Merge tag 'drm-next-5.5-2019-10-09' of git://people.freedesktop.org/~agd5f/linux...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31
32 #define pr_fmt(fmt) "[TTM] " fmt
33
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54
55 static struct attribute ttm_bo_count = {
56         .name = "bo_count",
57         .mode = S_IRUGO
58 };
59
60 /* default destructor */
61 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
62 {
63         kfree(bo);
64 }
65
66 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
67                                           uint32_t *mem_type)
68 {
69         int pos;
70
71         pos = ffs(place->flags & TTM_PL_MASK_MEM);
72         if (unlikely(!pos))
73                 return -EINVAL;
74
75         *mem_type = pos - 1;
76         return 0;
77 }
78
79 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
80                                int mem_type)
81 {
82         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
83
84         drm_printf(p, "    has_type: %d\n", man->has_type);
85         drm_printf(p, "    use_type: %d\n", man->use_type);
86         drm_printf(p, "    flags: 0x%08X\n", man->flags);
87         drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
88         drm_printf(p, "    size: %llu\n", man->size);
89         drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
90         drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
91         if (mem_type != TTM_PL_SYSTEM)
92                 (*man->func->debug)(man, p);
93 }
94
95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
96                                         struct ttm_placement *placement)
97 {
98         struct drm_printer p = drm_debug_printer(TTM_PFX);
99         int i, ret, mem_type;
100
101         drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
102                    bo, bo->mem.num_pages, bo->mem.size >> 10,
103                    bo->mem.size >> 20);
104         for (i = 0; i < placement->num_placement; i++) {
105                 ret = ttm_mem_type_from_place(&placement->placement[i],
106                                                 &mem_type);
107                 if (ret)
108                         return;
109                 drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
110                            i, placement->placement[i].flags, mem_type);
111                 ttm_mem_type_debug(bo->bdev, &p, mem_type);
112         }
113 }
114
115 static ssize_t ttm_bo_global_show(struct kobject *kobj,
116                                   struct attribute *attr,
117                                   char *buffer)
118 {
119         struct ttm_bo_global *glob =
120                 container_of(kobj, struct ttm_bo_global, kobj);
121
122         return snprintf(buffer, PAGE_SIZE, "%d\n",
123                                 atomic_read(&glob->bo_count));
124 }
125
126 static struct attribute *ttm_bo_global_attrs[] = {
127         &ttm_bo_count,
128         NULL
129 };
130
131 static const struct sysfs_ops ttm_bo_global_ops = {
132         .show = &ttm_bo_global_show
133 };
134
135 static struct kobj_type ttm_bo_glob_kobj_type  = {
136         .release = &ttm_bo_global_kobj_release,
137         .sysfs_ops = &ttm_bo_global_ops,
138         .default_attrs = ttm_bo_global_attrs
139 };
140
141
142 static inline uint32_t ttm_bo_type_flags(unsigned type)
143 {
144         return 1 << (type);
145 }
146
147 static void ttm_bo_release_list(struct kref *list_kref)
148 {
149         struct ttm_buffer_object *bo =
150             container_of(list_kref, struct ttm_buffer_object, list_kref);
151         struct ttm_bo_device *bdev = bo->bdev;
152         size_t acc_size = bo->acc_size;
153
154         BUG_ON(kref_read(&bo->list_kref));
155         BUG_ON(kref_read(&bo->kref));
156         BUG_ON(atomic_read(&bo->cpu_writers));
157         BUG_ON(bo->mem.mm_node != NULL);
158         BUG_ON(!list_empty(&bo->lru));
159         BUG_ON(!list_empty(&bo->ddestroy));
160         ttm_tt_destroy(bo->ttm);
161         atomic_dec(&bo->bdev->glob->bo_count);
162         dma_fence_put(bo->moving);
163         if (!ttm_bo_uses_embedded_gem_object(bo))
164                 dma_resv_fini(&bo->base._resv);
165         mutex_destroy(&bo->wu_mutex);
166         bo->destroy(bo);
167         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
168 }
169
170 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
171                                   struct ttm_mem_reg *mem)
172 {
173         struct ttm_bo_device *bdev = bo->bdev;
174         struct ttm_mem_type_manager *man;
175
176         dma_resv_assert_held(bo->base.resv);
177
178         if (!list_empty(&bo->lru))
179                 return;
180
181         if (mem->placement & TTM_PL_FLAG_NO_EVICT)
182                 return;
183
184         man = &bdev->man[mem->mem_type];
185         list_add_tail(&bo->lru, &man->lru[bo->priority]);
186         kref_get(&bo->list_kref);
187
188         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
189             !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
190                                      TTM_PAGE_FLAG_SWAPPED))) {
191                 list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
192                 kref_get(&bo->list_kref);
193         }
194 }
195
196 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
197 {
198         ttm_bo_add_mem_to_lru(bo, &bo->mem);
199 }
200 EXPORT_SYMBOL(ttm_bo_add_to_lru);
201
202 static void ttm_bo_ref_bug(struct kref *list_kref)
203 {
204         BUG();
205 }
206
207 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
208 {
209         struct ttm_bo_device *bdev = bo->bdev;
210         bool notify = false;
211
212         if (!list_empty(&bo->swap)) {
213                 list_del_init(&bo->swap);
214                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
215                 notify = true;
216         }
217         if (!list_empty(&bo->lru)) {
218                 list_del_init(&bo->lru);
219                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
220                 notify = true;
221         }
222
223         if (notify && bdev->driver->del_from_lru_notify)
224                 bdev->driver->del_from_lru_notify(bo);
225 }
226
227 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
228 {
229         struct ttm_bo_global *glob = bo->bdev->glob;
230
231         spin_lock(&glob->lru_lock);
232         ttm_bo_del_from_lru(bo);
233         spin_unlock(&glob->lru_lock);
234 }
235 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
236
237 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
238                                      struct ttm_buffer_object *bo)
239 {
240         if (!pos->first)
241                 pos->first = bo;
242         pos->last = bo;
243 }
244
245 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
246                              struct ttm_lru_bulk_move *bulk)
247 {
248         dma_resv_assert_held(bo->base.resv);
249
250         ttm_bo_del_from_lru(bo);
251         ttm_bo_add_to_lru(bo);
252
253         if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
254                 switch (bo->mem.mem_type) {
255                 case TTM_PL_TT:
256                         ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
257                         break;
258
259                 case TTM_PL_VRAM:
260                         ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
261                         break;
262                 }
263                 if (bo->ttm && !(bo->ttm->page_flags &
264                                  (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
265                         ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
266         }
267 }
268 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
269
270 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
271 {
272         unsigned i;
273
274         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
275                 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
276                 struct ttm_mem_type_manager *man;
277
278                 if (!pos->first)
279                         continue;
280
281                 dma_resv_assert_held(pos->first->base.resv);
282                 dma_resv_assert_held(pos->last->base.resv);
283
284                 man = &pos->first->bdev->man[TTM_PL_TT];
285                 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
286                                     &pos->last->lru);
287         }
288
289         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
290                 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
291                 struct ttm_mem_type_manager *man;
292
293                 if (!pos->first)
294                         continue;
295
296                 dma_resv_assert_held(pos->first->base.resv);
297                 dma_resv_assert_held(pos->last->base.resv);
298
299                 man = &pos->first->bdev->man[TTM_PL_VRAM];
300                 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
301                                     &pos->last->lru);
302         }
303
304         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
305                 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
306                 struct list_head *lru;
307
308                 if (!pos->first)
309                         continue;
310
311                 dma_resv_assert_held(pos->first->base.resv);
312                 dma_resv_assert_held(pos->last->base.resv);
313
314                 lru = &pos->first->bdev->glob->swap_lru[i];
315                 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
316         }
317 }
318 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
319
320 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
321                                   struct ttm_mem_reg *mem, bool evict,
322                                   struct ttm_operation_ctx *ctx)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
326         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
327         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
328         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
329         int ret = 0;
330
331         if (old_is_pci || new_is_pci ||
332             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
333                 ret = ttm_mem_io_lock(old_man, true);
334                 if (unlikely(ret != 0))
335                         goto out_err;
336                 ttm_bo_unmap_virtual_locked(bo);
337                 ttm_mem_io_unlock(old_man);
338         }
339
340         /*
341          * Create and bind a ttm if required.
342          */
343
344         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
345                 if (bo->ttm == NULL) {
346                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
347                         ret = ttm_tt_create(bo, zero);
348                         if (ret)
349                                 goto out_err;
350                 }
351
352                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
353                 if (ret)
354                         goto out_err;
355
356                 if (mem->mem_type != TTM_PL_SYSTEM) {
357                         ret = ttm_tt_bind(bo->ttm, mem, ctx);
358                         if (ret)
359                                 goto out_err;
360                 }
361
362                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
363                         if (bdev->driver->move_notify)
364                                 bdev->driver->move_notify(bo, evict, mem);
365                         bo->mem = *mem;
366                         mem->mm_node = NULL;
367                         goto moved;
368                 }
369         }
370
371         if (bdev->driver->move_notify)
372                 bdev->driver->move_notify(bo, evict, mem);
373
374         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
375             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
376                 ret = ttm_bo_move_ttm(bo, ctx, mem);
377         else if (bdev->driver->move)
378                 ret = bdev->driver->move(bo, evict, ctx, mem);
379         else
380                 ret = ttm_bo_move_memcpy(bo, ctx, mem);
381
382         if (ret) {
383                 if (bdev->driver->move_notify) {
384                         swap(*mem, bo->mem);
385                         bdev->driver->move_notify(bo, false, mem);
386                         swap(*mem, bo->mem);
387                 }
388
389                 goto out_err;
390         }
391
392 moved:
393         if (bo->evicted) {
394                 if (bdev->driver->invalidate_caches) {
395                         ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
396                         if (ret)
397                                 pr_err("Can not flush read caches\n");
398                 }
399                 bo->evicted = false;
400         }
401
402         if (bo->mem.mm_node)
403                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
404                     bdev->man[bo->mem.mem_type].gpu_offset;
405         else
406                 bo->offset = 0;
407
408         ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
409         return 0;
410
411 out_err:
412         new_man = &bdev->man[bo->mem.mem_type];
413         if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
414                 ttm_tt_destroy(bo->ttm);
415                 bo->ttm = NULL;
416         }
417
418         return ret;
419 }
420
421 /**
422  * Call bo::reserved.
423  * Will release GPU memory type usage on destruction.
424  * This is the place to put in driver specific hooks to release
425  * driver private resources.
426  * Will release the bo::reserved lock.
427  */
428
429 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
430 {
431         if (bo->bdev->driver->move_notify)
432                 bo->bdev->driver->move_notify(bo, false, NULL);
433
434         ttm_tt_destroy(bo->ttm);
435         bo->ttm = NULL;
436         ttm_bo_mem_put(bo, &bo->mem);
437 }
438
439 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
440 {
441         int r;
442
443         if (bo->base.resv == &bo->base._resv)
444                 return 0;
445
446         BUG_ON(!dma_resv_trylock(&bo->base._resv));
447
448         r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
449         if (r)
450                 dma_resv_unlock(&bo->base._resv);
451
452         return r;
453 }
454
455 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
456 {
457         struct dma_resv_list *fobj;
458         struct dma_fence *fence;
459         int i;
460
461         fobj = dma_resv_get_list(&bo->base._resv);
462         fence = dma_resv_get_excl(&bo->base._resv);
463         if (fence && !fence->ops->signaled)
464                 dma_fence_enable_sw_signaling(fence);
465
466         for (i = 0; fobj && i < fobj->shared_count; ++i) {
467                 fence = rcu_dereference_protected(fobj->shared[i],
468                                         dma_resv_held(bo->base.resv));
469
470                 if (!fence->ops->signaled)
471                         dma_fence_enable_sw_signaling(fence);
472         }
473 }
474
475 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
476 {
477         struct ttm_bo_device *bdev = bo->bdev;
478         struct ttm_bo_global *glob = bdev->glob;
479         int ret;
480
481         ret = ttm_bo_individualize_resv(bo);
482         if (ret) {
483                 /* Last resort, if we fail to allocate memory for the
484                  * fences block for the BO to become idle
485                  */
486                 dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
487                                                     30 * HZ);
488                 spin_lock(&glob->lru_lock);
489                 goto error;
490         }
491
492         spin_lock(&glob->lru_lock);
493         ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
494         if (!ret) {
495                 if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
496                         ttm_bo_del_from_lru(bo);
497                         spin_unlock(&glob->lru_lock);
498                         if (bo->base.resv != &bo->base._resv)
499                                 dma_resv_unlock(&bo->base._resv);
500
501                         ttm_bo_cleanup_memtype_use(bo);
502                         dma_resv_unlock(bo->base.resv);
503                         return;
504                 }
505
506                 ttm_bo_flush_all_fences(bo);
507
508                 /*
509                  * Make NO_EVICT bos immediately available to
510                  * shrinkers, now that they are queued for
511                  * destruction.
512                  */
513                 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
514                         bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
515                         ttm_bo_add_to_lru(bo);
516                 }
517
518                 dma_resv_unlock(bo->base.resv);
519         }
520         if (bo->base.resv != &bo->base._resv)
521                 dma_resv_unlock(&bo->base._resv);
522
523 error:
524         kref_get(&bo->list_kref);
525         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
526         spin_unlock(&glob->lru_lock);
527
528         schedule_delayed_work(&bdev->wq,
529                               ((HZ / 100) < 1) ? 1 : HZ / 100);
530 }
531
532 /**
533  * function ttm_bo_cleanup_refs
534  * If bo idle, remove from delayed- and lru lists, and unref.
535  * If not idle, do nothing.
536  *
537  * Must be called with lru_lock and reservation held, this function
538  * will drop the lru lock and optionally the reservation lock before returning.
539  *
540  * @interruptible         Any sleeps should occur interruptibly.
541  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
542  * @unlock_resv           Unlock the reservation lock as well.
543  */
544
545 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
546                                bool interruptible, bool no_wait_gpu,
547                                bool unlock_resv)
548 {
549         struct ttm_bo_global *glob = bo->bdev->glob;
550         struct dma_resv *resv;
551         int ret;
552
553         if (unlikely(list_empty(&bo->ddestroy)))
554                 resv = bo->base.resv;
555         else
556                 resv = &bo->base._resv;
557
558         if (dma_resv_test_signaled_rcu(resv, true))
559                 ret = 0;
560         else
561                 ret = -EBUSY;
562
563         if (ret && !no_wait_gpu) {
564                 long lret;
565
566                 if (unlock_resv)
567                         dma_resv_unlock(bo->base.resv);
568                 spin_unlock(&glob->lru_lock);
569
570                 lret = dma_resv_wait_timeout_rcu(resv, true,
571                                                            interruptible,
572                                                            30 * HZ);
573
574                 if (lret < 0)
575                         return lret;
576                 else if (lret == 0)
577                         return -EBUSY;
578
579                 spin_lock(&glob->lru_lock);
580                 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
581                         /*
582                          * We raced, and lost, someone else holds the reservation now,
583                          * and is probably busy in ttm_bo_cleanup_memtype_use.
584                          *
585                          * Even if it's not the case, because we finished waiting any
586                          * delayed destruction would succeed, so just return success
587                          * here.
588                          */
589                         spin_unlock(&glob->lru_lock);
590                         return 0;
591                 }
592                 ret = 0;
593         }
594
595         if (ret || unlikely(list_empty(&bo->ddestroy))) {
596                 if (unlock_resv)
597                         dma_resv_unlock(bo->base.resv);
598                 spin_unlock(&glob->lru_lock);
599                 return ret;
600         }
601
602         ttm_bo_del_from_lru(bo);
603         list_del_init(&bo->ddestroy);
604         kref_put(&bo->list_kref, ttm_bo_ref_bug);
605
606         spin_unlock(&glob->lru_lock);
607         ttm_bo_cleanup_memtype_use(bo);
608
609         if (unlock_resv)
610                 dma_resv_unlock(bo->base.resv);
611
612         return 0;
613 }
614
615 /**
616  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617  * encountered buffers.
618  */
619 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
620 {
621         struct ttm_bo_global *glob = bdev->glob;
622         struct list_head removed;
623         bool empty;
624
625         INIT_LIST_HEAD(&removed);
626
627         spin_lock(&glob->lru_lock);
628         while (!list_empty(&bdev->ddestroy)) {
629                 struct ttm_buffer_object *bo;
630
631                 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
632                                       ddestroy);
633                 kref_get(&bo->list_kref);
634                 list_move_tail(&bo->ddestroy, &removed);
635
636                 if (remove_all || bo->base.resv != &bo->base._resv) {
637                         spin_unlock(&glob->lru_lock);
638                         dma_resv_lock(bo->base.resv, NULL);
639
640                         spin_lock(&glob->lru_lock);
641                         ttm_bo_cleanup_refs(bo, false, !remove_all, true);
642
643                 } else if (dma_resv_trylock(bo->base.resv)) {
644                         ttm_bo_cleanup_refs(bo, false, !remove_all, true);
645                 } else {
646                         spin_unlock(&glob->lru_lock);
647                 }
648
649                 kref_put(&bo->list_kref, ttm_bo_release_list);
650                 spin_lock(&glob->lru_lock);
651         }
652         list_splice_tail(&removed, &bdev->ddestroy);
653         empty = list_empty(&bdev->ddestroy);
654         spin_unlock(&glob->lru_lock);
655
656         return empty;
657 }
658
659 static void ttm_bo_delayed_workqueue(struct work_struct *work)
660 {
661         struct ttm_bo_device *bdev =
662             container_of(work, struct ttm_bo_device, wq.work);
663
664         if (!ttm_bo_delayed_delete(bdev, false))
665                 schedule_delayed_work(&bdev->wq,
666                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
667 }
668
669 static void ttm_bo_release(struct kref *kref)
670 {
671         struct ttm_buffer_object *bo =
672             container_of(kref, struct ttm_buffer_object, kref);
673         struct ttm_bo_device *bdev = bo->bdev;
674         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
675
676         if (bo->bdev->driver->release_notify)
677                 bo->bdev->driver->release_notify(bo);
678
679         drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
680         ttm_mem_io_lock(man, false);
681         ttm_mem_io_free_vm(bo);
682         ttm_mem_io_unlock(man);
683         ttm_bo_cleanup_refs_or_queue(bo);
684         kref_put(&bo->list_kref, ttm_bo_release_list);
685 }
686
687 void ttm_bo_put(struct ttm_buffer_object *bo)
688 {
689         kref_put(&bo->kref, ttm_bo_release);
690 }
691 EXPORT_SYMBOL(ttm_bo_put);
692
693 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
694 {
695         return cancel_delayed_work_sync(&bdev->wq);
696 }
697 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
698
699 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
700 {
701         if (resched)
702                 schedule_delayed_work(&bdev->wq,
703                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
704 }
705 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
706
707 static int ttm_bo_evict(struct ttm_buffer_object *bo,
708                         struct ttm_operation_ctx *ctx)
709 {
710         struct ttm_bo_device *bdev = bo->bdev;
711         struct ttm_mem_reg evict_mem;
712         struct ttm_placement placement;
713         int ret = 0;
714
715         dma_resv_assert_held(bo->base.resv);
716
717         placement.num_placement = 0;
718         placement.num_busy_placement = 0;
719         bdev->driver->evict_flags(bo, &placement);
720
721         if (!placement.num_placement && !placement.num_busy_placement) {
722                 ret = ttm_bo_pipeline_gutting(bo);
723                 if (ret)
724                         return ret;
725
726                 return ttm_tt_create(bo, false);
727         }
728
729         evict_mem = bo->mem;
730         evict_mem.mm_node = NULL;
731         evict_mem.bus.io_reserved_vm = false;
732         evict_mem.bus.io_reserved_count = 0;
733
734         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
735         if (ret) {
736                 if (ret != -ERESTARTSYS) {
737                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
738                                bo);
739                         ttm_bo_mem_space_debug(bo, &placement);
740                 }
741                 goto out;
742         }
743
744         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
745         if (unlikely(ret)) {
746                 if (ret != -ERESTARTSYS)
747                         pr_err("Buffer eviction failed\n");
748                 ttm_bo_mem_put(bo, &evict_mem);
749                 goto out;
750         }
751         bo->evicted = true;
752 out:
753         return ret;
754 }
755
756 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
757                               const struct ttm_place *place)
758 {
759         /* Don't evict this BO if it's outside of the
760          * requested placement range
761          */
762         if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
763             (place->lpfn && place->lpfn <= bo->mem.start))
764                 return false;
765
766         return true;
767 }
768 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
769
770 /**
771  * Check the target bo is allowable to be evicted or swapout, including cases:
772  *
773  * a. if share same reservation object with ctx->resv, have assumption
774  * reservation objects should already be locked, so not lock again and
775  * return true directly when either the opreation allow_reserved_eviction
776  * or the target bo already is in delayed free list;
777  *
778  * b. Otherwise, trylock it.
779  */
780 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
781                         struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
782 {
783         bool ret = false;
784
785         if (bo->base.resv == ctx->resv) {
786                 dma_resv_assert_held(bo->base.resv);
787                 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
788                     || !list_empty(&bo->ddestroy))
789                         ret = true;
790                 *locked = false;
791                 if (busy)
792                         *busy = false;
793         } else {
794                 ret = dma_resv_trylock(bo->base.resv);
795                 *locked = ret;
796                 if (busy)
797                         *busy = !ret;
798         }
799
800         return ret;
801 }
802
803 /**
804  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
805  *
806  * @busy_bo: BO which couldn't be locked with trylock
807  * @ctx: operation context
808  * @ticket: acquire ticket
809  *
810  * Try to lock a busy buffer object to avoid failing eviction.
811  */
812 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
813                                    struct ttm_operation_ctx *ctx,
814                                    struct ww_acquire_ctx *ticket)
815 {
816         int r;
817
818         if (!busy_bo || !ticket)
819                 return -EBUSY;
820
821         if (ctx->interruptible)
822                 r = dma_resv_lock_interruptible(busy_bo->base.resv,
823                                                           ticket);
824         else
825                 r = dma_resv_lock(busy_bo->base.resv, ticket);
826
827         /*
828          * TODO: It would be better to keep the BO locked until allocation is at
829          * least tried one more time, but that would mean a much larger rework
830          * of TTM.
831          */
832         if (!r)
833                 dma_resv_unlock(busy_bo->base.resv);
834
835         return r == -EDEADLK ? -EBUSY : r;
836 }
837
838 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
839                                uint32_t mem_type,
840                                const struct ttm_place *place,
841                                struct ttm_operation_ctx *ctx,
842                                struct ww_acquire_ctx *ticket)
843 {
844         struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
845         struct ttm_bo_global *glob = bdev->glob;
846         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
847         bool locked = false;
848         unsigned i;
849         int ret;
850
851         spin_lock(&glob->lru_lock);
852         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
853                 list_for_each_entry(bo, &man->lru[i], lru) {
854                         bool busy;
855
856                         if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
857                                                             &busy)) {
858                                 if (busy && !busy_bo && ticket !=
859                                     dma_resv_locking_ctx(bo->base.resv))
860                                         busy_bo = bo;
861                                 continue;
862                         }
863
864                         if (place && !bdev->driver->eviction_valuable(bo,
865                                                                       place)) {
866                                 if (locked)
867                                         dma_resv_unlock(bo->base.resv);
868                                 continue;
869                         }
870                         break;
871                 }
872
873                 /* If the inner loop terminated early, we have our candidate */
874                 if (&bo->lru != &man->lru[i])
875                         break;
876
877                 bo = NULL;
878         }
879
880         if (!bo) {
881                 if (busy_bo)
882                         kref_get(&busy_bo->list_kref);
883                 spin_unlock(&glob->lru_lock);
884                 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
885                 if (busy_bo)
886                         kref_put(&busy_bo->list_kref, ttm_bo_release_list);
887                 return ret;
888         }
889
890         kref_get(&bo->list_kref);
891
892         if (!list_empty(&bo->ddestroy)) {
893                 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
894                                           ctx->no_wait_gpu, locked);
895                 kref_put(&bo->list_kref, ttm_bo_release_list);
896                 return ret;
897         }
898
899         ttm_bo_del_from_lru(bo);
900         spin_unlock(&glob->lru_lock);
901
902         ret = ttm_bo_evict(bo, ctx);
903         if (locked) {
904                 ttm_bo_unreserve(bo);
905         } else {
906                 spin_lock(&glob->lru_lock);
907                 ttm_bo_add_to_lru(bo);
908                 spin_unlock(&glob->lru_lock);
909         }
910
911         kref_put(&bo->list_kref, ttm_bo_release_list);
912         return ret;
913 }
914
915 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
916 {
917         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
918
919         if (mem->mm_node)
920                 (*man->func->put_node)(man, mem);
921 }
922 EXPORT_SYMBOL(ttm_bo_mem_put);
923
924 /**
925  * Add the last move fence to the BO and reserve a new shared slot.
926  */
927 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
928                                  struct ttm_mem_type_manager *man,
929                                  struct ttm_mem_reg *mem,
930                                  bool no_wait_gpu)
931 {
932         struct dma_fence *fence;
933         int ret;
934
935         spin_lock(&man->move_lock);
936         fence = dma_fence_get(man->move);
937         spin_unlock(&man->move_lock);
938
939         if (!fence)
940                 return 0;
941
942         if (no_wait_gpu)
943                 return -EBUSY;
944
945         dma_resv_add_shared_fence(bo->base.resv, fence);
946
947         ret = dma_resv_reserve_shared(bo->base.resv, 1);
948         if (unlikely(ret)) {
949                 dma_fence_put(fence);
950                 return ret;
951         }
952
953         dma_fence_put(bo->moving);
954         bo->moving = fence;
955         return 0;
956 }
957
958 /**
959  * Repeatedly evict memory from the LRU for @mem_type until we create enough
960  * space, or we've evicted everything and there isn't enough space.
961  */
962 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
963                                   const struct ttm_place *place,
964                                   struct ttm_mem_reg *mem,
965                                   struct ttm_operation_ctx *ctx)
966 {
967         struct ttm_bo_device *bdev = bo->bdev;
968         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
969         struct ww_acquire_ctx *ticket;
970         int ret;
971
972         ticket = dma_resv_locking_ctx(bo->base.resv);
973         do {
974                 ret = (*man->func->get_node)(man, bo, place, mem);
975                 if (unlikely(ret != 0))
976                         return ret;
977                 if (mem->mm_node)
978                         break;
979                 ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
980                                           ticket);
981                 if (unlikely(ret != 0))
982                         return ret;
983         } while (1);
984
985         return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
986 }
987
988 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
989                                       uint32_t cur_placement,
990                                       uint32_t proposed_placement)
991 {
992         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
993         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
994
995         /**
996          * Keep current caching if possible.
997          */
998
999         if ((cur_placement & caching) != 0)
1000                 result |= (cur_placement & caching);
1001         else if ((man->default_caching & caching) != 0)
1002                 result |= man->default_caching;
1003         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
1004                 result |= TTM_PL_FLAG_CACHED;
1005         else if ((TTM_PL_FLAG_WC & caching) != 0)
1006                 result |= TTM_PL_FLAG_WC;
1007         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1008                 result |= TTM_PL_FLAG_UNCACHED;
1009
1010         return result;
1011 }
1012
1013 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1014                                  uint32_t mem_type,
1015                                  const struct ttm_place *place,
1016                                  uint32_t *masked_placement)
1017 {
1018         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
1019
1020         if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1021                 return false;
1022
1023         if ((place->flags & man->available_caching) == 0)
1024                 return false;
1025
1026         cur_flags |= (place->flags & man->available_caching);
1027
1028         *masked_placement = cur_flags;
1029         return true;
1030 }
1031
1032 /**
1033  * ttm_bo_mem_placement - check if placement is compatible
1034  * @bo: BO to find memory for
1035  * @place: where to search
1036  * @mem: the memory object to fill in
1037  * @ctx: operation context
1038  *
1039  * Check if placement is compatible and fill in mem structure.
1040  * Returns -EBUSY if placement won't work or negative error code.
1041  * 0 when placement can be used.
1042  */
1043 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1044                                 const struct ttm_place *place,
1045                                 struct ttm_mem_reg *mem,
1046                                 struct ttm_operation_ctx *ctx)
1047 {
1048         struct ttm_bo_device *bdev = bo->bdev;
1049         uint32_t mem_type = TTM_PL_SYSTEM;
1050         struct ttm_mem_type_manager *man;
1051         uint32_t cur_flags = 0;
1052         int ret;
1053
1054         ret = ttm_mem_type_from_place(place, &mem_type);
1055         if (ret)
1056                 return ret;
1057
1058         man = &bdev->man[mem_type];
1059         if (!man->has_type || !man->use_type)
1060                 return -EBUSY;
1061
1062         if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1063                 return -EBUSY;
1064
1065         cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1066         /*
1067          * Use the access and other non-mapping-related flag bits from
1068          * the memory placement flags to the current flags
1069          */
1070         ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1071
1072         mem->mem_type = mem_type;
1073         mem->placement = cur_flags;
1074
1075         if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
1076                 spin_lock(&bo->bdev->glob->lru_lock);
1077                 ttm_bo_del_from_lru(bo);
1078                 ttm_bo_add_mem_to_lru(bo, mem);
1079                 spin_unlock(&bo->bdev->glob->lru_lock);
1080         }
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * Creates space for memory region @mem according to its type.
1087  *
1088  * This function first searches for free space in compatible memory types in
1089  * the priority order defined by the driver.  If free space isn't found, then
1090  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1091  * space.
1092  */
1093 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1094                         struct ttm_placement *placement,
1095                         struct ttm_mem_reg *mem,
1096                         struct ttm_operation_ctx *ctx)
1097 {
1098         struct ttm_bo_device *bdev = bo->bdev;
1099         bool type_found = false;
1100         int i, ret;
1101
1102         ret = dma_resv_reserve_shared(bo->base.resv, 1);
1103         if (unlikely(ret))
1104                 return ret;
1105
1106         mem->mm_node = NULL;
1107         for (i = 0; i < placement->num_placement; ++i) {
1108                 const struct ttm_place *place = &placement->placement[i];
1109                 struct ttm_mem_type_manager *man;
1110
1111                 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1112                 if (ret == -EBUSY)
1113                         continue;
1114                 if (ret)
1115                         goto error;
1116
1117                 type_found = true;
1118                 mem->mm_node = NULL;
1119                 if (mem->mem_type == TTM_PL_SYSTEM)
1120                         return 0;
1121
1122                 man = &bdev->man[mem->mem_type];
1123                 ret = (*man->func->get_node)(man, bo, place, mem);
1124                 if (unlikely(ret))
1125                         goto error;
1126
1127                 if (!mem->mm_node)
1128                         continue;
1129
1130                 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
1131                 if (unlikely(ret)) {
1132                         (*man->func->put_node)(man, mem);
1133                         if (ret == -EBUSY)
1134                                 continue;
1135
1136                         goto error;
1137                 }
1138                 return 0;
1139         }
1140
1141         for (i = 0; i < placement->num_busy_placement; ++i) {
1142                 const struct ttm_place *place = &placement->busy_placement[i];
1143
1144                 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1145                 if (ret == -EBUSY)
1146                         continue;
1147                 if (ret)
1148                         goto error;
1149
1150                 type_found = true;
1151                 mem->mm_node = NULL;
1152                 if (mem->mem_type == TTM_PL_SYSTEM)
1153                         return 0;
1154
1155                 ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1156                 if (ret == 0 && mem->mm_node)
1157                         return 0;
1158
1159                 if (ret && ret != -EBUSY)
1160                         goto error;
1161         }
1162
1163         ret = -ENOMEM;
1164         if (!type_found) {
1165                 pr_err(TTM_PFX "No compatible memory type found\n");
1166                 ret = -EINVAL;
1167         }
1168
1169 error:
1170         if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1171                 spin_lock(&bo->bdev->glob->lru_lock);
1172                 ttm_bo_move_to_lru_tail(bo, NULL);
1173                 spin_unlock(&bo->bdev->glob->lru_lock);
1174         }
1175
1176         return ret;
1177 }
1178 EXPORT_SYMBOL(ttm_bo_mem_space);
1179
1180 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1181                               struct ttm_placement *placement,
1182                               struct ttm_operation_ctx *ctx)
1183 {
1184         int ret = 0;
1185         struct ttm_mem_reg mem;
1186
1187         dma_resv_assert_held(bo->base.resv);
1188
1189         mem.num_pages = bo->num_pages;
1190         mem.size = mem.num_pages << PAGE_SHIFT;
1191         mem.page_alignment = bo->mem.page_alignment;
1192         mem.bus.io_reserved_vm = false;
1193         mem.bus.io_reserved_count = 0;
1194         /*
1195          * Determine where to move the buffer.
1196          */
1197         ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1198         if (ret)
1199                 goto out_unlock;
1200         ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1201 out_unlock:
1202         if (ret && mem.mm_node)
1203                 ttm_bo_mem_put(bo, &mem);
1204         return ret;
1205 }
1206
1207 static bool ttm_bo_places_compat(const struct ttm_place *places,
1208                                  unsigned num_placement,
1209                                  struct ttm_mem_reg *mem,
1210                                  uint32_t *new_flags)
1211 {
1212         unsigned i;
1213
1214         for (i = 0; i < num_placement; i++) {
1215                 const struct ttm_place *heap = &places[i];
1216
1217                 if (mem->mm_node && (mem->start < heap->fpfn ||
1218                      (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1219                         continue;
1220
1221                 *new_flags = heap->flags;
1222                 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1223                     (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1224                     (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1225                      (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1226                         return true;
1227         }
1228         return false;
1229 }
1230
1231 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1232                        struct ttm_mem_reg *mem,
1233                        uint32_t *new_flags)
1234 {
1235         if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1236                                  mem, new_flags))
1237                 return true;
1238
1239         if ((placement->busy_placement != placement->placement ||
1240              placement->num_busy_placement > placement->num_placement) &&
1241             ttm_bo_places_compat(placement->busy_placement,
1242                                  placement->num_busy_placement,
1243                                  mem, new_flags))
1244                 return true;
1245
1246         return false;
1247 }
1248 EXPORT_SYMBOL(ttm_bo_mem_compat);
1249
1250 int ttm_bo_validate(struct ttm_buffer_object *bo,
1251                     struct ttm_placement *placement,
1252                     struct ttm_operation_ctx *ctx)
1253 {
1254         int ret;
1255         uint32_t new_flags;
1256
1257         dma_resv_assert_held(bo->base.resv);
1258         /*
1259          * Check whether we need to move buffer.
1260          */
1261         if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1262                 ret = ttm_bo_move_buffer(bo, placement, ctx);
1263                 if (ret)
1264                         return ret;
1265         } else {
1266                 /*
1267                  * Use the access and other non-mapping-related flag bits from
1268                  * the compatible memory placement flags to the active flags
1269                  */
1270                 ttm_flag_masked(&bo->mem.placement, new_flags,
1271                                 ~TTM_PL_MASK_MEMTYPE);
1272         }
1273         /*
1274          * We might need to add a TTM.
1275          */
1276         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1277                 ret = ttm_tt_create(bo, true);
1278                 if (ret)
1279                         return ret;
1280         }
1281         return 0;
1282 }
1283 EXPORT_SYMBOL(ttm_bo_validate);
1284
1285 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1286                          struct ttm_buffer_object *bo,
1287                          unsigned long size,
1288                          enum ttm_bo_type type,
1289                          struct ttm_placement *placement,
1290                          uint32_t page_alignment,
1291                          struct ttm_operation_ctx *ctx,
1292                          size_t acc_size,
1293                          struct sg_table *sg,
1294                          struct dma_resv *resv,
1295                          void (*destroy) (struct ttm_buffer_object *))
1296 {
1297         int ret = 0;
1298         unsigned long num_pages;
1299         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1300         bool locked;
1301
1302         ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1303         if (ret) {
1304                 pr_err("Out of kernel memory\n");
1305                 if (destroy)
1306                         (*destroy)(bo);
1307                 else
1308                         kfree(bo);
1309                 return -ENOMEM;
1310         }
1311
1312         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1313         if (num_pages == 0) {
1314                 pr_err("Illegal buffer object size\n");
1315                 if (destroy)
1316                         (*destroy)(bo);
1317                 else
1318                         kfree(bo);
1319                 ttm_mem_global_free(mem_glob, acc_size);
1320                 return -EINVAL;
1321         }
1322         bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1323
1324         kref_init(&bo->kref);
1325         kref_init(&bo->list_kref);
1326         atomic_set(&bo->cpu_writers, 0);
1327         INIT_LIST_HEAD(&bo->lru);
1328         INIT_LIST_HEAD(&bo->ddestroy);
1329         INIT_LIST_HEAD(&bo->swap);
1330         INIT_LIST_HEAD(&bo->io_reserve_lru);
1331         mutex_init(&bo->wu_mutex);
1332         bo->bdev = bdev;
1333         bo->type = type;
1334         bo->num_pages = num_pages;
1335         bo->mem.size = num_pages << PAGE_SHIFT;
1336         bo->mem.mem_type = TTM_PL_SYSTEM;
1337         bo->mem.num_pages = bo->num_pages;
1338         bo->mem.mm_node = NULL;
1339         bo->mem.page_alignment = page_alignment;
1340         bo->mem.bus.io_reserved_vm = false;
1341         bo->mem.bus.io_reserved_count = 0;
1342         bo->moving = NULL;
1343         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1344         bo->acc_size = acc_size;
1345         bo->sg = sg;
1346         if (resv) {
1347                 bo->base.resv = resv;
1348                 dma_resv_assert_held(bo->base.resv);
1349         } else {
1350                 bo->base.resv = &bo->base._resv;
1351         }
1352         if (!ttm_bo_uses_embedded_gem_object(bo)) {
1353                 /*
1354                  * bo.gem is not initialized, so we have to setup the
1355                  * struct elements we want use regardless.
1356                  */
1357                 dma_resv_init(&bo->base._resv);
1358                 drm_vma_node_reset(&bo->base.vma_node);
1359         }
1360         atomic_inc(&bo->bdev->glob->bo_count);
1361
1362         /*
1363          * For ttm_bo_type_device buffers, allocate
1364          * address space from the device.
1365          */
1366         if (bo->type == ttm_bo_type_device ||
1367             bo->type == ttm_bo_type_sg)
1368                 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1369                                          bo->mem.num_pages);
1370
1371         /* passed reservation objects should already be locked,
1372          * since otherwise lockdep will be angered in radeon.
1373          */
1374         if (!resv) {
1375                 locked = dma_resv_trylock(bo->base.resv);
1376                 WARN_ON(!locked);
1377         }
1378
1379         if (likely(!ret))
1380                 ret = ttm_bo_validate(bo, placement, ctx);
1381
1382         if (unlikely(ret)) {
1383                 if (!resv)
1384                         ttm_bo_unreserve(bo);
1385
1386                 ttm_bo_put(bo);
1387                 return ret;
1388         }
1389
1390         if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1391                 spin_lock(&bdev->glob->lru_lock);
1392                 ttm_bo_add_to_lru(bo);
1393                 spin_unlock(&bdev->glob->lru_lock);
1394         }
1395
1396         return ret;
1397 }
1398 EXPORT_SYMBOL(ttm_bo_init_reserved);
1399
1400 int ttm_bo_init(struct ttm_bo_device *bdev,
1401                 struct ttm_buffer_object *bo,
1402                 unsigned long size,
1403                 enum ttm_bo_type type,
1404                 struct ttm_placement *placement,
1405                 uint32_t page_alignment,
1406                 bool interruptible,
1407                 size_t acc_size,
1408                 struct sg_table *sg,
1409                 struct dma_resv *resv,
1410                 void (*destroy) (struct ttm_buffer_object *))
1411 {
1412         struct ttm_operation_ctx ctx = { interruptible, false };
1413         int ret;
1414
1415         ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1416                                    page_alignment, &ctx, acc_size,
1417                                    sg, resv, destroy);
1418         if (ret)
1419                 return ret;
1420
1421         if (!resv)
1422                 ttm_bo_unreserve(bo);
1423
1424         return 0;
1425 }
1426 EXPORT_SYMBOL(ttm_bo_init);
1427
1428 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1429                        unsigned long bo_size,
1430                        unsigned struct_size)
1431 {
1432         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1433         size_t size = 0;
1434
1435         size += ttm_round_pot(struct_size);
1436         size += ttm_round_pot(npages * sizeof(void *));
1437         size += ttm_round_pot(sizeof(struct ttm_tt));
1438         return size;
1439 }
1440 EXPORT_SYMBOL(ttm_bo_acc_size);
1441
1442 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1443                            unsigned long bo_size,
1444                            unsigned struct_size)
1445 {
1446         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1447         size_t size = 0;
1448
1449         size += ttm_round_pot(struct_size);
1450         size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1451         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1452         return size;
1453 }
1454 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1455
1456 int ttm_bo_create(struct ttm_bo_device *bdev,
1457                         unsigned long size,
1458                         enum ttm_bo_type type,
1459                         struct ttm_placement *placement,
1460                         uint32_t page_alignment,
1461                         bool interruptible,
1462                         struct ttm_buffer_object **p_bo)
1463 {
1464         struct ttm_buffer_object *bo;
1465         size_t acc_size;
1466         int ret;
1467
1468         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1469         if (unlikely(bo == NULL))
1470                 return -ENOMEM;
1471
1472         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1473         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1474                           interruptible, acc_size,
1475                           NULL, NULL, NULL);
1476         if (likely(ret == 0))
1477                 *p_bo = bo;
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(ttm_bo_create);
1482
1483 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1484                                    unsigned mem_type)
1485 {
1486         struct ttm_operation_ctx ctx = {
1487                 .interruptible = false,
1488                 .no_wait_gpu = false,
1489                 .flags = TTM_OPT_FLAG_FORCE_ALLOC
1490         };
1491         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1492         struct ttm_bo_global *glob = bdev->glob;
1493         struct dma_fence *fence;
1494         int ret;
1495         unsigned i;
1496
1497         /*
1498          * Can't use standard list traversal since we're unlocking.
1499          */
1500
1501         spin_lock(&glob->lru_lock);
1502         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1503                 while (!list_empty(&man->lru[i])) {
1504                         spin_unlock(&glob->lru_lock);
1505                         ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1506                                                   NULL);
1507                         if (ret)
1508                                 return ret;
1509                         spin_lock(&glob->lru_lock);
1510                 }
1511         }
1512         spin_unlock(&glob->lru_lock);
1513
1514         spin_lock(&man->move_lock);
1515         fence = dma_fence_get(man->move);
1516         spin_unlock(&man->move_lock);
1517
1518         if (fence) {
1519                 ret = dma_fence_wait(fence, false);
1520                 dma_fence_put(fence);
1521                 if (ret)
1522                         return ret;
1523         }
1524
1525         return 0;
1526 }
1527
1528 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1529 {
1530         struct ttm_mem_type_manager *man;
1531         int ret = -EINVAL;
1532
1533         if (mem_type >= TTM_NUM_MEM_TYPES) {
1534                 pr_err("Illegal memory type %d\n", mem_type);
1535                 return ret;
1536         }
1537         man = &bdev->man[mem_type];
1538
1539         if (!man->has_type) {
1540                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1541                        mem_type);
1542                 return ret;
1543         }
1544
1545         man->use_type = false;
1546         man->has_type = false;
1547
1548         ret = 0;
1549         if (mem_type > 0) {
1550                 ret = ttm_bo_force_list_clean(bdev, mem_type);
1551                 if (ret) {
1552                         pr_err("Cleanup eviction failed\n");
1553                         return ret;
1554                 }
1555
1556                 ret = (*man->func->takedown)(man);
1557         }
1558
1559         dma_fence_put(man->move);
1560         man->move = NULL;
1561
1562         return ret;
1563 }
1564 EXPORT_SYMBOL(ttm_bo_clean_mm);
1565
1566 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1567 {
1568         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1569
1570         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1571                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1572                 return -EINVAL;
1573         }
1574
1575         if (!man->has_type) {
1576                 pr_err("Memory type %u has not been initialized\n", mem_type);
1577                 return 0;
1578         }
1579
1580         return ttm_bo_force_list_clean(bdev, mem_type);
1581 }
1582 EXPORT_SYMBOL(ttm_bo_evict_mm);
1583
1584 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1585                         unsigned long p_size)
1586 {
1587         int ret;
1588         struct ttm_mem_type_manager *man;
1589         unsigned i;
1590
1591         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1592         man = &bdev->man[type];
1593         BUG_ON(man->has_type);
1594         man->io_reserve_fastpath = true;
1595         man->use_io_reserve_lru = false;
1596         mutex_init(&man->io_reserve_mutex);
1597         spin_lock_init(&man->move_lock);
1598         INIT_LIST_HEAD(&man->io_reserve_lru);
1599
1600         ret = bdev->driver->init_mem_type(bdev, type, man);
1601         if (ret)
1602                 return ret;
1603         man->bdev = bdev;
1604
1605         if (type != TTM_PL_SYSTEM) {
1606                 ret = (*man->func->init)(man, p_size);
1607                 if (ret)
1608                         return ret;
1609         }
1610         man->has_type = true;
1611         man->use_type = true;
1612         man->size = p_size;
1613
1614         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1615                 INIT_LIST_HEAD(&man->lru[i]);
1616         man->move = NULL;
1617
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(ttm_bo_init_mm);
1621
1622 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1623 {
1624         struct ttm_bo_global *glob =
1625                 container_of(kobj, struct ttm_bo_global, kobj);
1626
1627         __free_page(glob->dummy_read_page);
1628 }
1629
1630 static void ttm_bo_global_release(void)
1631 {
1632         struct ttm_bo_global *glob = &ttm_bo_glob;
1633
1634         mutex_lock(&ttm_global_mutex);
1635         if (--ttm_bo_glob_use_count > 0)
1636                 goto out;
1637
1638         kobject_del(&glob->kobj);
1639         kobject_put(&glob->kobj);
1640         ttm_mem_global_release(&ttm_mem_glob);
1641         memset(glob, 0, sizeof(*glob));
1642 out:
1643         mutex_unlock(&ttm_global_mutex);
1644 }
1645
1646 static int ttm_bo_global_init(void)
1647 {
1648         struct ttm_bo_global *glob = &ttm_bo_glob;
1649         int ret = 0;
1650         unsigned i;
1651
1652         mutex_lock(&ttm_global_mutex);
1653         if (++ttm_bo_glob_use_count > 1)
1654                 goto out;
1655
1656         ret = ttm_mem_global_init(&ttm_mem_glob);
1657         if (ret)
1658                 goto out;
1659
1660         spin_lock_init(&glob->lru_lock);
1661         glob->mem_glob = &ttm_mem_glob;
1662         glob->mem_glob->bo_glob = glob;
1663         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1664
1665         if (unlikely(glob->dummy_read_page == NULL)) {
1666                 ret = -ENOMEM;
1667                 goto out;
1668         }
1669
1670         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1671                 INIT_LIST_HEAD(&glob->swap_lru[i]);
1672         INIT_LIST_HEAD(&glob->device_list);
1673         atomic_set(&glob->bo_count, 0);
1674
1675         ret = kobject_init_and_add(
1676                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1677         if (unlikely(ret != 0))
1678                 kobject_put(&glob->kobj);
1679 out:
1680         mutex_unlock(&ttm_global_mutex);
1681         return ret;
1682 }
1683
1684 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1685 {
1686         int ret = 0;
1687         unsigned i = TTM_NUM_MEM_TYPES;
1688         struct ttm_mem_type_manager *man;
1689         struct ttm_bo_global *glob = bdev->glob;
1690
1691         while (i--) {
1692                 man = &bdev->man[i];
1693                 if (man->has_type) {
1694                         man->use_type = false;
1695                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1696                                 ret = -EBUSY;
1697                                 pr_err("DRM memory manager type %d is not clean\n",
1698                                        i);
1699                         }
1700                         man->has_type = false;
1701                 }
1702         }
1703
1704         mutex_lock(&ttm_global_mutex);
1705         list_del(&bdev->device_list);
1706         mutex_unlock(&ttm_global_mutex);
1707
1708         cancel_delayed_work_sync(&bdev->wq);
1709
1710         if (ttm_bo_delayed_delete(bdev, true))
1711                 pr_debug("Delayed destroy list was clean\n");
1712
1713         spin_lock(&glob->lru_lock);
1714         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1715                 if (list_empty(&bdev->man[0].lru[0]))
1716                         pr_debug("Swap list %d was clean\n", i);
1717         spin_unlock(&glob->lru_lock);
1718
1719         if (!ret)
1720                 ttm_bo_global_release();
1721
1722         return ret;
1723 }
1724 EXPORT_SYMBOL(ttm_bo_device_release);
1725
1726 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1727                        struct ttm_bo_driver *driver,
1728                        struct address_space *mapping,
1729                        struct drm_vma_offset_manager *vma_manager,
1730                        bool need_dma32)
1731 {
1732         struct ttm_bo_global *glob = &ttm_bo_glob;
1733         int ret;
1734
1735         if (WARN_ON(vma_manager == NULL))
1736                 return -EINVAL;
1737
1738         ret = ttm_bo_global_init();
1739         if (ret)
1740                 return ret;
1741
1742         bdev->driver = driver;
1743
1744         memset(bdev->man, 0, sizeof(bdev->man));
1745
1746         /*
1747          * Initialize the system memory buffer type.
1748          * Other types need to be driver / IOCTL initialized.
1749          */
1750         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1751         if (unlikely(ret != 0))
1752                 goto out_no_sys;
1753
1754         bdev->vma_manager = vma_manager;
1755         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1756         INIT_LIST_HEAD(&bdev->ddestroy);
1757         bdev->dev_mapping = mapping;
1758         bdev->glob = glob;
1759         bdev->need_dma32 = need_dma32;
1760         mutex_lock(&ttm_global_mutex);
1761         list_add_tail(&bdev->device_list, &glob->device_list);
1762         mutex_unlock(&ttm_global_mutex);
1763
1764         return 0;
1765 out_no_sys:
1766         ttm_bo_global_release();
1767         return ret;
1768 }
1769 EXPORT_SYMBOL(ttm_bo_device_init);
1770
1771 /*
1772  * buffer object vm functions.
1773  */
1774
1775 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1776 {
1777         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1778
1779         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1780                 if (mem->mem_type == TTM_PL_SYSTEM)
1781                         return false;
1782
1783                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1784                         return false;
1785
1786                 if (mem->placement & TTM_PL_FLAG_CACHED)
1787                         return false;
1788         }
1789         return true;
1790 }
1791
1792 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1793 {
1794         struct ttm_bo_device *bdev = bo->bdev;
1795
1796         drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1797         ttm_mem_io_free_vm(bo);
1798 }
1799
1800 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1801 {
1802         struct ttm_bo_device *bdev = bo->bdev;
1803         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1804
1805         ttm_mem_io_lock(man, false);
1806         ttm_bo_unmap_virtual_locked(bo);
1807         ttm_mem_io_unlock(man);
1808 }
1809
1810
1811 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1812
1813 int ttm_bo_wait(struct ttm_buffer_object *bo,
1814                 bool interruptible, bool no_wait)
1815 {
1816         long timeout = 15 * HZ;
1817
1818         if (no_wait) {
1819                 if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1820                         return 0;
1821                 else
1822                         return -EBUSY;
1823         }
1824
1825         timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1826                                                       interruptible, timeout);
1827         if (timeout < 0)
1828                 return timeout;
1829
1830         if (timeout == 0)
1831                 return -EBUSY;
1832
1833         dma_resv_add_excl_fence(bo->base.resv, NULL);
1834         return 0;
1835 }
1836 EXPORT_SYMBOL(ttm_bo_wait);
1837
1838 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1839 {
1840         int ret = 0;
1841
1842         /*
1843          * Using ttm_bo_reserve makes sure the lru lists are updated.
1844          */
1845
1846         ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1847         if (unlikely(ret != 0))
1848                 return ret;
1849         ret = ttm_bo_wait(bo, true, no_wait);
1850         if (likely(ret == 0))
1851                 atomic_inc(&bo->cpu_writers);
1852         ttm_bo_unreserve(bo);
1853         return ret;
1854 }
1855 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1856
1857 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1858 {
1859         atomic_dec(&bo->cpu_writers);
1860 }
1861 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1862
1863 /**
1864  * A buffer object shrink method that tries to swap out the first
1865  * buffer object on the bo_global::swap_lru list.
1866  */
1867 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1868 {
1869         struct ttm_buffer_object *bo;
1870         int ret = -EBUSY;
1871         bool locked;
1872         unsigned i;
1873
1874         spin_lock(&glob->lru_lock);
1875         for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1876                 list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1877                         if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1878                                                            NULL)) {
1879                                 ret = 0;
1880                                 break;
1881                         }
1882                 }
1883                 if (!ret)
1884                         break;
1885         }
1886
1887         if (ret) {
1888                 spin_unlock(&glob->lru_lock);
1889                 return ret;
1890         }
1891
1892         kref_get(&bo->list_kref);
1893
1894         if (!list_empty(&bo->ddestroy)) {
1895                 ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1896                 kref_put(&bo->list_kref, ttm_bo_release_list);
1897                 return ret;
1898         }
1899
1900         ttm_bo_del_from_lru(bo);
1901         spin_unlock(&glob->lru_lock);
1902
1903         /**
1904          * Move to system cached
1905          */
1906
1907         if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1908             bo->ttm->caching_state != tt_cached) {
1909                 struct ttm_operation_ctx ctx = { false, false };
1910                 struct ttm_mem_reg evict_mem;
1911
1912                 evict_mem = bo->mem;
1913                 evict_mem.mm_node = NULL;
1914                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1915                 evict_mem.mem_type = TTM_PL_SYSTEM;
1916
1917                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1918                 if (unlikely(ret != 0))
1919                         goto out;
1920         }
1921
1922         /**
1923          * Make sure BO is idle.
1924          */
1925
1926         ret = ttm_bo_wait(bo, false, false);
1927         if (unlikely(ret != 0))
1928                 goto out;
1929
1930         ttm_bo_unmap_virtual(bo);
1931
1932         /**
1933          * Swap out. Buffer will be swapped in again as soon as
1934          * anyone tries to access a ttm page.
1935          */
1936
1937         if (bo->bdev->driver->swap_notify)
1938                 bo->bdev->driver->swap_notify(bo);
1939
1940         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1941 out:
1942
1943         /**
1944          *
1945          * Unreserve without putting on LRU to avoid swapping out an
1946          * already swapped buffer.
1947          */
1948         if (locked)
1949                 dma_resv_unlock(bo->base.resv);
1950         kref_put(&bo->list_kref, ttm_bo_release_list);
1951         return ret;
1952 }
1953 EXPORT_SYMBOL(ttm_bo_swapout);
1954
1955 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1956 {
1957         struct ttm_operation_ctx ctx = {
1958                 .interruptible = false,
1959                 .no_wait_gpu = false
1960         };
1961
1962         while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1963                 ;
1964 }
1965 EXPORT_SYMBOL(ttm_bo_swapout_all);
1966
1967 /**
1968  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1969  * unreserved
1970  *
1971  * @bo: Pointer to buffer
1972  */
1973 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1974 {
1975         int ret;
1976
1977         /*
1978          * In the absense of a wait_unlocked API,
1979          * Use the bo::wu_mutex to avoid triggering livelocks due to
1980          * concurrent use of this function. Note that this use of
1981          * bo::wu_mutex can go away if we change locking order to
1982          * mmap_sem -> bo::reserve.
1983          */
1984         ret = mutex_lock_interruptible(&bo->wu_mutex);
1985         if (unlikely(ret != 0))
1986                 return -ERESTARTSYS;
1987         if (!dma_resv_is_locked(bo->base.resv))
1988                 goto out_unlock;
1989         ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
1990         if (ret == -EINTR)
1991                 ret = -ERESTARTSYS;
1992         if (unlikely(ret != 0))
1993                 goto out_unlock;
1994         dma_resv_unlock(bo->base.resv);
1995
1996 out_unlock:
1997         mutex_unlock(&bo->wu_mutex);
1998         return ret;
1999 }