2639fc7181171c4ab1db52bb0765c8f0a8b24bd6
[sfrench/cifs-2.6.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)   NULL
34 #define arm_iommu_attach_device(...)    -ENODEV
35 #define arm_iommu_release_mapping(...)  do {} while (0)
36 #define arm_iommu_detach_device(...)    do {} while (0)
37 #endif
38
39 #define IPMMU_CTX_MAX           8U
40 #define IPMMU_CTX_INVALID       -1
41
42 #define IPMMU_UTLB_MAX          48U
43
44 struct ipmmu_features {
45         bool use_ns_alias_offset;
46         bool has_cache_leaf_nodes;
47         unsigned int number_of_contexts;
48         unsigned int num_utlbs;
49         bool setup_imbuscr;
50         bool twobit_imttbcr_sl0;
51         bool reserved_context;
52         bool cache_snoop;
53 };
54
55 struct ipmmu_vmsa_device {
56         struct device *dev;
57         void __iomem *base;
58         struct iommu_device iommu;
59         struct ipmmu_vmsa_device *root;
60         const struct ipmmu_features *features;
61         unsigned int num_ctx;
62         spinlock_t lock;                        /* Protects ctx and domains[] */
63         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65         s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67         struct iommu_group *group;
68         struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72         struct ipmmu_vmsa_device *mmu;
73         struct iommu_domain io_domain;
74
75         struct io_pgtable_cfg cfg;
76         struct io_pgtable_ops *iop;
77
78         unsigned int context_id;
79         struct mutex mutex;                     /* Protects mappings */
80 };
81
82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
90
91         return fwspec ? fwspec->iommu_priv : NULL;
92 }
93
94 #define TLB_LOOP_TIMEOUT                100     /* 100us */
95
96 /* -----------------------------------------------------------------------------
97  * Registers Definition
98  */
99
100 #define IM_NS_ALIAS_OFFSET              0x800
101
102 #define IM_CTX_SIZE                     0x40
103
104 #define IMCTR                           0x0000
105 #define IMCTR_TRE                       (1 << 17)
106 #define IMCTR_AFE                       (1 << 16)
107 #define IMCTR_RTSEL_MASK                (3 << 4)
108 #define IMCTR_RTSEL_SHIFT               4
109 #define IMCTR_TREN                      (1 << 3)
110 #define IMCTR_INTEN                     (1 << 2)
111 #define IMCTR_FLUSH                     (1 << 1)
112 #define IMCTR_MMUEN                     (1 << 0)
113
114 #define IMCAAR                          0x0004
115
116 #define IMTTBCR                         0x0008
117 #define IMTTBCR_EAE                     (1 << 31)
118 #define IMTTBCR_PMB                     (1 << 30)
119 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)       /* R-Car Gen2 only */
120 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)       /* R-Car Gen2 only */
121 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)       /* R-Car Gen2 only */
122 #define IMTTBCR_SH1_MASK                (3 << 28)       /* R-Car Gen2 only */
123 #define IMTTBCR_ORGN1_NC                (0 << 26)       /* R-Car Gen2 only */
124 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)       /* R-Car Gen2 only */
125 #define IMTTBCR_ORGN1_WT                (2 << 26)       /* R-Car Gen2 only */
126 #define IMTTBCR_ORGN1_WB                (3 << 26)       /* R-Car Gen2 only */
127 #define IMTTBCR_ORGN1_MASK              (3 << 26)       /* R-Car Gen2 only */
128 #define IMTTBCR_IRGN1_NC                (0 << 24)       /* R-Car Gen2 only */
129 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)       /* R-Car Gen2 only */
130 #define IMTTBCR_IRGN1_WT                (2 << 24)       /* R-Car Gen2 only */
131 #define IMTTBCR_IRGN1_WB                (3 << 24)       /* R-Car Gen2 only */
132 #define IMTTBCR_IRGN1_MASK              (3 << 24)       /* R-Car Gen2 only */
133 #define IMTTBCR_TSZ1_MASK               (7 << 16)
134 #define IMTTBCR_TSZ1_SHIFT              16
135 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)       /* R-Car Gen2 only */
136 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)       /* R-Car Gen2 only */
137 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
138 #define IMTTBCR_SH0_MASK                (3 << 12)       /* R-Car Gen2 only */
139 #define IMTTBCR_ORGN0_NC                (0 << 10)       /* R-Car Gen2 only */
140 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
141 #define IMTTBCR_ORGN0_WT                (2 << 10)       /* R-Car Gen2 only */
142 #define IMTTBCR_ORGN0_WB                (3 << 10)       /* R-Car Gen2 only */
143 #define IMTTBCR_ORGN0_MASK              (3 << 10)       /* R-Car Gen2 only */
144 #define IMTTBCR_IRGN0_NC                (0 << 8)        /* R-Car Gen2 only */
145 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
146 #define IMTTBCR_IRGN0_WT                (2 << 8)        /* R-Car Gen2 only */
147 #define IMTTBCR_IRGN0_WB                (3 << 8)        /* R-Car Gen2 only */
148 #define IMTTBCR_IRGN0_MASK              (3 << 8)        /* R-Car Gen2 only */
149 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)        /* R-Car Gen3 only */
150 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)        /* R-Car Gen3 only */
151 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
152 #define IMTTBCR_SL0_LVL_2               (0 << 4)
153 #define IMTTBCR_SL0_LVL_1               (1 << 4)
154 #define IMTTBCR_TSZ0_MASK               (7 << 0)
155 #define IMTTBCR_TSZ0_SHIFT              O
156
157 #define IMBUSCR                         0x000c
158 #define IMBUSCR_DVM                     (1 << 2)
159 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
160 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
163 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
164
165 #define IMTTLBR0                        0x0010
166 #define IMTTUBR0                        0x0014
167 #define IMTTLBR1                        0x0018
168 #define IMTTUBR1                        0x001c
169
170 #define IMSTR                           0x0020
171 #define IMSTR_ERRLVL_MASK               (3 << 12)
172 #define IMSTR_ERRLVL_SHIFT              12
173 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
176 #define IMSTR_ERRCODE_MASK              (7 << 8)
177 #define IMSTR_MHIT                      (1 << 4)
178 #define IMSTR_ABORT                     (1 << 2)
179 #define IMSTR_PF                        (1 << 1)
180 #define IMSTR_TF                        (1 << 0)
181
182 #define IMMAIR0                         0x0028
183 #define IMMAIR1                         0x002c
184 #define IMMAIR_ATTR_MASK                0xff
185 #define IMMAIR_ATTR_DEVICE              0x04
186 #define IMMAIR_ATTR_NC                  0x44
187 #define IMMAIR_ATTR_WBRWA               0xff
188 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC              0
190 #define IMMAIR_ATTR_IDX_WBRWA           1
191 #define IMMAIR_ATTR_IDX_DEV             2
192
193 #define IMELAR                          0x0030  /* IMEAR on R-Car Gen2 */
194 #define IMEUAR                          0x0034  /* R-Car Gen3 only */
195
196 #define IMPCTR                          0x0200
197 #define IMPSTR                          0x0208
198 #define IMPEAR                          0x020c
199 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
200 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
201
202 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))
204 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN                 (1 << 31)
206 #define IMUCTR_FIXADD_MASK              (0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT             16
208 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
209 #define IMUCTR_TTSEL_PMB                (8 << 4)
210 #define IMUCTR_TTSEL_MASK               (15 << 4)
211 #define IMUCTR_FLUSH                    (1 << 1)
212 #define IMUCTR_MMUEN                    (1 << 0)
213
214 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n)                     (0x0308 + ((n) * 16))
216 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK              (0xff << 8)
218 #define IMUASID_ASID8_SHIFT             8
219 #define IMUASID_ASID0_MASK              (0xff << 0)
220 #define IMUASID_ASID0_SHIFT             0
221
222 /* -----------------------------------------------------------------------------
223  * Root device handling
224  */
225
226 static struct platform_driver ipmmu_driver;
227
228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
229 {
230         return mmu->root == mmu;
231 }
232
233 static int __ipmmu_check_device(struct device *dev, void *data)
234 {
235         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
236         struct ipmmu_vmsa_device **rootp = data;
237
238         if (ipmmu_is_root(mmu))
239                 *rootp = mmu;
240
241         return 0;
242 }
243
244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
245 {
246         struct ipmmu_vmsa_device *root = NULL;
247
248         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
249                                       __ipmmu_check_device) == 0 ? root : NULL;
250 }
251
252 /* -----------------------------------------------------------------------------
253  * Read/Write Access
254  */
255
256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
257 {
258         return ioread32(mmu->base + offset);
259 }
260
261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
262                         u32 data)
263 {
264         iowrite32(data, mmu->base + offset);
265 }
266
267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
268                                unsigned int reg)
269 {
270         return ipmmu_read(domain->mmu->root,
271                           domain->context_id * IM_CTX_SIZE + reg);
272 }
273
274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
275                                  unsigned int reg, u32 data)
276 {
277         ipmmu_write(domain->mmu->root,
278                     domain->context_id * IM_CTX_SIZE + reg, data);
279 }
280
281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
282                                 unsigned int reg, u32 data)
283 {
284         if (domain->mmu != domain->mmu->root)
285                 ipmmu_write(domain->mmu,
286                             domain->context_id * IM_CTX_SIZE + reg, data);
287
288         ipmmu_write(domain->mmu->root,
289                     domain->context_id * IM_CTX_SIZE + reg, data);
290 }
291
292 /* -----------------------------------------------------------------------------
293  * TLB and microTLB Management
294  */
295
296 /* Wait for any pending TLB invalidations to complete */
297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
298 {
299         unsigned int count = 0;
300
301         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
302                 cpu_relax();
303                 if (++count == TLB_LOOP_TIMEOUT) {
304                         dev_err_ratelimited(domain->mmu->dev,
305                         "TLB sync timed out -- MMU may be deadlocked\n");
306                         return;
307                 }
308                 udelay(1);
309         }
310 }
311
312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
313 {
314         u32 reg;
315
316         reg = ipmmu_ctx_read_root(domain, IMCTR);
317         reg |= IMCTR_FLUSH;
318         ipmmu_ctx_write_all(domain, IMCTR, reg);
319
320         ipmmu_tlb_sync(domain);
321 }
322
323 /*
324  * Enable MMU translation for the microTLB.
325  */
326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
327                               unsigned int utlb)
328 {
329         struct ipmmu_vmsa_device *mmu = domain->mmu;
330
331         /*
332          * TODO: Reference-count the microTLB as several bus masters can be
333          * connected to the same microTLB.
334          */
335
336         /* TODO: What should we set the ASID to ? */
337         ipmmu_write(mmu, IMUASID(utlb), 0);
338         /* TODO: Do we need to flush the microTLB ? */
339         ipmmu_write(mmu, IMUCTR(utlb),
340                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
341                     IMUCTR_MMUEN);
342         mmu->utlb_ctx[utlb] = domain->context_id;
343 }
344
345 /*
346  * Disable MMU translation for the microTLB.
347  */
348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
349                                unsigned int utlb)
350 {
351         struct ipmmu_vmsa_device *mmu = domain->mmu;
352
353         ipmmu_write(mmu, IMUCTR(utlb), 0);
354         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
355 }
356
357 static void ipmmu_tlb_flush_all(void *cookie)
358 {
359         struct ipmmu_vmsa_domain *domain = cookie;
360
361         ipmmu_tlb_invalidate(domain);
362 }
363
364 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
365                                 size_t granule, void *cookie)
366 {
367         ipmmu_tlb_flush_all(cookie);
368 }
369
370 static const struct iommu_flush_ops ipmmu_flush_ops = {
371         .tlb_flush_all = ipmmu_tlb_flush_all,
372         .tlb_flush_walk = ipmmu_tlb_flush,
373         .tlb_flush_leaf = ipmmu_tlb_flush,
374 };
375
376 /* -----------------------------------------------------------------------------
377  * Domain/Context Management
378  */
379
380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
381                                          struct ipmmu_vmsa_domain *domain)
382 {
383         unsigned long flags;
384         int ret;
385
386         spin_lock_irqsave(&mmu->lock, flags);
387
388         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
389         if (ret != mmu->num_ctx) {
390                 mmu->domains[ret] = domain;
391                 set_bit(ret, mmu->ctx);
392         } else
393                 ret = -EBUSY;
394
395         spin_unlock_irqrestore(&mmu->lock, flags);
396
397         return ret;
398 }
399
400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
401                                       unsigned int context_id)
402 {
403         unsigned long flags;
404
405         spin_lock_irqsave(&mmu->lock, flags);
406
407         clear_bit(context_id, mmu->ctx);
408         mmu->domains[context_id] = NULL;
409
410         spin_unlock_irqrestore(&mmu->lock, flags);
411 }
412
413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
414 {
415         u64 ttbr;
416         u32 tmp;
417
418         /* TTBR0 */
419         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
420         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
421         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
422
423         /*
424          * TTBCR
425          * We use long descriptors and allocate the whole 32-bit VA space to
426          * TTBR0.
427          */
428         if (domain->mmu->features->twobit_imttbcr_sl0)
429                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
430         else
431                 tmp = IMTTBCR_SL0_LVL_1;
432
433         if (domain->mmu->features->cache_snoop)
434                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
435                        IMTTBCR_IRGN0_WB_WA;
436
437         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
438
439         /* MAIR0 */
440         ipmmu_ctx_write_root(domain, IMMAIR0,
441                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
442
443         /* IMBUSCR */
444         if (domain->mmu->features->setup_imbuscr)
445                 ipmmu_ctx_write_root(domain, IMBUSCR,
446                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
447                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
448
449         /*
450          * IMSTR
451          * Clear all interrupt flags.
452          */
453         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
454
455         /*
456          * IMCTR
457          * Enable the MMU and interrupt generation. The long-descriptor
458          * translation table format doesn't use TEX remapping. Don't enable AF
459          * software management as we have no use for it. Flush the TLB as
460          * required when modifying the context registers.
461          */
462         ipmmu_ctx_write_all(domain, IMCTR,
463                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
464 }
465
466 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
467 {
468         int ret;
469
470         /*
471          * Allocate the page table operations.
472          *
473          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
474          * access, Long-descriptor format" that the NStable bit being set in a
475          * table descriptor will result in the NStable and NS bits of all child
476          * entries being ignored and considered as being set. The IPMMU seems
477          * not to comply with this, as it generates a secure access page fault
478          * if any of the NStable and NS bits isn't set when running in
479          * non-secure mode.
480          */
481         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
482         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
483         domain->cfg.ias = 32;
484         domain->cfg.oas = 40;
485         domain->cfg.tlb = &ipmmu_flush_ops;
486         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
487         domain->io_domain.geometry.force_aperture = true;
488         /*
489          * TODO: Add support for coherent walk through CCI with DVM and remove
490          * cache handling. For now, delegate it to the io-pgtable code.
491          */
492         domain->cfg.coherent_walk = false;
493         domain->cfg.iommu_dev = domain->mmu->root->dev;
494
495         /*
496          * Find an unused context.
497          */
498         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
499         if (ret < 0)
500                 return ret;
501
502         domain->context_id = ret;
503
504         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
505                                            domain);
506         if (!domain->iop) {
507                 ipmmu_domain_free_context(domain->mmu->root,
508                                           domain->context_id);
509                 return -EINVAL;
510         }
511
512         ipmmu_domain_setup_context(domain);
513         return 0;
514 }
515
516 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
517 {
518         if (!domain->mmu)
519                 return;
520
521         /*
522          * Disable the context. Flush the TLB as required when modifying the
523          * context registers.
524          *
525          * TODO: Is TLB flush really needed ?
526          */
527         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
528         ipmmu_tlb_sync(domain);
529         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
530 }
531
532 /* -----------------------------------------------------------------------------
533  * Fault Handling
534  */
535
536 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
537 {
538         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
539         struct ipmmu_vmsa_device *mmu = domain->mmu;
540         unsigned long iova;
541         u32 status;
542
543         status = ipmmu_ctx_read_root(domain, IMSTR);
544         if (!(status & err_mask))
545                 return IRQ_NONE;
546
547         iova = ipmmu_ctx_read_root(domain, IMELAR);
548         if (IS_ENABLED(CONFIG_64BIT))
549                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
550
551         /*
552          * Clear the error status flags. Unlike traditional interrupt flag
553          * registers that must be cleared by writing 1, this status register
554          * seems to require 0. The error address register must be read before,
555          * otherwise its value will be 0.
556          */
557         ipmmu_ctx_write_root(domain, IMSTR, 0);
558
559         /* Log fatal errors. */
560         if (status & IMSTR_MHIT)
561                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
562                                     iova);
563         if (status & IMSTR_ABORT)
564                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
565                                     iova);
566
567         if (!(status & (IMSTR_PF | IMSTR_TF)))
568                 return IRQ_NONE;
569
570         /*
571          * Try to handle page faults and translation faults.
572          *
573          * TODO: We need to look up the faulty device based on the I/O VA. Use
574          * the IOMMU device for now.
575          */
576         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
577                 return IRQ_HANDLED;
578
579         dev_err_ratelimited(mmu->dev,
580                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
581                             status, iova);
582
583         return IRQ_HANDLED;
584 }
585
586 static irqreturn_t ipmmu_irq(int irq, void *dev)
587 {
588         struct ipmmu_vmsa_device *mmu = dev;
589         irqreturn_t status = IRQ_NONE;
590         unsigned int i;
591         unsigned long flags;
592
593         spin_lock_irqsave(&mmu->lock, flags);
594
595         /*
596          * Check interrupts for all active contexts.
597          */
598         for (i = 0; i < mmu->num_ctx; i++) {
599                 if (!mmu->domains[i])
600                         continue;
601                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
602                         status = IRQ_HANDLED;
603         }
604
605         spin_unlock_irqrestore(&mmu->lock, flags);
606
607         return status;
608 }
609
610 /* -----------------------------------------------------------------------------
611  * IOMMU Operations
612  */
613
614 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
615 {
616         struct ipmmu_vmsa_domain *domain;
617
618         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
619         if (!domain)
620                 return NULL;
621
622         mutex_init(&domain->mutex);
623
624         return &domain->io_domain;
625 }
626
627 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
628 {
629         struct iommu_domain *io_domain = NULL;
630
631         switch (type) {
632         case IOMMU_DOMAIN_UNMANAGED:
633                 io_domain = __ipmmu_domain_alloc(type);
634                 break;
635
636         case IOMMU_DOMAIN_DMA:
637                 io_domain = __ipmmu_domain_alloc(type);
638                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
639                         kfree(io_domain);
640                         io_domain = NULL;
641                 }
642                 break;
643         }
644
645         return io_domain;
646 }
647
648 static void ipmmu_domain_free(struct iommu_domain *io_domain)
649 {
650         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651
652         /*
653          * Free the domain resources. We assume that all devices have already
654          * been detached.
655          */
656         iommu_put_dma_cookie(io_domain);
657         ipmmu_domain_destroy_context(domain);
658         free_io_pgtable_ops(domain->iop);
659         kfree(domain);
660 }
661
662 static int ipmmu_attach_device(struct iommu_domain *io_domain,
663                                struct device *dev)
664 {
665         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
666         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
667         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
668         unsigned int i;
669         int ret = 0;
670
671         if (!mmu) {
672                 dev_err(dev, "Cannot attach to IPMMU\n");
673                 return -ENXIO;
674         }
675
676         mutex_lock(&domain->mutex);
677
678         if (!domain->mmu) {
679                 /* The domain hasn't been used yet, initialize it. */
680                 domain->mmu = mmu;
681                 ret = ipmmu_domain_init_context(domain);
682                 if (ret < 0) {
683                         dev_err(dev, "Unable to initialize IPMMU context\n");
684                         domain->mmu = NULL;
685                 } else {
686                         dev_info(dev, "Using IPMMU context %u\n",
687                                  domain->context_id);
688                 }
689         } else if (domain->mmu != mmu) {
690                 /*
691                  * Something is wrong, we can't attach two devices using
692                  * different IOMMUs to the same domain.
693                  */
694                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
695                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
696                 ret = -EINVAL;
697         } else
698                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
699
700         mutex_unlock(&domain->mutex);
701
702         if (ret < 0)
703                 return ret;
704
705         for (i = 0; i < fwspec->num_ids; ++i)
706                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
707
708         return 0;
709 }
710
711 static void ipmmu_detach_device(struct iommu_domain *io_domain,
712                                 struct device *dev)
713 {
714         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
715         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
716         unsigned int i;
717
718         for (i = 0; i < fwspec->num_ids; ++i)
719                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
720
721         /*
722          * TODO: Optimize by disabling the context when no device is attached.
723          */
724 }
725
726 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
727                      phys_addr_t paddr, size_t size, int prot)
728 {
729         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
730
731         if (!domain)
732                 return -ENODEV;
733
734         return domain->iop->map(domain->iop, iova, paddr, size, prot);
735 }
736
737 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
738                           size_t size, struct iommu_iotlb_gather *gather)
739 {
740         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
741
742         return domain->iop->unmap(domain->iop, iova, size, gather);
743 }
744
745 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
746 {
747         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
748
749         if (domain->mmu)
750                 ipmmu_tlb_flush_all(domain);
751 }
752
753 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
754                              struct iommu_iotlb_gather *gather)
755 {
756         ipmmu_flush_iotlb_all(io_domain);
757 }
758
759 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
760                                       dma_addr_t iova)
761 {
762         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
763
764         /* TODO: Is locking needed ? */
765
766         return domain->iop->iova_to_phys(domain->iop, iova);
767 }
768
769 static int ipmmu_init_platform_device(struct device *dev,
770                                       struct of_phandle_args *args)
771 {
772         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
773         struct platform_device *ipmmu_pdev;
774
775         ipmmu_pdev = of_find_device_by_node(args->np);
776         if (!ipmmu_pdev)
777                 return -ENODEV;
778
779         fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
780
781         return 0;
782 }
783
784 static const struct soc_device_attribute soc_rcar_gen3[] = {
785         { .soc_id = "r8a774a1", },
786         { .soc_id = "r8a774c0", },
787         { .soc_id = "r8a7795", },
788         { .soc_id = "r8a7796", },
789         { .soc_id = "r8a77965", },
790         { .soc_id = "r8a77970", },
791         { .soc_id = "r8a77990", },
792         { .soc_id = "r8a77995", },
793         { /* sentinel */ }
794 };
795
796 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
797         { .soc_id = "r8a774c0", },
798         { .soc_id = "r8a7795", .revision = "ES3.*" },
799         { .soc_id = "r8a77965", },
800         { .soc_id = "r8a77990", },
801         { .soc_id = "r8a77995", },
802         { /* sentinel */ }
803 };
804
805 static const char * const rcar_gen3_slave_whitelist[] = {
806 };
807
808 static bool ipmmu_slave_whitelist(struct device *dev)
809 {
810         unsigned int i;
811
812         /*
813          * For R-Car Gen3 use a white list to opt-in slave devices.
814          * For Other SoCs, this returns true anyway.
815          */
816         if (!soc_device_match(soc_rcar_gen3))
817                 return true;
818
819         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
820         if (!soc_device_match(soc_rcar_gen3_whitelist))
821                 return false;
822
823         /* Check whether this slave device can work with the IPMMU */
824         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
825                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
826                         return true;
827         }
828
829         /* Otherwise, do not allow use of IPMMU */
830         return false;
831 }
832
833 static int ipmmu_of_xlate(struct device *dev,
834                           struct of_phandle_args *spec)
835 {
836         if (!ipmmu_slave_whitelist(dev))
837                 return -ENODEV;
838
839         iommu_fwspec_add_ids(dev, spec->args, 1);
840
841         /* Initialize once - xlate() will call multiple times */
842         if (to_ipmmu(dev))
843                 return 0;
844
845         return ipmmu_init_platform_device(dev, spec);
846 }
847
848 static int ipmmu_init_arm_mapping(struct device *dev)
849 {
850         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
851         struct iommu_group *group;
852         int ret;
853
854         /* Create a device group and add the device to it. */
855         group = iommu_group_alloc();
856         if (IS_ERR(group)) {
857                 dev_err(dev, "Failed to allocate IOMMU group\n");
858                 return PTR_ERR(group);
859         }
860
861         ret = iommu_group_add_device(group, dev);
862         iommu_group_put(group);
863
864         if (ret < 0) {
865                 dev_err(dev, "Failed to add device to IPMMU group\n");
866                 return ret;
867         }
868
869         /*
870          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
871          * VAs. This will allocate a corresponding IOMMU domain.
872          *
873          * TODO:
874          * - Create one mapping per context (TLB).
875          * - Make the mapping size configurable ? We currently use a 2GB mapping
876          *   at a 1GB offset to ensure that NULL VAs will fault.
877          */
878         if (!mmu->mapping) {
879                 struct dma_iommu_mapping *mapping;
880
881                 mapping = arm_iommu_create_mapping(&platform_bus_type,
882                                                    SZ_1G, SZ_2G);
883                 if (IS_ERR(mapping)) {
884                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
885                         ret = PTR_ERR(mapping);
886                         goto error;
887                 }
888
889                 mmu->mapping = mapping;
890         }
891
892         /* Attach the ARM VA mapping to the device. */
893         ret = arm_iommu_attach_device(dev, mmu->mapping);
894         if (ret < 0) {
895                 dev_err(dev, "Failed to attach device to VA mapping\n");
896                 goto error;
897         }
898
899         return 0;
900
901 error:
902         iommu_group_remove_device(dev);
903         if (mmu->mapping)
904                 arm_iommu_release_mapping(mmu->mapping);
905
906         return ret;
907 }
908
909 static int ipmmu_add_device(struct device *dev)
910 {
911         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
912         struct iommu_group *group;
913         int ret;
914
915         /*
916          * Only let through devices that have been verified in xlate()
917          */
918         if (!mmu)
919                 return -ENODEV;
920
921         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
922                 ret = ipmmu_init_arm_mapping(dev);
923                 if (ret)
924                         return ret;
925         } else {
926                 group = iommu_group_get_for_dev(dev);
927                 if (IS_ERR(group))
928                         return PTR_ERR(group);
929
930                 iommu_group_put(group);
931         }
932
933         iommu_device_link(&mmu->iommu, dev);
934         return 0;
935 }
936
937 static void ipmmu_remove_device(struct device *dev)
938 {
939         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
940
941         iommu_device_unlink(&mmu->iommu, dev);
942         arm_iommu_detach_device(dev);
943         iommu_group_remove_device(dev);
944 }
945
946 static struct iommu_group *ipmmu_find_group(struct device *dev)
947 {
948         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
949         struct iommu_group *group;
950
951         if (mmu->group)
952                 return iommu_group_ref_get(mmu->group);
953
954         group = iommu_group_alloc();
955         if (!IS_ERR(group))
956                 mmu->group = group;
957
958         return group;
959 }
960
961 static const struct iommu_ops ipmmu_ops = {
962         .domain_alloc = ipmmu_domain_alloc,
963         .domain_free = ipmmu_domain_free,
964         .attach_dev = ipmmu_attach_device,
965         .detach_dev = ipmmu_detach_device,
966         .map = ipmmu_map,
967         .unmap = ipmmu_unmap,
968         .flush_iotlb_all = ipmmu_flush_iotlb_all,
969         .iotlb_sync = ipmmu_iotlb_sync,
970         .iova_to_phys = ipmmu_iova_to_phys,
971         .add_device = ipmmu_add_device,
972         .remove_device = ipmmu_remove_device,
973         .device_group = ipmmu_find_group,
974         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
975         .of_xlate = ipmmu_of_xlate,
976 };
977
978 /* -----------------------------------------------------------------------------
979  * Probe/remove and init
980  */
981
982 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
983 {
984         unsigned int i;
985
986         /* Disable all contexts. */
987         for (i = 0; i < mmu->num_ctx; ++i)
988                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
989 }
990
991 static const struct ipmmu_features ipmmu_features_default = {
992         .use_ns_alias_offset = true,
993         .has_cache_leaf_nodes = false,
994         .number_of_contexts = 1, /* software only tested with one context */
995         .num_utlbs = 32,
996         .setup_imbuscr = true,
997         .twobit_imttbcr_sl0 = false,
998         .reserved_context = false,
999         .cache_snoop = true,
1000 };
1001
1002 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
1003         .use_ns_alias_offset = false,
1004         .has_cache_leaf_nodes = true,
1005         .number_of_contexts = 8,
1006         .num_utlbs = 48,
1007         .setup_imbuscr = false,
1008         .twobit_imttbcr_sl0 = true,
1009         .reserved_context = true,
1010         .cache_snoop = false,
1011 };
1012
1013 static const struct of_device_id ipmmu_of_ids[] = {
1014         {
1015                 .compatible = "renesas,ipmmu-vmsa",
1016                 .data = &ipmmu_features_default,
1017         }, {
1018                 .compatible = "renesas,ipmmu-r8a774a1",
1019                 .data = &ipmmu_features_rcar_gen3,
1020         }, {
1021                 .compatible = "renesas,ipmmu-r8a774c0",
1022                 .data = &ipmmu_features_rcar_gen3,
1023         }, {
1024                 .compatible = "renesas,ipmmu-r8a7795",
1025                 .data = &ipmmu_features_rcar_gen3,
1026         }, {
1027                 .compatible = "renesas,ipmmu-r8a7796",
1028                 .data = &ipmmu_features_rcar_gen3,
1029         }, {
1030                 .compatible = "renesas,ipmmu-r8a77965",
1031                 .data = &ipmmu_features_rcar_gen3,
1032         }, {
1033                 .compatible = "renesas,ipmmu-r8a77970",
1034                 .data = &ipmmu_features_rcar_gen3,
1035         }, {
1036                 .compatible = "renesas,ipmmu-r8a77990",
1037                 .data = &ipmmu_features_rcar_gen3,
1038         }, {
1039                 .compatible = "renesas,ipmmu-r8a77995",
1040                 .data = &ipmmu_features_rcar_gen3,
1041         }, {
1042                 /* Terminator */
1043         },
1044 };
1045
1046 static int ipmmu_probe(struct platform_device *pdev)
1047 {
1048         struct ipmmu_vmsa_device *mmu;
1049         struct resource *res;
1050         int irq;
1051         int ret;
1052
1053         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1054         if (!mmu) {
1055                 dev_err(&pdev->dev, "cannot allocate device data\n");
1056                 return -ENOMEM;
1057         }
1058
1059         mmu->dev = &pdev->dev;
1060         spin_lock_init(&mmu->lock);
1061         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1062         mmu->features = of_device_get_match_data(&pdev->dev);
1063         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1064         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1065
1066         /* Map I/O memory and request IRQ. */
1067         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1068         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1069         if (IS_ERR(mmu->base))
1070                 return PTR_ERR(mmu->base);
1071
1072         /*
1073          * The IPMMU has two register banks, for secure and non-secure modes.
1074          * The bank mapped at the beginning of the IPMMU address space
1075          * corresponds to the running mode of the CPU. When running in secure
1076          * mode the non-secure register bank is also available at an offset.
1077          *
1078          * Secure mode operation isn't clearly documented and is thus currently
1079          * not implemented in the driver. Furthermore, preliminary tests of
1080          * non-secure operation with the main register bank were not successful.
1081          * Offset the registers base unconditionally to point to the non-secure
1082          * alias space for now.
1083          */
1084         if (mmu->features->use_ns_alias_offset)
1085                 mmu->base += IM_NS_ALIAS_OFFSET;
1086
1087         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1088
1089         /*
1090          * Determine if this IPMMU instance is a root device by checking for
1091          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1092          */
1093         if (!mmu->features->has_cache_leaf_nodes ||
1094             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1095                 mmu->root = mmu;
1096         else
1097                 mmu->root = ipmmu_find_root();
1098
1099         /*
1100          * Wait until the root device has been registered for sure.
1101          */
1102         if (!mmu->root)
1103                 return -EPROBE_DEFER;
1104
1105         /* Root devices have mandatory IRQs */
1106         if (ipmmu_is_root(mmu)) {
1107                 irq = platform_get_irq(pdev, 0);
1108                 if (irq < 0)
1109                         return irq;
1110
1111                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1112                                        dev_name(&pdev->dev), mmu);
1113                 if (ret < 0) {
1114                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1115                         return ret;
1116                 }
1117
1118                 ipmmu_device_reset(mmu);
1119
1120                 if (mmu->features->reserved_context) {
1121                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1122                         set_bit(0, mmu->ctx);
1123                 }
1124         }
1125
1126         /*
1127          * Register the IPMMU to the IOMMU subsystem in the following cases:
1128          * - R-Car Gen2 IPMMU (all devices registered)
1129          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1130          */
1131         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1132                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1133                                              dev_name(&pdev->dev));
1134                 if (ret)
1135                         return ret;
1136
1137                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1138                 iommu_device_set_fwnode(&mmu->iommu,
1139                                         &pdev->dev.of_node->fwnode);
1140
1141                 ret = iommu_device_register(&mmu->iommu);
1142                 if (ret)
1143                         return ret;
1144
1145 #if defined(CONFIG_IOMMU_DMA)
1146                 if (!iommu_present(&platform_bus_type))
1147                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1148 #endif
1149         }
1150
1151         /*
1152          * We can't create the ARM mapping here as it requires the bus to have
1153          * an IOMMU, which only happens when bus_set_iommu() is called in
1154          * ipmmu_init() after the probe function returns.
1155          */
1156
1157         platform_set_drvdata(pdev, mmu);
1158
1159         return 0;
1160 }
1161
1162 static int ipmmu_remove(struct platform_device *pdev)
1163 {
1164         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1165
1166         iommu_device_sysfs_remove(&mmu->iommu);
1167         iommu_device_unregister(&mmu->iommu);
1168
1169         arm_iommu_release_mapping(mmu->mapping);
1170
1171         ipmmu_device_reset(mmu);
1172
1173         return 0;
1174 }
1175
1176 #ifdef CONFIG_PM_SLEEP
1177 static int ipmmu_resume_noirq(struct device *dev)
1178 {
1179         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1180         unsigned int i;
1181
1182         /* Reset root MMU and restore contexts */
1183         if (ipmmu_is_root(mmu)) {
1184                 ipmmu_device_reset(mmu);
1185
1186                 for (i = 0; i < mmu->num_ctx; i++) {
1187                         if (!mmu->domains[i])
1188                                 continue;
1189
1190                         ipmmu_domain_setup_context(mmu->domains[i]);
1191                 }
1192         }
1193
1194         /* Re-enable active micro-TLBs */
1195         for (i = 0; i < mmu->features->num_utlbs; i++) {
1196                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1197                         continue;
1198
1199                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1200         }
1201
1202         return 0;
1203 }
1204
1205 static const struct dev_pm_ops ipmmu_pm  = {
1206         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1207 };
1208 #define DEV_PM_OPS      &ipmmu_pm
1209 #else
1210 #define DEV_PM_OPS      NULL
1211 #endif /* CONFIG_PM_SLEEP */
1212
1213 static struct platform_driver ipmmu_driver = {
1214         .driver = {
1215                 .name = "ipmmu-vmsa",
1216                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1217                 .pm = DEV_PM_OPS,
1218         },
1219         .probe = ipmmu_probe,
1220         .remove = ipmmu_remove,
1221 };
1222
1223 static int __init ipmmu_init(void)
1224 {
1225         struct device_node *np;
1226         static bool setup_done;
1227         int ret;
1228
1229         if (setup_done)
1230                 return 0;
1231
1232         np = of_find_matching_node(NULL, ipmmu_of_ids);
1233         if (!np)
1234                 return 0;
1235
1236         of_node_put(np);
1237
1238         ret = platform_driver_register(&ipmmu_driver);
1239         if (ret < 0)
1240                 return ret;
1241
1242 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1243         if (!iommu_present(&platform_bus_type))
1244                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1245 #endif
1246
1247         setup_done = true;
1248         return 0;
1249 }
1250 subsys_initcall(ipmmu_init);