Merge tag 'drm-intel-next-2023-11-23' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41
42 #include "display/intel_display.h"
43
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_mman.h"
48 #include "gem/i915_gem_object_frontbuffer.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gem/i915_gem_userptr.h"
52 #include "gt/intel_engine_user.h"
53 #include "gt/intel_gt.h"
54 #include "gt/intel_gt_pm.h"
55 #include "gt/intel_workarounds.h"
56
57 #include "i915_drv.h"
58 #include "i915_file_private.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
61 #include "intel_clock_gating.h"
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65 {
66         int err;
67
68         err = mutex_lock_interruptible(&ggtt->vm.mutex);
69         if (err)
70                 return err;
71
72         memset(node, 0, sizeof(*node));
73         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74                                           size, 0, I915_COLOR_UNEVICTABLE,
75                                           0, ggtt->mappable_end,
76                                           DRM_MM_INSERT_LOW);
77
78         mutex_unlock(&ggtt->vm.mutex);
79
80         return err;
81 }
82
83 static void
84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85 {
86         mutex_lock(&ggtt->vm.mutex);
87         drm_mm_remove_node(node);
88         mutex_unlock(&ggtt->vm.mutex);
89 }
90
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93                             struct drm_file *file)
94 {
95         struct drm_i915_private *i915 = to_i915(dev);
96         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97         struct drm_i915_gem_get_aperture *args = data;
98         struct i915_vma *vma;
99         u64 pinned;
100
101         if (mutex_lock_interruptible(&ggtt->vm.mutex))
102                 return -EINTR;
103
104         pinned = ggtt->vm.reserved;
105         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106                 if (i915_vma_is_pinned(vma))
107                         pinned += vma->node.size;
108
109         mutex_unlock(&ggtt->vm.mutex);
110
111         args->aper_size = ggtt->vm.total;
112         args->aper_available_size = args->aper_size - pinned;
113
114         return 0;
115 }
116
117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118                            unsigned long flags)
119 {
120         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
121         bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122         LIST_HEAD(still_in_list);
123         intel_wakeref_t wakeref;
124         struct i915_vma *vma;
125         int ret;
126
127         assert_object_held(obj);
128
129         if (list_empty(&obj->vma.list))
130                 return 0;
131
132         /*
133          * As some machines use ACPI to handle runtime-resume callbacks, and
134          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135          * as they are required by the shrinker. Ergo, we wake the device up
136          * first just in case.
137          */
138         wakeref = intel_runtime_pm_get(rpm);
139
140 try_again:
141         ret = 0;
142         spin_lock(&obj->vma.lock);
143         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144                                                        struct i915_vma,
145                                                        obj_link))) {
146                 list_move_tail(&vma->obj_link, &still_in_list);
147                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148                         continue;
149
150                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151                         ret = -EBUSY;
152                         break;
153                 }
154
155                 /*
156                  * Requiring the vm destructor to take the object lock
157                  * before destroying a vma would help us eliminate the
158                  * i915_vm_tryget() here, AND thus also the barrier stuff
159                  * at the end. That's an easy fix, but sleeping locks in
160                  * a kthread should generally be avoided.
161                  */
162                 ret = -EAGAIN;
163                 if (!i915_vm_tryget(vma->vm))
164                         break;
165
166                 spin_unlock(&obj->vma.lock);
167
168                 /*
169                  * Since i915_vma_parked() takes the object lock
170                  * before vma destruction, it won't race us here,
171                  * and destroy the vma from under us.
172                  */
173
174                 ret = -EBUSY;
175                 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176                         assert_object_held(vma->obj);
177                         ret = i915_vma_unbind_async(vma, vm_trylock);
178                 }
179
180                 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181                                       !i915_vma_is_active(vma))) {
182                         if (vm_trylock) {
183                                 if (mutex_trylock(&vma->vm->mutex)) {
184                                         ret = __i915_vma_unbind(vma);
185                                         mutex_unlock(&vma->vm->mutex);
186                                 }
187                         } else {
188                                 ret = i915_vma_unbind(vma);
189                         }
190                 }
191
192                 i915_vm_put(vma->vm);
193                 spin_lock(&obj->vma.lock);
194         }
195         list_splice_init(&still_in_list, &obj->vma.list);
196         spin_unlock(&obj->vma.lock);
197
198         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199                 rcu_barrier(); /* flush the i915_vm_release() */
200                 goto try_again;
201         }
202
203         intel_runtime_pm_put(rpm, wakeref);
204
205         return ret;
206 }
207
208 static int
209 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210             bool needs_clflush)
211 {
212         char *vaddr;
213         int ret;
214
215         vaddr = kmap(page);
216
217         if (needs_clflush)
218                 drm_clflush_virt_range(vaddr + offset, len);
219
220         ret = __copy_to_user(user_data, vaddr + offset, len);
221
222         kunmap(page);
223
224         return ret ? -EFAULT : 0;
225 }
226
227 static int
228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229                      struct drm_i915_gem_pread *args)
230 {
231         unsigned int needs_clflush;
232         char __user *user_data;
233         unsigned long offset;
234         pgoff_t idx;
235         u64 remain;
236         int ret;
237
238         ret = i915_gem_object_lock_interruptible(obj, NULL);
239         if (ret)
240                 return ret;
241
242         ret = i915_gem_object_pin_pages(obj);
243         if (ret)
244                 goto err_unlock;
245
246         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
247         if (ret)
248                 goto err_unpin;
249
250         i915_gem_object_finish_access(obj);
251         i915_gem_object_unlock(obj);
252
253         remain = args->size;
254         user_data = u64_to_user_ptr(args->data_ptr);
255         offset = offset_in_page(args->offset);
256         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
257                 struct page *page = i915_gem_object_get_page(obj, idx);
258                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
259
260                 ret = shmem_pread(page, offset, length, user_data,
261                                   needs_clflush);
262                 if (ret)
263                         break;
264
265                 remain -= length;
266                 user_data += length;
267                 offset = 0;
268         }
269
270         i915_gem_object_unpin_pages(obj);
271         return ret;
272
273 err_unpin:
274         i915_gem_object_unpin_pages(obj);
275 err_unlock:
276         i915_gem_object_unlock(obj);
277         return ret;
278 }
279
280 static inline bool
281 gtt_user_read(struct io_mapping *mapping,
282               loff_t base, int offset,
283               char __user *user_data, int length)
284 {
285         void __iomem *vaddr;
286         unsigned long unwritten;
287
288         /* We can use the cpu mem copy function because this is X86. */
289         vaddr = io_mapping_map_atomic_wc(mapping, base);
290         unwritten = __copy_to_user_inatomic(user_data,
291                                             (void __force *)vaddr + offset,
292                                             length);
293         io_mapping_unmap_atomic(vaddr);
294         if (unwritten) {
295                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
296                 unwritten = copy_to_user(user_data,
297                                          (void __force *)vaddr + offset,
298                                          length);
299                 io_mapping_unmap(vaddr);
300         }
301         return unwritten;
302 }
303
304 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
305                                              struct drm_mm_node *node,
306                                              bool write)
307 {
308         struct drm_i915_private *i915 = to_i915(obj->base.dev);
309         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
310         struct i915_vma *vma;
311         struct i915_gem_ww_ctx ww;
312         int ret;
313
314         i915_gem_ww_ctx_init(&ww, true);
315 retry:
316         vma = ERR_PTR(-ENODEV);
317         ret = i915_gem_object_lock(obj, &ww);
318         if (ret)
319                 goto err_ww;
320
321         ret = i915_gem_object_set_to_gtt_domain(obj, write);
322         if (ret)
323                 goto err_ww;
324
325         if (!i915_gem_object_is_tiled(obj))
326                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
327                                                   PIN_MAPPABLE |
328                                                   PIN_NONBLOCK /* NOWARN */ |
329                                                   PIN_NOEVICT);
330         if (vma == ERR_PTR(-EDEADLK)) {
331                 ret = -EDEADLK;
332                 goto err_ww;
333         } else if (!IS_ERR(vma)) {
334                 node->start = i915_ggtt_offset(vma);
335                 node->flags = 0;
336         } else {
337                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
338                 if (ret)
339                         goto err_ww;
340                 GEM_BUG_ON(!drm_mm_node_allocated(node));
341                 vma = NULL;
342         }
343
344         ret = i915_gem_object_pin_pages(obj);
345         if (ret) {
346                 if (drm_mm_node_allocated(node)) {
347                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
348                         remove_mappable_node(ggtt, node);
349                 } else {
350                         i915_vma_unpin(vma);
351                 }
352         }
353
354 err_ww:
355         if (ret == -EDEADLK) {
356                 ret = i915_gem_ww_ctx_backoff(&ww);
357                 if (!ret)
358                         goto retry;
359         }
360         i915_gem_ww_ctx_fini(&ww);
361
362         return ret ? ERR_PTR(ret) : vma;
363 }
364
365 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
366                                  struct drm_mm_node *node,
367                                  struct i915_vma *vma)
368 {
369         struct drm_i915_private *i915 = to_i915(obj->base.dev);
370         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
371
372         i915_gem_object_unpin_pages(obj);
373         if (drm_mm_node_allocated(node)) {
374                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
375                 remove_mappable_node(ggtt, node);
376         } else {
377                 i915_vma_unpin(vma);
378         }
379 }
380
381 static int
382 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
383                    const struct drm_i915_gem_pread *args)
384 {
385         struct drm_i915_private *i915 = to_i915(obj->base.dev);
386         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
387         unsigned long remain, offset;
388         intel_wakeref_t wakeref;
389         struct drm_mm_node node;
390         void __user *user_data;
391         struct i915_vma *vma;
392         int ret = 0;
393
394         if (overflows_type(args->size, remain) ||
395             overflows_type(args->offset, offset))
396                 return -EINVAL;
397
398         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
399
400         vma = i915_gem_gtt_prepare(obj, &node, false);
401         if (IS_ERR(vma)) {
402                 ret = PTR_ERR(vma);
403                 goto out_rpm;
404         }
405
406         user_data = u64_to_user_ptr(args->data_ptr);
407         remain = args->size;
408         offset = args->offset;
409
410         while (remain > 0) {
411                 /* Operation in this page
412                  *
413                  * page_base = page offset within aperture
414                  * page_offset = offset within page
415                  * page_length = bytes to copy for this page
416                  */
417                 u32 page_base = node.start;
418                 unsigned page_offset = offset_in_page(offset);
419                 unsigned page_length = PAGE_SIZE - page_offset;
420                 page_length = remain < page_length ? remain : page_length;
421                 if (drm_mm_node_allocated(&node)) {
422                         ggtt->vm.insert_page(&ggtt->vm,
423                                              i915_gem_object_get_dma_address(obj,
424                                                                              offset >> PAGE_SHIFT),
425                                              node.start,
426                                              i915_gem_get_pat_index(i915,
427                                                                     I915_CACHE_NONE), 0);
428                 } else {
429                         page_base += offset & PAGE_MASK;
430                 }
431
432                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
433                                   user_data, page_length)) {
434                         ret = -EFAULT;
435                         break;
436                 }
437
438                 remain -= page_length;
439                 user_data += page_length;
440                 offset += page_length;
441         }
442
443         i915_gem_gtt_cleanup(obj, &node, vma);
444 out_rpm:
445         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
446         return ret;
447 }
448
449 /**
450  * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
451  * @dev: drm device pointer
452  * @data: ioctl data blob
453  * @file: drm file pointer
454  *
455  * On error, the contents of *data are undefined.
456  */
457 int
458 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
459                      struct drm_file *file)
460 {
461         struct drm_i915_private *i915 = to_i915(dev);
462         struct drm_i915_gem_pread *args = data;
463         struct drm_i915_gem_object *obj;
464         int ret;
465
466         /* PREAD is disallowed for all platforms after TGL-LP.  This also
467          * covers all platforms with local memory.
468          */
469         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
470                 return -EOPNOTSUPP;
471
472         if (args->size == 0)
473                 return 0;
474
475         if (!access_ok(u64_to_user_ptr(args->data_ptr),
476                        args->size))
477                 return -EFAULT;
478
479         obj = i915_gem_object_lookup(file, args->handle);
480         if (!obj)
481                 return -ENOENT;
482
483         /* Bounds check source.  */
484         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
485                 ret = -EINVAL;
486                 goto out;
487         }
488
489         trace_i915_gem_object_pread(obj, args->offset, args->size);
490         ret = -ENODEV;
491         if (obj->ops->pread)
492                 ret = obj->ops->pread(obj, args);
493         if (ret != -ENODEV)
494                 goto out;
495
496         ret = i915_gem_object_wait(obj,
497                                    I915_WAIT_INTERRUPTIBLE,
498                                    MAX_SCHEDULE_TIMEOUT);
499         if (ret)
500                 goto out;
501
502         ret = i915_gem_shmem_pread(obj, args);
503         if (ret == -EFAULT || ret == -ENODEV)
504                 ret = i915_gem_gtt_pread(obj, args);
505
506 out:
507         i915_gem_object_put(obj);
508         return ret;
509 }
510
511 /* This is the fast write path which cannot handle
512  * page faults in the source data
513  */
514
515 static inline bool
516 ggtt_write(struct io_mapping *mapping,
517            loff_t base, int offset,
518            char __user *user_data, int length)
519 {
520         void __iomem *vaddr;
521         unsigned long unwritten;
522
523         /* We can use the cpu mem copy function because this is X86. */
524         vaddr = io_mapping_map_atomic_wc(mapping, base);
525         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
526                                                       user_data, length);
527         io_mapping_unmap_atomic(vaddr);
528         if (unwritten) {
529                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
530                 unwritten = copy_from_user((void __force *)vaddr + offset,
531                                            user_data, length);
532                 io_mapping_unmap(vaddr);
533         }
534
535         return unwritten;
536 }
537
538 /**
539  * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
540  * user into the GTT, uncached.
541  * @obj: i915 GEM object
542  * @args: pwrite arguments structure
543  */
544 static int
545 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
546                          const struct drm_i915_gem_pwrite *args)
547 {
548         struct drm_i915_private *i915 = to_i915(obj->base.dev);
549         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
550         struct intel_runtime_pm *rpm = &i915->runtime_pm;
551         unsigned long remain, offset;
552         intel_wakeref_t wakeref;
553         struct drm_mm_node node;
554         struct i915_vma *vma;
555         void __user *user_data;
556         int ret = 0;
557
558         if (overflows_type(args->size, remain) ||
559             overflows_type(args->offset, offset))
560                 return -EINVAL;
561
562         if (i915_gem_object_has_struct_page(obj)) {
563                 /*
564                  * Avoid waking the device up if we can fallback, as
565                  * waking/resuming is very slow (worst-case 10-100 ms
566                  * depending on PCI sleeps and our own resume time).
567                  * This easily dwarfs any performance advantage from
568                  * using the cache bypass of indirect GGTT access.
569                  */
570                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
571                 if (!wakeref)
572                         return -EFAULT;
573         } else {
574                 /* No backing pages, no fallback, we must force GGTT access */
575                 wakeref = intel_runtime_pm_get(rpm);
576         }
577
578         vma = i915_gem_gtt_prepare(obj, &node, true);
579         if (IS_ERR(vma)) {
580                 ret = PTR_ERR(vma);
581                 goto out_rpm;
582         }
583
584         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
585
586         user_data = u64_to_user_ptr(args->data_ptr);
587         offset = args->offset;
588         remain = args->size;
589         while (remain) {
590                 /* Operation in this page
591                  *
592                  * page_base = page offset within aperture
593                  * page_offset = offset within page
594                  * page_length = bytes to copy for this page
595                  */
596                 u32 page_base = node.start;
597                 unsigned int page_offset = offset_in_page(offset);
598                 unsigned int page_length = PAGE_SIZE - page_offset;
599                 page_length = remain < page_length ? remain : page_length;
600                 if (drm_mm_node_allocated(&node)) {
601                         /* flush the write before we modify the GGTT */
602                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
603                         ggtt->vm.insert_page(&ggtt->vm,
604                                              i915_gem_object_get_dma_address(obj,
605                                                                              offset >> PAGE_SHIFT),
606                                              node.start,
607                                              i915_gem_get_pat_index(i915,
608                                                                     I915_CACHE_NONE), 0);
609                         wmb(); /* flush modifications to the GGTT (insert_page) */
610                 } else {
611                         page_base += offset & PAGE_MASK;
612                 }
613                 /* If we get a fault while copying data, then (presumably) our
614                  * source page isn't available.  Return the error and we'll
615                  * retry in the slow path.
616                  * If the object is non-shmem backed, we retry again with the
617                  * path that handles page fault.
618                  */
619                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
620                                user_data, page_length)) {
621                         ret = -EFAULT;
622                         break;
623                 }
624
625                 remain -= page_length;
626                 user_data += page_length;
627                 offset += page_length;
628         }
629
630         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
631         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
632
633         i915_gem_gtt_cleanup(obj, &node, vma);
634 out_rpm:
635         intel_runtime_pm_put(rpm, wakeref);
636         return ret;
637 }
638
639 /* Per-page copy function for the shmem pwrite fastpath.
640  * Flushes invalid cachelines before writing to the target if
641  * needs_clflush_before is set and flushes out any written cachelines after
642  * writing if needs_clflush is set.
643  */
644 static int
645 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
646              bool needs_clflush_before,
647              bool needs_clflush_after)
648 {
649         char *vaddr;
650         int ret;
651
652         vaddr = kmap(page);
653
654         if (needs_clflush_before)
655                 drm_clflush_virt_range(vaddr + offset, len);
656
657         ret = __copy_from_user(vaddr + offset, user_data, len);
658         if (!ret && needs_clflush_after)
659                 drm_clflush_virt_range(vaddr + offset, len);
660
661         kunmap(page);
662
663         return ret ? -EFAULT : 0;
664 }
665
666 static int
667 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
668                       const struct drm_i915_gem_pwrite *args)
669 {
670         unsigned int partial_cacheline_write;
671         unsigned int needs_clflush;
672         void __user *user_data;
673         unsigned long offset;
674         pgoff_t idx;
675         u64 remain;
676         int ret;
677
678         ret = i915_gem_object_lock_interruptible(obj, NULL);
679         if (ret)
680                 return ret;
681
682         ret = i915_gem_object_pin_pages(obj);
683         if (ret)
684                 goto err_unlock;
685
686         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
687         if (ret)
688                 goto err_unpin;
689
690         i915_gem_object_finish_access(obj);
691         i915_gem_object_unlock(obj);
692
693         /* If we don't overwrite a cacheline completely we need to be
694          * careful to have up-to-date data by first clflushing. Don't
695          * overcomplicate things and flush the entire patch.
696          */
697         partial_cacheline_write = 0;
698         if (needs_clflush & CLFLUSH_BEFORE)
699                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
700
701         user_data = u64_to_user_ptr(args->data_ptr);
702         remain = args->size;
703         offset = offset_in_page(args->offset);
704         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
705                 struct page *page = i915_gem_object_get_page(obj, idx);
706                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
707
708                 ret = shmem_pwrite(page, offset, length, user_data,
709                                    (offset | length) & partial_cacheline_write,
710                                    needs_clflush & CLFLUSH_AFTER);
711                 if (ret)
712                         break;
713
714                 remain -= length;
715                 user_data += length;
716                 offset = 0;
717         }
718
719         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
720
721         i915_gem_object_unpin_pages(obj);
722         return ret;
723
724 err_unpin:
725         i915_gem_object_unpin_pages(obj);
726 err_unlock:
727         i915_gem_object_unlock(obj);
728         return ret;
729 }
730
731 /**
732  * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
733  * @dev: drm device
734  * @data: ioctl data blob
735  * @file: drm file
736  *
737  * On error, the contents of the buffer that were to be modified are undefined.
738  */
739 int
740 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
741                       struct drm_file *file)
742 {
743         struct drm_i915_private *i915 = to_i915(dev);
744         struct drm_i915_gem_pwrite *args = data;
745         struct drm_i915_gem_object *obj;
746         int ret;
747
748         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
749          * covers all platforms with local memory.
750          */
751         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
752                 return -EOPNOTSUPP;
753
754         if (args->size == 0)
755                 return 0;
756
757         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
758                 return -EFAULT;
759
760         obj = i915_gem_object_lookup(file, args->handle);
761         if (!obj)
762                 return -ENOENT;
763
764         /* Bounds check destination. */
765         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
766                 ret = -EINVAL;
767                 goto err;
768         }
769
770         /* Writes not allowed into this read-only object */
771         if (i915_gem_object_is_readonly(obj)) {
772                 ret = -EINVAL;
773                 goto err;
774         }
775
776         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
777
778         ret = -ENODEV;
779         if (obj->ops->pwrite)
780                 ret = obj->ops->pwrite(obj, args);
781         if (ret != -ENODEV)
782                 goto err;
783
784         ret = i915_gem_object_wait(obj,
785                                    I915_WAIT_INTERRUPTIBLE |
786                                    I915_WAIT_ALL,
787                                    MAX_SCHEDULE_TIMEOUT);
788         if (ret)
789                 goto err;
790
791         ret = -EFAULT;
792         /* We can only do the GTT pwrite on untiled buffers, as otherwise
793          * it would end up going through the fenced access, and we'll get
794          * different detiling behavior between reading and writing.
795          * pread/pwrite currently are reading and writing from the CPU
796          * perspective, requiring manual detiling by the client.
797          */
798         if (!i915_gem_object_has_struct_page(obj) ||
799             i915_gem_cpu_write_needs_clflush(obj))
800                 /* Note that the gtt paths might fail with non-page-backed user
801                  * pointers (e.g. gtt mappings when moving data between
802                  * textures). Fallback to the shmem path in that case.
803                  */
804                 ret = i915_gem_gtt_pwrite_fast(obj, args);
805
806         if (ret == -EFAULT || ret == -ENOSPC) {
807                 if (i915_gem_object_has_struct_page(obj))
808                         ret = i915_gem_shmem_pwrite(obj, args);
809         }
810
811 err:
812         i915_gem_object_put(obj);
813         return ret;
814 }
815
816 /**
817  * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
818  * @dev: drm device
819  * @data: ioctl data blob
820  * @file: drm file
821  */
822 int
823 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
824                          struct drm_file *file)
825 {
826         struct drm_i915_gem_sw_finish *args = data;
827         struct drm_i915_gem_object *obj;
828
829         obj = i915_gem_object_lookup(file, args->handle);
830         if (!obj)
831                 return -ENOENT;
832
833         /*
834          * Proxy objects are barred from CPU access, so there is no
835          * need to ban sw_finish as it is a nop.
836          */
837
838         /* Pinned buffers may be scanout, so flush the cache */
839         i915_gem_object_flush_if_display(obj);
840         i915_gem_object_put(obj);
841
842         return 0;
843 }
844
845 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
846 {
847         struct drm_i915_gem_object *obj, *on;
848         int i;
849
850         /*
851          * Only called during RPM suspend. All users of the userfault_list
852          * must be holding an RPM wakeref to ensure that this can not
853          * run concurrently with themselves (and use the struct_mutex for
854          * protection between themselves).
855          */
856
857         list_for_each_entry_safe(obj, on,
858                                  &to_gt(i915)->ggtt->userfault_list, userfault_link)
859                 __i915_gem_object_release_mmap_gtt(obj);
860
861         list_for_each_entry_safe(obj, on,
862                                  &i915->runtime_pm.lmem_userfault_list, userfault_link)
863                 i915_gem_object_runtime_pm_release_mmap_offset(obj);
864
865         /*
866          * The fence will be lost when the device powers down. If any were
867          * in use by hardware (i.e. they are pinned), we should not be powering
868          * down! All other fences will be reacquired by the user upon waking.
869          */
870         for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
871                 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
872
873                 /*
874                  * Ideally we want to assert that the fence register is not
875                  * live at this point (i.e. that no piece of code will be
876                  * trying to write through fence + GTT, as that both violates
877                  * our tracking of activity and associated locking/barriers,
878                  * but also is illegal given that the hw is powered down).
879                  *
880                  * Previously we used reg->pin_count as a "liveness" indicator.
881                  * That is not sufficient, and we need a more fine-grained
882                  * tool if we want to have a sanity check here.
883                  */
884
885                 if (!reg->vma)
886                         continue;
887
888                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
889                 reg->dirty = true;
890         }
891 }
892
893 static void discard_ggtt_vma(struct i915_vma *vma)
894 {
895         struct drm_i915_gem_object *obj = vma->obj;
896
897         spin_lock(&obj->vma.lock);
898         if (!RB_EMPTY_NODE(&vma->obj_node)) {
899                 rb_erase(&vma->obj_node, &obj->vma.tree);
900                 RB_CLEAR_NODE(&vma->obj_node);
901         }
902         spin_unlock(&obj->vma.lock);
903 }
904
905 struct i915_vma *
906 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
907                             struct i915_gem_ww_ctx *ww,
908                             const struct i915_gtt_view *view,
909                             u64 size, u64 alignment, u64 flags)
910 {
911         struct drm_i915_private *i915 = to_i915(obj->base.dev);
912         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
913         struct i915_vma *vma;
914         int ret;
915
916         GEM_WARN_ON(!ww);
917
918         if (flags & PIN_MAPPABLE &&
919             (!view || view->type == I915_GTT_VIEW_NORMAL)) {
920                 /*
921                  * If the required space is larger than the available
922                  * aperture, we will not able to find a slot for the
923                  * object and unbinding the object now will be in
924                  * vain. Worse, doing so may cause us to ping-pong
925                  * the object in and out of the Global GTT and
926                  * waste a lot of cycles under the mutex.
927                  */
928                 if (obj->base.size > ggtt->mappable_end)
929                         return ERR_PTR(-E2BIG);
930
931                 /*
932                  * If NONBLOCK is set the caller is optimistically
933                  * trying to cache the full object within the mappable
934                  * aperture, and *must* have a fallback in place for
935                  * situations where we cannot bind the object. We
936                  * can be a little more lax here and use the fallback
937                  * more often to avoid costly migrations of ourselves
938                  * and other objects within the aperture.
939                  *
940                  * Half-the-aperture is used as a simple heuristic.
941                  * More interesting would to do search for a free
942                  * block prior to making the commitment to unbind.
943                  * That caters for the self-harm case, and with a
944                  * little more heuristics (e.g. NOFAULT, NOEVICT)
945                  * we could try to minimise harm to others.
946                  */
947                 if (flags & PIN_NONBLOCK &&
948                     obj->base.size > ggtt->mappable_end / 2)
949                         return ERR_PTR(-ENOSPC);
950         }
951
952 new_vma:
953         vma = i915_vma_instance(obj, &ggtt->vm, view);
954         if (IS_ERR(vma))
955                 return vma;
956
957         if (i915_vma_misplaced(vma, size, alignment, flags)) {
958                 if (flags & PIN_NONBLOCK) {
959                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
960                                 return ERR_PTR(-ENOSPC);
961
962                         /*
963                          * If this misplaced vma is too big (i.e, at-least
964                          * half the size of aperture) or hasn't been pinned
965                          * mappable before, we ignore the misplacement when
966                          * PIN_NONBLOCK is set in order to avoid the ping-pong
967                          * issue described above. In other words, we try to
968                          * avoid the costly operation of unbinding this vma
969                          * from the GGTT and rebinding it back because there
970                          * may not be enough space for this vma in the aperture.
971                          */
972                         if (flags & PIN_MAPPABLE &&
973                             (vma->fence_size > ggtt->mappable_end / 2 ||
974                             !i915_vma_is_map_and_fenceable(vma)))
975                                 return ERR_PTR(-ENOSPC);
976                 }
977
978                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
979                         discard_ggtt_vma(vma);
980                         goto new_vma;
981                 }
982
983                 ret = i915_vma_unbind(vma);
984                 if (ret)
985                         return ERR_PTR(ret);
986         }
987
988         ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
989
990         if (ret)
991                 return ERR_PTR(ret);
992
993         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
994                 mutex_lock(&ggtt->vm.mutex);
995                 i915_vma_revoke_fence(vma);
996                 mutex_unlock(&ggtt->vm.mutex);
997         }
998
999         ret = i915_vma_wait_for_bind(vma);
1000         if (ret) {
1001                 i915_vma_unpin(vma);
1002                 return ERR_PTR(ret);
1003         }
1004
1005         return vma;
1006 }
1007
1008 struct i915_vma * __must_check
1009 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1010                          const struct i915_gtt_view *view,
1011                          u64 size, u64 alignment, u64 flags)
1012 {
1013         struct i915_gem_ww_ctx ww;
1014         struct i915_vma *ret;
1015         int err;
1016
1017         for_i915_gem_ww(&ww, err, true) {
1018                 err = i915_gem_object_lock(obj, &ww);
1019                 if (err)
1020                         continue;
1021
1022                 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1023                                                   alignment, flags);
1024                 if (IS_ERR(ret))
1025                         err = PTR_ERR(ret);
1026         }
1027
1028         return err ? ERR_PTR(err) : ret;
1029 }
1030
1031 int
1032 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1033                        struct drm_file *file_priv)
1034 {
1035         struct drm_i915_private *i915 = to_i915(dev);
1036         struct drm_i915_gem_madvise *args = data;
1037         struct drm_i915_gem_object *obj;
1038         int err;
1039
1040         switch (args->madv) {
1041         case I915_MADV_DONTNEED:
1042         case I915_MADV_WILLNEED:
1043             break;
1044         default:
1045             return -EINVAL;
1046         }
1047
1048         obj = i915_gem_object_lookup(file_priv, args->handle);
1049         if (!obj)
1050                 return -ENOENT;
1051
1052         err = i915_gem_object_lock_interruptible(obj, NULL);
1053         if (err)
1054                 goto out;
1055
1056         if (i915_gem_object_has_pages(obj) &&
1057             i915_gem_object_is_tiled(obj) &&
1058             i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1059                 if (obj->mm.madv == I915_MADV_WILLNEED) {
1060                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1061                         i915_gem_object_clear_tiling_quirk(obj);
1062                         i915_gem_object_make_shrinkable(obj);
1063                 }
1064                 if (args->madv == I915_MADV_WILLNEED) {
1065                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1066                         i915_gem_object_make_unshrinkable(obj);
1067                         i915_gem_object_set_tiling_quirk(obj);
1068                 }
1069         }
1070
1071         if (obj->mm.madv != __I915_MADV_PURGED) {
1072                 obj->mm.madv = args->madv;
1073                 if (obj->ops->adjust_lru)
1074                         obj->ops->adjust_lru(obj);
1075         }
1076
1077         if (i915_gem_object_has_pages(obj) ||
1078             i915_gem_object_has_self_managed_shrink_list(obj)) {
1079                 unsigned long flags;
1080
1081                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1082                 if (!list_empty(&obj->mm.link)) {
1083                         struct list_head *list;
1084
1085                         if (obj->mm.madv != I915_MADV_WILLNEED)
1086                                 list = &i915->mm.purge_list;
1087                         else
1088                                 list = &i915->mm.shrink_list;
1089                         list_move_tail(&obj->mm.link, list);
1090
1091                 }
1092                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1093         }
1094
1095         /* if the object is no longer attached, discard its backing storage */
1096         if (obj->mm.madv == I915_MADV_DONTNEED &&
1097             !i915_gem_object_has_pages(obj))
1098                 i915_gem_object_truncate(obj);
1099
1100         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1101
1102         i915_gem_object_unlock(obj);
1103 out:
1104         i915_gem_object_put(obj);
1105         return err;
1106 }
1107
1108 /*
1109  * A single pass should suffice to release all the freed objects (along most
1110  * call paths), but be a little more paranoid in that freeing the objects does
1111  * take a little amount of time, during which the rcu callbacks could have added
1112  * new objects into the freed list, and armed the work again.
1113  */
1114 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1115 {
1116         while (atomic_read(&i915->mm.free_count)) {
1117                 flush_work(&i915->mm.free_work);
1118                 drain_workqueue(i915->bdev.wq);
1119                 rcu_barrier();
1120         }
1121 }
1122
1123 /*
1124  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1125  * have workers that are armed by RCU and then rearm themselves in their
1126  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1127  * waiting for the RCU grace period so that we catch work queued via RCU from
1128  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1129  * result, we make an assumption that we only don't require more than 3 passes
1130  * to catch all _recursive_ RCU delayed work.
1131  */
1132 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1133 {
1134         int i;
1135
1136         for (i = 0; i < 3; i++) {
1137                 flush_workqueue(i915->wq);
1138                 rcu_barrier();
1139                 i915_gem_drain_freed_objects(i915);
1140         }
1141
1142         drain_workqueue(i915->wq);
1143 }
1144
1145 int i915_gem_init(struct drm_i915_private *dev_priv)
1146 {
1147         struct intel_gt *gt;
1148         unsigned int i;
1149         int ret;
1150
1151         /*
1152          * In the proccess of replacing cache_level with pat_index a tricky
1153          * dependency is created on the definition of the enum i915_cache_level.
1154          * in case this enum is changed, PTE encode would be broken.
1155          * Add a WARNING here. And remove when we completely quit using this
1156          * enum
1157          */
1158         BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1159                      I915_CACHE_LLC != 1 ||
1160                      I915_CACHE_L3_LLC != 2 ||
1161                      I915_CACHE_WT != 3 ||
1162                      I915_MAX_CACHE_LEVEL != 4);
1163
1164         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1165         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1166                 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1167
1168         ret = i915_gem_init_userptr(dev_priv);
1169         if (ret)
1170                 return ret;
1171
1172         for_each_gt(gt, dev_priv, i) {
1173                 intel_uc_fetch_firmwares(&gt->uc);
1174                 intel_wopcm_init(&gt->wopcm);
1175                 if (GRAPHICS_VER(dev_priv) >= 8)
1176                         setup_private_pat(gt);
1177         }
1178
1179         ret = i915_init_ggtt(dev_priv);
1180         if (ret) {
1181                 GEM_BUG_ON(ret == -EIO);
1182                 goto err_unlock;
1183         }
1184
1185         /*
1186          * Despite its name intel_clock_gating_init applies both display
1187          * clock gating workarounds; GT mmio workarounds and the occasional
1188          * GT power context workaround. Worse, sometimes it includes a context
1189          * register workaround which we need to apply before we record the
1190          * default HW state for all contexts.
1191          *
1192          * FIXME: break up the workarounds and apply them at the right time!
1193          */
1194         intel_clock_gating_init(dev_priv);
1195
1196         for_each_gt(gt, dev_priv, i) {
1197                 ret = intel_gt_init(gt);
1198                 if (ret)
1199                         goto err_unlock;
1200         }
1201
1202         /*
1203          * Register engines early to ensure the engine list is in its final
1204          * rb-tree form, lowering the amount of code that has to deal with
1205          * the intermediate llist state.
1206          */
1207         intel_engines_driver_register(dev_priv);
1208
1209         return 0;
1210
1211         /*
1212          * Unwinding is complicated by that we want to handle -EIO to mean
1213          * disable GPU submission but keep KMS alive. We want to mark the
1214          * HW as irrevisibly wedged, but keep enough state around that the
1215          * driver doesn't explode during runtime.
1216          */
1217 err_unlock:
1218         i915_gem_drain_workqueue(dev_priv);
1219
1220         if (ret != -EIO) {
1221                 for_each_gt(gt, dev_priv, i) {
1222                         intel_gt_driver_remove(gt);
1223                         intel_gt_driver_release(gt);
1224                         intel_uc_cleanup_firmwares(&gt->uc);
1225                 }
1226         }
1227
1228         if (ret == -EIO) {
1229                 /*
1230                  * Allow engines or uC initialisation to fail by marking the GPU
1231                  * as wedged. But we only want to do this when the GPU is angry,
1232                  * for all other failure, such as an allocation failure, bail.
1233                  */
1234                 for_each_gt(gt, dev_priv, i) {
1235                         if (!intel_gt_is_wedged(gt)) {
1236                                 i915_probe_error(dev_priv,
1237                                                  "Failed to initialize GPU, declaring it wedged!\n");
1238                                 intel_gt_set_wedged(gt);
1239                         }
1240                 }
1241
1242                 /* Minimal basic recovery for KMS */
1243                 ret = i915_ggtt_enable_hw(dev_priv);
1244                 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1245                 intel_clock_gating_init(dev_priv);
1246         }
1247
1248         i915_gem_drain_freed_objects(dev_priv);
1249
1250         return ret;
1251 }
1252
1253 void i915_gem_driver_register(struct drm_i915_private *i915)
1254 {
1255         i915_gem_driver_register__shrinker(i915);
1256 }
1257
1258 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1259 {
1260         i915_gem_driver_unregister__shrinker(i915);
1261 }
1262
1263 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1264 {
1265         struct intel_gt *gt;
1266         unsigned int i;
1267
1268         i915_gem_suspend_late(dev_priv);
1269         for_each_gt(gt, dev_priv, i)
1270                 intel_gt_driver_remove(gt);
1271         dev_priv->uabi_engines = RB_ROOT;
1272
1273         /* Flush any outstanding unpin_work. */
1274         i915_gem_drain_workqueue(dev_priv);
1275 }
1276
1277 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1278 {
1279         struct intel_gt *gt;
1280         unsigned int i;
1281
1282         for_each_gt(gt, dev_priv, i) {
1283                 intel_gt_driver_release(gt);
1284                 intel_uc_cleanup_firmwares(&gt->uc);
1285         }
1286
1287         /* Flush any outstanding work, including i915_gem_context.release_work. */
1288         i915_gem_drain_workqueue(dev_priv);
1289
1290         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1291 }
1292
1293 static void i915_gem_init__mm(struct drm_i915_private *i915)
1294 {
1295         spin_lock_init(&i915->mm.obj_lock);
1296
1297         init_llist_head(&i915->mm.free_list);
1298
1299         INIT_LIST_HEAD(&i915->mm.purge_list);
1300         INIT_LIST_HEAD(&i915->mm.shrink_list);
1301
1302         i915_gem_init__objects(i915);
1303 }
1304
1305 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1306 {
1307         i915_gem_init__mm(dev_priv);
1308         i915_gem_init__contexts(dev_priv);
1309 }
1310
1311 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1312 {
1313         i915_gem_drain_workqueue(dev_priv);
1314         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1315         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1316         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1317 }
1318
1319 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1320 {
1321         struct drm_i915_file_private *file_priv;
1322         struct i915_drm_client *client;
1323         int ret = -ENOMEM;
1324
1325         drm_dbg(&i915->drm, "\n");
1326
1327         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1328         if (!file_priv)
1329                 goto err_alloc;
1330
1331         client = i915_drm_client_alloc();
1332         if (!client)
1333                 goto err_client;
1334
1335         file->driver_priv = file_priv;
1336         file_priv->i915 = i915;
1337         file_priv->file = file;
1338         file_priv->client = client;
1339
1340         file_priv->bsd_engine = -1;
1341         file_priv->hang_timestamp = jiffies;
1342
1343         ret = i915_gem_context_open(i915, file);
1344         if (ret)
1345                 goto err_context;
1346
1347         return 0;
1348
1349 err_context:
1350         i915_drm_client_put(client);
1351 err_client:
1352         kfree(file_priv);
1353 err_alloc:
1354         return ret;
1355 }
1356
1357 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1358 #include "selftests/mock_gem_device.c"
1359 #include "selftests/i915_gem.c"
1360 #endif