Merge tag 'drm-misc-next-2021-03-03' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32                                             struct drm_crtc_state *state);
33
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36         stats->frames = 0;
37         stats->vblank = 0;
38         stats->underflow = 0;
39         stats->overflow = 0;
40 }
41
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45         u32 value;
46
47         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48         value = tegra_dc_readl(dc, offset);
49         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50
51         return value;
52 }
53
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55                                               unsigned int offset)
56 {
57         if (offset >= 0x500 && offset <= 0x638) {
58                 offset = 0x000 + (offset - 0x500);
59                 return plane->offset + offset;
60         }
61
62         if (offset >= 0x700 && offset <= 0x719) {
63                 offset = 0x180 + (offset - 0x700);
64                 return plane->offset + offset;
65         }
66
67         if (offset >= 0x800 && offset <= 0x839) {
68                 offset = 0x1c0 + (offset - 0x800);
69                 return plane->offset + offset;
70         }
71
72         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73
74         return plane->offset + offset;
75 }
76
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78                                     unsigned int offset)
79 {
80         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84                                       unsigned int offset)
85 {
86         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91         struct device_node *np = dc->dev->of_node;
92         struct of_phandle_iterator it;
93         int err;
94
95         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96                 if (it.node == dev->of_node)
97                         return true;
98
99         return false;
100 }
101
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121                                   unsigned int bpp)
122 {
123         fixed20_12 outf = dfixed_init(out);
124         fixed20_12 inf = dfixed_init(in);
125         u32 dda_inc;
126         int max;
127
128         if (v)
129                 max = 15;
130         else {
131                 switch (bpp) {
132                 case 2:
133                         max = 8;
134                         break;
135
136                 default:
137                         WARN_ON_ONCE(1);
138                         fallthrough;
139                 case 4:
140                         max = 4;
141                         break;
142                 }
143         }
144
145         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146         inf.full -= dfixed_const(1);
147
148         dda_inc = dfixed_div(inf, outf);
149         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150
151         return dda_inc;
152 }
153
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156         fixed20_12 inf = dfixed_init(in);
157         return dfixed_frac(inf);
158 }
159
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162         u32 background[3] = {
163                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166         };
167         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168                          BLEND_COLOR_KEY_NONE;
169         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170         struct tegra_plane_state *state;
171         u32 blending[2];
172         unsigned int i;
173
174         /* disable blending for non-overlapping case */
175         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177
178         state = to_tegra_plane_state(plane->base.state);
179
180         if (state->opaque) {
181                 /*
182                  * Since custom fix-weight blending isn't utilized and weight
183                  * of top window is set to max, we can enforce dependent
184                  * blending which in this case results in transparent bottom
185                  * window if top window is opaque and if top window enables
186                  * alpha blending, then bottom window is getting alpha value
187                  * of 1 minus the sum of alpha components of the overlapping
188                  * plane.
189                  */
190                 background[0] |= BLEND_CONTROL_DEPENDENT;
191                 background[1] |= BLEND_CONTROL_DEPENDENT;
192
193                 /*
194                  * The region where three windows overlap is the intersection
195                  * of the two regions where two windows overlap. It contributes
196                  * to the area if all of the windows on top of it have an alpha
197                  * component.
198                  */
199                 switch (state->base.normalized_zpos) {
200                 case 0:
201                         if (state->blending[0].alpha &&
202                             state->blending[1].alpha)
203                                 background[2] |= BLEND_CONTROL_DEPENDENT;
204                         break;
205
206                 case 1:
207                         background[2] |= BLEND_CONTROL_DEPENDENT;
208                         break;
209                 }
210         } else {
211                 /*
212                  * Enable alpha blending if pixel format has an alpha
213                  * component.
214                  */
215                 foreground |= BLEND_CONTROL_ALPHA;
216
217                 /*
218                  * If any of the windows on top of this window is opaque, it
219                  * will completely conceal this window within that area. If
220                  * top window has an alpha component, it is blended over the
221                  * bottom window.
222                  */
223                 for (i = 0; i < 2; i++) {
224                         if (state->blending[i].alpha &&
225                             state->blending[i].top)
226                                 background[i] |= BLEND_CONTROL_DEPENDENT;
227                 }
228
229                 switch (state->base.normalized_zpos) {
230                 case 0:
231                         if (state->blending[0].alpha &&
232                             state->blending[1].alpha)
233                                 background[2] |= BLEND_CONTROL_DEPENDENT;
234                         break;
235
236                 case 1:
237                         /*
238                          * When both middle and topmost windows have an alpha,
239                          * these windows a mixed together and then the result
240                          * is blended over the bottom window.
241                          */
242                         if (state->blending[0].alpha &&
243                             state->blending[0].top)
244                                 background[2] |= BLEND_CONTROL_ALPHA;
245
246                         if (state->blending[1].alpha &&
247                             state->blending[1].top)
248                                 background[2] |= BLEND_CONTROL_ALPHA;
249                         break;
250                 }
251         }
252
253         switch (state->base.normalized_zpos) {
254         case 0:
255                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258                 break;
259
260         case 1:
261                 /*
262                  * If window B / C is topmost, then X / Y registers are
263                  * matching the order of blending[...] state indices,
264                  * otherwise a swap is required.
265                  */
266                 if (!state->blending[0].top && state->blending[1].top) {
267                         blending[0] = foreground;
268                         blending[1] = background[1];
269                 } else {
270                         blending[0] = background[0];
271                         blending[1] = foreground;
272                 }
273
274                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277                 break;
278
279         case 2:
280                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283                 break;
284         }
285 }
286
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288                                        const struct tegra_dc_window *window)
289 {
290         u32 value;
291
292         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296
297         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301
302         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308                                      const struct tegra_dc_window *window)
309 {
310         struct tegra_dc *dc = plane->dc;
311
312         if (window->src.w == window->dst.w)
313                 return false;
314
315         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316                 return false;
317
318         return true;
319 }
320
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323                                    const struct tegra_dc_window *window)
324 {
325         struct tegra_dc *dc = plane->dc;
326
327         if (window->src.h == window->dst.h)
328                 return false;
329
330         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331                 return false;
332
333         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334                 return false;
335
336         return true;
337 }
338
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340                                   const struct tegra_dc_window *window)
341 {
342         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343         struct tegra_dc *dc = plane->dc;
344         bool yuv, planar;
345         u32 value;
346
347         /*
348          * For YUV planar modes, the number of bytes per pixel takes into
349          * account only the luma component and therefore is 1.
350          */
351         yuv = tegra_plane_format_is_yuv(window->format, &planar);
352         if (!yuv)
353                 bpp = window->bits_per_pixel / 8;
354         else
355                 bpp = planar ? 1 : 2;
356
357         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359
360         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361         tegra_plane_writel(plane, value, DC_WIN_POSITION);
362
363         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364         tegra_plane_writel(plane, value, DC_WIN_SIZE);
365
366         h_offset = window->src.x * bpp;
367         v_offset = window->src.y;
368         h_size = window->src.w * bpp;
369         v_size = window->src.h;
370
371         if (window->reflect_x)
372                 h_offset += (window->src.w - 1) * bpp;
373
374         if (window->reflect_y)
375                 v_offset += window->src.h - 1;
376
377         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379
380         /*
381          * For DDA computations the number of bytes per pixel for YUV planar
382          * modes needs to take into account all Y, U and V components.
383          */
384         if (yuv && planar)
385                 bpp = 2;
386
387         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389
390         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392
393         h_dda = compute_initial_dda(window->src.x);
394         v_dda = compute_initial_dda(window->src.y);
395
396         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398
399         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401
402         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403
404         if (yuv && planar) {
405                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406                 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407                 value = window->stride[1] << 16 | window->stride[0];
408                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409         } else {
410                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411         }
412
413         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415
416         if (dc->soc->supports_block_linear) {
417                 unsigned long height = window->tiling.value;
418
419                 switch (window->tiling.mode) {
420                 case TEGRA_BO_TILING_MODE_PITCH:
421                         value = DC_WINBUF_SURFACE_KIND_PITCH;
422                         break;
423
424                 case TEGRA_BO_TILING_MODE_TILED:
425                         value = DC_WINBUF_SURFACE_KIND_TILED;
426                         break;
427
428                 case TEGRA_BO_TILING_MODE_BLOCK:
429                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430                                 DC_WINBUF_SURFACE_KIND_BLOCK;
431                         break;
432                 }
433
434                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435         } else {
436                 switch (window->tiling.mode) {
437                 case TEGRA_BO_TILING_MODE_PITCH:
438                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440                         break;
441
442                 case TEGRA_BO_TILING_MODE_TILED:
443                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
445                         break;
446
447                 case TEGRA_BO_TILING_MODE_BLOCK:
448                         /*
449                          * No need to handle this here because ->atomic_check
450                          * will already have filtered it out.
451                          */
452                         break;
453                 }
454
455                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456         }
457
458         value = WIN_ENABLE;
459
460         if (yuv) {
461                 /* setup default colorspace conversion coefficients */
462                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470
471                 value |= CSC_ENABLE;
472         } else if (window->bits_per_pixel < 24) {
473                 value |= COLOR_EXPAND;
474         }
475
476         if (window->reflect_x)
477                 value |= H_DIRECTION;
478
479         if (window->reflect_y)
480                 value |= V_DIRECTION;
481
482         if (tegra_plane_use_horizontal_filtering(plane, window)) {
483                 /*
484                  * Enable horizontal 6-tap filter and set filtering
485                  * coefficients to the default values defined in TRM.
486                  */
487                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503
504                 value |= H_FILTER;
505         }
506
507         if (tegra_plane_use_vertical_filtering(plane, window)) {
508                 unsigned int i, k;
509
510                 /*
511                  * Enable vertical 2-tap filter and set filtering
512                  * coefficients to the default values defined in TRM.
513                  */
514                 for (i = 0, k = 128; i < 16; i++, k -= 8)
515                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516
517                 value |= V_FILTER;
518         }
519
520         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521
522         if (dc->soc->has_legacy_blending)
523                 tegra_plane_setup_blending_legacy(plane);
524         else
525                 tegra_plane_setup_blending(plane, window);
526 }
527
528 static const u32 tegra20_primary_formats[] = {
529         DRM_FORMAT_ARGB4444,
530         DRM_FORMAT_ARGB1555,
531         DRM_FORMAT_RGB565,
532         DRM_FORMAT_RGBA5551,
533         DRM_FORMAT_ABGR8888,
534         DRM_FORMAT_ARGB8888,
535         /* non-native formats */
536         DRM_FORMAT_XRGB1555,
537         DRM_FORMAT_RGBX5551,
538         DRM_FORMAT_XBGR8888,
539         DRM_FORMAT_XRGB8888,
540 };
541
542 static const u64 tegra20_modifiers[] = {
543         DRM_FORMAT_MOD_LINEAR,
544         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545         DRM_FORMAT_MOD_INVALID
546 };
547
548 static const u32 tegra114_primary_formats[] = {
549         DRM_FORMAT_ARGB4444,
550         DRM_FORMAT_ARGB1555,
551         DRM_FORMAT_RGB565,
552         DRM_FORMAT_RGBA5551,
553         DRM_FORMAT_ABGR8888,
554         DRM_FORMAT_ARGB8888,
555         /* new on Tegra114 */
556         DRM_FORMAT_ABGR4444,
557         DRM_FORMAT_ABGR1555,
558         DRM_FORMAT_BGRA5551,
559         DRM_FORMAT_XRGB1555,
560         DRM_FORMAT_RGBX5551,
561         DRM_FORMAT_XBGR1555,
562         DRM_FORMAT_BGRX5551,
563         DRM_FORMAT_BGR565,
564         DRM_FORMAT_BGRA8888,
565         DRM_FORMAT_RGBA8888,
566         DRM_FORMAT_XRGB8888,
567         DRM_FORMAT_XBGR8888,
568 };
569
570 static const u32 tegra124_primary_formats[] = {
571         DRM_FORMAT_ARGB4444,
572         DRM_FORMAT_ARGB1555,
573         DRM_FORMAT_RGB565,
574         DRM_FORMAT_RGBA5551,
575         DRM_FORMAT_ABGR8888,
576         DRM_FORMAT_ARGB8888,
577         /* new on Tegra114 */
578         DRM_FORMAT_ABGR4444,
579         DRM_FORMAT_ABGR1555,
580         DRM_FORMAT_BGRA5551,
581         DRM_FORMAT_XRGB1555,
582         DRM_FORMAT_RGBX5551,
583         DRM_FORMAT_XBGR1555,
584         DRM_FORMAT_BGRX5551,
585         DRM_FORMAT_BGR565,
586         DRM_FORMAT_BGRA8888,
587         DRM_FORMAT_RGBA8888,
588         DRM_FORMAT_XRGB8888,
589         DRM_FORMAT_XBGR8888,
590         /* new on Tegra124 */
591         DRM_FORMAT_RGBX8888,
592         DRM_FORMAT_BGRX8888,
593 };
594
595 static const u64 tegra124_modifiers[] = {
596         DRM_FORMAT_MOD_LINEAR,
597         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603         DRM_FORMAT_MOD_INVALID
604 };
605
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607                                     struct drm_atomic_state *state)
608 {
609         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
610                                                                                  plane);
611         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
612         unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
613                                           DRM_MODE_REFLECT_X |
614                                           DRM_MODE_REFLECT_Y;
615         unsigned int rotation = new_plane_state->rotation;
616         struct tegra_bo_tiling *tiling = &plane_state->tiling;
617         struct tegra_plane *tegra = to_tegra_plane(plane);
618         struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
619         int err;
620
621         /* no need for further checks if the plane is being disabled */
622         if (!new_plane_state->crtc)
623                 return 0;
624
625         err = tegra_plane_format(new_plane_state->fb->format->format,
626                                  &plane_state->format,
627                                  &plane_state->swap);
628         if (err < 0)
629                 return err;
630
631         /*
632          * Tegra20 and Tegra30 are special cases here because they support
633          * only variants of specific formats with an alpha component, but not
634          * the corresponding opaque formats. However, the opaque formats can
635          * be emulated by disabling alpha blending for the plane.
636          */
637         if (dc->soc->has_legacy_blending) {
638                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
639                 if (err < 0)
640                         return err;
641         }
642
643         err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
644         if (err < 0)
645                 return err;
646
647         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
648             !dc->soc->supports_block_linear) {
649                 DRM_ERROR("hardware doesn't support block linear mode\n");
650                 return -EINVAL;
651         }
652
653         /*
654          * Older userspace used custom BO flag in order to specify the Y
655          * reflection, while modern userspace uses the generic DRM rotation
656          * property in order to achieve the same result.  The legacy BO flag
657          * duplicates the DRM rotation property when both are set.
658          */
659         if (tegra_fb_is_bottom_up(new_plane_state->fb))
660                 rotation |= DRM_MODE_REFLECT_Y;
661
662         rotation = drm_rotation_simplify(rotation, supported_rotation);
663
664         if (rotation & DRM_MODE_REFLECT_X)
665                 plane_state->reflect_x = true;
666         else
667                 plane_state->reflect_x = false;
668
669         if (rotation & DRM_MODE_REFLECT_Y)
670                 plane_state->reflect_y = true;
671         else
672                 plane_state->reflect_y = false;
673
674         /*
675          * Tegra doesn't support different strides for U and V planes so we
676          * error out if the user tries to display a framebuffer with such a
677          * configuration.
678          */
679         if (new_plane_state->fb->format->num_planes > 2) {
680                 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
681                         DRM_ERROR("unsupported UV-plane configuration\n");
682                         return -EINVAL;
683                 }
684         }
685
686         err = tegra_plane_state_add(tegra, new_plane_state);
687         if (err < 0)
688                 return err;
689
690         return 0;
691 }
692
693 static void tegra_plane_atomic_disable(struct drm_plane *plane,
694                                        struct drm_atomic_state *state)
695 {
696         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
697                                                                            plane);
698         struct tegra_plane *p = to_tegra_plane(plane);
699         u32 value;
700
701         /* rien ne va plus */
702         if (!old_state || !old_state->crtc)
703                 return;
704
705         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
706         value &= ~WIN_ENABLE;
707         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
708 }
709
710 static void tegra_plane_atomic_update(struct drm_plane *plane,
711                                       struct drm_atomic_state *state)
712 {
713         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
714                                                                            plane);
715         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
716         struct drm_framebuffer *fb = new_state->fb;
717         struct tegra_plane *p = to_tegra_plane(plane);
718         struct tegra_dc_window window;
719         unsigned int i;
720
721         /* rien ne va plus */
722         if (!new_state->crtc || !new_state->fb)
723                 return;
724
725         if (!new_state->visible)
726                 return tegra_plane_atomic_disable(plane, state);
727
728         memset(&window, 0, sizeof(window));
729         window.src.x = new_state->src.x1 >> 16;
730         window.src.y = new_state->src.y1 >> 16;
731         window.src.w = drm_rect_width(&new_state->src) >> 16;
732         window.src.h = drm_rect_height(&new_state->src) >> 16;
733         window.dst.x = new_state->dst.x1;
734         window.dst.y = new_state->dst.y1;
735         window.dst.w = drm_rect_width(&new_state->dst);
736         window.dst.h = drm_rect_height(&new_state->dst);
737         window.bits_per_pixel = fb->format->cpp[0] * 8;
738         window.reflect_x = tegra_plane_state->reflect_x;
739         window.reflect_y = tegra_plane_state->reflect_y;
740
741         /* copy from state */
742         window.zpos = new_state->normalized_zpos;
743         window.tiling = tegra_plane_state->tiling;
744         window.format = tegra_plane_state->format;
745         window.swap = tegra_plane_state->swap;
746
747         for (i = 0; i < fb->format->num_planes; i++) {
748                 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
749
750                 /*
751                  * Tegra uses a shared stride for UV planes. Framebuffers are
752                  * already checked for this in the tegra_plane_atomic_check()
753                  * function, so it's safe to ignore the V-plane pitch here.
754                  */
755                 if (i < 2)
756                         window.stride[i] = fb->pitches[i];
757         }
758
759         tegra_dc_setup_window(p, &window);
760 }
761
762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
763         .prepare_fb = tegra_plane_prepare_fb,
764         .cleanup_fb = tegra_plane_cleanup_fb,
765         .atomic_check = tegra_plane_atomic_check,
766         .atomic_disable = tegra_plane_atomic_disable,
767         .atomic_update = tegra_plane_atomic_update,
768 };
769
770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
771 {
772         /*
773          * Ideally this would use drm_crtc_mask(), but that would require the
774          * CRTC to already be in the mode_config's list of CRTCs. However, it
775          * will only be added to that list in the drm_crtc_init_with_planes()
776          * (in tegra_dc_init()), which in turn requires registration of these
777          * planes. So we have ourselves a nice little chicken and egg problem
778          * here.
779          *
780          * We work around this by manually creating the mask from the number
781          * of CRTCs that have been registered, and should therefore always be
782          * the same as drm_crtc_index() after registration.
783          */
784         return 1 << drm->mode_config.num_crtc;
785 }
786
787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
788                                                     struct tegra_dc *dc)
789 {
790         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
791         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
792         struct tegra_plane *plane;
793         unsigned int num_formats;
794         const u64 *modifiers;
795         const u32 *formats;
796         int err;
797
798         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
799         if (!plane)
800                 return ERR_PTR(-ENOMEM);
801
802         /* Always use window A as primary window */
803         plane->offset = 0xa00;
804         plane->index = 0;
805         plane->dc = dc;
806
807         num_formats = dc->soc->num_primary_formats;
808         formats = dc->soc->primary_formats;
809         modifiers = dc->soc->modifiers;
810
811         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
812                                        &tegra_plane_funcs, formats,
813                                        num_formats, modifiers, type, NULL);
814         if (err < 0) {
815                 kfree(plane);
816                 return ERR_PTR(err);
817         }
818
819         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
820         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
821
822         err = drm_plane_create_rotation_property(&plane->base,
823                                                  DRM_MODE_ROTATE_0,
824                                                  DRM_MODE_ROTATE_0 |
825                                                  DRM_MODE_ROTATE_180 |
826                                                  DRM_MODE_REFLECT_X |
827                                                  DRM_MODE_REFLECT_Y);
828         if (err < 0)
829                 dev_err(dc->dev, "failed to create rotation property: %d\n",
830                         err);
831
832         return &plane->base;
833 }
834
835 static const u32 tegra_cursor_plane_formats[] = {
836         DRM_FORMAT_RGBA8888,
837 };
838
839 static int tegra_cursor_atomic_check(struct drm_plane *plane,
840                                      struct drm_atomic_state *state)
841 {
842         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
843                                                                                  plane);
844         struct tegra_plane *tegra = to_tegra_plane(plane);
845         int err;
846
847         /* no need for further checks if the plane is being disabled */
848         if (!new_plane_state->crtc)
849                 return 0;
850
851         /* scaling not supported for cursor */
852         if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
853             (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
854                 return -EINVAL;
855
856         /* only square cursors supported */
857         if (new_plane_state->src_w != new_plane_state->src_h)
858                 return -EINVAL;
859
860         if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
861             new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
862                 return -EINVAL;
863
864         err = tegra_plane_state_add(tegra, new_plane_state);
865         if (err < 0)
866                 return err;
867
868         return 0;
869 }
870
871 static void tegra_cursor_atomic_update(struct drm_plane *plane,
872                                        struct drm_atomic_state *state)
873 {
874         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
875                                                                            plane);
876         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
877         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
878         u32 value = CURSOR_CLIP_DISPLAY;
879
880         /* rien ne va plus */
881         if (!new_state->crtc || !new_state->fb)
882                 return;
883
884         switch (new_state->crtc_w) {
885         case 32:
886                 value |= CURSOR_SIZE_32x32;
887                 break;
888
889         case 64:
890                 value |= CURSOR_SIZE_64x64;
891                 break;
892
893         case 128:
894                 value |= CURSOR_SIZE_128x128;
895                 break;
896
897         case 256:
898                 value |= CURSOR_SIZE_256x256;
899                 break;
900
901         default:
902                 WARN(1, "cursor size %ux%u not supported\n",
903                      new_state->crtc_w, new_state->crtc_h);
904                 return;
905         }
906
907         value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
908         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
909
910 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
911         value = (tegra_plane_state->iova[0] >> 32) & 0x3;
912         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
913 #endif
914
915         /* enable cursor and set blend mode */
916         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
917         value |= CURSOR_ENABLE;
918         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
919
920         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
921         value &= ~CURSOR_DST_BLEND_MASK;
922         value &= ~CURSOR_SRC_BLEND_MASK;
923         value |= CURSOR_MODE_NORMAL;
924         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
925         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
926         value |= CURSOR_ALPHA;
927         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
928
929         /* position the cursor */
930         value = (new_state->crtc_y & 0x3fff) << 16 |
931                 (new_state->crtc_x & 0x3fff);
932         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
933 }
934
935 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
936                                         struct drm_atomic_state *state)
937 {
938         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
939                                                                            plane);
940         struct tegra_dc *dc;
941         u32 value;
942
943         /* rien ne va plus */
944         if (!old_state || !old_state->crtc)
945                 return;
946
947         dc = to_tegra_dc(old_state->crtc);
948
949         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
950         value &= ~CURSOR_ENABLE;
951         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
952 }
953
954 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
955         .prepare_fb = tegra_plane_prepare_fb,
956         .cleanup_fb = tegra_plane_cleanup_fb,
957         .atomic_check = tegra_cursor_atomic_check,
958         .atomic_update = tegra_cursor_atomic_update,
959         .atomic_disable = tegra_cursor_atomic_disable,
960 };
961
962 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
963                                                       struct tegra_dc *dc)
964 {
965         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
966         struct tegra_plane *plane;
967         unsigned int num_formats;
968         const u32 *formats;
969         int err;
970
971         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
972         if (!plane)
973                 return ERR_PTR(-ENOMEM);
974
975         /*
976          * This index is kind of fake. The cursor isn't a regular plane, but
977          * its update and activation request bits in DC_CMD_STATE_CONTROL do
978          * use the same programming. Setting this fake index here allows the
979          * code in tegra_add_plane_state() to do the right thing without the
980          * need to special-casing the cursor plane.
981          */
982         plane->index = 6;
983         plane->dc = dc;
984
985         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
986         formats = tegra_cursor_plane_formats;
987
988         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
989                                        &tegra_plane_funcs, formats,
990                                        num_formats, NULL,
991                                        DRM_PLANE_TYPE_CURSOR, NULL);
992         if (err < 0) {
993                 kfree(plane);
994                 return ERR_PTR(err);
995         }
996
997         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
998         drm_plane_create_zpos_immutable_property(&plane->base, 255);
999
1000         return &plane->base;
1001 }
1002
1003 static const u32 tegra20_overlay_formats[] = {
1004         DRM_FORMAT_ARGB4444,
1005         DRM_FORMAT_ARGB1555,
1006         DRM_FORMAT_RGB565,
1007         DRM_FORMAT_RGBA5551,
1008         DRM_FORMAT_ABGR8888,
1009         DRM_FORMAT_ARGB8888,
1010         /* non-native formats */
1011         DRM_FORMAT_XRGB1555,
1012         DRM_FORMAT_RGBX5551,
1013         DRM_FORMAT_XBGR8888,
1014         DRM_FORMAT_XRGB8888,
1015         /* planar formats */
1016         DRM_FORMAT_UYVY,
1017         DRM_FORMAT_YUYV,
1018         DRM_FORMAT_YUV420,
1019         DRM_FORMAT_YUV422,
1020 };
1021
1022 static const u32 tegra114_overlay_formats[] = {
1023         DRM_FORMAT_ARGB4444,
1024         DRM_FORMAT_ARGB1555,
1025         DRM_FORMAT_RGB565,
1026         DRM_FORMAT_RGBA5551,
1027         DRM_FORMAT_ABGR8888,
1028         DRM_FORMAT_ARGB8888,
1029         /* new on Tegra114 */
1030         DRM_FORMAT_ABGR4444,
1031         DRM_FORMAT_ABGR1555,
1032         DRM_FORMAT_BGRA5551,
1033         DRM_FORMAT_XRGB1555,
1034         DRM_FORMAT_RGBX5551,
1035         DRM_FORMAT_XBGR1555,
1036         DRM_FORMAT_BGRX5551,
1037         DRM_FORMAT_BGR565,
1038         DRM_FORMAT_BGRA8888,
1039         DRM_FORMAT_RGBA8888,
1040         DRM_FORMAT_XRGB8888,
1041         DRM_FORMAT_XBGR8888,
1042         /* planar formats */
1043         DRM_FORMAT_UYVY,
1044         DRM_FORMAT_YUYV,
1045         DRM_FORMAT_YUV420,
1046         DRM_FORMAT_YUV422,
1047 };
1048
1049 static const u32 tegra124_overlay_formats[] = {
1050         DRM_FORMAT_ARGB4444,
1051         DRM_FORMAT_ARGB1555,
1052         DRM_FORMAT_RGB565,
1053         DRM_FORMAT_RGBA5551,
1054         DRM_FORMAT_ABGR8888,
1055         DRM_FORMAT_ARGB8888,
1056         /* new on Tegra114 */
1057         DRM_FORMAT_ABGR4444,
1058         DRM_FORMAT_ABGR1555,
1059         DRM_FORMAT_BGRA5551,
1060         DRM_FORMAT_XRGB1555,
1061         DRM_FORMAT_RGBX5551,
1062         DRM_FORMAT_XBGR1555,
1063         DRM_FORMAT_BGRX5551,
1064         DRM_FORMAT_BGR565,
1065         DRM_FORMAT_BGRA8888,
1066         DRM_FORMAT_RGBA8888,
1067         DRM_FORMAT_XRGB8888,
1068         DRM_FORMAT_XBGR8888,
1069         /* new on Tegra124 */
1070         DRM_FORMAT_RGBX8888,
1071         DRM_FORMAT_BGRX8888,
1072         /* planar formats */
1073         DRM_FORMAT_UYVY,
1074         DRM_FORMAT_YUYV,
1075         DRM_FORMAT_YUV420,
1076         DRM_FORMAT_YUV422,
1077 };
1078
1079 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1080                                                        struct tegra_dc *dc,
1081                                                        unsigned int index,
1082                                                        bool cursor)
1083 {
1084         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1085         struct tegra_plane *plane;
1086         unsigned int num_formats;
1087         enum drm_plane_type type;
1088         const u32 *formats;
1089         int err;
1090
1091         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1092         if (!plane)
1093                 return ERR_PTR(-ENOMEM);
1094
1095         plane->offset = 0xa00 + 0x200 * index;
1096         plane->index = index;
1097         plane->dc = dc;
1098
1099         num_formats = dc->soc->num_overlay_formats;
1100         formats = dc->soc->overlay_formats;
1101
1102         if (!cursor)
1103                 type = DRM_PLANE_TYPE_OVERLAY;
1104         else
1105                 type = DRM_PLANE_TYPE_CURSOR;
1106
1107         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1108                                        &tegra_plane_funcs, formats,
1109                                        num_formats, NULL, type, NULL);
1110         if (err < 0) {
1111                 kfree(plane);
1112                 return ERR_PTR(err);
1113         }
1114
1115         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1116         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1117
1118         err = drm_plane_create_rotation_property(&plane->base,
1119                                                  DRM_MODE_ROTATE_0,
1120                                                  DRM_MODE_ROTATE_0 |
1121                                                  DRM_MODE_ROTATE_180 |
1122                                                  DRM_MODE_REFLECT_X |
1123                                                  DRM_MODE_REFLECT_Y);
1124         if (err < 0)
1125                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1126                         err);
1127
1128         return &plane->base;
1129 }
1130
1131 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1132                                                     struct tegra_dc *dc)
1133 {
1134         struct drm_plane *plane, *primary = NULL;
1135         unsigned int i, j;
1136
1137         for (i = 0; i < dc->soc->num_wgrps; i++) {
1138                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1139
1140                 if (wgrp->dc == dc->pipe) {
1141                         for (j = 0; j < wgrp->num_windows; j++) {
1142                                 unsigned int index = wgrp->windows[j];
1143
1144                                 plane = tegra_shared_plane_create(drm, dc,
1145                                                                   wgrp->index,
1146                                                                   index);
1147                                 if (IS_ERR(plane))
1148                                         return plane;
1149
1150                                 /*
1151                                  * Choose the first shared plane owned by this
1152                                  * head as the primary plane.
1153                                  */
1154                                 if (!primary) {
1155                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1156                                         primary = plane;
1157                                 }
1158                         }
1159                 }
1160         }
1161
1162         return primary;
1163 }
1164
1165 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1166                                              struct tegra_dc *dc)
1167 {
1168         struct drm_plane *planes[2], *primary;
1169         unsigned int planes_num;
1170         unsigned int i;
1171         int err;
1172
1173         primary = tegra_primary_plane_create(drm, dc);
1174         if (IS_ERR(primary))
1175                 return primary;
1176
1177         if (dc->soc->supports_cursor)
1178                 planes_num = 2;
1179         else
1180                 planes_num = 1;
1181
1182         for (i = 0; i < planes_num; i++) {
1183                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1184                                                           false);
1185                 if (IS_ERR(planes[i])) {
1186                         err = PTR_ERR(planes[i]);
1187
1188                         while (i--)
1189                                 tegra_plane_funcs.destroy(planes[i]);
1190
1191                         tegra_plane_funcs.destroy(primary);
1192                         return ERR_PTR(err);
1193                 }
1194         }
1195
1196         return primary;
1197 }
1198
1199 static void tegra_dc_destroy(struct drm_crtc *crtc)
1200 {
1201         drm_crtc_cleanup(crtc);
1202 }
1203
1204 static void tegra_crtc_reset(struct drm_crtc *crtc)
1205 {
1206         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1207
1208         if (crtc->state)
1209                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1210
1211         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1212 }
1213
1214 static struct drm_crtc_state *
1215 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1216 {
1217         struct tegra_dc_state *state = to_dc_state(crtc->state);
1218         struct tegra_dc_state *copy;
1219
1220         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1221         if (!copy)
1222                 return NULL;
1223
1224         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1225         copy->clk = state->clk;
1226         copy->pclk = state->pclk;
1227         copy->div = state->div;
1228         copy->planes = state->planes;
1229
1230         return &copy->base;
1231 }
1232
1233 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1234                                             struct drm_crtc_state *state)
1235 {
1236         __drm_atomic_helper_crtc_destroy_state(state);
1237         kfree(state);
1238 }
1239
1240 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1241
1242 static const struct debugfs_reg32 tegra_dc_regs[] = {
1243         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1244         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1245         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1246         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1247         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1248         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1249         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1250         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1251         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1252         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1253         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1254         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1255         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1256         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1257         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1258         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1259         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1260         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1261         DEBUGFS_REG32(DC_CMD_INT_MASK),
1262         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1263         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1264         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1265         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1266         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1267         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1268         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1269         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1270         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1271         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1272         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1273         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1274         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1275         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1276         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1277         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1278         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1279         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1280         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1281         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1282         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1283         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1284         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1285         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1286         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1287         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1288         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1289         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1290         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1291         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1292         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1293         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1294         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1295         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1296         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1297         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1298         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1299         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1300         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1301         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1302         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1303         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1304         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1305         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1306         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1307         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1308         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1309         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1310         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1311         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1312         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1313         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1314         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1315         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1316         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1317         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1318         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1319         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1320         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1321         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1322         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1323         DEBUGFS_REG32(DC_DISP_ACTIVE),
1324         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1325         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1326         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1327         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1328         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1329         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1330         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1331         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1332         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1333         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1334         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1335         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1336         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1337         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1338         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1339         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1340         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1341         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1342         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1343         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1344         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1345         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1346         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1347         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1348         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1349         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1350         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1351         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1352         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1353         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1354         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1355         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1356         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1357         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1358         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1359         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1360         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1361         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1362         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1363         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1364         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1365         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1366         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1367         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1368         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1369         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1370         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1371         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1372         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1373         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1374         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1375         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1376         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1377         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1378         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1379         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1380         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1381         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1382         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1383         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1384         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1385         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1386         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1387         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1388         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1389         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1390         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1391         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1392         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1393         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1394         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1395         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1396         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1397         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1398         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1399         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1400         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1401         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1402         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1403         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1404         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1405         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1406         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1407         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1408         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1409         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1410         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1411         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1412         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1413         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1414         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1415         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1416         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1417         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1418         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1419         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1420         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1421         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1422         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1423         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1424         DEBUGFS_REG32(DC_WIN_POSITION),
1425         DEBUGFS_REG32(DC_WIN_SIZE),
1426         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1427         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1428         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1429         DEBUGFS_REG32(DC_WIN_DDA_INC),
1430         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1431         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1432         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1433         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1434         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1435         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1436         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1437         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1438         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1439         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1440         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1441         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1442         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1443         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1444         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1445         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1446         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1447         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1448         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1449         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1450         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1451         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1452         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1453         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1454         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1455 };
1456
1457 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1458 {
1459         struct drm_info_node *node = s->private;
1460         struct tegra_dc *dc = node->info_ent->data;
1461         unsigned int i;
1462         int err = 0;
1463
1464         drm_modeset_lock(&dc->base.mutex, NULL);
1465
1466         if (!dc->base.state->active) {
1467                 err = -EBUSY;
1468                 goto unlock;
1469         }
1470
1471         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1472                 unsigned int offset = tegra_dc_regs[i].offset;
1473
1474                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1475                            offset, tegra_dc_readl(dc, offset));
1476         }
1477
1478 unlock:
1479         drm_modeset_unlock(&dc->base.mutex);
1480         return err;
1481 }
1482
1483 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1484 {
1485         struct drm_info_node *node = s->private;
1486         struct tegra_dc *dc = node->info_ent->data;
1487         int err = 0;
1488         u32 value;
1489
1490         drm_modeset_lock(&dc->base.mutex, NULL);
1491
1492         if (!dc->base.state->active) {
1493                 err = -EBUSY;
1494                 goto unlock;
1495         }
1496
1497         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1498         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1499         tegra_dc_commit(dc);
1500
1501         drm_crtc_wait_one_vblank(&dc->base);
1502         drm_crtc_wait_one_vblank(&dc->base);
1503
1504         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1505         seq_printf(s, "%08x\n", value);
1506
1507         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1508
1509 unlock:
1510         drm_modeset_unlock(&dc->base.mutex);
1511         return err;
1512 }
1513
1514 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1515 {
1516         struct drm_info_node *node = s->private;
1517         struct tegra_dc *dc = node->info_ent->data;
1518
1519         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1520         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1521         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1522         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1523
1524         return 0;
1525 }
1526
1527 static struct drm_info_list debugfs_files[] = {
1528         { "regs", tegra_dc_show_regs, 0, NULL },
1529         { "crc", tegra_dc_show_crc, 0, NULL },
1530         { "stats", tegra_dc_show_stats, 0, NULL },
1531 };
1532
1533 static int tegra_dc_late_register(struct drm_crtc *crtc)
1534 {
1535         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1536         struct drm_minor *minor = crtc->dev->primary;
1537         struct dentry *root;
1538         struct tegra_dc *dc = to_tegra_dc(crtc);
1539
1540 #ifdef CONFIG_DEBUG_FS
1541         root = crtc->debugfs_entry;
1542 #else
1543         root = NULL;
1544 #endif
1545
1546         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1547                                     GFP_KERNEL);
1548         if (!dc->debugfs_files)
1549                 return -ENOMEM;
1550
1551         for (i = 0; i < count; i++)
1552                 dc->debugfs_files[i].data = dc;
1553
1554         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1555
1556         return 0;
1557 }
1558
1559 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1560 {
1561         unsigned int count = ARRAY_SIZE(debugfs_files);
1562         struct drm_minor *minor = crtc->dev->primary;
1563         struct tegra_dc *dc = to_tegra_dc(crtc);
1564
1565         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1566         kfree(dc->debugfs_files);
1567         dc->debugfs_files = NULL;
1568 }
1569
1570 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1571 {
1572         struct tegra_dc *dc = to_tegra_dc(crtc);
1573
1574         /* XXX vblank syncpoints don't work with nvdisplay yet */
1575         if (dc->syncpt && !dc->soc->has_nvdisplay)
1576                 return host1x_syncpt_read(dc->syncpt);
1577
1578         /* fallback to software emulated VBLANK counter */
1579         return (u32)drm_crtc_vblank_count(&dc->base);
1580 }
1581
1582 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1583 {
1584         struct tegra_dc *dc = to_tegra_dc(crtc);
1585         u32 value;
1586
1587         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1588         value |= VBLANK_INT;
1589         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1590
1591         return 0;
1592 }
1593
1594 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1595 {
1596         struct tegra_dc *dc = to_tegra_dc(crtc);
1597         u32 value;
1598
1599         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1600         value &= ~VBLANK_INT;
1601         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1602 }
1603
1604 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1605         .page_flip = drm_atomic_helper_page_flip,
1606         .set_config = drm_atomic_helper_set_config,
1607         .destroy = tegra_dc_destroy,
1608         .reset = tegra_crtc_reset,
1609         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1610         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1611         .late_register = tegra_dc_late_register,
1612         .early_unregister = tegra_dc_early_unregister,
1613         .get_vblank_counter = tegra_dc_get_vblank_counter,
1614         .enable_vblank = tegra_dc_enable_vblank,
1615         .disable_vblank = tegra_dc_disable_vblank,
1616 };
1617
1618 static int tegra_dc_set_timings(struct tegra_dc *dc,
1619                                 struct drm_display_mode *mode)
1620 {
1621         unsigned int h_ref_to_sync = 1;
1622         unsigned int v_ref_to_sync = 1;
1623         unsigned long value;
1624
1625         if (!dc->soc->has_nvdisplay) {
1626                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1627
1628                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1629                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1630         }
1631
1632         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1633                 ((mode->hsync_end - mode->hsync_start) <<  0);
1634         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1635
1636         value = ((mode->vtotal - mode->vsync_end) << 16) |
1637                 ((mode->htotal - mode->hsync_end) <<  0);
1638         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1639
1640         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1641                 ((mode->hsync_start - mode->hdisplay) <<  0);
1642         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1643
1644         value = (mode->vdisplay << 16) | mode->hdisplay;
1645         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1646
1647         return 0;
1648 }
1649
1650 /**
1651  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1652  *     state
1653  * @dc: display controller
1654  * @crtc_state: CRTC atomic state
1655  * @clk: parent clock for display controller
1656  * @pclk: pixel clock
1657  * @div: shift clock divider
1658  *
1659  * Returns:
1660  * 0 on success or a negative error-code on failure.
1661  */
1662 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1663                                struct drm_crtc_state *crtc_state,
1664                                struct clk *clk, unsigned long pclk,
1665                                unsigned int div)
1666 {
1667         struct tegra_dc_state *state = to_dc_state(crtc_state);
1668
1669         if (!clk_has_parent(dc->clk, clk))
1670                 return -EINVAL;
1671
1672         state->clk = clk;
1673         state->pclk = pclk;
1674         state->div = div;
1675
1676         return 0;
1677 }
1678
1679 static void tegra_dc_commit_state(struct tegra_dc *dc,
1680                                   struct tegra_dc_state *state)
1681 {
1682         u32 value;
1683         int err;
1684
1685         err = clk_set_parent(dc->clk, state->clk);
1686         if (err < 0)
1687                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1688
1689         /*
1690          * Outputs may not want to change the parent clock rate. This is only
1691          * relevant to Tegra20 where only a single display PLL is available.
1692          * Since that PLL would typically be used for HDMI, an internal LVDS
1693          * panel would need to be driven by some other clock such as PLL_P
1694          * which is shared with other peripherals. Changing the clock rate
1695          * should therefore be avoided.
1696          */
1697         if (state->pclk > 0) {
1698                 err = clk_set_rate(state->clk, state->pclk);
1699                 if (err < 0)
1700                         dev_err(dc->dev,
1701                                 "failed to set clock rate to %lu Hz\n",
1702                                 state->pclk);
1703         }
1704
1705         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1706                       state->div);
1707         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1708
1709         if (!dc->soc->has_nvdisplay) {
1710                 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1711                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1712         }
1713
1714         err = clk_set_rate(dc->clk, state->pclk);
1715         if (err < 0)
1716                 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1717                         dc->clk, state->pclk, err);
1718 }
1719
1720 static void tegra_dc_stop(struct tegra_dc *dc)
1721 {
1722         u32 value;
1723
1724         /* stop the display controller */
1725         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1726         value &= ~DISP_CTRL_MODE_MASK;
1727         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1728
1729         tegra_dc_commit(dc);
1730 }
1731
1732 static bool tegra_dc_idle(struct tegra_dc *dc)
1733 {
1734         u32 value;
1735
1736         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1737
1738         return (value & DISP_CTRL_MODE_MASK) == 0;
1739 }
1740
1741 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1742 {
1743         timeout = jiffies + msecs_to_jiffies(timeout);
1744
1745         while (time_before(jiffies, timeout)) {
1746                 if (tegra_dc_idle(dc))
1747                         return 0;
1748
1749                 usleep_range(1000, 2000);
1750         }
1751
1752         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1753         return -ETIMEDOUT;
1754 }
1755
1756 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1757                                       struct drm_atomic_state *state)
1758 {
1759         struct tegra_dc *dc = to_tegra_dc(crtc);
1760         u32 value;
1761         int err;
1762
1763         if (!tegra_dc_idle(dc)) {
1764                 tegra_dc_stop(dc);
1765
1766                 /*
1767                  * Ignore the return value, there isn't anything useful to do
1768                  * in case this fails.
1769                  */
1770                 tegra_dc_wait_idle(dc, 100);
1771         }
1772
1773         /*
1774          * This should really be part of the RGB encoder driver, but clearing
1775          * these bits has the side-effect of stopping the display controller.
1776          * When that happens no VBLANK interrupts will be raised. At the same
1777          * time the encoder is disabled before the display controller, so the
1778          * above code is always going to timeout waiting for the controller
1779          * to go idle.
1780          *
1781          * Given the close coupling between the RGB encoder and the display
1782          * controller doing it here is still kind of okay. None of the other
1783          * encoder drivers require these bits to be cleared.
1784          *
1785          * XXX: Perhaps given that the display controller is switched off at
1786          * this point anyway maybe clearing these bits isn't even useful for
1787          * the RGB encoder?
1788          */
1789         if (dc->rgb) {
1790                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1791                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1792                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1793                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1794         }
1795
1796         tegra_dc_stats_reset(&dc->stats);
1797         drm_crtc_vblank_off(crtc);
1798
1799         spin_lock_irq(&crtc->dev->event_lock);
1800
1801         if (crtc->state->event) {
1802                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1803                 crtc->state->event = NULL;
1804         }
1805
1806         spin_unlock_irq(&crtc->dev->event_lock);
1807
1808         err = host1x_client_suspend(&dc->client);
1809         if (err < 0)
1810                 dev_err(dc->dev, "failed to suspend: %d\n", err);
1811 }
1812
1813 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1814                                      struct drm_atomic_state *state)
1815 {
1816         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1817         struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1818         struct tegra_dc *dc = to_tegra_dc(crtc);
1819         u32 value;
1820         int err;
1821
1822         err = host1x_client_resume(&dc->client);
1823         if (err < 0) {
1824                 dev_err(dc->dev, "failed to resume: %d\n", err);
1825                 return;
1826         }
1827
1828         /* initialize display controller */
1829         if (dc->syncpt) {
1830                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1831
1832                 if (dc->soc->has_nvdisplay)
1833                         enable = 1 << 31;
1834                 else
1835                         enable = 1 << 8;
1836
1837                 value = SYNCPT_CNTRL_NO_STALL;
1838                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1839
1840                 value = enable | syncpt;
1841                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1842         }
1843
1844         if (dc->soc->has_nvdisplay) {
1845                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1846                         DSC_OBUF_UF_INT;
1847                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1848
1849                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1850                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1851                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1852                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1853                         VBLANK_INT | FRAME_END_INT;
1854                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1855
1856                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1857                         FRAME_END_INT;
1858                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1859
1860                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1861                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1862
1863                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1864         } else {
1865                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1866                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1867                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1868
1869                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1870                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1871                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1872
1873                 /* initialize timer */
1874                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1875                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1876                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1877
1878                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1879                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1880                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1881
1882                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1883                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1884                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1885
1886                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1887                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1888                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1889         }
1890
1891         if (dc->soc->supports_background_color)
1892                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1893         else
1894                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1895
1896         /* apply PLL and pixel clock changes */
1897         tegra_dc_commit_state(dc, crtc_state);
1898
1899         /* program display mode */
1900         tegra_dc_set_timings(dc, mode);
1901
1902         /* interlacing isn't supported yet, so disable it */
1903         if (dc->soc->supports_interlacing) {
1904                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1905                 value &= ~INTERLACE_ENABLE;
1906                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1907         }
1908
1909         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1910         value &= ~DISP_CTRL_MODE_MASK;
1911         value |= DISP_CTRL_MODE_C_DISPLAY;
1912         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1913
1914         if (!dc->soc->has_nvdisplay) {
1915                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1916                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1917                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1918                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1919         }
1920
1921         /* enable underflow reporting and display red for missing pixels */
1922         if (dc->soc->has_nvdisplay) {
1923                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1924                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1925         }
1926
1927         tegra_dc_commit(dc);
1928
1929         drm_crtc_vblank_on(crtc);
1930 }
1931
1932 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1933                                     struct drm_atomic_state *state)
1934 {
1935         unsigned long flags;
1936
1937         if (crtc->state->event) {
1938                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1939
1940                 if (drm_crtc_vblank_get(crtc) != 0)
1941                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
1942                 else
1943                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1944
1945                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1946
1947                 crtc->state->event = NULL;
1948         }
1949 }
1950
1951 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1952                                     struct drm_atomic_state *state)
1953 {
1954         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1955                                                                           crtc);
1956         struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
1957         struct tegra_dc *dc = to_tegra_dc(crtc);
1958         u32 value;
1959
1960         value = dc_state->planes << 8 | GENERAL_UPDATE;
1961         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1962         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1963
1964         value = dc_state->planes | GENERAL_ACT_REQ;
1965         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1966         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1967 }
1968
1969 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1970         .atomic_begin = tegra_crtc_atomic_begin,
1971         .atomic_flush = tegra_crtc_atomic_flush,
1972         .atomic_enable = tegra_crtc_atomic_enable,
1973         .atomic_disable = tegra_crtc_atomic_disable,
1974 };
1975
1976 static irqreturn_t tegra_dc_irq(int irq, void *data)
1977 {
1978         struct tegra_dc *dc = data;
1979         unsigned long status;
1980
1981         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1982         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1983
1984         if (status & FRAME_END_INT) {
1985                 /*
1986                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1987                 */
1988                 dc->stats.frames++;
1989         }
1990
1991         if (status & VBLANK_INT) {
1992                 /*
1993                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1994                 */
1995                 drm_crtc_handle_vblank(&dc->base);
1996                 dc->stats.vblank++;
1997         }
1998
1999         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2000                 /*
2001                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2002                 */
2003                 dc->stats.underflow++;
2004         }
2005
2006         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2007                 /*
2008                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2009                 */
2010                 dc->stats.overflow++;
2011         }
2012
2013         if (status & HEAD_UF_INT) {
2014                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2015                 dc->stats.underflow++;
2016         }
2017
2018         return IRQ_HANDLED;
2019 }
2020
2021 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2022 {
2023         unsigned int i;
2024
2025         if (!dc->soc->wgrps)
2026                 return true;
2027
2028         for (i = 0; i < dc->soc->num_wgrps; i++) {
2029                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2030
2031                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2032                         return true;
2033         }
2034
2035         return false;
2036 }
2037
2038 static int tegra_dc_init(struct host1x_client *client)
2039 {
2040         struct drm_device *drm = dev_get_drvdata(client->host);
2041         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2042         struct tegra_dc *dc = host1x_client_to_dc(client);
2043         struct tegra_drm *tegra = drm->dev_private;
2044         struct drm_plane *primary = NULL;
2045         struct drm_plane *cursor = NULL;
2046         int err;
2047
2048         /*
2049          * XXX do not register DCs with no window groups because we cannot
2050          * assign a primary plane to them, which in turn will cause KMS to
2051          * crash.
2052          */
2053         if (!tegra_dc_has_window_groups(dc))
2054                 return 0;
2055
2056         /*
2057          * Set the display hub as the host1x client parent for the display
2058          * controller. This is needed for the runtime reference counting that
2059          * ensures the display hub is always powered when any of the display
2060          * controllers are.
2061          */
2062         if (dc->soc->has_nvdisplay)
2063                 client->parent = &tegra->hub->client;
2064
2065         dc->syncpt = host1x_syncpt_request(client, flags);
2066         if (!dc->syncpt)
2067                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2068
2069         err = host1x_client_iommu_attach(client);
2070         if (err < 0 && err != -ENODEV) {
2071                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2072                 return err;
2073         }
2074
2075         if (dc->soc->wgrps)
2076                 primary = tegra_dc_add_shared_planes(drm, dc);
2077         else
2078                 primary = tegra_dc_add_planes(drm, dc);
2079
2080         if (IS_ERR(primary)) {
2081                 err = PTR_ERR(primary);
2082                 goto cleanup;
2083         }
2084
2085         if (dc->soc->supports_cursor) {
2086                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2087                 if (IS_ERR(cursor)) {
2088                         err = PTR_ERR(cursor);
2089                         goto cleanup;
2090                 }
2091         } else {
2092                 /* dedicate one overlay to mouse cursor */
2093                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2094                 if (IS_ERR(cursor)) {
2095                         err = PTR_ERR(cursor);
2096                         goto cleanup;
2097                 }
2098         }
2099
2100         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2101                                         &tegra_crtc_funcs, NULL);
2102         if (err < 0)
2103                 goto cleanup;
2104
2105         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2106
2107         /*
2108          * Keep track of the minimum pitch alignment across all display
2109          * controllers.
2110          */
2111         if (dc->soc->pitch_align > tegra->pitch_align)
2112                 tegra->pitch_align = dc->soc->pitch_align;
2113
2114         err = tegra_dc_rgb_init(drm, dc);
2115         if (err < 0 && err != -ENODEV) {
2116                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2117                 goto cleanup;
2118         }
2119
2120         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2121                                dev_name(dc->dev), dc);
2122         if (err < 0) {
2123                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2124                         err);
2125                 goto cleanup;
2126         }
2127
2128         /*
2129          * Inherit the DMA parameters (such as maximum segment size) from the
2130          * parent host1x device.
2131          */
2132         client->dev->dma_parms = client->host->dma_parms;
2133
2134         return 0;
2135
2136 cleanup:
2137         if (!IS_ERR_OR_NULL(cursor))
2138                 drm_plane_cleanup(cursor);
2139
2140         if (!IS_ERR(primary))
2141                 drm_plane_cleanup(primary);
2142
2143         host1x_client_iommu_detach(client);
2144         host1x_syncpt_free(dc->syncpt);
2145
2146         return err;
2147 }
2148
2149 static int tegra_dc_exit(struct host1x_client *client)
2150 {
2151         struct tegra_dc *dc = host1x_client_to_dc(client);
2152         int err;
2153
2154         if (!tegra_dc_has_window_groups(dc))
2155                 return 0;
2156
2157         /* avoid a dangling pointer just in case this disappears */
2158         client->dev->dma_parms = NULL;
2159
2160         devm_free_irq(dc->dev, dc->irq, dc);
2161
2162         err = tegra_dc_rgb_exit(dc);
2163         if (err) {
2164                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2165                 return err;
2166         }
2167
2168         host1x_client_iommu_detach(client);
2169         host1x_syncpt_free(dc->syncpt);
2170
2171         return 0;
2172 }
2173
2174 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2175 {
2176         struct tegra_dc *dc = host1x_client_to_dc(client);
2177         struct device *dev = client->dev;
2178         int err;
2179
2180         err = reset_control_assert(dc->rst);
2181         if (err < 0) {
2182                 dev_err(dev, "failed to assert reset: %d\n", err);
2183                 return err;
2184         }
2185
2186         if (dc->soc->has_powergate)
2187                 tegra_powergate_power_off(dc->powergate);
2188
2189         clk_disable_unprepare(dc->clk);
2190         pm_runtime_put_sync(dev);
2191
2192         return 0;
2193 }
2194
2195 static int tegra_dc_runtime_resume(struct host1x_client *client)
2196 {
2197         struct tegra_dc *dc = host1x_client_to_dc(client);
2198         struct device *dev = client->dev;
2199         int err;
2200
2201         err = pm_runtime_resume_and_get(dev);
2202         if (err < 0) {
2203                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2204                 return err;
2205         }
2206
2207         if (dc->soc->has_powergate) {
2208                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2209                                                         dc->rst);
2210                 if (err < 0) {
2211                         dev_err(dev, "failed to power partition: %d\n", err);
2212                         goto put_rpm;
2213                 }
2214         } else {
2215                 err = clk_prepare_enable(dc->clk);
2216                 if (err < 0) {
2217                         dev_err(dev, "failed to enable clock: %d\n", err);
2218                         goto put_rpm;
2219                 }
2220
2221                 err = reset_control_deassert(dc->rst);
2222                 if (err < 0) {
2223                         dev_err(dev, "failed to deassert reset: %d\n", err);
2224                         goto disable_clk;
2225                 }
2226         }
2227
2228         return 0;
2229
2230 disable_clk:
2231         clk_disable_unprepare(dc->clk);
2232 put_rpm:
2233         pm_runtime_put_sync(dev);
2234         return err;
2235 }
2236
2237 static const struct host1x_client_ops dc_client_ops = {
2238         .init = tegra_dc_init,
2239         .exit = tegra_dc_exit,
2240         .suspend = tegra_dc_runtime_suspend,
2241         .resume = tegra_dc_runtime_resume,
2242 };
2243
2244 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2245         .supports_background_color = false,
2246         .supports_interlacing = false,
2247         .supports_cursor = false,
2248         .supports_block_linear = false,
2249         .has_legacy_blending = true,
2250         .pitch_align = 8,
2251         .has_powergate = false,
2252         .coupled_pm = true,
2253         .has_nvdisplay = false,
2254         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2255         .primary_formats = tegra20_primary_formats,
2256         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2257         .overlay_formats = tegra20_overlay_formats,
2258         .modifiers = tegra20_modifiers,
2259         .has_win_a_without_filters = true,
2260         .has_win_c_without_vert_filter = true,
2261 };
2262
2263 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2264         .supports_background_color = false,
2265         .supports_interlacing = false,
2266         .supports_cursor = false,
2267         .supports_block_linear = false,
2268         .has_legacy_blending = true,
2269         .pitch_align = 8,
2270         .has_powergate = false,
2271         .coupled_pm = false,
2272         .has_nvdisplay = false,
2273         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2274         .primary_formats = tegra20_primary_formats,
2275         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2276         .overlay_formats = tegra20_overlay_formats,
2277         .modifiers = tegra20_modifiers,
2278         .has_win_a_without_filters = false,
2279         .has_win_c_without_vert_filter = false,
2280 };
2281
2282 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2283         .supports_background_color = false,
2284         .supports_interlacing = false,
2285         .supports_cursor = false,
2286         .supports_block_linear = false,
2287         .has_legacy_blending = true,
2288         .pitch_align = 64,
2289         .has_powergate = true,
2290         .coupled_pm = false,
2291         .has_nvdisplay = false,
2292         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2293         .primary_formats = tegra114_primary_formats,
2294         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2295         .overlay_formats = tegra114_overlay_formats,
2296         .modifiers = tegra20_modifiers,
2297         .has_win_a_without_filters = false,
2298         .has_win_c_without_vert_filter = false,
2299 };
2300
2301 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2302         .supports_background_color = true,
2303         .supports_interlacing = true,
2304         .supports_cursor = true,
2305         .supports_block_linear = true,
2306         .has_legacy_blending = false,
2307         .pitch_align = 64,
2308         .has_powergate = true,
2309         .coupled_pm = false,
2310         .has_nvdisplay = false,
2311         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2312         .primary_formats = tegra124_primary_formats,
2313         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2314         .overlay_formats = tegra124_overlay_formats,
2315         .modifiers = tegra124_modifiers,
2316         .has_win_a_without_filters = false,
2317         .has_win_c_without_vert_filter = false,
2318 };
2319
2320 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2321         .supports_background_color = true,
2322         .supports_interlacing = true,
2323         .supports_cursor = true,
2324         .supports_block_linear = true,
2325         .has_legacy_blending = false,
2326         .pitch_align = 64,
2327         .has_powergate = true,
2328         .coupled_pm = false,
2329         .has_nvdisplay = false,
2330         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2331         .primary_formats = tegra114_primary_formats,
2332         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2333         .overlay_formats = tegra114_overlay_formats,
2334         .modifiers = tegra124_modifiers,
2335         .has_win_a_without_filters = false,
2336         .has_win_c_without_vert_filter = false,
2337 };
2338
2339 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2340         {
2341                 .index = 0,
2342                 .dc = 0,
2343                 .windows = (const unsigned int[]) { 0 },
2344                 .num_windows = 1,
2345         }, {
2346                 .index = 1,
2347                 .dc = 1,
2348                 .windows = (const unsigned int[]) { 1 },
2349                 .num_windows = 1,
2350         }, {
2351                 .index = 2,
2352                 .dc = 1,
2353                 .windows = (const unsigned int[]) { 2 },
2354                 .num_windows = 1,
2355         }, {
2356                 .index = 3,
2357                 .dc = 2,
2358                 .windows = (const unsigned int[]) { 3 },
2359                 .num_windows = 1,
2360         }, {
2361                 .index = 4,
2362                 .dc = 2,
2363                 .windows = (const unsigned int[]) { 4 },
2364                 .num_windows = 1,
2365         }, {
2366                 .index = 5,
2367                 .dc = 2,
2368                 .windows = (const unsigned int[]) { 5 },
2369                 .num_windows = 1,
2370         },
2371 };
2372
2373 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2374         .supports_background_color = true,
2375         .supports_interlacing = true,
2376         .supports_cursor = true,
2377         .supports_block_linear = true,
2378         .has_legacy_blending = false,
2379         .pitch_align = 64,
2380         .has_powergate = false,
2381         .coupled_pm = false,
2382         .has_nvdisplay = true,
2383         .wgrps = tegra186_dc_wgrps,
2384         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2385 };
2386
2387 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2388         {
2389                 .index = 0,
2390                 .dc = 0,
2391                 .windows = (const unsigned int[]) { 0 },
2392                 .num_windows = 1,
2393         }, {
2394                 .index = 1,
2395                 .dc = 1,
2396                 .windows = (const unsigned int[]) { 1 },
2397                 .num_windows = 1,
2398         }, {
2399                 .index = 2,
2400                 .dc = 1,
2401                 .windows = (const unsigned int[]) { 2 },
2402                 .num_windows = 1,
2403         }, {
2404                 .index = 3,
2405                 .dc = 2,
2406                 .windows = (const unsigned int[]) { 3 },
2407                 .num_windows = 1,
2408         }, {
2409                 .index = 4,
2410                 .dc = 2,
2411                 .windows = (const unsigned int[]) { 4 },
2412                 .num_windows = 1,
2413         }, {
2414                 .index = 5,
2415                 .dc = 2,
2416                 .windows = (const unsigned int[]) { 5 },
2417                 .num_windows = 1,
2418         },
2419 };
2420
2421 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2422         .supports_background_color = true,
2423         .supports_interlacing = true,
2424         .supports_cursor = true,
2425         .supports_block_linear = true,
2426         .has_legacy_blending = false,
2427         .pitch_align = 64,
2428         .has_powergate = false,
2429         .coupled_pm = false,
2430         .has_nvdisplay = true,
2431         .wgrps = tegra194_dc_wgrps,
2432         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2433 };
2434
2435 static const struct of_device_id tegra_dc_of_match[] = {
2436         {
2437                 .compatible = "nvidia,tegra194-dc",
2438                 .data = &tegra194_dc_soc_info,
2439         }, {
2440                 .compatible = "nvidia,tegra186-dc",
2441                 .data = &tegra186_dc_soc_info,
2442         }, {
2443                 .compatible = "nvidia,tegra210-dc",
2444                 .data = &tegra210_dc_soc_info,
2445         }, {
2446                 .compatible = "nvidia,tegra124-dc",
2447                 .data = &tegra124_dc_soc_info,
2448         }, {
2449                 .compatible = "nvidia,tegra114-dc",
2450                 .data = &tegra114_dc_soc_info,
2451         }, {
2452                 .compatible = "nvidia,tegra30-dc",
2453                 .data = &tegra30_dc_soc_info,
2454         }, {
2455                 .compatible = "nvidia,tegra20-dc",
2456                 .data = &tegra20_dc_soc_info,
2457         }, {
2458                 /* sentinel */
2459         }
2460 };
2461 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2462
2463 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2464 {
2465         struct device_node *np;
2466         u32 value = 0;
2467         int err;
2468
2469         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2470         if (err < 0) {
2471                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2472
2473                 /*
2474                  * If the nvidia,head property isn't present, try to find the
2475                  * correct head number by looking up the position of this
2476                  * display controller's node within the device tree. Assuming
2477                  * that the nodes are ordered properly in the DTS file and
2478                  * that the translation into a flattened device tree blob
2479                  * preserves that ordering this will actually yield the right
2480                  * head number.
2481                  *
2482                  * If those assumptions don't hold, this will still work for
2483                  * cases where only a single display controller is used.
2484                  */
2485                 for_each_matching_node(np, tegra_dc_of_match) {
2486                         if (np == dc->dev->of_node) {
2487                                 of_node_put(np);
2488                                 break;
2489                         }
2490
2491                         value++;
2492                 }
2493         }
2494
2495         dc->pipe = value;
2496
2497         return 0;
2498 }
2499
2500 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2501 {
2502         struct tegra_dc *dc = dev_get_drvdata(dev);
2503         unsigned int pipe = (unsigned long)(void *)data;
2504
2505         return dc->pipe == pipe;
2506 }
2507
2508 static int tegra_dc_couple(struct tegra_dc *dc)
2509 {
2510         /*
2511          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2512          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2513          * POWER_CONTROL registers during CRTC enabling.
2514          */
2515         if (dc->soc->coupled_pm && dc->pipe == 1) {
2516                 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2517                 struct device_link *link;
2518                 struct device *partner;
2519
2520                 partner = driver_find_device(dc->dev->driver, NULL, NULL,
2521                                              tegra_dc_match_by_pipe);
2522                 if (!partner)
2523                         return -EPROBE_DEFER;
2524
2525                 link = device_link_add(dc->dev, partner, flags);
2526                 if (!link) {
2527                         dev_err(dc->dev, "failed to link controllers\n");
2528                         return -EINVAL;
2529                 }
2530
2531                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2532         }
2533
2534         return 0;
2535 }
2536
2537 static int tegra_dc_probe(struct platform_device *pdev)
2538 {
2539         struct tegra_dc *dc;
2540         int err;
2541
2542         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2543         if (!dc)
2544                 return -ENOMEM;
2545
2546         dc->soc = of_device_get_match_data(&pdev->dev);
2547
2548         INIT_LIST_HEAD(&dc->list);
2549         dc->dev = &pdev->dev;
2550
2551         err = tegra_dc_parse_dt(dc);
2552         if (err < 0)
2553                 return err;
2554
2555         err = tegra_dc_couple(dc);
2556         if (err < 0)
2557                 return err;
2558
2559         dc->clk = devm_clk_get(&pdev->dev, NULL);
2560         if (IS_ERR(dc->clk)) {
2561                 dev_err(&pdev->dev, "failed to get clock\n");
2562                 return PTR_ERR(dc->clk);
2563         }
2564
2565         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2566         if (IS_ERR(dc->rst)) {
2567                 dev_err(&pdev->dev, "failed to get reset\n");
2568                 return PTR_ERR(dc->rst);
2569         }
2570
2571         /* assert reset and disable clock */
2572         err = clk_prepare_enable(dc->clk);
2573         if (err < 0)
2574                 return err;
2575
2576         usleep_range(2000, 4000);
2577
2578         err = reset_control_assert(dc->rst);
2579         if (err < 0)
2580                 return err;
2581
2582         usleep_range(2000, 4000);
2583
2584         clk_disable_unprepare(dc->clk);
2585
2586         if (dc->soc->has_powergate) {
2587                 if (dc->pipe == 0)
2588                         dc->powergate = TEGRA_POWERGATE_DIS;
2589                 else
2590                         dc->powergate = TEGRA_POWERGATE_DISB;
2591
2592                 tegra_powergate_power_off(dc->powergate);
2593         }
2594
2595         dc->regs = devm_platform_ioremap_resource(pdev, 0);
2596         if (IS_ERR(dc->regs))
2597                 return PTR_ERR(dc->regs);
2598
2599         dc->irq = platform_get_irq(pdev, 0);
2600         if (dc->irq < 0)
2601                 return -ENXIO;
2602
2603         err = tegra_dc_rgb_probe(dc);
2604         if (err < 0 && err != -ENODEV) {
2605                 const char *level = KERN_ERR;
2606
2607                 if (err == -EPROBE_DEFER)
2608                         level = KERN_DEBUG;
2609
2610                 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2611                            err);
2612                 return err;
2613         }
2614
2615         platform_set_drvdata(pdev, dc);
2616         pm_runtime_enable(&pdev->dev);
2617
2618         INIT_LIST_HEAD(&dc->client.list);
2619         dc->client.ops = &dc_client_ops;
2620         dc->client.dev = &pdev->dev;
2621
2622         err = host1x_client_register(&dc->client);
2623         if (err < 0) {
2624                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2625                         err);
2626                 goto disable_pm;
2627         }
2628
2629         return 0;
2630
2631 disable_pm:
2632         pm_runtime_disable(&pdev->dev);
2633         tegra_dc_rgb_remove(dc);
2634
2635         return err;
2636 }
2637
2638 static int tegra_dc_remove(struct platform_device *pdev)
2639 {
2640         struct tegra_dc *dc = platform_get_drvdata(pdev);
2641         int err;
2642
2643         err = host1x_client_unregister(&dc->client);
2644         if (err < 0) {
2645                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2646                         err);
2647                 return err;
2648         }
2649
2650         err = tegra_dc_rgb_remove(dc);
2651         if (err < 0) {
2652                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2653                 return err;
2654         }
2655
2656         pm_runtime_disable(&pdev->dev);
2657
2658         return 0;
2659 }
2660
2661 struct platform_driver tegra_dc_driver = {
2662         .driver = {
2663                 .name = "tegra-dc",
2664                 .of_match_table = tegra_dc_of_match,
2665         },
2666         .probe = tegra_dc_probe,
2667         .remove = tegra_dc_remove,
2668 };