->outgoing_pages, delta);
318                 return;
319
320         case PS_FAILED:
321                 ADD_ONCE(stats->failed_pages, delta);
322                 return;
323
324         case PS_RESIDENT:
325                 ADD_ONCE(stats->clean_pages, delta);
326                 return;
327
328         case PS_DIRTY:
329                 ADD_ONCE(stats->dirty_pages, delta);
330                 return;
331
332         default:
333                 return;
334         }
335 }
336
337 /** update_lru() - Update the lru information for an active page. */
338 static void update_lru(struct page_info *info)
339 {
340         if (info->cache->lru_list.prev != &info->lru_entry)
341                 list_move_tail(&info->lru_entry, &info->cache->lru_list);
342 }
343
344 /**
345  * set_info_state() - Set the state of a page_info and put it on the right list, adjusting
346  *                    counters.
347  */
348 static void set_info_state(struct page_info *info, enum vdo_page_buffer_state new_state)
349 {
350         if (new_state == info->state)
351                 return;
352
353         update_counter(info, -1);
354         info->state = new_state;
355         update_counter(info, 1);
356
357         switch (info->state) {
358         case PS_FREE:
359         case PS_FAILED:
360                 list_move_tail(&info->state_entry, &info->cache->free_list);
361                 return;
362
363         case PS_OUTGOING:
364                 list_move_tail(&info->state_entry, &info->cache->outgoing_list);
365                 return;
366
367         case PS_DIRTY:
368                 return;
369
370         default:
371                 list_del_init(&info->state_entry);
372         }
373 }
374
375 /** set_info_pbn() - Set the pbn for an info, updating the map as needed. */
376 static int __must_check set_info_pbn(struct page_info *info, physical_block_number_t pbn)
377 {
378         struct vdo_page_cache *cache = info->cache;
379
380         /* Either the new or the old page number must be NO_PAGE. */
381         int result = VDO_ASSERT((pbn == NO_PAGE) || (info->pbn == NO_PAGE),
382                                 "Must free a page before reusing it.");
383         if (result != VDO_SUCCESS)
384                 return result;
385
386         if (info->pbn != NO_PAGE)
387                 vdo_int_map_remove(cache->page_map, info->pbn);
388
389         info->pbn = pbn;
390
391         if (pbn != NO_PAGE) {
392                 result = vdo_int_map_put(cache->page_map, pbn, info, true, NULL);
393                 if (result != VDO_SUCCESS)
394                         return result;
395         }
396         return VDO_SUCCESS;
397 }
398
399 /** reset_page_info() - Reset page info to represent an unallocated page. */
400 static int reset_page_info(struct page_info *info)
401 {
402         int result;
403
404         result = VDO_ASSERT(info->busy == 0, "VDO Page must not be busy");
405         if (result != VDO_SUCCESS)
406                 return result;
407
408         result = VDO_ASSERT(!vdo_waitq_has_waiters(&info->waiting),
409                             "VDO Page must not have waiters");
410         if (result != VDO_SUCCESS)
411                 return result;
412
413         result = set_info_pbn(info, NO_PAGE);
414         set_info_state(info, PS_FREE);
415         list_del_init(&info->lru_entry);
416         return result;
417 }
418
419 /**
420  * find_free_page() - Find a free page.
421  *
422  * Return: A pointer to the page info structure (if found), NULL otherwise.
423  */
424 static struct page_info * __must_check find_free_page(struct vdo_page_cache *cache)
425 {
426         struct page_info *info;
427
428         info = list_first_entry_or_null(&cache->free_list, struct page_info,
429                                         state_entry);
430         if (info != NULL)
431                 list_del_init(&info->state_entry);
432
433         return info;
434 }
435
436 /**
437  * find_page() - Find the page info (if any) associated with a given pbn.
438  * @pbn: The absolute physical block number of the page.
439  *
440  * Return: The page info for the page if available, or NULL if not.
441  */
442 static struct page_info * __must_check find_page(struct vdo_page_cache *cache,
443                                                  physical_block_number_t pbn)
444 {
445         if ((cache->last_found != NULL) && (cache->last_found->pbn == pbn))
446                 return cache->last_found;
447
448         cache->last_found = vdo_int_map_get(cache->page_map, pbn);
449         return cache->last_found;
450 }
451
452 /**
453  * select_lru_page() - Determine which page is least recently used.
454  *
455  * Picks the least recently used from among the non-busy entries at the front of each of the lru
456  * ring. Since whenever we mark a page busy we also put it to the end of the ring it is unlikely
457  * that the entries at the front are busy unless the queue is very short, but not impossible.
458  *
459  * Return: A pointer to the info structure for a relevant page, or NULL if no such page can be
460  *         found. The page can be dirty or resident.
461  */
462 static struct page_info * __must_check select_lru_page(struct vdo_page_cache *cache)
463 {
464         struct page_info *info;
465
466         list_for_each_entry(info, &cache->lru_list, lru_entry)
467                 if ((info->busy == 0) && !is_in_flight(info))
468                         return info;
469
470         return NULL;
471 }
472
473 /* ASYNCHRONOUS INTERFACE BEYOND THIS POINT */
474
475 /**
476  * complete_with_page() - Helper to complete the VDO Page Completion request successfully.
477  * @info: The page info representing the result page.
478  * @vdo_page_comp: The VDO page completion to complete.
479  */
480 static void complete_with_page(struct page_info *info,
481                                struct vdo_page_completion *vdo_page_comp)
482 {
483         bool available = vdo_page_comp->writable ? is_present(info) : is_valid(info);
484
485         if (!available) {
486                 vdo_log_error_strerror(VDO_BAD_PAGE,
487                                        "Requested cache page %llu in state %s is not %s",
488                                        (unsigned long long) info->pbn,
489                                        get_page_state_name(info->state),
490                                        vdo_page_comp->writable ? "present" : "valid");
491                 vdo_fail_completion(&vdo_page_comp->completion, VDO_BAD_PAGE);
492                 return;
493         }
494
495         vdo_page_comp->info = info;
496         vdo_page_comp->ready = true;
497         vdo_finish_completion(&vdo_page_comp->completion);
498 }
499
500 /**
501  * complete_waiter_with_error() - Complete a page completion with an error code.
502  * @waiter: The page completion, as a waiter.
503  * @result_ptr: A pointer to the error code.
504  *
505  * Implements waiter_callback_fn.
506  */
507 static void complete_waiter_with_error(struct vdo_waiter *waiter, void *result_ptr)
508 {
509         int *result = result_ptr;
510
511         vdo_fail_completion(&page_completion_from_waiter(waiter)->completion, *result);
512 }
513
514 /**
515  * complete_waiter_with_page() - Complete a page completion with a page.
516  * @waiter: The page completion, as a waiter.
517  * @page_info: The page info to complete with.
518  *
519  * Implements waiter_callback_fn.
520  */
521 static void complete_waiter_with_page(struct vdo_waiter *waiter, void *page_info)
522 {
523         complete_with_page(page_info, page_completion_from_waiter(waiter));
524 }
525
526 /**
527  * distribute_page_over_waitq() - Complete a waitq of VDO page completions with a page result.
528  *
529  * Upon completion the waitq will be empty.
530  *
531  * Return: The number of pages distributed.
532  */
533 static unsigned int distribute_page_over_waitq(struct page_info *info,
534                                                struct vdo_wait_queue *waitq)
535 {
536         size_t num_pages;
537
538         update_lru(info);
539         num_pages = vdo_waitq_num_waiters(waitq);
540
541         /*
542          * Increment the busy count once for each pending completion so that this page does not
543          * stop being busy until all completions have been processed.
544          */
545         info->busy += num_pages;
546
547         vdo_waitq_notify_all_waiters(waitq, complete_waiter_with_page, info);
548         return num_pages;
549 }
550
551 /**
552  * set_persistent_error() - Set a persistent error which all requests will receive in the future.
553  * @context: A string describing what triggered the error.
554  *
555  * Once triggered, all enqueued completions will get this error. Any future requests will result in
556  * this error as well.
557  */
558 static void set_persistent_error(struct vdo_page_cache *cache, const char *context,
559                                  int result)
560 {
561         struct page_info *info;
562         /* If we're already read-only, there's no need to log. */
563         struct vdo *vdo = cache->vdo;
564
565         if ((result != VDO_READ_ONLY) && !vdo_is_read_only(vdo)) {
566                 vdo_log_error_strerror(result, "VDO Page Cache persistent error: %s",
567                                        context);
568                 vdo_enter_read_only_mode(vdo, result);
569         }
570
571         assert_on_cache_thread(cache, __func__);
572
573         vdo_waitq_notify_all_waiters(&cache->free_waiters,
574                                      complete_waiter_with_error, &result);
575         cache->waiter_count = 0;
576
577         for (info = cache->infos; info < cache->infos + cache->page_count; info++) {
578                 vdo_waitq_notify_all_waiters(&info->waiting,
579                                              complete_waiter_with_error, &result);
580         }
581 }
582
583 /**
584  * validate_completed_page() - Check that a page completion which is being freed to the cache
585  *                             referred to a valid page and is in a valid state.
586  * @writable: Whether a writable page is required.
587  *
588  * Return: VDO_SUCCESS if the page was valid, otherwise as error
589  */
590 static int __must_check validate_completed_page(struct vdo_page_completion *completion,
591                                                 bool writable)
592 {
593         int result;
594
595         result = VDO_ASSERT(completion->ready, "VDO Page completion not ready");
596         if (result != VDO_SUCCESS)
597                 return result;
598
599         result = VDO_ASSERT(completion->info != NULL,
600                             "VDO Page Completion must be complete");
601         if (result != VDO_SUCCESS)
602                 return result;
603
604         result = VDO_ASSERT(completion->info->pbn == completion->pbn,
605                             "VDO Page Completion pbn must be consistent");
606         if (result != VDO_SUCCESS)
607                 return result;
608
609         result = VDO_ASSERT(is_valid(completion->info),
610                             "VDO Page Completion page must be valid");
611         if (result != VDO_SUCCESS)
612                 return result;
613
614         if (writable) {
615                 result = VDO_ASSERT(completion->writable,
616                                     "VDO Page Completion must be writable");
617                 if (result != VDO_SUCCESS)
618                         return result;
619         }
620
621         return VDO_SUCCESS;
622 }
623
624 static void check_for_drain_complete(struct block_map_zone *zone)
625 {
626         if (vdo_is_state_draining(&zone->state) &&
627             (zone->active_lookups == 0) &&
628             !vdo_waitq_has_waiters(&zone->flush_waiters) &&
629             !is_vio_pool_busy(zone->vio_pool) &&
630             (zone->page_cache.outstanding_reads == 0) &&
631             (zone->page_cache.outstanding_writes == 0)) {
632                 vdo_finish_draining_with_result(&zone->state,
633                                                 (vdo_is_read_only(zone->block_map->vdo) ?
634                                                  VDO_READ_ONLY : VDO_SUCCESS));
635         }
636 }
637
638 static void enter_zone_read_only_mode(struct block_map_zone *zone, int result)
639 {
640         vdo_enter_read_only_mode(zone->block_map->vdo, result);
641
642         /*
643          * We are in read-only mode, so we won't ever write any page out.
644          * Just take all waiters off the waitq so the zone can drain.
645          */
646         vdo_waitq_init(&zone->flush_waiters);
647         check_for_drain_complete(zone);
648 }
649
650 static bool __must_check
651 validate_completed_page_or_enter_read_only_mode(struct vdo_page_completion *completion,
652                                                 bool writable)
653 {
654         int result = validate_completed_page(completion, writable);
655
656         if (result == VDO_SUCCESS)
657                 return true;
658
659         enter_zone_read_only_mode(completion->info->cache->zone, result);
660         return false;
661 }
662
663 /**
664  * handle_load_error() - Handle page load errors.
665  * @completion: The page read vio.
666  */
667 static void handle_load_error(struct vdo_completion *completion)
668 {
669         int result = completion->result;
670         struct page_info *info = completion->parent;
671         struct vdo_page_cache *cache = info->cache;
672
673         assert_on_cache_thread(cache, __func__);
674         vio_record_metadata_io_error(as_vio(completion));
675         vdo_enter_read_only_mode(cache->zone->block_map->vdo, result);
676         ADD_ONCE(cache->stats.failed_reads, 1);
677         set_info_state(info, PS_FAILED);
678         vdo_waitq_notify_all_waiters(&info->waiting, complete_waiter_with_error, &result);
679         reset_page_info(info);
680
681         /*
682          * Don't decrement until right before calling check_for_drain_complete() to
683          * ensure that the above work can't cause the page cache to be freed out from under us.
684          */
685         cache->outstanding_reads--;
686         check_for_drain_complete(cache->zone);
687 }
688
689 /**
690  * page_is_loaded() - Callback used when a page has been loaded.
691  * @completion: The vio which has loaded the page. Its parent is the page_info.
692  */
693 static void page_is_loaded(struct vdo_completion *completion)
694 {
695         struct page_info *info = completion->parent;
696         struct vdo_page_cache *cache = info->cache;
697         nonce_t nonce = info->cache->zone->block_map->nonce;
698         struct block_map_page *page;
699         enum block_map_page_validity validity;
700
701         assert_on_cache_thread(cache, __func__);
702
703         page = (struct block_map_page *) get_page_buffer(info);
704         validity = vdo_validate_block_map_page(page, nonce, info->pbn);
705         if (validity == VDO_BLOCK_MAP_PAGE_BAD) {
706                 physical_block_number_t pbn = vdo_get_block_map_page_pbn(page);
707                 int result = vdo_log_error_strerror(VDO_BAD_PAGE,
708                                                     "Expected page %llu but got page %llu instead",
709                                                     (unsigned long long) info->pbn,
710                                                     (unsigned long long) pbn);
711
712                 vdo_continue_completion(completion, result);
713                 return;
714         }
715
716         if (validity == VDO_BLOCK_MAP_PAGE_INVALID)
717                 vdo_format_block_map_page(page, nonce, info->pbn, false);
718
719         info->recovery_lock = 0;
720         set_info_state(info, PS_RESIDENT);
721         distribute_page_over_waitq(info, &info->waiting);
722
723         /*
724          * Don't decrement until right before calling check_for_drain_complete() to
725          * ensure that the above work can't cause the page cache to be freed out from under us.
726          */
727         cache->outstanding_reads--;
728         check_for_drain_complete(cache->zone);
729 }
730
731 /**
732  * handle_rebuild_read_error() - Handle a read error during a read-only rebuild.
733  * @completion: The page load completion.
734  */
735 static void handle_rebuild_read_error(struct vdo_completion *completion)
736 {
737         struct page_info *info = completion->parent;
738         struct vdo_page_cache *cache = info->cache;
739
740         assert_on_cache_thread(cache, __func__);
741
742         /*
743          * We are doing a read-only rebuild, so treat this as a successful read
744          * of an uninitialized page.
745          */
746         vio_record_metadata_io_error(as_vio(completion));
747         ADD_ONCE(cache->stats.failed_reads, 1);
748         memset(get_page_buffer(info), 0, VDO_BLOCK_SIZE);
749         vdo_reset_completion(completion);
750         page_is_loaded(completion);
751 }
752
753 static void load_cache_page_endio(struct bio *bio)
754 {
755         struct vio *vio = bio->bi_private;
756         struct page_info *info = vio->completion.parent;
757
758         continue_vio_after_io(vio, page_is_loaded, info->cache->zone->thread_id);
759 }
760
761 /**
762  * launch_page_load() - Begin the process of loading a page.
763  *
764  * Return: VDO_SUCCESS or an error code.
765  */
766 static int __must_check launch_page_load(struct page_info *info,
767                                          physical_block_number_t pbn)
768 {
769         int result;
770         vdo_action_fn callback;
771         struct vdo_page_cache *cache = info->cache;
772
773         assert_io_allowed(cache);
774
775         result = set_info_pbn(info, pbn);
776         if (result != VDO_SUCCESS)
777                 return result;
778
779         result = VDO_ASSERT((info->busy == 0), "Page is not busy before loading.");
780         if (result != VDO_SUCCESS)
781                 return result;
782
783         set_info_state(info, PS_INCOMING);
784         cache->outstanding_reads++;
785         ADD_ONCE(cache->stats.pages_loaded, 1);
786         callback = (cache->rebuilding ? handle_rebuild_read_error : handle_load_error);
787         vdo_submit_metadata_vio(info->vio, pbn, load_cache_page_endio,
788                                 callback, REQ_OP_READ | REQ_PRIO);
789         return VDO_SUCCESS;
790 }
791
792 static void write_pages(struct vdo_completion *completion);
793
794 /** handle_flush_error() - Handle errors flushing the layer. */
795 static void handle_flush_error(struct vdo_completion *completion)
796 {
797         struct page_info *info = completion->parent;
798
799         vio_record_metadata_io_error(as_vio(completion));
800         set_persistent_error(info->cache, "flush failed", completion->result);
801         write_pages(completion);
802 }
803
804 static void flush_endio(struct bio *bio)
805 {
806         struct vio *vio = bio->bi_private;
807         struct page_info *info = vio->completion.parent;
808
809         continue_vio_after_io(vio, write_pages, info->cache->zone->thread_id);
810 }
811
812 /** save_pages() - Attempt to save the outgoing pages by first flushing the layer. */
813 static void save_pages(struct vdo_page_cache *cache)
814 {
815         struct page_info *info;
816         struct vio *vio;
817
818         if ((cache->pages_in_flush > 0) || (cache->pages_to_flush == 0))
819                 return;
820
821         assert_io_allowed(cache);
822
823         info = list_first_entry(&cache->outgoing_list, struct page_info, state_entry);
824
825         cache->pages_in_flush = cache->pages_to_flush;
826         cache->pages_to_flush = 0;
827         ADD_ONCE(cache->stats.flush_count, 1);
828
829         vio = info->vio;
830
831         /*
832          * We must make sure that the recovery journal entries that changed these pages were
833          * successfully persisted, and thus must issue a flush before each batch of pages is
834          * written to ensure this.
835          */
836         vdo_submit_flush_vio(vio, flush_endio, handle_flush_error);
837 }
838
839 /**
840  * schedule_page_save() - Add a page to the outgoing list of pages waiting to be saved.
841  *
842  * Once in the list, a page may not be used until it has been written out.
843  */
844 static void schedule_page_save(struct page_info *info)
845 {
846         if (info->busy > 0) {
847                 info->write_status = WRITE_STATUS_DEFERRED;
848                 return;
849         }
850
851         info->cache->pages_to_flush++;
852         info->cache->outstanding_writes++;
853         set_info_state(info, PS_OUTGOING);
854 }
855
856 /**
857  * launch_page_save() - Add a page to outgoing pages waiting to be saved, and then start saving
858  * pages if another save is not in progress.
859  */
860 static void launch_page_save(struct page_info *info)
861 {
862         schedule_page_save(info);
863         save_pages(info->cache);
864 }
865
866 /**
867  * completion_needs_page() - Determine whether a given vdo_page_completion (as a waiter) is
868  *                           requesting a given page number.
869  * @context: A pointer to the pbn of the desired page.
870  *
871  * Implements waiter_match_fn.
872  *
873  * Return: true if the page completion is for the desired page number.
874  */
875 static bool completion_needs_page(struct vdo_waiter *waiter, void *context)
876 {
877         physical_block_number_t *pbn = context;
878
879         return (page_completion_from_waiter(waiter)->pbn == *pbn);
880 }
881
882 /**
883  * allocate_free_page() - Allocate a free page to the first completion in the waiting queue, and
884  *                        any other completions that match it in page number.
885  */
886 static void allocate_free_page(struct page_info *info)
887 {
888         int result;
889         struct vdo_waiter *oldest_waiter;
890         physical_block_number_t pbn;
891         struct vdo_page_cache *cache = info->cache;
892
893         assert_on_cache_thread(cache, __func__);
894
895         if (!vdo_waitq_has_waiters(&cache->free_waiters)) {
896                 if (cache->stats.cache_pressure > 0) {
897                         vdo_log_info("page cache pressure relieved");
898                         WRITE_ONCE(cache->stats.cache_pressure, 0);
899                 }
900
901                 return;
902         }
903
904         result = reset_page_info(info);
905         if (result != VDO_SUCCESS) {
906                 set_persistent_error(cache, "cannot reset page info", result);
907                 return;
908         }
909
910         oldest_waiter = vdo_waitq_get_first_waiter(&cache->free_waiters);
911         pbn = page_completion_from_waiter(oldest_waiter)->pbn;
912
913         /*
914          * Remove all entries which match the page number in question and push them onto the page
915          * info's waitq.
916          */
917         vdo_waitq_dequeue_matching_waiters(&cache->free_waiters, completion_needs_page,
918                                            &pbn, &info->waiting);
919         cache->waiter_count -= vdo_waitq_num_waiters(&info->waiting);
920
921         result = launch_page_load(info, pbn);
922         if (result != VDO_SUCCESS) {
923                 vdo_waitq_notify_all_waiters(&info->waiting,
924                                              complete_waiter_with_error, &result);
925         }
926 }
927
928 /**
929  * discard_a_page() - Begin the process of discarding a page.
930  *
931  * If no page is discardable, increments a count of deferred frees so that the next release of a
932  * page which is no longer busy will kick off another discard cycle. This is an indication that the
933  * cache is not big enough.
934  *
935  * If the selected page is not dirty, immediately allocates the page to the oldest completion
936  * waiting for a free page.
937  */
938 static void discard_a_page(struct vdo_page_cache *cache)
939 {
940         struct page_info *info = select_lru_page(cache);
941
942         if (info == NULL) {
943                 report_cache_pressure(cache);
944                 return;
945         }
946
947         if (!is_dirty(info)) {
948                 allocate_free_page(info);
949                 return;
950         }
951
952         VDO_ASSERT_LOG_ONLY(!is_in_flight(info),
953                             "page selected for discard is not in flight");
954
955         cache->discard_count++;
956         info->write_status = WRITE_STATUS_DISCARD;
957         launch_page_save(info);
958 }
959
960 /**
961  * discard_page_for_completion() - Helper used to trigger a discard so that the completion can get
962  *                                 a different page.
963  */
964 static void discard_page_for_completion(struct vdo_page_completion *vdo_page_comp)
965 {
966         struct vdo_page_cache *cache = vdo_page_comp->cache;
967
968         cache->waiter_count++;
969         vdo_waitq_enqueue_waiter(&cache->free_waiters, &vdo_page_comp->waiter);
970         discard_a_page(cache);
971 }
972
973 /**
974  * discard_page_if_needed() - Helper used to trigger a discard if the cache needs another free
975  *                            page.
976  * @cache: The page cache.
977  */
978 static void discard_page_if_needed(struct vdo_page_cache *cache)
979 {
980         if (cache->waiter_count > cache->discard_count)
981                 discard_a_page(cache);
982 }
983
984 /**
985  * write_has_finished() - Inform the cache that a write has finished (possibly with an error).
986  * @info: The info structure for the page whose write just completed.
987  *
988  * Return: true if the page write was a discard.
989  */
990 static bool write_has_finished(struct page_info *info)
991 {
992         bool was_discard = (info->write_status == WRITE_STATUS_DISCARD);
993
994         assert_on_cache_thread(info->cache, __func__);
995         info->cache->outstanding_writes--;
996
997         info->write_status = WRITE_STATUS_NORMAL;
998         return was_discard;
999 }
1000
1001 /**
1002  * handle_page_write_error() - Handler for page write errors.
1003  * @completion: The page write vio.
1004  */
1005 static void handle_page_write_error(struct vdo_completion *completion)
1006 {
1007         int result = completion->result;
1008         struct page_info *info = completion->parent;
1009         struct vdo_page_cache *cache = info->cache;
1010
1011         vio_record_metadata_io_error(as_vio(completion));
1012
1013         /* If we're already read-only, write failures are to be expected. */
1014         if (result != VDO_READ_ONLY) {
1015                 vdo_log_ratelimit(vdo_log_error,
1016                                   "failed to write block map page %llu",
1017                                   (unsigned long long) info->pbn);
1018         }
1019
1020         set_info_state(info, PS_DIRTY);
1021         ADD_ONCE(cache->stats.failed_writes, 1);
1022         set_persistent_error(cache, "cannot write page", result);
1023
1024         if (!write_has_finished(info))
1025                 discard_page_if_needed(cache);
1026
1027         check_for_drain_complete(cache->zone);
1028 }
1029
1030 static void page_is_written_out(struct vdo_completion *completion);
1031
1032 static void write_cache_page_endio(struct bio *bio)
1033 {
1034         struct vio *vio = bio->bi_private;
1035         struct page_info *info = vio->completion.parent;
1036
1037         continue_vio_after_io(vio, page_is_written_out, info->cache->zone->thread_id);
1038 }
1039
1040 /**
1041  * page_is_written_out() - Callback used when a page has been written out.
1042  * @completion: The vio which wrote the page. Its parent is a page_info.
1043  */
1044 static void page_is_written_out(struct vdo_completion *completion)
1045 {
1046         bool was_discard, reclaimed;
1047         u32 reclamations;
1048         struct page_info *info = completion->parent;
1049         struct vdo_page_cache *cache = info->cache;
1050         struct block_map_page *page = (struct block_map_page *) get_page_buffer(info);
1051
1052         if (!page->header.initialized) {
1053                 page->header.initialized = true;
1054                 vdo_submit_metadata_vio(info->vio, info->pbn,
1055                                         write_cache_page_endio,
1056                                         handle_page_write_error,
1057                                         REQ_OP_WRITE | REQ_PRIO | REQ_PREFLUSH);
1058                 return;
1059         }
1060
1061         /* Handle journal updates and torn write protection. */
1062         vdo_release_recovery_journal_block_reference(cache->zone->block_map->journal,
1063                                                      info->recovery_lock,
1064                                                      VDO_ZONE_TYPE_LOGICAL,
1065                                                      cache->zone->zone_number);
1066         info->recovery_lock = 0;
1067         was_discard = write_has_finished(info);
1068         reclaimed = (!was_discard || (info->busy > 0) || vdo_waitq_has_waiters(&info->waiting));
1069
1070         set_info_state(info, PS_RESIDENT);
1071
1072         reclamations = distribute_page_over_waitq(info, &info->waiting);
1073         ADD_ONCE(cache->stats.reclaimed, reclamations);
1074
1075         if (was_discard)
1076                 cache->discard_count--;
1077
1078         if (reclaimed)
1079                 discard_page_if_needed(cache);
1080         else
1081                 allocate_free_page(info);
1082
1083         check_for_drain_complete(cache->zone);
1084 }
1085
1086 /**
1087  * write_pages() - Write the batch of pages which were covered by the layer flush which just
1088  *                 completed.
1089  * @flush_completion: The flush vio.
1090  *
1091  * This callback is registered in save_pages().
1092  */
1093 static void write_pages(struct vdo_completion *flush_completion)
1094 {
1095         struct vdo_page_cache *cache = ((struct page_info *) flush_completion->parent)->cache;
1096
1097         /*
1098          * We need to cache these two values on the stack since it is possible for the last
1099          * page info to cause the page cache to get freed. Hence once we launch the last page,
1100          * it may be unsafe to dereference the cache.
1101          */
1102         bool has_unflushed_pages = (cache->pages_to_flush > 0);
1103         page_count_t pages_in_flush = cache->pages_in_flush;
1104
1105         cache->pages_in_flush = 0;
1106         while (pages_in_flush-- > 0) {
1107                 struct page_info *info =
1108                         list_first_entry(&cache->outgoing_list, struct page_info,
1109                                          state_entry);
1110
1111                 list_del_init(&info->state_entry);
1112                 if (vdo_is_read_only(info->cache->vdo)) {
1113                         struct vdo_completion *completion = &info->vio->completion;
1114
1115                         vdo_reset_completion(completion);
1116                         completion->callback = page_is_written_out;
1117                         completion->error_handler = handle_page_write_error;
1118                         vdo_fail_completion(completion, VDO_READ_ONLY);
1119                         continue;
1120                 }
1121                 ADD_ONCE(info->cache->stats.pages_saved, 1);
1122                 vdo_submit_metadata_vio(info->vio, info->pbn, write_cache_page_endio,
1123                                         handle_page_write_error, REQ_OP_WRITE | REQ_PRIO);
1124         }
1125
1126         if (has_unflushed_pages) {
1127                 /*
1128                  * If there are unflushed pages, the cache can't have been freed, so this call is
1129                  * safe.
1130                  */
1131                 save_pages(cache);
1132         }
1133 }
1134
1135 /**
1136  * vdo_release_page_completion() - Release a VDO Page Completion.
1137  *
1138  * The page referenced by this completion (if any) will no longer be held busy by this completion.
1139  * If a page becomes discardable and there are completions awaiting free pages then a new round of
1140  * page discarding is started.
1141  */
1142 void vdo_release_page_completion(struct vdo_completion *completion)
1143 {
1144         struct page_info *discard_info = NULL;
1145         struct vdo_page_completion *page_completion = as_vdo_page_completion(completion);
1146         struct vdo_page_cache *cache;
1147
1148         if (completion->result == VDO_SUCCESS) {
1149                 if (!validate_completed_page_or_enter_read_only_mode(page_completion, false))
1150                         return;
1151
1152                 if (--page_completion->info->busy == 0)
1153                         discard_info = page_completion->info;
1154         }
1155
1156         VDO_ASSERT_LOG_ONLY((page_completion->waiter.next_waiter == NULL),
1157                             "Page being released after leaving all queues");
1158
1159         page_completion->info = NULL;
1160         cache = page_completion->cache;
1161         assert_on_cache_thread(cache, __func__);
1162
1163         if (discard_info != NULL) {
1164                 if (discard_info->write_status == WRITE_STATUS_DEFERRED) {
1165                         discard_info->write_status = WRITE_STATUS_NORMAL;
1166                         launch_page_save(discard_info);
1167                 }
1168
1169                 /*
1170                  * if there are excess requests for pages (that have not already started discards)
1171                  * we need to discard some page (which may be this one)
1172                  */
1173                 discard_page_if_needed(cache);
1174         }
1175 }
1176
1177 /**
1178  * load_page_for_completion() - Helper function to load a page as described by a VDO Page
1179  *                              Completion.
1180  */
1181 static void load_page_for_completion(struct page_info *info,
1182                                      struct vdo_page_completion *vdo_page_comp)
1183 {
1184         int result;
1185
1186         vdo_waitq_enqueue_waiter(&info->waiting, &vdo_page_comp->waiter);
1187         result = launch_page_load(info, vdo_page_comp->pbn);
1188         if (result != VDO_SUCCESS) {
1189                 vdo_waitq_notify_all_waiters(&info->waiting,
1190                                              complete_waiter_with_error, &result);
1191         }
1192 }
1193
1194 /**
1195  * vdo_get_page() - Initialize a page completion and get a block map page.
1196  * @page_completion: The vdo_page_completion to initialize.
1197  * @zone: The block map zone of the desired page.
1198  * @pbn: The absolute physical block of the desired page.
1199  * @writable: Whether the page can be modified.
1200  * @parent: The object to notify when the fetch is complete.
1201  * @callback: The notification callback.
1202  * @error_handler: The handler for fetch errors.
1203  * @requeue: Whether we must requeue when notifying the parent.
1204  *
1205  * May cause another page to be discarded (potentially writing a dirty page) and the one nominated
1206  * by the completion to be loaded from disk. When the callback is invoked, the page will be
1207  * resident in the cache and marked busy. All callers must call vdo_release_page_completion()
1208  * when they are done with the page to clear the busy mark.
1209  */
1210 void vdo_get_page(struct vdo_page_completion *page_completion,
1211                   struct block_map_zone *zone, physical_block_number_t pbn,
1212                   bool writable, void *parent, vdo_action_fn callback,
1213                   vdo_action_fn error_handler, bool requeue)
1214 {
1215         struct vdo_page_cache *cache = &zone->page_cache;
1216         struct vdo_completion *completion = &page_completion->completion;
1217         struct page_info *info;
1218
1219         assert_on_cache_thread(cache, __func__);
1220         VDO_ASSERT_LOG_ONLY((page_completion->waiter.next_waiter == NULL),
1221                             "New page completion was not already on a wait queue");
1222
1223         *page_completion = (struct vdo_page_completion) {
1224                 .pbn = pbn,
1225                 .writable = writable,
1226                 .cache = cache,
1227         };
1228
1229         vdo_initialize_completion(completion, cache->vdo, VDO_PAGE_COMPLETION);
1230         vdo_prepare_completion(completion, callback, error_handler,
1231                                cache->zone->thread_id, parent);
1232         completion->requeue = requeue;
1233
1234         if (page_completion->writable && vdo_is_read_only(cache->vdo)) {
1235                 vdo_fail_completion(completion, VDO_READ_ONLY);
1236                 return;
1237         }
1238
1239         if (page_completion->writable)
1240                 ADD_ONCE(cache->stats.write_count, 1);
1241         else
1242                 ADD_ONCE(cache->stats.read_count, 1);
1243
1244         info = find_page(cache, page_completion->pbn);
1245         if (info != NULL) {
1246                 /* The page is in the cache already. */
1247                 if ((info->write_status == WRITE_STATUS_DEFERRED) ||
1248                     is_incoming(info) ||
1249                     (is_outgoing(info) && page_completion->writable)) {
1250                         /* The page is unusable until it has finished I/O. */
1251                         ADD_ONCE(cache->stats.wait_for_page, 1);
1252                         vdo_waitq_enqueue_waiter(&info->waiting, &page_completion->waiter);
1253                         return;
1254                 }
1255
1256                 if (is_valid(info)) {
1257                         /* The page is usable. */
1258                         ADD_ONCE(cache->stats.found_in_cache, 1);
1259                         if (!is_present(info))
1260                                 ADD_ONCE(cache->stats.read_outgoing, 1);
1261                         update_lru(info);
1262                         info->busy++;
1263                         complete_with_page(info, page_completion);
1264                         return;
1265                 }
1266
1267                 /* Something horrible has gone wrong. */
1268                 VDO_ASSERT_LOG_ONLY(false, "Info found in a usable state.");
1269         }
1270
1271         /* The page must be fetched. */
1272         info = find_free_page(cache);
1273         if (info != NULL) {
1274                 ADD_ONCE(cache->stats.fetch_required, 1);
1275                 load_page_for_completion(info, page_completion);
1276                 return;
1277         }
1278
1279         /* The page must wait for a page to be discarded. */
1280         ADD_ONCE(cache->stats.discard_required, 1);
1281         discard_page_for_completion(page_completion);
1282 }
1283
1284 /**
1285  * vdo_request_page_write() - Request that a VDO page be written out as soon as it is not busy.
1286  * @completion: The vdo_page_completion containing the page.
1287  */
1288 void vdo_request_page_write(struct vdo_completion *completion)
1289 {
1290         struct page_info *info;
1291         struct vdo_page_completion *vdo_page_comp = as_vdo_page_completion(completion);
1292
1293         if (!validate_completed_page_or_enter_read_only_mode(vdo_page_comp, true))
1294                 return;
1295
1296         info = vdo_page_comp->info;
1297         set_info_state(info, PS_DIRTY);
1298         launch_page_save(info);
1299 }
1300
1301 /**
1302  * vdo_get_cached_page() - Get the block map page from a page completion.
1303  * @completion: A vdo page completion whose callback has been called.
1304  * @page_ptr: A pointer to hold the page
1305  *
1306  * Return: VDO_SUCCESS or an error
1307  */
1308 int vdo_get_cached_page(struct vdo_completion *completion,
1309                         struct block_map_page **page_ptr)
1310 {
1311         int result;
1312         struct vdo_page_completion *vpc;
1313
1314         vpc = as_vdo_page_completion(completion);
1315         result = validate_completed_page(vpc, true);
1316         if (result == VDO_SUCCESS)
1317                 *page_ptr = (struct block_map_page *) get_page_buffer(vpc->info);
1318
1319         return result;
1320 }
1321
1322 /**
1323  * vdo_invalidate_page_cache() - Invalidate all entries in the VDO page cache.
1324  *
1325  * There must not be any dirty pages in the cache.
1326  *
1327  * Return: A success or error code.
1328  */
1329 int vdo_invalidate_page_cache(struct vdo_page_cache *cache)
1330 {
1331         struct page_info *info;
1332
1333         assert_on_cache_thread(cache, __func__);
1334
1335         /* Make sure we don't throw away any dirty pages. */
1336         for (info = cache->infos; info < cache->infos + cache->page_count; info++) {
1337                 int result = VDO_ASSERT(!is_dirty(info), "cache must have no dirty pages");
1338
1339                 if (result != VDO_SUCCESS)
1340                         return result;
1341         }
1342
1343         /* Reset the page map by re-allocating it. */
1344         vdo_int_map_free(vdo_forget(cache->page_map));
1345         return vdo_int_map_create(cache->page_count, &cache->page_map);
1346 }
1347
1348 /**
1349  * get_tree_page_by_index() - Get the tree page for a given height and page index.
1350  *
1351  * Return: The requested page.
1352  */
1353 static struct tree_page * __must_check get_tree_page_by_index(struct forest *forest,
1354                                                               root_count_t root_index,
1355                                                               height_t height,
1356                                                               page_number_t page_index)
1357 {
1358         page_number_t offset = 0;
1359         size_t segment;
1360
1361         for (segment = 0; segment < forest->segments; segment++) {
1362                 page_number_t border = forest->boundaries[segment].levels[height - 1];
1363
1364                 if (page_index < border) {
1365                         struct block_map_tree *tree = &forest->trees[root_index];
1366
1367                         return &(tree->segments[segment].levels[height - 1][page_index - offset]);
1368                 }
1369
1370                 offset = border;
1371         }
1372
1373         return NULL;
1374 }
1375
1376 /* Get the page referred to by the lock's tree slot at its current height. */
1377 static inline struct tree_page *get_tree_page(const struct block_map_zone *zone,
1378                                               const struct tree_lock *lock)
1379 {
1380         return get_tree_page_by_index(zone->block_map->forest, lock->root_index,
1381                                       lock->height,
1382                                       lock->tree_slots[lock->height].page_index);
1383 }
1384
1385 /** vdo_copy_valid_page() - Validate and copy a buffer to a page. */
1386 bool vdo_copy_valid_page(char *buffer, nonce_t nonce,
1387                          physical_block_number_t pbn,
1388                          struct block_map_page *page)
1389 {
1390         struct block_map_page *loaded = (struct block_map_page *) buffer;
1391         enum block_map_page_validity validity =
1392                 vdo_validate_block_map_page(loaded, nonce, pbn);
1393
1394         if (validity == VDO_BLOCK_MAP_PAGE_VALID) {
1395                 memcpy(page, loaded, VDO_BLOCK_SIZE);
1396                 return true;
1397         }
1398
1399         if (validity == VDO_BLOCK_MAP_PAGE_BAD) {
1400                 vdo_log_error_strerror(VDO_BAD_PAGE,
1401                                        "Expected page %llu but got page %llu instead",
1402                                        (unsigned long long) pbn,
1403                                        (unsigned long long) vdo_get_block_map_page_pbn(loaded));
1404         }
1405
1406         return false;
1407 }
1408
1409 /**
1410  * in_cyclic_range() - Check whether the given value is between the lower and upper bounds, within
1411  *                     a cyclic range of values from 0 to (modulus - 1).
1412  * @lower: The lowest value to accept.
1413  * @value: The value to check.
1414  * @upper: The highest value to accept.
1415  * @modulus: The size of the cyclic space, no more than 2^15.
1416  *
1417  * The value and both bounds must be smaller than the modulus.
1418  *
1419  * Return: true if the value is in range.
1420  */
1421 static bool in_cyclic_range(u16 lower, u16 value, u16 upper, u16 modulus)
1422 {
1423         if (value < lower)
1424                 value += modulus;
1425         if (upper < lower)
1426                 upper += modulus;
1427         return (value <= upper);
1428 }
1429
1430 /**
1431  * is_not_older() - Check whether a generation is strictly older than some other generation in the
1432  *                  context of a zone's current generation range.
1433  * @zone: The zone in which to do the comparison.
1434  * @a: The generation in question.
1435  * @b: The generation to compare to.
1436  *
1437  * Return: true if generation @a is not strictly older than generation @b in the context of @zone
1438  */
1439 static bool __must_check is_not_older(struct block_map_zone *zone, u8 a, u8 b)
1440 {
1441         int result;
1442
1443         result = VDO_ASSERT((in_cyclic_range(zone->oldest_generation, a, zone->generation, 1 << 8) &&
1444                              in_cyclic_range(zone->oldest_generation, b, zone->generation, 1 << 8)),
1445                             "generation(s) %u, %u are out of range [%u, %u]",
1446                             a, b, zone->oldest_generation, zone->generation);
1447         if (result != VDO_SUCCESS) {
1448                 enter_zone_read_only_mode(zone, result);
1449                 return true;
1450         }
1451
1452         return in_cyclic_range(b, a, zone->generation, 1 << 8);
1453 }
1454
1455 static void release_generation(struct block_map_zone *zone, u8 generation)
1456 {
1457         int result;
1458
1459         result = VDO_ASSERT((zone->dirty_page_counts[generation] > 0),
1460                             "dirty page count underflow for generation %u", generation);
1461         if (result != VDO_SUCCESS) {
1462                 enter_zone_read_only_mode(zone, result);
1463                 return;
1464         }
1465
1466         zone->dirty_page_counts[generation]--;
1467         while ((zone->dirty_page_counts[zone->oldest_generation] == 0) &&
1468                (zone->oldest_generation != zone->generation))
1469                 zone->oldest_generation++;
1470 }
1471
1472 static void set_generation(struct block_map_zone *zone, struct tree_page *page,
1473                            u8 new_generation)
1474 {
1475         u32 new_count;
1476         int result;
1477         bool decrement_old = vdo_waiter_is_waiting(&page->waiter);
1478         u8 old_generation = page->generation;
1479
1480         if (decrement_old && (old_generation == new_generation))
1481                 return;
1482
1483         page->generation = new_generation;
1484         new_count = ++zone->dirty_page_counts[new_generation];
1485         result = VDO_ASSERT((new_count != 0), "dirty page count overflow for generation %u",
1486                             new_generation);
1487         if (result != VDO_SUCCESS) {
1488                 enter_zone_read_only_mode(zone, result);
1489                 return;
1490         }
1491
1492         if (decrement_old)
1493                 release_generation(zone, old_generation);
1494 }
1495
1496 static void write_page(struct tree_page *tree_page, struct pooled_vio *vio);
1497
1498 /* Implements waiter_callback_fn */
1499 static void write_page_callback(struct vdo_waiter *waiter, void *context)
1500 {
1501         write_page(container_of(waiter, struct tree_page, waiter), context);
1502 }
1503
1504 static void acquire_vio(struct vdo_waiter *waiter, struct block_map_zone *zone)
1505 {
1506         waiter->callback = write_page_callback;
1507         acquire_vio_from_pool(zone->vio_pool, waiter);
1508 }
1509
1510 /* Return: true if all possible generations were not already active */
1511 static bool attempt_increment(struct block_map_zone *zone)
1512 {
1513         u8 generation = zone->generation + 1;
1514
1515         if (zone->oldest_generation == generation)
1516                 return false;
1517
1518         zone->generation = generation;
1519         return true;
1520 }
1521
1522 /* Launches a flush if one is not already in progress. */
1523 static void enqueue_page(struct tree_page *page, struct block_map_zone *zone)
1524 {
1525         if ((zone->flusher == NULL) && attempt_increment(zone)) {
1526                 zone->flusher = page;
1527                 acquire_vio(&page->waiter, zone);
1528                 return;
1529         }
1530
1531         vdo_waitq_enqueue_waiter(&zone->flush_waiters, &page->waiter);
1532 }
1533
1534 static void write_page_if_not_dirtied(struct vdo_waiter *waiter, void *context)
1535 {
1536         struct tree_page *page = container_of(waiter, struct tree_page, waiter);
1537         struct write_if_not_dirtied_context *write_context = context;
1538
1539         if (page->generation == write_context->generation) {
1540                 acquire_vio(waiter, write_context->zone);
1541                 return;
1542         }
1543
1544         enqueue_page(page, write_context->zone);
1545 }
1546
1547 static void return_to_pool(struct block_map_zone *zone, struct pooled_vio *vio)
1548 {
1549         return_vio_to_pool(zone->vio_pool, vio);
1550         check_for_drain_complete(zone);
1551 }
1552
1553 /* This callback is registered in write_initialized_page(). */
1554 static void finish_page_write(struct vdo_completion *completion)
1555 {
1556         bool dirty;
1557         struct vio *vio = as_vio(completion);
1558         struct pooled_vio *pooled = container_of(vio, struct pooled_vio, vio);
1559         struct tree_page *page = completion->parent;
1560         struct block_map_zone *zone = pooled->context;
1561
1562         vdo_release_recovery_journal_block_reference(zone->block_map->journal,
1563                                                      page->writing_recovery_lock,
1564                                                      VDO_ZONE_TYPE_LOGICAL,
1565                                                      zone->zone_number);
1566
1567         dirty = (page->writing_generation != page->generation);
1568         release_generation(zone, page->writing_generation);
1569         page->writing = false;
1570
1571         if (zone->flusher == page) {
1572                 struct write_if_not_dirtied_context context = {
1573                         .zone = zone,
1574                         .generation = page->writing_generation,
1575                 };
1576
1577                 vdo_waitq_notify_all_waiters(&zone->flush_waiters,
1578                                              write_page_if_not_dirtied, &context);
1579                 if (dirty && attempt_increment(zone)) {
1580                         write_page(page, pooled);
1581                         return;
1582                 }
1583
1584                 zone->flusher = NULL;
1585         }
1586
1587         if (dirty) {
1588                 enqueue_page(page, zone);
1589         } else if ((zone->flusher == NULL) && vdo_waitq_has_waiters(&zone->flush_waiters) &&
1590                    attempt_increment(zone)) {
1591                 zone->flusher = container_of(vdo_waitq_dequeue_waiter(&zone->flush_waiters),
1592                                              struct tree_page, waiter);
1593                 write_page(zone->flusher, pooled);
1594                 return;
1595         }
1596
1597         return_to_pool(zone, pooled);
1598 }
1599
1600 static void handle_write_error(struct vdo_completion *completion)
1601 {
1602         int result = completion->result;
1603         struct vio *vio = as_vio(completion);
1604         struct pooled_vio *pooled = container_of(vio, struct pooled_vio, vio);
1605         struct block_map_zone *zone = pooled->context;
1606
1607         vio_record_metadata_io_error(vio);
1608         enter_zone_read_only_mode(zone, result);
1609         return_to_pool(zone, pooled);
1610 }
1611
1612 static void write_page_endio(struct bio *bio);
1613
1614 static void write_initialized_page(struct vdo_completion *completion)
1615 {
1616         struct vio *vio = as_vio(completion);
1617         struct pooled_vio *pooled = container_of(vio, struct pooled_vio, vio);
1618         struct block_map_zone *zone = pooled->context;
1619         struct tree_page *tree_page = completion->parent;
1620         struct block_map_page *page = (struct block_map_page *) vio->data;
1621         blk_opf_t operation = REQ_OP_WRITE | REQ_PRIO;
1622
1623         /*
1624          * Now that we know the page has been written at least once, mark the copy we are writing
1625          * as initialized.
1626          */
1627         page->header.initialized = true;
1628
1629         if (zone->flusher == tree_page)
1630                 operation |= REQ_PREFLUSH;
1631
1632         vdo_submit_metadata_vio(vio, vdo_get_block_map_page_pbn(page),
1633                                 write_page_endio, handle_write_error,
1634                                 operation);
1635 }
1636
1637 static void write_page_endio(struct bio *bio)
1638 {
1639         struct pooled_vio *vio = bio->bi_private;
1640         struct block_map_zone *zone = vio->context;
1641         struct block_map_page *page = (struct block_map_page *) vio->vio.data;
1642
1643         continue_vio_after_io(&vio->vio,
1644                               (page->header.initialized ?
1645                                finish_page_write : write_initialized_page),
1646                               zone->thread_id);
1647 }
1648
1649 static void write_page(struct tree_page *tree_page, struct pooled_vio *vio)
1650 {
1651         struct vdo_completion *completion = &vio->vio.completion;
1652         struct block_map_zone *zone = vio->context;
1653         struct block_map_page *page = vdo_as_block_map_page(tree_page);
1654
1655         if ((zone->flusher != tree_page) &&
1656             is_not_older(zone, tree_page->generation, zone->generation)) {
1657                 /*
1658                  * This page was re-dirtied after the last flush was issued, hence we need to do
1659                  * another flush.
1660                  */
1661                 enqueue_page(tree_page, zone);
1662                 return_to_pool(zone, vio);
1663                 return;
1664         }
1665
1666         completion->parent = tree_page;
1667         memcpy(vio->vio.data, tree_page->page_buffer, VDO_BLOCK_SIZE);
1668         completion->callback_thread_id = zone->thread_id;
1669
1670         tree_page->writing = true;
1671         tree_page->writing_generation = tree_page->generation;
1672         tree_page->writing_recovery_lock = tree_page->recovery_lock;
1673
1674         /* Clear this now so that we know this page is not on any dirty list. */
1675         tree_page->recovery_lock = 0;
1676
1677         /*
1678          * We've already copied the page into the vio which will write it, so if it was not yet
1679          * initialized, the first write will indicate that (for torn write protection). It is now
1680          * safe to mark it as initialized in memory since if the write fails, the in memory state
1681          * will become irrelevant.
1682          */
1683         if (page->header.initialized) {
1684                 write_initialized_page(completion);
1685                 return;
1686         }
1687
1688         page->header.initialized = true;
1689         vdo_submit_metadata_vio(&vio->vio, vdo_get_block_map_page_pbn(page),
1690                                 write_page_endio, handle_write_error,
1691                                 REQ_OP_WRITE | REQ_PRIO);
1692 }
1693
1694 /* Release a lock on a page which was being loaded or allocated. */
1695 static void release_page_lock(struct data_vio *data_vio, char *what)
1696 {
1697         struct block_map_zone *zone;
1698         struct tree_lock *lock_holder;
1699         struct tree_lock *lock = &data_vio->tree_lock;
1700
1701         VDO_ASSERT_LOG_ONLY(lock->locked,
1702                             "release of unlocked block map page %s for key %llu in tree %u",
1703                             what, (unsigned long long) lock->key, lock->root_index);
1704
1705         zone = data_vio->logical.zone->block_map_zone;
1706         lock_holder = vdo_int_map_remove(zone->loading_pages, lock->key);
1707         VDO_ASSERT_LOG_ONLY((lock_holder == lock),
1708                             "block map page %s mismatch for key %llu in tree %u",
1709                             what, (unsigned long long) lock->key, lock->root_index);
1710         lock->locked = false;
1711 }
1712
1713 static void finish_lookup(struct data_vio *data_vio, int result)
1714 {
1715         data_vio->tree_lock.height = 0;
1716
1717         --data_vio->logical.zone->block_map_zone->active_lookups;
1718
1719         set_data_vio_logical_callback(data_vio, continue_data_vio_with_block_map_slot);
1720         data_vio->vio.completion.error_handler = handle_data_vio_error;
1721         continue_data_vio_with_error(data_vio, result);
1722 }
1723
1724 static void abort_lookup_for_waiter(struct vdo_waiter *waiter, void *context)
1725 {
1726         struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter);
1727         int result = *((int *) context);
1728
1729         if (!data_vio->write) {
1730                 if (result == VDO_NO_SPACE)
1731                         result = VDO_SUCCESS;
1732         } else if (result != VDO_NO_SPACE) {
1733                 result = VDO_READ_ONLY;
1734         }
1735
1736         finish_lookup(data_vio, result);
1737 }
1738
1739 static void abort_lookup(struct data_vio *data_vio, int result, char *what)
1740 {
1741         if (result != VDO_NO_SPACE)
1742                 enter_zone_read_only_mode(data_vio->logical.zone->block_map_zone, result);
1743
1744         if (data_vio->tree_lock.locked) {
1745                 release_page_lock(data_vio, what);
1746                 vdo_waitq_notify_all_waiters(&data_vio->tree_lock.waiters,
1747                                              abort_lookup_for_waiter,
1748                                              &result);
1749         }
1750
1751         finish_lookup(data_vio, result);
1752 }
1753
1754 static void abort_load(struct data_vio *data_vio, int result)
1755 {
1756         abort_lookup(data_vio, result, "load");
1757 }
1758
1759 static bool __must_check is_invalid_tree_entry(const struct vdo *vdo,
1760                                                const struct data_location *mapping,
1761                                                height_t height)
1762 {
1763         if (!vdo_is_valid_location(mapping) ||
1764             vdo_is_state_compressed(mapping->state) ||
1765             (vdo_is_mapped_location(mapping) && (mapping->pbn == VDO_ZERO_BLOCK)))
1766                 return true;
1767
1768         /* Roots aren't physical data blocks, so we can't check their PBNs. */
1769         if (height == VDO_BLOCK_MAP_TREE_HEIGHT)
1770                 return false;
1771
1772         return !vdo_is_physical_data_block(vdo->depot, mapping->pbn);
1773 }
1774
1775 static void load_block_map_page(struct block_map_zone *zone, struct data_vio *data_vio);
1776 static void allocate_block_map_page(struct block_map_zone *zone,
1777                                     struct data_vio *data_vio);
1778
1779 static void continue_with_loaded_page(struct data_vio *data_vio,
1780                                       struct block_map_page *page)
1781 {
1782         struct tree_lock *lock = &data_vio->tree_lock;
1783         struct block_map_tree_slot slot = lock->tree_slots[lock->height];
1784         struct data_location mapping =
1785                 vdo_unpack_block_map_entry(&page->entries[slot.block_map_slot.slot]);
1786
1787         if (is_invalid_tree_entry(vdo_from_data_vio(data_vio), &mapping, lock->height)) {
1788                 vdo_log_error_strerror(VDO_BAD_MAPPING,
1789                                        "Invalid block map tree PBN: %llu with state %u for page index %u at height %u",
1790                                        (unsigned long long) mapping.pbn, mapping.state,
1791                                        lock->tree_slots[lock->height - 1].page_index,
1792                                        lock->height - 1);
1793                 abort_load(data_vio, VDO_BAD_MAPPING);
1794                 return;
1795         }
1796
1797         if (!vdo_is_mapped_location(&mapping)) {
1798                 /* The page we need is unallocated */
1799                 allocate_block_map_page(data_vio->logical.zone->block_map_zone,
1800                                         data_vio);
1801                 return;
1802         }
1803
1804         lock->tree_slots[lock->height - 1].block_map_slot.pbn = mapping.pbn;
1805         if (lock->height == 1) {
1806                 finish_lookup(data_vio, VDO_SUCCESS);
1807                 return;
1808         }
1809
1810         /* We know what page we need to load next */
1811         load_block_map_page(data_vio->logical.zone->block_map_zone, data_vio);
1812 }
1813
1814 static void continue_load_for_waiter(struct vdo_waiter *waiter, void *context)
1815 {
1816         struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter);
1817
1818         data_vio->tree_lock.height--;
1819         continue_with_loaded_page(data_vio, context);
1820 }
1821
1822 static void finish_block_map_page_load(struct vdo_completion *completion)
1823 {
1824         physical_block_number_t pbn;
1825         struct tree_page *tree_page;
1826         struct block_map_page *page;
1827         nonce_t nonce;
1828         struct vio *vio = as_vio(completion);
1829         struct pooled_vio *pooled = vio_as_pooled_vio(vio);
1830         struct data_vio *data_vio = completion->parent;
1831         struct block_map_zone *zone = pooled->context;
1832         struct tree_lock *tree_lock = &data_vio->tree_lock;
1833
1834         tree_lock->height--;
1835         pbn = tree_lock->tree_slots[tree_lock->height].block_map_slot.pbn;
1836         tree_page = get_tree_page(zone, tree_lock);
1837         page = (struct block_map_page *) tree_page->page_buffer;
1838         nonce = zone->block_map->nonce;
1839
1840         if (!vdo_copy_valid_page(vio->data, nonce, pbn, page))
1841                 vdo_format_block_map_page(page, nonce, pbn, false);
1842         return_vio_to_pool(zone->vio_pool, pooled);
1843
1844         /* Release our claim to the load and wake any waiters */
1845         release_page_lock(data_vio, "load");
1846         vdo_waitq_notify_all_waiters(&tree_lock->waiters, continue_load_for_waiter, page);
1847         continue_with_loaded_page(data_vio, page);
1848 }
1849
1850 static void handle_io_error(struct vdo_completion *completion)
1851 {
1852         int result = completion->result;
1853         struct vio *vio = as_vio(completion);
1854         struct pooled_vio *pooled = container_of(vio, struct pooled_vio, vio);
1855         struct data_vio *data_vio = completion->parent;
1856         struct block_map_zone *zone = pooled->context;
1857
1858         vio_record_metadata_io_error(vio);
1859         return_vio_to_pool(zone->vio_pool, pooled);
1860         abort_load(data_vio, result);
1861 }
1862
1863 static void load_page_endio(struct bio *bio)
1864 {
1865         struct vio *vio = bio->bi_private;
1866         struct data_vio *data_vio = vio->completion.parent;
1867
1868         continue_vio_after_io(vio, finish_block_map_page_load,
1869                               data_vio->logical.zone->thread_id);
1870 }
1871
1872 static void load_page(struct vdo_waiter *waiter, void *context)
1873 {
1874         struct pooled_vio *pooled = context;
1875         struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter);
1876         struct tree_lock *lock = &data_vio->tree_lock;
1877         physical_block_number_t pbn = lock->tree_slots[lock->height - 1].block_map_slot.pbn;
1878
1879         pooled->vio.completion.parent = data_vio;
1880         vdo_submit_metadata_vio(&pooled->vio, pbn, load_page_endio,
1881                                 handle_io_error, REQ_OP_READ | REQ_PRIO);
1882 }
1883
1884 /*
1885  * If the page is already locked, queue up to wait for the lock to be released. If the lock is
1886  * acquired, @data_vio->tree_lock.locked will be true.
1887  */
1888 static int attempt_page_lock(struct block_map_zone *zone, struct data_vio *data_vio)
1889 {
1890         int result;
1891         struct tree_lock *lock_holder;
1892         struct tree_lock *lock = &data_vio->tree_lock;
1893         height_t height = lock->height;
1894         struct block_map_tree_slot tree_slot = lock->tree_slots[height];
1895         union page_key key;
1896
1897         key.descriptor = (struct page_descriptor) {
1898                 .root_index = lock->root_index,
1899                 .height = height,
1900                 .page_index = tree_slot.page_index,
1901                 .slot = tree_slot.block_map_slot.slot,
1902         };
1903         lock->key = key.key;
1904
1905         result = vdo_int_map_put(zone->loading_pages, lock->key,
1906                                  lock, false, (void **) &lock_holder);
1907         if (result != VDO_SUCCESS)
1908                 return result;
1909
1910         if (lock_holder == NULL) {
1911                 /* We got the lock */
1912                 data_vio->tree_lock.locked = true;
1913                 return VDO_SUCCESS;
1914         }
1915
1916         /* Someone else is loading or allocating the page we need */
1917         vdo_waitq_enqueue_waiter(&lock_holder->waiters, &data_vio->waiter);
1918         return VDO_SUCCESS;
1919 }
1920
1921 /* Load a block map tree page from disk, for the next level in the data vio tree lock. */
1922 static void load_block_map_page(struct block_map_zone *zone, struct data_vio *data_vio)
1923 {
1924         int result;
1925
1926         result = attempt_page_lock(zone, data_vio);
1927         if (result != VDO_SUCCESS) {
1928                 abort_load(data_vio, result);
1929                 return;
1930         }
1931
1932         if (data_vio->tree_lock.locked) {
1933                 data_vio->waiter.callback = load_page;
1934                 acquire_vio_from_pool(zone->vio_pool, &data_vio->waiter);
1935         }
1936 }
1937
1938 static void allocation_failure(struct vdo_completion *completion)
1939 {
1940         struct data_vio *data_vio = as_data_vio(completion);
1941
1942         if (vdo_requeue_completion_if_needed(completion,
1943                                              data_vio->logical.zone->thread_id))
1944                 return;
1945
1946         abort_lookup(data_vio, completion->result, "allocation");
1947 }
1948
1949 static void continue_allocation_for_waiter(struct vdo_waiter *waiter, void *context)
1950 {
1951         struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter);
1952         struct tree_lock *tree_lock = &data_vio->tree_lock;
1953         physical_block_number_t pbn = *((physical_block_number_t *) context);
1954
1955         tree_lock->height--;
1956         data_vio->tree_lock.tree_slots[tree_lock->height].block_map_slot.pbn = pbn;
1957
1958         if (tree_lock->height == 0) {
1959                 finish_lookup(data_vio, VDO_SUCCESS);
1960                 return;
1961         }
1962
1963         allocate_block_map_page(data_vio->logical.zone->block_map_zone, data_vio);
1964 }
1965
1966 /** expire_oldest_list() - Expire the oldest list. */
1967 static void expire_oldest_list(struct dirty_lists *dirty_lists)
1968 {
1969         block_count_t i = dirty_lists->offset++;
1970
1971         dirty_lists->oldest_period++;
1972         if (!list_empty(&dirty_lists->eras[i][VDO_TREE_PAGE])) {
1973                 list_splice_tail_init(&dirty_lists->eras[i][VDO_TREE_PAGE],
1974                                       &dirty_lists->expired[VDO_TREE_PAGE]);
1975         }
1976
1977         if (!list_empty(&dirty_lists->eras[i][VDO_CACHE_PAGE])) {
1978                 list_splice_tail_init(&dirty_lists->eras[i][VDO_CACHE_PAGE],
1979                                       &dirty_lists->expired[VDO_CACHE_PAGE]);
1980         }
1981
1982         if (dirty_lists->offset == dirty_lists->maximum_age)
1983                 dirty_lists->offset = 0;
1984 }
1985
1986
1987 /** update_period() - Update the dirty_lists period if necessary. */
1988 static void update_period(struct dirty_lists *dirty, sequence_number_t period)
1989 {
1990         while (dirty->next_period <= period) {
1991                 if ((dirty->next_period - dirty->oldest_period) == dirty->maximum_age)
1992                         expire_oldest_list(dirty);
1993                 dirty->next_period++;
1994         }
1995 }
1996
1997 /** write_expired_elements() - Write out the expired list. */
1998 static void write_expired_elements(struct block_map_zone *zone)
1999 {
2000         struct tree_page *page, *ttmp;
2001         struct page_info *info, *ptmp;
2002         struct list_head *expired;
2003         u8 generation = zone->generation;
2004
2005         expired = &zone->dirty_lists->expired[VDO_TREE_PAGE];
2006         list_for_each_entry_safe(page, ttmp, expired, entry) {
2007                 int result;
2008
2009                 list_del_init(&page->entry);
2010
2011                 result = VDO_ASSERT(!vdo_waiter_is_waiting(&page->waiter),
2012                                     "Newly expired page not already waiting to write");
2013                 if (result != VDO_SUCCESS) {
2014                         enter_zone_read_only_mode(zone, result);
2015                         continue;
2016                 }
2017
2018                 set_generation(zone, page, generation);
2019                 if (!page->writing)
2020                         enqueue_page(page, zone);
2021         }
2022
2023         expired = &zone->dirty_lists->expired[VDO_CACHE_PAGE];
2024         list_for_each_entry_safe(info, ptmp, expired, state_entry) {
2025                 list_del_init(&info->state_entry);
2026                 schedule_page_save(info);
2027         }
2028
2029         save_pages(&zone->page_cache);
2030 }
2031
2032 /**
2033  * add_to_dirty_lists() - Add an element to the dirty lists.
2034  * @zone: The zone in which we are operating.
2035  * @entry: The list entry of the element to add.
2036  * @type: The type of page.
2037  * @old_period: The period in which the element was previously dirtied, or 0 if it was not dirty.
2038  * @new_period: The period in which the element has now been dirtied, or 0 if it does not hold a
2039  *              lock.
2040  */
2041 static void add_to_dirty_lists(struct block_map_zone *zone,
2042                                struct list_head *entry,
2043                                enum block_map_page_type type,
2044                                sequence_number_t old_period,
2045                                sequence_number_t new_period)
2046 {
2047         struct dirty_lists *dirty_lists = zone->dirty_lists;
2048
2049         if ((old_period == new_period) || ((old_period != 0) && (old_period < new_period)))
2050                 return;
2051
2052         if (new_period < dirty_lists->oldest_period) {
2053                 list_move_tail(entry, &dirty_lists->expired[type]);
2054         } else {
2055                 update_period(dirty_lists, new_period);
2056                 list_move_tail(entry,
2057                                &dirty_lists->eras[new_period % dirty_lists->maximum_age][type]);
2058         }
2059
2060         write_expired_elements(zone);
2061 }
2062
2063 /*
2064  * Record the allocation in the tree and wake any waiters now that the write lock has been
2065  * released.
2066  */
2067 static void finish_block_map_allocation(struct vdo_completion *completion)
2068 {
2069         physical_block_number_t pbn;
2070         struct tree_page *tree_page;
2071         struct block_map_page *page;
2072         sequence_number_t old_lock;
2073         struct data_vio *data_vio = as_data_vio(completion);
2074         struct block_map_zone *zone = data_vio->logical.zone->block_map_zone;
2075         struct tree_lock *tree_lock = &data_vio->tree_lock;
2076         height_t height = tree_lock->height;
2077
2078         assert_data_vio_in_logical_zone(data_vio);
2079
2080         tree_page = get_tree_page(zone, tree_lock);
2081         pbn = tree_lock->tree_slots[height - 1].block_map_slot.pbn;
2082
2083         /* Record the allocation. */
2084         page = (struct block_map_page *) tree_page->page_buffer;
2085         old_lock = tree_page->recovery_lock;
2086         vdo_update_block_map_page(page, data_vio, pbn,
2087                                   VDO_MAPPING_STATE_UNCOMPRESSED,
2088                                   &tree_page->recovery_lock);
2089
2090         if (vdo_waiter_is_waiting(&tree_page->waiter)) {
2091                 /* This page is waiting to be written out. */
2092                 if (zone->flusher != tree_page) {
2093                         /*
2094                          * The outstanding flush won't cover the update we just made,
2095                          * so mark the page as needing another flush.
2096                          */
2097                         set_generation(zone, tree_page, zone->generation);
2098                 }
2099         } else {
2100                 /* Put the page on a dirty list */
2101                 if (old_lock == 0)
2102                         INIT_LIST_HEAD(&tree_page->entry);
2103                 add_to_dirty_lists(zone, &tree_page->entry, VDO_TREE_PAGE,
2104                                    old_lock, tree_page->recovery_lock);
2105         }
2106
2107         tree_lock->height--;
2108         if (height > 1) {
2109                 /* Format the interior node we just allocated (in memory). */
2110                 tree_page = get_tree_page(zone, tree_lock);
2111                 vdo_format_block_map_page(tree_page->page_buffer,
2112                                           zone->block_map->nonce,
2113                                           pbn, false);
2114         }
2115
2116         /* Release our claim to the allocation and wake any waiters */
2117         release_page_lock(data_vio, "allocation");
2118         vdo_waitq_notify_all_waiters(&tree_lock->waiters,
2119                                      continue_allocation_for_waiter, &pbn);
2120         if (tree_lock->height == 0) {
2121                 finish_lookup(data_vio, VDO_SUCCESS);
2122                 return;
2123         }
2124
2125         allocate_block_map_page(zone, data_vio);
2126 }
2127
2128 static void release_block_map_write_lock(struct vdo_completion *completion)
2129 {
2130         struct data_vio *data_vio = as_data_vio(completion);
2131
2132         assert_data_vio_in_allocated_zone(data_vio);
2133
2134         release_data_vio_allocation_lock(data_vio, true);
2135         launch_data_vio_logical_callback(data_vio, finish_block_map_allocation);
2136 }
2137
2138 /*
2139  * Newly allocated block map pages are set to have to MAXIMUM_REFERENCES after they are journaled,
2140  * to prevent deduplication against the block after we release the write lock on it, but before we
2141  * write out the page.
2142  */
2143 static void set_block_map_page_reference_count(struct vdo_completion *completion)
2144 {
2145         struct data_vio *data_vio = as_data_vio(completion);
2146
2147         assert_data_vio_in_allocated_zone(data_vio);
2148
2149         completion->callback = release_block_map_write_lock;
2150         vdo_modify_reference_count(completion, &data_vio->increment_updater);
2151 }
2152
2153 static void journal_block_map_allocation(struct vdo_completion *completion)
2154 {
2155         struct data_vio *data_vio = as_data_vio(completion);
2156
2157         assert_data_vio_in_journal_zone(data_vio);
2158
2159         set_data_vio_allocated_zone_callback(data_vio,
2160                                              set_block_map_page_reference_count);
2161         vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
2162 }
2163
2164 static void allocate_block(struct vdo_completion *completion)
2165 {
2166         struct data_vio *data_vio = as_data_vio(completion);
2167         struct tree_lock *lock = &data_vio->tree_lock;
2168         physical_block_number_t pbn;
2169
2170         assert_data_vio_in_allocated_zone(data_vio);
2171
2172         if (!vdo_allocate_block_in_zone(data_vio))
2173                 return;
2174
2175         pbn = data_vio->allocation.pbn;
2176         lock->tree_slots[lock->height - 1].block_map_slot.pbn = pbn;
2177         data_vio->increment_updater = (struct reference_updater) {
2178                 .operation = VDO_JOURNAL_BLOCK_MAP_REMAPPING,
2179                 .increment = true,
2180                 .zpbn = {
2181                         .pbn = pbn,
2182                         .state = VDO_MAPPING_STATE_UNCOMPRESSED,
2183                 },
2184                 .lock = data_vio->allocation.lock,
2185         };
2186
2187         launch_data_vio_journal_callback(data_vio, journal_block_map_allocation);
2188 }
2189
2190 static void allocate_block_map_page(struct block_map_zone *zone,
2191                                     struct data_vio *data_vio)
2192 {
2193         int result;
2194
2195         if (!data_vio->write || data_vio->is_discard) {
2196                 /* This is a pure read or a discard, so there's nothing left to do here. */
2197                 finish_lookup(data_vio, VDO_SUCCESS);
2198                 return;
2199         }
2200
2201         result = attempt_page_lock(zone, data_vio);
2202         if (result != VDO_SUCCESS) {
2203                 abort_lookup(data_vio, result, "allocation");
2204                 return;
2205         }
2206
2207         if (!data_vio->tree_lock.locked)
2208                 return;
2209
2210         data_vio_allocate_data_block(data_vio, VIO_BLOCK_MAP_WRITE_LOCK,
2211                                      allocate_block, allocation_failure);
2212 }
2213
2214 /**
2215  * vdo_find_block_map_slot() - Find the block map slot in which the block map entry for a data_vio
2216  *                             resides and cache that result in the data_vio.
2217  *
2218  * All ancestors in the tree will be allocated or loaded, as needed.
2219  */
2220 void vdo_find_block_map_slot(struct data_vio *data_vio)
2221 {
2222         page_number_t page_index;
2223         struct block_map_tree_slot tree_slot;
2224         struct data_location mapping;
2225         struct block_map_page *page = NULL;
2226         struct tree_lock *lock = &data_vio->tree_lock;
2227         struct block_map_zone *zone = data_vio->logical.zone->block_map_zone;
2228
2229         zone->active_lookups++;
2230         if (vdo_is_state_draining(&zone->state)) {
2231                 finish_lookup(data_vio, VDO_SHUTTING_DOWN);
2232                 return;
2233         }
2234
2235         lock->tree_slots[0].block_map_slot.slot =
2236                 data_vio->logical.lbn % VDO_BLOCK_MAP_ENTRIES_PER_PAGE;
2237         page_index = (lock->tree_slots[0].page_index / zone->block_map->root_count);
2238         tree_slot = (struct block_map_tree_slot) {
2239                 .page_index = page_index / VDO_BLOCK_MAP_ENTRIES_PER_PAGE,
2240                 .block_map_slot = {
2241                         .pbn = 0,
2242                         .slot = page_index % VDO_BLOCK_MAP_ENTRIES_PER_PAGE,
2243                 },
2244         };
2245
2246         for (lock->height = 1; lock->height <= VDO_BLOCK_MAP_TREE_HEIGHT; lock->height++) {
2247                 physical_block_number_t pbn;
2248
2249                 lock->tree_slots[lock->height] = tree_slot;
2250                 page = (struct block_map_page *) (get_tree_page(zone, lock)->page_buffer);
2251                 pbn = vdo_get_block_map_page_pbn(page);
2252                 if (pbn != VDO_ZERO_BLOCK) {
2253                         lock->tree_slots[lock->height].block_map_slot.pbn = pbn;
2254                         break;
2255                 }
2256
2257                 /* Calculate the index and slot for the next level. */
2258                 tree_slot.block_map_slot.slot =
2259                         tree_slot.page_index % VDO_BLOCK_MAP_ENTRIES_PER_PAGE;
2260                 tree_slot.page_index = tree_slot.page_index / VDO_BLOCK_MAP_ENTRIES_PER_PAGE;
2261         }
2262
2263         /* The page at this height has been allocated and loaded. */
2264         mapping = vdo_unpack_block_map_entry(&page->entries[tree_slot.block_map_slot.slot]);
2265         if (is_invalid_tree_entry(vdo_from_data_vio(data_vio), &mapping, lock->height)) {
2266                 vdo_log_error_strerror(VDO_BAD_MAPPING,
2267                                        "Invalid block map tree PBN: %llu with state %u for page index %u at height %u",
2268                                        (unsigned long long) mapping.pbn, mapping.state,
2269                                        lock->tree_slots[lock->height - 1].page_index,
2270                                        lock->height - 1);
2271                 abort_load(data_vio, VDO_BAD_MAPPING);
2272                 return;
2273         }
2274
2275         if (!vdo_is_mapped_location(&mapping)) {
2276                 /* The page we want one level down has not been allocated, so allocate it. */
2277                 allocate_block_map_page(zone, data_vio);
2278                 return;
2279         }
2280
2281         lock->tree_slots[lock->height - 1].block_map_slot.pbn = mapping.pbn;
2282         if (lock->height == 1) {
2283                 /* This is the ultimate block map page, so we're done */
2284                 finish_lookup(data_vio, VDO_SUCCESS);
2285                 return;
2286         }
2287
2288         /* We know what page we need to load. */
2289         load_block_map_page(zone, data_vio);
2290 }
2291
2292 /*
2293  * Find the PBN of a leaf block map page. This method may only be used after all allocated tree
2294  * pages have been loaded, otherwise, it may give the wrong answer (0).
2295  */
2296 physical_block_number_t vdo_find_block_map_page_pbn(struct block_map *map,
2297                                                     page_number_t page_number)
2298 {
2299         struct data_location mapping;
2300         struct tree_page *tree_page;
2301         struct block_map_page *page;
2302         root_count_t root_index = page_number % map->root_count;
2303         page_number_t page_index = page_number / map->root_count;
2304         slot_number_t slot = page_index % VDO_BLOCK_MAP_ENTRIES_PER_PAGE;
2305
2306         page_index /= VDO_BLOCK_MAP_ENTRIES_PER_PAGE;
2307
2308         tree_page = get_tree_page_by_index(map->forest, root_index, 1, page_index);
2309         page = (struct block_map_page *) tree_page->page_buffer;
2310         if (!page->header.initialized)
2311                 return VDO_ZERO_BLOCK;
2312
2313         mapping = vdo_unpack_block_map_entry(&page->entries[slot]);
2314         if (!vdo_is_valid_location(&mapping) || vdo_is_state_compressed(mapping.state))
2315                 return VDO_ZERO_BLOCK;
2316         return mapping.pbn;
2317 }
2318
2319 /*
2320  * Write a tree page or indicate that it has been re-dirtied if it is already being written. This
2321  * method is used when correcting errors in the tree during read-only rebuild.
2322  */
2323 void vdo_write_tree_page(struct tree_page *page, struct block_map_zone *zone)
2324 {
2325         bool waiting = vdo_waiter_is_waiting(&page->waiter);
2326
2327         if (waiting && (zone->flusher == page))
2328                 return;
2329
2330         set_generation(zone, page, zone->generation);
2331         if (waiting || page->writing)
2332                 return;
2333
2334         enqueue_page(page, zone);
2335 }
2336
2337 static int make_segment(struct forest *old_forest, block_count_t new_pages,
2338                         struct boundary *new_boundary, struct forest *forest)
2339 {
2340         size_t index = (old_forest == NULL) ? 0 : old_forest->segments;
2341         struct tree_page *page_ptr;
2342         page_count_t segment_sizes[VDO_BLOCK_MAP_TREE_HEIGHT];
2343         height_t height;
2344         root_count_t root;
2345         int result;
2346
2347         forest->segments = index + 1;
2348
2349         result = vdo_allocate(forest->segments, struct boundary,
2350                               "forest boundary array", &forest->boundaries);
2351         if (result != VDO_SUCCESS)
2352                 return result;
2353
2354         result = vdo_allocate(forest->segments, struct tree_page *,
2355                               "forest page pointers", &forest->pages);
2356         if (result != VDO_SUCCESS)
2357                 return result;
2358
2359         result = vdo_allocate(new_pages, struct tree_page,
2360                               "new forest pages", &forest->pages[index]);
2361         if (result != VDO_SUCCESS)
2362                 return result;
2363
2364         if (index > 0) {
2365                 memcpy(forest->boundaries, old_forest->boundaries,
2366                        index * sizeof(struct boundary));
2367                 memcpy(forest->pages, old_forest->pages,
2368                        index * sizeof(struct tree_page *));
2369         }
2370
2371         memcpy(&(forest->boundaries[index]), new_boundary, sizeof(struct boundary));
2372
2373         for (height = 0; height < VDO_BLOCK_MAP_TREE_HEIGHT; height++) {
2374                 segment_sizes[height] = new_boundary->levels[height];
2375                 if (index > 0)
2376                         segment_sizes[height] -= old_forest->boundaries[index - 1].levels[height];
2377         }
2378
2379         page_ptr = forest->pages[index];
2380         for (root = 0; root < forest->map->root_count; root++) {
2381                 struct block_map_tree_segment *segment;
2382                 struct block_map_tree *tree = &(forest->trees[root]);
2383                 height_t height;
2384
2385                 int result = vdo_allocate(forest->segments,
2386                                           struct block_map_tree_segment,
2387                                           "tree root segments", &tree->segments);
2388                 if (result != VDO_SUCCESS)
2389                         return result;
2390
2391                 if (index > 0) {
2392                         memcpy(tree->segments, old_forest->trees[root].segments,
2393                                index * sizeof(struct block_map_tree_segment));
2394                 }
2395
2396                 segment = &(tree->segments[index]);
2397                 for (height = 0; height < VDO_BLOCK_MAP_TREE_HEIGHT; height++) {
2398                         if (segment_sizes[height] == 0)
2399                                 continue;
2400
2401                         segment->levels[height] = page_ptr;
2402                         if (height == (VDO_BLOCK_MAP_TREE_HEIGHT - 1)) {
2403                                 /* Record the root. */
2404                                 struct block_map_page *page =
2405                                         vdo_format_block_map_page(page_ptr->page_buffer,
2406                                                                   forest->map->nonce,
2407                                                                   VDO_INVALID_PBN, true);
2408                                 page->entries[0] =
2409                                         vdo_pack_block_map_entry(forest->map->root_origin + root,
2410                                                                  VDO_MAPPING_STATE_UNCOMPRESSED);
2411                         }
2412                         page_ptr += segment_sizes[height];
2413                 }
2414         }
2415
2416         return VDO_SUCCESS;
2417 }
2418
2419 static void deforest(struct forest *forest, size_t first_page_segment)
2420 {
2421         root_count_t root;
2422
2423         if (forest->pages != NULL) {
2424                 size_t segment;
2425
2426                 for (segment = first_page_segment; segment < forest->segments; segment++)
2427                         vdo_free(forest->pages[segment]);
2428                 vdo_free(forest->pages);
2429         }
2430
2431         for (root = 0; root < forest->map->root_count; root++)
2432                 vdo_free(forest->trees[root].segments);
2433
2434         vdo_free(forest->boundaries);
2435         vdo_free(forest);
2436 }
2437
2438 /**
2439  * make_forest() - Make a collection of trees for a block_map, expanding the existing forest if
2440  *                 there is one.
2441  * @entries: The number of entries the block map will hold.
2442  *
2443  * Return: VDO_SUCCESS or an error.
2444  */
2445 static int make_forest(struct block_map *map, block_count_t entries)
2446 {
2447         struct forest *forest, *old_forest = map->forest;
2448         struct boundary new_boundary, *old_boundary = NULL;
2449         block_count_t new_pages;
2450         int result;
2451
2452         if (old_forest != NULL)
2453                 old_boundary = &(old_forest->boundaries[old_forest->segments - 1]);
2454
2455         new_pages = vdo_compute_new_forest_pages(map->root_count, old_boundary,
2456                                                  entries, &new_boundary);
2457         if (new_pages == 0) {
2458                 map->next_entry_count = entries;
2459                 return VDO_SUCCESS;
2460         }
2461
2462         result = vdo_allocate_extended(struct forest, map->root_count,
2463                                        struct block_map_tree, __func__,
2464                                        &forest);
2465         if (result != VDO_SUCCESS)
2466                 return result;
2467
2468         forest->map = map;
2469         result = make_segment(old_forest, new_pages, &new_boundary, forest);
2470         if (result != VDO_SUCCESS) {
2471                 deforest(forest, forest->segments - 1);
2472                 return result;
2473         }
2474
2475         map->next_forest = forest;
2476         map->next_entry_count = entries;
2477         return VDO_SUCCESS;
2478 }
2479
2480 /**
2481  * replace_forest() - Replace a block_map's forest with the already-prepared larger forest.
2482  */
2483 static void replace_forest(struct block_map *map)
2484 {
2485         if (map->next_forest != NULL) {
2486                 if (map->forest != NULL)
2487                         deforest(map->forest, map->forest->segments);
2488                 map->forest = vdo_forget(map->next_forest);
2489         }
2490
2491         map->entry_count = map->next_entry_count;
2492         map->next_entry_count = 0;
2493 }
2494
2495 /**
2496  * finish_cursor() - Finish the traversal of a single tree. If it was the last cursor, finish the
2497  *                   traversal.
2498  */
2499 static void finish_cursor(struct cursor *cursor)
2500 {
2501         struct cursors *cursors = cursor->parent;
2502         struct vdo_completion *completion = cursors->completion;
2503
2504         return_vio_to_pool(cursors->pool, vdo_forget(cursor->vio));
2505         if (--cursors->active_roots > 0)
2506                 return;
2507
2508         vdo_free(cursors);
2509
2510         vdo_finish_completion(completion);
2511 }
2512
2513 static void traverse(struct cursor *cursor);
2514
2515 /**
2516  * continue_traversal() - Continue traversing a block map tree.
2517  * @completion: The VIO doing a read or write.
2518  */
2519 static void continue_traversal(struct vdo_completion *completion)
2520 {
2521         vio_record_metadata_io_error(as_vio(completion));
2522         traverse(completion->parent);
2523 }
2524
2525 /**
2526  * finish_traversal_load() - Continue traversing a block map tree now that a page has been loaded.
2527  * @completion: The VIO doing the read.
2528  */
2529 static void finish_traversal_load(struct vdo_completion *completion)
2530 {
2531         struct cursor *cursor = completion->parent;
2532         height_t height = cursor->height;
2533         struct cursor_level *level = &cursor->levels[height];
2534         struct tree_page *tree_page =
2535                 &(cursor->tree->segments[0].levels[height][level->page_index]);
2536         struct block_map_page *page = (struct block_map_page *) tree_page->page_buffer;
2537
2538         vdo_copy_valid_page(cursor->vio->vio.data,
2539                             cursor->parent->zone->block_map->nonce,
2540                             pbn_from_vio_bio(cursor->vio->vio.bio), page);
2541         traverse(cursor);
2542 }
2543
2544 static void traversal_endio(struct bio *bio)
2545 {
2546         struct vio *vio = bio->bi_private;
2547         struct cursor *cursor = vio->completion.parent;
2548
2549         continue_vio_after_io(vio, finish_traversal_load,
2550                               cursor->parent->zone->thread_id);
2551 }
2552
2553 /**
2554  * traverse() - Traverse a single block map tree.
2555  *
2556  * This is the recursive heart of the traversal process.
2557  */
2558 static void traverse(struct cursor *cursor)
2559 {
2560         for (; cursor->height < VDO_BLOCK_MAP_TREE_HEIGHT; cursor->height++) {
2561                 height_t height = cursor->height;
2562                 struct cursor_level *level = &cursor->levels[height];
2563                 struct tree_page *tree_page =
2564                         &(cursor->tree->segments[0].levels[height][level->page_index]);
2565                 struct block_map_page *page = (struct block_map_page *) tree_page->page_buffer;
2566
2567                 if (!page->header.initialized)
2568                         continue;
2569
2570                 for (; level->slot < VDO_BLOCK_MAP_ENTRIES_PER_PAGE; level->slot++) {
2571                         struct cursor_level *next_level;
2572                         page_number_t entry_index =
2573                                 (VDO_BLOCK_MAP_ENTRIES_PER_PAGE * level->page_index) + level->slot;
2574                         struct data_location location =
2575                                 vdo_unpack_block_map_entry(&page->entries[level->slot]);
2576
2577                         if (!vdo_is_valid_location(&location)) {
2578                                 /* This entry is invalid, so remove it from the page. */
2579                                 page->entries[level->slot] = UNMAPPED_BLOCK_MAP_ENTRY;
2580                                 vdo_write_tree_page(tree_page, cursor->parent->zone);
2581                                 continue;
2582                         }
2583
2584                         if (!vdo_is_mapped_location(&location))
2585                                 continue;
2586
2587                         /* Erase mapped entries past the end of the logical space. */
2588                         if (entry_index >= cursor->boundary.levels[height]) {
2589                                 page->entries[level->slot] = UNMAPPED_BLOCK_MAP_ENTRY;
2590                                 vdo_write_tree_page(tree_page, cursor->parent->zone);
2591                                 continue;
2592                         }
2593
2594                         if (cursor->height < VDO_BLOCK_MAP_TREE_HEIGHT - 1) {
2595                                 int result = cursor->parent->entry_callback(location.pbn,
2596                                                                             cursor->parent->completion);
2597                                 if (result != VDO_SUCCESS) {
2598                                         page->entries[level->slot] = UNMAPPED_BLOCK_MAP_ENTRY;
2599                                         vdo_write_tree_page(tree_page, cursor->parent->zone);
2600                                         continue;
2601                                 }
2602                         }
2603
2604                         if (cursor->height == 0)
2605                                 continue;
2606
2607                         cursor->height--;
2608                         next_level = &cursor->levels[cursor->height];
2609                         next_level->page_index = entry_index;
2610                         next_level->slot = 0;
2611                         level->slot++;
2612                         vdo_submit_metadata_vio(&cursor->vio->vio, location.pbn,
2613                                                 traversal_endio, continue_traversal,
2614                                                 REQ_OP_READ | REQ_PRIO);
2615                         return;
2616                 }
2617         }
2618
2619         finish_cursor(cursor);
2620 }
2621
2622 /**
2623  * launch_cursor() - Start traversing a single block map tree now that the cursor has a VIO with
2624  *                   which to load pages.
2625  * @context: The pooled_vio just acquired.
2626  *
2627  * Implements waiter_callback_fn.
2628  */
2629 static void launch_cursor(struct vdo_waiter *waiter, void *context)
2630 {
2631         struct cursor *cursor = container_of(waiter, struct cursor, waiter);
2632         struct pooled_vio *pooled = context;
2633
2634         cursor->vio = pooled;
2635         pooled->vio.completion.parent = cursor;
2636         pooled->vio.completion.callback_thread_id = cursor->parent->zone->thread_id;
2637         traverse(cursor);
2638 }
2639
2640 /**
2641  * compute_boundary() - Compute the number of pages used at each level of the given root's tree.
2642  *
2643  * Return: The list of page counts as a boundary structure.
2644  */
2645 static struct boundary compute_boundary(struct block_map *map, root_count_t root_index)
2646 {
2647         struct boundary boundary;
2648         height_t height;
2649         page_count_t leaf_pages = vdo_compute_block_map_page_count(map->entry_count);
2650         /*
2651          * Compute the leaf pages for this root. If the number of leaf pages does not distribute
2652          * evenly, we must determine if this root gets an extra page. Extra pages are assigned to
2653          * roots starting from tree 0.
2654          */
2655         page_count_t last_tree_root = (leaf_pages - 1) % map->root_count;
2656         page_count_t level_pages = leaf_pages / map->root_count;
2657
2658         if (root_index <= last_tree_root)
2659                 level_pages++;
2660
2661         for (height = 0; height < VDO_BLOCK_MAP_TREE_HEIGHT - 1; height++) {
2662                 boundary.levels[height] = level_pages;
2663                 level_pages = DIV_ROUND_UP(level_pages, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
2664         }
2665
2666         /* The root node always exists, even if the root is otherwise unused. */
2667         boundary.levels[VDO_BLOCK_MAP_TREE_HEIGHT - 1] = 1;
2668
2669         return boundary;
2670 }
2671
2672 /**
2673  * vdo_traverse_forest() - Walk the entire forest of a block map.
2674  * @callback: A function to call with the pbn of each allocated node in the forest.
2675  * @completion: The completion to notify on each traversed PBN, and when traversal completes.
2676  */
2677 void vdo_traverse_forest(struct block_map *map, vdo_entry_callback_fn callback,
2678                          struct vdo_completion *completion)
2679 {
2680         root_count_t root;
2681         struct cursors *cursors;
2682         int result;
2683
2684         result = vdo_allocate_extended(struct cursors, map->root_count,
2685                                        struct cursor, __func__, &cursors);
2686         if (result != VDO_SUCCESS) {
2687                 vdo_fail_completion(completion, result);
2688                 return;
2689         }
2690
2691         cursors->zone = &map->zones[0];
2692         cursors->pool = cursors->zone->vio_pool;
2693         cursors->entry_callback = callback;
2694         cursors->completion = completion;
2695         cursors->active_roots = map->root_count;
2696         for (root = 0; root < map->root_count; root++) {
2697                 struct cursor *cursor = &cursors->cursors[root];
2698
2699                 *cursor = (struct cursor) {
2700                         .tree = &map->forest->trees[root],
2701                         .height = VDO_BLOCK_MAP_TREE_HEIGHT - 1,
2702                         .parent = cursors,
2703                         .boundary = compute_boundary(map, root),
2704                 };
2705
2706                 cursor->waiter.callback = launch_cursor;
2707                 acquire_vio_from_pool(cursors->pool, &cursor->waiter);
2708         }
2709 }
2710
2711 /**
2712  * initialize_block_map_zone() - Initialize the per-zone portions of the block map.
2713  * @maximum_age: The number of journal blocks before a dirtied page is considered old and must be
2714  *               written out.
2715  */
2716 static int __must_check initialize_block_map_zone(struct block_map *map,
2717                                                   zone_count_t zone_number,
2718                                                   page_count_t cache_size,
2719                                                   block_count_t maximum_age)
2720 {
2721         int result;
2722         block_count_t i;
2723         struct vdo *vdo = map->vdo;
2724         struct block_map_zone *zone = &map->zones[zone_number];
2725
2726         BUILD_BUG_ON(sizeof(struct page_descriptor) != sizeof(u64));
2727
2728         zone->zone_number = zone_number;
2729         zone->thread_id = vdo->thread_config.logical_threads[zone_number];
2730         zone->block_map = map;
2731
2732         result = vdo_allocate_extended(struct dirty_lists, maximum_age,
2733                                        dirty_era_t, __func__,
2734                                        &zone->dirty_lists);
2735         if (result != VDO_SUCCESS)
2736                 return result;
2737
2738         zone->dirty_lists->maximum_age = maximum_age;
2739         INIT_LIST_HEAD(&zone->dirty_lists->expired[VDO_TREE_PAGE]);
2740         INIT_LIST_HEAD(&zone->dirty_lists->expired[VDO_CACHE_PAGE]);
2741
2742         for (i = 0; i < maximum_age; i++) {
2743                 INIT_LIST_HEAD(&zone->dirty_lists->eras[i][VDO_TREE_PAGE]);
2744                 INIT_LIST_HEAD(&zone->dirty_lists->eras[i][VDO_CACHE_PAGE]);
2745         }
2746
2747         result = vdo_int_map_create(VDO_LOCK_MAP_CAPACITY, &zone->loading_pages);
2748         if (result != VDO_SUCCESS)
2749                 return result;
2750
2751         result = make_vio_pool(vdo, BLOCK_MAP_VIO_POOL_SIZE,
2752                                zone->thread_id, VIO_TYPE_BLOCK_MAP_INTERIOR,
2753                                VIO_PRIORITY_METADATA, zone, &zone->vio_pool);
2754         if (result != VDO_SUCCESS)
2755                 return result;
2756
2757         vdo_set_admin_state_code(&zone->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
2758
2759         zone->page_cache.zone = zone;
2760         zone->page_cache.vdo = vdo;
2761         zone->page_cache.page_count = cache_size / map->zone_count;
2762         zone->page_cache.stats.free_pages = zone->page_cache.page_count;
2763
2764         result = allocate_cache_components(&zone->page_cache);
2765         if (result != VDO_SUCCESS)
2766                 return result;
2767
2768         /* initialize empty circular queues */
2769         INIT_LIST_HEAD(&zone->page_cache.lru_list);
2770         INIT_LIST_HEAD(&zone->page_cache.outgoing_list);
2771
2772         return VDO_SUCCESS;
2773 }
2774
2775 /* Implements vdo_zone_thread_getter_fn */
2776 static thread_id_t get_block_map_zone_thread_id(void *context, zone_count_t zone_number)
2777 {
2778         struct block_map *map = context;
2779
2780         return map->zones[zone_number].thread_id;
2781 }
2782
2783 /* Implements vdo_action_preamble_fn */
2784 static void prepare_for_era_advance(void *context, struct vdo_completion *parent)
2785 {
2786         struct block_map *map = context;
2787
2788         map->current_era_point = map->pending_era_point;
2789         vdo_finish_completion(parent);
2790 }
2791
2792 /* Implements vdo_zone_action_fn */
2793 static void advance_block_map_zone_era(void *context, zone_count_t zone_number,
2794                                        struct vdo_completion *parent)
2795 {
2796         struct block_map *map = context;
2797         struct block_map_zone *zone = &map->zones[zone_number];
2798
2799         update_period(zone->dirty_lists, map->current_era_point);
2800         write_expired_elements(zone);
2801         vdo_finish_completion(parent);
2802 }
2803
2804 /*
2805  * Schedule an era advance if necessary. This method should not be called directly. Rather, call
2806  * vdo_schedule_default_action() on the block map's action manager.
2807  *
2808  * Implements vdo_action_scheduler_fn.
2809  */
2810 static bool schedule_era_advance(void *context)
2811 {
2812         struct block_map *map = context;
2813
2814         if (map->current_era_point == map->pending_era_point)
2815                 return false;
2816
2817         return vdo_schedule_action(map->action_manager, prepare_for_era_advance,
2818                                    advance_block_map_zone_era, NULL, NULL);
2819 }
2820
2821 static void uninitialize_block_map_zone(struct block_map_zone *zone)
2822 {
2823         struct vdo_page_cache *cache = &zone->page_cache;
2824
2825         vdo_free(vdo_forget(zone->dirty_lists));
2826         free_vio_pool(vdo_forget(zone->vio_pool));
2827         vdo_int_map_free(vdo_forget(zone->loading_pages));
2828         if (cache->infos != NULL) {
2829                 struct page_info *info;
2830
2831                 for (info = cache->infos; info < cache->infos + cache->page_count; info++)
2832                         free_vio(vdo_forget(info->vio));
2833         }
2834
2835         vdo_int_map_free(vdo_forget(cache->page_map));
2836         vdo_free(vdo_forget(cache->infos));
2837         vdo_free(vdo_forget(cache->pages));
2838 }
2839
2840 void vdo_free_block_map(struct block_map *map)
2841 {
2842         zone_count_t zone;
2843
2844         if (map == NULL)
2845                 return;
2846
2847         for (zone = 0; zone < map->zone_count; zone++)
2848                 uninitialize_block_map_zone(&map->zones[zone]);
2849
2850         vdo_abandon_block_map_growth(map);
2851         if (map->forest != NULL)
2852                 deforest(vdo_forget(map->forest), 0);
2853         vdo_free(vdo_forget(map->action_manager));
2854         vdo_free(map);
2855 }
2856
2857 /* @journal may be NULL. */
2858 int vdo_decode_block_map(struct block_map_state_2_0 state, block_count_t logical_blocks,
2859                          struct vdo *vdo, struct recovery_journal *journal,
2860                          nonce_t nonce, page_count_t cache_size, block_count_t maximum_age,
2861                          struct block_map **map_ptr)
2862 {
2863         struct block_map *map;
2864         int result;
2865         zone_count_t zone = 0;
2866
2867         BUILD_BUG_ON(VDO_BLOCK_MAP_ENTRIES_PER_PAGE !=
2868                      ((VDO_BLOCK_SIZE - sizeof(struct block_map_page)) /
2869                       sizeof(struct block_map_entry)));
2870         result = VDO_ASSERT(cache_size > 0, "block map cache size is specified");
2871         if (result != VDO_SUCCESS)
2872                 return result;
2873
2874         result = vdo_allocate_extended(struct block_map,
2875                                        vdo->thread_config.logical_zone_count,
2876                                        struct block_map_zone, __func__, &map);
2877         if (result != VDO_SUCCESS)
2878                 return result;
2879
2880         map->vdo = vdo;
2881         map->root_origin = state.root_origin;
2882         map->root_count = state.root_count;
2883         map->entry_count = logical_blocks;
2884         map->journal = journal;
2885         map->nonce = nonce;
2886
2887         result = make_forest(map, map->entry_count);
2888         if (result != VDO_SUCCESS) {
2889                 vdo_free_block_map(map);
2890                 return result;
2891         }
2892
2893         replace_forest(map);
2894
2895         map->zone_count = vdo->thread_config.logical_zone_count;
2896         for (zone = 0; zone < map->zone_count; zone++) {
2897                 result = initialize_block_map_zone(map, zone, cache_size, maximum_age);
2898                 if (result != VDO_SUCCESS) {
2899                         vdo_free_block_map(map);
2900                         return result;
2901                 }
2902         }
2903
2904         result = vdo_make_action_manager(map->zone_count, get_block_map_zone_thread_id,
2905                                          vdo_get_recovery_journal_thread_id(journal),
2906                                          map, schedule_era_advance, vdo,
2907                                          &map->action_manager);
2908         if (result != VDO_SUCCESS) {
2909                 vdo_free_block_map(map);
2910                 return result;
2911         }
2912
2913         *map_ptr = map;
2914         return VDO_SUCCESS;
2915 }
2916
2917 struct block_map_state_2_0 vdo_record_block_map(const struct block_map *map)
2918 {
2919         return (struct block_map_state_2_0) {
2920                 .flat_page_origin = VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
2921                 /* This is the flat page count, which has turned out to always be 0. */
2922                 .flat_page_count = 0,
2923                 .root_origin = map->root_origin,
2924                 .root_count = map->root_count,
2925         };
2926 }
2927
2928 /* The block map needs to know the journals' sequence number to initialize the eras. */
2929 void vdo_initialize_block_map_from_journal(struct block_map *map,
2930                                            struct recovery_journal *journal)
2931 {
2932         zone_count_t z = 0;
2933
2934         map->current_era_point = vdo_get_recovery_journal_current_sequence_number(journal);
2935         map->pending_era_point = map->current_era_point;
2936
2937         for (z = 0; z < map->zone_count; z++) {
2938                 struct dirty_lists *dirty_lists = map->zones[z].dirty_lists;
2939
2940                 VDO_ASSERT_LOG_ONLY(dirty_lists->next_period == 0, "current period not set");
2941                 dirty_lists->oldest_period = map->current_era_point;
2942                 dirty_lists->next_period = map->current_era_point + 1;
2943                 dirty_lists->offset = map->current_era_point % dirty_lists->maximum_age;
2944         }
2945 }
2946
2947 /* Compute the logical zone for the LBN of a data vio. */
2948 zone_count_t vdo_compute_logical_zone(struct data_vio *data_vio)
2949 {
2950         struct block_map *map = vdo_from_data_vio(data_vio)->block_map;
2951         struct tree_lock *tree_lock = &data_vio->tree_lock;
2952         page_number_t page_number = data_vio->logical.lbn / VDO_BLOCK_MAP_ENTRIES_PER_PAGE;
2953
2954         tree_lock->tree_slots[0].page_index = page_number;
2955         tree_lock->root_index = page_number % map->root_count;
2956         return (tree_lock->root_index % map->zone_count);
2957 }
2958
2959 void vdo_advance_block_map_era(struct block_map *map,
2960                                sequence_number_t recovery_block_number)
2961 {
2962         if (map == NULL)
2963                 return;
2964
2965         map->pending_era_point = recovery_block_number;
2966         vdo_schedule_default_action(map->action_manager);
2967 }
2968
2969 /* Implements vdo_admin_initiator_fn */
2970 static void initiate_drain(struct admin_state *state)
2971 {
2972         struct block_map_zone *zone = container_of(state, struct block_map_zone, state);
2973
2974         VDO_ASSERT_LOG_ONLY((zone->active_lookups == 0),
2975                             "%s() called with no active lookups", __func__);
2976
2977         if (!vdo_is_state_suspending(state)) {
2978                 while (zone->dirty_lists->oldest_period < zone->dirty_lists->next_period)
2979                         expire_oldest_list(zone->dirty_lists);
2980                 write_expired_elements(zone);
2981         }
2982
2983         check_for_drain_complete(zone);
2984 }
2985
2986 /* Implements vdo_zone_action_fn. */
2987 static void drain_zone(void *context, zone_count_t zone_number,
2988                        struct vdo_completion *parent)
2989 {
2990         struct block_map *map = context;
2991         struct block_map_zone *zone = &map->zones[zone_number];
2992
2993         vdo_start_draining(&zone->state,
2994                            vdo_get_current_manager_operation(map->action_manager),
2995                            parent, initiate_drain);
2996 }
2997
2998 void vdo_drain_block_map(struct block_map *map, const struct admin_state_code *operation,
2999                          struct vdo_completion *parent)
3000 {
3001         vdo_schedule_operation(map->action_manager, operation, NULL, drain_zone, NULL,
3002                                parent);
3003 }
3004
3005 /* Implements vdo_zone_action_fn. */
3006 static void resume_block_map_zone(void *context, zone_count_t zone_number,
3007                                   struct vdo_completion *parent)
3008 {
3009         struct block_map *map = context;
3010         struct block_map_zone *zone = &map->zones[zone_number];
3011
3012         vdo_fail_completion(parent, vdo_resume_if_quiescent(&zone->state));
3013 }
3014
3015 void vdo_resume_block_map(struct block_map *map, struct vdo_completion *parent)
3016 {
3017         vdo_schedule_operation(map->action_manager, VDO_ADMIN_STATE_RESUMING,
3018                                NULL, resume_block_map_zone, NULL, parent);
3019 }
3020
3021 /* Allocate an expanded collection of trees, for a future growth. */
3022 int vdo_prepare_to_grow_block_map(struct block_map *map,
3023                                   block_count_t new_logical_blocks)
3024 {
3025         if (map->next_entry_count == new_logical_blocks)
3026                 return VDO_SUCCESS;
3027
3028         if (map->next_entry_count > 0)
3029                 vdo_abandon_block_map_growth(map);
3030
3031         if (new_logical_blocks < map->entry_count) {
3032                 map->next_entry_count = map->entry_count;
3033                 return VDO_SUCCESS;
3034         }
3035
3036         return make_forest(map, new_logical_blocks);
3037 }
3038
3039 /* Implements vdo_action_preamble_fn */
3040 static void grow_forest(void *context, struct vdo_completion *completion)
3041 {
3042         replace_forest(context);
3043         vdo_finish_completion(completion);
3044 }
3045
3046 /* Requires vdo_prepare_to_grow_block_map() to have been previously called. */
3047 void vdo_grow_block_map(struct block_map *map, struct vdo_completion *parent)
3048 {
3049         vdo_schedule_operation(map->action_manager,
3050                                VDO_ADMIN_STATE_SUSPENDED_OPERATION,
3051                                grow_forest, NULL, NULL, parent);
3052 }
3053
3054 void vdo_abandon_block_map_growth(struct block_map *map)
3055 {
3056         struct forest *forest = vdo_forget(map->next_forest);
3057
3058         if (forest != NULL)
3059                 deforest(forest, forest->segments - 1);
3060
3061         map->next_entry_count = 0;
3062 }
3063
3064 /* Release the page completion and then continue the requester. */
3065 static inline void finish_processing_page(struct vdo_completion *completion, int result)
3066 {
3067         struct vdo_completion *parent = completion->parent;
3068
3069         vdo_release_page_completion(completion);
3070         vdo_continue_completion(parent, result);
3071 }
3072
3073 static void handle_page_error(struct vdo_completion *completion)
3074 {
3075         finish_processing_page(completion, completion->result);
3076 }
3077
3078 /* Fetch the mapping page for a block map update, and call the provided handler when fetched. */
3079 static void fetch_mapping_page(struct data_vio *data_vio, bool modifiable,
3080                                vdo_action_fn action)
3081 {
3082         struct block_map_zone *zone = data_vio->logical.zone->block_map_zone;
3083
3084         if (vdo_is_state_draining(&zone->state)) {
3085                 continue_data_vio_with_error(data_vio, VDO_SHUTTING_DOWN);
3086                 return;
3087         }
3088
3089         vdo_get_page(&data_vio->page_completion, zone,
3090                      data_vio->tree_lock.tree_slots[0].block_map_slot.pbn,
3091                      modifiable, &data_vio->vio.completion,
3092                      action, handle_page_error, false);
3093 }
3094
3095 /**
3096  * clear_mapped_location() - Clear a data_vio's mapped block location, setting it to be unmapped.
3097  *
3098  * This indicates the block map entry for the logical block is either unmapped or corrupted.
3099  */
3100 static void clear_mapped_location(struct data_vio *data_vio)
3101 {
3102         data_vio->mapped = (struct zoned_pbn) {
3103                 .state = VDO_MAPPING_STATE_UNMAPPED,
3104         };
3105 }
3106
3107 /**
3108  * set_mapped_location() - Decode and validate a block map entry, and set the mapped location of a
3109  *                         data_vio.
3110  *
3111  * Return: VDO_SUCCESS or VDO_BAD_MAPPING if the map entry is invalid or an error code for any
3112  *         other failure
3113  */
3114 static int __must_check set_mapped_location(struct data_vio *data_vio,
3115                                             const struct block_map_entry *entry)
3116 {
3117         /* Unpack the PBN for logging purposes even if the entry is invalid. */
3118         struct data_location mapped = vdo_unpack_block_map_entry(entry);
3119
3120         if (vdo_is_valid_location(&mapped)) {
3121                 int result;
3122
3123                 result = vdo_get_physical_zone(vdo_from_data_vio(data_vio),
3124                                                mapped.pbn, &data_vio->mapped.zone);
3125                 if (result == VDO_SUCCESS) {
3126                         data_vio->mapped.pbn = mapped.pbn;
3127                         data_vio->mapped.state = mapped.state;
3128                         return VDO_SUCCESS;
3129                 }
3130
3131                 /*
3132                  * Return all errors not specifically known to be errors from validating the
3133                  * location.
3134                  */
3135                 if ((result != VDO_OUT_OF_RANGE) && (result != VDO_BAD_MAPPING))
3136                         return result;
3137         }
3138
3139         /*
3140          * Log the corruption even if we wind up ignoring it for write VIOs, converting all cases
3141          * to VDO_BAD_MAPPING.
3142          */
3143         vdo_log_error_strerror(VDO_BAD_MAPPING,
3144                                "PBN %llu with state %u read from the block map was invalid",
3145                                (unsigned long long) mapped.pbn, mapped.state);
3146
3147         /*
3148          * A read VIO has no option but to report the bad mapping--reading zeros would be hiding
3149          * known data loss.
3150          */
3151         if (!data_vio->write)
3152                 return VDO_BAD_MAPPING;
3153
3154         /*
3155          * A write VIO only reads this mapping to decref the old block. Treat this as an unmapped
3156          * entry rather than fail the write.
3157          */
3158         clear_mapped_location(data_vio);
3159         return VDO_SUCCESS;
3160 }
3161
3162 /* This callback is registered in vdo_get_mapped_block(). */
3163 static void get_mapping_from_fetched_page(struct vdo_completion *completion)
3164 {
3165         int result;
3166         struct vdo_page_completion *vpc = as_vdo_page_completion(completion);
3167         const struct block_map_page *page;
3168         const struct block_map_entry *entry;
3169         struct data_vio *data_vio = as_data_vio(completion->parent);
3170         struct block_map_tree_slot *tree_slot;
3171
3172         if (completion->result != VDO_SUCCESS) {
3173                 finish_processing_page(completion, completion->result);
3174                 return;
3175         }
3176
3177         result = validate_completed_page(vpc, false);
3178         if (result != VDO_SUCCESS) {
3179                 finish_processing_page(completion, result);
3180                 return;
3181         }
3182
3183         page = (const struct block_map_page *) get_page_buffer(vpc->info);
3184         tree_slot = &data_vio->tree_lock.tree_slots[0];
3185         entry = &page->entries[tree_slot->block_map_slot.slot];
3186
3187         result = set_mapped_location(data_vio, entry);
3188         finish_processing_page(completion, result);
3189 }
3190
3191 void vdo_update_block_map_page(struct block_map_page *page, struct data_vio *data_vio,
3192                                physical_block_number_t pbn,
3193                                enum block_mapping_state mapping_state,
3194                                sequence_number_t *recovery_lock)
3195 {
3196         struct block_map_zone *zone = data_vio->logical.zone->block_map_zone;
3197         struct block_map *block_map = zone->block_map;
3198         struct recovery_journal *journal = block_map->journal;
3199         sequence_number_t old_locked, new_locked;
3200         struct tree_lock *tree_lock = &data_vio->tree_lock;
3201
3202         /* Encode the new mapping. */
3203         page->entries[tree_lock->tree_slots[tree_lock->height].block_map_slot.slot] =
3204                 vdo_pack_block_map_entry(pbn, mapping_state);
3205
3206         /* Adjust references on the recovery journal blocks. */
3207         old_locked = *recovery_lock;
3208         new_locked = data_vio->recovery_sequence_number;
3209
3210         if ((old_locked == 0) || (old_locked > new_locked)) {
3211                 vdo_acquire_recovery_journal_block_reference(journal, new_locked,
3212                                                              VDO_ZONE_TYPE_LOGICAL,
3213                                                              zone->zone_number);
3214
3215                 if (old_locked > 0) {
3216                         vdo_release_recovery_journal_block_reference(journal, old_locked,
3217                                                                      VDO_ZONE_TYPE_LOGICAL,
3218                                                                      zone->zone_number);
3219                 }
3220
3221                 *recovery_lock = new_locked;
3222         }
3223
3224         /*
3225          * FIXME: explain this more
3226          * Release the transferred lock from the data_vio.
3227          */
3228         vdo_release_journal_entry_lock(journal, new_locked);
3229         data_vio->recovery_sequence_number = 0;
3230 }
3231
3232 static void put_mapping_in_fetched_page(struct vdo_completion *completion)
3233 {
3234         struct data_vio *data_vio = as_data_vio(completion->parent);
3235         sequence_number_t old_lock;
3236         struct vdo_page_completion *vpc;
3237         struct page_info *info;
3238         int result;
3239
3240         if (completion->result != VDO_SUCCESS) {
3241                 finish_processing_page(completion, completion->result);
3242                 return;
3243         }
3244
3245         vpc = as_vdo_page_completion(completion);
3246         result = validate_completed_page(vpc, true);
3247         if (result != VDO_SUCCESS) {
3248                 finish_processing_page(completion, result);
3249                 return;
3250         }
3251
3252         info = vpc->info;
3253         old_lock = info->recovery_lock;
3254         vdo_update_block_map_page((struct block_map_page *) get_page_buffer(info),
3255                                   data_vio, data_vio->new_mapped.pbn,
3256                                   data_vio->new_mapped.state, &info->recovery_lock);
3257         set_info_state(info, PS_DIRTY);
3258         add_to_dirty_lists(info->cache->zone, &info->state_entry,
3259                            VDO_CACHE_PAGE, old_lock, info->recovery_lock);
3260         finish_processing_page(completion, VDO_SUCCESS);
3261 }
3262
3263 /* Read a stored block mapping into a data_vio. */
3264 void vdo_get_mapped_block(struct data_vio *data_vio)
3265 {
3266         if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
3267                 /*
3268                  * We know that the block map page for this LBN has not been allocated, so the
3269                  * block must be unmapped.
3270                  */
3271                 clear_mapped_location(data_vio);
3272                 continue_data_vio(data_vio);
3273                 return;
3274         }
3275
3276         fetch_mapping_page(data_vio, false, get_mapping_from_fetched_page);
3277 }
3278
3279 /* Update a stored block mapping to reflect a data_vio's new mapping. */
3280 void vdo_put_mapped_block(struct data_vio *data_vio)
3281 {
3282         fetch_mapping_page(data_vio, true, put_mapping_in_fetched_page);
3283 }
3284
3285 struct block_map_statistics vdo_get_block_map_statistics(struct block_map *map)
3286 {
3287         zone_count_t zone = 0;
3288         struct block_map_statistics totals;
3289
3290         memset(&totals, 0, sizeof(struct block_map_statistics));
3291         for (zone = 0; zone < map->zone_count; zone++) {
3292                 const struct block_map_statistics *stats =
3293                         &(map->zones[zone].page_cache.stats);
3294
3295                 totals.dirty_pages += READ_ONCE(stats->dirty_pages);
3296                 totals.clean_pages += READ_ONCE(stats->clean_pages);
3297                 totals.free_pages += READ_ONCE(stats->free_pages);
3298                 totals.failed_pages += READ_ONCE(stats->failed_pages);
3299                 totals.incoming_pages += READ_ONCE(stats->incoming_pages);
3300                 totals.outgoing_pages += READ_ONCE(stats->outgoing_pages);
3301                 totals.cache_pressure += READ_ONCE(stats->cache_pressure);
3302                 totals.read_count += READ_ONCE(stats->read_count);
3303                 totals.write_count += READ_ONCE(stats->write_count);
3304                 totals.failed_reads += READ_ONCE(stats->failed_reads);
3305                 totals.failed_writes += READ_ONCE(stats->failed_writes);
3306                 totals.reclaimed += READ_ONCE(stats->reclaimed);
3307                 totals.read_outgoing += READ_ONCE(stats->read_outgoing);
3308                 totals.found_in_cache += READ_ONCE(stats->found_in_cache);
3309                 totals.discard_required += READ_ONCE(stats->discard_required);
3310                 totals.wait_for_page += READ_ONCE(stats->wait_for_page);
3311                 totals.fetch_required += READ_ONCE(stats->fetch_required);
3312                 totals.pages_loaded += READ_ONCE(stats->pages_loaded);
3313                 totals.pages_saved += READ_ONCE(stats->pages_saved);
3314                 totals.flush_count += READ_ONCE(stats->flush_count);
3315         }
3316
3317         return totals;
3318 }