Merge tag 'drm-intel-gt-next-2022-09-16' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gt / intel_ggtt_fencing.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2015 Intel Corporation
4  */
5
6 #include <linux/highmem.h>
7
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "i915_scatterlist.h"
11 #include "i915_pvinfo.h"
12 #include "i915_vgpu.h"
13 #include "intel_gt_regs.h"
14 #include "intel_mchbar_regs.h"
15
16 /**
17  * DOC: fence register handling
18  *
19  * Important to avoid confusions: "fences" in the i915 driver are not execution
20  * fences used to track command completion but hardware detiler objects which
21  * wrap a given range of the global GTT. Each platform has only a fairly limited
22  * set of these objects.
23  *
24  * Fences are used to detile GTT memory mappings. They're also connected to the
25  * hardware frontbuffer render tracking and hence interact with frontbuffer
26  * compression. Furthermore on older platforms fences are required for tiled
27  * objects used by the display engine. They can also be used by the render
28  * engine - they're required for blitter commands and are optional for render
29  * commands. But on gen4+ both display (with the exception of fbc) and rendering
30  * have their own tiling state bits and don't need fences.
31  *
32  * Also note that fences only support X and Y tiling and hence can't be used for
33  * the fancier new tiling formats like W, Ys and Yf.
34  *
35  * Finally note that because fences are such a restricted resource they're
36  * dynamically associated with objects. Furthermore fence state is committed to
37  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
38  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
39  * for cpu access. Also note that some code wants an unfenced view, for those
40  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
41  *
42  * Internally these functions will synchronize with userspace access by removing
43  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
44  */
45
46 #define pipelined 0
47
48 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
49 {
50         return fence->ggtt->vm.i915;
51 }
52
53 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
54 {
55         return fence->ggtt->vm.gt->uncore;
56 }
57
58 static void i965_write_fence_reg(struct i915_fence_reg *fence)
59 {
60         i915_reg_t fence_reg_lo, fence_reg_hi;
61         int fence_pitch_shift;
62         u64 val;
63
64         if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
65                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
66                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
67                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
68
69         } else {
70                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
71                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
72                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
73         }
74
75         val = 0;
76         if (fence->tiling) {
77                 unsigned int stride = fence->stride;
78
79                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
80
81                 val = fence->start + fence->size - I965_FENCE_PAGE;
82                 val <<= 32;
83                 val |= fence->start;
84                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
85                 if (fence->tiling == I915_TILING_Y)
86                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
87                 val |= I965_FENCE_REG_VALID;
88         }
89
90         if (!pipelined) {
91                 struct intel_uncore *uncore = fence_to_uncore(fence);
92
93                 /*
94                  * To w/a incoherency with non-atomic 64-bit register updates,
95                  * we split the 64-bit update into two 32-bit writes. In order
96                  * for a partial fence not to be evaluated between writes, we
97                  * precede the update with write to turn off the fence register,
98                  * and only enable the fence as the last step.
99                  *
100                  * For extra levels of paranoia, we make sure each step lands
101                  * before applying the next step.
102                  */
103                 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
104                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
105
106                 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
107                 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
108                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
109         }
110 }
111
112 static void i915_write_fence_reg(struct i915_fence_reg *fence)
113 {
114         u32 val;
115
116         val = 0;
117         if (fence->tiling) {
118                 unsigned int stride = fence->stride;
119                 unsigned int tiling = fence->tiling;
120                 bool is_y_tiled = tiling == I915_TILING_Y;
121
122                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
123                         stride /= 128;
124                 else
125                         stride /= 512;
126                 GEM_BUG_ON(!is_power_of_2(stride));
127
128                 val = fence->start;
129                 if (is_y_tiled)
130                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
131                 val |= I915_FENCE_SIZE_BITS(fence->size);
132                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
133
134                 val |= I830_FENCE_REG_VALID;
135         }
136
137         if (!pipelined) {
138                 struct intel_uncore *uncore = fence_to_uncore(fence);
139                 i915_reg_t reg = FENCE_REG(fence->id);
140
141                 intel_uncore_write_fw(uncore, reg, val);
142                 intel_uncore_posting_read_fw(uncore, reg);
143         }
144 }
145
146 static void i830_write_fence_reg(struct i915_fence_reg *fence)
147 {
148         u32 val;
149
150         val = 0;
151         if (fence->tiling) {
152                 unsigned int stride = fence->stride;
153
154                 val = fence->start;
155                 if (fence->tiling == I915_TILING_Y)
156                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
157                 val |= I830_FENCE_SIZE_BITS(fence->size);
158                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
159                 val |= I830_FENCE_REG_VALID;
160         }
161
162         if (!pipelined) {
163                 struct intel_uncore *uncore = fence_to_uncore(fence);
164                 i915_reg_t reg = FENCE_REG(fence->id);
165
166                 intel_uncore_write_fw(uncore, reg, val);
167                 intel_uncore_posting_read_fw(uncore, reg);
168         }
169 }
170
171 static void fence_write(struct i915_fence_reg *fence)
172 {
173         struct drm_i915_private *i915 = fence_to_i915(fence);
174
175         /*
176          * Previous access through the fence register is marshalled by
177          * the mb() inside the fault handlers (i915_gem_release_mmaps)
178          * and explicitly managed for internal users.
179          */
180
181         if (GRAPHICS_VER(i915) == 2)
182                 i830_write_fence_reg(fence);
183         else if (GRAPHICS_VER(i915) == 3)
184                 i915_write_fence_reg(fence);
185         else
186                 i965_write_fence_reg(fence);
187
188         /*
189          * Access through the fenced region afterwards is
190          * ordered by the posting reads whilst writing the registers.
191          */
192 }
193
194 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
195 {
196         return GRAPHICS_VER(fence_to_i915(fence)) < 4;
197 }
198
199 static int fence_update(struct i915_fence_reg *fence,
200                         struct i915_vma *vma)
201 {
202         struct i915_ggtt *ggtt = fence->ggtt;
203         struct intel_uncore *uncore = fence_to_uncore(fence);
204         intel_wakeref_t wakeref;
205         struct i915_vma *old;
206         int ret;
207
208         fence->tiling = 0;
209         if (vma) {
210                 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
211                            !i915_gem_object_get_tiling(vma->obj));
212
213                 if (!i915_vma_is_map_and_fenceable(vma))
214                         return -EINVAL;
215
216                 if (gpu_uses_fence_registers(fence)) {
217                         /* implicit 'unfenced' GPU blits */
218                         ret = i915_vma_sync(vma);
219                         if (ret)
220                                 return ret;
221                 }
222
223                 fence->start = vma->node.start;
224                 fence->size = vma->fence_size;
225                 fence->stride = i915_gem_object_get_stride(vma->obj);
226                 fence->tiling = i915_gem_object_get_tiling(vma->obj);
227         }
228         WRITE_ONCE(fence->dirty, false);
229
230         old = xchg(&fence->vma, NULL);
231         if (old) {
232                 /* XXX Ideally we would move the waiting to outside the mutex */
233                 ret = i915_active_wait(&fence->active);
234                 if (ret) {
235                         fence->vma = old;
236                         return ret;
237                 }
238
239                 i915_vma_flush_writes(old);
240
241                 /*
242                  * Ensure that all userspace CPU access is completed before
243                  * stealing the fence.
244                  */
245                 if (old != vma) {
246                         GEM_BUG_ON(old->fence != fence);
247                         i915_vma_revoke_mmap(old);
248                         old->fence = NULL;
249                 }
250
251                 list_move(&fence->link, &ggtt->fence_list);
252         }
253
254         /*
255          * We only need to update the register itself if the device is awake.
256          * If the device is currently powered down, we will defer the write
257          * to the runtime resume, see intel_ggtt_restore_fences().
258          *
259          * This only works for removing the fence register, on acquisition
260          * the caller must hold the rpm wakeref. The fence register must
261          * be cleared before we can use any other fences to ensure that
262          * the new fences do not overlap the elided clears, confusing HW.
263          */
264         wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
265         if (!wakeref) {
266                 GEM_BUG_ON(vma);
267                 return 0;
268         }
269
270         WRITE_ONCE(fence->vma, vma);
271         fence_write(fence);
272
273         if (vma) {
274                 vma->fence = fence;
275                 list_move_tail(&fence->link, &ggtt->fence_list);
276         }
277
278         intel_runtime_pm_put(uncore->rpm, wakeref);
279         return 0;
280 }
281
282 /**
283  * i915_vma_revoke_fence - force-remove fence for a VMA
284  * @vma: vma to map linearly (not through a fence reg)
285  *
286  * This function force-removes any fence from the given object, which is useful
287  * if the kernel wants to do untiled GTT access.
288  */
289 void i915_vma_revoke_fence(struct i915_vma *vma)
290 {
291         struct i915_fence_reg *fence = vma->fence;
292         intel_wakeref_t wakeref;
293
294         lockdep_assert_held(&vma->vm->mutex);
295         if (!fence)
296                 return;
297
298         GEM_BUG_ON(fence->vma != vma);
299         GEM_BUG_ON(!i915_active_is_idle(&fence->active));
300         GEM_BUG_ON(atomic_read(&fence->pin_count));
301
302         fence->tiling = 0;
303         WRITE_ONCE(fence->vma, NULL);
304         vma->fence = NULL;
305
306         /*
307          * Skip the write to HW if and only if the device is currently
308          * suspended.
309          *
310          * If the driver does not currently hold a wakeref (if_in_use == 0),
311          * the device may currently be runtime suspended, or it may be woken
312          * up before the suspend takes place. If the device is not suspended
313          * (powered down) and we skip clearing the fence register, the HW is
314          * left in an undefined state where we may end up with multiple
315          * registers overlapping.
316          */
317         with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
318                 fence_write(fence);
319 }
320
321 static bool fence_is_active(const struct i915_fence_reg *fence)
322 {
323         return fence->vma && i915_vma_is_active(fence->vma);
324 }
325
326 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
327 {
328         struct i915_fence_reg *active = NULL;
329         struct i915_fence_reg *fence, *fn;
330
331         list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
332                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
333
334                 if (fence == active) /* now seen this fence twice */
335                         active = ERR_PTR(-EAGAIN);
336
337                 /* Prefer idle fences so we do not have to wait on the GPU */
338                 if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
339                         if (!active)
340                                 active = fence;
341
342                         list_move_tail(&fence->link, &ggtt->fence_list);
343                         continue;
344                 }
345
346                 if (atomic_read(&fence->pin_count))
347                         continue;
348
349                 return fence;
350         }
351
352         /* Wait for completion of pending flips which consume fences */
353         if (intel_has_pending_fb_unpin(ggtt->vm.i915))
354                 return ERR_PTR(-EAGAIN);
355
356         return ERR_PTR(-ENOBUFS);
357 }
358
359 int __i915_vma_pin_fence(struct i915_vma *vma)
360 {
361         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
362         struct i915_fence_reg *fence;
363         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
364         int err;
365
366         lockdep_assert_held(&vma->vm->mutex);
367
368         /* Just update our place in the LRU if our fence is getting reused. */
369         if (vma->fence) {
370                 fence = vma->fence;
371                 GEM_BUG_ON(fence->vma != vma);
372                 atomic_inc(&fence->pin_count);
373                 if (!fence->dirty) {
374                         list_move_tail(&fence->link, &ggtt->fence_list);
375                         return 0;
376                 }
377         } else if (set) {
378                 fence = fence_find(ggtt);
379                 if (IS_ERR(fence))
380                         return PTR_ERR(fence);
381
382                 GEM_BUG_ON(atomic_read(&fence->pin_count));
383                 atomic_inc(&fence->pin_count);
384         } else {
385                 return 0;
386         }
387
388         err = fence_update(fence, set);
389         if (err)
390                 goto out_unpin;
391
392         GEM_BUG_ON(fence->vma != set);
393         GEM_BUG_ON(vma->fence != (set ? fence : NULL));
394
395         if (set)
396                 return 0;
397
398 out_unpin:
399         atomic_dec(&fence->pin_count);
400         return err;
401 }
402
403 /**
404  * i915_vma_pin_fence - set up fencing for a vma
405  * @vma: vma to map through a fence reg
406  *
407  * When mapping objects through the GTT, userspace wants to be able to write
408  * to them without having to worry about swizzling if the object is tiled.
409  * This function walks the fence regs looking for a free one for @obj,
410  * stealing one if it can't find any.
411  *
412  * It then sets up the reg based on the object's properties: address, pitch
413  * and tiling format.
414  *
415  * For an untiled surface, this removes any existing fence.
416  *
417  * Returns:
418  *
419  * 0 on success, negative error code on failure.
420  */
421 int i915_vma_pin_fence(struct i915_vma *vma)
422 {
423         int err;
424
425         if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
426                 return 0;
427
428         /*
429          * Note that we revoke fences on runtime suspend. Therefore the user
430          * must keep the device awake whilst using the fence.
431          */
432         assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
433         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
434
435         err = mutex_lock_interruptible(&vma->vm->mutex);
436         if (err)
437                 return err;
438
439         err = __i915_vma_pin_fence(vma);
440         mutex_unlock(&vma->vm->mutex);
441
442         return err;
443 }
444
445 /**
446  * i915_reserve_fence - Reserve a fence for vGPU
447  * @ggtt: Global GTT
448  *
449  * This function walks the fence regs looking for a free one and remove
450  * it from the fence_list. It is used to reserve fence for vGPU to use.
451  */
452 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
453 {
454         struct i915_fence_reg *fence;
455         int count;
456         int ret;
457
458         lockdep_assert_held(&ggtt->vm.mutex);
459
460         /* Keep at least one fence available for the display engine. */
461         count = 0;
462         list_for_each_entry(fence, &ggtt->fence_list, link)
463                 count += !atomic_read(&fence->pin_count);
464         if (count <= 1)
465                 return ERR_PTR(-ENOSPC);
466
467         fence = fence_find(ggtt);
468         if (IS_ERR(fence))
469                 return fence;
470
471         if (fence->vma) {
472                 /* Force-remove fence from VMA */
473                 ret = fence_update(fence, NULL);
474                 if (ret)
475                         return ERR_PTR(ret);
476         }
477
478         list_del(&fence->link);
479
480         return fence;
481 }
482
483 /**
484  * i915_unreserve_fence - Reclaim a reserved fence
485  * @fence: the fence reg
486  *
487  * This function add a reserved fence register from vGPU to the fence_list.
488  */
489 void i915_unreserve_fence(struct i915_fence_reg *fence)
490 {
491         struct i915_ggtt *ggtt = fence->ggtt;
492
493         lockdep_assert_held(&ggtt->vm.mutex);
494
495         list_add(&fence->link, &ggtt->fence_list);
496 }
497
498 /**
499  * intel_ggtt_restore_fences - restore fence state
500  * @ggtt: Global GTT
501  *
502  * Restore the hw fence state to match the software tracking again, to be called
503  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
504  * the fences, to be reacquired by the user later.
505  */
506 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
507 {
508         int i;
509
510         for (i = 0; i < ggtt->num_fences; i++)
511                 fence_write(&ggtt->fence_regs[i]);
512 }
513
514 /**
515  * DOC: tiling swizzling details
516  *
517  * The idea behind tiling is to increase cache hit rates by rearranging
518  * pixel data so that a group of pixel accesses are in the same cacheline.
519  * Performance improvement from doing this on the back/depth buffer are on
520  * the order of 30%.
521  *
522  * Intel architectures make this somewhat more complicated, though, by
523  * adjustments made to addressing of data when the memory is in interleaved
524  * mode (matched pairs of DIMMS) to improve memory bandwidth.
525  * For interleaved memory, the CPU sends every sequential 64 bytes
526  * to an alternate memory channel so it can get the bandwidth from both.
527  *
528  * The GPU also rearranges its accesses for increased bandwidth to interleaved
529  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
530  * it does it a little differently, since one walks addresses not just in the
531  * X direction but also Y.  So, along with alternating channels when bit
532  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
533  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
534  * are common to both the 915 and 965-class hardware.
535  *
536  * The CPU also sometimes XORs in higher bits as well, to improve
537  * bandwidth doing strided access like we do so frequently in graphics.  This
538  * is called "Channel XOR Randomization" in the MCH documentation.  The result
539  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
540  * decode.
541  *
542  * All of this bit 6 XORing has an effect on our memory management,
543  * as we need to make sure that the 3d driver can correctly address object
544  * contents.
545  *
546  * If we don't have interleaved memory, all tiling is safe and no swizzling is
547  * required.
548  *
549  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
550  * 17 is not just a page offset, so as we page an object out and back in,
551  * individual pages in it will have different bit 17 addresses, resulting in
552  * each 64 bytes being swapped with its neighbor!
553  *
554  * Otherwise, if interleaved, we have to tell the 3d driver what the address
555  * swizzling it needs to do is, since it's writing with the CPU to the pages
556  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
557  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
558  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
559  * to match what the GPU expects.
560  */
561
562 /**
563  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
564  * @ggtt: Global GGTT
565  *
566  * Detects bit 6 swizzling of address lookup between IGD access and CPU
567  * access through main memory.
568  */
569 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
570 {
571         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
572         struct drm_i915_private *i915 = ggtt->vm.i915;
573         u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
574         u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
575
576         if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
577                 /*
578                  * On BDW+, swizzling is not used. We leave the CPU memory
579                  * controller in charge of optimizing memory accesses without
580                  * the extra address manipulation GPU side.
581                  *
582                  * VLV and CHV don't have GPU swizzling.
583                  */
584                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
585                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
586         } else if (GRAPHICS_VER(i915) >= 6) {
587                 if (i915->preserve_bios_swizzle) {
588                         if (intel_uncore_read(uncore, DISP_ARB_CTL) &
589                             DISP_TILE_SURFACE_SWIZZLING) {
590                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
591                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
592                         } else {
593                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
594                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
595                         }
596                 } else {
597                         u32 dimm_c0, dimm_c1;
598
599                         dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
600                         dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
601                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
602                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
603                         /*
604                          * Enable swizzling when the channels are populated
605                          * with identically sized dimms. We don't need to check
606                          * the 3rd channel because no cpu with gpu attached
607                          * ships in that configuration. Also, swizzling only
608                          * makes sense for 2 channels anyway.
609                          */
610                         if (dimm_c0 == dimm_c1) {
611                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
612                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
613                         } else {
614                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
615                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
616                         }
617                 }
618         } else if (GRAPHICS_VER(i915) == 5) {
619                 /*
620                  * On Ironlake whatever DRAM config, GPU always do
621                  * same swizzling setup.
622                  */
623                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
624                 swizzle_y = I915_BIT_6_SWIZZLE_9;
625         } else if (GRAPHICS_VER(i915) == 2) {
626                 /*
627                  * As far as we know, the 865 doesn't have these bit 6
628                  * swizzling issues.
629                  */
630                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
631                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
632         } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
633                 /*
634                  * The 965, G33, and newer, have a very flexible memory
635                  * configuration.  It will enable dual-channel mode
636                  * (interleaving) on as much memory as it can, and the GPU
637                  * will additionally sometimes enable different bit 6
638                  * swizzling for tiled objects from the CPU.
639                  *
640                  * Here's what I found on the G965:
641                  *    slot fill         memory size  swizzling
642                  * 0A   0B   1A   1B    1-ch   2-ch
643                  * 512  0    0    0     512    0     O
644                  * 512  0    512  0     16     1008  X
645                  * 512  0    0    512   16     1008  X
646                  * 0    512  0    512   16     1008  X
647                  * 1024 1024 1024 0     2048   1024  O
648                  *
649                  * We could probably detect this based on either the DRB
650                  * matching, which was the case for the swizzling required in
651                  * the table above, or from the 1-ch value being less than
652                  * the minimum size of a rank.
653                  *
654                  * Reports indicate that the swizzling actually
655                  * varies depending upon page placement inside the
656                  * channels, i.e. we see swizzled pages where the
657                  * banks of memory are paired and unswizzled on the
658                  * uneven portion, so leave that as unknown.
659                  */
660                 if (intel_uncore_read16(uncore, C0DRB3_BW) ==
661                     intel_uncore_read16(uncore, C1DRB3_BW)) {
662                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
663                         swizzle_y = I915_BIT_6_SWIZZLE_9;
664                 }
665         } else {
666                 u32 dcc = intel_uncore_read(uncore, DCC);
667
668                 /*
669                  * On 9xx chipsets, channel interleave by the CPU is
670                  * determined by DCC.  For single-channel, neither the CPU
671                  * nor the GPU do swizzling.  For dual channel interleaved,
672                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
673                  * 9 for Y tiled.  The CPU's interleave is independent, and
674                  * can be based on either bit 11 (haven't seen this yet) or
675                  * bit 17 (common).
676                  */
677                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
678                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
679                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
680                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
681                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
682                         break;
683                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
684                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
685                                 /*
686                                  * This is the base swizzling by the GPU for
687                                  * tiled buffers.
688                                  */
689                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
690                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
691                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
692                                 /* Bit 11 swizzling by the CPU in addition. */
693                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
694                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
695                         } else {
696                                 /* Bit 17 swizzling by the CPU in addition. */
697                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
698                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
699                         }
700                         break;
701                 }
702
703                 /* check for L-shaped memory aka modified enhanced addressing */
704                 if (GRAPHICS_VER(i915) == 4 &&
705                     !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
706                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
707                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
708                 }
709
710                 if (dcc == 0xffffffff) {
711                         drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
712                                   "Disabling tiling.\n");
713                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
714                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
715                 }
716         }
717
718         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
719             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
720                 /*
721                  * Userspace likes to explode if it sees unknown swizzling,
722                  * so lie. We will finish the lie when reporting through
723                  * the get-tiling-ioctl by reporting the physical swizzle
724                  * mode as unknown instead.
725                  *
726                  * As we don't strictly know what the swizzling is, it may be
727                  * bit17 dependent, and so we need to also prevent the pages
728                  * from being moved.
729                  */
730                 i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES;
731                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
732                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
733         }
734
735         to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
736         to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
737 }
738
739 /*
740  * Swap every 64 bytes of this page around, to account for it having a new
741  * bit 17 of its physical address and therefore being interpreted differently
742  * by the GPU.
743  */
744 static void swizzle_page(struct page *page)
745 {
746         char temp[64];
747         char *vaddr;
748         int i;
749
750         vaddr = kmap(page);
751
752         for (i = 0; i < PAGE_SIZE; i += 128) {
753                 memcpy(temp, &vaddr[i], 64);
754                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
755                 memcpy(&vaddr[i + 64], temp, 64);
756         }
757
758         kunmap(page);
759 }
760
761 /**
762  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
763  * @obj: i915 GEM buffer object
764  * @pages: the scattergather list of physical pages
765  *
766  * This function fixes up the swizzling in case any page frame number for this
767  * object has changed in bit 17 since that state has been saved with
768  * i915_gem_object_save_bit_17_swizzle().
769  *
770  * This is called when pinning backing storage again, since the kernel is free
771  * to move unpinned backing storage around (either by directly moving pages or
772  * by swapping them out and back in again).
773  */
774 void
775 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
776                                   struct sg_table *pages)
777 {
778         struct sgt_iter sgt_iter;
779         struct page *page;
780         int i;
781
782         if (obj->bit_17 == NULL)
783                 return;
784
785         i = 0;
786         for_each_sgt_page(page, sgt_iter, pages) {
787                 char new_bit_17 = page_to_phys(page) >> 17;
788
789                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
790                         swizzle_page(page);
791                         set_page_dirty(page);
792                 }
793
794                 i++;
795         }
796 }
797
798 /**
799  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
800  * @obj: i915 GEM buffer object
801  * @pages: the scattergather list of physical pages
802  *
803  * This function saves the bit 17 of each page frame number so that swizzling
804  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
805  * be called before the backing storage can be unpinned.
806  */
807 void
808 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
809                                     struct sg_table *pages)
810 {
811         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
812         struct sgt_iter sgt_iter;
813         struct page *page;
814         int i;
815
816         if (obj->bit_17 == NULL) {
817                 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
818                 if (obj->bit_17 == NULL) {
819                         DRM_ERROR("Failed to allocate memory for bit 17 "
820                                   "record\n");
821                         return;
822                 }
823         }
824
825         i = 0;
826
827         for_each_sgt_page(page, sgt_iter, pages) {
828                 if (page_to_phys(page) & (1 << 17))
829                         __set_bit(i, obj->bit_17);
830                 else
831                         __clear_bit(i, obj->bit_17);
832                 i++;
833         }
834 }
835
836 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
837 {
838         struct drm_i915_private *i915 = ggtt->vm.i915;
839         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
840         int num_fences;
841         int i;
842
843         INIT_LIST_HEAD(&ggtt->fence_list);
844         INIT_LIST_HEAD(&ggtt->userfault_list);
845
846         detect_bit_6_swizzle(ggtt);
847
848         if (!i915_ggtt_has_aperture(ggtt))
849                 num_fences = 0;
850         else if (GRAPHICS_VER(i915) >= 7 &&
851                  !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
852                 num_fences = 32;
853         else if (GRAPHICS_VER(i915) >= 4 ||
854                  IS_I945G(i915) || IS_I945GM(i915) ||
855                  IS_G33(i915) || IS_PINEVIEW(i915))
856                 num_fences = 16;
857         else
858                 num_fences = 8;
859
860         if (intel_vgpu_active(i915))
861                 num_fences = intel_uncore_read(uncore,
862                                                vgtif_reg(avail_rs.fence_num));
863         ggtt->fence_regs = kcalloc(num_fences,
864                                    sizeof(*ggtt->fence_regs),
865                                    GFP_KERNEL);
866         if (!ggtt->fence_regs)
867                 num_fences = 0;
868
869         /* Initialize fence registers to zero */
870         for (i = 0; i < num_fences; i++) {
871                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
872
873                 i915_active_init(&fence->active, NULL, NULL, 0);
874                 fence->ggtt = ggtt;
875                 fence->id = i;
876                 list_add_tail(&fence->link, &ggtt->fence_list);
877         }
878         ggtt->num_fences = num_fences;
879
880         intel_ggtt_restore_fences(ggtt);
881 }
882
883 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
884 {
885         int i;
886
887         for (i = 0; i < ggtt->num_fences; i++) {
888                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
889
890                 i915_active_fini(&fence->active);
891         }
892
893         kfree(ggtt->fence_regs);
894 }
895
896 void intel_gt_init_swizzling(struct intel_gt *gt)
897 {
898         struct drm_i915_private *i915 = gt->i915;
899         struct intel_uncore *uncore = gt->uncore;
900
901         if (GRAPHICS_VER(i915) < 5 ||
902             to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
903                 return;
904
905         intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
906
907         if (GRAPHICS_VER(i915) == 5)
908                 return;
909
910         intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
911
912         if (GRAPHICS_VER(i915) == 6)
913                 intel_uncore_write(uncore,
914                                    ARB_MODE,
915                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
916         else if (GRAPHICS_VER(i915) == 7)
917                 intel_uncore_write(uncore,
918                                    ARB_MODE,
919                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
920         else if (GRAPHICS_VER(i915) == 8)
921                 intel_uncore_write(uncore,
922                                    GAMTARBMODE,
923                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
924         else
925                 MISSING_CASE(GRAPHICS_VER(i915));
926 }