Merge tag 'gvt-next-fixes-2021-04-21' of https://github.com/intel/gvt-linux into...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if (size == 0)
57                 return vgpu_gmadr_is_valid(vgpu, addr);
58
59         if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60             vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61                 return true;
62         else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63                  vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64                 return true;
65
66         gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67                      addr, size);
68         return false;
69 }
70
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75
76         if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77                      "invalid guest gmadr %llx\n", g_addr))
78                 return -EACCES;
79
80         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82                           + (g_addr - vgpu_aperture_offset(vgpu));
83         else
84                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85                           + (g_addr - vgpu_hidden_offset(vgpu));
86         return 0;
87 }
88
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94         if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95                      "invalid host gmadr %llx\n", h_addr))
96                 return -EACCES;
97
98         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101         else
102                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104         return 0;
105 }
106
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108                              unsigned long *h_index)
109 {
110         u64 h_addr;
111         int ret;
112
113         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114                                        &h_addr);
115         if (ret)
116                 return ret;
117
118         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119         return 0;
120 }
121
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123                              unsigned long *g_index)
124 {
125         u64 g_addr;
126         int ret;
127
128         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129                                        &g_addr);
130         if (ret)
131                 return ret;
132
133         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134         return 0;
135 }
136
137 #define gtt_type_is_entry(type) \
138         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141
142 #define gtt_type_is_pt(type) \
143         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144
145 #define gtt_type_is_pte_pt(type) \
146         (type == GTT_TYPE_PPGTT_PTE_PT)
147
148 #define gtt_type_is_root_pointer(type) \
149         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150
151 #define gtt_init_entry(e, t, p, v) do { \
152         (e)->type = t; \
153         (e)->pdev = p; \
154         memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172
173 struct gtt_type_table_entry {
174         int entry_type;
175         int pt_type;
176         int next_pt_type;
177         int pse_entry_type;
178 };
179
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181         [type] = { \
182                 .entry_type = e_type, \
183                 .pt_type = cpt_type, \
184                 .next_pt_type = npt_type, \
185                 .pse_entry_type = pse_type, \
186         }
187
188 static struct gtt_type_table_entry gtt_type_table[] = {
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191                         GTT_TYPE_INVALID,
192                         GTT_TYPE_PPGTT_PML4_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195                         GTT_TYPE_PPGTT_PML4_ENTRY,
196                         GTT_TYPE_PPGTT_PML4_PT,
197                         GTT_TYPE_PPGTT_PDP_PT,
198                         GTT_TYPE_INVALID),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200                         GTT_TYPE_PPGTT_PML4_ENTRY,
201                         GTT_TYPE_PPGTT_PML4_PT,
202                         GTT_TYPE_PPGTT_PDP_PT,
203                         GTT_TYPE_INVALID),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211                         GTT_TYPE_INVALID,
212                         GTT_TYPE_PPGTT_PDE_PT,
213                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215                         GTT_TYPE_PPGTT_PDP_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_PT,
217                         GTT_TYPE_PPGTT_PDE_PT,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220                         GTT_TYPE_PPGTT_PDE_ENTRY,
221                         GTT_TYPE_PPGTT_PDE_PT,
222                         GTT_TYPE_PPGTT_PTE_PT,
223                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225                         GTT_TYPE_PPGTT_PDE_ENTRY,
226                         GTT_TYPE_PPGTT_PDE_PT,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229         /* We take IPS bit as 'PSE' for PTE level. */
230         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232                         GTT_TYPE_PPGTT_PTE_PT,
233                         GTT_TYPE_INVALID,
234                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237                         GTT_TYPE_PPGTT_PTE_PT,
238                         GTT_TYPE_INVALID,
239                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242                         GTT_TYPE_PPGTT_PTE_PT,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246                         GTT_TYPE_PPGTT_PDE_ENTRY,
247                         GTT_TYPE_PPGTT_PDE_PT,
248                         GTT_TYPE_INVALID,
249                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251                         GTT_TYPE_PPGTT_PDP_ENTRY,
252                         GTT_TYPE_PPGTT_PDP_PT,
253                         GTT_TYPE_INVALID,
254                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256                         GTT_TYPE_GGTT_PTE,
257                         GTT_TYPE_INVALID,
258                         GTT_TYPE_INVALID,
259                         GTT_TYPE_INVALID),
260 };
261
262 static inline int get_next_pt_type(int type)
263 {
264         return gtt_type_table[type].next_pt_type;
265 }
266
267 static inline int get_pt_type(int type)
268 {
269         return gtt_type_table[type].pt_type;
270 }
271
272 static inline int get_entry_type(int type)
273 {
274         return gtt_type_table[type].entry_type;
275 }
276
277 static inline int get_pse_type(int type)
278 {
279         return gtt_type_table[type].pse_entry_type;
280 }
281
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285
286         return readq(addr);
287 }
288
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291         mmio_hw_access_pre(gt);
292         intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293         mmio_hw_access_post(gt);
294 }
295
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299
300         writeq(pte, addr);
301 }
302
303 static inline int gtt_get_entry64(void *pt,
304                 struct intel_gvt_gtt_entry *e,
305                 unsigned long index, bool hypervisor_access, unsigned long gpa,
306                 struct intel_vgpu *vgpu)
307 {
308         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309         int ret;
310
311         if (WARN_ON(info->gtt_entry_size != 8))
312                 return -EINVAL;
313
314         if (hypervisor_access) {
315                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316                                 (index << info->gtt_entry_size_shift),
317                                 &e->val64, 8);
318                 if (WARN_ON(ret))
319                         return ret;
320         } else if (!pt) {
321                 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322         } else {
323                 e->val64 = *((u64 *)pt + index);
324         }
325         return 0;
326 }
327
328 static inline int gtt_set_entry64(void *pt,
329                 struct intel_gvt_gtt_entry *e,
330                 unsigned long index, bool hypervisor_access, unsigned long gpa,
331                 struct intel_vgpu *vgpu)
332 {
333         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334         int ret;
335
336         if (WARN_ON(info->gtt_entry_size != 8))
337                 return -EINVAL;
338
339         if (hypervisor_access) {
340                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341                                 (index << info->gtt_entry_size_shift),
342                                 &e->val64, 8);
343                 if (WARN_ON(ret))
344                         return ret;
345         } else if (!pt) {
346                 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347         } else {
348                 *((u64 *)pt + index) = e->val64;
349         }
350         return 0;
351 }
352
353 #define GTT_HAW 46
354
355 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
359
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362
363 #define GTT_64K_PTE_STRIDE 16
364
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367         unsigned long pfn;
368
369         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375         else
376                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377         return pfn;
378 }
379
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383                 e->val64 &= ~ADDR_1G_MASK;
384                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386                 e->val64 &= ~ADDR_2M_MASK;
387                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389                 e->val64 &= ~ADDR_64K_MASK;
390                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391         } else {
392                 e->val64 &= ~ADDR_4K_MASK;
393                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394         }
395
396         e->val64 |= (pfn << PAGE_SHIFT);
397 }
398
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401         return !!(e->val64 & _PAGE_PSE);
402 }
403
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406         if (gen8_gtt_test_pse(e)) {
407                 switch (e->type) {
408                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409                         e->val64 &= ~_PAGE_PSE;
410                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411                         break;
412                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414                         e->val64 &= ~_PAGE_PSE;
415                         break;
416                 default:
417                         WARN_ON(1);
418                 }
419         }
420 }
421
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425                 return false;
426
427         return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433                 return;
434
435         e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440         /*
441          * i915 writes PDP root pointer registers without present bit,
442          * it also works, so we need to treat root pointer entry
443          * specifically.
444          */
445         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447                 return (e->val64 != 0);
448         else
449                 return (e->val64 & _PAGE_PRESENT);
450 }
451
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454         e->val64 &= ~_PAGE_PRESENT;
455 }
456
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459         e->val64 |= _PAGE_PRESENT;
460 }
461
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483
484         trace_gma_index(__func__, gma, x);
485         return x;
486 }
487
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491         unsigned long x = (exp); \
492         trace_gma_index(__func__, gma, x); \
493         return x; \
494 }
495
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503         .get_entry = gtt_get_entry64,
504         .set_entry = gtt_set_entry64,
505         .clear_present = gtt_entry_clear_present,
506         .set_present = gtt_entry_set_present,
507         .test_present = gen8_gtt_test_present,
508         .test_pse = gen8_gtt_test_pse,
509         .clear_pse = gen8_gtt_clear_pse,
510         .clear_ips = gen8_gtt_clear_ips,
511         .test_ips = gen8_gtt_test_ips,
512         .clear_64k_splited = gen8_gtt_clear_64k_splited,
513         .set_64k_splited = gen8_gtt_set_64k_splited,
514         .test_64k_splited = gen8_gtt_test_64k_splited,
515         .get_pfn = gen8_gtt_get_pfn,
516         .set_pfn = gen8_gtt_set_pfn,
517 };
518
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521         .gma_to_pte_index = gen8_gma_to_pte_index,
522         .gma_to_pde_index = gen8_gma_to_pde_index,
523         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525         .gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530         struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532         switch (entry->type) {
533         case GTT_TYPE_PPGTT_PDE_ENTRY:
534         case GTT_TYPE_PPGTT_PDP_ENTRY:
535                 if (pte_ops->test_pse(entry))
536                         entry->type = get_pse_type(entry->type);
537                 break;
538         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539                 if (ips)
540                         entry->type = get_pse_type(entry->type);
541                 break;
542         default:
543                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544         }
545
546         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553                 struct intel_gvt_gtt_entry *entry, unsigned long index,
554                 bool guest)
555 {
556         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557
558         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559
560         entry->type = mm->ppgtt_mm.root_entry_type;
561         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562                            mm->ppgtt_mm.shadow_pdps,
563                            entry, index, false, 0, mm->vgpu);
564         update_entry_type_for_real(pte_ops, entry, false);
565 }
566
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568                 struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570         _ppgtt_get_root_entry(mm, entry, index, true);
571 }
572
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574                 struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576         _ppgtt_get_root_entry(mm, entry, index, false);
577 }
578
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580                 struct intel_gvt_gtt_entry *entry, unsigned long index,
581                 bool guest)
582 {
583         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584
585         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586                            mm->ppgtt_mm.shadow_pdps,
587                            entry, index, false, 0, mm->vgpu);
588 }
589
590 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
591                 struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593         _ppgtt_set_root_entry(mm, entry, index, false);
594 }
595
596 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
597                 struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
600
601         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
602
603         entry->type = GTT_TYPE_GGTT_PTE;
604         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605                            false, 0, mm->vgpu);
606 }
607
608 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
609                 struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
612
613         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
614
615         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616                            false, 0, mm->vgpu);
617 }
618
619 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
620                 struct intel_gvt_gtt_entry *entry, unsigned long index)
621 {
622         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
623
624         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
625
626         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
627 }
628
629 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
630                 struct intel_gvt_gtt_entry *entry, unsigned long index)
631 {
632         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
633         unsigned long offset = index;
634
635         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
636
637         if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638                 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639                 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
640         } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
641                 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
642                 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
643         }
644
645         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 }
647
648 /*
649  * PPGTT shadow page table helpers.
650  */
651 static inline int ppgtt_spt_get_entry(
652                 struct intel_vgpu_ppgtt_spt *spt,
653                 void *page_table, int type,
654                 struct intel_gvt_gtt_entry *e, unsigned long index,
655                 bool guest)
656 {
657         struct intel_gvt *gvt = spt->vgpu->gvt;
658         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
659         int ret;
660
661         e->type = get_entry_type(type);
662
663         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
664                 return -EINVAL;
665
666         ret = ops->get_entry(page_table, e, index, guest,
667                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
668                         spt->vgpu);
669         if (ret)
670                 return ret;
671
672         update_entry_type_for_real(ops, e, guest ?
673                                    spt->guest_page.pde_ips : false);
674
675         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
676                     type, e->type, index, e->val64);
677         return 0;
678 }
679
680 static inline int ppgtt_spt_set_entry(
681                 struct intel_vgpu_ppgtt_spt *spt,
682                 void *page_table, int type,
683                 struct intel_gvt_gtt_entry *e, unsigned long index,
684                 bool guest)
685 {
686         struct intel_gvt *gvt = spt->vgpu->gvt;
687         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
688
689         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
690                 return -EINVAL;
691
692         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
693                     type, e->type, index, e->val64);
694
695         return ops->set_entry(page_table, e, index, guest,
696                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697                         spt->vgpu);
698 }
699
700 #define ppgtt_get_guest_entry(spt, e, index) \
701         ppgtt_spt_get_entry(spt, NULL, \
702                 spt->guest_page.type, e, index, true)
703
704 #define ppgtt_set_guest_entry(spt, e, index) \
705         ppgtt_spt_set_entry(spt, NULL, \
706                 spt->guest_page.type, e, index, true)
707
708 #define ppgtt_get_shadow_entry(spt, e, index) \
709         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
710                 spt->shadow_page.type, e, index, false)
711
712 #define ppgtt_set_shadow_entry(spt, e, index) \
713         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
714                 spt->shadow_page.type, e, index, false)
715
716 static void *alloc_spt(gfp_t gfp_mask)
717 {
718         struct intel_vgpu_ppgtt_spt *spt;
719
720         spt = kzalloc(sizeof(*spt), gfp_mask);
721         if (!spt)
722                 return NULL;
723
724         spt->shadow_page.page = alloc_page(gfp_mask);
725         if (!spt->shadow_page.page) {
726                 kfree(spt);
727                 return NULL;
728         }
729         return spt;
730 }
731
732 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
733 {
734         __free_page(spt->shadow_page.page);
735         kfree(spt);
736 }
737
738 static int detach_oos_page(struct intel_vgpu *vgpu,
739                 struct intel_vgpu_oos_page *oos_page);
740
741 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
742 {
743         struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
744
745         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
746
747         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
748                        PCI_DMA_BIDIRECTIONAL);
749
750         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
751
752         if (spt->guest_page.gfn) {
753                 if (spt->guest_page.oos_page)
754                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
755
756                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
757         }
758
759         list_del_init(&spt->post_shadow_list);
760         free_spt(spt);
761 }
762
763 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
764 {
765         struct intel_vgpu_ppgtt_spt *spt, *spn;
766         struct radix_tree_iter iter;
767         LIST_HEAD(all_spt);
768         void __rcu **slot;
769
770         rcu_read_lock();
771         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
772                 spt = radix_tree_deref_slot(slot);
773                 list_move(&spt->post_shadow_list, &all_spt);
774         }
775         rcu_read_unlock();
776
777         list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778                 ppgtt_free_spt(spt);
779 }
780
781 static int ppgtt_handle_guest_write_page_table_bytes(
782                 struct intel_vgpu_ppgtt_spt *spt,
783                 u64 pa, void *p_data, int bytes);
784
785 static int ppgtt_write_protection_handler(
786                 struct intel_vgpu_page_track *page_track,
787                 u64 gpa, void *data, int bytes)
788 {
789         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790
791         int ret;
792
793         if (bytes != 4 && bytes != 8)
794                 return -EINVAL;
795
796         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
797         if (ret)
798                 return ret;
799         return ret;
800 }
801
802 /* Find a spt by guest gfn. */
803 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
804                 struct intel_vgpu *vgpu, unsigned long gfn)
805 {
806         struct intel_vgpu_page_track *track;
807
808         track = intel_vgpu_find_page_track(vgpu, gfn);
809         if (track && track->handler == ppgtt_write_protection_handler)
810                 return track->priv_data;
811
812         return NULL;
813 }
814
815 /* Find the spt by shadow page mfn. */
816 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
817                 struct intel_vgpu *vgpu, unsigned long mfn)
818 {
819         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
820 }
821
822 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
823
824 /* Allocate shadow page table without guest page. */
825 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
826                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
827 {
828         struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
829         struct intel_vgpu_ppgtt_spt *spt = NULL;
830         dma_addr_t daddr;
831         int ret;
832
833 retry:
834         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
835         if (!spt) {
836                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
837                         goto retry;
838
839                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
840                 return ERR_PTR(-ENOMEM);
841         }
842
843         spt->vgpu = vgpu;
844         atomic_set(&spt->refcount, 1);
845         INIT_LIST_HEAD(&spt->post_shadow_list);
846
847         /*
848          * Init shadow_page.
849          */
850         spt->shadow_page.type = type;
851         daddr = dma_map_page(kdev, spt->shadow_page.page,
852                              0, 4096, PCI_DMA_BIDIRECTIONAL);
853         if (dma_mapping_error(kdev, daddr)) {
854                 gvt_vgpu_err("fail to map dma addr\n");
855                 ret = -EINVAL;
856                 goto err_free_spt;
857         }
858         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
859         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
860
861         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
862         if (ret)
863                 goto err_unmap_dma;
864
865         return spt;
866
867 err_unmap_dma:
868         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
869 err_free_spt:
870         free_spt(spt);
871         return ERR_PTR(ret);
872 }
873
874 /* Allocate shadow page table associated with specific gfn. */
875 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
876                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
877                 unsigned long gfn, bool guest_pde_ips)
878 {
879         struct intel_vgpu_ppgtt_spt *spt;
880         int ret;
881
882         spt = ppgtt_alloc_spt(vgpu, type);
883         if (IS_ERR(spt))
884                 return spt;
885
886         /*
887          * Init guest_page.
888          */
889         ret = intel_vgpu_register_page_track(vgpu, gfn,
890                         ppgtt_write_protection_handler, spt);
891         if (ret) {
892                 ppgtt_free_spt(spt);
893                 return ERR_PTR(ret);
894         }
895
896         spt->guest_page.type = type;
897         spt->guest_page.gfn = gfn;
898         spt->guest_page.pde_ips = guest_pde_ips;
899
900         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
901
902         return spt;
903 }
904
905 #define pt_entry_size_shift(spt) \
906         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
907
908 #define pt_entries(spt) \
909         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
910
911 #define for_each_present_guest_entry(spt, e, i) \
912         for (i = 0; i < pt_entries(spt); \
913              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914                 if (!ppgtt_get_guest_entry(spt, e, i) && \
915                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916
917 #define for_each_present_shadow_entry(spt, e, i) \
918         for (i = 0; i < pt_entries(spt); \
919              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
921                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922
923 #define for_each_shadow_entry(spt, e, i) \
924         for (i = 0; i < pt_entries(spt); \
925              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
926                 if (!ppgtt_get_shadow_entry(spt, e, i))
927
928 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
929 {
930         int v = atomic_read(&spt->refcount);
931
932         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
933         atomic_inc(&spt->refcount);
934 }
935
936 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
937 {
938         int v = atomic_read(&spt->refcount);
939
940         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
941         return atomic_dec_return(&spt->refcount);
942 }
943
944 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
945
946 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
947                 struct intel_gvt_gtt_entry *e)
948 {
949         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
950         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
951         struct intel_vgpu_ppgtt_spt *s;
952         enum intel_gvt_gtt_type cur_pt_type;
953
954         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
955
956         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
957                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
958                 cur_pt_type = get_next_pt_type(e->type);
959
960                 if (!gtt_type_is_pt(cur_pt_type) ||
961                                 !gtt_type_is_pt(cur_pt_type + 1)) {
962                         drm_WARN(&i915->drm, 1,
963                                  "Invalid page table type, cur_pt_type is: %d\n",
964                                  cur_pt_type);
965                         return -EINVAL;
966                 }
967
968                 cur_pt_type += 1;
969
970                 if (ops->get_pfn(e) ==
971                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
972                         return 0;
973         }
974         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
975         if (!s) {
976                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977                                 ops->get_pfn(e));
978                 return -ENXIO;
979         }
980         return ppgtt_invalidate_spt(s);
981 }
982
983 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
984                 struct intel_gvt_gtt_entry *entry)
985 {
986         struct intel_vgpu *vgpu = spt->vgpu;
987         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988         unsigned long pfn;
989         int type;
990
991         pfn = ops->get_pfn(entry);
992         type = spt->shadow_page.type;
993
994         /* Uninitialized spte or unshadowed spte. */
995         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
996                 return;
997
998         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
999 }
1000
1001 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1002 {
1003         struct intel_vgpu *vgpu = spt->vgpu;
1004         struct intel_gvt_gtt_entry e;
1005         unsigned long index;
1006         int ret;
1007
1008         trace_spt_change(spt->vgpu->id, "die", spt,
1009                         spt->guest_page.gfn, spt->shadow_page.type);
1010
1011         if (ppgtt_put_spt(spt) > 0)
1012                 return 0;
1013
1014         for_each_present_shadow_entry(spt, &e, index) {
1015                 switch (e.type) {
1016                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1017                         gvt_vdbg_mm("invalidate 4K entry\n");
1018                         ppgtt_invalidate_pte(spt, &e);
1019                         break;
1020                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1021                         /* We don't setup 64K shadow entry so far. */
1022                         WARN(1, "suspicious 64K gtt entry\n");
1023                         continue;
1024                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1025                         gvt_vdbg_mm("invalidate 2M entry\n");
1026                         continue;
1027                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1028                         WARN(1, "GVT doesn't support 1GB page\n");
1029                         continue;
1030                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1031                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1032                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1033                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1034                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1035                                         spt->vgpu, &e);
1036                         if (ret)
1037                                 goto fail;
1038                         break;
1039                 default:
1040                         GEM_BUG_ON(1);
1041                 }
1042         }
1043
1044         trace_spt_change(spt->vgpu->id, "release", spt,
1045                          spt->guest_page.gfn, spt->shadow_page.type);
1046         ppgtt_free_spt(spt);
1047         return 0;
1048 fail:
1049         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1050                         spt, e.val64, e.type);
1051         return ret;
1052 }
1053
1054 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1055 {
1056         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1057
1058         if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1059                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1060                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061
1062                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1063         } else if (INTEL_GEN(dev_priv) >= 11) {
1064                 /* 64K paging only controlled by IPS bit in PTE now. */
1065                 return true;
1066         } else
1067                 return false;
1068 }
1069
1070 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1071
1072 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1073                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1074 {
1075         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1076         struct intel_vgpu_ppgtt_spt *spt = NULL;
1077         bool ips = false;
1078         int ret;
1079
1080         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1081
1082         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1083                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1084
1085         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086         if (spt) {
1087                 ppgtt_get_spt(spt);
1088
1089                 if (ips != spt->guest_page.pde_ips) {
1090                         spt->guest_page.pde_ips = ips;
1091
1092                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1093                         clear_page(spt->shadow_page.vaddr);
1094                         ret = ppgtt_populate_spt(spt);
1095                         if (ret) {
1096                                 ppgtt_put_spt(spt);
1097                                 goto err;
1098                         }
1099                 }
1100         } else {
1101                 int type = get_next_pt_type(we->type);
1102
1103                 if (!gtt_type_is_pt(type)) {
1104                         ret = -EINVAL;
1105                         goto err;
1106                 }
1107
1108                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1109                 if (IS_ERR(spt)) {
1110                         ret = PTR_ERR(spt);
1111                         goto err;
1112                 }
1113
1114                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115                 if (ret)
1116                         goto err_free_spt;
1117
1118                 ret = ppgtt_populate_spt(spt);
1119                 if (ret)
1120                         goto err_free_spt;
1121
1122                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1123                                  spt->shadow_page.type);
1124         }
1125         return spt;
1126
1127 err_free_spt:
1128         ppgtt_free_spt(spt);
1129         spt = NULL;
1130 err:
1131         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1132                      spt, we->val64, we->type);
1133         return ERR_PTR(ret);
1134 }
1135
1136 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1137                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1138 {
1139         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1140
1141         se->type = ge->type;
1142         se->val64 = ge->val64;
1143
1144         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1145         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1146                 ops->clear_ips(se);
1147
1148         ops->set_pfn(se, s->shadow_page.mfn);
1149 }
1150
1151 /**
1152  * Check if can do 2M page
1153  * @vgpu: target vgpu
1154  * @entry: target pfn's gtt entry
1155  *
1156  * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1157  * negative if found err.
1158  */
1159 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1160         struct intel_gvt_gtt_entry *entry)
1161 {
1162         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1163         unsigned long pfn;
1164
1165         if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1166                 return 0;
1167
1168         pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1169         if (pfn == INTEL_GVT_INVALID_ADDR)
1170                 return -EINVAL;
1171
1172         return PageTransHuge(pfn_to_page(pfn));
1173 }
1174
1175 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1176         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1177         struct intel_gvt_gtt_entry *se)
1178 {
1179         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1180         struct intel_vgpu_ppgtt_spt *sub_spt;
1181         struct intel_gvt_gtt_entry sub_se;
1182         unsigned long start_gfn;
1183         dma_addr_t dma_addr;
1184         unsigned long sub_index;
1185         int ret;
1186
1187         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1188
1189         start_gfn = ops->get_pfn(se);
1190
1191         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1192         if (IS_ERR(sub_spt))
1193                 return PTR_ERR(sub_spt);
1194
1195         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1196                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1197                                 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1198                 if (ret) {
1199                         ppgtt_invalidate_spt(spt);
1200                         return ret;
1201                 }
1202                 sub_se.val64 = se->val64;
1203
1204                 /* Copy the PAT field from PDE. */
1205                 sub_se.val64 &= ~_PAGE_PAT;
1206                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1207
1208                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1209                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1210         }
1211
1212         /* Clear dirty field. */
1213         se->val64 &= ~_PAGE_DIRTY;
1214
1215         ops->clear_pse(se);
1216         ops->clear_ips(se);
1217         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1218         ppgtt_set_shadow_entry(spt, se, index);
1219         return 0;
1220 }
1221
1222 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1223         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1224         struct intel_gvt_gtt_entry *se)
1225 {
1226         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1227         struct intel_gvt_gtt_entry entry = *se;
1228         unsigned long start_gfn;
1229         dma_addr_t dma_addr;
1230         int i, ret;
1231
1232         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1233
1234         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1235
1236         start_gfn = ops->get_pfn(se);
1237
1238         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1239         ops->set_64k_splited(&entry);
1240
1241         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1242                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1243                                         start_gfn + i, PAGE_SIZE, &dma_addr);
1244                 if (ret)
1245                         return ret;
1246
1247                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1248                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1249         }
1250         return 0;
1251 }
1252
1253 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1254         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1255         struct intel_gvt_gtt_entry *ge)
1256 {
1257         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1258         struct intel_gvt_gtt_entry se = *ge;
1259         unsigned long gfn, page_size = PAGE_SIZE;
1260         dma_addr_t dma_addr;
1261         int ret;
1262
1263         if (!pte_ops->test_present(ge))
1264                 return 0;
1265
1266         gfn = pte_ops->get_pfn(ge);
1267
1268         switch (ge->type) {
1269         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1270                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1271                 break;
1272         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1273                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1274                 /*
1275                  * The layout of 64K page is special, the page size is
1276                  * controlled by uper PDE. To be simple, we always split
1277                  * 64K page to smaller 4K pages in shadow PT.
1278                  */
1279                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1280         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1281                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1282                 ret = is_2MB_gtt_possible(vgpu, ge);
1283                 if (ret == 0)
1284                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1285                 else if (ret < 0)
1286                         return ret;
1287                 page_size = I915_GTT_PAGE_SIZE_2M;
1288                 break;
1289         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1290                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1291                 return -EINVAL;
1292         default:
1293                 GEM_BUG_ON(1);
1294         }
1295
1296         /* direct shadow */
1297         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1298                                                       &dma_addr);
1299         if (ret)
1300                 return -ENXIO;
1301
1302         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1303         ppgtt_set_shadow_entry(spt, &se, index);
1304         return 0;
1305 }
1306
1307 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1308 {
1309         struct intel_vgpu *vgpu = spt->vgpu;
1310         struct intel_gvt *gvt = vgpu->gvt;
1311         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1312         struct intel_vgpu_ppgtt_spt *s;
1313         struct intel_gvt_gtt_entry se, ge;
1314         unsigned long gfn, i;
1315         int ret;
1316
1317         trace_spt_change(spt->vgpu->id, "born", spt,
1318                          spt->guest_page.gfn, spt->shadow_page.type);
1319
1320         for_each_present_guest_entry(spt, &ge, i) {
1321                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1322                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1323                         if (IS_ERR(s)) {
1324                                 ret = PTR_ERR(s);
1325                                 goto fail;
1326                         }
1327                         ppgtt_get_shadow_entry(spt, &se, i);
1328                         ppgtt_generate_shadow_entry(&se, s, &ge);
1329                         ppgtt_set_shadow_entry(spt, &se, i);
1330                 } else {
1331                         gfn = ops->get_pfn(&ge);
1332                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1333                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1334                                 ppgtt_set_shadow_entry(spt, &se, i);
1335                                 continue;
1336                         }
1337
1338                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1339                         if (ret)
1340                                 goto fail;
1341                 }
1342         }
1343         return 0;
1344 fail:
1345         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1346                         spt, ge.val64, ge.type);
1347         return ret;
1348 }
1349
1350 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1351                 struct intel_gvt_gtt_entry *se, unsigned long index)
1352 {
1353         struct intel_vgpu *vgpu = spt->vgpu;
1354         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1355         int ret;
1356
1357         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1358                                spt->shadow_page.type, se->val64, index);
1359
1360         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1361                     se->type, index, se->val64);
1362
1363         if (!ops->test_present(se))
1364                 return 0;
1365
1366         if (ops->get_pfn(se) ==
1367             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1368                 return 0;
1369
1370         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1371                 struct intel_vgpu_ppgtt_spt *s =
1372                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1373                 if (!s) {
1374                         gvt_vgpu_err("fail to find guest page\n");
1375                         ret = -ENXIO;
1376                         goto fail;
1377                 }
1378                 ret = ppgtt_invalidate_spt(s);
1379                 if (ret)
1380                         goto fail;
1381         } else {
1382                 /* We don't setup 64K shadow entry so far. */
1383                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1384                      "suspicious 64K entry\n");
1385                 ppgtt_invalidate_pte(spt, se);
1386         }
1387
1388         return 0;
1389 fail:
1390         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1391                         spt, se->val64, se->type);
1392         return ret;
1393 }
1394
1395 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1396                 struct intel_gvt_gtt_entry *we, unsigned long index)
1397 {
1398         struct intel_vgpu *vgpu = spt->vgpu;
1399         struct intel_gvt_gtt_entry m;
1400         struct intel_vgpu_ppgtt_spt *s;
1401         int ret;
1402
1403         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1404                                we->val64, index);
1405
1406         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1407                     we->type, index, we->val64);
1408
1409         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1410                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1411                 if (IS_ERR(s)) {
1412                         ret = PTR_ERR(s);
1413                         goto fail;
1414                 }
1415                 ppgtt_get_shadow_entry(spt, &m, index);
1416                 ppgtt_generate_shadow_entry(&m, s, we);
1417                 ppgtt_set_shadow_entry(spt, &m, index);
1418         } else {
1419                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1420                 if (ret)
1421                         goto fail;
1422         }
1423         return 0;
1424 fail:
1425         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1426                 spt, we->val64, we->type);
1427         return ret;
1428 }
1429
1430 static int sync_oos_page(struct intel_vgpu *vgpu,
1431                 struct intel_vgpu_oos_page *oos_page)
1432 {
1433         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1434         struct intel_gvt *gvt = vgpu->gvt;
1435         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1436         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1437         struct intel_gvt_gtt_entry old, new;
1438         int index;
1439         int ret;
1440
1441         trace_oos_change(vgpu->id, "sync", oos_page->id,
1442                          spt, spt->guest_page.type);
1443
1444         old.type = new.type = get_entry_type(spt->guest_page.type);
1445         old.val64 = new.val64 = 0;
1446
1447         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1448                                 info->gtt_entry_size_shift); index++) {
1449                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1450                 ops->get_entry(NULL, &new, index, true,
1451                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1452
1453                 if (old.val64 == new.val64
1454                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1455                         continue;
1456
1457                 trace_oos_sync(vgpu->id, oos_page->id,
1458                                 spt, spt->guest_page.type,
1459                                 new.val64, index);
1460
1461                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1462                 if (ret)
1463                         return ret;
1464
1465                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1466         }
1467
1468         spt->guest_page.write_cnt = 0;
1469         list_del_init(&spt->post_shadow_list);
1470         return 0;
1471 }
1472
1473 static int detach_oos_page(struct intel_vgpu *vgpu,
1474                 struct intel_vgpu_oos_page *oos_page)
1475 {
1476         struct intel_gvt *gvt = vgpu->gvt;
1477         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1478
1479         trace_oos_change(vgpu->id, "detach", oos_page->id,
1480                          spt, spt->guest_page.type);
1481
1482         spt->guest_page.write_cnt = 0;
1483         spt->guest_page.oos_page = NULL;
1484         oos_page->spt = NULL;
1485
1486         list_del_init(&oos_page->vm_list);
1487         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1488
1489         return 0;
1490 }
1491
1492 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1493                 struct intel_vgpu_ppgtt_spt *spt)
1494 {
1495         struct intel_gvt *gvt = spt->vgpu->gvt;
1496         int ret;
1497
1498         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1499                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1500                         oos_page->mem, I915_GTT_PAGE_SIZE);
1501         if (ret)
1502                 return ret;
1503
1504         oos_page->spt = spt;
1505         spt->guest_page.oos_page = oos_page;
1506
1507         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1508
1509         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1510                          spt, spt->guest_page.type);
1511         return 0;
1512 }
1513
1514 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1515 {
1516         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1517         int ret;
1518
1519         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1520         if (ret)
1521                 return ret;
1522
1523         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1524                          spt, spt->guest_page.type);
1525
1526         list_del_init(&oos_page->vm_list);
1527         return sync_oos_page(spt->vgpu, oos_page);
1528 }
1529
1530 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1531 {
1532         struct intel_gvt *gvt = spt->vgpu->gvt;
1533         struct intel_gvt_gtt *gtt = &gvt->gtt;
1534         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1535         int ret;
1536
1537         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1538
1539         if (list_empty(&gtt->oos_page_free_list_head)) {
1540                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1541                         struct intel_vgpu_oos_page, list);
1542                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1543                 if (ret)
1544                         return ret;
1545                 ret = detach_oos_page(spt->vgpu, oos_page);
1546                 if (ret)
1547                         return ret;
1548         } else
1549                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1550                         struct intel_vgpu_oos_page, list);
1551         return attach_oos_page(oos_page, spt);
1552 }
1553
1554 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1555 {
1556         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1557
1558         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1559                 return -EINVAL;
1560
1561         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1562                          spt, spt->guest_page.type);
1563
1564         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1565         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1566 }
1567
1568 /**
1569  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1570  * @vgpu: a vGPU
1571  *
1572  * This function is called before submitting a guest workload to host,
1573  * to sync all the out-of-synced shadow for vGPU
1574  *
1575  * Returns:
1576  * Zero on success, negative error code if failed.
1577  */
1578 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1579 {
1580         struct list_head *pos, *n;
1581         struct intel_vgpu_oos_page *oos_page;
1582         int ret;
1583
1584         if (!enable_out_of_sync)
1585                 return 0;
1586
1587         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1588                 oos_page = container_of(pos,
1589                                 struct intel_vgpu_oos_page, vm_list);
1590                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1591                 if (ret)
1592                         return ret;
1593         }
1594         return 0;
1595 }
1596
1597 /*
1598  * The heart of PPGTT shadow page table.
1599  */
1600 static int ppgtt_handle_guest_write_page_table(
1601                 struct intel_vgpu_ppgtt_spt *spt,
1602                 struct intel_gvt_gtt_entry *we, unsigned long index)
1603 {
1604         struct intel_vgpu *vgpu = spt->vgpu;
1605         int type = spt->shadow_page.type;
1606         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1607         struct intel_gvt_gtt_entry old_se;
1608         int new_present;
1609         int i, ret;
1610
1611         new_present = ops->test_present(we);
1612
1613         /*
1614          * Adding the new entry first and then removing the old one, that can
1615          * guarantee the ppgtt table is validated during the window between
1616          * adding and removal.
1617          */
1618         ppgtt_get_shadow_entry(spt, &old_se, index);
1619
1620         if (new_present) {
1621                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1622                 if (ret)
1623                         goto fail;
1624         }
1625
1626         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1627         if (ret)
1628                 goto fail;
1629
1630         if (!new_present) {
1631                 /* For 64KB splited entries, we need clear them all. */
1632                 if (ops->test_64k_splited(&old_se) &&
1633                     !(index % GTT_64K_PTE_STRIDE)) {
1634                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1635                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1636                                 ops->clear_64k_splited(&old_se);
1637                                 ops->set_pfn(&old_se,
1638                                         vgpu->gtt.scratch_pt[type].page_mfn);
1639                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1640                         }
1641                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1642                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1643                         ops->clear_pse(&old_se);
1644                         ops->set_pfn(&old_se,
1645                                      vgpu->gtt.scratch_pt[type].page_mfn);
1646                         ppgtt_set_shadow_entry(spt, &old_se, index);
1647                 } else {
1648                         ops->set_pfn(&old_se,
1649                                      vgpu->gtt.scratch_pt[type].page_mfn);
1650                         ppgtt_set_shadow_entry(spt, &old_se, index);
1651                 }
1652         }
1653
1654         return 0;
1655 fail:
1656         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1657                         spt, we->val64, we->type);
1658         return ret;
1659 }
1660
1661
1662
1663 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1664 {
1665         return enable_out_of_sync
1666                 && gtt_type_is_pte_pt(spt->guest_page.type)
1667                 && spt->guest_page.write_cnt >= 2;
1668 }
1669
1670 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1671                 unsigned long index)
1672 {
1673         set_bit(index, spt->post_shadow_bitmap);
1674         if (!list_empty(&spt->post_shadow_list))
1675                 return;
1676
1677         list_add_tail(&spt->post_shadow_list,
1678                         &spt->vgpu->gtt.post_shadow_list_head);
1679 }
1680
1681 /**
1682  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1683  * @vgpu: a vGPU
1684  *
1685  * This function is called before submitting a guest workload to host,
1686  * to flush all the post shadows for a vGPU.
1687  *
1688  * Returns:
1689  * Zero on success, negative error code if failed.
1690  */
1691 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1692 {
1693         struct list_head *pos, *n;
1694         struct intel_vgpu_ppgtt_spt *spt;
1695         struct intel_gvt_gtt_entry ge;
1696         unsigned long index;
1697         int ret;
1698
1699         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1700                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1701                                 post_shadow_list);
1702
1703                 for_each_set_bit(index, spt->post_shadow_bitmap,
1704                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1705                         ppgtt_get_guest_entry(spt, &ge, index);
1706
1707                         ret = ppgtt_handle_guest_write_page_table(spt,
1708                                                         &ge, index);
1709                         if (ret)
1710                                 return ret;
1711                         clear_bit(index, spt->post_shadow_bitmap);
1712                 }
1713                 list_del_init(&spt->post_shadow_list);
1714         }
1715         return 0;
1716 }
1717
1718 static int ppgtt_handle_guest_write_page_table_bytes(
1719                 struct intel_vgpu_ppgtt_spt *spt,
1720                 u64 pa, void *p_data, int bytes)
1721 {
1722         struct intel_vgpu *vgpu = spt->vgpu;
1723         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1724         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1725         struct intel_gvt_gtt_entry we, se;
1726         unsigned long index;
1727         int ret;
1728
1729         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1730
1731         ppgtt_get_guest_entry(spt, &we, index);
1732
1733         /*
1734          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1735          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1736          * ignored.
1737          */
1738         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1739             (index % GTT_64K_PTE_STRIDE)) {
1740                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1741                             index);
1742                 return 0;
1743         }
1744
1745         if (bytes == info->gtt_entry_size) {
1746                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1747                 if (ret)
1748                         return ret;
1749         } else {
1750                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1751                         int type = spt->shadow_page.type;
1752
1753                         ppgtt_get_shadow_entry(spt, &se, index);
1754                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1755                         if (ret)
1756                                 return ret;
1757                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1758                         ppgtt_set_shadow_entry(spt, &se, index);
1759                 }
1760                 ppgtt_set_post_shadow(spt, index);
1761         }
1762
1763         if (!enable_out_of_sync)
1764                 return 0;
1765
1766         spt->guest_page.write_cnt++;
1767
1768         if (spt->guest_page.oos_page)
1769                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1770                                 false, 0, vgpu);
1771
1772         if (can_do_out_of_sync(spt)) {
1773                 if (!spt->guest_page.oos_page)
1774                         ppgtt_allocate_oos_page(spt);
1775
1776                 ret = ppgtt_set_guest_page_oos(spt);
1777                 if (ret < 0)
1778                         return ret;
1779         }
1780         return 0;
1781 }
1782
1783 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1784 {
1785         struct intel_vgpu *vgpu = mm->vgpu;
1786         struct intel_gvt *gvt = vgpu->gvt;
1787         struct intel_gvt_gtt *gtt = &gvt->gtt;
1788         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789         struct intel_gvt_gtt_entry se;
1790         int index;
1791
1792         if (!mm->ppgtt_mm.shadowed)
1793                 return;
1794
1795         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1796                 ppgtt_get_shadow_root_entry(mm, &se, index);
1797
1798                 if (!ops->test_present(&se))
1799                         continue;
1800
1801                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1802                 se.val64 = 0;
1803                 ppgtt_set_shadow_root_entry(mm, &se, index);
1804
1805                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1806                                        NULL, se.type, se.val64, index);
1807         }
1808
1809         mm->ppgtt_mm.shadowed = false;
1810 }
1811
1812
1813 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1814 {
1815         struct intel_vgpu *vgpu = mm->vgpu;
1816         struct intel_gvt *gvt = vgpu->gvt;
1817         struct intel_gvt_gtt *gtt = &gvt->gtt;
1818         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1819         struct intel_vgpu_ppgtt_spt *spt;
1820         struct intel_gvt_gtt_entry ge, se;
1821         int index, ret;
1822
1823         if (mm->ppgtt_mm.shadowed)
1824                 return 0;
1825
1826         mm->ppgtt_mm.shadowed = true;
1827
1828         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1829                 ppgtt_get_guest_root_entry(mm, &ge, index);
1830
1831                 if (!ops->test_present(&ge))
1832                         continue;
1833
1834                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1835                                        ge.type, ge.val64, index);
1836
1837                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1838                 if (IS_ERR(spt)) {
1839                         gvt_vgpu_err("fail to populate guest root pointer\n");
1840                         ret = PTR_ERR(spt);
1841                         goto fail;
1842                 }
1843                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1844                 ppgtt_set_shadow_root_entry(mm, &se, index);
1845
1846                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1847                                        NULL, se.type, se.val64, index);
1848         }
1849
1850         return 0;
1851 fail:
1852         invalidate_ppgtt_mm(mm);
1853         return ret;
1854 }
1855
1856 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1857 {
1858         struct intel_vgpu_mm *mm;
1859
1860         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1861         if (!mm)
1862                 return NULL;
1863
1864         mm->vgpu = vgpu;
1865         kref_init(&mm->ref);
1866         atomic_set(&mm->pincount, 0);
1867
1868         return mm;
1869 }
1870
1871 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1872 {
1873         kfree(mm);
1874 }
1875
1876 /**
1877  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1878  * @vgpu: a vGPU
1879  * @root_entry_type: ppgtt root entry type
1880  * @pdps: guest pdps.
1881  *
1882  * This function is used to create a ppgtt mm object for a vGPU.
1883  *
1884  * Returns:
1885  * Zero on success, negative error code in pointer if failed.
1886  */
1887 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1888                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1889 {
1890         struct intel_gvt *gvt = vgpu->gvt;
1891         struct intel_vgpu_mm *mm;
1892         int ret;
1893
1894         mm = vgpu_alloc_mm(vgpu);
1895         if (!mm)
1896                 return ERR_PTR(-ENOMEM);
1897
1898         mm->type = INTEL_GVT_MM_PPGTT;
1899
1900         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1901                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1902         mm->ppgtt_mm.root_entry_type = root_entry_type;
1903
1904         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1905         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1906         INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1907
1908         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1909                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1910         else
1911                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1912                        sizeof(mm->ppgtt_mm.guest_pdps));
1913
1914         ret = shadow_ppgtt_mm(mm);
1915         if (ret) {
1916                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1917                 vgpu_free_mm(mm);
1918                 return ERR_PTR(ret);
1919         }
1920
1921         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1922
1923         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1924         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1925         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1926
1927         return mm;
1928 }
1929
1930 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1931 {
1932         struct intel_vgpu_mm *mm;
1933         unsigned long nr_entries;
1934
1935         mm = vgpu_alloc_mm(vgpu);
1936         if (!mm)
1937                 return ERR_PTR(-ENOMEM);
1938
1939         mm->type = INTEL_GVT_MM_GGTT;
1940
1941         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1942         mm->ggtt_mm.virtual_ggtt =
1943                 vzalloc(array_size(nr_entries,
1944                                    vgpu->gvt->device_info.gtt_entry_size));
1945         if (!mm->ggtt_mm.virtual_ggtt) {
1946                 vgpu_free_mm(mm);
1947                 return ERR_PTR(-ENOMEM);
1948         }
1949
1950         mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1951         if (!mm->ggtt_mm.host_ggtt_aperture) {
1952                 vfree(mm->ggtt_mm.virtual_ggtt);
1953                 vgpu_free_mm(mm);
1954                 return ERR_PTR(-ENOMEM);
1955         }
1956
1957         mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1958         if (!mm->ggtt_mm.host_ggtt_hidden) {
1959                 vfree(mm->ggtt_mm.host_ggtt_aperture);
1960                 vfree(mm->ggtt_mm.virtual_ggtt);
1961                 vgpu_free_mm(mm);
1962                 return ERR_PTR(-ENOMEM);
1963         }
1964
1965         return mm;
1966 }
1967
1968 /**
1969  * _intel_vgpu_mm_release - destroy a mm object
1970  * @mm_ref: a kref object
1971  *
1972  * This function is used to destroy a mm object for vGPU
1973  *
1974  */
1975 void _intel_vgpu_mm_release(struct kref *mm_ref)
1976 {
1977         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1978
1979         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1980                 gvt_err("vgpu mm pin count bug detected\n");
1981
1982         if (mm->type == INTEL_GVT_MM_PPGTT) {
1983                 list_del(&mm->ppgtt_mm.list);
1984
1985                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1986                 list_del(&mm->ppgtt_mm.lru_list);
1987                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1988
1989                 invalidate_ppgtt_mm(mm);
1990         } else {
1991                 vfree(mm->ggtt_mm.virtual_ggtt);
1992                 vfree(mm->ggtt_mm.host_ggtt_aperture);
1993                 vfree(mm->ggtt_mm.host_ggtt_hidden);
1994         }
1995
1996         vgpu_free_mm(mm);
1997 }
1998
1999 /**
2000  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2001  * @mm: a vGPU mm object
2002  *
2003  * This function is called when user doesn't want to use a vGPU mm object
2004  */
2005 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2006 {
2007         atomic_dec_if_positive(&mm->pincount);
2008 }
2009
2010 /**
2011  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2012  * @mm: target vgpu mm
2013  *
2014  * This function is called when user wants to use a vGPU mm object. If this
2015  * mm object hasn't been shadowed yet, the shadow will be populated at this
2016  * time.
2017  *
2018  * Returns:
2019  * Zero on success, negative error code if failed.
2020  */
2021 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2022 {
2023         int ret;
2024
2025         atomic_inc(&mm->pincount);
2026
2027         if (mm->type == INTEL_GVT_MM_PPGTT) {
2028                 ret = shadow_ppgtt_mm(mm);
2029                 if (ret)
2030                         return ret;
2031
2032                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2033                 list_move_tail(&mm->ppgtt_mm.lru_list,
2034                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2035                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2036         }
2037
2038         return 0;
2039 }
2040
2041 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2042 {
2043         struct intel_vgpu_mm *mm;
2044         struct list_head *pos, *n;
2045
2046         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2047
2048         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2049                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2050
2051                 if (atomic_read(&mm->pincount))
2052                         continue;
2053
2054                 list_del_init(&mm->ppgtt_mm.lru_list);
2055                 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2056                 invalidate_ppgtt_mm(mm);
2057                 return 1;
2058         }
2059         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2060         return 0;
2061 }
2062
2063 /*
2064  * GMA translation APIs.
2065  */
2066 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2067                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2068 {
2069         struct intel_vgpu *vgpu = mm->vgpu;
2070         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2071         struct intel_vgpu_ppgtt_spt *s;
2072
2073         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2074         if (!s)
2075                 return -ENXIO;
2076
2077         if (!guest)
2078                 ppgtt_get_shadow_entry(s, e, index);
2079         else
2080                 ppgtt_get_guest_entry(s, e, index);
2081         return 0;
2082 }
2083
2084 /**
2085  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2086  * @mm: mm object. could be a PPGTT or GGTT mm object
2087  * @gma: graphics memory address in this mm object
2088  *
2089  * This function is used to translate a graphics memory address in specific
2090  * graphics memory space to guest physical address.
2091  *
2092  * Returns:
2093  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2094  */
2095 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2096 {
2097         struct intel_vgpu *vgpu = mm->vgpu;
2098         struct intel_gvt *gvt = vgpu->gvt;
2099         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2100         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2101         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2102         unsigned long gma_index[4];
2103         struct intel_gvt_gtt_entry e;
2104         int i, levels = 0;
2105         int ret;
2106
2107         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2108                    mm->type != INTEL_GVT_MM_PPGTT);
2109
2110         if (mm->type == INTEL_GVT_MM_GGTT) {
2111                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2112                         goto err;
2113
2114                 ggtt_get_guest_entry(mm, &e,
2115                         gma_ops->gma_to_ggtt_pte_index(gma));
2116
2117                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2118                         + (gma & ~I915_GTT_PAGE_MASK);
2119
2120                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2121         } else {
2122                 switch (mm->ppgtt_mm.root_entry_type) {
2123                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2124                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2125
2126                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2127                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2128                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2129                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2130                         levels = 4;
2131                         break;
2132                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2133                         ppgtt_get_shadow_root_entry(mm, &e,
2134                                         gma_ops->gma_to_l3_pdp_index(gma));
2135
2136                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2137                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2138                         levels = 2;
2139                         break;
2140                 default:
2141                         GEM_BUG_ON(1);
2142                 }
2143
2144                 /* walk the shadow page table and get gpa from guest entry */
2145                 for (i = 0; i < levels; i++) {
2146                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2147                                 (i == levels - 1));
2148                         if (ret)
2149                                 goto err;
2150
2151                         if (!pte_ops->test_present(&e)) {
2152                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2153                                 goto err;
2154                         }
2155                 }
2156
2157                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2158                                         (gma & ~I915_GTT_PAGE_MASK);
2159                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2160                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2161         }
2162
2163         return gpa;
2164 err:
2165         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2166         return INTEL_GVT_INVALID_ADDR;
2167 }
2168
2169 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2170         unsigned int off, void *p_data, unsigned int bytes)
2171 {
2172         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2173         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2174         unsigned long index = off >> info->gtt_entry_size_shift;
2175         unsigned long gma;
2176         struct intel_gvt_gtt_entry e;
2177
2178         if (bytes != 4 && bytes != 8)
2179                 return -EINVAL;
2180
2181         gma = index << I915_GTT_PAGE_SHIFT;
2182         if (!intel_gvt_ggtt_validate_range(vgpu,
2183                                            gma, 1 << I915_GTT_PAGE_SHIFT)) {
2184                 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2185                 memset(p_data, 0, bytes);
2186                 return 0;
2187         }
2188
2189         ggtt_get_guest_entry(ggtt_mm, &e, index);
2190         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2191                         bytes);
2192         return 0;
2193 }
2194
2195 /**
2196  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2197  * @vgpu: a vGPU
2198  * @off: register offset
2199  * @p_data: data will be returned to guest
2200  * @bytes: data length
2201  *
2202  * This function is used to emulate the GTT MMIO register read
2203  *
2204  * Returns:
2205  * Zero on success, error code if failed.
2206  */
2207 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2208         void *p_data, unsigned int bytes)
2209 {
2210         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2211         int ret;
2212
2213         if (bytes != 4 && bytes != 8)
2214                 return -EINVAL;
2215
2216         off -= info->gtt_start_offset;
2217         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2218         return ret;
2219 }
2220
2221 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2222                 struct intel_gvt_gtt_entry *entry)
2223 {
2224         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2225         unsigned long pfn;
2226
2227         pfn = pte_ops->get_pfn(entry);
2228         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2229                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2230                                                 pfn << PAGE_SHIFT);
2231 }
2232
2233 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2234         void *p_data, unsigned int bytes)
2235 {
2236         struct intel_gvt *gvt = vgpu->gvt;
2237         const struct intel_gvt_device_info *info = &gvt->device_info;
2238         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2239         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2240         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2241         unsigned long gma, gfn;
2242         struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2243         struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2244         dma_addr_t dma_addr;
2245         int ret;
2246         struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2247         bool partial_update = false;
2248
2249         if (bytes != 4 && bytes != 8)
2250                 return -EINVAL;
2251
2252         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2253
2254         /* the VM may configure the whole GM space when ballooning is used */
2255         if (!vgpu_gmadr_is_valid(vgpu, gma))
2256                 return 0;
2257
2258         e.type = GTT_TYPE_GGTT_PTE;
2259         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2260                         bytes);
2261
2262         /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2263          * write, save the first 4 bytes in a list and update virtual
2264          * PTE. Only update shadow PTE when the second 4 bytes comes.
2265          */
2266         if (bytes < info->gtt_entry_size) {
2267                 bool found = false;
2268
2269                 list_for_each_entry_safe(pos, n,
2270                                 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2271                         if (g_gtt_index == pos->offset >>
2272                                         info->gtt_entry_size_shift) {
2273                                 if (off != pos->offset) {
2274                                         /* the second partial part*/
2275                                         int last_off = pos->offset &
2276                                                 (info->gtt_entry_size - 1);
2277
2278                                         memcpy((void *)&e.val64 + last_off,
2279                                                 (void *)&pos->data + last_off,
2280                                                 bytes);
2281
2282                                         list_del(&pos->list);
2283                                         kfree(pos);
2284                                         found = true;
2285                                         break;
2286                                 }
2287
2288                                 /* update of the first partial part */
2289                                 pos->data = e.val64;
2290                                 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2291                                 return 0;
2292                         }
2293                 }
2294
2295                 if (!found) {
2296                         /* the first partial part */
2297                         partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2298                         if (!partial_pte)
2299                                 return -ENOMEM;
2300                         partial_pte->offset = off;
2301                         partial_pte->data = e.val64;
2302                         list_add_tail(&partial_pte->list,
2303                                 &ggtt_mm->ggtt_mm.partial_pte_list);
2304                         partial_update = true;
2305                 }
2306         }
2307
2308         if (!partial_update && (ops->test_present(&e))) {
2309                 gfn = ops->get_pfn(&e);
2310                 m.val64 = e.val64;
2311                 m.type = e.type;
2312
2313                 /* one PTE update may be issued in multiple writes and the
2314                  * first write may not construct a valid gfn
2315                  */
2316                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2317                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2318                         goto out;
2319                 }
2320
2321                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2322                                                         PAGE_SIZE, &dma_addr);
2323                 if (ret) {
2324                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2325                         /* guest driver may read/write the entry when partial
2326                          * update the entry in this situation p2m will fail
2327                          * settting the shadow entry to point to a scratch page
2328                          */
2329                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2330                 } else
2331                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2332         } else {
2333                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2334                 ops->clear_present(&m);
2335         }
2336
2337 out:
2338         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2339
2340         ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2341         ggtt_invalidate_pte(vgpu, &e);
2342
2343         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2344         ggtt_invalidate(gvt->gt);
2345         return 0;
2346 }
2347
2348 /*
2349  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2350  * @vgpu: a vGPU
2351  * @off: register offset
2352  * @p_data: data from guest write
2353  * @bytes: data length
2354  *
2355  * This function is used to emulate the GTT MMIO register write
2356  *
2357  * Returns:
2358  * Zero on success, error code if failed.
2359  */
2360 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2361                 unsigned int off, void *p_data, unsigned int bytes)
2362 {
2363         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2364         int ret;
2365         struct intel_vgpu_submission *s = &vgpu->submission;
2366         struct intel_engine_cs *engine;
2367         int i;
2368
2369         if (bytes != 4 && bytes != 8)
2370                 return -EINVAL;
2371
2372         off -= info->gtt_start_offset;
2373         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2374
2375         /* if ggtt of last submitted context is written,
2376          * that context is probably got unpinned.
2377          * Set last shadowed ctx to invalid.
2378          */
2379         for_each_engine(engine, vgpu->gvt->gt, i) {
2380                 if (!s->last_ctx[i].valid)
2381                         continue;
2382
2383                 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2384                         s->last_ctx[i].valid = false;
2385         }
2386         return ret;
2387 }
2388
2389 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2390                 enum intel_gvt_gtt_type type)
2391 {
2392         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2393         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2394         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2395         int page_entry_num = I915_GTT_PAGE_SIZE >>
2396                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2397         void *scratch_pt;
2398         int i;
2399         struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2400         dma_addr_t daddr;
2401
2402         if (drm_WARN_ON(&i915->drm,
2403                         type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2404                 return -EINVAL;
2405
2406         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2407         if (!scratch_pt) {
2408                 gvt_vgpu_err("fail to allocate scratch page\n");
2409                 return -ENOMEM;
2410         }
2411
2412         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2413                         4096, PCI_DMA_BIDIRECTIONAL);
2414         if (dma_mapping_error(dev, daddr)) {
2415                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2416                 __free_page(virt_to_page(scratch_pt));
2417                 return -ENOMEM;
2418         }
2419         gtt->scratch_pt[type].page_mfn =
2420                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2421         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2422         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2423                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2424
2425         /* Build the tree by full filled the scratch pt with the entries which
2426          * point to the next level scratch pt or scratch page. The
2427          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2428          * 'type' pt.
2429          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2430          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2431          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2432          */
2433         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2434                 struct intel_gvt_gtt_entry se;
2435
2436                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2437                 se.type = get_entry_type(type - 1);
2438                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2439
2440                 /* The entry parameters like present/writeable/cache type
2441                  * set to the same as i915's scratch page tree.
2442                  */
2443                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2444                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2445                         se.val64 |= PPAT_CACHED;
2446
2447                 for (i = 0; i < page_entry_num; i++)
2448                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2449         }
2450
2451         return 0;
2452 }
2453
2454 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2455 {
2456         int i;
2457         struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2458         dma_addr_t daddr;
2459
2460         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2461                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2462                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2463                                         I915_GTT_PAGE_SHIFT);
2464                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2465                         __free_page(vgpu->gtt.scratch_pt[i].page);
2466                         vgpu->gtt.scratch_pt[i].page = NULL;
2467                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2468                 }
2469         }
2470
2471         return 0;
2472 }
2473
2474 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2475 {
2476         int i, ret;
2477
2478         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2479                 ret = alloc_scratch_pages(vgpu, i);
2480                 if (ret)
2481                         goto err;
2482         }
2483
2484         return 0;
2485
2486 err:
2487         release_scratch_page_tree(vgpu);
2488         return ret;
2489 }
2490
2491 /**
2492  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2493  * @vgpu: a vGPU
2494  *
2495  * This function is used to initialize per-vGPU graphics memory virtualization
2496  * components.
2497  *
2498  * Returns:
2499  * Zero on success, error code if failed.
2500  */
2501 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2502 {
2503         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2504
2505         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2506
2507         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2508         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2509         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2510
2511         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2512         if (IS_ERR(gtt->ggtt_mm)) {
2513                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2514                 return PTR_ERR(gtt->ggtt_mm);
2515         }
2516
2517         intel_vgpu_reset_ggtt(vgpu, false);
2518
2519         INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2520
2521         return create_scratch_page_tree(vgpu);
2522 }
2523
2524 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2525 {
2526         struct list_head *pos, *n;
2527         struct intel_vgpu_mm *mm;
2528
2529         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2530                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2531                 intel_vgpu_destroy_mm(mm);
2532         }
2533
2534         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2535                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2536
2537         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2538                 gvt_err("Why we still has spt not freed?\n");
2539                 ppgtt_free_all_spt(vgpu);
2540         }
2541 }
2542
2543 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2544 {
2545         struct intel_gvt_partial_pte *pos, *next;
2546
2547         list_for_each_entry_safe(pos, next,
2548                                  &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2549                                  list) {
2550                 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2551                         pos->offset, pos->data);
2552                 kfree(pos);
2553         }
2554         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2555         vgpu->gtt.ggtt_mm = NULL;
2556 }
2557
2558 /**
2559  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2560  * @vgpu: a vGPU
2561  *
2562  * This function is used to clean up per-vGPU graphics memory virtualization
2563  * components.
2564  *
2565  * Returns:
2566  * Zero on success, error code if failed.
2567  */
2568 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2569 {
2570         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2571         intel_vgpu_destroy_ggtt_mm(vgpu);
2572         release_scratch_page_tree(vgpu);
2573 }
2574
2575 static void clean_spt_oos(struct intel_gvt *gvt)
2576 {
2577         struct intel_gvt_gtt *gtt = &gvt->gtt;
2578         struct list_head *pos, *n;
2579         struct intel_vgpu_oos_page *oos_page;
2580
2581         WARN(!list_empty(&gtt->oos_page_use_list_head),
2582                 "someone is still using oos page\n");
2583
2584         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2585                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2586                 list_del(&oos_page->list);
2587                 free_page((unsigned long)oos_page->mem);
2588                 kfree(oos_page);
2589         }
2590 }
2591
2592 static int setup_spt_oos(struct intel_gvt *gvt)
2593 {
2594         struct intel_gvt_gtt *gtt = &gvt->gtt;
2595         struct intel_vgpu_oos_page *oos_page;
2596         int i;
2597         int ret;
2598
2599         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2600         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2601
2602         for (i = 0; i < preallocated_oos_pages; i++) {
2603                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2604                 if (!oos_page) {
2605                         ret = -ENOMEM;
2606                         goto fail;
2607                 }
2608                 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2609                 if (!oos_page->mem) {
2610                         ret = -ENOMEM;
2611                         kfree(oos_page);
2612                         goto fail;
2613                 }
2614
2615                 INIT_LIST_HEAD(&oos_page->list);
2616                 INIT_LIST_HEAD(&oos_page->vm_list);
2617                 oos_page->id = i;
2618                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2619         }
2620
2621         gvt_dbg_mm("%d oos pages preallocated\n", i);
2622
2623         return 0;
2624 fail:
2625         clean_spt_oos(gvt);
2626         return ret;
2627 }
2628
2629 /**
2630  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2631  * @vgpu: a vGPU
2632  * @pdps: pdp root array
2633  *
2634  * This function is used to find a PPGTT mm object from mm object pool
2635  *
2636  * Returns:
2637  * pointer to mm object on success, NULL if failed.
2638  */
2639 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2640                 u64 pdps[])
2641 {
2642         struct intel_vgpu_mm *mm;
2643         struct list_head *pos;
2644
2645         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2646                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2647
2648                 switch (mm->ppgtt_mm.root_entry_type) {
2649                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2650                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2651                                 return mm;
2652                         break;
2653                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2654                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2655                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2656                                 return mm;
2657                         break;
2658                 default:
2659                         GEM_BUG_ON(1);
2660                 }
2661         }
2662         return NULL;
2663 }
2664
2665 /**
2666  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2667  * @vgpu: a vGPU
2668  * @root_entry_type: ppgtt root entry type
2669  * @pdps: guest pdps
2670  *
2671  * This function is used to find or create a PPGTT mm object from a guest.
2672  *
2673  * Returns:
2674  * Zero on success, negative error code if failed.
2675  */
2676 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2677                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2678 {
2679         struct intel_vgpu_mm *mm;
2680
2681         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2682         if (mm) {
2683                 intel_vgpu_mm_get(mm);
2684         } else {
2685                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2686                 if (IS_ERR(mm))
2687                         gvt_vgpu_err("fail to create mm\n");
2688         }
2689         return mm;
2690 }
2691
2692 /**
2693  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2694  * @vgpu: a vGPU
2695  * @pdps: guest pdps
2696  *
2697  * This function is used to find a PPGTT mm object from a guest and destroy it.
2698  *
2699  * Returns:
2700  * Zero on success, negative error code if failed.
2701  */
2702 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2703 {
2704         struct intel_vgpu_mm *mm;
2705
2706         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2707         if (!mm) {
2708                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2709                 return -EINVAL;
2710         }
2711         intel_vgpu_mm_put(mm);
2712         return 0;
2713 }
2714
2715 /**
2716  * intel_gvt_init_gtt - initialize mm components of a GVT device
2717  * @gvt: GVT device
2718  *
2719  * This function is called at the initialization stage, to initialize
2720  * the mm components of a GVT device.
2721  *
2722  * Returns:
2723  * zero on success, negative error code if failed.
2724  */
2725 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2726 {
2727         int ret;
2728         void *page;
2729         struct device *dev = gvt->gt->i915->drm.dev;
2730         dma_addr_t daddr;
2731
2732         gvt_dbg_core("init gtt\n");
2733
2734         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2735         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2736
2737         page = (void *)get_zeroed_page(GFP_KERNEL);
2738         if (!page) {
2739                 gvt_err("fail to allocate scratch ggtt page\n");
2740                 return -ENOMEM;
2741         }
2742
2743         daddr = dma_map_page(dev, virt_to_page(page), 0,
2744                         4096, PCI_DMA_BIDIRECTIONAL);
2745         if (dma_mapping_error(dev, daddr)) {
2746                 gvt_err("fail to dmamap scratch ggtt page\n");
2747                 __free_page(virt_to_page(page));
2748                 return -ENOMEM;
2749         }
2750
2751         gvt->gtt.scratch_page = virt_to_page(page);
2752         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2753
2754         if (enable_out_of_sync) {
2755                 ret = setup_spt_oos(gvt);
2756                 if (ret) {
2757                         gvt_err("fail to initialize SPT oos\n");
2758                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2759                         __free_page(gvt->gtt.scratch_page);
2760                         return ret;
2761                 }
2762         }
2763         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2764         mutex_init(&gvt->gtt.ppgtt_mm_lock);
2765         return 0;
2766 }
2767
2768 /**
2769  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2770  * @gvt: GVT device
2771  *
2772  * This function is called at the driver unloading stage, to clean up the
2773  * the mm components of a GVT device.
2774  *
2775  */
2776 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2777 {
2778         struct device *dev = gvt->gt->i915->drm.dev;
2779         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2780                                         I915_GTT_PAGE_SHIFT);
2781
2782         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2783
2784         __free_page(gvt->gtt.scratch_page);
2785
2786         if (enable_out_of_sync)
2787                 clean_spt_oos(gvt);
2788 }
2789
2790 /**
2791  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2792  * @vgpu: a vGPU
2793  *
2794  * This function is called when invalidate all PPGTT instances of a vGPU.
2795  *
2796  */
2797 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2798 {
2799         struct list_head *pos, *n;
2800         struct intel_vgpu_mm *mm;
2801
2802         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2803                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2804                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2805                         mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2806                         list_del_init(&mm->ppgtt_mm.lru_list);
2807                         mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2808                         if (mm->ppgtt_mm.shadowed)
2809                                 invalidate_ppgtt_mm(mm);
2810                 }
2811         }
2812 }
2813
2814 /**
2815  * intel_vgpu_reset_ggtt - reset the GGTT entry
2816  * @vgpu: a vGPU
2817  * @invalidate_old: invalidate old entries
2818  *
2819  * This function is called at the vGPU create stage
2820  * to reset all the GGTT entries.
2821  *
2822  */
2823 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2824 {
2825         struct intel_gvt *gvt = vgpu->gvt;
2826         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2827         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2828         struct intel_gvt_gtt_entry old_entry;
2829         u32 index;
2830         u32 num_entries;
2831
2832         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2833         pte_ops->set_present(&entry);
2834
2835         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2836         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2837         while (num_entries--) {
2838                 if (invalidate_old) {
2839                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2840                         ggtt_invalidate_pte(vgpu, &old_entry);
2841                 }
2842                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2843         }
2844
2845         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2846         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2847         while (num_entries--) {
2848                 if (invalidate_old) {
2849                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2850                         ggtt_invalidate_pte(vgpu, &old_entry);
2851                 }
2852                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2853         }
2854
2855         ggtt_invalidate(gvt->gt);
2856 }
2857
2858 /**
2859  * intel_vgpu_reset_gtt - reset the all GTT related status
2860  * @vgpu: a vGPU
2861  *
2862  * This function is called from vfio core to reset reset all
2863  * GTT related status, including GGTT, PPGTT, scratch page.
2864  *
2865  */
2866 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2867 {
2868         /* Shadow pages are only created when there is no page
2869          * table tracking data, so remove page tracking data after
2870          * removing the shadow pages.
2871          */
2872         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2873         intel_vgpu_reset_ggtt(vgpu, true);
2874 }
2875
2876 /**
2877  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2878  * @gvt: intel gvt device
2879  *
2880  * This function is called at driver resume stage to restore
2881  * GGTT entries of every vGPU.
2882  *
2883  */
2884 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2885 {
2886         struct intel_vgpu *vgpu;
2887         struct intel_vgpu_mm *mm;
2888         int id;
2889         gen8_pte_t pte;
2890         u32 idx, num_low, num_hi, offset;
2891
2892         /* Restore dirty host ggtt for all vGPUs */
2893         idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2894                 mm = vgpu->gtt.ggtt_mm;
2895
2896                 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2897                 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2898                 for (idx = 0; idx < num_low; idx++) {
2899                         pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2900                         if (pte & _PAGE_PRESENT)
2901                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2902                 }
2903
2904                 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2905                 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2906                 for (idx = 0; idx < num_hi; idx++) {
2907                         pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2908                         if (pte & _PAGE_PRESENT)
2909                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2910                 }
2911         }
2912 }