Merge tag 'for-6.9/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/devic...
[sfrench/cifs-2.6.git] / drivers / md / dm-raid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2011 Neil Brown
4  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/slab.h>
10 #include <linux/module.h>
11
12 #include "md.h"
13 #include "raid1.h"
14 #include "raid5.h"
15 #include "raid10.h"
16 #include "md-bitmap.h"
17
18 #include <linux/device-mapper.h>
19
20 #define DM_MSG_PREFIX "raid"
21 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
22
23 /*
24  * Minimum sectors of free reshape space per raid device
25  */
26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28 /*
29  * Minimum journal space 4 MiB in sectors.
30  */
31 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33 static bool devices_handle_discard_safely;
34
35 /*
36  * The following flags are used by dm-raid to set up the array state.
37  * They must be cleared before md_run is called.
38  */
39 #define FirstUse 10             /* rdev flag */
40
41 struct raid_dev {
42         /*
43          * Two DM devices, one to hold metadata and one to hold the
44          * actual data/parity.  The reason for this is to not confuse
45          * ti->len and give more flexibility in altering size and
46          * characteristics.
47          *
48          * While it is possible for this device to be associated
49          * with a different physical device than the data_dev, it
50          * is intended for it to be the same.
51          *    |--------- Physical Device ---------|
52          *    |- meta_dev -|------ data_dev ------|
53          */
54         struct dm_dev *meta_dev;
55         struct dm_dev *data_dev;
56         struct md_rdev rdev;
57 };
58
59 /*
60  * Bits for establishing rs->ctr_flags
61  *
62  * 1 = no flag value
63  * 2 = flag with value
64  */
65 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
67 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
71 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
73 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
74 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
75 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
76 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
77 /* New for v1.9.0 */
78 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82 /* New for v1.10.0 */
83 #define __CTR_FLAG_JOURNAL_DEV          15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85 /* New for v1.11.1 */
86 #define __CTR_FLAG_JOURNAL_MODE         16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88 /*
89  * Flags for rs->ctr_flags field.
90  */
91 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
92 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
93 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
94 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
95 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
99 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
100 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
101 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
102 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
103 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
104 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
105 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106 #define CTR_FLAG_JOURNAL_DEV            (1 << __CTR_FLAG_JOURNAL_DEV)
107 #define CTR_FLAG_JOURNAL_MODE           (1 << __CTR_FLAG_JOURNAL_MODE)
108
109 /*
110  * Definitions of various constructor flags to
111  * be used in checks of valid / invalid flags
112  * per raid level.
113  */
114 /* Define all any sync flags */
115 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117 /* Define flags for options without argument (e.g. 'nosync') */
118 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
119                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123                                   CTR_FLAG_WRITE_MOSTLY | \
124                                   CTR_FLAG_DAEMON_SLEEP | \
125                                   CTR_FLAG_MIN_RECOVERY_RATE | \
126                                   CTR_FLAG_MAX_RECOVERY_RATE | \
127                                   CTR_FLAG_MAX_WRITE_BEHIND | \
128                                   CTR_FLAG_STRIPE_CACHE | \
129                                   CTR_FLAG_REGION_SIZE | \
130                                   CTR_FLAG_RAID10_COPIES | \
131                                   CTR_FLAG_RAID10_FORMAT | \
132                                   CTR_FLAG_DELTA_DISKS | \
133                                   CTR_FLAG_DATA_OFFSET | \
134                                   CTR_FLAG_JOURNAL_DEV | \
135                                   CTR_FLAG_JOURNAL_MODE)
136
137 /* Valid options definitions per raid level... */
138
139 /* "raid0" does only accept data offset */
140 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
141
142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
144                                  CTR_FLAG_REBUILD | \
145                                  CTR_FLAG_WRITE_MOSTLY | \
146                                  CTR_FLAG_DAEMON_SLEEP | \
147                                  CTR_FLAG_MIN_RECOVERY_RATE | \
148                                  CTR_FLAG_MAX_RECOVERY_RATE | \
149                                  CTR_FLAG_MAX_WRITE_BEHIND | \
150                                  CTR_FLAG_REGION_SIZE | \
151                                  CTR_FLAG_DELTA_DISKS | \
152                                  CTR_FLAG_DATA_OFFSET)
153
154 /* "raid10" does not accept any raid1 or stripe cache options */
155 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
156                                  CTR_FLAG_REBUILD | \
157                                  CTR_FLAG_DAEMON_SLEEP | \
158                                  CTR_FLAG_MIN_RECOVERY_RATE | \
159                                  CTR_FLAG_MAX_RECOVERY_RATE | \
160                                  CTR_FLAG_REGION_SIZE | \
161                                  CTR_FLAG_RAID10_COPIES | \
162                                  CTR_FLAG_RAID10_FORMAT | \
163                                  CTR_FLAG_DELTA_DISKS | \
164                                  CTR_FLAG_DATA_OFFSET | \
165                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167 /*
168  * "raid4/5/6" do not accept any raid1 or raid10 specific options
169  *
170  * "raid6" does not accept "nosync", because it is not guaranteed
171  * that both parity and q-syndrome are being written properly with
172  * any writes
173  */
174 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
175                                  CTR_FLAG_REBUILD | \
176                                  CTR_FLAG_DAEMON_SLEEP | \
177                                  CTR_FLAG_MIN_RECOVERY_RATE | \
178                                  CTR_FLAG_MAX_RECOVERY_RATE | \
179                                  CTR_FLAG_STRIPE_CACHE | \
180                                  CTR_FLAG_REGION_SIZE | \
181                                  CTR_FLAG_DELTA_DISKS | \
182                                  CTR_FLAG_DATA_OFFSET | \
183                                  CTR_FLAG_JOURNAL_DEV | \
184                                  CTR_FLAG_JOURNAL_MODE)
185
186 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
187                                  CTR_FLAG_REBUILD | \
188                                  CTR_FLAG_DAEMON_SLEEP | \
189                                  CTR_FLAG_MIN_RECOVERY_RATE | \
190                                  CTR_FLAG_MAX_RECOVERY_RATE | \
191                                  CTR_FLAG_STRIPE_CACHE | \
192                                  CTR_FLAG_REGION_SIZE | \
193                                  CTR_FLAG_DELTA_DISKS | \
194                                  CTR_FLAG_DATA_OFFSET | \
195                                  CTR_FLAG_JOURNAL_DEV | \
196                                  CTR_FLAG_JOURNAL_MODE)
197 /* ...valid options definitions per raid level */
198
199 /*
200  * Flags for rs->runtime_flags field
201  * (RT_FLAG prefix meaning "runtime flag")
202  *
203  * These are all internal and used to define runtime state,
204  * e.g. to prevent another resume from preresume processing
205  * the raid set all over again.
206  */
207 #define RT_FLAG_RS_PRERESUMED           0
208 #define RT_FLAG_RS_RESUMED              1
209 #define RT_FLAG_RS_BITMAP_LOADED        2
210 #define RT_FLAG_UPDATE_SBS              3
211 #define RT_FLAG_RESHAPE_RS              4
212 #define RT_FLAG_RS_SUSPENDED            5
213 #define RT_FLAG_RS_IN_SYNC              6
214 #define RT_FLAG_RS_RESYNCING            7
215 #define RT_FLAG_RS_GROW                 8
216 #define RT_FLAG_RS_FROZEN               9
217
218 /* Array elements of 64 bit needed for rebuild/failed disk bits */
219 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
220
221 /*
222  * raid set level, layout and chunk sectors backup/restore
223  */
224 struct rs_layout {
225         int new_level;
226         int new_layout;
227         int new_chunk_sectors;
228 };
229
230 struct raid_set {
231         struct dm_target *ti;
232
233         uint32_t stripe_cache_entries;
234         unsigned long ctr_flags;
235         unsigned long runtime_flags;
236
237         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
238
239         int raid_disks;
240         int delta_disks;
241         int data_offset;
242         int raid10_copies;
243         int requested_bitmap_chunk_sectors;
244
245         struct mddev md;
246         struct raid_type *raid_type;
247
248         sector_t array_sectors;
249         sector_t dev_sectors;
250
251         /* Optional raid4/5/6 journal device */
252         struct journal_dev {
253                 struct dm_dev *dev;
254                 struct md_rdev rdev;
255                 int mode;
256         } journal_dev;
257
258         struct raid_dev dev[] __counted_by(raid_disks);
259 };
260
261 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
262 {
263         struct mddev *mddev = &rs->md;
264
265         l->new_level = mddev->new_level;
266         l->new_layout = mddev->new_layout;
267         l->new_chunk_sectors = mddev->new_chunk_sectors;
268 }
269
270 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
271 {
272         struct mddev *mddev = &rs->md;
273
274         mddev->new_level = l->new_level;
275         mddev->new_layout = l->new_layout;
276         mddev->new_chunk_sectors = l->new_chunk_sectors;
277 }
278
279 /* raid10 algorithms (i.e. formats) */
280 #define ALGORITHM_RAID10_DEFAULT        0
281 #define ALGORITHM_RAID10_NEAR           1
282 #define ALGORITHM_RAID10_OFFSET         2
283 #define ALGORITHM_RAID10_FAR            3
284
285 /* Supported raid types and properties. */
286 static struct raid_type {
287         const char *name;               /* RAID algorithm. */
288         const char *descr;              /* Descriptor text for logging. */
289         const unsigned int parity_devs; /* # of parity devices. */
290         const unsigned int minimal_devs;/* minimal # of devices in set. */
291         const unsigned int level;       /* RAID level. */
292         const unsigned int algorithm;   /* RAID algorithm. */
293 } raid_types[] = {
294         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
295         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
296         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
297         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
298         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
299         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
300         {"raid4",         "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
301         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
302         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
303         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
304         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
305         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
306         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
307         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
308         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
309         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
310         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
311         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
312         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
313         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
314 };
315
316 /* True, if @v is in inclusive range [@min, @max] */
317 static bool __within_range(long v, long min, long max)
318 {
319         return v >= min && v <= max;
320 }
321
322 /* All table line arguments are defined here */
323 static struct arg_name_flag {
324         const unsigned long flag;
325         const char *name;
326 } __arg_name_flags[] = {
327         { CTR_FLAG_SYNC, "sync"},
328         { CTR_FLAG_NOSYNC, "nosync"},
329         { CTR_FLAG_REBUILD, "rebuild"},
330         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
331         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
332         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
333         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
334         { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
335         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
336         { CTR_FLAG_REGION_SIZE, "region_size"},
337         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
338         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
339         { CTR_FLAG_DATA_OFFSET, "data_offset"},
340         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
341         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
342         { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
343         { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
344 };
345
346 /* Return argument name string for given @flag */
347 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
348 {
349         if (hweight32(flag) == 1) {
350                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
351
352                 while (anf-- > __arg_name_flags)
353                         if (flag & anf->flag)
354                                 return anf->name;
355
356         } else
357                 DMERR("%s called with more than one flag!", __func__);
358
359         return NULL;
360 }
361
362 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
363 static struct {
364         const int mode;
365         const char *param;
366 } _raid456_journal_mode[] = {
367         { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
368         { R5C_JOURNAL_MODE_WRITE_BACK,    "writeback" }
369 };
370
371 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
372 static int dm_raid_journal_mode_to_md(const char *mode)
373 {
374         int m = ARRAY_SIZE(_raid456_journal_mode);
375
376         while (m--)
377                 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
378                         return _raid456_journal_mode[m].mode;
379
380         return -EINVAL;
381 }
382
383 /* Return dm-raid raid4/5/6 journal mode string for @mode */
384 static const char *md_journal_mode_to_dm_raid(const int mode)
385 {
386         int m = ARRAY_SIZE(_raid456_journal_mode);
387
388         while (m--)
389                 if (mode == _raid456_journal_mode[m].mode)
390                         return _raid456_journal_mode[m].param;
391
392         return "unknown";
393 }
394
395 /*
396  * Bool helpers to test for various raid levels of a raid set.
397  * It's level as reported by the superblock rather than
398  * the requested raid_type passed to the constructor.
399  */
400 /* Return true, if raid set in @rs is raid0 */
401 static bool rs_is_raid0(struct raid_set *rs)
402 {
403         return !rs->md.level;
404 }
405
406 /* Return true, if raid set in @rs is raid1 */
407 static bool rs_is_raid1(struct raid_set *rs)
408 {
409         return rs->md.level == 1;
410 }
411
412 /* Return true, if raid set in @rs is raid10 */
413 static bool rs_is_raid10(struct raid_set *rs)
414 {
415         return rs->md.level == 10;
416 }
417
418 /* Return true, if raid set in @rs is level 6 */
419 static bool rs_is_raid6(struct raid_set *rs)
420 {
421         return rs->md.level == 6;
422 }
423
424 /* Return true, if raid set in @rs is level 4, 5 or 6 */
425 static bool rs_is_raid456(struct raid_set *rs)
426 {
427         return __within_range(rs->md.level, 4, 6);
428 }
429
430 /* Return true, if raid set in @rs is reshapable */
431 static bool __is_raid10_far(int layout);
432 static bool rs_is_reshapable(struct raid_set *rs)
433 {
434         return rs_is_raid456(rs) ||
435                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
436 }
437
438 /* Return true, if raid set in @rs is recovering */
439 static bool rs_is_recovering(struct raid_set *rs)
440 {
441         return rs->md.recovery_cp < rs->md.dev_sectors;
442 }
443
444 /* Return true, if raid set in @rs is reshaping */
445 static bool rs_is_reshaping(struct raid_set *rs)
446 {
447         return rs->md.reshape_position != MaxSector;
448 }
449
450 /*
451  * bool helpers to test for various raid levels of a raid type @rt
452  */
453
454 /* Return true, if raid type in @rt is raid0 */
455 static bool rt_is_raid0(struct raid_type *rt)
456 {
457         return !rt->level;
458 }
459
460 /* Return true, if raid type in @rt is raid1 */
461 static bool rt_is_raid1(struct raid_type *rt)
462 {
463         return rt->level == 1;
464 }
465
466 /* Return true, if raid type in @rt is raid10 */
467 static bool rt_is_raid10(struct raid_type *rt)
468 {
469         return rt->level == 10;
470 }
471
472 /* Return true, if raid type in @rt is raid4/5 */
473 static bool rt_is_raid45(struct raid_type *rt)
474 {
475         return __within_range(rt->level, 4, 5);
476 }
477
478 /* Return true, if raid type in @rt is raid6 */
479 static bool rt_is_raid6(struct raid_type *rt)
480 {
481         return rt->level == 6;
482 }
483
484 /* Return true, if raid type in @rt is raid4/5/6 */
485 static bool rt_is_raid456(struct raid_type *rt)
486 {
487         return __within_range(rt->level, 4, 6);
488 }
489 /* END: raid level bools */
490
491 /* Return valid ctr flags for the raid level of @rs */
492 static unsigned long __valid_flags(struct raid_set *rs)
493 {
494         if (rt_is_raid0(rs->raid_type))
495                 return RAID0_VALID_FLAGS;
496         else if (rt_is_raid1(rs->raid_type))
497                 return RAID1_VALID_FLAGS;
498         else if (rt_is_raid10(rs->raid_type))
499                 return RAID10_VALID_FLAGS;
500         else if (rt_is_raid45(rs->raid_type))
501                 return RAID45_VALID_FLAGS;
502         else if (rt_is_raid6(rs->raid_type))
503                 return RAID6_VALID_FLAGS;
504
505         return 0;
506 }
507
508 /*
509  * Check for valid flags set on @rs
510  *
511  * Has to be called after parsing of the ctr flags!
512  */
513 static int rs_check_for_valid_flags(struct raid_set *rs)
514 {
515         if (rs->ctr_flags & ~__valid_flags(rs)) {
516                 rs->ti->error = "Invalid flags combination";
517                 return -EINVAL;
518         }
519
520         return 0;
521 }
522
523 /* MD raid10 bit definitions and helpers */
524 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
525 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
526 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
527 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
528
529 /* Return md raid10 near copies for @layout */
530 static unsigned int __raid10_near_copies(int layout)
531 {
532         return layout & 0xFF;
533 }
534
535 /* Return md raid10 far copies for @layout */
536 static unsigned int __raid10_far_copies(int layout)
537 {
538         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
539 }
540
541 /* Return true if md raid10 offset for @layout */
542 static bool __is_raid10_offset(int layout)
543 {
544         return !!(layout & RAID10_OFFSET);
545 }
546
547 /* Return true if md raid10 near for @layout */
548 static bool __is_raid10_near(int layout)
549 {
550         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
551 }
552
553 /* Return true if md raid10 far for @layout */
554 static bool __is_raid10_far(int layout)
555 {
556         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
557 }
558
559 /* Return md raid10 layout string for @layout */
560 static const char *raid10_md_layout_to_format(int layout)
561 {
562         /*
563          * Bit 16 stands for "offset"
564          * (i.e. adjacent stripes hold copies)
565          *
566          * Refer to MD's raid10.c for details
567          */
568         if (__is_raid10_offset(layout))
569                 return "offset";
570
571         if (__raid10_near_copies(layout) > 1)
572                 return "near";
573
574         if (__raid10_far_copies(layout) > 1)
575                 return "far";
576
577         return "unknown";
578 }
579
580 /* Return md raid10 algorithm for @name */
581 static int raid10_name_to_format(const char *name)
582 {
583         if (!strcasecmp(name, "near"))
584                 return ALGORITHM_RAID10_NEAR;
585         else if (!strcasecmp(name, "offset"))
586                 return ALGORITHM_RAID10_OFFSET;
587         else if (!strcasecmp(name, "far"))
588                 return ALGORITHM_RAID10_FAR;
589
590         return -EINVAL;
591 }
592
593 /* Return md raid10 copies for @layout */
594 static unsigned int raid10_md_layout_to_copies(int layout)
595 {
596         return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
597 }
598
599 /* Return md raid10 format id for @format string */
600 static int raid10_format_to_md_layout(struct raid_set *rs,
601                                       unsigned int algorithm,
602                                       unsigned int copies)
603 {
604         unsigned int n = 1, f = 1, r = 0;
605
606         /*
607          * MD resilienece flaw:
608          *
609          * enabling use_far_sets for far/offset formats causes copies
610          * to be colocated on the same devs together with their origins!
611          *
612          * -> disable it for now in the definition above
613          */
614         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
615             algorithm == ALGORITHM_RAID10_NEAR)
616                 n = copies;
617
618         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
619                 f = copies;
620                 r = RAID10_OFFSET;
621                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
622                         r |= RAID10_USE_FAR_SETS;
623
624         } else if (algorithm == ALGORITHM_RAID10_FAR) {
625                 f = copies;
626                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
627                         r |= RAID10_USE_FAR_SETS;
628
629         } else
630                 return -EINVAL;
631
632         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
633 }
634 /* END: MD raid10 bit definitions and helpers */
635
636 /* Check for any of the raid10 algorithms */
637 static bool __got_raid10(struct raid_type *rtp, const int layout)
638 {
639         if (rtp->level == 10) {
640                 switch (rtp->algorithm) {
641                 case ALGORITHM_RAID10_DEFAULT:
642                 case ALGORITHM_RAID10_NEAR:
643                         return __is_raid10_near(layout);
644                 case ALGORITHM_RAID10_OFFSET:
645                         return __is_raid10_offset(layout);
646                 case ALGORITHM_RAID10_FAR:
647                         return __is_raid10_far(layout);
648                 default:
649                         break;
650                 }
651         }
652
653         return false;
654 }
655
656 /* Return raid_type for @name */
657 static struct raid_type *get_raid_type(const char *name)
658 {
659         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
660
661         while (rtp-- > raid_types)
662                 if (!strcasecmp(rtp->name, name))
663                         return rtp;
664
665         return NULL;
666 }
667
668 /* Return raid_type for @name based derived from @level and @layout */
669 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
670 {
671         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
672
673         while (rtp-- > raid_types) {
674                 /* RAID10 special checks based on @layout flags/properties */
675                 if (rtp->level == level &&
676                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
677                         return rtp;
678         }
679
680         return NULL;
681 }
682
683 /* Adjust rdev sectors */
684 static void rs_set_rdev_sectors(struct raid_set *rs)
685 {
686         struct mddev *mddev = &rs->md;
687         struct md_rdev *rdev;
688
689         /*
690          * raid10 sets rdev->sector to the device size, which
691          * is unintended in case of out-of-place reshaping
692          */
693         rdev_for_each(rdev, mddev)
694                 if (!test_bit(Journal, &rdev->flags))
695                         rdev->sectors = mddev->dev_sectors;
696 }
697
698 /*
699  * Change bdev capacity of @rs in case of a disk add/remove reshape
700  */
701 static void rs_set_capacity(struct raid_set *rs)
702 {
703         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
704
705         set_capacity_and_notify(gendisk, rs->md.array_sectors);
706 }
707
708 /*
709  * Set the mddev properties in @rs to the current
710  * ones retrieved from the freshest superblock
711  */
712 static void rs_set_cur(struct raid_set *rs)
713 {
714         struct mddev *mddev = &rs->md;
715
716         mddev->new_level = mddev->level;
717         mddev->new_layout = mddev->layout;
718         mddev->new_chunk_sectors = mddev->chunk_sectors;
719 }
720
721 /*
722  * Set the mddev properties in @rs to the new
723  * ones requested by the ctr
724  */
725 static void rs_set_new(struct raid_set *rs)
726 {
727         struct mddev *mddev = &rs->md;
728
729         mddev->level = mddev->new_level;
730         mddev->layout = mddev->new_layout;
731         mddev->chunk_sectors = mddev->new_chunk_sectors;
732         mddev->raid_disks = rs->raid_disks;
733         mddev->delta_disks = 0;
734 }
735
736 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
737                                        unsigned int raid_devs)
738 {
739         unsigned int i;
740         struct raid_set *rs;
741
742         if (raid_devs <= raid_type->parity_devs) {
743                 ti->error = "Insufficient number of devices";
744                 return ERR_PTR(-EINVAL);
745         }
746
747         rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
748         if (!rs) {
749                 ti->error = "Cannot allocate raid context";
750                 return ERR_PTR(-ENOMEM);
751         }
752
753         if (mddev_init(&rs->md)) {
754                 kfree(rs);
755                 ti->error = "Cannot initialize raid context";
756                 return ERR_PTR(-ENOMEM);
757         }
758
759         rs->raid_disks = raid_devs;
760         rs->delta_disks = 0;
761
762         rs->ti = ti;
763         rs->raid_type = raid_type;
764         rs->stripe_cache_entries = 256;
765         rs->md.raid_disks = raid_devs;
766         rs->md.level = raid_type->level;
767         rs->md.new_level = rs->md.level;
768         rs->md.layout = raid_type->algorithm;
769         rs->md.new_layout = rs->md.layout;
770         rs->md.delta_disks = 0;
771         rs->md.recovery_cp = MaxSector;
772
773         for (i = 0; i < raid_devs; i++)
774                 md_rdev_init(&rs->dev[i].rdev);
775
776         /*
777          * Remaining items to be initialized by further RAID params:
778          *  rs->md.persistent
779          *  rs->md.external
780          *  rs->md.chunk_sectors
781          *  rs->md.new_chunk_sectors
782          *  rs->md.dev_sectors
783          */
784
785         return rs;
786 }
787
788 /* Free all @rs allocations */
789 static void raid_set_free(struct raid_set *rs)
790 {
791         int i;
792
793         if (rs->journal_dev.dev) {
794                 md_rdev_clear(&rs->journal_dev.rdev);
795                 dm_put_device(rs->ti, rs->journal_dev.dev);
796         }
797
798         for (i = 0; i < rs->raid_disks; i++) {
799                 if (rs->dev[i].meta_dev)
800                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
801                 md_rdev_clear(&rs->dev[i].rdev);
802                 if (rs->dev[i].data_dev)
803                         dm_put_device(rs->ti, rs->dev[i].data_dev);
804         }
805
806         mddev_destroy(&rs->md);
807         kfree(rs);
808 }
809
810 /*
811  * For every device we have two words
812  *  <meta_dev>: meta device name or '-' if missing
813  *  <data_dev>: data device name or '-' if missing
814  *
815  * The following are permitted:
816  *    - -
817  *    - <data_dev>
818  *    <meta_dev> <data_dev>
819  *
820  * The following is not allowed:
821  *    <meta_dev> -
822  *
823  * This code parses those words.  If there is a failure,
824  * the caller must use raid_set_free() to unwind the operations.
825  */
826 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
827 {
828         int i;
829         int rebuild = 0;
830         int metadata_available = 0;
831         int r = 0;
832         const char *arg;
833
834         /* Put off the number of raid devices argument to get to dev pairs */
835         arg = dm_shift_arg(as);
836         if (!arg)
837                 return -EINVAL;
838
839         for (i = 0; i < rs->raid_disks; i++) {
840                 rs->dev[i].rdev.raid_disk = i;
841
842                 rs->dev[i].meta_dev = NULL;
843                 rs->dev[i].data_dev = NULL;
844
845                 /*
846                  * There are no offsets initially.
847                  * Out of place reshape will set them accordingly.
848                  */
849                 rs->dev[i].rdev.data_offset = 0;
850                 rs->dev[i].rdev.new_data_offset = 0;
851                 rs->dev[i].rdev.mddev = &rs->md;
852
853                 arg = dm_shift_arg(as);
854                 if (!arg)
855                         return -EINVAL;
856
857                 if (strcmp(arg, "-")) {
858                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
859                                           &rs->dev[i].meta_dev);
860                         if (r) {
861                                 rs->ti->error = "RAID metadata device lookup failure";
862                                 return r;
863                         }
864
865                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
866                         if (!rs->dev[i].rdev.sb_page) {
867                                 rs->ti->error = "Failed to allocate superblock page";
868                                 return -ENOMEM;
869                         }
870                 }
871
872                 arg = dm_shift_arg(as);
873                 if (!arg)
874                         return -EINVAL;
875
876                 if (!strcmp(arg, "-")) {
877                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
878                             (!rs->dev[i].rdev.recovery_offset)) {
879                                 rs->ti->error = "Drive designated for rebuild not specified";
880                                 return -EINVAL;
881                         }
882
883                         if (rs->dev[i].meta_dev) {
884                                 rs->ti->error = "No data device supplied with metadata device";
885                                 return -EINVAL;
886                         }
887
888                         continue;
889                 }
890
891                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
892                                   &rs->dev[i].data_dev);
893                 if (r) {
894                         rs->ti->error = "RAID device lookup failure";
895                         return r;
896                 }
897
898                 if (rs->dev[i].meta_dev) {
899                         metadata_available = 1;
900                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
901                 }
902                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
903                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
904                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
905                         rebuild++;
906         }
907
908         if (rs->journal_dev.dev)
909                 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
910
911         if (metadata_available) {
912                 rs->md.external = 0;
913                 rs->md.persistent = 1;
914                 rs->md.major_version = 2;
915         } else if (rebuild && !rs->md.recovery_cp) {
916                 /*
917                  * Without metadata, we will not be able to tell if the array
918                  * is in-sync or not - we must assume it is not.  Therefore,
919                  * it is impossible to rebuild a drive.
920                  *
921                  * Even if there is metadata, the on-disk information may
922                  * indicate that the array is not in-sync and it will then
923                  * fail at that time.
924                  *
925                  * User could specify 'nosync' option if desperate.
926                  */
927                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
928                 return -EINVAL;
929         }
930
931         return 0;
932 }
933
934 /*
935  * validate_region_size
936  * @rs
937  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
938  *
939  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
940  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
941  *
942  * Returns: 0 on success, -EINVAL on failure.
943  */
944 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
945 {
946         unsigned long min_region_size = rs->ti->len / (1 << 21);
947
948         if (rs_is_raid0(rs))
949                 return 0;
950
951         if (!region_size) {
952                 /*
953                  * Choose a reasonable default.  All figures in sectors.
954                  */
955                 if (min_region_size > (1 << 13)) {
956                         /* If not a power of 2, make it the next power of 2 */
957                         region_size = roundup_pow_of_two(min_region_size);
958                         DMINFO("Choosing default region size of %lu sectors",
959                                region_size);
960                 } else {
961                         DMINFO("Choosing default region size of 4MiB");
962                         region_size = 1 << 13; /* sectors */
963                 }
964         } else {
965                 /*
966                  * Validate user-supplied value.
967                  */
968                 if (region_size > rs->ti->len) {
969                         rs->ti->error = "Supplied region size is too large";
970                         return -EINVAL;
971                 }
972
973                 if (region_size < min_region_size) {
974                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
975                               region_size, min_region_size);
976                         rs->ti->error = "Supplied region size is too small";
977                         return -EINVAL;
978                 }
979
980                 if (!is_power_of_2(region_size)) {
981                         rs->ti->error = "Region size is not a power of 2";
982                         return -EINVAL;
983                 }
984
985                 if (region_size < rs->md.chunk_sectors) {
986                         rs->ti->error = "Region size is smaller than the chunk size";
987                         return -EINVAL;
988                 }
989         }
990
991         /*
992          * Convert sectors to bytes.
993          */
994         rs->md.bitmap_info.chunksize = to_bytes(region_size);
995
996         return 0;
997 }
998
999 /*
1000  * validate_raid_redundancy
1001  * @rs
1002  *
1003  * Determine if there are enough devices in the array that haven't
1004  * failed (or are being rebuilt) to form a usable array.
1005  *
1006  * Returns: 0 on success, -EINVAL on failure.
1007  */
1008 static int validate_raid_redundancy(struct raid_set *rs)
1009 {
1010         unsigned int i, rebuild_cnt = 0;
1011         unsigned int rebuilds_per_group = 0, copies, raid_disks;
1012         unsigned int group_size, last_group_start;
1013
1014         for (i = 0; i < rs->raid_disks; i++)
1015                 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1016                     ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1017                       !rs->dev[i].rdev.sb_page)))
1018                         rebuild_cnt++;
1019
1020         switch (rs->md.level) {
1021         case 0:
1022                 break;
1023         case 1:
1024                 if (rebuild_cnt >= rs->md.raid_disks)
1025                         goto too_many;
1026                 break;
1027         case 4:
1028         case 5:
1029         case 6:
1030                 if (rebuild_cnt > rs->raid_type->parity_devs)
1031                         goto too_many;
1032                 break;
1033         case 10:
1034                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1035                 if (copies < 2) {
1036                         DMERR("Bogus raid10 data copies < 2!");
1037                         return -EINVAL;
1038                 }
1039
1040                 if (rebuild_cnt < copies)
1041                         break;
1042
1043                 /*
1044                  * It is possible to have a higher rebuild count for RAID10,
1045                  * as long as the failed devices occur in different mirror
1046                  * groups (i.e. different stripes).
1047                  *
1048                  * When checking "near" format, make sure no adjacent devices
1049                  * have failed beyond what can be handled.  In addition to the
1050                  * simple case where the number of devices is a multiple of the
1051                  * number of copies, we must also handle cases where the number
1052                  * of devices is not a multiple of the number of copies.
1053                  * E.g.    dev1 dev2 dev3 dev4 dev5
1054                  *          A    A    B    B    C
1055                  *          C    D    D    E    E
1056                  */
1057                 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1058                 if (__is_raid10_near(rs->md.new_layout)) {
1059                         for (i = 0; i < raid_disks; i++) {
1060                                 if (!(i % copies))
1061                                         rebuilds_per_group = 0;
1062                                 if ((!rs->dev[i].rdev.sb_page ||
1063                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1064                                     (++rebuilds_per_group >= copies))
1065                                         goto too_many;
1066                         }
1067                         break;
1068                 }
1069
1070                 /*
1071                  * When checking "far" and "offset" formats, we need to ensure
1072                  * that the device that holds its copy is not also dead or
1073                  * being rebuilt.  (Note that "far" and "offset" formats only
1074                  * support two copies right now.  These formats also only ever
1075                  * use the 'use_far_sets' variant.)
1076                  *
1077                  * This check is somewhat complicated by the need to account
1078                  * for arrays that are not a multiple of (far) copies.  This
1079                  * results in the need to treat the last (potentially larger)
1080                  * set differently.
1081                  */
1082                 group_size = (raid_disks / copies);
1083                 last_group_start = (raid_disks / group_size) - 1;
1084                 last_group_start *= group_size;
1085                 for (i = 0; i < raid_disks; i++) {
1086                         if (!(i % copies) && !(i > last_group_start))
1087                                 rebuilds_per_group = 0;
1088                         if ((!rs->dev[i].rdev.sb_page ||
1089                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1090                             (++rebuilds_per_group >= copies))
1091                                 goto too_many;
1092                 }
1093                 break;
1094         default:
1095                 if (rebuild_cnt)
1096                         return -EINVAL;
1097         }
1098
1099         return 0;
1100
1101 too_many:
1102         return -EINVAL;
1103 }
1104
1105 /*
1106  * Possible arguments are...
1107  *      <chunk_size> [optional_args]
1108  *
1109  * Argument definitions
1110  *    <chunk_size>                      The number of sectors per disk that
1111  *                                      will form the "stripe"
1112  *    [[no]sync]                        Force or prevent recovery of the
1113  *                                      entire array
1114  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1115  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1116  *                                      clear bits
1117  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1118  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1119  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1120  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1121  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1122  *    [region_size <sectors>]           Defines granularity of bitmap
1123  *    [journal_dev <dev>]               raid4/5/6 journaling deviice
1124  *                                      (i.e. write hole closing log)
1125  *
1126  * RAID10-only options:
1127  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1128  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1129  */
1130 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1131                              unsigned int num_raid_params)
1132 {
1133         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1134         unsigned int raid10_copies = 2;
1135         unsigned int i, write_mostly = 0;
1136         unsigned int region_size = 0;
1137         sector_t max_io_len;
1138         const char *arg, *key;
1139         struct raid_dev *rd;
1140         struct raid_type *rt = rs->raid_type;
1141
1142         arg = dm_shift_arg(as);
1143         num_raid_params--; /* Account for chunk_size argument */
1144
1145         if (kstrtoint(arg, 10, &value) < 0) {
1146                 rs->ti->error = "Bad numerical argument given for chunk_size";
1147                 return -EINVAL;
1148         }
1149
1150         /*
1151          * First, parse the in-order required arguments
1152          * "chunk_size" is the only argument of this type.
1153          */
1154         if (rt_is_raid1(rt)) {
1155                 if (value)
1156                         DMERR("Ignoring chunk size parameter for RAID 1");
1157                 value = 0;
1158         } else if (!is_power_of_2(value)) {
1159                 rs->ti->error = "Chunk size must be a power of 2";
1160                 return -EINVAL;
1161         } else if (value < 8) {
1162                 rs->ti->error = "Chunk size value is too small";
1163                 return -EINVAL;
1164         }
1165
1166         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1167
1168         /*
1169          * We set each individual device as In_sync with a completed
1170          * 'recovery_offset'.  If there has been a device failure or
1171          * replacement then one of the following cases applies:
1172          *
1173          *   1) User specifies 'rebuild'.
1174          *      - Device is reset when param is read.
1175          *   2) A new device is supplied.
1176          *      - No matching superblock found, resets device.
1177          *   3) Device failure was transient and returns on reload.
1178          *      - Failure noticed, resets device for bitmap replay.
1179          *   4) Device hadn't completed recovery after previous failure.
1180          *      - Superblock is read and overrides recovery_offset.
1181          *
1182          * What is found in the superblocks of the devices is always
1183          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1184          */
1185         for (i = 0; i < rs->raid_disks; i++) {
1186                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1187                 rs->dev[i].rdev.recovery_offset = MaxSector;
1188         }
1189
1190         /*
1191          * Second, parse the unordered optional arguments
1192          */
1193         for (i = 0; i < num_raid_params; i++) {
1194                 key = dm_shift_arg(as);
1195                 if (!key) {
1196                         rs->ti->error = "Not enough raid parameters given";
1197                         return -EINVAL;
1198                 }
1199
1200                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1201                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1202                                 rs->ti->error = "Only one 'nosync' argument allowed";
1203                                 return -EINVAL;
1204                         }
1205                         continue;
1206                 }
1207                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1208                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1209                                 rs->ti->error = "Only one 'sync' argument allowed";
1210                                 return -EINVAL;
1211                         }
1212                         continue;
1213                 }
1214                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1215                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1216                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1217                                 return -EINVAL;
1218                         }
1219                         continue;
1220                 }
1221
1222                 arg = dm_shift_arg(as);
1223                 i++; /* Account for the argument pairs */
1224                 if (!arg) {
1225                         rs->ti->error = "Wrong number of raid parameters given";
1226                         return -EINVAL;
1227                 }
1228
1229                 /*
1230                  * Parameters that take a string value are checked here.
1231                  */
1232                 /* "raid10_format {near|offset|far} */
1233                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1234                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1235                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1236                                 return -EINVAL;
1237                         }
1238                         if (!rt_is_raid10(rt)) {
1239                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1240                                 return -EINVAL;
1241                         }
1242                         raid10_format = raid10_name_to_format(arg);
1243                         if (raid10_format < 0) {
1244                                 rs->ti->error = "Invalid 'raid10_format' value given";
1245                                 return raid10_format;
1246                         }
1247                         continue;
1248                 }
1249
1250                 /* "journal_dev <dev>" */
1251                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1252                         int r;
1253                         struct md_rdev *jdev;
1254
1255                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1256                                 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1257                                 return -EINVAL;
1258                         }
1259                         if (!rt_is_raid456(rt)) {
1260                                 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1261                                 return -EINVAL;
1262                         }
1263                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1264                                           &rs->journal_dev.dev);
1265                         if (r) {
1266                                 rs->ti->error = "raid4/5/6 journal device lookup failure";
1267                                 return r;
1268                         }
1269                         jdev = &rs->journal_dev.rdev;
1270                         md_rdev_init(jdev);
1271                         jdev->mddev = &rs->md;
1272                         jdev->bdev = rs->journal_dev.dev->bdev;
1273                         jdev->sectors = bdev_nr_sectors(jdev->bdev);
1274                         if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1275                                 rs->ti->error = "No space for raid4/5/6 journal";
1276                                 return -ENOSPC;
1277                         }
1278                         rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1279                         set_bit(Journal, &jdev->flags);
1280                         continue;
1281                 }
1282
1283                 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1284                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1285                         int r;
1286
1287                         if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1288                                 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1289                                 return -EINVAL;
1290                         }
1291                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1292                                 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1293                                 return -EINVAL;
1294                         }
1295                         r = dm_raid_journal_mode_to_md(arg);
1296                         if (r < 0) {
1297                                 rs->ti->error = "Invalid 'journal_mode' argument";
1298                                 return r;
1299                         }
1300                         rs->journal_dev.mode = r;
1301                         continue;
1302                 }
1303
1304                 /*
1305                  * Parameters with number values from here on.
1306                  */
1307                 if (kstrtoint(arg, 10, &value) < 0) {
1308                         rs->ti->error = "Bad numerical argument given in raid params";
1309                         return -EINVAL;
1310                 }
1311
1312                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1313                         /*
1314                          * "rebuild" is being passed in by userspace to provide
1315                          * indexes of replaced devices and to set up additional
1316                          * devices on raid level takeover.
1317                          */
1318                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1319                                 rs->ti->error = "Invalid rebuild index given";
1320                                 return -EINVAL;
1321                         }
1322
1323                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1324                                 rs->ti->error = "rebuild for this index already given";
1325                                 return -EINVAL;
1326                         }
1327
1328                         rd = rs->dev + value;
1329                         clear_bit(In_sync, &rd->rdev.flags);
1330                         clear_bit(Faulty, &rd->rdev.flags);
1331                         rd->rdev.recovery_offset = 0;
1332                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1333                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1334                         if (!rt_is_raid1(rt)) {
1335                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1336                                 return -EINVAL;
1337                         }
1338
1339                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1340                                 rs->ti->error = "Invalid write_mostly index given";
1341                                 return -EINVAL;
1342                         }
1343
1344                         write_mostly++;
1345                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1346                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1347                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1348                         if (!rt_is_raid1(rt)) {
1349                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1350                                 return -EINVAL;
1351                         }
1352
1353                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1354                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1355                                 return -EINVAL;
1356                         }
1357
1358                         /*
1359                          * In device-mapper, we specify things in sectors, but
1360                          * MD records this value in kB
1361                          */
1362                         if (value < 0 || value / 2 > COUNTER_MAX) {
1363                                 rs->ti->error = "Max write-behind limit out of range";
1364                                 return -EINVAL;
1365                         }
1366
1367                         rs->md.bitmap_info.max_write_behind = value / 2;
1368                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1369                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1370                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1371                                 return -EINVAL;
1372                         }
1373                         if (value < 0) {
1374                                 rs->ti->error = "daemon sleep period out of range";
1375                                 return -EINVAL;
1376                         }
1377                         rs->md.bitmap_info.daemon_sleep = value;
1378                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1379                         /* Userspace passes new data_offset after having extended the data image LV */
1380                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1381                                 rs->ti->error = "Only one data_offset argument pair allowed";
1382                                 return -EINVAL;
1383                         }
1384                         /* Ensure sensible data offset */
1385                         if (value < 0 ||
1386                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1387                                 rs->ti->error = "Bogus data_offset value";
1388                                 return -EINVAL;
1389                         }
1390                         rs->data_offset = value;
1391                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1392                         /* Define the +/-# of disks to add to/remove from the given raid set */
1393                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1394                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1395                                 return -EINVAL;
1396                         }
1397                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1398                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1399                                 rs->ti->error = "Too many delta_disk requested";
1400                                 return -EINVAL;
1401                         }
1402
1403                         rs->delta_disks = value;
1404                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1405                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1406                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1407                                 return -EINVAL;
1408                         }
1409
1410                         if (!rt_is_raid456(rt)) {
1411                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1412                                 return -EINVAL;
1413                         }
1414
1415                         if (value < 0) {
1416                                 rs->ti->error = "Bogus stripe cache entries value";
1417                                 return -EINVAL;
1418                         }
1419                         rs->stripe_cache_entries = value;
1420                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1421                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1422                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1423                                 return -EINVAL;
1424                         }
1425
1426                         if (value < 0) {
1427                                 rs->ti->error = "min_recovery_rate out of range";
1428                                 return -EINVAL;
1429                         }
1430                         rs->md.sync_speed_min = value;
1431                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1432                         if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1433                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1434                                 return -EINVAL;
1435                         }
1436
1437                         if (value < 0) {
1438                                 rs->ti->error = "max_recovery_rate out of range";
1439                                 return -EINVAL;
1440                         }
1441                         rs->md.sync_speed_max = value;
1442                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1443                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1444                                 rs->ti->error = "Only one region_size argument pair allowed";
1445                                 return -EINVAL;
1446                         }
1447
1448                         region_size = value;
1449                         rs->requested_bitmap_chunk_sectors = value;
1450                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1451                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1452                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1453                                 return -EINVAL;
1454                         }
1455
1456                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1457                                 rs->ti->error = "Bad value for 'raid10_copies'";
1458                                 return -EINVAL;
1459                         }
1460
1461                         raid10_copies = value;
1462                 } else {
1463                         DMERR("Unable to parse RAID parameter: %s", key);
1464                         rs->ti->error = "Unable to parse RAID parameter";
1465                         return -EINVAL;
1466                 }
1467         }
1468
1469         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1470             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1471                 rs->ti->error = "sync and nosync are mutually exclusive";
1472                 return -EINVAL;
1473         }
1474
1475         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1476             (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1477              test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1478                 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1479                 return -EINVAL;
1480         }
1481
1482         if (write_mostly >= rs->md.raid_disks) {
1483                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1484                 return -EINVAL;
1485         }
1486
1487         if (rs->md.sync_speed_max &&
1488             rs->md.sync_speed_min > rs->md.sync_speed_max) {
1489                 rs->ti->error = "Bogus recovery rates";
1490                 return -EINVAL;
1491         }
1492
1493         if (validate_region_size(rs, region_size))
1494                 return -EINVAL;
1495
1496         if (rs->md.chunk_sectors)
1497                 max_io_len = rs->md.chunk_sectors;
1498         else
1499                 max_io_len = region_size;
1500
1501         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1502                 return -EINVAL;
1503
1504         if (rt_is_raid10(rt)) {
1505                 if (raid10_copies > rs->md.raid_disks) {
1506                         rs->ti->error = "Not enough devices to satisfy specification";
1507                         return -EINVAL;
1508                 }
1509
1510                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1511                 if (rs->md.new_layout < 0) {
1512                         rs->ti->error = "Error getting raid10 format";
1513                         return rs->md.new_layout;
1514                 }
1515
1516                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1517                 if (!rt) {
1518                         rs->ti->error = "Failed to recognize new raid10 layout";
1519                         return -EINVAL;
1520                 }
1521
1522                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1523                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1524                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1525                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1526                         return -EINVAL;
1527                 }
1528         }
1529
1530         rs->raid10_copies = raid10_copies;
1531
1532         /* Assume there are no metadata devices until the drives are parsed */
1533         rs->md.persistent = 0;
1534         rs->md.external = 1;
1535
1536         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1537         return rs_check_for_valid_flags(rs);
1538 }
1539
1540 /* Set raid4/5/6 cache size */
1541 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1542 {
1543         int r;
1544         struct r5conf *conf;
1545         struct mddev *mddev = &rs->md;
1546         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1547         uint32_t nr_stripes = rs->stripe_cache_entries;
1548
1549         if (!rt_is_raid456(rs->raid_type)) {
1550                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1551                 return -EINVAL;
1552         }
1553
1554         if (nr_stripes < min_stripes) {
1555                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1556                        nr_stripes, min_stripes);
1557                 nr_stripes = min_stripes;
1558         }
1559
1560         conf = mddev->private;
1561         if (!conf) {
1562                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1563                 return -EINVAL;
1564         }
1565
1566         /* Try setting number of stripes in raid456 stripe cache */
1567         if (conf->min_nr_stripes != nr_stripes) {
1568                 r = raid5_set_cache_size(mddev, nr_stripes);
1569                 if (r) {
1570                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1571                         return r;
1572                 }
1573
1574                 DMINFO("%u stripe cache entries", nr_stripes);
1575         }
1576
1577         return 0;
1578 }
1579
1580 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1581 static unsigned int mddev_data_stripes(struct raid_set *rs)
1582 {
1583         return rs->md.raid_disks - rs->raid_type->parity_devs;
1584 }
1585
1586 /* Return # of data stripes of @rs (i.e. as of ctr) */
1587 static unsigned int rs_data_stripes(struct raid_set *rs)
1588 {
1589         return rs->raid_disks - rs->raid_type->parity_devs;
1590 }
1591
1592 /*
1593  * Retrieve rdev->sectors from any valid raid device of @rs
1594  * to allow userpace to pass in arbitray "- -" device tupples.
1595  */
1596 static sector_t __rdev_sectors(struct raid_set *rs)
1597 {
1598         int i;
1599
1600         for (i = 0; i < rs->raid_disks; i++) {
1601                 struct md_rdev *rdev = &rs->dev[i].rdev;
1602
1603                 if (!test_bit(Journal, &rdev->flags) &&
1604                     rdev->bdev && rdev->sectors)
1605                         return rdev->sectors;
1606         }
1607
1608         return 0;
1609 }
1610
1611 /* Check that calculated dev_sectors fits all component devices. */
1612 static int _check_data_dev_sectors(struct raid_set *rs)
1613 {
1614         sector_t ds = ~0;
1615         struct md_rdev *rdev;
1616
1617         rdev_for_each(rdev, &rs->md)
1618                 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1619                         ds = min(ds, bdev_nr_sectors(rdev->bdev));
1620                         if (ds < rs->md.dev_sectors) {
1621                                 rs->ti->error = "Component device(s) too small";
1622                                 return -EINVAL;
1623                         }
1624                 }
1625
1626         return 0;
1627 }
1628
1629 /* Calculate the sectors per device and per array used for @rs */
1630 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1631 {
1632         int delta_disks;
1633         unsigned int data_stripes;
1634         sector_t array_sectors = sectors, dev_sectors = sectors;
1635         struct mddev *mddev = &rs->md;
1636
1637         if (use_mddev) {
1638                 delta_disks = mddev->delta_disks;
1639                 data_stripes = mddev_data_stripes(rs);
1640         } else {
1641                 delta_disks = rs->delta_disks;
1642                 data_stripes = rs_data_stripes(rs);
1643         }
1644
1645         /* Special raid1 case w/o delta_disks support (yet) */
1646         if (rt_is_raid1(rs->raid_type))
1647                 ;
1648         else if (rt_is_raid10(rs->raid_type)) {
1649                 if (rs->raid10_copies < 2 ||
1650                     delta_disks < 0) {
1651                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1652                         return -EINVAL;
1653                 }
1654
1655                 dev_sectors *= rs->raid10_copies;
1656                 if (sector_div(dev_sectors, data_stripes))
1657                         goto bad;
1658
1659                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1660                 if (sector_div(array_sectors, rs->raid10_copies))
1661                         goto bad;
1662
1663         } else if (sector_div(dev_sectors, data_stripes))
1664                 goto bad;
1665
1666         else
1667                 /* Striped layouts */
1668                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1669
1670         mddev->array_sectors = array_sectors;
1671         mddev->dev_sectors = dev_sectors;
1672         rs_set_rdev_sectors(rs);
1673
1674         return _check_data_dev_sectors(rs);
1675 bad:
1676         rs->ti->error = "Target length not divisible by number of data devices";
1677         return -EINVAL;
1678 }
1679
1680 /* Setup recovery on @rs */
1681 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1682 {
1683         /* raid0 does not recover */
1684         if (rs_is_raid0(rs))
1685                 rs->md.recovery_cp = MaxSector;
1686         /*
1687          * A raid6 set has to be recovered either
1688          * completely or for the grown part to
1689          * ensure proper parity and Q-Syndrome
1690          */
1691         else if (rs_is_raid6(rs))
1692                 rs->md.recovery_cp = dev_sectors;
1693         /*
1694          * Other raid set types may skip recovery
1695          * depending on the 'nosync' flag.
1696          */
1697         else
1698                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1699                                      ? MaxSector : dev_sectors;
1700 }
1701
1702 static void do_table_event(struct work_struct *ws)
1703 {
1704         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1705
1706         smp_rmb(); /* Make sure we access most actual mddev properties */
1707         if (!rs_is_reshaping(rs)) {
1708                 if (rs_is_raid10(rs))
1709                         rs_set_rdev_sectors(rs);
1710                 rs_set_capacity(rs);
1711         }
1712         dm_table_event(rs->ti->table);
1713 }
1714
1715 /*
1716  * Make sure a valid takover (level switch) is being requested on @rs
1717  *
1718  * Conversions of raid sets from one MD personality to another
1719  * have to conform to restrictions which are enforced here.
1720  */
1721 static int rs_check_takeover(struct raid_set *rs)
1722 {
1723         struct mddev *mddev = &rs->md;
1724         unsigned int near_copies;
1725
1726         if (rs->md.degraded) {
1727                 rs->ti->error = "Can't takeover degraded raid set";
1728                 return -EPERM;
1729         }
1730
1731         if (rs_is_reshaping(rs)) {
1732                 rs->ti->error = "Can't takeover reshaping raid set";
1733                 return -EPERM;
1734         }
1735
1736         switch (mddev->level) {
1737         case 0:
1738                 /* raid0 -> raid1/5 with one disk */
1739                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1740                     mddev->raid_disks == 1)
1741                         return 0;
1742
1743                 /* raid0 -> raid10 */
1744                 if (mddev->new_level == 10 &&
1745                     !(rs->raid_disks % mddev->raid_disks))
1746                         return 0;
1747
1748                 /* raid0 with multiple disks -> raid4/5/6 */
1749                 if (__within_range(mddev->new_level, 4, 6) &&
1750                     mddev->new_layout == ALGORITHM_PARITY_N &&
1751                     mddev->raid_disks > 1)
1752                         return 0;
1753
1754                 break;
1755
1756         case 10:
1757                 /* Can't takeover raid10_offset! */
1758                 if (__is_raid10_offset(mddev->layout))
1759                         break;
1760
1761                 near_copies = __raid10_near_copies(mddev->layout);
1762
1763                 /* raid10* -> raid0 */
1764                 if (mddev->new_level == 0) {
1765                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1766                         if (near_copies > 1 &&
1767                             !(mddev->raid_disks % near_copies)) {
1768                                 mddev->raid_disks /= near_copies;
1769                                 mddev->delta_disks = mddev->raid_disks;
1770                                 return 0;
1771                         }
1772
1773                         /* Can takeover raid10_far */
1774                         if (near_copies == 1 &&
1775                             __raid10_far_copies(mddev->layout) > 1)
1776                                 return 0;
1777
1778                         break;
1779                 }
1780
1781                 /* raid10_{near,far} -> raid1 */
1782                 if (mddev->new_level == 1 &&
1783                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1784                         return 0;
1785
1786                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1787                 if (__within_range(mddev->new_level, 4, 5) &&
1788                     mddev->raid_disks == 2)
1789                         return 0;
1790                 break;
1791
1792         case 1:
1793                 /* raid1 with 2 disks -> raid4/5 */
1794                 if (__within_range(mddev->new_level, 4, 5) &&
1795                     mddev->raid_disks == 2) {
1796                         mddev->degraded = 1;
1797                         return 0;
1798                 }
1799
1800                 /* raid1 -> raid0 */
1801                 if (mddev->new_level == 0 &&
1802                     mddev->raid_disks == 1)
1803                         return 0;
1804
1805                 /* raid1 -> raid10 */
1806                 if (mddev->new_level == 10)
1807                         return 0;
1808                 break;
1809
1810         case 4:
1811                 /* raid4 -> raid0 */
1812                 if (mddev->new_level == 0)
1813                         return 0;
1814
1815                 /* raid4 -> raid1/5 with 2 disks */
1816                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1817                     mddev->raid_disks == 2)
1818                         return 0;
1819
1820                 /* raid4 -> raid5/6 with parity N */
1821                 if (__within_range(mddev->new_level, 5, 6) &&
1822                     mddev->layout == ALGORITHM_PARITY_N)
1823                         return 0;
1824                 break;
1825
1826         case 5:
1827                 /* raid5 with parity N -> raid0 */
1828                 if (mddev->new_level == 0 &&
1829                     mddev->layout == ALGORITHM_PARITY_N)
1830                         return 0;
1831
1832                 /* raid5 with parity N -> raid4 */
1833                 if (mddev->new_level == 4 &&
1834                     mddev->layout == ALGORITHM_PARITY_N)
1835                         return 0;
1836
1837                 /* raid5 with 2 disks -> raid1/4/10 */
1838                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1839                     mddev->raid_disks == 2)
1840                         return 0;
1841
1842                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1843                 if (mddev->new_level == 6 &&
1844                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1845                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1846                         return 0;
1847                 break;
1848
1849         case 6:
1850                 /* raid6 with parity N -> raid0 */
1851                 if (mddev->new_level == 0 &&
1852                     mddev->layout == ALGORITHM_PARITY_N)
1853                         return 0;
1854
1855                 /* raid6 with parity N -> raid4 */
1856                 if (mddev->new_level == 4 &&
1857                     mddev->layout == ALGORITHM_PARITY_N)
1858                         return 0;
1859
1860                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1861                 if (mddev->new_level == 5 &&
1862                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1863                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1864                         return 0;
1865                 break;
1866
1867         default:
1868                 break;
1869         }
1870
1871         rs->ti->error = "takeover not possible";
1872         return -EINVAL;
1873 }
1874
1875 /* True if @rs requested to be taken over */
1876 static bool rs_takeover_requested(struct raid_set *rs)
1877 {
1878         return rs->md.new_level != rs->md.level;
1879 }
1880
1881 /* True if layout is set to reshape. */
1882 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1883 {
1884         return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1885                rs->md.new_layout != rs->md.layout ||
1886                rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1887 }
1888
1889 /* True if @rs is requested to reshape by ctr */
1890 static bool rs_reshape_requested(struct raid_set *rs)
1891 {
1892         bool change;
1893         struct mddev *mddev = &rs->md;
1894
1895         if (rs_takeover_requested(rs))
1896                 return false;
1897
1898         if (rs_is_raid0(rs))
1899                 return false;
1900
1901         change = rs_is_layout_change(rs, false);
1902
1903         /* Historical case to support raid1 reshape without delta disks */
1904         if (rs_is_raid1(rs)) {
1905                 if (rs->delta_disks)
1906                         return !!rs->delta_disks;
1907
1908                 return !change &&
1909                        mddev->raid_disks != rs->raid_disks;
1910         }
1911
1912         if (rs_is_raid10(rs))
1913                 return change &&
1914                        !__is_raid10_far(mddev->new_layout) &&
1915                        rs->delta_disks >= 0;
1916
1917         return change;
1918 }
1919
1920 /*  Features */
1921 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1922
1923 /* State flags for sb->flags */
1924 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1925 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1926
1927 /*
1928  * This structure is never routinely used by userspace, unlike md superblocks.
1929  * Devices with this superblock should only ever be accessed via device-mapper.
1930  */
1931 #define DM_RAID_MAGIC 0x64526D44
1932 struct dm_raid_superblock {
1933         __le32 magic;           /* "DmRd" */
1934         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1935
1936         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1937         __le32 array_position;  /* The position of this drive in the raid set */
1938
1939         __le64 events;          /* Incremented by md when superblock updated */
1940         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1941                                 /* indicate failures (see extension below) */
1942
1943         /*
1944          * This offset tracks the progress of the repair or replacement of
1945          * an individual drive.
1946          */
1947         __le64 disk_recovery_offset;
1948
1949         /*
1950          * This offset tracks the progress of the initial raid set
1951          * synchronisation/parity calculation.
1952          */
1953         __le64 array_resync_offset;
1954
1955         /*
1956          * raid characteristics
1957          */
1958         __le32 level;
1959         __le32 layout;
1960         __le32 stripe_sectors;
1961
1962         /********************************************************************
1963          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1964          *
1965          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1966          */
1967
1968         __le32 flags; /* Flags defining array states for reshaping */
1969
1970         /*
1971          * This offset tracks the progress of a raid
1972          * set reshape in order to be able to restart it
1973          */
1974         __le64 reshape_position;
1975
1976         /*
1977          * These define the properties of the array in case of an interrupted reshape
1978          */
1979         __le32 new_level;
1980         __le32 new_layout;
1981         __le32 new_stripe_sectors;
1982         __le32 delta_disks;
1983
1984         __le64 array_sectors; /* Array size in sectors */
1985
1986         /*
1987          * Sector offsets to data on devices (reshaping).
1988          * Needed to support out of place reshaping, thus
1989          * not writing over any stripes whilst converting
1990          * them from old to new layout
1991          */
1992         __le64 data_offset;
1993         __le64 new_data_offset;
1994
1995         __le64 sectors; /* Used device size in sectors */
1996
1997         /*
1998          * Additional Bit field of devices indicating failures to support
1999          * up to 256 devices with the 1.9.0 on-disk metadata format
2000          */
2001         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2002
2003         __le32 incompat_features;       /* Used to indicate any incompatible features */
2004
2005         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2006 } __packed;
2007
2008 /*
2009  * Check for reshape constraints on raid set @rs:
2010  *
2011  * - reshape function non-existent
2012  * - degraded set
2013  * - ongoing recovery
2014  * - ongoing reshape
2015  *
2016  * Returns 0 if none or -EPERM if given constraint
2017  * and error message reference in @errmsg
2018  */
2019 static int rs_check_reshape(struct raid_set *rs)
2020 {
2021         struct mddev *mddev = &rs->md;
2022
2023         if (!mddev->pers || !mddev->pers->check_reshape)
2024                 rs->ti->error = "Reshape not supported";
2025         else if (mddev->degraded)
2026                 rs->ti->error = "Can't reshape degraded raid set";
2027         else if (rs_is_recovering(rs))
2028                 rs->ti->error = "Convert request on recovering raid set prohibited";
2029         else if (rs_is_reshaping(rs))
2030                 rs->ti->error = "raid set already reshaping!";
2031         else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2032                 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2033         else
2034                 return 0;
2035
2036         return -EPERM;
2037 }
2038
2039 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2040 {
2041         BUG_ON(!rdev->sb_page);
2042
2043         if (rdev->sb_loaded && !force_reload)
2044                 return 0;
2045
2046         rdev->sb_loaded = 0;
2047
2048         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2049                 DMERR("Failed to read superblock of device at position %d",
2050                       rdev->raid_disk);
2051                 md_error(rdev->mddev, rdev);
2052                 set_bit(Faulty, &rdev->flags);
2053                 return -EIO;
2054         }
2055
2056         rdev->sb_loaded = 1;
2057
2058         return 0;
2059 }
2060
2061 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2062 {
2063         failed_devices[0] = le64_to_cpu(sb->failed_devices);
2064         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2065
2066         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2067                 int i = ARRAY_SIZE(sb->extended_failed_devices);
2068
2069                 while (i--)
2070                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2071         }
2072 }
2073
2074 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2075 {
2076         int i = ARRAY_SIZE(sb->extended_failed_devices);
2077
2078         sb->failed_devices = cpu_to_le64(failed_devices[0]);
2079         while (i--)
2080                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2081 }
2082
2083 /*
2084  * Synchronize the superblock members with the raid set properties
2085  *
2086  * All superblock data is little endian.
2087  */
2088 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2089 {
2090         bool update_failed_devices = false;
2091         unsigned int i;
2092         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2093         struct dm_raid_superblock *sb;
2094         struct raid_set *rs = container_of(mddev, struct raid_set, md);
2095
2096         /* No metadata device, no superblock */
2097         if (!rdev->meta_bdev)
2098                 return;
2099
2100         BUG_ON(!rdev->sb_page);
2101
2102         sb = page_address(rdev->sb_page);
2103
2104         sb_retrieve_failed_devices(sb, failed_devices);
2105
2106         for (i = 0; i < rs->raid_disks; i++)
2107                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2108                         update_failed_devices = true;
2109                         set_bit(i, (void *) failed_devices);
2110                 }
2111
2112         if (update_failed_devices)
2113                 sb_update_failed_devices(sb, failed_devices);
2114
2115         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2116         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2117
2118         sb->num_devices = cpu_to_le32(mddev->raid_disks);
2119         sb->array_position = cpu_to_le32(rdev->raid_disk);
2120
2121         sb->events = cpu_to_le64(mddev->events);
2122
2123         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2124         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2125
2126         sb->level = cpu_to_le32(mddev->level);
2127         sb->layout = cpu_to_le32(mddev->layout);
2128         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2129
2130         /********************************************************************
2131          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2132          *
2133          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2134          */
2135         sb->new_level = cpu_to_le32(mddev->new_level);
2136         sb->new_layout = cpu_to_le32(mddev->new_layout);
2137         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2138
2139         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2140
2141         smp_rmb(); /* Make sure we access most recent reshape position */
2142         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2143         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2144                 /* Flag ongoing reshape */
2145                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2146
2147                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2148                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2149         } else {
2150                 /* Clear reshape flags */
2151                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2152         }
2153
2154         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2155         sb->data_offset = cpu_to_le64(rdev->data_offset);
2156         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2157         sb->sectors = cpu_to_le64(rdev->sectors);
2158         sb->incompat_features = cpu_to_le32(0);
2159
2160         /* Zero out the rest of the payload after the size of the superblock */
2161         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2162 }
2163
2164 /*
2165  * super_load
2166  *
2167  * This function creates a superblock if one is not found on the device
2168  * and will decide which superblock to use if there's a choice.
2169  *
2170  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2171  */
2172 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2173 {
2174         int r;
2175         struct dm_raid_superblock *sb;
2176         struct dm_raid_superblock *refsb;
2177         uint64_t events_sb, events_refsb;
2178
2179         r = read_disk_sb(rdev, rdev->sb_size, false);
2180         if (r)
2181                 return r;
2182
2183         sb = page_address(rdev->sb_page);
2184
2185         /*
2186          * Two cases that we want to write new superblocks and rebuild:
2187          * 1) New device (no matching magic number)
2188          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2189          */
2190         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2191             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2192                 super_sync(rdev->mddev, rdev);
2193
2194                 set_bit(FirstUse, &rdev->flags);
2195                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2196
2197                 /* Force writing of superblocks to disk */
2198                 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2199
2200                 /* Any superblock is better than none, choose that if given */
2201                 return refdev ? 0 : 1;
2202         }
2203
2204         if (!refdev)
2205                 return 1;
2206
2207         events_sb = le64_to_cpu(sb->events);
2208
2209         refsb = page_address(refdev->sb_page);
2210         events_refsb = le64_to_cpu(refsb->events);
2211
2212         return (events_sb > events_refsb) ? 1 : 0;
2213 }
2214
2215 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2216 {
2217         int role;
2218         struct mddev *mddev = &rs->md;
2219         uint64_t events_sb;
2220         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2221         struct dm_raid_superblock *sb;
2222         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2223         struct md_rdev *r;
2224         struct dm_raid_superblock *sb2;
2225
2226         sb = page_address(rdev->sb_page);
2227         events_sb = le64_to_cpu(sb->events);
2228
2229         /*
2230          * Initialise to 1 if this is a new superblock.
2231          */
2232         mddev->events = events_sb ? : 1;
2233
2234         mddev->reshape_position = MaxSector;
2235
2236         mddev->raid_disks = le32_to_cpu(sb->num_devices);
2237         mddev->level = le32_to_cpu(sb->level);
2238         mddev->layout = le32_to_cpu(sb->layout);
2239         mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2240
2241         /*
2242          * Reshaping is supported, e.g. reshape_position is valid
2243          * in superblock and superblock content is authoritative.
2244          */
2245         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2246                 /* Superblock is authoritative wrt given raid set layout! */
2247                 mddev->new_level = le32_to_cpu(sb->new_level);
2248                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2249                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2250                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2251                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2252
2253                 /* raid was reshaping and got interrupted */
2254                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2255                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2256                                 DMERR("Reshape requested but raid set is still reshaping");
2257                                 return -EINVAL;
2258                         }
2259
2260                         if (mddev->delta_disks < 0 ||
2261                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2262                                 mddev->reshape_backwards = 1;
2263                         else
2264                                 mddev->reshape_backwards = 0;
2265
2266                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2267                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2268                 }
2269
2270         } else {
2271                 /*
2272                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2273                  */
2274                 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2275                 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2276
2277                 if (rs_takeover_requested(rs)) {
2278                         if (rt_cur && rt_new)
2279                                 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2280                                       rt_cur->name, rt_new->name);
2281                         else
2282                                 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2283                         return -EINVAL;
2284                 } else if (rs_reshape_requested(rs)) {
2285                         DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2286                         if (mddev->layout != mddev->new_layout) {
2287                                 if (rt_cur && rt_new)
2288                                         DMERR("  current layout %s vs new layout %s",
2289                                               rt_cur->name, rt_new->name);
2290                                 else
2291                                         DMERR("  current layout 0x%X vs new layout 0x%X",
2292                                               le32_to_cpu(sb->layout), mddev->new_layout);
2293                         }
2294                         if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2295                                 DMERR("  current stripe sectors %u vs new stripe sectors %u",
2296                                       mddev->chunk_sectors, mddev->new_chunk_sectors);
2297                         if (rs->delta_disks)
2298                                 DMERR("  current %u disks vs new %u disks",
2299                                       mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2300                         if (rs_is_raid10(rs)) {
2301                                 DMERR("  Old layout: %s w/ %u copies",
2302                                       raid10_md_layout_to_format(mddev->layout),
2303                                       raid10_md_layout_to_copies(mddev->layout));
2304                                 DMERR("  New layout: %s w/ %u copies",
2305                                       raid10_md_layout_to_format(mddev->new_layout),
2306                                       raid10_md_layout_to_copies(mddev->new_layout));
2307                         }
2308                         return -EINVAL;
2309                 }
2310
2311                 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2312         }
2313
2314         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2315                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2316
2317         /*
2318          * During load, we set FirstUse if a new superblock was written.
2319          * There are two reasons we might not have a superblock:
2320          * 1) The raid set is brand new - in which case, all of the
2321          *    devices must have their In_sync bit set.  Also,
2322          *    recovery_cp must be 0, unless forced.
2323          * 2) This is a new device being added to an old raid set
2324          *    and the new device needs to be rebuilt - in which
2325          *    case the In_sync bit will /not/ be set and
2326          *    recovery_cp must be MaxSector.
2327          * 3) This is/are a new device(s) being added to an old
2328          *    raid set during takeover to a higher raid level
2329          *    to provide capacity for redundancy or during reshape
2330          *    to add capacity to grow the raid set.
2331          */
2332         rdev_for_each(r, mddev) {
2333                 if (test_bit(Journal, &rdev->flags))
2334                         continue;
2335
2336                 if (test_bit(FirstUse, &r->flags))
2337                         new_devs++;
2338
2339                 if (!test_bit(In_sync, &r->flags)) {
2340                         DMINFO("Device %d specified for rebuild; clearing superblock",
2341                                 r->raid_disk);
2342                         rebuilds++;
2343
2344                         if (test_bit(FirstUse, &r->flags))
2345                                 rebuild_and_new++;
2346                 }
2347         }
2348
2349         if (new_devs == rs->raid_disks || !rebuilds) {
2350                 /* Replace a broken device */
2351                 if (new_devs == rs->raid_disks) {
2352                         DMINFO("Superblocks created for new raid set");
2353                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2354                 } else if (new_devs != rebuilds &&
2355                            new_devs != rs->delta_disks) {
2356                         DMERR("New device injected into existing raid set without "
2357                               "'delta_disks' or 'rebuild' parameter specified");
2358                         return -EINVAL;
2359                 }
2360         } else if (new_devs && new_devs != rebuilds) {
2361                 DMERR("%u 'rebuild' devices cannot be injected into"
2362                       " a raid set with %u other first-time devices",
2363                       rebuilds, new_devs);
2364                 return -EINVAL;
2365         } else if (rebuilds) {
2366                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2367                         DMERR("new device%s provided without 'rebuild'",
2368                               new_devs > 1 ? "s" : "");
2369                         return -EINVAL;
2370                 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2371                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2372                               (unsigned long long) mddev->recovery_cp);
2373                         return -EINVAL;
2374                 } else if (rs_is_reshaping(rs)) {
2375                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2376                               (unsigned long long) mddev->reshape_position);
2377                         return -EINVAL;
2378                 }
2379         }
2380
2381         /*
2382          * Now we set the Faulty bit for those devices that are
2383          * recorded in the superblock as failed.
2384          */
2385         sb_retrieve_failed_devices(sb, failed_devices);
2386         rdev_for_each(r, mddev) {
2387                 if (test_bit(Journal, &rdev->flags) ||
2388                     !r->sb_page)
2389                         continue;
2390                 sb2 = page_address(r->sb_page);
2391                 sb2->failed_devices = 0;
2392                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2393
2394                 /*
2395                  * Check for any device re-ordering.
2396                  */
2397                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2398                         role = le32_to_cpu(sb2->array_position);
2399                         if (role < 0)
2400                                 continue;
2401
2402                         if (role != r->raid_disk) {
2403                                 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2404                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2405                                             rs->raid_disks % rs->raid10_copies) {
2406                                                 rs->ti->error =
2407                                                         "Cannot change raid10 near set to odd # of devices!";
2408                                                 return -EINVAL;
2409                                         }
2410
2411                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2412
2413                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2414                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2415                                            !rt_is_raid1(rs->raid_type)) {
2416                                         rs->ti->error = "Cannot change device positions in raid set";
2417                                         return -EINVAL;
2418                                 }
2419
2420                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2421                         }
2422
2423                         /*
2424                          * Partial recovery is performed on
2425                          * returning failed devices.
2426                          */
2427                         if (test_bit(role, (void *) failed_devices))
2428                                 set_bit(Faulty, &r->flags);
2429                 }
2430         }
2431
2432         return 0;
2433 }
2434
2435 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2436 {
2437         struct mddev *mddev = &rs->md;
2438         struct dm_raid_superblock *sb;
2439
2440         if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2441                 return 0;
2442
2443         sb = page_address(rdev->sb_page);
2444
2445         /*
2446          * If mddev->events is not set, we know we have not yet initialized
2447          * the array.
2448          */
2449         if (!mddev->events && super_init_validation(rs, rdev))
2450                 return -EINVAL;
2451
2452         if (le32_to_cpu(sb->compat_features) &&
2453             le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2454                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2455                 return -EINVAL;
2456         }
2457
2458         if (sb->incompat_features) {
2459                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2460                 return -EINVAL;
2461         }
2462
2463         /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2464         mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2465         mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2466
2467         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2468                 /*
2469                  * Retrieve rdev size stored in superblock to be prepared for shrink.
2470                  * Check extended superblock members are present otherwise the size
2471                  * will not be set!
2472                  */
2473                 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2474                         rdev->sectors = le64_to_cpu(sb->sectors);
2475
2476                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2477                 if (rdev->recovery_offset == MaxSector)
2478                         set_bit(In_sync, &rdev->flags);
2479                 /*
2480                  * If no reshape in progress -> we're recovering single
2481                  * disk(s) and have to set the device(s) to out-of-sync
2482                  */
2483                 else if (!rs_is_reshaping(rs))
2484                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2485         }
2486
2487         /*
2488          * If a device comes back, set it as not In_sync and no longer faulty.
2489          */
2490         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2491                 rdev->recovery_offset = 0;
2492                 clear_bit(In_sync, &rdev->flags);
2493                 rdev->saved_raid_disk = rdev->raid_disk;
2494         }
2495
2496         /* Reshape support -> restore repective data offsets */
2497         rdev->data_offset = le64_to_cpu(sb->data_offset);
2498         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2499
2500         return 0;
2501 }
2502
2503 /*
2504  * Analyse superblocks and select the freshest.
2505  */
2506 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2507 {
2508         int r;
2509         struct md_rdev *rdev, *freshest;
2510         struct mddev *mddev = &rs->md;
2511
2512         freshest = NULL;
2513         rdev_for_each(rdev, mddev) {
2514                 if (test_bit(Journal, &rdev->flags))
2515                         continue;
2516
2517                 if (!rdev->meta_bdev)
2518                         continue;
2519
2520                 /* Set superblock offset/size for metadata device. */
2521                 rdev->sb_start = 0;
2522                 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2523                 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2524                         DMERR("superblock size of a logical block is no longer valid");
2525                         return -EINVAL;
2526                 }
2527
2528                 /*
2529                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2530                  * the array to undergo initialization again as
2531                  * though it were new.  This is the intended effect
2532                  * of the "sync" directive.
2533                  *
2534                  * With reshaping capability added, we must ensure that
2535                  * the "sync" directive is disallowed during the reshape.
2536                  */
2537                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2538                         continue;
2539
2540                 r = super_load(rdev, freshest);
2541
2542                 switch (r) {
2543                 case 1:
2544                         freshest = rdev;
2545                         break;
2546                 case 0:
2547                         break;
2548                 default:
2549                         /* This is a failure to read the superblock from the metadata device. */
2550                         /*
2551                          * We have to keep any raid0 data/metadata device pairs or
2552                          * the MD raid0 personality will fail to start the array.
2553                          */
2554                         if (rs_is_raid0(rs))
2555                                 continue;
2556
2557                         /*
2558                          * We keep the dm_devs to be able to emit the device tuple
2559                          * properly on the table line in raid_status() (rather than
2560                          * mistakenly acting as if '- -' got passed into the constructor).
2561                          *
2562                          * The rdev has to stay on the same_set list to allow for
2563                          * the attempt to restore faulty devices on second resume.
2564                          */
2565                         rdev->raid_disk = rdev->saved_raid_disk = -1;
2566                         break;
2567                 }
2568         }
2569
2570         if (!freshest)
2571                 return 0;
2572
2573         /*
2574          * Validation of the freshest device provides the source of
2575          * validation for the remaining devices.
2576          */
2577         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2578         if (super_validate(rs, freshest))
2579                 return -EINVAL;
2580
2581         if (validate_raid_redundancy(rs)) {
2582                 rs->ti->error = "Insufficient redundancy to activate array";
2583                 return -EINVAL;
2584         }
2585
2586         rdev_for_each(rdev, mddev)
2587                 if (!test_bit(Journal, &rdev->flags) &&
2588                     rdev != freshest &&
2589                     super_validate(rs, rdev))
2590                         return -EINVAL;
2591         return 0;
2592 }
2593
2594 /*
2595  * Adjust data_offset and new_data_offset on all disk members of @rs
2596  * for out of place reshaping if requested by constructor
2597  *
2598  * We need free space at the beginning of each raid disk for forward
2599  * and at the end for backward reshapes which userspace has to provide
2600  * via remapping/reordering of space.
2601  */
2602 static int rs_adjust_data_offsets(struct raid_set *rs)
2603 {
2604         sector_t data_offset = 0, new_data_offset = 0;
2605         struct md_rdev *rdev;
2606
2607         /* Constructor did not request data offset change */
2608         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2609                 if (!rs_is_reshapable(rs))
2610                         goto out;
2611
2612                 return 0;
2613         }
2614
2615         /* HM FIXME: get In_Sync raid_dev? */
2616         rdev = &rs->dev[0].rdev;
2617
2618         if (rs->delta_disks < 0) {
2619                 /*
2620                  * Removing disks (reshaping backwards):
2621                  *
2622                  * - before reshape: data is at offset 0 and free space
2623                  *                   is at end of each component LV
2624                  *
2625                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2626                  */
2627                 data_offset = 0;
2628                 new_data_offset = rs->data_offset;
2629
2630         } else if (rs->delta_disks > 0) {
2631                 /*
2632                  * Adding disks (reshaping forwards):
2633                  *
2634                  * - before reshape: data is at offset rs->data_offset != 0 and
2635                  *                   free space is at begin of each component LV
2636                  *
2637                  * - after reshape: data is at offset 0 on each component LV
2638                  */
2639                 data_offset = rs->data_offset;
2640                 new_data_offset = 0;
2641
2642         } else {
2643                 /*
2644                  * User space passes in 0 for data offset after having removed reshape space
2645                  *
2646                  * - or - (data offset != 0)
2647                  *
2648                  * Changing RAID layout or chunk size -> toggle offsets
2649                  *
2650                  * - before reshape: data is at offset rs->data_offset 0 and
2651                  *                   free space is at end of each component LV
2652                  *                   -or-
2653                  *                   data is at offset rs->data_offset != 0 and
2654                  *                   free space is at begin of each component LV
2655                  *
2656                  * - after reshape: data is at offset 0 if it was at offset != 0
2657                  *                  or at offset != 0 if it was at offset 0
2658                  *                  on each component LV
2659                  *
2660                  */
2661                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2662                 new_data_offset = data_offset ? 0 : rs->data_offset;
2663                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2664         }
2665
2666         /*
2667          * Make sure we got a minimum amount of free sectors per device
2668          */
2669         if (rs->data_offset &&
2670             bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2671                 rs->ti->error = data_offset ? "No space for forward reshape" :
2672                                               "No space for backward reshape";
2673                 return -ENOSPC;
2674         }
2675 out:
2676         /*
2677          * Raise recovery_cp in case data_offset != 0 to
2678          * avoid false recovery positives in the constructor.
2679          */
2680         if (rs->md.recovery_cp < rs->md.dev_sectors)
2681                 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2682
2683         /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2684         rdev_for_each(rdev, &rs->md) {
2685                 if (!test_bit(Journal, &rdev->flags)) {
2686                         rdev->data_offset = data_offset;
2687                         rdev->new_data_offset = new_data_offset;
2688                 }
2689         }
2690
2691         return 0;
2692 }
2693
2694 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2695 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2696 {
2697         int i = 0;
2698         struct md_rdev *rdev;
2699
2700         rdev_for_each(rdev, &rs->md) {
2701                 if (!test_bit(Journal, &rdev->flags)) {
2702                         rdev->raid_disk = i++;
2703                         rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2704                 }
2705         }
2706 }
2707
2708 /*
2709  * Setup @rs for takeover by a different raid level
2710  */
2711 static int rs_setup_takeover(struct raid_set *rs)
2712 {
2713         struct mddev *mddev = &rs->md;
2714         struct md_rdev *rdev;
2715         unsigned int d = mddev->raid_disks = rs->raid_disks;
2716         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2717
2718         if (rt_is_raid10(rs->raid_type)) {
2719                 if (rs_is_raid0(rs)) {
2720                         /* Userpace reordered disks -> adjust raid_disk indexes */
2721                         __reorder_raid_disk_indexes(rs);
2722
2723                         /* raid0 -> raid10_far layout */
2724                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2725                                                                    rs->raid10_copies);
2726                 } else if (rs_is_raid1(rs))
2727                         /* raid1 -> raid10_near layout */
2728                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2729                                                                    rs->raid_disks);
2730                 else
2731                         return -EINVAL;
2732
2733         }
2734
2735         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2736         mddev->recovery_cp = MaxSector;
2737
2738         while (d--) {
2739                 rdev = &rs->dev[d].rdev;
2740
2741                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2742                         clear_bit(In_sync, &rdev->flags);
2743                         clear_bit(Faulty, &rdev->flags);
2744                         mddev->recovery_cp = rdev->recovery_offset = 0;
2745                         /* Bitmap has to be created when we do an "up" takeover */
2746                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2747                 }
2748
2749                 rdev->new_data_offset = new_data_offset;
2750         }
2751
2752         return 0;
2753 }
2754
2755 /* Prepare @rs for reshape */
2756 static int rs_prepare_reshape(struct raid_set *rs)
2757 {
2758         bool reshape;
2759         struct mddev *mddev = &rs->md;
2760
2761         if (rs_is_raid10(rs)) {
2762                 if (rs->raid_disks != mddev->raid_disks &&
2763                     __is_raid10_near(mddev->layout) &&
2764                     rs->raid10_copies &&
2765                     rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2766                         /*
2767                          * raid disk have to be multiple of data copies to allow this conversion,
2768                          *
2769                          * This is actually not a reshape it is a
2770                          * rebuild of any additional mirrors per group
2771                          */
2772                         if (rs->raid_disks % rs->raid10_copies) {
2773                                 rs->ti->error = "Can't reshape raid10 mirror groups";
2774                                 return -EINVAL;
2775                         }
2776
2777                         /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2778                         __reorder_raid_disk_indexes(rs);
2779                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2780                                                                    rs->raid10_copies);
2781                         mddev->new_layout = mddev->layout;
2782                         reshape = false;
2783                 } else
2784                         reshape = true;
2785
2786         } else if (rs_is_raid456(rs))
2787                 reshape = true;
2788
2789         else if (rs_is_raid1(rs)) {
2790                 if (rs->delta_disks) {
2791                         /* Process raid1 via delta_disks */
2792                         mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2793                         reshape = true;
2794                 } else {
2795                         /* Process raid1 without delta_disks */
2796                         mddev->raid_disks = rs->raid_disks;
2797                         reshape = false;
2798                 }
2799         } else {
2800                 rs->ti->error = "Called with bogus raid type";
2801                 return -EINVAL;
2802         }
2803
2804         if (reshape) {
2805                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2806                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2807         } else if (mddev->raid_disks < rs->raid_disks)
2808                 /* Create new superblocks and bitmaps, if any new disks */
2809                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2810
2811         return 0;
2812 }
2813
2814 /* Get reshape sectors from data_offsets or raid set */
2815 static sector_t _get_reshape_sectors(struct raid_set *rs)
2816 {
2817         struct md_rdev *rdev;
2818         sector_t reshape_sectors = 0;
2819
2820         rdev_for_each(rdev, &rs->md)
2821                 if (!test_bit(Journal, &rdev->flags)) {
2822                         reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2823                                         rdev->data_offset - rdev->new_data_offset :
2824                                         rdev->new_data_offset - rdev->data_offset;
2825                         break;
2826                 }
2827
2828         return max(reshape_sectors, (sector_t) rs->data_offset);
2829 }
2830
2831 /*
2832  * Reshape:
2833  * - change raid layout
2834  * - change chunk size
2835  * - add disks
2836  * - remove disks
2837  */
2838 static int rs_setup_reshape(struct raid_set *rs)
2839 {
2840         int r = 0;
2841         unsigned int cur_raid_devs, d;
2842         sector_t reshape_sectors = _get_reshape_sectors(rs);
2843         struct mddev *mddev = &rs->md;
2844         struct md_rdev *rdev;
2845
2846         mddev->delta_disks = rs->delta_disks;
2847         cur_raid_devs = mddev->raid_disks;
2848
2849         /* Ignore impossible layout change whilst adding/removing disks */
2850         if (mddev->delta_disks &&
2851             mddev->layout != mddev->new_layout) {
2852                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2853                 mddev->new_layout = mddev->layout;
2854         }
2855
2856         /*
2857          * Adjust array size:
2858          *
2859          * - in case of adding disk(s), array size has
2860          *   to grow after the disk adding reshape,
2861          *   which'll happen in the event handler;
2862          *   reshape will happen forward, so space has to
2863          *   be available at the beginning of each disk
2864          *
2865          * - in case of removing disk(s), array size
2866          *   has to shrink before starting the reshape,
2867          *   which'll happen here;
2868          *   reshape will happen backward, so space has to
2869          *   be available at the end of each disk
2870          *
2871          * - data_offset and new_data_offset are
2872          *   adjusted for aforementioned out of place
2873          *   reshaping based on userspace passing in
2874          *   the "data_offset <sectors>" key/value
2875          *   pair via the constructor
2876          */
2877
2878         /* Add disk(s) */
2879         if (rs->delta_disks > 0) {
2880                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2881                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2882                         rdev = &rs->dev[d].rdev;
2883                         clear_bit(In_sync, &rdev->flags);
2884
2885                         /*
2886                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2887                          * by md, which'll store that erroneously in the superblock on reshape
2888                          */
2889                         rdev->saved_raid_disk = -1;
2890                         rdev->raid_disk = d;
2891
2892                         rdev->sectors = mddev->dev_sectors;
2893                         rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2894                 }
2895
2896                 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2897
2898         /* Remove disk(s) */
2899         } else if (rs->delta_disks < 0) {
2900                 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2901                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2902
2903         /* Change layout and/or chunk size */
2904         } else {
2905                 /*
2906                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2907                  *
2908                  * keeping number of disks and do layout change ->
2909                  *
2910                  * toggle reshape_backward depending on data_offset:
2911                  *
2912                  * - free space upfront -> reshape forward
2913                  *
2914                  * - free space at the end -> reshape backward
2915                  *
2916                  *
2917                  * This utilizes free reshape space avoiding the need
2918                  * for userspace to move (parts of) LV segments in
2919                  * case of layout/chunksize change  (for disk
2920                  * adding/removing reshape space has to be at
2921                  * the proper address (see above with delta_disks):
2922                  *
2923                  * add disk(s)   -> begin
2924                  * remove disk(s)-> end
2925                  */
2926                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2927         }
2928
2929         /*
2930          * Adjust device size for forward reshape
2931          * because md_finish_reshape() reduces it.
2932          */
2933         if (!mddev->reshape_backwards)
2934                 rdev_for_each(rdev, &rs->md)
2935                         if (!test_bit(Journal, &rdev->flags))
2936                                 rdev->sectors += reshape_sectors;
2937
2938         return r;
2939 }
2940
2941 /*
2942  * If the md resync thread has updated superblock with max reshape position
2943  * at the end of a reshape but not (yet) reset the layout configuration
2944  * changes -> reset the latter.
2945  */
2946 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2947 {
2948         if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2949                 rs_set_cur(rs);
2950                 rs->md.delta_disks = 0;
2951                 rs->md.reshape_backwards = 0;
2952         }
2953 }
2954
2955 /*
2956  * Enable/disable discard support on RAID set depending on
2957  * RAID level and discard properties of underlying RAID members.
2958  */
2959 static void configure_discard_support(struct raid_set *rs)
2960 {
2961         int i;
2962         bool raid456;
2963         struct dm_target *ti = rs->ti;
2964
2965         /*
2966          * XXX: RAID level 4,5,6 require zeroing for safety.
2967          */
2968         raid456 = rs_is_raid456(rs);
2969
2970         for (i = 0; i < rs->raid_disks; i++) {
2971                 if (!rs->dev[i].rdev.bdev ||
2972                     !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2973                         return;
2974
2975                 if (raid456) {
2976                         if (!devices_handle_discard_safely) {
2977                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2978                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2979                                 return;
2980                         }
2981                 }
2982         }
2983
2984         ti->num_discard_bios = 1;
2985 }
2986
2987 /*
2988  * Construct a RAID0/1/10/4/5/6 mapping:
2989  * Args:
2990  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2991  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2992  *
2993  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2994  * details on possible <raid_params>.
2995  *
2996  * Userspace is free to initialize the metadata devices, hence the superblocks to
2997  * enforce recreation based on the passed in table parameters.
2998  *
2999  */
3000 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3001 {
3002         int r;
3003         bool resize = false;
3004         struct raid_type *rt;
3005         unsigned int num_raid_params, num_raid_devs;
3006         sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3007         struct raid_set *rs = NULL;
3008         const char *arg;
3009         struct rs_layout rs_layout;
3010         struct dm_arg_set as = { argc, argv }, as_nrd;
3011         struct dm_arg _args[] = {
3012                 { 0, as.argc, "Cannot understand number of raid parameters" },
3013                 { 1, 254, "Cannot understand number of raid devices parameters" }
3014         };
3015
3016         arg = dm_shift_arg(&as);
3017         if (!arg) {
3018                 ti->error = "No arguments";
3019                 return -EINVAL;
3020         }
3021
3022         rt = get_raid_type(arg);
3023         if (!rt) {
3024                 ti->error = "Unrecognised raid_type";
3025                 return -EINVAL;
3026         }
3027
3028         /* Must have <#raid_params> */
3029         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3030                 return -EINVAL;
3031
3032         /* number of raid device tupples <meta_dev data_dev> */
3033         as_nrd = as;
3034         dm_consume_args(&as_nrd, num_raid_params);
3035         _args[1].max = (as_nrd.argc - 1) / 2;
3036         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3037                 return -EINVAL;
3038
3039         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3040                 ti->error = "Invalid number of supplied raid devices";
3041                 return -EINVAL;
3042         }
3043
3044         rs = raid_set_alloc(ti, rt, num_raid_devs);
3045         if (IS_ERR(rs))
3046                 return PTR_ERR(rs);
3047
3048         r = parse_raid_params(rs, &as, num_raid_params);
3049         if (r)
3050                 goto bad;
3051
3052         r = parse_dev_params(rs, &as);
3053         if (r)
3054                 goto bad;
3055
3056         rs->md.sync_super = super_sync;
3057
3058         /*
3059          * Calculate ctr requested array and device sizes to allow
3060          * for superblock analysis needing device sizes defined.
3061          *
3062          * Any existing superblock will overwrite the array and device sizes
3063          */
3064         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3065         if (r)
3066                 goto bad;
3067
3068         /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3069         rs->array_sectors = rs->md.array_sectors;
3070         rs->dev_sectors = rs->md.dev_sectors;
3071
3072         /*
3073          * Backup any new raid set level, layout, ...
3074          * requested to be able to compare to superblock
3075          * members for conversion decisions.
3076          */
3077         rs_config_backup(rs, &rs_layout);
3078
3079         r = analyse_superblocks(ti, rs);
3080         if (r)
3081                 goto bad;
3082
3083         /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3084         sb_array_sectors = rs->md.array_sectors;
3085         rdev_sectors = __rdev_sectors(rs);
3086         if (!rdev_sectors) {
3087                 ti->error = "Invalid rdev size";
3088                 r = -EINVAL;
3089                 goto bad;
3090         }
3091
3092
3093         reshape_sectors = _get_reshape_sectors(rs);
3094         if (rs->dev_sectors != rdev_sectors) {
3095                 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3096                 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3097                         set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3098         }
3099
3100         INIT_WORK(&rs->md.event_work, do_table_event);
3101         ti->private = rs;
3102         ti->num_flush_bios = 1;
3103         ti->needs_bio_set_dev = true;
3104
3105         /* Restore any requested new layout for conversion decision */
3106         rs_config_restore(rs, &rs_layout);
3107
3108         /*
3109          * Now that we have any superblock metadata available,
3110          * check for new, recovering, reshaping, to be taken over,
3111          * to be reshaped or an existing, unchanged raid set to
3112          * run in sequence.
3113          */
3114         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3115                 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3116                 if (rs_is_raid6(rs) &&
3117                     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3118                         ti->error = "'nosync' not allowed for new raid6 set";
3119                         r = -EINVAL;
3120                         goto bad;
3121                 }
3122                 rs_setup_recovery(rs, 0);
3123                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3124                 rs_set_new(rs);
3125         } else if (rs_is_recovering(rs)) {
3126                 /* A recovering raid set may be resized */
3127                 goto size_check;
3128         } else if (rs_is_reshaping(rs)) {
3129                 /* Have to reject size change request during reshape */
3130                 if (resize) {
3131                         ti->error = "Can't resize a reshaping raid set";
3132                         r = -EPERM;
3133                         goto bad;
3134                 }
3135                 /* skip setup rs */
3136         } else if (rs_takeover_requested(rs)) {
3137                 if (rs_is_reshaping(rs)) {
3138                         ti->error = "Can't takeover a reshaping raid set";
3139                         r = -EPERM;
3140                         goto bad;
3141                 }
3142
3143                 /* We can't takeover a journaled raid4/5/6 */
3144                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3145                         ti->error = "Can't takeover a journaled raid4/5/6 set";
3146                         r = -EPERM;
3147                         goto bad;
3148                 }
3149
3150                 /*
3151                  * If a takeover is needed, userspace sets any additional
3152                  * devices to rebuild and we can check for a valid request here.
3153                  *
3154                  * If acceptable, set the level to the new requested
3155                  * one, prohibit requesting recovery, allow the raid
3156                  * set to run and store superblocks during resume.
3157                  */
3158                 r = rs_check_takeover(rs);
3159                 if (r)
3160                         goto bad;
3161
3162                 r = rs_setup_takeover(rs);
3163                 if (r)
3164                         goto bad;
3165
3166                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3167                 /* Takeover ain't recovery, so disable recovery */
3168                 rs_setup_recovery(rs, MaxSector);
3169                 rs_set_new(rs);
3170         } else if (rs_reshape_requested(rs)) {
3171                 /* Only request grow on raid set size extensions, not on reshapes. */
3172                 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3173
3174                 /*
3175                  * No need to check for 'ongoing' takeover here, because takeover
3176                  * is an instant operation as oposed to an ongoing reshape.
3177                  */
3178
3179                 /* We can't reshape a journaled raid4/5/6 */
3180                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3181                         ti->error = "Can't reshape a journaled raid4/5/6 set";
3182                         r = -EPERM;
3183                         goto bad;
3184                 }
3185
3186                 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3187                 if (reshape_sectors || rs_is_raid1(rs)) {
3188                         /*
3189                          * We can only prepare for a reshape here, because the
3190                          * raid set needs to run to provide the repective reshape
3191                          * check functions via its MD personality instance.
3192                          *
3193                          * So do the reshape check after md_run() succeeded.
3194                          */
3195                         r = rs_prepare_reshape(rs);
3196                         if (r)
3197                                 goto bad;
3198
3199                         /* Reshaping ain't recovery, so disable recovery */
3200                         rs_setup_recovery(rs, MaxSector);
3201                 }
3202                 rs_set_cur(rs);
3203         } else {
3204 size_check:
3205                 /* May not set recovery when a device rebuild is requested */
3206                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3207                         clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3208                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3209                         rs_setup_recovery(rs, MaxSector);
3210                 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3211                         /*
3212                          * Set raid set to current size, i.e. size as of
3213                          * superblocks to grow to larger size in preresume.
3214                          */
3215                         r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3216                         if (r)
3217                                 goto bad;
3218
3219                         rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3220                 } else {
3221                         /* This is no size change or it is shrinking, update size and record in superblocks */
3222                         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3223                         if (r)
3224                                 goto bad;
3225
3226                         if (sb_array_sectors > rs->array_sectors)
3227                                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3228                 }
3229                 rs_set_cur(rs);
3230         }
3231
3232         /* If constructor requested it, change data and new_data offsets */
3233         r = rs_adjust_data_offsets(rs);
3234         if (r)
3235                 goto bad;
3236
3237         /* Catch any inconclusive reshape superblock content. */
3238         rs_reset_inconclusive_reshape(rs);
3239
3240         /* Start raid set read-only and assumed clean to change in raid_resume() */
3241         rs->md.ro = 1;
3242         rs->md.in_sync = 1;
3243
3244         /* Has to be held on running the array */
3245         mddev_suspend_and_lock_nointr(&rs->md);
3246
3247         /* Keep array frozen until resume. */
3248         md_frozen_sync_thread(&rs->md);
3249
3250         r = md_run(&rs->md);
3251         rs->md.in_sync = 0; /* Assume already marked dirty */
3252         if (r) {
3253                 ti->error = "Failed to run raid array";
3254                 mddev_unlock(&rs->md);
3255                 goto bad;
3256         }
3257
3258         r = md_start(&rs->md);
3259         if (r) {
3260                 ti->error = "Failed to start raid array";
3261                 goto bad_unlock;
3262         }
3263
3264         /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3265         if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3266                 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3267                 if (r) {
3268                         ti->error = "Failed to set raid4/5/6 journal mode";
3269                         goto bad_unlock;
3270                 }
3271         }
3272
3273         set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3274
3275         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3276         if (rs_is_raid456(rs)) {
3277                 r = rs_set_raid456_stripe_cache(rs);
3278                 if (r)
3279                         goto bad_unlock;
3280         }
3281
3282         /* Now do an early reshape check */
3283         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3284                 r = rs_check_reshape(rs);
3285                 if (r)
3286                         goto bad_unlock;
3287
3288                 /* Restore new, ctr requested layout to perform check */
3289                 rs_config_restore(rs, &rs_layout);
3290
3291                 if (rs->md.pers->start_reshape) {
3292                         r = rs->md.pers->check_reshape(&rs->md);
3293                         if (r) {
3294                                 ti->error = "Reshape check failed";
3295                                 goto bad_unlock;
3296                         }
3297                 }
3298         }
3299
3300         /* Disable/enable discard support on raid set. */
3301         configure_discard_support(rs);
3302
3303         mddev_unlock(&rs->md);
3304         return 0;
3305
3306 bad_unlock:
3307         md_stop(&rs->md);
3308         mddev_unlock(&rs->md);
3309 bad:
3310         raid_set_free(rs);
3311
3312         return r;
3313 }
3314
3315 static void raid_dtr(struct dm_target *ti)
3316 {
3317         struct raid_set *rs = ti->private;
3318
3319         mddev_lock_nointr(&rs->md);
3320         md_stop(&rs->md);
3321         mddev_unlock(&rs->md);
3322
3323         if (work_pending(&rs->md.event_work))
3324                 flush_work(&rs->md.event_work);
3325         raid_set_free(rs);
3326 }
3327
3328 static int raid_map(struct dm_target *ti, struct bio *bio)
3329 {
3330         struct raid_set *rs = ti->private;
3331         struct mddev *mddev = &rs->md;
3332
3333         /*
3334          * If we're reshaping to add disk(s), ti->len and
3335          * mddev->array_sectors will differ during the process
3336          * (ti->len > mddev->array_sectors), so we have to requeue
3337          * bios with addresses > mddev->array_sectors here or
3338          * there will occur accesses past EOD of the component
3339          * data images thus erroring the raid set.
3340          */
3341         if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors))
3342                 return DM_MAPIO_REQUEUE;
3343
3344         if (unlikely(!md_handle_request(mddev, bio)))
3345                 return DM_MAPIO_REQUEUE;
3346
3347         return DM_MAPIO_SUBMITTED;
3348 }
3349
3350 /* Return sync state string for @state */
3351 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3352 static const char *sync_str(enum sync_state state)
3353 {
3354         /* Has to be in above sync_state order! */
3355         static const char *sync_strs[] = {
3356                 "frozen",
3357                 "reshape",
3358                 "resync",
3359                 "check",
3360                 "repair",
3361                 "recover",
3362                 "idle"
3363         };
3364
3365         return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3366 };
3367
3368 /* Return enum sync_state for @mddev derived from @recovery flags */
3369 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3370 {
3371         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3372                 return st_frozen;
3373
3374         /* The MD sync thread can be done with io or be interrupted but still be running */
3375         if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3376             (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3377              (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3378                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3379                         return st_reshape;
3380
3381                 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3382                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3383                                 return st_resync;
3384                         if (test_bit(MD_RECOVERY_CHECK, &recovery))
3385                                 return st_check;
3386                         return st_repair;
3387                 }
3388
3389                 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3390                         return st_recover;
3391
3392                 if (mddev->reshape_position != MaxSector)
3393                         return st_reshape;
3394         }
3395
3396         return st_idle;
3397 }
3398
3399 /*
3400  * Return status string for @rdev
3401  *
3402  * Status characters:
3403  *
3404  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3405  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3406  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3407  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3408  */
3409 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3410 {
3411         if (!rdev->bdev)
3412                 return "-";
3413         else if (test_bit(Faulty, &rdev->flags))
3414                 return "D";
3415         else if (test_bit(Journal, &rdev->flags))
3416                 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3417         else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3418                  (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3419                   !test_bit(In_sync, &rdev->flags)))
3420                 return "a";
3421         else
3422                 return "A";
3423 }
3424
3425 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3426 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3427                                 enum sync_state state, sector_t resync_max_sectors)
3428 {
3429         sector_t r;
3430         struct mddev *mddev = &rs->md;
3431
3432         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3433         clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3434
3435         if (rs_is_raid0(rs)) {
3436                 r = resync_max_sectors;
3437                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3438
3439         } else {
3440                 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3441                         r = mddev->recovery_cp;
3442                 else
3443                         r = mddev->curr_resync_completed;
3444
3445                 if (state == st_idle && r >= resync_max_sectors) {
3446                         /*
3447                          * Sync complete.
3448                          */
3449                         /* In case we have finished recovering, the array is in sync. */
3450                         if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3451                                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3452
3453                 } else if (state == st_recover)
3454                         /*
3455                          * In case we are recovering, the array is not in sync
3456                          * and health chars should show the recovering legs.
3457                          *
3458                          * Already retrieved recovery offset from curr_resync_completed above.
3459                          */
3460                         ;
3461
3462                 else if (state == st_resync || state == st_reshape)
3463                         /*
3464                          * If "resync/reshape" is occurring, the raid set
3465                          * is or may be out of sync hence the health
3466                          * characters shall be 'a'.
3467                          */
3468                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3469
3470                 else if (state == st_check || state == st_repair)
3471                         /*
3472                          * If "check" or "repair" is occurring, the raid set has
3473                          * undergone an initial sync and the health characters
3474                          * should not be 'a' anymore.
3475                          */
3476                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3477
3478                 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3479                         /*
3480                          * We are idle and recovery is needed, prevent 'A' chars race
3481                          * caused by components still set to in-sync by constructor.
3482                          */
3483                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3484
3485                 else {
3486                         /*
3487                          * We are idle and the raid set may be doing an initial
3488                          * sync, or it may be rebuilding individual components.
3489                          * If all the devices are In_sync, then it is the raid set
3490                          * that is being initialized.
3491                          */
3492                         struct md_rdev *rdev;
3493
3494                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3495                         rdev_for_each(rdev, mddev)
3496                                 if (!test_bit(Journal, &rdev->flags) &&
3497                                     !test_bit(In_sync, &rdev->flags)) {
3498                                         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3499                                         break;
3500                                 }
3501                 }
3502         }
3503
3504         return min(r, resync_max_sectors);
3505 }
3506
3507 /* Helper to return @dev name or "-" if !@dev */
3508 static const char *__get_dev_name(struct dm_dev *dev)
3509 {
3510         return dev ? dev->name : "-";
3511 }
3512
3513 static void raid_status(struct dm_target *ti, status_type_t type,
3514                         unsigned int status_flags, char *result, unsigned int maxlen)
3515 {
3516         struct raid_set *rs = ti->private;
3517         struct mddev *mddev = &rs->md;
3518         struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3519         int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3520         unsigned long recovery;
3521         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3522         unsigned int sz = 0;
3523         unsigned int rebuild_writemostly_count = 0;
3524         sector_t progress, resync_max_sectors, resync_mismatches;
3525         enum sync_state state;
3526         struct raid_type *rt;
3527
3528         switch (type) {
3529         case STATUSTYPE_INFO:
3530                 /* *Should* always succeed */
3531                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3532                 if (!rt)
3533                         return;
3534
3535                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3536
3537                 /* Access most recent mddev properties for status output */
3538                 smp_rmb();
3539                 /* Get sensible max sectors even if raid set not yet started */
3540                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3541                                       mddev->resync_max_sectors : mddev->dev_sectors;
3542                 recovery = rs->md.recovery;
3543                 state = decipher_sync_action(mddev, recovery);
3544                 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3545                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3546                                     atomic64_read(&mddev->resync_mismatches) : 0;
3547
3548                 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3549                 for (i = 0; i < rs->raid_disks; i++)
3550                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3551
3552                 /*
3553                  * In-sync/Reshape ratio:
3554                  *  The in-sync ratio shows the progress of:
3555                  *   - Initializing the raid set
3556                  *   - Rebuilding a subset of devices of the raid set
3557                  *  The user can distinguish between the two by referring
3558                  *  to the status characters.
3559                  *
3560                  *  The reshape ratio shows the progress of
3561                  *  changing the raid layout or the number of
3562                  *  disks of a raid set
3563                  */
3564                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3565                                      (unsigned long long) resync_max_sectors);
3566
3567                 /*
3568                  * v1.5.0+:
3569                  *
3570                  * Sync action:
3571                  *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3572                  *   information on each of these states.
3573                  */
3574                 DMEMIT(" %s", sync_str(state));
3575
3576                 /*
3577                  * v1.5.0+:
3578                  *
3579                  * resync_mismatches/mismatch_cnt
3580                  *   This field shows the number of discrepancies found when
3581                  *   performing a "check" of the raid set.
3582                  */
3583                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3584
3585                 /*
3586                  * v1.9.0+:
3587                  *
3588                  * data_offset (needed for out of space reshaping)
3589                  *   This field shows the data offset into the data
3590                  *   image LV where the first stripes data starts.
3591                  *
3592                  * We keep data_offset equal on all raid disks of the set,
3593                  * so retrieving it from the first raid disk is sufficient.
3594                  */
3595                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3596
3597                 /*
3598                  * v1.10.0+:
3599                  */
3600                 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3601                               __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3602                 break;
3603
3604         case STATUSTYPE_TABLE:
3605                 /* Report the table line string you would use to construct this raid set */
3606
3607                 /*
3608                  * Count any rebuild or writemostly argument pairs and subtract the
3609                  * hweight count being added below of any rebuild and writemostly ctr flags.
3610                  */
3611                 for (i = 0; i < rs->raid_disks; i++) {
3612                         rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3613                                                      (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3614                 }
3615                 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3616                                              (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3617                 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3618                 raid_param_cnt += rebuild_writemostly_count +
3619                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3620                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3621                 /* Emit table line */
3622                 /* This has to be in the documented order for userspace! */
3623                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3624                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3625                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3626                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3627                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3628                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3629                         for (i = 0; i < rs->raid_disks; i++)
3630                                 if (test_bit(i, (void *) rs->rebuild_disks))
3631                                         DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3632                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3633                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3634                                           mddev->bitmap_info.daemon_sleep);
3635                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3636                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3637                                          mddev->sync_speed_min);
3638                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3639                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3640                                          mddev->sync_speed_max);
3641                 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3642                         for (i = 0; i < rs->raid_disks; i++)
3643                                 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3644                                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3645                                                rs->dev[i].rdev.raid_disk);
3646                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3647                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3648                                           mddev->bitmap_info.max_write_behind);
3649                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3650                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3651                                          max_nr_stripes);
3652                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3653                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3654                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3655                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3656                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3657                                          raid10_md_layout_to_copies(mddev->layout));
3658                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3659                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3660                                          raid10_md_layout_to_format(mddev->layout));
3661                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3662                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3663                                          max(rs->delta_disks, mddev->delta_disks));
3664                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3665                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3666                                            (unsigned long long) rs->data_offset);
3667                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3668                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3669                                         __get_dev_name(rs->journal_dev.dev));
3670                 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3671                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3672                                          md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3673                 DMEMIT(" %d", rs->raid_disks);
3674                 for (i = 0; i < rs->raid_disks; i++)
3675                         DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3676                                          __get_dev_name(rs->dev[i].data_dev));
3677                 break;
3678
3679         case STATUSTYPE_IMA:
3680                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3681                 if (!rt)
3682                         return;
3683
3684                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3685                 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3686
3687                 /* Access most recent mddev properties for status output */
3688                 smp_rmb();
3689                 recovery = rs->md.recovery;
3690                 state = decipher_sync_action(mddev, recovery);
3691                 DMEMIT(",raid_state=%s", sync_str(state));
3692
3693                 for (i = 0; i < rs->raid_disks; i++) {
3694                         DMEMIT(",raid_device_%d_status=", i);
3695                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3696                 }
3697
3698                 if (rt_is_raid456(rt)) {
3699                         DMEMIT(",journal_dev_mode=");
3700                         switch (rs->journal_dev.mode) {
3701                         case R5C_JOURNAL_MODE_WRITE_THROUGH:
3702                                 DMEMIT("%s",
3703                                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3704                                 break;
3705                         case R5C_JOURNAL_MODE_WRITE_BACK:
3706                                 DMEMIT("%s",
3707                                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3708                                 break;
3709                         default:
3710                                 DMEMIT("invalid");
3711                                 break;
3712                         }
3713                 }
3714                 DMEMIT(";");
3715                 break;
3716         }
3717 }
3718
3719 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3720                         char *result, unsigned int maxlen)
3721 {
3722         struct raid_set *rs = ti->private;
3723         struct mddev *mddev = &rs->md;
3724         int ret = 0;
3725
3726         if (!mddev->pers || !mddev->pers->sync_request)
3727                 return -EINVAL;
3728
3729         if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) ||
3730             test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags))
3731                 return -EBUSY;
3732
3733         if (!strcasecmp(argv[0], "frozen")) {
3734                 ret = mddev_lock(mddev);
3735                 if (ret)
3736                         return ret;
3737
3738                 md_frozen_sync_thread(mddev);
3739                 mddev_unlock(mddev);
3740         } else if (!strcasecmp(argv[0], "idle")) {
3741                 ret = mddev_lock(mddev);
3742                 if (ret)
3743                         return ret;
3744
3745                 md_idle_sync_thread(mddev);
3746                 mddev_unlock(mddev);
3747         }
3748
3749         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3750         if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3751                 return -EBUSY;
3752         else if (!strcasecmp(argv[0], "resync"))
3753                 ; /* MD_RECOVERY_NEEDED set below */
3754         else if (!strcasecmp(argv[0], "recover"))
3755                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3756         else {
3757                 if (!strcasecmp(argv[0], "check")) {
3758                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3759                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3760                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3761                 } else if (!strcasecmp(argv[0], "repair")) {
3762                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3763                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3764                 } else
3765                         return -EINVAL;
3766         }
3767         if (mddev->ro == 2) {
3768                 /* A write to sync_action is enough to justify
3769                  * canceling read-auto mode
3770                  */
3771                 mddev->ro = 0;
3772                 if (!mddev->suspended)
3773                         md_wakeup_thread(mddev->sync_thread);
3774         }
3775         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3776         if (!mddev->suspended)
3777                 md_wakeup_thread(mddev->thread);
3778
3779         return 0;
3780 }
3781
3782 static int raid_iterate_devices(struct dm_target *ti,
3783                                 iterate_devices_callout_fn fn, void *data)
3784 {
3785         struct raid_set *rs = ti->private;
3786         unsigned int i;
3787         int r = 0;
3788
3789         for (i = 0; !r && i < rs->raid_disks; i++) {
3790                 if (rs->dev[i].data_dev) {
3791                         r = fn(ti, rs->dev[i].data_dev,
3792                                0, /* No offset on data devs */
3793                                rs->md.dev_sectors, data);
3794                 }
3795         }
3796
3797         return r;
3798 }
3799
3800 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3801 {
3802         struct raid_set *rs = ti->private;
3803         unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3804
3805         blk_limits_io_min(limits, chunk_size_bytes);
3806         blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3807 }
3808
3809 static void raid_presuspend(struct dm_target *ti)
3810 {
3811         struct raid_set *rs = ti->private;
3812         struct mddev *mddev = &rs->md;
3813
3814         /*
3815          * From now on, disallow raid_message() to change sync_thread until
3816          * resume, raid_postsuspend() is too late.
3817          */
3818         set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
3819
3820         if (!reshape_interrupted(mddev))
3821                 return;
3822
3823         /*
3824          * For raid456, if reshape is interrupted, IO across reshape position
3825          * will never make progress, while caller will wait for IO to be done.
3826          * Inform raid456 to handle those IO to prevent deadlock.
3827          */
3828         if (mddev->pers && mddev->pers->prepare_suspend)
3829                 mddev->pers->prepare_suspend(mddev);
3830 }
3831
3832 static void raid_presuspend_undo(struct dm_target *ti)
3833 {
3834         struct raid_set *rs = ti->private;
3835
3836         clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
3837 }
3838
3839 static void raid_postsuspend(struct dm_target *ti)
3840 {
3841         struct raid_set *rs = ti->private;
3842
3843         if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3844                 /*
3845                  * sync_thread must be stopped during suspend, and writes have
3846                  * to be stopped before suspending to avoid deadlocks.
3847                  */
3848                 md_stop_writes(&rs->md);
3849                 mddev_suspend(&rs->md, false);
3850         }
3851 }
3852
3853 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3854 {
3855         int i;
3856         uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3857         unsigned long flags;
3858         bool cleared = false;
3859         struct dm_raid_superblock *sb;
3860         struct mddev *mddev = &rs->md;
3861         struct md_rdev *r;
3862
3863         /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3864         if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3865                 return;
3866
3867         memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3868
3869         for (i = 0; i < rs->raid_disks; i++) {
3870                 r = &rs->dev[i].rdev;
3871                 /* HM FIXME: enhance journal device recovery processing */
3872                 if (test_bit(Journal, &r->flags))
3873                         continue;
3874
3875                 if (test_bit(Faulty, &r->flags) &&
3876                     r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3877                         DMINFO("Faulty %s device #%d has readable super block."
3878                                "  Attempting to revive it.",
3879                                rs->raid_type->name, i);
3880
3881                         /*
3882                          * Faulty bit may be set, but sometimes the array can
3883                          * be suspended before the personalities can respond
3884                          * by removing the device from the array (i.e. calling
3885                          * 'hot_remove_disk').  If they haven't yet removed
3886                          * the failed device, its 'raid_disk' number will be
3887                          * '>= 0' - meaning we must call this function
3888                          * ourselves.
3889                          */
3890                         flags = r->flags;
3891                         clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3892                         if (r->raid_disk >= 0) {
3893                                 if (mddev->pers->hot_remove_disk(mddev, r)) {
3894                                         /* Failed to revive this device, try next */
3895                                         r->flags = flags;
3896                                         continue;
3897                                 }
3898                         } else
3899                                 r->raid_disk = r->saved_raid_disk = i;
3900
3901                         clear_bit(Faulty, &r->flags);
3902                         clear_bit(WriteErrorSeen, &r->flags);
3903
3904                         if (mddev->pers->hot_add_disk(mddev, r)) {
3905                                 /* Failed to revive this device, try next */
3906                                 r->raid_disk = r->saved_raid_disk = -1;
3907                                 r->flags = flags;
3908                         } else {
3909                                 clear_bit(In_sync, &r->flags);
3910                                 r->recovery_offset = 0;
3911                                 set_bit(i, (void *) cleared_failed_devices);
3912                                 cleared = true;
3913                         }
3914                 }
3915         }
3916
3917         /* If any failed devices could be cleared, update all sbs failed_devices bits */
3918         if (cleared) {
3919                 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3920
3921                 rdev_for_each(r, &rs->md) {
3922                         if (test_bit(Journal, &r->flags))
3923                                 continue;
3924
3925                         sb = page_address(r->sb_page);
3926                         sb_retrieve_failed_devices(sb, failed_devices);
3927
3928                         for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3929                                 failed_devices[i] &= ~cleared_failed_devices[i];
3930
3931                         sb_update_failed_devices(sb, failed_devices);
3932                 }
3933         }
3934 }
3935
3936 static int __load_dirty_region_bitmap(struct raid_set *rs)
3937 {
3938         int r = 0;
3939
3940         /* Try loading the bitmap unless "raid0", which does not have one */
3941         if (!rs_is_raid0(rs) &&
3942             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3943                 r = md_bitmap_load(&rs->md);
3944                 if (r)
3945                         DMERR("Failed to load bitmap");
3946         }
3947
3948         return r;
3949 }
3950
3951 /* Enforce updating all superblocks */
3952 static void rs_update_sbs(struct raid_set *rs)
3953 {
3954         struct mddev *mddev = &rs->md;
3955         int ro = mddev->ro;
3956
3957         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3958         mddev->ro = 0;
3959         md_update_sb(mddev, 1);
3960         mddev->ro = ro;
3961 }
3962
3963 /*
3964  * Reshape changes raid algorithm of @rs to new one within personality
3965  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3966  * disks from a raid set thus growing/shrinking it or resizes the set
3967  *
3968  * Call mddev_lock_nointr() before!
3969  */
3970 static int rs_start_reshape(struct raid_set *rs)
3971 {
3972         int r;
3973         struct mddev *mddev = &rs->md;
3974         struct md_personality *pers = mddev->pers;
3975
3976         /* Don't allow the sync thread to work until the table gets reloaded. */
3977         set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3978
3979         r = rs_setup_reshape(rs);
3980         if (r)
3981                 return r;
3982
3983         /*
3984          * Check any reshape constraints enforced by the personalility
3985          *
3986          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3987          */
3988         r = pers->check_reshape(mddev);
3989         if (r) {
3990                 rs->ti->error = "pers->check_reshape() failed";
3991                 return r;
3992         }
3993
3994         /*
3995          * Personality may not provide start reshape method in which
3996          * case check_reshape above has already covered everything
3997          */
3998         if (pers->start_reshape) {
3999                 r = pers->start_reshape(mddev);
4000                 if (r) {
4001                         rs->ti->error = "pers->start_reshape() failed";
4002                         return r;
4003                 }
4004         }
4005
4006         /*
4007          * Now reshape got set up, update superblocks to
4008          * reflect the fact so that a table reload will
4009          * access proper superblock content in the ctr.
4010          */
4011         rs_update_sbs(rs);
4012
4013         return 0;
4014 }
4015
4016 static int raid_preresume(struct dm_target *ti)
4017 {
4018         int r;
4019         struct raid_set *rs = ti->private;
4020         struct mddev *mddev = &rs->md;
4021
4022         /* This is a resume after a suspend of the set -> it's already started. */
4023         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
4024                 return 0;
4025
4026         /*
4027          * The superblocks need to be updated on disk if the
4028          * array is new or new devices got added (thus zeroed
4029          * out by userspace) or __load_dirty_region_bitmap
4030          * will overwrite them in core with old data or fail.
4031          */
4032         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
4033                 rs_update_sbs(rs);
4034
4035         /* Load the bitmap from disk unless raid0 */
4036         r = __load_dirty_region_bitmap(rs);
4037         if (r)
4038                 return r;
4039
4040         /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
4041         if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
4042                 mddev->array_sectors = rs->array_sectors;
4043                 mddev->dev_sectors = rs->dev_sectors;
4044                 rs_set_rdev_sectors(rs);
4045                 rs_set_capacity(rs);
4046         }
4047
4048         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4049         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4050             (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4051              (rs->requested_bitmap_chunk_sectors &&
4052                mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4053                 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4054
4055                 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4056                 if (r)
4057                         DMERR("Failed to resize bitmap");
4058         }
4059
4060         /* Check for any resize/reshape on @rs and adjust/initiate */
4061         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4062                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4063                 mddev->resync_min = mddev->recovery_cp;
4064                 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4065                         mddev->resync_max_sectors = mddev->dev_sectors;
4066         }
4067
4068         /* Check for any reshape request unless new raid set */
4069         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4070                 /* Initiate a reshape. */
4071                 rs_set_rdev_sectors(rs);
4072                 mddev_lock_nointr(mddev);
4073                 r = rs_start_reshape(rs);
4074                 mddev_unlock(mddev);
4075                 if (r)
4076                         DMWARN("Failed to check/start reshape, continuing without change");
4077                 r = 0;
4078         }
4079
4080         return r;
4081 }
4082
4083 static void raid_resume(struct dm_target *ti)
4084 {
4085         struct raid_set *rs = ti->private;
4086         struct mddev *mddev = &rs->md;
4087
4088         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4089                 /*
4090                  * A secondary resume while the device is active.
4091                  * Take this opportunity to check whether any failed
4092                  * devices are reachable again.
4093                  */
4094                 mddev_lock_nointr(mddev);
4095                 attempt_restore_of_faulty_devices(rs);
4096                 mddev_unlock(mddev);
4097         }
4098
4099         if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4100                 /* Only reduce raid set size before running a disk removing reshape. */
4101                 if (mddev->delta_disks < 0)
4102                         rs_set_capacity(rs);
4103
4104                 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery));
4105                 WARN_ON_ONCE(test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4106                 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
4107                 mddev_lock_nointr(mddev);
4108                 mddev->ro = 0;
4109                 mddev->in_sync = 0;
4110                 md_unfrozen_sync_thread(mddev);
4111                 mddev_unlock_and_resume(mddev);
4112         }
4113 }
4114
4115 static struct target_type raid_target = {
4116         .name = "raid",
4117         .version = {1, 15, 1},
4118         .module = THIS_MODULE,
4119         .ctr = raid_ctr,
4120         .dtr = raid_dtr,
4121         .map = raid_map,
4122         .status = raid_status,
4123         .message = raid_message,
4124         .iterate_devices = raid_iterate_devices,
4125         .io_hints = raid_io_hints,
4126         .presuspend = raid_presuspend,
4127         .presuspend_undo = raid_presuspend_undo,
4128         .postsuspend = raid_postsuspend,
4129         .preresume = raid_preresume,
4130         .resume = raid_resume,
4131 };
4132 module_dm(raid);
4133
4134 module_param(devices_handle_discard_safely, bool, 0644);
4135 MODULE_PARM_DESC(devices_handle_discard_safely,
4136                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4137
4138 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4139 MODULE_ALIAS("dm-raid0");
4140 MODULE_ALIAS("dm-raid1");
4141 MODULE_ALIAS("dm-raid10");
4142 MODULE_ALIAS("dm-raid4");
4143 MODULE_ALIAS("dm-raid5");
4144 MODULE_ALIAS("dm-raid6");
4145 MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>");
4146 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>");
4147 MODULE_LICENSE("GPL");