Merge tag 'drm-intel-next-2018-09-21' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56
57 static struct drm_driver driver;
58
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
60 static unsigned int i915_load_fail_count;
61
62 bool __i915_inject_load_failure(const char *func, int line)
63 {
64         if (i915_load_fail_count >= i915_modparams.inject_load_failure)
65                 return false;
66
67         if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
68                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
69                          i915_modparams.inject_load_failure, func, line);
70                 i915_modparams.inject_load_failure = 0;
71                 return true;
72         }
73
74         return false;
75 }
76
77 bool i915_error_injected(void)
78 {
79         return i915_load_fail_count && !i915_modparams.inject_load_failure;
80 }
81
82 #endif
83
84 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
85 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
86                     "providing the dmesg log by booting with drm.debug=0xf"
87
88 void
89 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
90               const char *fmt, ...)
91 {
92         static bool shown_bug_once;
93         struct device *kdev = dev_priv->drm.dev;
94         bool is_error = level[1] <= KERN_ERR[1];
95         bool is_debug = level[1] == KERN_DEBUG[1];
96         struct va_format vaf;
97         va_list args;
98
99         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
100                 return;
101
102         va_start(args, fmt);
103
104         vaf.fmt = fmt;
105         vaf.va = &args;
106
107         if (is_error)
108                 dev_printk(level, kdev, "%pV", &vaf);
109         else
110                 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
111                            __builtin_return_address(0), &vaf);
112
113         va_end(args);
114
115         if (is_error && !shown_bug_once) {
116                 /*
117                  * Ask the user to file a bug report for the error, except
118                  * if they may have caused the bug by fiddling with unsafe
119                  * module parameters.
120                  */
121                 if (!test_taint(TAINT_USER))
122                         dev_notice(kdev, "%s", FDO_BUG_MSG);
123                 shown_bug_once = true;
124         }
125 }
126
127 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
128 static enum intel_pch
129 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
130 {
131         switch (id) {
132         case INTEL_PCH_IBX_DEVICE_ID_TYPE:
133                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
134                 WARN_ON(!IS_GEN5(dev_priv));
135                 return PCH_IBX;
136         case INTEL_PCH_CPT_DEVICE_ID_TYPE:
137                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
138                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
139                 return PCH_CPT;
140         case INTEL_PCH_PPT_DEVICE_ID_TYPE:
141                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
142                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
143                 /* PantherPoint is CPT compatible */
144                 return PCH_CPT;
145         case INTEL_PCH_LPT_DEVICE_ID_TYPE:
146                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
147                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
148                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
149                 return PCH_LPT;
150         case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
151                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
152                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
153                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
154                 return PCH_LPT;
155         case INTEL_PCH_WPT_DEVICE_ID_TYPE:
156                 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
157                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
158                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
159                 /* WildcatPoint is LPT compatible */
160                 return PCH_LPT;
161         case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
162                 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
163                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
164                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
165                 /* WildcatPoint is LPT compatible */
166                 return PCH_LPT;
167         case INTEL_PCH_SPT_DEVICE_ID_TYPE:
168                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
169                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
170                 return PCH_SPT;
171         case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
172                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
173                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
174                 return PCH_SPT;
175         case INTEL_PCH_KBP_DEVICE_ID_TYPE:
176                 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
177                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
178                         !IS_COFFEELAKE(dev_priv));
179                 return PCH_KBP;
180         case INTEL_PCH_CNP_DEVICE_ID_TYPE:
181                 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
182                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
183                 return PCH_CNP;
184         case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
185                 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
186                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
187                 return PCH_CNP;
188         case INTEL_PCH_ICP_DEVICE_ID_TYPE:
189                 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
190                 WARN_ON(!IS_ICELAKE(dev_priv));
191                 return PCH_ICP;
192         default:
193                 return PCH_NONE;
194         }
195 }
196
197 static bool intel_is_virt_pch(unsigned short id,
198                               unsigned short svendor, unsigned short sdevice)
199 {
200         return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
201                 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
202                 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
203                  svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
204                  sdevice == PCI_SUBDEVICE_ID_QEMU));
205 }
206
207 static unsigned short
208 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
209 {
210         unsigned short id = 0;
211
212         /*
213          * In a virtualized passthrough environment we can be in a
214          * setup where the ISA bridge is not able to be passed through.
215          * In this case, a south bridge can be emulated and we have to
216          * make an educated guess as to which PCH is really there.
217          */
218
219         if (IS_GEN5(dev_priv))
220                 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
221         else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
222                 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
223         else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
224                 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
225         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
226                 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
227         else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
228                 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
229         else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
230                 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
231         else if (IS_ICELAKE(dev_priv))
232                 id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
233
234         if (id)
235                 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
236         else
237                 DRM_DEBUG_KMS("Assuming no PCH\n");
238
239         return id;
240 }
241
242 static void intel_detect_pch(struct drm_i915_private *dev_priv)
243 {
244         struct pci_dev *pch = NULL;
245
246         /*
247          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
248          * make graphics device passthrough work easy for VMM, that only
249          * need to expose ISA bridge to let driver know the real hardware
250          * underneath. This is a requirement from virtualization team.
251          *
252          * In some virtualized environments (e.g. XEN), there is irrelevant
253          * ISA bridge in the system. To work reliably, we should scan trhough
254          * all the ISA bridge devices and check for the first match, instead
255          * of only checking the first one.
256          */
257         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
258                 unsigned short id;
259                 enum intel_pch pch_type;
260
261                 if (pch->vendor != PCI_VENDOR_ID_INTEL)
262                         continue;
263
264                 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
265
266                 pch_type = intel_pch_type(dev_priv, id);
267                 if (pch_type != PCH_NONE) {
268                         dev_priv->pch_type = pch_type;
269                         dev_priv->pch_id = id;
270                         break;
271                 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
272                                          pch->subsystem_device)) {
273                         id = intel_virt_detect_pch(dev_priv);
274                         pch_type = intel_pch_type(dev_priv, id);
275
276                         /* Sanity check virtual PCH id */
277                         if (WARN_ON(id && pch_type == PCH_NONE))
278                                 id = 0;
279
280                         dev_priv->pch_type = pch_type;
281                         dev_priv->pch_id = id;
282                         break;
283                 }
284         }
285
286         /*
287          * Use PCH_NOP (PCH but no South Display) for PCH platforms without
288          * display.
289          */
290         if (pch && INTEL_INFO(dev_priv)->num_pipes == 0) {
291                 DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
292                 dev_priv->pch_type = PCH_NOP;
293                 dev_priv->pch_id = 0;
294         }
295
296         if (!pch)
297                 DRM_DEBUG_KMS("No PCH found.\n");
298
299         pci_dev_put(pch);
300 }
301
302 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
303                                struct drm_file *file_priv)
304 {
305         struct drm_i915_private *dev_priv = to_i915(dev);
306         struct pci_dev *pdev = dev_priv->drm.pdev;
307         drm_i915_getparam_t *param = data;
308         int value;
309
310         switch (param->param) {
311         case I915_PARAM_IRQ_ACTIVE:
312         case I915_PARAM_ALLOW_BATCHBUFFER:
313         case I915_PARAM_LAST_DISPATCH:
314         case I915_PARAM_HAS_EXEC_CONSTANTS:
315                 /* Reject all old ums/dri params. */
316                 return -ENODEV;
317         case I915_PARAM_CHIPSET_ID:
318                 value = pdev->device;
319                 break;
320         case I915_PARAM_REVISION:
321                 value = pdev->revision;
322                 break;
323         case I915_PARAM_NUM_FENCES_AVAIL:
324                 value = dev_priv->num_fence_regs;
325                 break;
326         case I915_PARAM_HAS_OVERLAY:
327                 value = dev_priv->overlay ? 1 : 0;
328                 break;
329         case I915_PARAM_HAS_BSD:
330                 value = !!dev_priv->engine[VCS];
331                 break;
332         case I915_PARAM_HAS_BLT:
333                 value = !!dev_priv->engine[BCS];
334                 break;
335         case I915_PARAM_HAS_VEBOX:
336                 value = !!dev_priv->engine[VECS];
337                 break;
338         case I915_PARAM_HAS_BSD2:
339                 value = !!dev_priv->engine[VCS2];
340                 break;
341         case I915_PARAM_HAS_LLC:
342                 value = HAS_LLC(dev_priv);
343                 break;
344         case I915_PARAM_HAS_WT:
345                 value = HAS_WT(dev_priv);
346                 break;
347         case I915_PARAM_HAS_ALIASING_PPGTT:
348                 value = USES_PPGTT(dev_priv);
349                 break;
350         case I915_PARAM_HAS_SEMAPHORES:
351                 value = HAS_LEGACY_SEMAPHORES(dev_priv);
352                 break;
353         case I915_PARAM_HAS_SECURE_BATCHES:
354                 value = capable(CAP_SYS_ADMIN);
355                 break;
356         case I915_PARAM_CMD_PARSER_VERSION:
357                 value = i915_cmd_parser_get_version(dev_priv);
358                 break;
359         case I915_PARAM_SUBSLICE_TOTAL:
360                 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
361                 if (!value)
362                         return -ENODEV;
363                 break;
364         case I915_PARAM_EU_TOTAL:
365                 value = INTEL_INFO(dev_priv)->sseu.eu_total;
366                 if (!value)
367                         return -ENODEV;
368                 break;
369         case I915_PARAM_HAS_GPU_RESET:
370                 value = i915_modparams.enable_hangcheck &&
371                         intel_has_gpu_reset(dev_priv);
372                 if (value && intel_has_reset_engine(dev_priv))
373                         value = 2;
374                 break;
375         case I915_PARAM_HAS_RESOURCE_STREAMER:
376                 value = 0;
377                 break;
378         case I915_PARAM_HAS_POOLED_EU:
379                 value = HAS_POOLED_EU(dev_priv);
380                 break;
381         case I915_PARAM_MIN_EU_IN_POOL:
382                 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
383                 break;
384         case I915_PARAM_HUC_STATUS:
385                 value = intel_huc_check_status(&dev_priv->huc);
386                 if (value < 0)
387                         return value;
388                 break;
389         case I915_PARAM_MMAP_GTT_VERSION:
390                 /* Though we've started our numbering from 1, and so class all
391                  * earlier versions as 0, in effect their value is undefined as
392                  * the ioctl will report EINVAL for the unknown param!
393                  */
394                 value = i915_gem_mmap_gtt_version();
395                 break;
396         case I915_PARAM_HAS_SCHEDULER:
397                 value = dev_priv->caps.scheduler;
398                 break;
399
400         case I915_PARAM_MMAP_VERSION:
401                 /* Remember to bump this if the version changes! */
402         case I915_PARAM_HAS_GEM:
403         case I915_PARAM_HAS_PAGEFLIPPING:
404         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
405         case I915_PARAM_HAS_RELAXED_FENCING:
406         case I915_PARAM_HAS_COHERENT_RINGS:
407         case I915_PARAM_HAS_RELAXED_DELTA:
408         case I915_PARAM_HAS_GEN7_SOL_RESET:
409         case I915_PARAM_HAS_WAIT_TIMEOUT:
410         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
411         case I915_PARAM_HAS_PINNED_BATCHES:
412         case I915_PARAM_HAS_EXEC_NO_RELOC:
413         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
414         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
415         case I915_PARAM_HAS_EXEC_SOFTPIN:
416         case I915_PARAM_HAS_EXEC_ASYNC:
417         case I915_PARAM_HAS_EXEC_FENCE:
418         case I915_PARAM_HAS_EXEC_CAPTURE:
419         case I915_PARAM_HAS_EXEC_BATCH_FIRST:
420         case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
421                 /* For the time being all of these are always true;
422                  * if some supported hardware does not have one of these
423                  * features this value needs to be provided from
424                  * INTEL_INFO(), a feature macro, or similar.
425                  */
426                 value = 1;
427                 break;
428         case I915_PARAM_HAS_CONTEXT_ISOLATION:
429                 value = intel_engines_has_context_isolation(dev_priv);
430                 break;
431         case I915_PARAM_SLICE_MASK:
432                 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
433                 if (!value)
434                         return -ENODEV;
435                 break;
436         case I915_PARAM_SUBSLICE_MASK:
437                 value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
438                 if (!value)
439                         return -ENODEV;
440                 break;
441         case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
442                 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
443                 break;
444         case I915_PARAM_MMAP_GTT_COHERENT:
445                 value = INTEL_INFO(dev_priv)->has_coherent_ggtt;
446                 break;
447         default:
448                 DRM_DEBUG("Unknown parameter %d\n", param->param);
449                 return -EINVAL;
450         }
451
452         if (put_user(value, param->value))
453                 return -EFAULT;
454
455         return 0;
456 }
457
458 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
459 {
460         int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
461
462         dev_priv->bridge_dev =
463                 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
464         if (!dev_priv->bridge_dev) {
465                 DRM_ERROR("bridge device not found\n");
466                 return -1;
467         }
468         return 0;
469 }
470
471 /* Allocate space for the MCH regs if needed, return nonzero on error */
472 static int
473 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
474 {
475         int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
476         u32 temp_lo, temp_hi = 0;
477         u64 mchbar_addr;
478         int ret;
479
480         if (INTEL_GEN(dev_priv) >= 4)
481                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
482         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
483         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
484
485         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
486 #ifdef CONFIG_PNP
487         if (mchbar_addr &&
488             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
489                 return 0;
490 #endif
491
492         /* Get some space for it */
493         dev_priv->mch_res.name = "i915 MCHBAR";
494         dev_priv->mch_res.flags = IORESOURCE_MEM;
495         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
496                                      &dev_priv->mch_res,
497                                      MCHBAR_SIZE, MCHBAR_SIZE,
498                                      PCIBIOS_MIN_MEM,
499                                      0, pcibios_align_resource,
500                                      dev_priv->bridge_dev);
501         if (ret) {
502                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
503                 dev_priv->mch_res.start = 0;
504                 return ret;
505         }
506
507         if (INTEL_GEN(dev_priv) >= 4)
508                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
509                                        upper_32_bits(dev_priv->mch_res.start));
510
511         pci_write_config_dword(dev_priv->bridge_dev, reg,
512                                lower_32_bits(dev_priv->mch_res.start));
513         return 0;
514 }
515
516 /* Setup MCHBAR if possible, return true if we should disable it again */
517 static void
518 intel_setup_mchbar(struct drm_i915_private *dev_priv)
519 {
520         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
521         u32 temp;
522         bool enabled;
523
524         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
525                 return;
526
527         dev_priv->mchbar_need_disable = false;
528
529         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
530                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
531                 enabled = !!(temp & DEVEN_MCHBAR_EN);
532         } else {
533                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
534                 enabled = temp & 1;
535         }
536
537         /* If it's already enabled, don't have to do anything */
538         if (enabled)
539                 return;
540
541         if (intel_alloc_mchbar_resource(dev_priv))
542                 return;
543
544         dev_priv->mchbar_need_disable = true;
545
546         /* Space is allocated or reserved, so enable it. */
547         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
548                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
549                                        temp | DEVEN_MCHBAR_EN);
550         } else {
551                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
552                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
553         }
554 }
555
556 static void
557 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
558 {
559         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
560
561         if (dev_priv->mchbar_need_disable) {
562                 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
563                         u32 deven_val;
564
565                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
566                                               &deven_val);
567                         deven_val &= ~DEVEN_MCHBAR_EN;
568                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
569                                                deven_val);
570                 } else {
571                         u32 mchbar_val;
572
573                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
574                                               &mchbar_val);
575                         mchbar_val &= ~1;
576                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
577                                                mchbar_val);
578                 }
579         }
580
581         if (dev_priv->mch_res.start)
582                 release_resource(&dev_priv->mch_res);
583 }
584
585 /* true = enable decode, false = disable decoder */
586 static unsigned int i915_vga_set_decode(void *cookie, bool state)
587 {
588         struct drm_i915_private *dev_priv = cookie;
589
590         intel_modeset_vga_set_state(dev_priv, state);
591         if (state)
592                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
593                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
594         else
595                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
596 }
597
598 static int i915_resume_switcheroo(struct drm_device *dev);
599 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
600
601 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
602 {
603         struct drm_device *dev = pci_get_drvdata(pdev);
604         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
605
606         if (state == VGA_SWITCHEROO_ON) {
607                 pr_info("switched on\n");
608                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
609                 /* i915 resume handler doesn't set to D0 */
610                 pci_set_power_state(pdev, PCI_D0);
611                 i915_resume_switcheroo(dev);
612                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
613         } else {
614                 pr_info("switched off\n");
615                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
616                 i915_suspend_switcheroo(dev, pmm);
617                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
618         }
619 }
620
621 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
622 {
623         struct drm_device *dev = pci_get_drvdata(pdev);
624
625         /*
626          * FIXME: open_count is protected by drm_global_mutex but that would lead to
627          * locking inversion with the driver load path. And the access here is
628          * completely racy anyway. So don't bother with locking for now.
629          */
630         return dev->open_count == 0;
631 }
632
633 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
634         .set_gpu_state = i915_switcheroo_set_state,
635         .reprobe = NULL,
636         .can_switch = i915_switcheroo_can_switch,
637 };
638
639 static int i915_load_modeset_init(struct drm_device *dev)
640 {
641         struct drm_i915_private *dev_priv = to_i915(dev);
642         struct pci_dev *pdev = dev_priv->drm.pdev;
643         int ret;
644
645         if (i915_inject_load_failure())
646                 return -ENODEV;
647
648         intel_bios_init(dev_priv);
649
650         /* If we have > 1 VGA cards, then we need to arbitrate access
651          * to the common VGA resources.
652          *
653          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
654          * then we do not take part in VGA arbitration and the
655          * vga_client_register() fails with -ENODEV.
656          */
657         ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
658         if (ret && ret != -ENODEV)
659                 goto out;
660
661         intel_register_dsm_handler();
662
663         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
664         if (ret)
665                 goto cleanup_vga_client;
666
667         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
668         intel_update_rawclk(dev_priv);
669
670         intel_power_domains_init_hw(dev_priv, false);
671
672         intel_csr_ucode_init(dev_priv);
673
674         ret = intel_irq_install(dev_priv);
675         if (ret)
676                 goto cleanup_csr;
677
678         intel_setup_gmbus(dev_priv);
679
680         /* Important: The output setup functions called by modeset_init need
681          * working irqs for e.g. gmbus and dp aux transfers. */
682         ret = intel_modeset_init(dev);
683         if (ret)
684                 goto cleanup_irq;
685
686         ret = i915_gem_init(dev_priv);
687         if (ret)
688                 goto cleanup_modeset;
689
690         intel_setup_overlay(dev_priv);
691
692         if (INTEL_INFO(dev_priv)->num_pipes == 0)
693                 return 0;
694
695         ret = intel_fbdev_init(dev);
696         if (ret)
697                 goto cleanup_gem;
698
699         /* Only enable hotplug handling once the fbdev is fully set up. */
700         intel_hpd_init(dev_priv);
701
702         return 0;
703
704 cleanup_gem:
705         if (i915_gem_suspend(dev_priv))
706                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
707         i915_gem_fini(dev_priv);
708 cleanup_modeset:
709         intel_modeset_cleanup(dev);
710 cleanup_irq:
711         drm_irq_uninstall(dev);
712         intel_teardown_gmbus(dev_priv);
713 cleanup_csr:
714         intel_csr_ucode_fini(dev_priv);
715         intel_power_domains_fini_hw(dev_priv);
716         vga_switcheroo_unregister_client(pdev);
717 cleanup_vga_client:
718         vga_client_register(pdev, NULL, NULL, NULL);
719 out:
720         return ret;
721 }
722
723 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
724 {
725         struct apertures_struct *ap;
726         struct pci_dev *pdev = dev_priv->drm.pdev;
727         struct i915_ggtt *ggtt = &dev_priv->ggtt;
728         bool primary;
729         int ret;
730
731         ap = alloc_apertures(1);
732         if (!ap)
733                 return -ENOMEM;
734
735         ap->ranges[0].base = ggtt->gmadr.start;
736         ap->ranges[0].size = ggtt->mappable_end;
737
738         primary =
739                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
740
741         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
742
743         kfree(ap);
744
745         return ret;
746 }
747
748 #if !defined(CONFIG_VGA_CONSOLE)
749 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
750 {
751         return 0;
752 }
753 #elif !defined(CONFIG_DUMMY_CONSOLE)
754 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
755 {
756         return -ENODEV;
757 }
758 #else
759 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
760 {
761         int ret = 0;
762
763         DRM_INFO("Replacing VGA console driver\n");
764
765         console_lock();
766         if (con_is_bound(&vga_con))
767                 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
768         if (ret == 0) {
769                 ret = do_unregister_con_driver(&vga_con);
770
771                 /* Ignore "already unregistered". */
772                 if (ret == -ENODEV)
773                         ret = 0;
774         }
775         console_unlock();
776
777         return ret;
778 }
779 #endif
780
781 static void intel_init_dpio(struct drm_i915_private *dev_priv)
782 {
783         /*
784          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
785          * CHV x1 PHY (DP/HDMI D)
786          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
787          */
788         if (IS_CHERRYVIEW(dev_priv)) {
789                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
790                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
791         } else if (IS_VALLEYVIEW(dev_priv)) {
792                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
793         }
794 }
795
796 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
797 {
798         /*
799          * The i915 workqueue is primarily used for batched retirement of
800          * requests (and thus managing bo) once the task has been completed
801          * by the GPU. i915_retire_requests() is called directly when we
802          * need high-priority retirement, such as waiting for an explicit
803          * bo.
804          *
805          * It is also used for periodic low-priority events, such as
806          * idle-timers and recording error state.
807          *
808          * All tasks on the workqueue are expected to acquire the dev mutex
809          * so there is no point in running more than one instance of the
810          * workqueue at any time.  Use an ordered one.
811          */
812         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
813         if (dev_priv->wq == NULL)
814                 goto out_err;
815
816         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
817         if (dev_priv->hotplug.dp_wq == NULL)
818                 goto out_free_wq;
819
820         return 0;
821
822 out_free_wq:
823         destroy_workqueue(dev_priv->wq);
824 out_err:
825         DRM_ERROR("Failed to allocate workqueues.\n");
826
827         return -ENOMEM;
828 }
829
830 static void i915_engines_cleanup(struct drm_i915_private *i915)
831 {
832         struct intel_engine_cs *engine;
833         enum intel_engine_id id;
834
835         for_each_engine(engine, i915, id)
836                 kfree(engine);
837 }
838
839 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
840 {
841         destroy_workqueue(dev_priv->hotplug.dp_wq);
842         destroy_workqueue(dev_priv->wq);
843 }
844
845 /*
846  * We don't keep the workarounds for pre-production hardware, so we expect our
847  * driver to fail on these machines in one way or another. A little warning on
848  * dmesg may help both the user and the bug triagers.
849  *
850  * Our policy for removing pre-production workarounds is to keep the
851  * current gen workarounds as a guide to the bring-up of the next gen
852  * (workarounds have a habit of persisting!). Anything older than that
853  * should be removed along with the complications they introduce.
854  */
855 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
856 {
857         bool pre = false;
858
859         pre |= IS_HSW_EARLY_SDV(dev_priv);
860         pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
861         pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
862
863         if (pre) {
864                 DRM_ERROR("This is a pre-production stepping. "
865                           "It may not be fully functional.\n");
866                 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
867         }
868 }
869
870 /**
871  * i915_driver_init_early - setup state not requiring device access
872  * @dev_priv: device private
873  *
874  * Initialize everything that is a "SW-only" state, that is state not
875  * requiring accessing the device or exposing the driver via kernel internal
876  * or userspace interfaces. Example steps belonging here: lock initialization,
877  * system memory allocation, setting up device specific attributes and
878  * function hooks not requiring accessing the device.
879  */
880 static int i915_driver_init_early(struct drm_i915_private *dev_priv)
881 {
882         int ret = 0;
883
884         if (i915_inject_load_failure())
885                 return -ENODEV;
886
887         spin_lock_init(&dev_priv->irq_lock);
888         spin_lock_init(&dev_priv->gpu_error.lock);
889         mutex_init(&dev_priv->backlight_lock);
890         spin_lock_init(&dev_priv->uncore.lock);
891
892         mutex_init(&dev_priv->sb_lock);
893         mutex_init(&dev_priv->av_mutex);
894         mutex_init(&dev_priv->wm.wm_mutex);
895         mutex_init(&dev_priv->pps_mutex);
896
897         i915_memcpy_init_early(dev_priv);
898
899         ret = i915_workqueues_init(dev_priv);
900         if (ret < 0)
901                 goto err_engines;
902
903         ret = i915_gem_init_early(dev_priv);
904         if (ret < 0)
905                 goto err_workqueues;
906
907         /* This must be called before any calls to HAS_PCH_* */
908         intel_detect_pch(dev_priv);
909
910         intel_wopcm_init_early(&dev_priv->wopcm);
911         intel_uc_init_early(dev_priv);
912         intel_pm_setup(dev_priv);
913         intel_init_dpio(dev_priv);
914         ret = intel_power_domains_init(dev_priv);
915         if (ret < 0)
916                 goto err_uc;
917         intel_irq_init(dev_priv);
918         intel_hangcheck_init(dev_priv);
919         intel_init_display_hooks(dev_priv);
920         intel_init_clock_gating_hooks(dev_priv);
921         intel_init_audio_hooks(dev_priv);
922         intel_display_crc_init(dev_priv);
923
924         intel_detect_preproduction_hw(dev_priv);
925
926         return 0;
927
928 err_uc:
929         intel_uc_cleanup_early(dev_priv);
930         i915_gem_cleanup_early(dev_priv);
931 err_workqueues:
932         i915_workqueues_cleanup(dev_priv);
933 err_engines:
934         i915_engines_cleanup(dev_priv);
935         return ret;
936 }
937
938 /**
939  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
940  * @dev_priv: device private
941  */
942 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
943 {
944         intel_irq_fini(dev_priv);
945         intel_power_domains_cleanup(dev_priv);
946         intel_uc_cleanup_early(dev_priv);
947         i915_gem_cleanup_early(dev_priv);
948         i915_workqueues_cleanup(dev_priv);
949         i915_engines_cleanup(dev_priv);
950 }
951
952 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
953 {
954         struct pci_dev *pdev = dev_priv->drm.pdev;
955         int mmio_bar;
956         int mmio_size;
957
958         mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
959         /*
960          * Before gen4, the registers and the GTT are behind different BARs.
961          * However, from gen4 onwards, the registers and the GTT are shared
962          * in the same BAR, so we want to restrict this ioremap from
963          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
964          * the register BAR remains the same size for all the earlier
965          * generations up to Ironlake.
966          */
967         if (INTEL_GEN(dev_priv) < 5)
968                 mmio_size = 512 * 1024;
969         else
970                 mmio_size = 2 * 1024 * 1024;
971         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
972         if (dev_priv->regs == NULL) {
973                 DRM_ERROR("failed to map registers\n");
974
975                 return -EIO;
976         }
977
978         /* Try to make sure MCHBAR is enabled before poking at it */
979         intel_setup_mchbar(dev_priv);
980
981         return 0;
982 }
983
984 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
985 {
986         struct pci_dev *pdev = dev_priv->drm.pdev;
987
988         intel_teardown_mchbar(dev_priv);
989         pci_iounmap(pdev, dev_priv->regs);
990 }
991
992 /**
993  * i915_driver_init_mmio - setup device MMIO
994  * @dev_priv: device private
995  *
996  * Setup minimal device state necessary for MMIO accesses later in the
997  * initialization sequence. The setup here should avoid any other device-wide
998  * side effects or exposing the driver via kernel internal or user space
999  * interfaces.
1000  */
1001 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1002 {
1003         int ret;
1004
1005         if (i915_inject_load_failure())
1006                 return -ENODEV;
1007
1008         if (i915_get_bridge_dev(dev_priv))
1009                 return -EIO;
1010
1011         ret = i915_mmio_setup(dev_priv);
1012         if (ret < 0)
1013                 goto err_bridge;
1014
1015         intel_uncore_init(dev_priv);
1016
1017         intel_device_info_init_mmio(dev_priv);
1018
1019         intel_uncore_prune(dev_priv);
1020
1021         intel_uc_init_mmio(dev_priv);
1022
1023         ret = intel_engines_init_mmio(dev_priv);
1024         if (ret)
1025                 goto err_uncore;
1026
1027         i915_gem_init_mmio(dev_priv);
1028
1029         return 0;
1030
1031 err_uncore:
1032         intel_uncore_fini(dev_priv);
1033 err_bridge:
1034         pci_dev_put(dev_priv->bridge_dev);
1035
1036         return ret;
1037 }
1038
1039 /**
1040  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1041  * @dev_priv: device private
1042  */
1043 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1044 {
1045         intel_uncore_fini(dev_priv);
1046         i915_mmio_cleanup(dev_priv);
1047         pci_dev_put(dev_priv->bridge_dev);
1048 }
1049
1050 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1051 {
1052         /*
1053          * i915.enable_ppgtt is read-only, so do an early pass to validate the
1054          * user's requested state against the hardware/driver capabilities.  We
1055          * do this now so that we can print out any log messages once rather
1056          * than every time we check intel_enable_ppgtt().
1057          */
1058         i915_modparams.enable_ppgtt =
1059                 intel_sanitize_enable_ppgtt(dev_priv,
1060                                             i915_modparams.enable_ppgtt);
1061         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1062
1063         intel_gvt_sanitize_options(dev_priv);
1064 }
1065
1066 static enum dram_rank skl_get_dimm_rank(u8 size, u32 rank)
1067 {
1068         if (size == 0)
1069                 return I915_DRAM_RANK_INVALID;
1070         if (rank == SKL_DRAM_RANK_SINGLE)
1071                 return I915_DRAM_RANK_SINGLE;
1072         else if (rank == SKL_DRAM_RANK_DUAL)
1073                 return I915_DRAM_RANK_DUAL;
1074
1075         return I915_DRAM_RANK_INVALID;
1076 }
1077
1078 static bool
1079 skl_is_16gb_dimm(enum dram_rank rank, u8 size, u8 width)
1080 {
1081         if (rank == I915_DRAM_RANK_SINGLE && width == 8 && size == 16)
1082                 return true;
1083         else if (rank == I915_DRAM_RANK_DUAL && width == 8 && size == 32)
1084                 return true;
1085         else if (rank == SKL_DRAM_RANK_SINGLE && width == 16 && size == 8)
1086                 return true;
1087         else if (rank == SKL_DRAM_RANK_DUAL && width == 16 && size == 16)
1088                 return true;
1089
1090         return false;
1091 }
1092
1093 static int
1094 skl_dram_get_channel_info(struct dram_channel_info *ch, u32 val)
1095 {
1096         u32 tmp_l, tmp_s;
1097         u32 s_val = val >> SKL_DRAM_S_SHIFT;
1098
1099         if (!val)
1100                 return -EINVAL;
1101
1102         tmp_l = val & SKL_DRAM_SIZE_MASK;
1103         tmp_s = s_val & SKL_DRAM_SIZE_MASK;
1104
1105         if (tmp_l == 0 && tmp_s == 0)
1106                 return -EINVAL;
1107
1108         ch->l_info.size = tmp_l;
1109         ch->s_info.size = tmp_s;
1110
1111         tmp_l = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
1112         tmp_s = (s_val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
1113         ch->l_info.width = (1 << tmp_l) * 8;
1114         ch->s_info.width = (1 << tmp_s) * 8;
1115
1116         tmp_l = val & SKL_DRAM_RANK_MASK;
1117         tmp_s = s_val & SKL_DRAM_RANK_MASK;
1118         ch->l_info.rank = skl_get_dimm_rank(ch->l_info.size, tmp_l);
1119         ch->s_info.rank = skl_get_dimm_rank(ch->s_info.size, tmp_s);
1120
1121         if (ch->l_info.rank == I915_DRAM_RANK_DUAL ||
1122             ch->s_info.rank == I915_DRAM_RANK_DUAL)
1123                 ch->rank = I915_DRAM_RANK_DUAL;
1124         else if (ch->l_info.rank == I915_DRAM_RANK_SINGLE &&
1125                  ch->s_info.rank == I915_DRAM_RANK_SINGLE)
1126                 ch->rank = I915_DRAM_RANK_DUAL;
1127         else
1128                 ch->rank = I915_DRAM_RANK_SINGLE;
1129
1130         ch->is_16gb_dimm = skl_is_16gb_dimm(ch->l_info.rank, ch->l_info.size,
1131                                             ch->l_info.width) ||
1132                            skl_is_16gb_dimm(ch->s_info.rank, ch->s_info.size,
1133                                             ch->s_info.width);
1134
1135         DRM_DEBUG_KMS("(size:width:rank) L(%dGB:X%d:%s) S(%dGB:X%d:%s)\n",
1136                       ch->l_info.size, ch->l_info.width,
1137                       ch->l_info.rank ? "dual" : "single",
1138                       ch->s_info.size, ch->s_info.width,
1139                       ch->s_info.rank ? "dual" : "single");
1140
1141         return 0;
1142 }
1143
1144 static bool
1145 intel_is_dram_symmetric(u32 val_ch0, u32 val_ch1,
1146                         struct dram_channel_info *ch0)
1147 {
1148         return (val_ch0 == val_ch1 &&
1149                 (ch0->s_info.size == 0 ||
1150                  (ch0->l_info.size == ch0->s_info.size &&
1151                   ch0->l_info.width == ch0->s_info.width &&
1152                   ch0->l_info.rank == ch0->s_info.rank)));
1153 }
1154
1155 static int
1156 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
1157 {
1158         struct dram_info *dram_info = &dev_priv->dram_info;
1159         struct dram_channel_info ch0, ch1;
1160         u32 val_ch0, val_ch1;
1161         int ret;
1162
1163         val_ch0 = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
1164         ret = skl_dram_get_channel_info(&ch0, val_ch0);
1165         if (ret == 0)
1166                 dram_info->num_channels++;
1167
1168         val_ch1 = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
1169         ret = skl_dram_get_channel_info(&ch1, val_ch1);
1170         if (ret == 0)
1171                 dram_info->num_channels++;
1172
1173         if (dram_info->num_channels == 0) {
1174                 DRM_INFO("Number of memory channels is zero\n");
1175                 return -EINVAL;
1176         }
1177
1178         dram_info->valid_dimm = true;
1179
1180         /*
1181          * If any of the channel is single rank channel, worst case output
1182          * will be same as if single rank memory, so consider single rank
1183          * memory.
1184          */
1185         if (ch0.rank == I915_DRAM_RANK_SINGLE ||
1186             ch1.rank == I915_DRAM_RANK_SINGLE)
1187                 dram_info->rank = I915_DRAM_RANK_SINGLE;
1188         else
1189                 dram_info->rank = max(ch0.rank, ch1.rank);
1190
1191         if (dram_info->rank == I915_DRAM_RANK_INVALID) {
1192                 DRM_INFO("couldn't get memory rank information\n");
1193                 return -EINVAL;
1194         }
1195
1196         if (ch0.is_16gb_dimm || ch1.is_16gb_dimm)
1197                 dram_info->is_16gb_dimm = true;
1198
1199         dev_priv->dram_info.symmetric_memory = intel_is_dram_symmetric(val_ch0,
1200                                                                        val_ch1,
1201                                                                        &ch0);
1202
1203         DRM_DEBUG_KMS("memory configuration is %sSymmetric memory\n",
1204                       dev_priv->dram_info.symmetric_memory ? "" : "not ");
1205         return 0;
1206 }
1207
1208 static int
1209 skl_get_dram_info(struct drm_i915_private *dev_priv)
1210 {
1211         struct dram_info *dram_info = &dev_priv->dram_info;
1212         u32 mem_freq_khz, val;
1213         int ret;
1214
1215         ret = skl_dram_get_channels_info(dev_priv);
1216         if (ret)
1217                 return ret;
1218
1219         val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
1220         mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
1221                                     SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1222
1223         dram_info->bandwidth_kbps = dram_info->num_channels *
1224                                                         mem_freq_khz * 8;
1225
1226         if (dram_info->bandwidth_kbps == 0) {
1227                 DRM_INFO("Couldn't get system memory bandwidth\n");
1228                 return -EINVAL;
1229         }
1230
1231         dram_info->valid = true;
1232         return 0;
1233 }
1234
1235 static int
1236 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1237 {
1238         struct dram_info *dram_info = &dev_priv->dram_info;
1239         u32 dram_channels;
1240         u32 mem_freq_khz, val;
1241         u8 num_active_channels;
1242         int i;
1243
1244         val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1245         mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1246                                     BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1247
1248         dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1249         num_active_channels = hweight32(dram_channels);
1250
1251         /* Each active bit represents 4-byte channel */
1252         dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1253
1254         if (dram_info->bandwidth_kbps == 0) {
1255                 DRM_INFO("Couldn't get system memory bandwidth\n");
1256                 return -EINVAL;
1257         }
1258
1259         /*
1260          * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1261          */
1262         for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1263                 u8 size, width;
1264                 enum dram_rank rank;
1265                 u32 tmp;
1266
1267                 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1268                 if (val == 0xFFFFFFFF)
1269                         continue;
1270
1271                 dram_info->num_channels++;
1272                 tmp = val & BXT_DRAM_RANK_MASK;
1273
1274                 if (tmp == BXT_DRAM_RANK_SINGLE)
1275                         rank = I915_DRAM_RANK_SINGLE;
1276                 else if (tmp == BXT_DRAM_RANK_DUAL)
1277                         rank = I915_DRAM_RANK_DUAL;
1278                 else
1279                         rank = I915_DRAM_RANK_INVALID;
1280
1281                 tmp = val & BXT_DRAM_SIZE_MASK;
1282                 if (tmp == BXT_DRAM_SIZE_4GB)
1283                         size = 4;
1284                 else if (tmp == BXT_DRAM_SIZE_6GB)
1285                         size = 6;
1286                 else if (tmp == BXT_DRAM_SIZE_8GB)
1287                         size = 8;
1288                 else if (tmp == BXT_DRAM_SIZE_12GB)
1289                         size = 12;
1290                 else if (tmp == BXT_DRAM_SIZE_16GB)
1291                         size = 16;
1292                 else
1293                         size = 0;
1294
1295                 tmp = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
1296                 width = (1 << tmp) * 8;
1297                 DRM_DEBUG_KMS("dram size:%dGB width:X%d rank:%s\n", size,
1298                               width, rank == I915_DRAM_RANK_SINGLE ? "single" :
1299                               rank == I915_DRAM_RANK_DUAL ? "dual" : "unknown");
1300
1301                 /*
1302                  * If any of the channel is single rank channel,
1303                  * worst case output will be same as if single rank
1304                  * memory, so consider single rank memory.
1305                  */
1306                 if (dram_info->rank == I915_DRAM_RANK_INVALID)
1307                         dram_info->rank = rank;
1308                 else if (rank == I915_DRAM_RANK_SINGLE)
1309                         dram_info->rank = I915_DRAM_RANK_SINGLE;
1310         }
1311
1312         if (dram_info->rank == I915_DRAM_RANK_INVALID) {
1313                 DRM_INFO("couldn't get memory rank information\n");
1314                 return -EINVAL;
1315         }
1316
1317         dram_info->valid_dimm = true;
1318         dram_info->valid = true;
1319         return 0;
1320 }
1321
1322 static void
1323 intel_get_dram_info(struct drm_i915_private *dev_priv)
1324 {
1325         struct dram_info *dram_info = &dev_priv->dram_info;
1326         char bandwidth_str[32];
1327         int ret;
1328
1329         dram_info->valid = false;
1330         dram_info->valid_dimm = false;
1331         dram_info->is_16gb_dimm = false;
1332         dram_info->rank = I915_DRAM_RANK_INVALID;
1333         dram_info->bandwidth_kbps = 0;
1334         dram_info->num_channels = 0;
1335
1336         if (INTEL_GEN(dev_priv) < 9 || IS_GEMINILAKE(dev_priv))
1337                 return;
1338
1339         /* Need to calculate bandwidth only for Gen9 */
1340         if (IS_BROXTON(dev_priv))
1341                 ret = bxt_get_dram_info(dev_priv);
1342         else if (INTEL_GEN(dev_priv) == 9)
1343                 ret = skl_get_dram_info(dev_priv);
1344         else
1345                 ret = skl_dram_get_channels_info(dev_priv);
1346         if (ret)
1347                 return;
1348
1349         if (dram_info->bandwidth_kbps)
1350                 sprintf(bandwidth_str, "%d KBps", dram_info->bandwidth_kbps);
1351         else
1352                 sprintf(bandwidth_str, "unknown");
1353         DRM_DEBUG_KMS("DRAM bandwidth:%s, total-channels: %u\n",
1354                       bandwidth_str, dram_info->num_channels);
1355         DRM_DEBUG_KMS("DRAM rank: %s rank 16GB-dimm:%s\n",
1356                       (dram_info->rank == I915_DRAM_RANK_DUAL) ?
1357                       "dual" : "single", yesno(dram_info->is_16gb_dimm));
1358 }
1359
1360 /**
1361  * i915_driver_init_hw - setup state requiring device access
1362  * @dev_priv: device private
1363  *
1364  * Setup state that requires accessing the device, but doesn't require
1365  * exposing the driver via kernel internal or userspace interfaces.
1366  */
1367 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1368 {
1369         struct pci_dev *pdev = dev_priv->drm.pdev;
1370         int ret;
1371
1372         if (i915_inject_load_failure())
1373                 return -ENODEV;
1374
1375         intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1376
1377         intel_sanitize_options(dev_priv);
1378
1379         i915_perf_init(dev_priv);
1380
1381         ret = i915_ggtt_probe_hw(dev_priv);
1382         if (ret)
1383                 goto err_perf;
1384
1385         /*
1386          * WARNING: Apparently we must kick fbdev drivers before vgacon,
1387          * otherwise the vga fbdev driver falls over.
1388          */
1389         ret = i915_kick_out_firmware_fb(dev_priv);
1390         if (ret) {
1391                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1392                 goto err_ggtt;
1393         }
1394
1395         ret = i915_kick_out_vgacon(dev_priv);
1396         if (ret) {
1397                 DRM_ERROR("failed to remove conflicting VGA console\n");
1398                 goto err_ggtt;
1399         }
1400
1401         ret = i915_ggtt_init_hw(dev_priv);
1402         if (ret)
1403                 goto err_ggtt;
1404
1405         ret = i915_ggtt_enable_hw(dev_priv);
1406         if (ret) {
1407                 DRM_ERROR("failed to enable GGTT\n");
1408                 goto err_ggtt;
1409         }
1410
1411         pci_set_master(pdev);
1412
1413         /* overlay on gen2 is broken and can't address above 1G */
1414         if (IS_GEN2(dev_priv)) {
1415                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1416                 if (ret) {
1417                         DRM_ERROR("failed to set DMA mask\n");
1418
1419                         goto err_ggtt;
1420                 }
1421         }
1422
1423         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1424          * using 32bit addressing, overwriting memory if HWS is located
1425          * above 4GB.
1426          *
1427          * The documentation also mentions an issue with undefined
1428          * behaviour if any general state is accessed within a page above 4GB,
1429          * which also needs to be handled carefully.
1430          */
1431         if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1432                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1433
1434                 if (ret) {
1435                         DRM_ERROR("failed to set DMA mask\n");
1436
1437                         goto err_ggtt;
1438                 }
1439         }
1440
1441         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1442                            PM_QOS_DEFAULT_VALUE);
1443
1444         intel_uncore_sanitize(dev_priv);
1445
1446         i915_gem_load_init_fences(dev_priv);
1447
1448         /* On the 945G/GM, the chipset reports the MSI capability on the
1449          * integrated graphics even though the support isn't actually there
1450          * according to the published specs.  It doesn't appear to function
1451          * correctly in testing on 945G.
1452          * This may be a side effect of MSI having been made available for PEG
1453          * and the registers being closely associated.
1454          *
1455          * According to chipset errata, on the 965GM, MSI interrupts may
1456          * be lost or delayed, and was defeatured. MSI interrupts seem to
1457          * get lost on g4x as well, and interrupt delivery seems to stay
1458          * properly dead afterwards. So we'll just disable them for all
1459          * pre-gen5 chipsets.
1460          *
1461          * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1462          * interrupts even when in MSI mode. This results in spurious
1463          * interrupt warnings if the legacy irq no. is shared with another
1464          * device. The kernel then disables that interrupt source and so
1465          * prevents the other device from working properly.
1466          */
1467         if (INTEL_GEN(dev_priv) >= 5) {
1468                 if (pci_enable_msi(pdev) < 0)
1469                         DRM_DEBUG_DRIVER("can't enable MSI");
1470         }
1471
1472         ret = intel_gvt_init(dev_priv);
1473         if (ret)
1474                 goto err_msi;
1475
1476         intel_opregion_setup(dev_priv);
1477         /*
1478          * Fill the dram structure to get the system raw bandwidth and
1479          * dram info. This will be used for memory latency calculation.
1480          */
1481         intel_get_dram_info(dev_priv);
1482
1483
1484         return 0;
1485
1486 err_msi:
1487         if (pdev->msi_enabled)
1488                 pci_disable_msi(pdev);
1489         pm_qos_remove_request(&dev_priv->pm_qos);
1490 err_ggtt:
1491         i915_ggtt_cleanup_hw(dev_priv);
1492 err_perf:
1493         i915_perf_fini(dev_priv);
1494         return ret;
1495 }
1496
1497 /**
1498  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1499  * @dev_priv: device private
1500  */
1501 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1502 {
1503         struct pci_dev *pdev = dev_priv->drm.pdev;
1504
1505         i915_perf_fini(dev_priv);
1506
1507         if (pdev->msi_enabled)
1508                 pci_disable_msi(pdev);
1509
1510         pm_qos_remove_request(&dev_priv->pm_qos);
1511         i915_ggtt_cleanup_hw(dev_priv);
1512 }
1513
1514 /**
1515  * i915_driver_register - register the driver with the rest of the system
1516  * @dev_priv: device private
1517  *
1518  * Perform any steps necessary to make the driver available via kernel
1519  * internal or userspace interfaces.
1520  */
1521 static void i915_driver_register(struct drm_i915_private *dev_priv)
1522 {
1523         struct drm_device *dev = &dev_priv->drm;
1524
1525         i915_gem_shrinker_register(dev_priv);
1526         i915_pmu_register(dev_priv);
1527
1528         /*
1529          * Notify a valid surface after modesetting,
1530          * when running inside a VM.
1531          */
1532         if (intel_vgpu_active(dev_priv))
1533                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1534
1535         /* Reveal our presence to userspace */
1536         if (drm_dev_register(dev, 0) == 0) {
1537                 i915_debugfs_register(dev_priv);
1538                 i915_setup_sysfs(dev_priv);
1539
1540                 /* Depends on sysfs having been initialized */
1541                 i915_perf_register(dev_priv);
1542         } else
1543                 DRM_ERROR("Failed to register driver for userspace access!\n");
1544
1545         if (INTEL_INFO(dev_priv)->num_pipes) {
1546                 /* Must be done after probing outputs */
1547                 intel_opregion_register(dev_priv);
1548                 acpi_video_register();
1549         }
1550
1551         if (IS_GEN5(dev_priv))
1552                 intel_gpu_ips_init(dev_priv);
1553
1554         intel_audio_init(dev_priv);
1555
1556         /*
1557          * Some ports require correctly set-up hpd registers for detection to
1558          * work properly (leading to ghost connected connector status), e.g. VGA
1559          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1560          * irqs are fully enabled. We do it last so that the async config
1561          * cannot run before the connectors are registered.
1562          */
1563         intel_fbdev_initial_config_async(dev);
1564
1565         /*
1566          * We need to coordinate the hotplugs with the asynchronous fbdev
1567          * configuration, for which we use the fbdev->async_cookie.
1568          */
1569         if (INTEL_INFO(dev_priv)->num_pipes)
1570                 drm_kms_helper_poll_init(dev);
1571
1572         intel_power_domains_enable(dev_priv);
1573         intel_runtime_pm_enable(dev_priv);
1574 }
1575
1576 /**
1577  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1578  * @dev_priv: device private
1579  */
1580 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1581 {
1582         intel_runtime_pm_disable(dev_priv);
1583         intel_power_domains_disable(dev_priv);
1584
1585         intel_fbdev_unregister(dev_priv);
1586         intel_audio_deinit(dev_priv);
1587
1588         /*
1589          * After flushing the fbdev (incl. a late async config which will
1590          * have delayed queuing of a hotplug event), then flush the hotplug
1591          * events.
1592          */
1593         drm_kms_helper_poll_fini(&dev_priv->drm);
1594
1595         intel_gpu_ips_teardown();
1596         acpi_video_unregister();
1597         intel_opregion_unregister(dev_priv);
1598
1599         i915_perf_unregister(dev_priv);
1600         i915_pmu_unregister(dev_priv);
1601
1602         i915_teardown_sysfs(dev_priv);
1603         drm_dev_unregister(&dev_priv->drm);
1604
1605         i915_gem_shrinker_unregister(dev_priv);
1606 }
1607
1608 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1609 {
1610         if (drm_debug & DRM_UT_DRIVER) {
1611                 struct drm_printer p = drm_debug_printer("i915 device info:");
1612
1613                 intel_device_info_dump(&dev_priv->info, &p);
1614                 intel_device_info_dump_runtime(&dev_priv->info, &p);
1615         }
1616
1617         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1618                 DRM_INFO("DRM_I915_DEBUG enabled\n");
1619         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1620                 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1621         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1622                 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1623 }
1624
1625 static struct drm_i915_private *
1626 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1627 {
1628         const struct intel_device_info *match_info =
1629                 (struct intel_device_info *)ent->driver_data;
1630         struct intel_device_info *device_info;
1631         struct drm_i915_private *i915;
1632
1633         i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1634         if (!i915)
1635                 return NULL;
1636
1637         if (drm_dev_init(&i915->drm, &driver, &pdev->dev)) {
1638                 kfree(i915);
1639                 return NULL;
1640         }
1641
1642         i915->drm.pdev = pdev;
1643         i915->drm.dev_private = i915;
1644         pci_set_drvdata(pdev, &i915->drm);
1645
1646         /* Setup the write-once "constant" device info */
1647         device_info = mkwrite_device_info(i915);
1648         memcpy(device_info, match_info, sizeof(*device_info));
1649         device_info->device_id = pdev->device;
1650
1651         BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
1652                      sizeof(device_info->platform_mask) * BITS_PER_BYTE);
1653         BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
1654
1655         return i915;
1656 }
1657
1658 static void i915_driver_destroy(struct drm_i915_private *i915)
1659 {
1660         struct pci_dev *pdev = i915->drm.pdev;
1661
1662         drm_dev_fini(&i915->drm);
1663         kfree(i915);
1664
1665         /* And make sure we never chase our dangling pointer from pci_dev */
1666         pci_set_drvdata(pdev, NULL);
1667 }
1668
1669 /**
1670  * i915_driver_load - setup chip and create an initial config
1671  * @pdev: PCI device
1672  * @ent: matching PCI ID entry
1673  *
1674  * The driver load routine has to do several things:
1675  *   - drive output discovery via intel_modeset_init()
1676  *   - initialize the memory manager
1677  *   - allocate initial config memory
1678  *   - setup the DRM framebuffer with the allocated memory
1679  */
1680 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1681 {
1682         const struct intel_device_info *match_info =
1683                 (struct intel_device_info *)ent->driver_data;
1684         struct drm_i915_private *dev_priv;
1685         int ret;
1686
1687         dev_priv = i915_driver_create(pdev, ent);
1688         if (!dev_priv)
1689                 return -ENOMEM;
1690
1691         /* Disable nuclear pageflip by default on pre-ILK */
1692         if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1693                 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1694
1695         ret = pci_enable_device(pdev);
1696         if (ret)
1697                 goto out_fini;
1698
1699         ret = i915_driver_init_early(dev_priv);
1700         if (ret < 0)
1701                 goto out_pci_disable;
1702
1703         disable_rpm_wakeref_asserts(dev_priv);
1704
1705         ret = i915_driver_init_mmio(dev_priv);
1706         if (ret < 0)
1707                 goto out_runtime_pm_put;
1708
1709         ret = i915_driver_init_hw(dev_priv);
1710         if (ret < 0)
1711                 goto out_cleanup_mmio;
1712
1713         /*
1714          * TODO: move the vblank init and parts of modeset init steps into one
1715          * of the i915_driver_init_/i915_driver_register functions according
1716          * to the role/effect of the given init step.
1717          */
1718         if (INTEL_INFO(dev_priv)->num_pipes) {
1719                 ret = drm_vblank_init(&dev_priv->drm,
1720                                       INTEL_INFO(dev_priv)->num_pipes);
1721                 if (ret)
1722                         goto out_cleanup_hw;
1723         }
1724
1725         ret = i915_load_modeset_init(&dev_priv->drm);
1726         if (ret < 0)
1727                 goto out_cleanup_hw;
1728
1729         i915_driver_register(dev_priv);
1730
1731         intel_init_ipc(dev_priv);
1732
1733         enable_rpm_wakeref_asserts(dev_priv);
1734
1735         i915_welcome_messages(dev_priv);
1736
1737         return 0;
1738
1739 out_cleanup_hw:
1740         i915_driver_cleanup_hw(dev_priv);
1741 out_cleanup_mmio:
1742         i915_driver_cleanup_mmio(dev_priv);
1743 out_runtime_pm_put:
1744         enable_rpm_wakeref_asserts(dev_priv);
1745         i915_driver_cleanup_early(dev_priv);
1746 out_pci_disable:
1747         pci_disable_device(pdev);
1748 out_fini:
1749         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1750         i915_driver_destroy(dev_priv);
1751         return ret;
1752 }
1753
1754 void i915_driver_unload(struct drm_device *dev)
1755 {
1756         struct drm_i915_private *dev_priv = to_i915(dev);
1757         struct pci_dev *pdev = dev_priv->drm.pdev;
1758
1759         disable_rpm_wakeref_asserts(dev_priv);
1760
1761         i915_driver_unregister(dev_priv);
1762
1763         if (i915_gem_suspend(dev_priv))
1764                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1765
1766         drm_atomic_helper_shutdown(dev);
1767
1768         intel_gvt_cleanup(dev_priv);
1769
1770         intel_modeset_cleanup(dev);
1771
1772         intel_bios_cleanup(dev_priv);
1773
1774         vga_switcheroo_unregister_client(pdev);
1775         vga_client_register(pdev, NULL, NULL, NULL);
1776
1777         intel_csr_ucode_fini(dev_priv);
1778
1779         /* Free error state after interrupts are fully disabled. */
1780         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1781         i915_reset_error_state(dev_priv);
1782
1783         i915_gem_fini(dev_priv);
1784         intel_fbc_cleanup_cfb(dev_priv);
1785
1786         intel_power_domains_fini_hw(dev_priv);
1787
1788         i915_driver_cleanup_hw(dev_priv);
1789         i915_driver_cleanup_mmio(dev_priv);
1790
1791         enable_rpm_wakeref_asserts(dev_priv);
1792
1793         WARN_ON(atomic_read(&dev_priv->runtime_pm.wakeref_count));
1794 }
1795
1796 static void i915_driver_release(struct drm_device *dev)
1797 {
1798         struct drm_i915_private *dev_priv = to_i915(dev);
1799
1800         i915_driver_cleanup_early(dev_priv);
1801         i915_driver_destroy(dev_priv);
1802 }
1803
1804 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1805 {
1806         struct drm_i915_private *i915 = to_i915(dev);
1807         int ret;
1808
1809         ret = i915_gem_open(i915, file);
1810         if (ret)
1811                 return ret;
1812
1813         return 0;
1814 }
1815
1816 /**
1817  * i915_driver_lastclose - clean up after all DRM clients have exited
1818  * @dev: DRM device
1819  *
1820  * Take care of cleaning up after all DRM clients have exited.  In the
1821  * mode setting case, we want to restore the kernel's initial mode (just
1822  * in case the last client left us in a bad state).
1823  *
1824  * Additionally, in the non-mode setting case, we'll tear down the GTT
1825  * and DMA structures, since the kernel won't be using them, and clea
1826  * up any GEM state.
1827  */
1828 static void i915_driver_lastclose(struct drm_device *dev)
1829 {
1830         intel_fbdev_restore_mode(dev);
1831         vga_switcheroo_process_delayed_switch();
1832 }
1833
1834 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1835 {
1836         struct drm_i915_file_private *file_priv = file->driver_priv;
1837
1838         mutex_lock(&dev->struct_mutex);
1839         i915_gem_context_close(file);
1840         i915_gem_release(dev, file);
1841         mutex_unlock(&dev->struct_mutex);
1842
1843         kfree(file_priv);
1844 }
1845
1846 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1847 {
1848         struct drm_device *dev = &dev_priv->drm;
1849         struct intel_encoder *encoder;
1850
1851         drm_modeset_lock_all(dev);
1852         for_each_intel_encoder(dev, encoder)
1853                 if (encoder->suspend)
1854                         encoder->suspend(encoder);
1855         drm_modeset_unlock_all(dev);
1856 }
1857
1858 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1859                               bool rpm_resume);
1860 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1861
1862 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1863 {
1864 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1865         if (acpi_target_system_state() < ACPI_STATE_S3)
1866                 return true;
1867 #endif
1868         return false;
1869 }
1870
1871 static int i915_drm_prepare(struct drm_device *dev)
1872 {
1873         struct drm_i915_private *i915 = to_i915(dev);
1874         int err;
1875
1876         /*
1877          * NB intel_display_suspend() may issue new requests after we've
1878          * ostensibly marked the GPU as ready-to-sleep here. We need to
1879          * split out that work and pull it forward so that after point,
1880          * the GPU is not woken again.
1881          */
1882         err = i915_gem_suspend(i915);
1883         if (err)
1884                 dev_err(&i915->drm.pdev->dev,
1885                         "GEM idle failed, suspend/resume might fail\n");
1886
1887         return err;
1888 }
1889
1890 static int i915_drm_suspend(struct drm_device *dev)
1891 {
1892         struct drm_i915_private *dev_priv = to_i915(dev);
1893         struct pci_dev *pdev = dev_priv->drm.pdev;
1894         pci_power_t opregion_target_state;
1895
1896         disable_rpm_wakeref_asserts(dev_priv);
1897
1898         /* We do a lot of poking in a lot of registers, make sure they work
1899          * properly. */
1900         intel_power_domains_disable(dev_priv);
1901
1902         drm_kms_helper_poll_disable(dev);
1903
1904         pci_save_state(pdev);
1905
1906         intel_display_suspend(dev);
1907
1908         intel_dp_mst_suspend(dev_priv);
1909
1910         intel_runtime_pm_disable_interrupts(dev_priv);
1911         intel_hpd_cancel_work(dev_priv);
1912
1913         intel_suspend_encoders(dev_priv);
1914
1915         intel_suspend_hw(dev_priv);
1916
1917         i915_gem_suspend_gtt_mappings(dev_priv);
1918
1919         i915_save_state(dev_priv);
1920
1921         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1922         intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1923
1924         intel_opregion_unregister(dev_priv);
1925
1926         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1927
1928         dev_priv->suspend_count++;
1929
1930         intel_csr_ucode_suspend(dev_priv);
1931
1932         enable_rpm_wakeref_asserts(dev_priv);
1933
1934         return 0;
1935 }
1936
1937 static enum i915_drm_suspend_mode
1938 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1939 {
1940         if (hibernate)
1941                 return I915_DRM_SUSPEND_HIBERNATE;
1942
1943         if (suspend_to_idle(dev_priv))
1944                 return I915_DRM_SUSPEND_IDLE;
1945
1946         return I915_DRM_SUSPEND_MEM;
1947 }
1948
1949 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1950 {
1951         struct drm_i915_private *dev_priv = to_i915(dev);
1952         struct pci_dev *pdev = dev_priv->drm.pdev;
1953         int ret;
1954
1955         disable_rpm_wakeref_asserts(dev_priv);
1956
1957         i915_gem_suspend_late(dev_priv);
1958
1959         intel_uncore_suspend(dev_priv);
1960
1961         intel_power_domains_suspend(dev_priv,
1962                                     get_suspend_mode(dev_priv, hibernation));
1963
1964         ret = 0;
1965         if (IS_GEN9_LP(dev_priv))
1966                 bxt_enable_dc9(dev_priv);
1967         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1968                 hsw_enable_pc8(dev_priv);
1969         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1970                 ret = vlv_suspend_complete(dev_priv);
1971
1972         if (ret) {
1973                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1974                 intel_power_domains_resume(dev_priv);
1975
1976                 goto out;
1977         }
1978
1979         pci_disable_device(pdev);
1980         /*
1981          * During hibernation on some platforms the BIOS may try to access
1982          * the device even though it's already in D3 and hang the machine. So
1983          * leave the device in D0 on those platforms and hope the BIOS will
1984          * power down the device properly. The issue was seen on multiple old
1985          * GENs with different BIOS vendors, so having an explicit blacklist
1986          * is inpractical; apply the workaround on everything pre GEN6. The
1987          * platforms where the issue was seen:
1988          * Lenovo Thinkpad X301, X61s, X60, T60, X41
1989          * Fujitsu FSC S7110
1990          * Acer Aspire 1830T
1991          */
1992         if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1993                 pci_set_power_state(pdev, PCI_D3hot);
1994
1995 out:
1996         enable_rpm_wakeref_asserts(dev_priv);
1997
1998         return ret;
1999 }
2000
2001 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
2002 {
2003         int error;
2004
2005         if (!dev) {
2006                 DRM_ERROR("dev: %p\n", dev);
2007                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
2008                 return -ENODEV;
2009         }
2010
2011         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
2012                          state.event != PM_EVENT_FREEZE))
2013                 return -EINVAL;
2014
2015         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2016                 return 0;
2017
2018         error = i915_drm_suspend(dev);
2019         if (error)
2020                 return error;
2021
2022         return i915_drm_suspend_late(dev, false);
2023 }
2024
2025 static int i915_drm_resume(struct drm_device *dev)
2026 {
2027         struct drm_i915_private *dev_priv = to_i915(dev);
2028         int ret;
2029
2030         disable_rpm_wakeref_asserts(dev_priv);
2031         intel_sanitize_gt_powersave(dev_priv);
2032
2033         i915_gem_sanitize(dev_priv);
2034
2035         ret = i915_ggtt_enable_hw(dev_priv);
2036         if (ret)
2037                 DRM_ERROR("failed to re-enable GGTT\n");
2038
2039         intel_csr_ucode_resume(dev_priv);
2040
2041         i915_restore_state(dev_priv);
2042         intel_pps_unlock_regs_wa(dev_priv);
2043         intel_opregion_setup(dev_priv);
2044
2045         intel_init_pch_refclk(dev_priv);
2046
2047         /*
2048          * Interrupts have to be enabled before any batches are run. If not the
2049          * GPU will hang. i915_gem_init_hw() will initiate batches to
2050          * update/restore the context.
2051          *
2052          * drm_mode_config_reset() needs AUX interrupts.
2053          *
2054          * Modeset enabling in intel_modeset_init_hw() also needs working
2055          * interrupts.
2056          */
2057         intel_runtime_pm_enable_interrupts(dev_priv);
2058
2059         drm_mode_config_reset(dev);
2060
2061         i915_gem_resume(dev_priv);
2062
2063         intel_modeset_init_hw(dev);
2064         intel_init_clock_gating(dev_priv);
2065
2066         spin_lock_irq(&dev_priv->irq_lock);
2067         if (dev_priv->display.hpd_irq_setup)
2068                 dev_priv->display.hpd_irq_setup(dev_priv);
2069         spin_unlock_irq(&dev_priv->irq_lock);
2070
2071         intel_dp_mst_resume(dev_priv);
2072
2073         intel_display_resume(dev);
2074
2075         drm_kms_helper_poll_enable(dev);
2076
2077         /*
2078          * ... but also need to make sure that hotplug processing
2079          * doesn't cause havoc. Like in the driver load code we don't
2080          * bother with the tiny race here where we might lose hotplug
2081          * notifications.
2082          * */
2083         intel_hpd_init(dev_priv);
2084
2085         intel_opregion_register(dev_priv);
2086
2087         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
2088
2089         intel_opregion_notify_adapter(dev_priv, PCI_D0);
2090
2091         intel_power_domains_enable(dev_priv);
2092
2093         enable_rpm_wakeref_asserts(dev_priv);
2094
2095         return 0;
2096 }
2097
2098 static int i915_drm_resume_early(struct drm_device *dev)
2099 {
2100         struct drm_i915_private *dev_priv = to_i915(dev);
2101         struct pci_dev *pdev = dev_priv->drm.pdev;
2102         int ret;
2103
2104         /*
2105          * We have a resume ordering issue with the snd-hda driver also
2106          * requiring our device to be power up. Due to the lack of a
2107          * parent/child relationship we currently solve this with an early
2108          * resume hook.
2109          *
2110          * FIXME: This should be solved with a special hdmi sink device or
2111          * similar so that power domains can be employed.
2112          */
2113
2114         /*
2115          * Note that we need to set the power state explicitly, since we
2116          * powered off the device during freeze and the PCI core won't power
2117          * it back up for us during thaw. Powering off the device during
2118          * freeze is not a hard requirement though, and during the
2119          * suspend/resume phases the PCI core makes sure we get here with the
2120          * device powered on. So in case we change our freeze logic and keep
2121          * the device powered we can also remove the following set power state
2122          * call.
2123          */
2124         ret = pci_set_power_state(pdev, PCI_D0);
2125         if (ret) {
2126                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2127                 return ret;
2128         }
2129
2130         /*
2131          * Note that pci_enable_device() first enables any parent bridge
2132          * device and only then sets the power state for this device. The
2133          * bridge enabling is a nop though, since bridge devices are resumed
2134          * first. The order of enabling power and enabling the device is
2135          * imposed by the PCI core as described above, so here we preserve the
2136          * same order for the freeze/thaw phases.
2137          *
2138          * TODO: eventually we should remove pci_disable_device() /
2139          * pci_enable_enable_device() from suspend/resume. Due to how they
2140          * depend on the device enable refcount we can't anyway depend on them
2141          * disabling/enabling the device.
2142          */
2143         if (pci_enable_device(pdev))
2144                 return -EIO;
2145
2146         pci_set_master(pdev);
2147
2148         disable_rpm_wakeref_asserts(dev_priv);
2149
2150         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2151                 ret = vlv_resume_prepare(dev_priv, false);
2152         if (ret)
2153                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2154                           ret);
2155
2156         intel_uncore_resume_early(dev_priv);
2157
2158         if (IS_GEN9_LP(dev_priv)) {
2159                 gen9_sanitize_dc_state(dev_priv);
2160                 bxt_disable_dc9(dev_priv);
2161         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2162                 hsw_disable_pc8(dev_priv);
2163         }
2164
2165         intel_uncore_sanitize(dev_priv);
2166
2167         intel_power_domains_resume(dev_priv);
2168
2169         intel_engines_sanitize(dev_priv);
2170
2171         enable_rpm_wakeref_asserts(dev_priv);
2172
2173         return ret;
2174 }
2175
2176 static int i915_resume_switcheroo(struct drm_device *dev)
2177 {
2178         int ret;
2179
2180         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2181                 return 0;
2182
2183         ret = i915_drm_resume_early(dev);
2184         if (ret)
2185                 return ret;
2186
2187         return i915_drm_resume(dev);
2188 }
2189
2190 /**
2191  * i915_reset - reset chip after a hang
2192  * @i915: #drm_i915_private to reset
2193  * @stalled_mask: mask of the stalled engines with the guilty requests
2194  * @reason: user error message for why we are resetting
2195  *
2196  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
2197  * on failure.
2198  *
2199  * Caller must hold the struct_mutex.
2200  *
2201  * Procedure is fairly simple:
2202  *   - reset the chip using the reset reg
2203  *   - re-init context state
2204  *   - re-init hardware status page
2205  *   - re-init ring buffer
2206  *   - re-init interrupt state
2207  *   - re-init display
2208  */
2209 void i915_reset(struct drm_i915_private *i915,
2210                 unsigned int stalled_mask,
2211                 const char *reason)
2212 {
2213         struct i915_gpu_error *error = &i915->gpu_error;
2214         int ret;
2215         int i;
2216
2217         GEM_TRACE("flags=%lx\n", error->flags);
2218
2219         might_sleep();
2220         lockdep_assert_held(&i915->drm.struct_mutex);
2221         GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
2222
2223         if (!test_bit(I915_RESET_HANDOFF, &error->flags))
2224                 return;
2225
2226         /* Clear any previous failed attempts at recovery. Time to try again. */
2227         if (!i915_gem_unset_wedged(i915))
2228                 goto wakeup;
2229
2230         if (reason)
2231                 dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
2232         error->reset_count++;
2233
2234         ret = i915_gem_reset_prepare(i915);
2235         if (ret) {
2236                 dev_err(i915->drm.dev, "GPU recovery failed\n");
2237                 goto taint;
2238         }
2239
2240         if (!intel_has_gpu_reset(i915)) {
2241                 if (i915_modparams.reset)
2242                         dev_err(i915->drm.dev, "GPU reset not supported\n");
2243                 else
2244                         DRM_DEBUG_DRIVER("GPU reset disabled\n");
2245                 goto error;
2246         }
2247
2248         for (i = 0; i < 3; i++) {
2249                 ret = intel_gpu_reset(i915, ALL_ENGINES);
2250                 if (ret == 0)
2251                         break;
2252
2253                 msleep(100);
2254         }
2255         if (ret) {
2256                 dev_err(i915->drm.dev, "Failed to reset chip\n");
2257                 goto taint;
2258         }
2259
2260         /* Ok, now get things going again... */
2261
2262         /*
2263          * Everything depends on having the GTT running, so we need to start
2264          * there.
2265          */
2266         ret = i915_ggtt_enable_hw(i915);
2267         if (ret) {
2268                 DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
2269                           ret);
2270                 goto error;
2271         }
2272
2273         i915_gem_reset(i915, stalled_mask);
2274         intel_overlay_reset(i915);
2275
2276         /*
2277          * Next we need to restore the context, but we don't use those
2278          * yet either...
2279          *
2280          * Ring buffer needs to be re-initialized in the KMS case, or if X
2281          * was running at the time of the reset (i.e. we weren't VT
2282          * switched away).
2283          */
2284         ret = i915_gem_init_hw(i915);
2285         if (ret) {
2286                 DRM_ERROR("Failed to initialise HW following reset (%d)\n",
2287                           ret);
2288                 goto error;
2289         }
2290
2291         i915_queue_hangcheck(i915);
2292
2293 finish:
2294         i915_gem_reset_finish(i915);
2295 wakeup:
2296         clear_bit(I915_RESET_HANDOFF, &error->flags);
2297         wake_up_bit(&error->flags, I915_RESET_HANDOFF);
2298         return;
2299
2300 taint:
2301         /*
2302          * History tells us that if we cannot reset the GPU now, we
2303          * never will. This then impacts everything that is run
2304          * subsequently. On failing the reset, we mark the driver
2305          * as wedged, preventing further execution on the GPU.
2306          * We also want to go one step further and add a taint to the
2307          * kernel so that any subsequent faults can be traced back to
2308          * this failure. This is important for CI, where if the
2309          * GPU/driver fails we would like to reboot and restart testing
2310          * rather than continue on into oblivion. For everyone else,
2311          * the system should still plod along, but they have been warned!
2312          */
2313         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2314 error:
2315         i915_gem_set_wedged(i915);
2316         i915_retire_requests(i915);
2317         goto finish;
2318 }
2319
2320 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2321                                         struct intel_engine_cs *engine)
2322 {
2323         return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2324 }
2325
2326 /**
2327  * i915_reset_engine - reset GPU engine to recover from a hang
2328  * @engine: engine to reset
2329  * @msg: reason for GPU reset; or NULL for no dev_notice()
2330  *
2331  * Reset a specific GPU engine. Useful if a hang is detected.
2332  * Returns zero on successful reset or otherwise an error code.
2333  *
2334  * Procedure is:
2335  *  - identifies the request that caused the hang and it is dropped
2336  *  - reset engine (which will force the engine to idle)
2337  *  - re-init/configure engine
2338  */
2339 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2340 {
2341         struct i915_gpu_error *error = &engine->i915->gpu_error;
2342         struct i915_request *active_request;
2343         int ret;
2344
2345         GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2346         GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2347
2348         active_request = i915_gem_reset_prepare_engine(engine);
2349         if (IS_ERR_OR_NULL(active_request)) {
2350                 /* Either the previous reset failed, or we pardon the reset. */
2351                 ret = PTR_ERR(active_request);
2352                 goto out;
2353         }
2354
2355         if (msg)
2356                 dev_notice(engine->i915->drm.dev,
2357                            "Resetting %s for %s\n", engine->name, msg);
2358         error->reset_engine_count[engine->id]++;
2359
2360         if (!engine->i915->guc.execbuf_client)
2361                 ret = intel_gt_reset_engine(engine->i915, engine);
2362         else
2363                 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2364         if (ret) {
2365                 /* If we fail here, we expect to fallback to a global reset */
2366                 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2367                                  engine->i915->guc.execbuf_client ? "GuC " : "",
2368                                  engine->name, ret);
2369                 goto out;
2370         }
2371
2372         /*
2373          * The request that caused the hang is stuck on elsp, we know the
2374          * active request and can drop it, adjust head to skip the offending
2375          * request to resume executing remaining requests in the queue.
2376          */
2377         i915_gem_reset_engine(engine, active_request, true);
2378
2379         /*
2380          * The engine and its registers (and workarounds in case of render)
2381          * have been reset to their default values. Follow the init_ring
2382          * process to program RING_MODE, HWSP and re-enable submission.
2383          */
2384         ret = engine->init_hw(engine);
2385         if (ret)
2386                 goto out;
2387
2388 out:
2389         intel_engine_cancel_stop_cs(engine);
2390         i915_gem_reset_finish_engine(engine);
2391         return ret;
2392 }
2393
2394 static int i915_pm_prepare(struct device *kdev)
2395 {
2396         struct pci_dev *pdev = to_pci_dev(kdev);
2397         struct drm_device *dev = pci_get_drvdata(pdev);
2398
2399         if (!dev) {
2400                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2401                 return -ENODEV;
2402         }
2403
2404         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2405                 return 0;
2406
2407         return i915_drm_prepare(dev);
2408 }
2409
2410 static int i915_pm_suspend(struct device *kdev)
2411 {
2412         struct pci_dev *pdev = to_pci_dev(kdev);
2413         struct drm_device *dev = pci_get_drvdata(pdev);
2414
2415         if (!dev) {
2416                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2417                 return -ENODEV;
2418         }
2419
2420         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2421                 return 0;
2422
2423         return i915_drm_suspend(dev);
2424 }
2425
2426 static int i915_pm_suspend_late(struct device *kdev)
2427 {
2428         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2429
2430         /*
2431          * We have a suspend ordering issue with the snd-hda driver also
2432          * requiring our device to be power up. Due to the lack of a
2433          * parent/child relationship we currently solve this with an late
2434          * suspend hook.
2435          *
2436          * FIXME: This should be solved with a special hdmi sink device or
2437          * similar so that power domains can be employed.
2438          */
2439         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2440                 return 0;
2441
2442         return i915_drm_suspend_late(dev, false);
2443 }
2444
2445 static int i915_pm_poweroff_late(struct device *kdev)
2446 {
2447         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2448
2449         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2450                 return 0;
2451
2452         return i915_drm_suspend_late(dev, true);
2453 }
2454
2455 static int i915_pm_resume_early(struct device *kdev)
2456 {
2457         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2458
2459         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2460                 return 0;
2461
2462         return i915_drm_resume_early(dev);
2463 }
2464
2465 static int i915_pm_resume(struct device *kdev)
2466 {
2467         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2468
2469         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2470                 return 0;
2471
2472         return i915_drm_resume(dev);
2473 }
2474
2475 /* freeze: before creating the hibernation_image */
2476 static int i915_pm_freeze(struct device *kdev)
2477 {
2478         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2479         int ret;
2480
2481         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2482                 ret = i915_drm_suspend(dev);
2483                 if (ret)
2484                         return ret;
2485         }
2486
2487         ret = i915_gem_freeze(kdev_to_i915(kdev));
2488         if (ret)
2489                 return ret;
2490
2491         return 0;
2492 }
2493
2494 static int i915_pm_freeze_late(struct device *kdev)
2495 {
2496         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2497         int ret;
2498
2499         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2500                 ret = i915_drm_suspend_late(dev, true);
2501                 if (ret)
2502                         return ret;
2503         }
2504
2505         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2506         if (ret)
2507                 return ret;
2508
2509         return 0;
2510 }
2511
2512 /* thaw: called after creating the hibernation image, but before turning off. */
2513 static int i915_pm_thaw_early(struct device *kdev)
2514 {
2515         return i915_pm_resume_early(kdev);
2516 }
2517
2518 static int i915_pm_thaw(struct device *kdev)
2519 {
2520         return i915_pm_resume(kdev);
2521 }
2522
2523 /* restore: called after loading the hibernation image. */
2524 static int i915_pm_restore_early(struct device *kdev)
2525 {
2526         return i915_pm_resume_early(kdev);
2527 }
2528
2529 static int i915_pm_restore(struct device *kdev)
2530 {
2531         return i915_pm_resume(kdev);
2532 }
2533
2534 /*
2535  * Save all Gunit registers that may be lost after a D3 and a subsequent
2536  * S0i[R123] transition. The list of registers needing a save/restore is
2537  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2538  * registers in the following way:
2539  * - Driver: saved/restored by the driver
2540  * - Punit : saved/restored by the Punit firmware
2541  * - No, w/o marking: no need to save/restore, since the register is R/O or
2542  *                    used internally by the HW in a way that doesn't depend
2543  *                    keeping the content across a suspend/resume.
2544  * - Debug : used for debugging
2545  *
2546  * We save/restore all registers marked with 'Driver', with the following
2547  * exceptions:
2548  * - Registers out of use, including also registers marked with 'Debug'.
2549  *   These have no effect on the driver's operation, so we don't save/restore
2550  *   them to reduce the overhead.
2551  * - Registers that are fully setup by an initialization function called from
2552  *   the resume path. For example many clock gating and RPS/RC6 registers.
2553  * - Registers that provide the right functionality with their reset defaults.
2554  *
2555  * TODO: Except for registers that based on the above 3 criteria can be safely
2556  * ignored, we save/restore all others, practically treating the HW context as
2557  * a black-box for the driver. Further investigation is needed to reduce the
2558  * saved/restored registers even further, by following the same 3 criteria.
2559  */
2560 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2561 {
2562         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2563         int i;
2564
2565         /* GAM 0x4000-0x4770 */
2566         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
2567         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
2568         s->arb_mode             = I915_READ(ARB_MODE);
2569         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
2570         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
2571
2572         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2573                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2574
2575         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2576         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2577
2578         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
2579         s->ecochk               = I915_READ(GAM_ECOCHK);
2580         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
2581         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
2582
2583         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
2584
2585         /* MBC 0x9024-0x91D0, 0x8500 */
2586         s->g3dctl               = I915_READ(VLV_G3DCTL);
2587         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
2588         s->mbctl                = I915_READ(GEN6_MBCTL);
2589
2590         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2591         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
2592         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
2593         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
2594         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
2595         s->rstctl               = I915_READ(GEN6_RSTCTL);
2596         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
2597
2598         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2599         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
2600         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
2601         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
2602         s->ecobus               = I915_READ(ECOBUS);
2603         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
2604         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2605         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
2606         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
2607         s->rcedata              = I915_READ(VLV_RCEDATA);
2608         s->spare2gh             = I915_READ(VLV_SPAREG2H);
2609
2610         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2611         s->gt_imr               = I915_READ(GTIMR);
2612         s->gt_ier               = I915_READ(GTIER);
2613         s->pm_imr               = I915_READ(GEN6_PMIMR);
2614         s->pm_ier               = I915_READ(GEN6_PMIER);
2615
2616         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2617                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2618
2619         /* GT SA CZ domain, 0x100000-0x138124 */
2620         s->tilectl              = I915_READ(TILECTL);
2621         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2622         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2623         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2624         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2625
2626         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2627         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2628         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2629         s->pcbr                 = I915_READ(VLV_PCBR);
2630         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2631
2632         /*
2633          * Not saving any of:
2634          * DFT,         0x9800-0x9EC0
2635          * SARB,        0xB000-0xB1FC
2636          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2637          * PCI CFG
2638          */
2639 }
2640
2641 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2642 {
2643         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2644         u32 val;
2645         int i;
2646
2647         /* GAM 0x4000-0x4770 */
2648         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2649         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2650         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2651         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2652         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2653
2654         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2655                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2656
2657         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2658         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2659
2660         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2661         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2662         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2663         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2664
2665         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2666
2667         /* MBC 0x9024-0x91D0, 0x8500 */
2668         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2669         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2670         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2671
2672         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2673         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2674         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2675         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2676         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2677         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2678         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2679
2680         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2681         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2682         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2683         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2684         I915_WRITE(ECOBUS,              s->ecobus);
2685         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2686         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2687         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2688         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2689         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2690         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2691
2692         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2693         I915_WRITE(GTIMR,               s->gt_imr);
2694         I915_WRITE(GTIER,               s->gt_ier);
2695         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2696         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2697
2698         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2699                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2700
2701         /* GT SA CZ domain, 0x100000-0x138124 */
2702         I915_WRITE(TILECTL,                     s->tilectl);
2703         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2704         /*
2705          * Preserve the GT allow wake and GFX force clock bit, they are not
2706          * be restored, as they are used to control the s0ix suspend/resume
2707          * sequence by the caller.
2708          */
2709         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2710         val &= VLV_GTLC_ALLOWWAKEREQ;
2711         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2712         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2713
2714         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2715         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2716         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2717         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2718
2719         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2720
2721         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2722         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2723         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2724         I915_WRITE(VLV_PCBR,                    s->pcbr);
2725         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2726 }
2727
2728 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2729                                   u32 mask, u32 val)
2730 {
2731         /* The HW does not like us polling for PW_STATUS frequently, so
2732          * use the sleeping loop rather than risk the busy spin within
2733          * intel_wait_for_register().
2734          *
2735          * Transitioning between RC6 states should be at most 2ms (see
2736          * valleyview_enable_rps) so use a 3ms timeout.
2737          */
2738         return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2739                         3);
2740 }
2741
2742 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2743 {
2744         u32 val;
2745         int err;
2746
2747         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2748         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2749         if (force_on)
2750                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2751         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2752
2753         if (!force_on)
2754                 return 0;
2755
2756         err = intel_wait_for_register(dev_priv,
2757                                       VLV_GTLC_SURVIVABILITY_REG,
2758                                       VLV_GFX_CLK_STATUS_BIT,
2759                                       VLV_GFX_CLK_STATUS_BIT,
2760                                       20);
2761         if (err)
2762                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2763                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2764
2765         return err;
2766 }
2767
2768 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2769 {
2770         u32 mask;
2771         u32 val;
2772         int err;
2773
2774         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2775         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2776         if (allow)
2777                 val |= VLV_GTLC_ALLOWWAKEREQ;
2778         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2779         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2780
2781         mask = VLV_GTLC_ALLOWWAKEACK;
2782         val = allow ? mask : 0;
2783
2784         err = vlv_wait_for_pw_status(dev_priv, mask, val);
2785         if (err)
2786                 DRM_ERROR("timeout disabling GT waking\n");
2787
2788         return err;
2789 }
2790
2791 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2792                                   bool wait_for_on)
2793 {
2794         u32 mask;
2795         u32 val;
2796
2797         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2798         val = wait_for_on ? mask : 0;
2799
2800         /*
2801          * RC6 transitioning can be delayed up to 2 msec (see
2802          * valleyview_enable_rps), use 3 msec for safety.
2803          *
2804          * This can fail to turn off the rc6 if the GPU is stuck after a failed
2805          * reset and we are trying to force the machine to sleep.
2806          */
2807         if (vlv_wait_for_pw_status(dev_priv, mask, val))
2808                 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2809                                  onoff(wait_for_on));
2810 }
2811
2812 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2813 {
2814         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2815                 return;
2816
2817         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2818         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2819 }
2820
2821 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2822 {
2823         u32 mask;
2824         int err;
2825
2826         /*
2827          * Bspec defines the following GT well on flags as debug only, so
2828          * don't treat them as hard failures.
2829          */
2830         vlv_wait_for_gt_wells(dev_priv, false);
2831
2832         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2833         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2834
2835         vlv_check_no_gt_access(dev_priv);
2836
2837         err = vlv_force_gfx_clock(dev_priv, true);
2838         if (err)
2839                 goto err1;
2840
2841         err = vlv_allow_gt_wake(dev_priv, false);
2842         if (err)
2843                 goto err2;
2844
2845         if (!IS_CHERRYVIEW(dev_priv))
2846                 vlv_save_gunit_s0ix_state(dev_priv);
2847
2848         err = vlv_force_gfx_clock(dev_priv, false);
2849         if (err)
2850                 goto err2;
2851
2852         return 0;
2853
2854 err2:
2855         /* For safety always re-enable waking and disable gfx clock forcing */
2856         vlv_allow_gt_wake(dev_priv, true);
2857 err1:
2858         vlv_force_gfx_clock(dev_priv, false);
2859
2860         return err;
2861 }
2862
2863 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2864                                 bool rpm_resume)
2865 {
2866         int err;
2867         int ret;
2868
2869         /*
2870          * If any of the steps fail just try to continue, that's the best we
2871          * can do at this point. Return the first error code (which will also
2872          * leave RPM permanently disabled).
2873          */
2874         ret = vlv_force_gfx_clock(dev_priv, true);
2875
2876         if (!IS_CHERRYVIEW(dev_priv))
2877                 vlv_restore_gunit_s0ix_state(dev_priv);
2878
2879         err = vlv_allow_gt_wake(dev_priv, true);
2880         if (!ret)
2881                 ret = err;
2882
2883         err = vlv_force_gfx_clock(dev_priv, false);
2884         if (!ret)
2885                 ret = err;
2886
2887         vlv_check_no_gt_access(dev_priv);
2888
2889         if (rpm_resume)
2890                 intel_init_clock_gating(dev_priv);
2891
2892         return ret;
2893 }
2894
2895 static int intel_runtime_suspend(struct device *kdev)
2896 {
2897         struct pci_dev *pdev = to_pci_dev(kdev);
2898         struct drm_device *dev = pci_get_drvdata(pdev);
2899         struct drm_i915_private *dev_priv = to_i915(dev);
2900         int ret;
2901
2902         if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2903                 return -ENODEV;
2904
2905         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2906                 return -ENODEV;
2907
2908         DRM_DEBUG_KMS("Suspending device\n");
2909
2910         disable_rpm_wakeref_asserts(dev_priv);
2911
2912         /*
2913          * We are safe here against re-faults, since the fault handler takes
2914          * an RPM reference.
2915          */
2916         i915_gem_runtime_suspend(dev_priv);
2917
2918         intel_uc_suspend(dev_priv);
2919
2920         intel_runtime_pm_disable_interrupts(dev_priv);
2921
2922         intel_uncore_suspend(dev_priv);
2923
2924         ret = 0;
2925         if (IS_GEN9_LP(dev_priv)) {
2926                 bxt_display_core_uninit(dev_priv);
2927                 bxt_enable_dc9(dev_priv);
2928         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2929                 hsw_enable_pc8(dev_priv);
2930         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2931                 ret = vlv_suspend_complete(dev_priv);
2932         }
2933
2934         if (ret) {
2935                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2936                 intel_uncore_runtime_resume(dev_priv);
2937
2938                 intel_runtime_pm_enable_interrupts(dev_priv);
2939
2940                 intel_uc_resume(dev_priv);
2941
2942                 i915_gem_init_swizzling(dev_priv);
2943                 i915_gem_restore_fences(dev_priv);
2944
2945                 enable_rpm_wakeref_asserts(dev_priv);
2946
2947                 return ret;
2948         }
2949
2950         enable_rpm_wakeref_asserts(dev_priv);
2951         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2952
2953         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2954                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2955
2956         dev_priv->runtime_pm.suspended = true;
2957
2958         /*
2959          * FIXME: We really should find a document that references the arguments
2960          * used below!
2961          */
2962         if (IS_BROADWELL(dev_priv)) {
2963                 /*
2964                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2965                  * being detected, and the call we do at intel_runtime_resume()
2966                  * won't be able to restore them. Since PCI_D3hot matches the
2967                  * actual specification and appears to be working, use it.
2968                  */
2969                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2970         } else {
2971                 /*
2972                  * current versions of firmware which depend on this opregion
2973                  * notification have repurposed the D1 definition to mean
2974                  * "runtime suspended" vs. what you would normally expect (D3)
2975                  * to distinguish it from notifications that might be sent via
2976                  * the suspend path.
2977                  */
2978                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2979         }
2980
2981         assert_forcewakes_inactive(dev_priv);
2982
2983         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2984                 intel_hpd_poll_init(dev_priv);
2985
2986         DRM_DEBUG_KMS("Device suspended\n");
2987         return 0;
2988 }
2989
2990 static int intel_runtime_resume(struct device *kdev)
2991 {
2992         struct pci_dev *pdev = to_pci_dev(kdev);
2993         struct drm_device *dev = pci_get_drvdata(pdev);
2994         struct drm_i915_private *dev_priv = to_i915(dev);
2995         int ret = 0;
2996
2997         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2998                 return -ENODEV;
2999
3000         DRM_DEBUG_KMS("Resuming device\n");
3001
3002         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
3003         disable_rpm_wakeref_asserts(dev_priv);
3004
3005         intel_opregion_notify_adapter(dev_priv, PCI_D0);
3006         dev_priv->runtime_pm.suspended = false;
3007         if (intel_uncore_unclaimed_mmio(dev_priv))
3008                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
3009
3010         if (IS_GEN9_LP(dev_priv)) {
3011                 bxt_disable_dc9(dev_priv);
3012                 bxt_display_core_init(dev_priv, true);
3013                 if (dev_priv->csr.dmc_payload &&
3014                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
3015                         gen9_enable_dc5(dev_priv);
3016         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3017                 hsw_disable_pc8(dev_priv);
3018         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3019                 ret = vlv_resume_prepare(dev_priv, true);
3020         }
3021
3022         intel_uncore_runtime_resume(dev_priv);
3023
3024         intel_runtime_pm_enable_interrupts(dev_priv);
3025
3026         intel_uc_resume(dev_priv);
3027
3028         /*
3029          * No point of rolling back things in case of an error, as the best
3030          * we can do is to hope that things will still work (and disable RPM).
3031          */
3032         i915_gem_init_swizzling(dev_priv);
3033         i915_gem_restore_fences(dev_priv);
3034
3035         /*
3036          * On VLV/CHV display interrupts are part of the display
3037          * power well, so hpd is reinitialized from there. For
3038          * everyone else do it here.
3039          */
3040         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
3041                 intel_hpd_init(dev_priv);
3042
3043         intel_enable_ipc(dev_priv);
3044
3045         enable_rpm_wakeref_asserts(dev_priv);
3046
3047         if (ret)
3048                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
3049         else
3050                 DRM_DEBUG_KMS("Device resumed\n");
3051
3052         return ret;
3053 }
3054
3055 const struct dev_pm_ops i915_pm_ops = {
3056         /*
3057          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
3058          * PMSG_RESUME]
3059          */
3060         .prepare = i915_pm_prepare,
3061         .suspend = i915_pm_suspend,
3062         .suspend_late = i915_pm_suspend_late,
3063         .resume_early = i915_pm_resume_early,
3064         .resume = i915_pm_resume,
3065
3066         /*
3067          * S4 event handlers
3068          * @freeze, @freeze_late    : called (1) before creating the
3069          *                            hibernation image [PMSG_FREEZE] and
3070          *                            (2) after rebooting, before restoring
3071          *                            the image [PMSG_QUIESCE]
3072          * @thaw, @thaw_early       : called (1) after creating the hibernation
3073          *                            image, before writing it [PMSG_THAW]
3074          *                            and (2) after failing to create or
3075          *                            restore the image [PMSG_RECOVER]
3076          * @poweroff, @poweroff_late: called after writing the hibernation
3077          *                            image, before rebooting [PMSG_HIBERNATE]
3078          * @restore, @restore_early : called after rebooting and restoring the
3079          *                            hibernation image [PMSG_RESTORE]
3080          */
3081         .freeze = i915_pm_freeze,
3082         .freeze_late = i915_pm_freeze_late,
3083         .thaw_early = i915_pm_thaw_early,
3084         .thaw = i915_pm_thaw,
3085         .poweroff = i915_pm_suspend,
3086         .poweroff_late = i915_pm_poweroff_late,
3087         .restore_early = i915_pm_restore_early,
3088         .restore = i915_pm_restore,
3089
3090         /* S0ix (via runtime suspend) event handlers */
3091         .runtime_suspend = intel_runtime_suspend,
3092         .runtime_resume = intel_runtime_resume,
3093 };
3094
3095 static const struct vm_operations_struct i915_gem_vm_ops = {
3096         .fault = i915_gem_fault,
3097         .open = drm_gem_vm_open,
3098         .close = drm_gem_vm_close,
3099 };
3100
3101 static const struct file_operations i915_driver_fops = {
3102         .owner = THIS_MODULE,
3103         .open = drm_open,
3104         .release = drm_release,
3105         .unlocked_ioctl = drm_ioctl,
3106         .mmap = drm_gem_mmap,
3107         .poll = drm_poll,
3108         .read = drm_read,
3109         .compat_ioctl = i915_compat_ioctl,
3110         .llseek = noop_llseek,
3111 };
3112
3113 static int
3114 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
3115                           struct drm_file *file)
3116 {
3117         return -ENODEV;
3118 }
3119
3120 static const struct drm_ioctl_desc i915_ioctls[] = {
3121         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3122         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
3123         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
3124         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
3125         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
3126         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
3127         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3128         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3129         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
3130         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
3131         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3132         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
3133         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3134         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3135         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
3136         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
3137         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3138         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3139         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
3140         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3141         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
3142         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
3143         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3144         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
3145         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
3146         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3147         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3148         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3149         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
3150         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
3151         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
3152         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
3153         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
3154         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
3155         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
3156         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
3157         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
3158         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
3159         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
3160         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
3161         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
3162         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
3163         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
3164         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
3165         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3166         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
3167         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
3168         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
3169         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
3170         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
3171         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
3172         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
3173         DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
3174         DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
3175         DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
3176         DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
3177 };
3178
3179 static struct drm_driver driver = {
3180         /* Don't use MTRRs here; the Xserver or userspace app should
3181          * deal with them for Intel hardware.
3182          */
3183         .driver_features =
3184             DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
3185             DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
3186         .release = i915_driver_release,
3187         .open = i915_driver_open,
3188         .lastclose = i915_driver_lastclose,
3189         .postclose = i915_driver_postclose,
3190
3191         .gem_close_object = i915_gem_close_object,
3192         .gem_free_object_unlocked = i915_gem_free_object,
3193         .gem_vm_ops = &i915_gem_vm_ops,
3194
3195         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
3196         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
3197         .gem_prime_export = i915_gem_prime_export,
3198         .gem_prime_import = i915_gem_prime_import,
3199
3200         .dumb_create = i915_gem_dumb_create,
3201         .dumb_map_offset = i915_gem_mmap_gtt,
3202         .ioctls = i915_ioctls,
3203         .num_ioctls = ARRAY_SIZE(i915_ioctls),
3204         .fops = &i915_driver_fops,
3205         .name = DRIVER_NAME,
3206         .desc = DRIVER_DESC,
3207         .date = DRIVER_DATE,
3208         .major = DRIVER_MAJOR,
3209         .minor = DRIVER_MINOR,
3210         .patchlevel = DRIVER_PATCHLEVEL,
3211 };
3212
3213 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3214 #include "selftests/mock_drm.c"
3215 #endif