Merge tag 'drm-intel-gt-next-2023-09-28' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gt / intel_workarounds.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17
18 /**
19  * DOC: Hardware workarounds
20  *
21  * Hardware workarounds are register programming documented to be executed in
22  * the driver that fall outside of the normal programming sequences for a
23  * platform. There are some basic categories of workarounds, depending on
24  * how/when they are applied:
25  *
26  * - Context workarounds: workarounds that touch registers that are
27  *   saved/restored to/from the HW context image. The list is emitted (via Load
28  *   Register Immediate commands) once when initializing the device and saved in
29  *   the default context. That default context is then used on every context
30  *   creation to have a "primed golden context", i.e. a context image that
31  *   already contains the changes needed to all the registers.
32  *
33  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
34  *   variants respective to the targeted platforms.
35  *
36  * - Engine workarounds: the list of these WAs is applied whenever the specific
37  *   engine is reset. It's also possible that a set of engine classes share a
38  *   common power domain and they are reset together. This happens on some
39  *   platforms with render and compute engines. In this case (at least) one of
40  *   them need to keeep the workaround programming: the approach taken in the
41  *   driver is to tie those workarounds to the first compute/render engine that
42  *   is registered.  When executing with GuC submission, engine resets are
43  *   outside of kernel driver control, hence the list of registers involved in
44  *   written once, on engine initialization, and then passed to GuC, that
45  *   saves/restores their values before/after the reset takes place. See
46  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
47  *
48  *   Workarounds for registers specific to RCS and CCS should be implemented in
49  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
50  *   registers belonging to BCS, VCS or VECS should be implemented in
51  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
52  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
53  *   should be implemented in general_render_compute_wa_init().
54  *
55  * - GT workarounds: the list of these WAs is applied whenever these registers
56  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
57  *
58  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
59  *   variants respective to the targeted platforms.
60  *
61  * - Register whitelist: some workarounds need to be implemented in userspace,
62  *   but need to touch privileged registers. The whitelist in the kernel
63  *   instructs the hardware to allow the access to happen. From the kernel side,
64  *   this is just a special case of a MMIO workaround (as we write the list of
65  *   these to/be-whitelisted registers to some special HW registers).
66  *
67  *   Register whitelisting should be done in the \*_whitelist_build() variants
68  *   respective to the targeted platforms.
69  *
70  * - Workaround batchbuffers: buffers that get executed automatically by the
71  *   hardware on every HW context restore. These buffers are created and
72  *   programmed in the default context so the hardware always go through those
73  *   programming sequences when switching contexts. The support for workaround
74  *   batchbuffers is enabled these hardware mechanisms:
75  *
76  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
77  *      context, pointing the hardware to jump to that location when that offset
78  *      is reached in the context restore. Workaround batchbuffer in the driver
79  *      currently uses this mechanism for all platforms.
80  *
81  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
82  *      pointing the hardware to a buffer to continue executing after the
83  *      engine registers are restored in a context restore sequence. This is
84  *      currently not used in the driver.
85  *
86  * - Other:  There are WAs that, due to their nature, cannot be applied from a
87  *   central place. Those are peppered around the rest of the code, as needed.
88  *   Workarounds related to the display IP are the main example.
89  *
90  * .. [1] Technically, some registers are powercontext saved & restored, so they
91  *    survive a suspend/resume. In practice, writing them again is not too
92  *    costly and simplifies things, so it's the approach taken in the driver.
93  */
94
95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
96                           const char *name, const char *engine_name)
97 {
98         wal->gt = gt;
99         wal->name = name;
100         wal->engine_name = engine_name;
101 }
102
103 #define WA_LIST_CHUNK (1 << 4)
104
105 static void wa_init_finish(struct i915_wa_list *wal)
106 {
107         /* Trim unused entries. */
108         if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
109                 struct i915_wa *list = kmemdup(wal->list,
110                                                wal->count * sizeof(*list),
111                                                GFP_KERNEL);
112
113                 if (list) {
114                         kfree(wal->list);
115                         wal->list = list;
116                 }
117         }
118
119         if (!wal->count)
120                 return;
121
122         drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
123                 wal->wa_count, wal->name, wal->engine_name);
124 }
125
126 static enum forcewake_domains
127 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
128 {
129         enum forcewake_domains fw = 0;
130         struct i915_wa *wa;
131         unsigned int i;
132
133         for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
134                 fw |= intel_uncore_forcewake_for_reg(uncore,
135                                                      wa->reg,
136                                                      FW_REG_READ |
137                                                      FW_REG_WRITE);
138
139         return fw;
140 }
141
142 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
143 {
144         unsigned int addr = i915_mmio_reg_offset(wa->reg);
145         struct drm_i915_private *i915 = wal->gt->i915;
146         unsigned int start = 0, end = wal->count;
147         const unsigned int grow = WA_LIST_CHUNK;
148         struct i915_wa *wa_;
149
150         GEM_BUG_ON(!is_power_of_2(grow));
151
152         if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
153                 struct i915_wa *list;
154
155                 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
156                                      GFP_KERNEL);
157                 if (!list) {
158                         drm_err(&i915->drm, "No space for workaround init!\n");
159                         return;
160                 }
161
162                 if (wal->list) {
163                         memcpy(list, wal->list, sizeof(*wa) * wal->count);
164                         kfree(wal->list);
165                 }
166
167                 wal->list = list;
168         }
169
170         while (start < end) {
171                 unsigned int mid = start + (end - start) / 2;
172
173                 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
174                         start = mid + 1;
175                 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
176                         end = mid;
177                 } else {
178                         wa_ = &wal->list[mid];
179
180                         if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
181                                 drm_err(&i915->drm,
182                                         "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
183                                         i915_mmio_reg_offset(wa_->reg),
184                                         wa_->clr, wa_->set);
185
186                                 wa_->set &= ~wa->clr;
187                         }
188
189                         wal->wa_count++;
190                         wa_->set |= wa->set;
191                         wa_->clr |= wa->clr;
192                         wa_->read |= wa->read;
193                         return;
194                 }
195         }
196
197         wal->wa_count++;
198         wa_ = &wal->list[wal->count++];
199         *wa_ = *wa;
200
201         while (wa_-- > wal->list) {
202                 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
203                            i915_mmio_reg_offset(wa_[1].reg));
204                 if (i915_mmio_reg_offset(wa_[1].reg) >
205                     i915_mmio_reg_offset(wa_[0].reg))
206                         break;
207
208                 swap(wa_[1], wa_[0]);
209         }
210 }
211
212 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
213                    u32 clear, u32 set, u32 read_mask, bool masked_reg)
214 {
215         struct i915_wa wa = {
216                 .reg  = reg,
217                 .clr  = clear,
218                 .set  = set,
219                 .read = read_mask,
220                 .masked_reg = masked_reg,
221         };
222
223         _wa_add(wal, &wa);
224 }
225
226 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
227                        u32 clear, u32 set, u32 read_mask, bool masked_reg)
228 {
229         struct i915_wa wa = {
230                 .mcr_reg = reg,
231                 .clr  = clear,
232                 .set  = set,
233                 .read = read_mask,
234                 .masked_reg = masked_reg,
235                 .is_mcr = 1,
236         };
237
238         _wa_add(wal, &wa);
239 }
240
241 static void
242 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
243 {
244         wa_add(wal, reg, clear, set, clear | set, false);
245 }
246
247 static void
248 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
249 {
250         wa_mcr_add(wal, reg, clear, set, clear | set, false);
251 }
252
253 static void
254 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
255 {
256         wa_write_clr_set(wal, reg, ~0, set);
257 }
258
259 static void
260 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
261 {
262         wa_mcr_write_clr_set(wal, reg, ~0, set);
263 }
264
265 static void
266 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
267 {
268         wa_write_clr_set(wal, reg, set, set);
269 }
270
271 static void
272 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
273 {
274         wa_mcr_write_clr_set(wal, reg, set, set);
275 }
276
277 static void
278 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
279 {
280         wa_write_clr_set(wal, reg, clr, 0);
281 }
282
283 static void
284 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
285 {
286         wa_mcr_write_clr_set(wal, reg, clr, 0);
287 }
288
289 /*
290  * WA operations on "masked register". A masked register has the upper 16 bits
291  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
292  * portion of the register without a rmw: you simply write in the upper 16 bits
293  * the mask of bits you are going to modify.
294  *
295  * The wa_masked_* family of functions already does the necessary operations to
296  * calculate the mask based on the parameters passed, so user only has to
297  * provide the lower 16 bits of that register.
298  */
299
300 static void
301 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
302 {
303         wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
304 }
305
306 static void
307 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
308 {
309         wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
310 }
311
312 static void
313 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
314 {
315         wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
316 }
317
318 static void
319 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
320 {
321         wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
322 }
323
324 static void
325 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
326                     u32 mask, u32 val)
327 {
328         wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
329 }
330
331 static void
332 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
333                         u32 mask, u32 val)
334 {
335         wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
336 }
337
338 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
339                                       struct i915_wa_list *wal)
340 {
341         wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
342 }
343
344 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
345                                       struct i915_wa_list *wal)
346 {
347         wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
348 }
349
350 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
351                                       struct i915_wa_list *wal)
352 {
353         wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
354
355         /* WaDisableAsyncFlipPerfMode:bdw,chv */
356         wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
357
358         /* WaDisablePartialInstShootdown:bdw,chv */
359         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
360                          PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
361
362         /* Use Force Non-Coherent whenever executing a 3D context. This is a
363          * workaround for a possible hang in the unlikely event a TLB
364          * invalidation occurs during a PSD flush.
365          */
366         /* WaForceEnableNonCoherent:bdw,chv */
367         /* WaHdcDisableFetchWhenMasked:bdw,chv */
368         wa_masked_en(wal, HDC_CHICKEN0,
369                      HDC_DONOT_FETCH_MEM_WHEN_MASKED |
370                      HDC_FORCE_NON_COHERENT);
371
372         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
373          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
374          *  polygons in the same 8x4 pixel/sample area to be processed without
375          *  stalling waiting for the earlier ones to write to Hierarchical Z
376          *  buffer."
377          *
378          * This optimization is off by default for BDW and CHV; turn it on.
379          */
380         wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
381
382         /* Wa4x4STCOptimizationDisable:bdw,chv */
383         wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
384
385         /*
386          * BSpec recommends 8x4 when MSAA is used,
387          * however in practice 16x4 seems fastest.
388          *
389          * Note that PS/WM thread counts depend on the WIZ hashing
390          * disable bit, which we don't touch here, but it's good
391          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
392          */
393         wa_masked_field_set(wal, GEN7_GT_MODE,
394                             GEN6_WIZ_HASHING_MASK,
395                             GEN6_WIZ_HASHING_16x4);
396 }
397
398 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
399                                      struct i915_wa_list *wal)
400 {
401         struct drm_i915_private *i915 = engine->i915;
402
403         gen8_ctx_workarounds_init(engine, wal);
404
405         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
406         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
407
408         /* WaDisableDopClockGating:bdw
409          *
410          * Also see the related UCGTCL1 write in bdw_init_clock_gating()
411          * to disable EUTC clock gating.
412          */
413         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
414                          DOP_CLOCK_GATING_DISABLE);
415
416         wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
417                          GEN8_SAMPLER_POWER_BYPASS_DIS);
418
419         wa_masked_en(wal, HDC_CHICKEN0,
420                      /* WaForceContextSaveRestoreNonCoherent:bdw */
421                      HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
422                      /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
423                      (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
424 }
425
426 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
427                                      struct i915_wa_list *wal)
428 {
429         gen8_ctx_workarounds_init(engine, wal);
430
431         /* WaDisableThreadStallDopClockGating:chv */
432         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
433
434         /* Improve HiZ throughput on CHV. */
435         wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
436 }
437
438 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
439                                       struct i915_wa_list *wal)
440 {
441         struct drm_i915_private *i915 = engine->i915;
442
443         if (HAS_LLC(i915)) {
444                 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
445                  *
446                  * Must match Display Engine. See
447                  * WaCompressedResourceDisplayNewHashMode.
448                  */
449                 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
450                              GEN9_PBE_COMPRESSED_HASH_SELECTION);
451                 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
452                                  GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
453         }
454
455         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
456         /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
457         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
458                          FLOW_CONTROL_ENABLE |
459                          PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
460
461         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
462         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
463         wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
464                          GEN9_ENABLE_YV12_BUGFIX |
465                          GEN9_ENABLE_GPGPU_PREEMPTION);
466
467         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
468         /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
469         wa_masked_en(wal, CACHE_MODE_1,
470                      GEN8_4x4_STC_OPTIMIZATION_DISABLE |
471                      GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
472
473         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
474         wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
475                           GEN9_CCS_TLB_PREFETCH_ENABLE);
476
477         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
478         wa_masked_en(wal, HDC_CHICKEN0,
479                      HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
480                      HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
481
482         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
483          * both tied to WaForceContextSaveRestoreNonCoherent
484          * in some hsds for skl. We keep the tie for all gen9. The
485          * documentation is a bit hazy and so we want to get common behaviour,
486          * even though there is no clear evidence we would need both on kbl/bxt.
487          * This area has been source of system hangs so we play it safe
488          * and mimic the skl regardless of what bspec says.
489          *
490          * Use Force Non-Coherent whenever executing a 3D context. This
491          * is a workaround for a possible hang in the unlikely event
492          * a TLB invalidation occurs during a PSD flush.
493          */
494
495         /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
496         wa_masked_en(wal, HDC_CHICKEN0,
497                      HDC_FORCE_NON_COHERENT);
498
499         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
500         if (IS_SKYLAKE(i915) ||
501             IS_KABYLAKE(i915) ||
502             IS_COFFEELAKE(i915) ||
503             IS_COMETLAKE(i915))
504                 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
505                                  GEN8_SAMPLER_POWER_BYPASS_DIS);
506
507         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
508         wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
509
510         /*
511          * Supporting preemption with fine-granularity requires changes in the
512          * batch buffer programming. Since we can't break old userspace, we
513          * need to set our default preemption level to safe value. Userspace is
514          * still able to use more fine-grained preemption levels, since in
515          * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
516          * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
517          * not real HW workarounds, but merely a way to start using preemption
518          * while maintaining old contract with userspace.
519          */
520
521         /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
522         wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
523
524         /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
525         wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
526                             GEN9_PREEMPT_GPGPU_LEVEL_MASK,
527                             GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
528
529         /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
530         if (IS_GEN9_LP(i915))
531                 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
532 }
533
534 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
535                                 struct i915_wa_list *wal)
536 {
537         struct intel_gt *gt = engine->gt;
538         u8 vals[3] = { 0, 0, 0 };
539         unsigned int i;
540
541         for (i = 0; i < 3; i++) {
542                 u8 ss;
543
544                 /*
545                  * Only consider slices where one, and only one, subslice has 7
546                  * EUs
547                  */
548                 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
549                         continue;
550
551                 /*
552                  * subslice_7eu[i] != 0 (because of the check above) and
553                  * ss_max == 4 (maximum number of subslices possible per slice)
554                  *
555                  * ->    0 <= ss <= 3;
556                  */
557                 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
558                 vals[i] = 3 - ss;
559         }
560
561         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
562                 return;
563
564         /* Tune IZ hashing. See intel_device_info_runtime_init() */
565         wa_masked_field_set(wal, GEN7_GT_MODE,
566                             GEN9_IZ_HASHING_MASK(2) |
567                             GEN9_IZ_HASHING_MASK(1) |
568                             GEN9_IZ_HASHING_MASK(0),
569                             GEN9_IZ_HASHING(2, vals[2]) |
570                             GEN9_IZ_HASHING(1, vals[1]) |
571                             GEN9_IZ_HASHING(0, vals[0]));
572 }
573
574 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
575                                      struct i915_wa_list *wal)
576 {
577         gen9_ctx_workarounds_init(engine, wal);
578         skl_tune_iz_hashing(engine, wal);
579 }
580
581 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
582                                      struct i915_wa_list *wal)
583 {
584         gen9_ctx_workarounds_init(engine, wal);
585
586         /* WaDisableThreadStallDopClockGating:bxt */
587         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
588                          STALL_DOP_GATING_DISABLE);
589
590         /* WaToEnableHwFixForPushConstHWBug:bxt */
591         wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
592                      GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
593 }
594
595 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
596                                      struct i915_wa_list *wal)
597 {
598         struct drm_i915_private *i915 = engine->i915;
599
600         gen9_ctx_workarounds_init(engine, wal);
601
602         /* WaToEnableHwFixForPushConstHWBug:kbl */
603         if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
604                 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
605                              GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
606
607         /* WaDisableSbeCacheDispatchPortSharing:kbl */
608         wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
609                          GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
610 }
611
612 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
613                                      struct i915_wa_list *wal)
614 {
615         gen9_ctx_workarounds_init(engine, wal);
616
617         /* WaToEnableHwFixForPushConstHWBug:glk */
618         wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
619                      GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
620 }
621
622 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
623                                      struct i915_wa_list *wal)
624 {
625         gen9_ctx_workarounds_init(engine, wal);
626
627         /* WaToEnableHwFixForPushConstHWBug:cfl */
628         wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
629                      GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
630
631         /* WaDisableSbeCacheDispatchPortSharing:cfl */
632         wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
633                          GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
634 }
635
636 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
637                                      struct i915_wa_list *wal)
638 {
639         /* Wa_1406697149 (WaDisableBankHangMode:icl) */
640         wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
641
642         /* WaForceEnableNonCoherent:icl
643          * This is not the same workaround as in early Gen9 platforms, where
644          * lacking this could cause system hangs, but coherency performance
645          * overhead is high and only a few compute workloads really need it
646          * (the register is whitelisted in hardware now, so UMDs can opt in
647          * for coherency if they have a good reason).
648          */
649         wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
650
651         /* WaEnableFloatBlendOptimization:icl */
652         wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
653                    _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
654                    0 /* write-only, so skip validation */,
655                    true);
656
657         /* WaDisableGPGPUMidThreadPreemption:icl */
658         wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
659                             GEN9_PREEMPT_GPGPU_LEVEL_MASK,
660                             GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
661
662         /* allow headerless messages for preemptible GPGPU context */
663         wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
664                          GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
665
666         /* Wa_1604278689:icl,ehl */
667         wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
668         wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
669                          0,
670                          0xFFFFFFFF);
671
672         /* Wa_1406306137:icl,ehl */
673         wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
674 }
675
676 /*
677  * These settings aren't actually workarounds, but general tuning settings that
678  * need to be programmed on dg2 platform.
679  */
680 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
681                                    struct i915_wa_list *wal)
682 {
683         wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
684         wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
685                              REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
686         wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
687                              FF_MODE2_TDS_TIMER_128);
688 }
689
690 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
691                                        struct i915_wa_list *wal)
692 {
693         struct drm_i915_private *i915 = engine->i915;
694
695         /*
696          * Wa_1409142259:tgl,dg1,adl-p
697          * Wa_1409347922:tgl,dg1,adl-p
698          * Wa_1409252684:tgl,dg1,adl-p
699          * Wa_1409217633:tgl,dg1,adl-p
700          * Wa_1409207793:tgl,dg1,adl-p
701          * Wa_1409178076:tgl,dg1,adl-p
702          * Wa_1408979724:tgl,dg1,adl-p
703          * Wa_14010443199:tgl,rkl,dg1,adl-p
704          * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
705          * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
706          */
707         wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
708                      GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
709
710         /* WaDisableGPGPUMidThreadPreemption:gen12 */
711         wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
712                             GEN9_PREEMPT_GPGPU_LEVEL_MASK,
713                             GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
714
715         /*
716          * Wa_16011163337 - GS_TIMER
717          *
718          * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
719          * need to program it even on those that don't explicitly list that
720          * workaround.
721          *
722          * Note that the programming of GEN12_FF_MODE2 is further modified
723          * according to the FF_MODE2 guidance given by Wa_1608008084.
724          * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
725          * value when read from the CPU.
726          *
727          * The default value for this register is zero for all fields.
728          * So instead of doing a RMW we should just write the desired values
729          * for TDS and GS timers. Note that since the readback can't be trusted,
730          * the clear mask is just set to ~0 to make sure other bits are not
731          * inadvertently set. For the same reason read verification is ignored.
732          */
733         wa_add(wal,
734                GEN12_FF_MODE2,
735                ~0,
736                FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
737                0, false);
738
739         if (!IS_DG1(i915)) {
740                 /* Wa_1806527549 */
741                 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
742
743                 /* Wa_1606376872 */
744                 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
745         }
746 }
747
748 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
749                                      struct i915_wa_list *wal)
750 {
751         gen12_ctx_workarounds_init(engine, wal);
752
753         /* Wa_1409044764 */
754         wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
755                       DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
756
757         /* Wa_22010493298 */
758         wa_masked_en(wal, HIZ_CHICKEN,
759                      DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
760 }
761
762 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
763                                      struct i915_wa_list *wal)
764 {
765         dg2_ctx_gt_tuning_init(engine, wal);
766
767         /* Wa_16013271637:dg2 */
768         wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
769                          MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
770
771         /* Wa_14014947963:dg2 */
772         wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
773
774         /* Wa_18018764978:dg2 */
775         wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
776
777         /* Wa_18019271663:dg2 */
778         wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
779 }
780
781 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
782                                      struct i915_wa_list *wal)
783 {
784         struct intel_gt *gt = engine->gt;
785
786         dg2_ctx_gt_tuning_init(engine, wal);
787
788         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
789             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER))
790                 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
791 }
792
793 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
794                                        struct i915_wa_list *wal)
795 {
796         struct intel_gt *gt = engine->gt;
797
798         xelpg_ctx_gt_tuning_init(engine, wal);
799
800         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
801             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
802                 /* Wa_14014947963 */
803                 wa_masked_field_set(wal, VF_PREEMPTION,
804                                     PREEMPTION_VERTEX_COUNT, 0x4000);
805
806                 /* Wa_16013271637 */
807                 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
808                                  MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
809
810                 /* Wa_18019627453 */
811                 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
812
813                 /* Wa_18018764978 */
814                 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
815         }
816
817         /* Wa_18019271663 */
818         wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
819 }
820
821 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
822                                          struct i915_wa_list *wal)
823 {
824         /*
825          * This is a "fake" workaround defined by software to ensure we
826          * maintain reliable, backward-compatible behavior for userspace with
827          * regards to how nested MI_BATCH_BUFFER_START commands are handled.
828          *
829          * The per-context setting of MI_MODE[12] determines whether the bits
830          * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
831          * in the traditional manner or whether they should instead use a new
832          * tgl+ meaning that breaks backward compatibility, but allows nesting
833          * into 3rd-level batchbuffers.  When this new capability was first
834          * added in TGL, it remained off by default unless a context
835          * intentionally opted in to the new behavior.  However Xe_HPG now
836          * flips this on by default and requires that we explicitly opt out if
837          * we don't want the new behavior.
838          *
839          * From a SW perspective, we want to maintain the backward-compatible
840          * behavior for userspace, so we'll apply a fake workaround to set it
841          * back to the legacy behavior on platforms where the hardware default
842          * is to break compatibility.  At the moment there is no Linux
843          * userspace that utilizes third-level batchbuffers, so this will avoid
844          * userspace from needing to make any changes.  using the legacy
845          * meaning is the correct thing to do.  If/when we have userspace
846          * consumers that want to utilize third-level batch nesting, we can
847          * provide a context parameter to allow them to opt-in.
848          */
849         wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
850 }
851
852 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
853                                    struct i915_wa_list *wal)
854 {
855         u8 mocs;
856
857         /*
858          * Some blitter commands do not have a field for MOCS, those
859          * commands will use MOCS index pointed by BLIT_CCTL.
860          * BLIT_CCTL registers are needed to be programmed to un-cached.
861          */
862         if (engine->class == COPY_ENGINE_CLASS) {
863                 mocs = engine->gt->mocs.uc_index;
864                 wa_write_clr_set(wal,
865                                  BLIT_CCTL(engine->mmio_base),
866                                  BLIT_CCTL_MASK,
867                                  BLIT_CCTL_MOCS(mocs, mocs));
868         }
869 }
870
871 /*
872  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
873  * defined by the hardware team, but it programming general context registers.
874  * Adding those context register programming in context workaround
875  * allow us to use the wa framework for proper application and validation.
876  */
877 static void
878 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
879                           struct i915_wa_list *wal)
880 {
881         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
882                 fakewa_disable_nestedbb_mode(engine, wal);
883
884         gen12_ctx_gt_mocs_init(engine, wal);
885 }
886
887 static void
888 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
889                            struct i915_wa_list *wal,
890                            const char *name)
891 {
892         struct drm_i915_private *i915 = engine->i915;
893
894         wa_init_start(wal, engine->gt, name, engine->name);
895
896         /* Applies to all engines */
897         /*
898          * Fake workarounds are not the actual workaround but
899          * programming of context registers using workaround framework.
900          */
901         if (GRAPHICS_VER(i915) >= 12)
902                 gen12_ctx_gt_fake_wa_init(engine, wal);
903
904         if (engine->class != RENDER_CLASS)
905                 goto done;
906
907         if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 71)))
908                 xelpg_ctx_workarounds_init(engine, wal);
909         else if (IS_PONTEVECCHIO(i915))
910                 ; /* noop; none at this time */
911         else if (IS_DG2(i915))
912                 dg2_ctx_workarounds_init(engine, wal);
913         else if (IS_XEHPSDV(i915))
914                 ; /* noop; none at this time */
915         else if (IS_DG1(i915))
916                 dg1_ctx_workarounds_init(engine, wal);
917         else if (GRAPHICS_VER(i915) == 12)
918                 gen12_ctx_workarounds_init(engine, wal);
919         else if (GRAPHICS_VER(i915) == 11)
920                 icl_ctx_workarounds_init(engine, wal);
921         else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
922                 cfl_ctx_workarounds_init(engine, wal);
923         else if (IS_GEMINILAKE(i915))
924                 glk_ctx_workarounds_init(engine, wal);
925         else if (IS_KABYLAKE(i915))
926                 kbl_ctx_workarounds_init(engine, wal);
927         else if (IS_BROXTON(i915))
928                 bxt_ctx_workarounds_init(engine, wal);
929         else if (IS_SKYLAKE(i915))
930                 skl_ctx_workarounds_init(engine, wal);
931         else if (IS_CHERRYVIEW(i915))
932                 chv_ctx_workarounds_init(engine, wal);
933         else if (IS_BROADWELL(i915))
934                 bdw_ctx_workarounds_init(engine, wal);
935         else if (GRAPHICS_VER(i915) == 7)
936                 gen7_ctx_workarounds_init(engine, wal);
937         else if (GRAPHICS_VER(i915) == 6)
938                 gen6_ctx_workarounds_init(engine, wal);
939         else if (GRAPHICS_VER(i915) < 8)
940                 ;
941         else
942                 MISSING_CASE(GRAPHICS_VER(i915));
943
944 done:
945         wa_init_finish(wal);
946 }
947
948 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
949 {
950         __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
951 }
952
953 int intel_engine_emit_ctx_wa(struct i915_request *rq)
954 {
955         struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
956         struct intel_uncore *uncore = rq->engine->uncore;
957         enum forcewake_domains fw;
958         unsigned long flags;
959         struct i915_wa *wa;
960         unsigned int i;
961         u32 *cs;
962         int ret;
963
964         if (wal->count == 0)
965                 return 0;
966
967         ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
968         if (ret)
969                 return ret;
970
971         cs = intel_ring_begin(rq, (wal->count * 2 + 2));
972         if (IS_ERR(cs))
973                 return PTR_ERR(cs);
974
975         fw = wal_get_fw_for_rmw(uncore, wal);
976
977         intel_gt_mcr_lock(wal->gt, &flags);
978         spin_lock(&uncore->lock);
979         intel_uncore_forcewake_get__locked(uncore, fw);
980
981         *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
982         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
983                 u32 val;
984
985                 /* Skip reading the register if it's not really needed */
986                 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
987                         val = wa->set;
988                 } else {
989                         val = wa->is_mcr ?
990                                 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
991                                 intel_uncore_read_fw(uncore, wa->reg);
992                         val &= ~wa->clr;
993                         val |= wa->set;
994                 }
995
996                 *cs++ = i915_mmio_reg_offset(wa->reg);
997                 *cs++ = val;
998         }
999         *cs++ = MI_NOOP;
1000
1001         intel_uncore_forcewake_put__locked(uncore, fw);
1002         spin_unlock(&uncore->lock);
1003         intel_gt_mcr_unlock(wal->gt, flags);
1004
1005         intel_ring_advance(rq, cs);
1006
1007         ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1008         if (ret)
1009                 return ret;
1010
1011         return 0;
1012 }
1013
1014 static void
1015 gen4_gt_workarounds_init(struct intel_gt *gt,
1016                          struct i915_wa_list *wal)
1017 {
1018         /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1019         wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1020 }
1021
1022 static void
1023 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1024 {
1025         gen4_gt_workarounds_init(gt, wal);
1026
1027         /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1028         wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1029 }
1030
1031 static void
1032 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1033 {
1034         g4x_gt_workarounds_init(gt, wal);
1035
1036         wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1037 }
1038
1039 static void
1040 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1041 {
1042 }
1043
1044 static void
1045 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1046 {
1047         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1048         wa_masked_dis(wal,
1049                       GEN7_COMMON_SLICE_CHICKEN1,
1050                       GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1051
1052         /* WaApplyL3ControlAndL3ChickenMode:ivb */
1053         wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1054         wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1055
1056         /* WaForceL3Serialization:ivb */
1057         wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1058 }
1059
1060 static void
1061 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1062 {
1063         /* WaForceL3Serialization:vlv */
1064         wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1065
1066         /*
1067          * WaIncreaseL3CreditsForVLVB0:vlv
1068          * This is the hardware default actually.
1069          */
1070         wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1071 }
1072
1073 static void
1074 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1075 {
1076         /* L3 caching of data atomics doesn't work -- disable it. */
1077         wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1078
1079         wa_add(wal,
1080                HSW_ROW_CHICKEN3, 0,
1081                _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1082                0 /* XXX does this reg exist? */, true);
1083
1084         /* WaVSRefCountFullforceMissDisable:hsw */
1085         wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1086 }
1087
1088 static void
1089 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1090 {
1091         const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1092         unsigned int slice, subslice;
1093         u32 mcr, mcr_mask;
1094
1095         GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1096
1097         /*
1098          * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1099          * Before any MMIO read into slice/subslice specific registers, MCR
1100          * packet control register needs to be programmed to point to any
1101          * enabled s/ss pair. Otherwise, incorrect values will be returned.
1102          * This means each subsequent MMIO read will be forwarded to an
1103          * specific s/ss combination, but this is OK since these registers
1104          * are consistent across s/ss in almost all cases. In the rare
1105          * occasions, such as INSTDONE, where this value is dependent
1106          * on s/ss combo, the read should be done with read_subslice_reg.
1107          */
1108         slice = ffs(sseu->slice_mask) - 1;
1109         GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1110         subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1111         GEM_BUG_ON(!subslice);
1112         subslice--;
1113
1114         /*
1115          * We use GEN8_MCR..() macros to calculate the |mcr| value for
1116          * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1117          */
1118         mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1119         mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1120
1121         drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1122
1123         wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1124 }
1125
1126 static void
1127 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1128 {
1129         struct drm_i915_private *i915 = gt->i915;
1130
1131         /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1132         gen9_wa_init_mcr(i915, wal);
1133
1134         /* WaDisableKillLogic:bxt,skl,kbl */
1135         if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1136                 wa_write_or(wal,
1137                             GAM_ECOCHK,
1138                             ECOCHK_DIS_TLB);
1139
1140         if (HAS_LLC(i915)) {
1141                 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1142                  *
1143                  * Must match Display Engine. See
1144                  * WaCompressedResourceDisplayNewHashMode.
1145                  */
1146                 wa_write_or(wal,
1147                             MMCD_MISC_CTRL,
1148                             MMCD_PCLA | MMCD_HOTSPOT_EN);
1149         }
1150
1151         /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1152         wa_write_or(wal,
1153                     GAM_ECOCHK,
1154                     BDW_DISABLE_HDC_INVALIDATION);
1155 }
1156
1157 static void
1158 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1159 {
1160         gen9_gt_workarounds_init(gt, wal);
1161
1162         /* WaDisableGafsUnitClkGating:skl */
1163         wa_write_or(wal,
1164                     GEN7_UCGCTL4,
1165                     GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1166
1167         /* WaInPlaceDecompressionHang:skl */
1168         if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1169                 wa_write_or(wal,
1170                             GEN9_GAMT_ECO_REG_RW_IA,
1171                             GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1172 }
1173
1174 static void
1175 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1176 {
1177         gen9_gt_workarounds_init(gt, wal);
1178
1179         /* WaDisableDynamicCreditSharing:kbl */
1180         if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1181                 wa_write_or(wal,
1182                             GAMT_CHKN_BIT_REG,
1183                             GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1184
1185         /* WaDisableGafsUnitClkGating:kbl */
1186         wa_write_or(wal,
1187                     GEN7_UCGCTL4,
1188                     GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1189
1190         /* WaInPlaceDecompressionHang:kbl */
1191         wa_write_or(wal,
1192                     GEN9_GAMT_ECO_REG_RW_IA,
1193                     GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1194 }
1195
1196 static void
1197 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1198 {
1199         gen9_gt_workarounds_init(gt, wal);
1200 }
1201
1202 static void
1203 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1204 {
1205         gen9_gt_workarounds_init(gt, wal);
1206
1207         /* WaDisableGafsUnitClkGating:cfl */
1208         wa_write_or(wal,
1209                     GEN7_UCGCTL4,
1210                     GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1211
1212         /* WaInPlaceDecompressionHang:cfl */
1213         wa_write_or(wal,
1214                     GEN9_GAMT_ECO_REG_RW_IA,
1215                     GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1216 }
1217
1218 static void __set_mcr_steering(struct i915_wa_list *wal,
1219                                i915_reg_t steering_reg,
1220                                unsigned int slice, unsigned int subslice)
1221 {
1222         u32 mcr, mcr_mask;
1223
1224         mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1225         mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1226
1227         wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1228 }
1229
1230 static void debug_dump_steering(struct intel_gt *gt)
1231 {
1232         struct drm_printer p = drm_debug_printer("MCR Steering:");
1233
1234         if (drm_debug_enabled(DRM_UT_DRIVER))
1235                 intel_gt_mcr_report_steering(&p, gt, false);
1236 }
1237
1238 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1239                          unsigned int slice, unsigned int subslice)
1240 {
1241         __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1242
1243         gt->default_steering.groupid = slice;
1244         gt->default_steering.instanceid = subslice;
1245
1246         debug_dump_steering(gt);
1247 }
1248
1249 static void
1250 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1251 {
1252         const struct sseu_dev_info *sseu = &gt->info.sseu;
1253         unsigned int subslice;
1254
1255         GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1256         GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1257
1258         /*
1259          * Although a platform may have subslices, we need to always steer
1260          * reads to the lowest instance that isn't fused off.  When Render
1261          * Power Gating is enabled, grabbing forcewake will only power up a
1262          * single subslice (the "minconfig") if there isn't a real workload
1263          * that needs to be run; this means that if we steer register reads to
1264          * one of the higher subslices, we run the risk of reading back 0's or
1265          * random garbage.
1266          */
1267         subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1268
1269         /*
1270          * If the subslice we picked above also steers us to a valid L3 bank,
1271          * then we can just rely on the default steering and won't need to
1272          * worry about explicitly re-steering L3BANK reads later.
1273          */
1274         if (gt->info.l3bank_mask & BIT(subslice))
1275                 gt->steering_table[L3BANK] = NULL;
1276
1277         __add_mcr_wa(gt, wal, 0, subslice);
1278 }
1279
1280 static void
1281 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1282 {
1283         const struct sseu_dev_info *sseu = &gt->info.sseu;
1284         unsigned long slice, subslice = 0, slice_mask = 0;
1285         u32 lncf_mask = 0;
1286         int i;
1287
1288         /*
1289          * On Xe_HP the steering increases in complexity. There are now several
1290          * more units that require steering and we're not guaranteed to be able
1291          * to find a common setting for all of them. These are:
1292          * - GSLICE (fusable)
1293          * - DSS (sub-unit within gslice; fusable)
1294          * - L3 Bank (fusable)
1295          * - MSLICE (fusable)
1296          * - LNCF (sub-unit within mslice; always present if mslice is present)
1297          *
1298          * We'll do our default/implicit steering based on GSLICE (in the
1299          * sliceid field) and DSS (in the subsliceid field).  If we can
1300          * find overlap between the valid MSLICE and/or LNCF values with
1301          * a suitable GSLICE, then we can just re-use the default value and
1302          * skip and explicit steering at runtime.
1303          *
1304          * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1305          * a valid sliceid value.  DSS steering is the only type of steering
1306          * that utilizes the 'subsliceid' bits.
1307          *
1308          * Also note that, even though the steering domain is called "GSlice"
1309          * and it is encoded in the register using the gslice format, the spec
1310          * says that the combined (geometry | compute) fuse should be used to
1311          * select the steering.
1312          */
1313
1314         /* Find the potential gslice candidates */
1315         slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1316                                                        GEN_DSS_PER_GSLICE);
1317
1318         /*
1319          * Find the potential LNCF candidates.  Either LNCF within a valid
1320          * mslice is fine.
1321          */
1322         for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1323                 lncf_mask |= (0x3 << (i * 2));
1324
1325         /*
1326          * Are there any sliceid values that work for both GSLICE and LNCF
1327          * steering?
1328          */
1329         if (slice_mask & lncf_mask) {
1330                 slice_mask &= lncf_mask;
1331                 gt->steering_table[LNCF] = NULL;
1332         }
1333
1334         /* How about sliceid values that also work for MSLICE steering? */
1335         if (slice_mask & gt->info.mslice_mask) {
1336                 slice_mask &= gt->info.mslice_mask;
1337                 gt->steering_table[MSLICE] = NULL;
1338         }
1339
1340         if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1341                 gt->steering_table[GAM] = NULL;
1342
1343         slice = __ffs(slice_mask);
1344         subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1345                 GEN_DSS_PER_GSLICE;
1346
1347         __add_mcr_wa(gt, wal, slice, subslice);
1348
1349         /*
1350          * SQIDI ranges are special because they use different steering
1351          * registers than everything else we work with.  On XeHP SDV and
1352          * DG2-G10, any value in the steering registers will work fine since
1353          * all instances are present, but DG2-G11 only has SQIDI instances at
1354          * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1355          * we'll just steer to a hardcoded "2" since that value will work
1356          * everywhere.
1357          */
1358         __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1359         __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1360
1361         /*
1362          * On DG2, GAM registers have a dedicated steering control register
1363          * and must always be programmed to a hardcoded groupid of "1."
1364          */
1365         if (IS_DG2(gt->i915))
1366                 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1367 }
1368
1369 static void
1370 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1371 {
1372         unsigned int dss;
1373
1374         /*
1375          * Setup implicit steering for COMPUTE and DSS ranges to the first
1376          * non-fused-off DSS.  All other types of MCR registers will be
1377          * explicitly steered.
1378          */
1379         dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1380         __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1381 }
1382
1383 static void
1384 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1385 {
1386         struct drm_i915_private *i915 = gt->i915;
1387
1388         icl_wa_init_mcr(gt, wal);
1389
1390         /* WaModifyGamTlbPartitioning:icl */
1391         wa_write_clr_set(wal,
1392                          GEN11_GACB_PERF_CTRL,
1393                          GEN11_HASH_CTRL_MASK,
1394                          GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1395
1396         /* Wa_1405766107:icl
1397          * Formerly known as WaCL2SFHalfMaxAlloc
1398          */
1399         wa_write_or(wal,
1400                     GEN11_LSN_UNSLCVC,
1401                     GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1402                     GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1403
1404         /* Wa_220166154:icl
1405          * Formerly known as WaDisCtxReload
1406          */
1407         wa_write_or(wal,
1408                     GEN8_GAMW_ECO_DEV_RW_IA,
1409                     GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1410
1411         /* Wa_1406463099:icl
1412          * Formerly known as WaGamTlbPendError
1413          */
1414         wa_write_or(wal,
1415                     GAMT_CHKN_BIT_REG,
1416                     GAMT_CHKN_DISABLE_L3_COH_PIPE);
1417
1418         /*
1419          * Wa_1408615072:icl,ehl  (vsunit)
1420          * Wa_1407596294:icl,ehl  (hsunit)
1421          */
1422         wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1423                     VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1424
1425         /* Wa_1407352427:icl,ehl */
1426         wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1427                     PSDUNIT_CLKGATE_DIS);
1428
1429         /* Wa_1406680159:icl,ehl */
1430         wa_mcr_write_or(wal,
1431                         GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1432                         GWUNIT_CLKGATE_DIS);
1433
1434         /* Wa_1607087056:icl,ehl,jsl */
1435         if (IS_ICELAKE(i915) ||
1436                 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1437                 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1438                 wa_write_or(wal,
1439                             GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1440                             L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1441
1442         /*
1443          * This is not a documented workaround, but rather an optimization
1444          * to reduce sampler power.
1445          */
1446         wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1447 }
1448
1449 /*
1450  * Though there are per-engine instances of these registers,
1451  * they retain their value through engine resets and should
1452  * only be provided on the GT workaround list rather than
1453  * the engine-specific workaround list.
1454  */
1455 static void
1456 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1457 {
1458         struct intel_engine_cs *engine;
1459         int id;
1460
1461         for_each_engine(engine, gt, id) {
1462                 if (engine->class != VIDEO_DECODE_CLASS ||
1463                     (engine->instance % 2))
1464                         continue;
1465
1466                 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1467                             IECPUNIT_CLKGATE_DIS);
1468         }
1469 }
1470
1471 static void
1472 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1473 {
1474         icl_wa_init_mcr(gt, wal);
1475
1476         /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1477         wa_14011060649(gt, wal);
1478
1479         /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1480         wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1481
1482         /*
1483          * Wa_14015795083
1484          *
1485          * Firmware on some gen12 platforms locks the MISCCPCTL register,
1486          * preventing i915 from modifying it for this workaround.  Skip the
1487          * readback verification for this workaround on debug builds; if the
1488          * workaround doesn't stick due to firmware behavior, it's not an error
1489          * that we want CI to flag.
1490          */
1491         wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1492                0, 0, false);
1493 }
1494
1495 static void
1496 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1497 {
1498         gen12_gt_workarounds_init(gt, wal);
1499
1500         /* Wa_1409420604:dg1 */
1501         wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1502                         CPSSUNIT_CLKGATE_DIS);
1503
1504         /* Wa_1408615072:dg1 */
1505         /* Empirical testing shows this register is unaffected by engine reset. */
1506         wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1507 }
1508
1509 static void
1510 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1511 {
1512         struct drm_i915_private *i915 = gt->i915;
1513
1514         xehp_init_mcr(gt, wal);
1515
1516         /* Wa_1409757795:xehpsdv */
1517         wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1518
1519         /* Wa_18011725039:xehpsdv */
1520         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1521                 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1522                 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1523         }
1524
1525         /* Wa_16011155590:xehpsdv */
1526         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1527                 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1528                             TSGUNIT_CLKGATE_DIS);
1529
1530         /* Wa_14011780169:xehpsdv */
1531         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1532                 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1533                             GAMTLBVDBOX7_CLKGATE_DIS |
1534                             GAMTLBVDBOX6_CLKGATE_DIS |
1535                             GAMTLBVDBOX5_CLKGATE_DIS |
1536                             GAMTLBVDBOX4_CLKGATE_DIS |
1537                             GAMTLBVDBOX3_CLKGATE_DIS |
1538                             GAMTLBVDBOX2_CLKGATE_DIS |
1539                             GAMTLBVDBOX1_CLKGATE_DIS |
1540                             GAMTLBVDBOX0_CLKGATE_DIS |
1541                             GAMTLBKCR_CLKGATE_DIS |
1542                             GAMTLBGUC_CLKGATE_DIS |
1543                             GAMTLBBLT_CLKGATE_DIS);
1544                 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1545                             GAMTLBGFXA1_CLKGATE_DIS |
1546                             GAMTLBCOMPA0_CLKGATE_DIS |
1547                             GAMTLBCOMPA1_CLKGATE_DIS |
1548                             GAMTLBCOMPB0_CLKGATE_DIS |
1549                             GAMTLBCOMPB1_CLKGATE_DIS |
1550                             GAMTLBCOMPC0_CLKGATE_DIS |
1551                             GAMTLBCOMPC1_CLKGATE_DIS |
1552                             GAMTLBCOMPD0_CLKGATE_DIS |
1553                             GAMTLBCOMPD1_CLKGATE_DIS |
1554                             GAMTLBMERT_CLKGATE_DIS   |
1555                             GAMTLBVEBOX3_CLKGATE_DIS |
1556                             GAMTLBVEBOX2_CLKGATE_DIS |
1557                             GAMTLBVEBOX1_CLKGATE_DIS |
1558                             GAMTLBVEBOX0_CLKGATE_DIS);
1559         }
1560
1561         /* Wa_16012725990:xehpsdv */
1562         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1563                 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1564
1565         /* Wa_14011060649:xehpsdv */
1566         wa_14011060649(gt, wal);
1567
1568         /* Wa_14012362059:xehpsdv */
1569         wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1570
1571         /* Wa_14014368820:xehpsdv */
1572         wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1573                         INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1574
1575         /* Wa_14010670810:xehpsdv */
1576         wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1577 }
1578
1579 static void
1580 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1581 {
1582         xehp_init_mcr(gt, wal);
1583
1584         /* Wa_14011060649:dg2 */
1585         wa_14011060649(gt, wal);
1586
1587         if (IS_DG2_G10(gt->i915)) {
1588                 /* Wa_22010523718:dg2 */
1589                 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1590                             CG3DDISCFEG_CLKGATE_DIS);
1591
1592                 /* Wa_14011006942:dg2 */
1593                 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1594                                 DSS_ROUTER_CLKGATE_DIS);
1595         }
1596
1597         /* Wa_14014830051:dg2 */
1598         wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1599
1600         /*
1601          * Wa_14015795083
1602          * Skip verification for possibly locked register.
1603          */
1604         wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1605                0, 0, false);
1606
1607         /* Wa_18018781329 */
1608         wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1609         wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1610         wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1611         wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1612
1613         /* Wa_1509235366:dg2 */
1614         wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1615                         INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1616
1617         /* Wa_14010648519:dg2 */
1618         wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1619 }
1620
1621 static void
1622 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1623 {
1624         pvc_init_mcr(gt, wal);
1625
1626         /* Wa_14015795083 */
1627         wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1628
1629         /* Wa_18018781329 */
1630         wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1631         wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1632         wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1633         wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1634
1635         /* Wa_16016694945 */
1636         wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1637 }
1638
1639 static void
1640 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1641 {
1642         /* Wa_14018778641 / Wa_18018781329 */
1643         wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1644
1645         /* Wa_22016670082 */
1646         wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1647
1648         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1649             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1650                 /* Wa_14014830051 */
1651                 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1652
1653                 /* Wa_14015795083 */
1654                 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1655         }
1656
1657         /*
1658          * Unlike older platforms, we no longer setup implicit steering here;
1659          * all MCR accesses are explicitly steered.
1660          */
1661         debug_dump_steering(gt);
1662 }
1663
1664 static void
1665 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1666 {
1667         /*
1668          * Wa_14018778641
1669          * Wa_18018781329
1670          *
1671          * Note that although these registers are MCR on the primary
1672          * GT, the media GT's versions are regular singleton registers.
1673          */
1674         wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1675
1676         debug_dump_steering(gt);
1677 }
1678
1679 /*
1680  * The bspec performance guide has recommended MMIO tuning settings.  These
1681  * aren't truly "workarounds" but we want to program them through the
1682  * workaround infrastructure to make sure they're (re)applied at the proper
1683  * times.
1684  *
1685  * The programming in this function is for settings that persist through
1686  * engine resets and also are not part of any engine's register state context.
1687  * I.e., settings that only need to be re-applied in the event of a full GT
1688  * reset.
1689  */
1690 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1691 {
1692         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71))) {
1693                 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1694                 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1695         }
1696
1697         if (IS_PONTEVECCHIO(gt->i915)) {
1698                 wa_mcr_write(wal, XEHPC_L3SCRUB,
1699                              SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1700                 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1701         }
1702
1703         if (IS_DG2(gt->i915)) {
1704                 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1705                 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1706         }
1707 }
1708
1709 static void
1710 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1711 {
1712         struct drm_i915_private *i915 = gt->i915;
1713
1714         gt_tuning_settings(gt, wal);
1715
1716         if (gt->type == GT_MEDIA) {
1717                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1718                         xelpmp_gt_workarounds_init(gt, wal);
1719                 else
1720                         MISSING_CASE(MEDIA_VER_FULL(i915));
1721
1722                 return;
1723         }
1724
1725         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)))
1726                 xelpg_gt_workarounds_init(gt, wal);
1727         else if (IS_PONTEVECCHIO(i915))
1728                 pvc_gt_workarounds_init(gt, wal);
1729         else if (IS_DG2(i915))
1730                 dg2_gt_workarounds_init(gt, wal);
1731         else if (IS_XEHPSDV(i915))
1732                 xehpsdv_gt_workarounds_init(gt, wal);
1733         else if (IS_DG1(i915))
1734                 dg1_gt_workarounds_init(gt, wal);
1735         else if (GRAPHICS_VER(i915) == 12)
1736                 gen12_gt_workarounds_init(gt, wal);
1737         else if (GRAPHICS_VER(i915) == 11)
1738                 icl_gt_workarounds_init(gt, wal);
1739         else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1740                 cfl_gt_workarounds_init(gt, wal);
1741         else if (IS_GEMINILAKE(i915))
1742                 glk_gt_workarounds_init(gt, wal);
1743         else if (IS_KABYLAKE(i915))
1744                 kbl_gt_workarounds_init(gt, wal);
1745         else if (IS_BROXTON(i915))
1746                 gen9_gt_workarounds_init(gt, wal);
1747         else if (IS_SKYLAKE(i915))
1748                 skl_gt_workarounds_init(gt, wal);
1749         else if (IS_HASWELL(i915))
1750                 hsw_gt_workarounds_init(gt, wal);
1751         else if (IS_VALLEYVIEW(i915))
1752                 vlv_gt_workarounds_init(gt, wal);
1753         else if (IS_IVYBRIDGE(i915))
1754                 ivb_gt_workarounds_init(gt, wal);
1755         else if (GRAPHICS_VER(i915) == 6)
1756                 snb_gt_workarounds_init(gt, wal);
1757         else if (GRAPHICS_VER(i915) == 5)
1758                 ilk_gt_workarounds_init(gt, wal);
1759         else if (IS_G4X(i915))
1760                 g4x_gt_workarounds_init(gt, wal);
1761         else if (GRAPHICS_VER(i915) == 4)
1762                 gen4_gt_workarounds_init(gt, wal);
1763         else if (GRAPHICS_VER(i915) <= 8)
1764                 ;
1765         else
1766                 MISSING_CASE(GRAPHICS_VER(i915));
1767 }
1768
1769 void intel_gt_init_workarounds(struct intel_gt *gt)
1770 {
1771         struct i915_wa_list *wal = &gt->wa_list;
1772
1773         wa_init_start(wal, gt, "GT", "global");
1774         gt_init_workarounds(gt, wal);
1775         wa_init_finish(wal);
1776 }
1777
1778 static bool
1779 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1780           const char *name, const char *from)
1781 {
1782         if ((cur ^ wa->set) & wa->read) {
1783                 drm_err(&gt->i915->drm,
1784                         "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1785                         name, from, i915_mmio_reg_offset(wa->reg),
1786                         cur, cur & wa->read, wa->set & wa->read);
1787
1788                 return false;
1789         }
1790
1791         return true;
1792 }
1793
1794 static void wa_list_apply(const struct i915_wa_list *wal)
1795 {
1796         struct intel_gt *gt = wal->gt;
1797         struct intel_uncore *uncore = gt->uncore;
1798         enum forcewake_domains fw;
1799         unsigned long flags;
1800         struct i915_wa *wa;
1801         unsigned int i;
1802
1803         if (!wal->count)
1804                 return;
1805
1806         fw = wal_get_fw_for_rmw(uncore, wal);
1807
1808         intel_gt_mcr_lock(gt, &flags);
1809         spin_lock(&uncore->lock);
1810         intel_uncore_forcewake_get__locked(uncore, fw);
1811
1812         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1813                 u32 val, old = 0;
1814
1815                 /* open-coded rmw due to steering */
1816                 if (wa->clr)
1817                         old = wa->is_mcr ?
1818                                 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1819                                 intel_uncore_read_fw(uncore, wa->reg);
1820                 val = (old & ~wa->clr) | wa->set;
1821                 if (val != old || !wa->clr) {
1822                         if (wa->is_mcr)
1823                                 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1824                         else
1825                                 intel_uncore_write_fw(uncore, wa->reg, val);
1826                 }
1827
1828                 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1829                         u32 val = wa->is_mcr ?
1830                                 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1831                                 intel_uncore_read_fw(uncore, wa->reg);
1832
1833                         wa_verify(gt, wa, val, wal->name, "application");
1834                 }
1835         }
1836
1837         intel_uncore_forcewake_put__locked(uncore, fw);
1838         spin_unlock(&uncore->lock);
1839         intel_gt_mcr_unlock(gt, flags);
1840 }
1841
1842 void intel_gt_apply_workarounds(struct intel_gt *gt)
1843 {
1844         wa_list_apply(&gt->wa_list);
1845 }
1846
1847 static bool wa_list_verify(struct intel_gt *gt,
1848                            const struct i915_wa_list *wal,
1849                            const char *from)
1850 {
1851         struct intel_uncore *uncore = gt->uncore;
1852         struct i915_wa *wa;
1853         enum forcewake_domains fw;
1854         unsigned long flags;
1855         unsigned int i;
1856         bool ok = true;
1857
1858         fw = wal_get_fw_for_rmw(uncore, wal);
1859
1860         intel_gt_mcr_lock(gt, &flags);
1861         spin_lock(&uncore->lock);
1862         intel_uncore_forcewake_get__locked(uncore, fw);
1863
1864         for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1865                 ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1866                                 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1867                                 intel_uncore_read_fw(uncore, wa->reg),
1868                                 wal->name, from);
1869
1870         intel_uncore_forcewake_put__locked(uncore, fw);
1871         spin_unlock(&uncore->lock);
1872         intel_gt_mcr_unlock(gt, flags);
1873
1874         return ok;
1875 }
1876
1877 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1878 {
1879         return wa_list_verify(gt, &gt->wa_list, from);
1880 }
1881
1882 __maybe_unused
1883 static bool is_nonpriv_flags_valid(u32 flags)
1884 {
1885         /* Check only valid flag bits are set */
1886         if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1887                 return false;
1888
1889         /* NB: Only 3 out of 4 enum values are valid for access field */
1890         if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1891             RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1892                 return false;
1893
1894         return true;
1895 }
1896
1897 static void
1898 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1899 {
1900         struct i915_wa wa = {
1901                 .reg = reg
1902         };
1903
1904         if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1905                 return;
1906
1907         if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1908                 return;
1909
1910         wa.reg.reg |= flags;
1911         _wa_add(wal, &wa);
1912 }
1913
1914 static void
1915 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1916 {
1917         struct i915_wa wa = {
1918                 .mcr_reg = reg,
1919                 .is_mcr = 1,
1920         };
1921
1922         if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1923                 return;
1924
1925         if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1926                 return;
1927
1928         wa.mcr_reg.reg |= flags;
1929         _wa_add(wal, &wa);
1930 }
1931
1932 static void
1933 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1934 {
1935         whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1936 }
1937
1938 static void
1939 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1940 {
1941         whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1942 }
1943
1944 static void gen9_whitelist_build(struct i915_wa_list *w)
1945 {
1946         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1947         whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1948
1949         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1950         whitelist_reg(w, GEN8_CS_CHICKEN1);
1951
1952         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1953         whitelist_reg(w, GEN8_HDC_CHICKEN1);
1954
1955         /* WaSendPushConstantsFromMMIO:skl,bxt */
1956         whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1957 }
1958
1959 static void skl_whitelist_build(struct intel_engine_cs *engine)
1960 {
1961         struct i915_wa_list *w = &engine->whitelist;
1962
1963         if (engine->class != RENDER_CLASS)
1964                 return;
1965
1966         gen9_whitelist_build(w);
1967
1968         /* WaDisableLSQCROPERFforOCL:skl */
1969         whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1970 }
1971
1972 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1973 {
1974         if (engine->class != RENDER_CLASS)
1975                 return;
1976
1977         gen9_whitelist_build(&engine->whitelist);
1978 }
1979
1980 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1981 {
1982         struct i915_wa_list *w = &engine->whitelist;
1983
1984         if (engine->class != RENDER_CLASS)
1985                 return;
1986
1987         gen9_whitelist_build(w);
1988
1989         /* WaDisableLSQCROPERFforOCL:kbl */
1990         whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1991 }
1992
1993 static void glk_whitelist_build(struct intel_engine_cs *engine)
1994 {
1995         struct i915_wa_list *w = &engine->whitelist;
1996
1997         if (engine->class != RENDER_CLASS)
1998                 return;
1999
2000         gen9_whitelist_build(w);
2001
2002         /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2003         whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2004 }
2005
2006 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2007 {
2008         struct i915_wa_list *w = &engine->whitelist;
2009
2010         if (engine->class != RENDER_CLASS)
2011                 return;
2012
2013         gen9_whitelist_build(w);
2014
2015         /*
2016          * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2017          *
2018          * This covers 4 register which are next to one another :
2019          *   - PS_INVOCATION_COUNT
2020          *   - PS_INVOCATION_COUNT_UDW
2021          *   - PS_DEPTH_COUNT
2022          *   - PS_DEPTH_COUNT_UDW
2023          */
2024         whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2025                           RING_FORCE_TO_NONPRIV_ACCESS_RD |
2026                           RING_FORCE_TO_NONPRIV_RANGE_4);
2027 }
2028
2029 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2030 {
2031         struct i915_wa_list *w = &engine->whitelist;
2032
2033         if (engine->class != RENDER_CLASS)
2034                 whitelist_reg_ext(w,
2035                                   RING_CTX_TIMESTAMP(engine->mmio_base),
2036                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2037 }
2038
2039 static void cml_whitelist_build(struct intel_engine_cs *engine)
2040 {
2041         allow_read_ctx_timestamp(engine);
2042
2043         cfl_whitelist_build(engine);
2044 }
2045
2046 static void icl_whitelist_build(struct intel_engine_cs *engine)
2047 {
2048         struct i915_wa_list *w = &engine->whitelist;
2049
2050         allow_read_ctx_timestamp(engine);
2051
2052         switch (engine->class) {
2053         case RENDER_CLASS:
2054                 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2055                 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2056
2057                 /* WaAllowUMDToModifySamplerMode:icl */
2058                 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2059
2060                 /* WaEnableStateCacheRedirectToCS:icl */
2061                 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2062
2063                 /*
2064                  * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2065                  *
2066                  * This covers 4 register which are next to one another :
2067                  *   - PS_INVOCATION_COUNT
2068                  *   - PS_INVOCATION_COUNT_UDW
2069                  *   - PS_DEPTH_COUNT
2070                  *   - PS_DEPTH_COUNT_UDW
2071                  */
2072                 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2073                                   RING_FORCE_TO_NONPRIV_ACCESS_RD |
2074                                   RING_FORCE_TO_NONPRIV_RANGE_4);
2075                 break;
2076
2077         case VIDEO_DECODE_CLASS:
2078                 /* hucStatusRegOffset */
2079                 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2080                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2081                 /* hucUKernelHdrInfoRegOffset */
2082                 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2083                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2084                 /* hucStatus2RegOffset */
2085                 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2086                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2087                 break;
2088
2089         default:
2090                 break;
2091         }
2092 }
2093
2094 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2095 {
2096         struct i915_wa_list *w = &engine->whitelist;
2097
2098         allow_read_ctx_timestamp(engine);
2099
2100         switch (engine->class) {
2101         case RENDER_CLASS:
2102                 /*
2103                  * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2104                  * Wa_1408556865:tgl
2105                  *
2106                  * This covers 4 registers which are next to one another :
2107                  *   - PS_INVOCATION_COUNT
2108                  *   - PS_INVOCATION_COUNT_UDW
2109                  *   - PS_DEPTH_COUNT
2110                  *   - PS_DEPTH_COUNT_UDW
2111                  */
2112                 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2113                                   RING_FORCE_TO_NONPRIV_ACCESS_RD |
2114                                   RING_FORCE_TO_NONPRIV_RANGE_4);
2115
2116                 /*
2117                  * Wa_1808121037:tgl
2118                  * Wa_14012131227:dg1
2119                  * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2120                  */
2121                 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2122
2123                 /* Wa_1806527549:tgl */
2124                 whitelist_reg(w, HIZ_CHICKEN);
2125
2126                 /* Required by recommended tuning setting (not a workaround) */
2127                 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2128
2129                 break;
2130         default:
2131                 break;
2132         }
2133 }
2134
2135 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2136 {
2137         struct i915_wa_list *w = &engine->whitelist;
2138
2139         switch (engine->class) {
2140         case RENDER_CLASS:
2141                 /* Required by recommended tuning setting (not a workaround) */
2142                 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2143
2144                 break;
2145         default:
2146                 break;
2147         }
2148 }
2149
2150 static void blacklist_trtt(struct intel_engine_cs *engine)
2151 {
2152         struct i915_wa_list *w = &engine->whitelist;
2153
2154         /*
2155          * Prevent read/write access to [0x4400, 0x4600) which covers
2156          * the TRTT range across all engines. Note that normally userspace
2157          * cannot access the other engines' trtt control, but for simplicity
2158          * we cover the entire range on each engine.
2159          */
2160         whitelist_reg_ext(w, _MMIO(0x4400),
2161                           RING_FORCE_TO_NONPRIV_DENY |
2162                           RING_FORCE_TO_NONPRIV_RANGE_64);
2163         whitelist_reg_ext(w, _MMIO(0x4500),
2164                           RING_FORCE_TO_NONPRIV_DENY |
2165                           RING_FORCE_TO_NONPRIV_RANGE_64);
2166 }
2167
2168 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2169 {
2170         /* Wa_16014440446:pvc */
2171         blacklist_trtt(engine);
2172 }
2173
2174 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2175 {
2176         struct i915_wa_list *w = &engine->whitelist;
2177
2178         switch (engine->class) {
2179         case RENDER_CLASS:
2180                 /* Required by recommended tuning setting (not a workaround) */
2181                 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2182
2183                 break;
2184         default:
2185                 break;
2186         }
2187 }
2188
2189 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2190 {
2191         struct drm_i915_private *i915 = engine->i915;
2192         struct i915_wa_list *w = &engine->whitelist;
2193
2194         wa_init_start(w, engine->gt, "whitelist", engine->name);
2195
2196         if (engine->gt->type == GT_MEDIA)
2197                 ; /* none yet */
2198         else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 71)))
2199                 xelpg_whitelist_build(engine);
2200         else if (IS_PONTEVECCHIO(i915))
2201                 pvc_whitelist_build(engine);
2202         else if (IS_DG2(i915))
2203                 dg2_whitelist_build(engine);
2204         else if (IS_XEHPSDV(i915))
2205                 ; /* none needed */
2206         else if (GRAPHICS_VER(i915) == 12)
2207                 tgl_whitelist_build(engine);
2208         else if (GRAPHICS_VER(i915) == 11)
2209                 icl_whitelist_build(engine);
2210         else if (IS_COMETLAKE(i915))
2211                 cml_whitelist_build(engine);
2212         else if (IS_COFFEELAKE(i915))
2213                 cfl_whitelist_build(engine);
2214         else if (IS_GEMINILAKE(i915))
2215                 glk_whitelist_build(engine);
2216         else if (IS_KABYLAKE(i915))
2217                 kbl_whitelist_build(engine);
2218         else if (IS_BROXTON(i915))
2219                 bxt_whitelist_build(engine);
2220         else if (IS_SKYLAKE(i915))
2221                 skl_whitelist_build(engine);
2222         else if (GRAPHICS_VER(i915) <= 8)
2223                 ;
2224         else
2225                 MISSING_CASE(GRAPHICS_VER(i915));
2226
2227         wa_init_finish(w);
2228 }
2229
2230 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2231 {
2232         const struct i915_wa_list *wal = &engine->whitelist;
2233         struct intel_uncore *uncore = engine->uncore;
2234         const u32 base = engine->mmio_base;
2235         struct i915_wa *wa;
2236         unsigned int i;
2237
2238         if (!wal->count)
2239                 return;
2240
2241         for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2242                 intel_uncore_write(uncore,
2243                                    RING_FORCE_TO_NONPRIV(base, i),
2244                                    i915_mmio_reg_offset(wa->reg));
2245
2246         /* And clear the rest just in case of garbage */
2247         for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2248                 intel_uncore_write(uncore,
2249                                    RING_FORCE_TO_NONPRIV(base, i),
2250                                    i915_mmio_reg_offset(RING_NOPID(base)));
2251 }
2252
2253 /*
2254  * engine_fake_wa_init(), a place holder to program the registers
2255  * which are not part of an official workaround defined by the
2256  * hardware team.
2257  * Adding programming of those register inside workaround will
2258  * allow utilizing wa framework to proper application and verification.
2259  */
2260 static void
2261 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2262 {
2263         u8 mocs_w, mocs_r;
2264
2265         /*
2266          * RING_CMD_CCTL specifies the default MOCS entry that will be used
2267          * by the command streamer when executing commands that don't have
2268          * a way to explicitly specify a MOCS setting.  The default should
2269          * usually reference whichever MOCS entry corresponds to uncached
2270          * behavior, although use of a WB cached entry is recommended by the
2271          * spec in certain circumstances on specific platforms.
2272          */
2273         if (GRAPHICS_VER(engine->i915) >= 12) {
2274                 mocs_r = engine->gt->mocs.uc_index;
2275                 mocs_w = engine->gt->mocs.uc_index;
2276
2277                 if (HAS_L3_CCS_READ(engine->i915) &&
2278                     engine->class == COMPUTE_CLASS) {
2279                         mocs_r = engine->gt->mocs.wb_index;
2280
2281                         /*
2282                          * Even on the few platforms where MOCS 0 is a
2283                          * legitimate table entry, it's never the correct
2284                          * setting to use here; we can assume the MOCS init
2285                          * just forgot to initialize wb_index.
2286                          */
2287                         drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2288                 }
2289
2290                 wa_masked_field_set(wal,
2291                                     RING_CMD_CCTL(engine->mmio_base),
2292                                     CMD_CCTL_MOCS_MASK,
2293                                     CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2294         }
2295 }
2296
2297 static void
2298 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2299 {
2300         struct drm_i915_private *i915 = engine->i915;
2301         struct intel_gt *gt = engine->gt;
2302
2303         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2304             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2305                 /* Wa_22014600077 */
2306                 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2307                                  ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2308         }
2309
2310         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2311             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2312             IS_DG2(i915)) {
2313                 /* Wa_1509727124 */
2314                 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2315                                  SC_DISABLE_POWER_OPTIMIZATION_EBB);
2316         }
2317
2318         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2319             IS_DG2(i915)) {
2320                 /* Wa_22012856258 */
2321                 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2322                                  GEN12_DISABLE_READ_SUPPRESSION);
2323         }
2324
2325         if (IS_DG2(i915)) {
2326                 /*
2327                  * Wa_22010960976:dg2
2328                  * Wa_14013347512:dg2
2329                  */
2330                 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2331                                   LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2332         }
2333
2334         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2335             IS_DG2(i915)) {
2336                 /* Wa_14015150844 */
2337                 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2338                            _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2339                            0, true);
2340         }
2341
2342         if (IS_DG2_G11(i915) || IS_DG2_G10(i915)) {
2343                 /* Wa_22014600077:dg2 */
2344                 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2345                            _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2346                            0 /* Wa_14012342262 write-only reg, so skip verification */,
2347                            true);
2348         }
2349
2350         if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2351             IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2352                 /*
2353                  * Wa_1606700617:tgl,dg1,adl-p
2354                  * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2355                  * Wa_14010826681:tgl,dg1,rkl,adl-p
2356                  * Wa_18019627453:dg2
2357                  */
2358                 wa_masked_en(wal,
2359                              GEN9_CS_DEBUG_MODE1,
2360                              FF_DOP_CLOCK_GATE_DISABLE);
2361         }
2362
2363         if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2364             IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2365                 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2366                 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2367
2368                 /*
2369                  * Wa_1407928979:tgl A*
2370                  * Wa_18011464164:tgl[B0+],dg1[B0+]
2371                  * Wa_22010931296:tgl[B0+],dg1[B0+]
2372                  * Wa_14010919138:rkl,dg1,adl-s,adl-p
2373                  */
2374                 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2375                             GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2376
2377                 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2378                 wa_mcr_masked_en(wal,
2379                                  GEN10_SAMPLER_MODE,
2380                                  ENABLE_SMALLPL);
2381         }
2382
2383         if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2384             IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2385                 /* Wa_1409804808 */
2386                 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2387                                  GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2388
2389                 /* Wa_14010229206 */
2390                 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2391         }
2392
2393         if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2394                 /*
2395                  * Wa_1607297627
2396                  *
2397                  * On TGL and RKL there are multiple entries for this WA in the
2398                  * BSpec; some indicate this is an A0-only WA, others indicate
2399                  * it applies to all steppings so we trust the "all steppings."
2400                  */
2401                 wa_masked_en(wal,
2402                              RING_PSMI_CTL(RENDER_RING_BASE),
2403                              GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2404                              GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2405         }
2406
2407         if (GRAPHICS_VER(i915) == 11) {
2408                 /* This is not an Wa. Enable for better image quality */
2409                 wa_masked_en(wal,
2410                              _3D_CHICKEN3,
2411                              _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2412
2413                 /*
2414                  * Wa_1405543622:icl
2415                  * Formerly known as WaGAPZPriorityScheme
2416                  */
2417                 wa_write_or(wal,
2418                             GEN8_GARBCNTL,
2419                             GEN11_ARBITRATION_PRIO_ORDER_MASK);
2420
2421                 /*
2422                  * Wa_1604223664:icl
2423                  * Formerly known as WaL3BankAddressHashing
2424                  */
2425                 wa_write_clr_set(wal,
2426                                  GEN8_GARBCNTL,
2427                                  GEN11_HASH_CTRL_EXCL_MASK,
2428                                  GEN11_HASH_CTRL_EXCL_BIT0);
2429                 wa_write_clr_set(wal,
2430                                  GEN11_GLBLINVL,
2431                                  GEN11_BANK_HASH_ADDR_EXCL_MASK,
2432                                  GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2433
2434                 /*
2435                  * Wa_1405733216:icl
2436                  * Formerly known as WaDisableCleanEvicts
2437                  */
2438                 wa_mcr_write_or(wal,
2439                                 GEN8_L3SQCREG4,
2440                                 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2441
2442                 /* Wa_1606682166:icl */
2443                 wa_write_or(wal,
2444                             GEN7_SARCHKMD,
2445                             GEN7_DISABLE_SAMPLER_PREFETCH);
2446
2447                 /* Wa_1409178092:icl */
2448                 wa_mcr_write_clr_set(wal,
2449                                      GEN11_SCRATCH2,
2450                                      GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2451                                      0);
2452
2453                 /* WaEnable32PlaneMode:icl */
2454                 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2455                              GEN11_ENABLE_32_PLANE_MODE);
2456
2457                 /*
2458                  * Wa_1408767742:icl[a2..forever],ehl[all]
2459                  * Wa_1605460711:icl[a0..c0]
2460                  */
2461                 wa_write_or(wal,
2462                             GEN7_FF_THREAD_MODE,
2463                             GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2464
2465                 /* Wa_22010271021 */
2466                 wa_masked_en(wal,
2467                              GEN9_CS_DEBUG_MODE1,
2468                              FF_DOP_CLOCK_GATE_DISABLE);
2469         }
2470
2471         /*
2472          * Intel platforms that support fine-grained preemption (i.e., gen9 and
2473          * beyond) allow the kernel-mode driver to choose between two different
2474          * options for controlling preemption granularity and behavior.
2475          *
2476          * Option 1 (hardware default):
2477          *   Preemption settings are controlled in a global manner via
2478          *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2479          *   and settings chosen by the kernel-mode driver will apply to all
2480          *   userspace clients.
2481          *
2482          * Option 2:
2483          *   Preemption settings are controlled on a per-context basis via
2484          *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2485          *   context switch and is writable by userspace (e.g., via
2486          *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2487          *   which allows different userspace drivers/clients to select
2488          *   different settings, or to change those settings on the fly in
2489          *   response to runtime needs.  This option was known by name
2490          *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2491          *   that name is somewhat misleading as other non-granularity
2492          *   preemption settings are also impacted by this decision.
2493          *
2494          * On Linux, our policy has always been to let userspace drivers
2495          * control preemption granularity/settings (Option 2).  This was
2496          * originally mandatory on gen9 to prevent ABI breakage (old gen9
2497          * userspace developed before object-level preemption was enabled would
2498          * not behave well if i915 were to go with Option 1 and enable that
2499          * preemption in a global manner).  On gen9 each context would have
2500          * object-level preemption disabled by default (see
2501          * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2502          * userspace drivers could opt-in to object-level preemption as they
2503          * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2504          * even though it is no longer necessary for ABI compatibility when
2505          * enabling a new platform, it does ensure that userspace will be able
2506          * to implement any workarounds that show up requiring temporary
2507          * adjustments to preemption behavior at runtime.
2508          *
2509          * Notes/Workarounds:
2510          *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2511          *      CS_CHICKEN1[0] does not disable object-level preemption as
2512          *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2513          *      using Option 1).  Effectively this means userspace is unable
2514          *      to disable object-level preemption on these platforms/steppings
2515          *      despite the setting here.
2516          *
2517          *  - Wa_16013994831:  May require that userspace program
2518          *      CS_CHICKEN1[10] when certain runtime conditions are true.
2519          *      Userspace requires Option 2 to be in effect for their update of
2520          *      CS_CHICKEN1[10] to be effective.
2521          *
2522          * Other workarounds may appear in the future that will also require
2523          * Option 2 behavior to allow proper userspace implementation.
2524          */
2525         if (GRAPHICS_VER(i915) >= 9)
2526                 wa_masked_en(wal,
2527                              GEN7_FF_SLICE_CS_CHICKEN1,
2528                              GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2529
2530         if (IS_SKYLAKE(i915) ||
2531             IS_KABYLAKE(i915) ||
2532             IS_COFFEELAKE(i915) ||
2533             IS_COMETLAKE(i915)) {
2534                 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2535                 wa_write_or(wal,
2536                             GEN8_GARBCNTL,
2537                             GEN9_GAPS_TSV_CREDIT_DISABLE);
2538         }
2539
2540         if (IS_BROXTON(i915)) {
2541                 /* WaDisablePooledEuLoadBalancingFix:bxt */
2542                 wa_masked_en(wal,
2543                              FF_SLICE_CS_CHICKEN2,
2544                              GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2545         }
2546
2547         if (GRAPHICS_VER(i915) == 9) {
2548                 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2549                 wa_masked_en(wal,
2550                              GEN9_CSFE_CHICKEN1_RCS,
2551                              GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2552
2553                 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2554                 wa_mcr_write_or(wal,
2555                                 BDW_SCRATCH1,
2556                                 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2557
2558                 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2559                 if (IS_GEN9_LP(i915))
2560                         wa_mcr_write_clr_set(wal,
2561                                              GEN8_L3SQCREG1,
2562                                              L3_PRIO_CREDITS_MASK,
2563                                              L3_GENERAL_PRIO_CREDITS(62) |
2564                                              L3_HIGH_PRIO_CREDITS(2));
2565
2566                 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2567                 wa_mcr_write_or(wal,
2568                                 GEN8_L3SQCREG4,
2569                                 GEN8_LQSC_FLUSH_COHERENT_LINES);
2570
2571                 /* Disable atomics in L3 to prevent unrecoverable hangs */
2572                 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2573                                  GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2574                 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2575                                      GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2576                 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2577                                      EVICTION_PERF_FIX_ENABLE, 0);
2578         }
2579
2580         if (IS_HASWELL(i915)) {
2581                 /* WaSampleCChickenBitEnable:hsw */
2582                 wa_masked_en(wal,
2583                              HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2584
2585                 wa_masked_dis(wal,
2586                               CACHE_MODE_0_GEN7,
2587                               /* enable HiZ Raw Stall Optimization */
2588                               HIZ_RAW_STALL_OPT_DISABLE);
2589         }
2590
2591         if (IS_VALLEYVIEW(i915)) {
2592                 /* WaDisableEarlyCull:vlv */
2593                 wa_masked_en(wal,
2594                              _3D_CHICKEN3,
2595                              _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2596
2597                 /*
2598                  * WaVSThreadDispatchOverride:ivb,vlv
2599                  *
2600                  * This actually overrides the dispatch
2601                  * mode for all thread types.
2602                  */
2603                 wa_write_clr_set(wal,
2604                                  GEN7_FF_THREAD_MODE,
2605                                  GEN7_FF_SCHED_MASK,
2606                                  GEN7_FF_TS_SCHED_HW |
2607                                  GEN7_FF_VS_SCHED_HW |
2608                                  GEN7_FF_DS_SCHED_HW);
2609
2610                 /* WaPsdDispatchEnable:vlv */
2611                 /* WaDisablePSDDualDispatchEnable:vlv */
2612                 wa_masked_en(wal,
2613                              GEN7_HALF_SLICE_CHICKEN1,
2614                              GEN7_MAX_PS_THREAD_DEP |
2615                              GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2616         }
2617
2618         if (IS_IVYBRIDGE(i915)) {
2619                 /* WaDisableEarlyCull:ivb */
2620                 wa_masked_en(wal,
2621                              _3D_CHICKEN3,
2622                              _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2623
2624                 if (0) { /* causes HiZ corruption on ivb:gt1 */
2625                         /* enable HiZ Raw Stall Optimization */
2626                         wa_masked_dis(wal,
2627                                       CACHE_MODE_0_GEN7,
2628                                       HIZ_RAW_STALL_OPT_DISABLE);
2629                 }
2630
2631                 /*
2632                  * WaVSThreadDispatchOverride:ivb,vlv
2633                  *
2634                  * This actually overrides the dispatch
2635                  * mode for all thread types.
2636                  */
2637                 wa_write_clr_set(wal,
2638                                  GEN7_FF_THREAD_MODE,
2639                                  GEN7_FF_SCHED_MASK,
2640                                  GEN7_FF_TS_SCHED_HW |
2641                                  GEN7_FF_VS_SCHED_HW |
2642                                  GEN7_FF_DS_SCHED_HW);
2643
2644                 /* WaDisablePSDDualDispatchEnable:ivb */
2645                 if (IS_IVB_GT1(i915))
2646                         wa_masked_en(wal,
2647                                      GEN7_HALF_SLICE_CHICKEN1,
2648                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2649         }
2650
2651         if (GRAPHICS_VER(i915) == 7) {
2652                 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2653                 wa_masked_en(wal,
2654                              RING_MODE_GEN7(RENDER_RING_BASE),
2655                              GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2656
2657                 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2658                 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2659
2660                 /*
2661                  * BSpec says this must be set, even though
2662                  * WaDisable4x2SubspanOptimization:ivb,hsw
2663                  * WaDisable4x2SubspanOptimization isn't listed for VLV.
2664                  */
2665                 wa_masked_en(wal,
2666                              CACHE_MODE_1,
2667                              PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2668
2669                 /*
2670                  * BSpec recommends 8x4 when MSAA is used,
2671                  * however in practice 16x4 seems fastest.
2672                  *
2673                  * Note that PS/WM thread counts depend on the WIZ hashing
2674                  * disable bit, which we don't touch here, but it's good
2675                  * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2676                  */
2677                 wa_masked_field_set(wal,
2678                                     GEN7_GT_MODE,
2679                                     GEN6_WIZ_HASHING_MASK,
2680                                     GEN6_WIZ_HASHING_16x4);
2681         }
2682
2683         if (IS_GRAPHICS_VER(i915, 6, 7))
2684                 /*
2685                  * We need to disable the AsyncFlip performance optimisations in
2686                  * order to use MI_WAIT_FOR_EVENT within the CS. It should
2687                  * already be programmed to '1' on all products.
2688                  *
2689                  * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2690                  */
2691                 wa_masked_en(wal,
2692                              RING_MI_MODE(RENDER_RING_BASE),
2693                              ASYNC_FLIP_PERF_DISABLE);
2694
2695         if (GRAPHICS_VER(i915) == 6) {
2696                 /*
2697                  * Required for the hardware to program scanline values for
2698                  * waiting
2699                  * WaEnableFlushTlbInvalidationMode:snb
2700                  */
2701                 wa_masked_en(wal,
2702                              GFX_MODE,
2703                              GFX_TLB_INVALIDATE_EXPLICIT);
2704
2705                 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2706                 wa_masked_en(wal,
2707                              _3D_CHICKEN,
2708                              _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2709
2710                 wa_masked_en(wal,
2711                              _3D_CHICKEN3,
2712                              /* WaStripsFansDisableFastClipPerformanceFix:snb */
2713                              _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2714                              /*
2715                               * Bspec says:
2716                               * "This bit must be set if 3DSTATE_CLIP clip mode is set
2717                               * to normal and 3DSTATE_SF number of SF output attributes
2718                               * is more than 16."
2719                               */
2720                              _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2721
2722                 /*
2723                  * BSpec recommends 8x4 when MSAA is used,
2724                  * however in practice 16x4 seems fastest.
2725                  *
2726                  * Note that PS/WM thread counts depend on the WIZ hashing
2727                  * disable bit, which we don't touch here, but it's good
2728                  * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2729                  */
2730                 wa_masked_field_set(wal,
2731                                     GEN6_GT_MODE,
2732                                     GEN6_WIZ_HASHING_MASK,
2733                                     GEN6_WIZ_HASHING_16x4);
2734
2735                 /* WaDisable_RenderCache_OperationalFlush:snb */
2736                 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2737
2738                 /*
2739                  * From the Sandybridge PRM, volume 1 part 3, page 24:
2740                  * "If this bit is set, STCunit will have LRA as replacement
2741                  *  policy. [...] This bit must be reset. LRA replacement
2742                  *  policy is not supported."
2743                  */
2744                 wa_masked_dis(wal,
2745                               CACHE_MODE_0,
2746                               CM0_STC_EVICT_DISABLE_LRA_SNB);
2747         }
2748
2749         if (IS_GRAPHICS_VER(i915, 4, 6))
2750                 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2751                 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2752                        0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2753                        /* XXX bit doesn't stick on Broadwater */
2754                        IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2755
2756         if (GRAPHICS_VER(i915) == 4)
2757                 /*
2758                  * Disable CONSTANT_BUFFER before it is loaded from the context
2759                  * image. For as it is loaded, it is executed and the stored
2760                  * address may no longer be valid, leading to a GPU hang.
2761                  *
2762                  * This imposes the requirement that userspace reload their
2763                  * CONSTANT_BUFFER on every batch, fortunately a requirement
2764                  * they are already accustomed to from before contexts were
2765                  * enabled.
2766                  */
2767                 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2768                        0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2769                        0 /* XXX bit doesn't stick on Broadwater */,
2770                        true);
2771 }
2772
2773 static void
2774 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2775 {
2776         struct drm_i915_private *i915 = engine->i915;
2777
2778         /* WaKBLVECSSemaphoreWaitPoll:kbl */
2779         if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2780                 wa_write(wal,
2781                          RING_SEMA_WAIT_POLL(engine->mmio_base),
2782                          1);
2783         }
2784 }
2785
2786 static void
2787 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2788 {
2789         if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2790                 /* Wa_14014999345:pvc */
2791                 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2792         }
2793 }
2794
2795 /*
2796  * The bspec performance guide has recommended MMIO tuning settings.  These
2797  * aren't truly "workarounds" but we want to program them with the same
2798  * workaround infrastructure to ensure that they're automatically added to
2799  * the GuC save/restore lists, re-applied at the right times, and checked for
2800  * any conflicting programming requested by real workarounds.
2801  *
2802  * Programming settings should be added here only if their registers are not
2803  * part of an engine's register state context.  If a register is part of a
2804  * context, then any tuning settings should be programmed in an appropriate
2805  * function invoked by __intel_engine_init_ctx_wa().
2806  */
2807 static void
2808 add_render_compute_tuning_settings(struct intel_gt *gt,
2809                                    struct i915_wa_list *wal)
2810 {
2811         struct drm_i915_private *i915 = gt->i915;
2812
2813         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) || IS_DG2(i915))
2814                 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2815
2816         /*
2817          * This tuning setting proves beneficial only on ATS-M designs; the
2818          * default "age based" setting is optimal on regular DG2 and other
2819          * platforms.
2820          */
2821         if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2822                 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2823                                         THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2824
2825         if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2826                 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2827 }
2828
2829 /*
2830  * The workarounds in this function apply to shared registers in
2831  * the general render reset domain that aren't tied to a
2832  * specific engine.  Since all render+compute engines get reset
2833  * together, and the contents of these registers are lost during
2834  * the shared render domain reset, we'll define such workarounds
2835  * here and then add them to just a single RCS or CCS engine's
2836  * workaround list (whichever engine has the XXXX flag).
2837  */
2838 static void
2839 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2840 {
2841         struct drm_i915_private *i915 = engine->i915;
2842         struct intel_gt *gt = engine->gt;
2843
2844         add_render_compute_tuning_settings(gt, wal);
2845
2846         if (GRAPHICS_VER(i915) >= 11) {
2847                 /* This is not a Wa (although referred to as
2848                  * WaSetInidrectStateOverride in places), this allows
2849                  * applications that reference sampler states through
2850                  * the BindlessSamplerStateBaseAddress to have their
2851                  * border color relative to DynamicStateBaseAddress
2852                  * rather than BindlessSamplerStateBaseAddress.
2853                  *
2854                  * Otherwise SAMPLER_STATE border colors have to be
2855                  * copied in multiple heaps (DynamicStateBaseAddress &
2856                  * BindlessSamplerStateBaseAddress)
2857                  *
2858                  * BSpec: 46052
2859                  */
2860                 wa_mcr_masked_en(wal,
2861                                  GEN10_SAMPLER_MODE,
2862                                  GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2863         }
2864
2865         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2866             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER))
2867                 /* Wa_14017856879 */
2868                 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2869
2870         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2871             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2872                 /*
2873                  * Wa_14017066071
2874                  * Wa_14017654203
2875                  */
2876                 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2877                                  MTL_DISABLE_SAMPLER_SC_OOO);
2878
2879         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2880                 /* Wa_22015279794 */
2881                 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2882                                  DISABLE_PREFETCH_INTO_IC);
2883
2884         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2885             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2886             IS_DG2(i915)) {
2887                 /* Wa_22013037850 */
2888                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2889                                 DISABLE_128B_EVICTION_COMMAND_UDW);
2890
2891                 /* Wa_18017747507 */
2892                 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2893         }
2894
2895         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2896             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2897             IS_PONTEVECCHIO(i915) ||
2898             IS_DG2(i915)) {
2899                 /* Wa_22014226127 */
2900                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2901         }
2902
2903         if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2904                 /* Wa_14015227452:dg2,pvc */
2905                 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2906
2907                 /* Wa_16015675438:dg2,pvc */
2908                 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2909         }
2910
2911         if (IS_DG2(i915)) {
2912                 /*
2913                  * Wa_16011620976:dg2_g11
2914                  * Wa_22015475538:dg2
2915                  */
2916                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2917         }
2918
2919         if (IS_DG2_G11(i915)) {
2920                 /*
2921                  * Wa_22012826095:dg2
2922                  * Wa_22013059131:dg2
2923                  */
2924                 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2925                                      MAXREQS_PER_BANK,
2926                                      REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2927
2928                 /* Wa_22013059131:dg2 */
2929                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2930                                 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2931
2932                 /*
2933                  * Wa_22012654132
2934                  *
2935                  * Note that register 0xE420 is write-only and cannot be read
2936                  * back for verification on DG2 (due to Wa_14012342262), so
2937                  * we need to explicitly skip the readback.
2938                  */
2939                 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2940                            _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2941                            0 /* write-only, so skip validation */,
2942                            true);
2943         }
2944
2945         if (IS_DG2_G10(i915) || IS_DG2_G12(i915)) {
2946                 /* Wa_18028616096 */
2947                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2948         }
2949
2950         if (IS_XEHPSDV(i915)) {
2951                 /* Wa_1409954639 */
2952                 wa_mcr_masked_en(wal,
2953                                  GEN8_ROW_CHICKEN,
2954                                  SYSTOLIC_DOP_CLOCK_GATING_DIS);
2955
2956                 /* Wa_1607196519 */
2957                 wa_mcr_masked_en(wal,
2958                                  GEN9_ROW_CHICKEN4,
2959                                  GEN12_DISABLE_GRF_CLEAR);
2960
2961                 /* Wa_14010449647:xehpsdv */
2962                 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
2963                                  GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2964         }
2965 }
2966
2967 static void
2968 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2969 {
2970         if (GRAPHICS_VER(engine->i915) < 4)
2971                 return;
2972
2973         engine_fake_wa_init(engine, wal);
2974
2975         /*
2976          * These are common workarounds that just need to applied
2977          * to a single RCS/CCS engine's workaround list since
2978          * they're reset as part of the general render domain reset.
2979          */
2980         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2981                 general_render_compute_wa_init(engine, wal);
2982
2983         if (engine->class == COMPUTE_CLASS)
2984                 ccs_engine_wa_init(engine, wal);
2985         else if (engine->class == RENDER_CLASS)
2986                 rcs_engine_wa_init(engine, wal);
2987         else
2988                 xcs_engine_wa_init(engine, wal);
2989 }
2990
2991 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2992 {
2993         struct i915_wa_list *wal = &engine->wa_list;
2994
2995         wa_init_start(wal, engine->gt, "engine", engine->name);
2996         engine_init_workarounds(engine, wal);
2997         wa_init_finish(wal);
2998 }
2999
3000 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3001 {
3002         wa_list_apply(&engine->wa_list);
3003 }
3004
3005 static const struct i915_range mcr_ranges_gen8[] = {
3006         { .start = 0x5500, .end = 0x55ff },
3007         { .start = 0x7000, .end = 0x7fff },
3008         { .start = 0x9400, .end = 0x97ff },
3009         { .start = 0xb000, .end = 0xb3ff },
3010         { .start = 0xe000, .end = 0xe7ff },
3011         {},
3012 };
3013
3014 static const struct i915_range mcr_ranges_gen12[] = {
3015         { .start =  0x8150, .end =  0x815f },
3016         { .start =  0x9520, .end =  0x955f },
3017         { .start =  0xb100, .end =  0xb3ff },
3018         { .start =  0xde80, .end =  0xe8ff },
3019         { .start = 0x24a00, .end = 0x24a7f },
3020         {},
3021 };
3022
3023 static const struct i915_range mcr_ranges_xehp[] = {
3024         { .start =  0x4000, .end =  0x4aff },
3025         { .start =  0x5200, .end =  0x52ff },
3026         { .start =  0x5400, .end =  0x7fff },
3027         { .start =  0x8140, .end =  0x815f },
3028         { .start =  0x8c80, .end =  0x8dff },
3029         { .start =  0x94d0, .end =  0x955f },
3030         { .start =  0x9680, .end =  0x96ff },
3031         { .start =  0xb000, .end =  0xb3ff },
3032         { .start =  0xc800, .end =  0xcfff },
3033         { .start =  0xd800, .end =  0xd8ff },
3034         { .start =  0xdc00, .end =  0xffff },
3035         { .start = 0x17000, .end = 0x17fff },
3036         { .start = 0x24a00, .end = 0x24a7f },
3037         {},
3038 };
3039
3040 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3041 {
3042         const struct i915_range *mcr_ranges;
3043         int i;
3044
3045         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3046                 mcr_ranges = mcr_ranges_xehp;
3047         else if (GRAPHICS_VER(i915) >= 12)
3048                 mcr_ranges = mcr_ranges_gen12;
3049         else if (GRAPHICS_VER(i915) >= 8)
3050                 mcr_ranges = mcr_ranges_gen8;
3051         else
3052                 return false;
3053
3054         /*
3055          * Registers in these ranges are affected by the MCR selector
3056          * which only controls CPU initiated MMIO. Routing does not
3057          * work for CS access so we cannot verify them on this path.
3058          */
3059         for (i = 0; mcr_ranges[i].start; i++)
3060                 if (offset >= mcr_ranges[i].start &&
3061                     offset <= mcr_ranges[i].end)
3062                         return true;
3063
3064         return false;
3065 }
3066
3067 static int
3068 wa_list_srm(struct i915_request *rq,
3069             const struct i915_wa_list *wal,
3070             struct i915_vma *vma)
3071 {
3072         struct drm_i915_private *i915 = rq->i915;
3073         unsigned int i, count = 0;
3074         const struct i915_wa *wa;
3075         u32 srm, *cs;
3076
3077         srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3078         if (GRAPHICS_VER(i915) >= 8)
3079                 srm++;
3080
3081         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3082                 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3083                         count++;
3084         }
3085
3086         cs = intel_ring_begin(rq, 4 * count);
3087         if (IS_ERR(cs))
3088                 return PTR_ERR(cs);
3089
3090         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3091                 u32 offset = i915_mmio_reg_offset(wa->reg);
3092
3093                 if (mcr_range(i915, offset))
3094                         continue;
3095
3096                 *cs++ = srm;
3097                 *cs++ = offset;
3098                 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3099                 *cs++ = 0;
3100         }
3101         intel_ring_advance(rq, cs);
3102
3103         return 0;
3104 }
3105
3106 static int engine_wa_list_verify(struct intel_context *ce,
3107                                  const struct i915_wa_list * const wal,
3108                                  const char *from)
3109 {
3110         const struct i915_wa *wa;
3111         struct i915_request *rq;
3112         struct i915_vma *vma;
3113         struct i915_gem_ww_ctx ww;
3114         unsigned int i;
3115         u32 *results;
3116         int err;
3117
3118         if (!wal->count)
3119                 return 0;
3120
3121         vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3122                                            wal->count * sizeof(u32));
3123         if (IS_ERR(vma))
3124                 return PTR_ERR(vma);
3125
3126         intel_engine_pm_get(ce->engine);
3127         i915_gem_ww_ctx_init(&ww, false);
3128 retry:
3129         err = i915_gem_object_lock(vma->obj, &ww);
3130         if (err == 0)
3131                 err = intel_context_pin_ww(ce, &ww);
3132         if (err)
3133                 goto err_pm;
3134
3135         err = i915_vma_pin_ww(vma, &ww, 0, 0,
3136                            i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3137         if (err)
3138                 goto err_unpin;
3139
3140         rq = i915_request_create(ce);
3141         if (IS_ERR(rq)) {
3142                 err = PTR_ERR(rq);
3143                 goto err_vma;
3144         }
3145
3146         err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3147         if (err == 0)
3148                 err = wa_list_srm(rq, wal, vma);
3149
3150         i915_request_get(rq);
3151         if (err)
3152                 i915_request_set_error_once(rq, err);
3153         i915_request_add(rq);
3154
3155         if (err)
3156                 goto err_rq;
3157
3158         if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3159                 err = -ETIME;
3160                 goto err_rq;
3161         }
3162
3163         results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3164         if (IS_ERR(results)) {
3165                 err = PTR_ERR(results);
3166                 goto err_rq;
3167         }
3168
3169         err = 0;
3170         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3171                 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3172                         continue;
3173
3174                 if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3175                         err = -ENXIO;
3176         }
3177
3178         i915_gem_object_unpin_map(vma->obj);
3179
3180 err_rq:
3181         i915_request_put(rq);
3182 err_vma:
3183         i915_vma_unpin(vma);
3184 err_unpin:
3185         intel_context_unpin(ce);
3186 err_pm:
3187         if (err == -EDEADLK) {
3188                 err = i915_gem_ww_ctx_backoff(&ww);
3189                 if (!err)
3190                         goto retry;
3191         }
3192         i915_gem_ww_ctx_fini(&ww);
3193         intel_engine_pm_put(ce->engine);
3194         i915_vma_put(vma);
3195         return err;
3196 }
3197
3198 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3199                                     const char *from)
3200 {
3201         return engine_wa_list_verify(engine->kernel_context,
3202                                      &engine->wa_list,
3203                                      from);
3204 }
3205
3206 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3207 #include "selftest_workarounds.c"
3208 #endif