Merge tag 'drm-intel-next-2022-06-22' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / display / intel_bios.c
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_edid.h>
29 #include <drm/display/drm_dp_helper.h>
30 #include <drm/display/drm_dsc_helper.h>
31
32 #include "display/intel_display.h"
33 #include "display/intel_display_types.h"
34 #include "display/intel_gmbus.h"
35
36 #include "i915_drv.h"
37 #include "i915_reg.h"
38
39 #define _INTEL_BIOS_PRIVATE
40 #include "intel_vbt_defs.h"
41
42 /**
43  * DOC: Video BIOS Table (VBT)
44  *
45  * The Video BIOS Table, or VBT, provides platform and board specific
46  * configuration information to the driver that is not discoverable or available
47  * through other means. The configuration is mostly related to display
48  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
49  * the PCI ROM.
50  *
51  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
52  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
53  * contain the actual configuration information. The VBT Header, and thus the
54  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
55  * BDB Header. The data blocks are concatenated after the BDB Header. The data
56  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
57  * data. (Block 53, the MIPI Sequence Block is an exception.)
58  *
59  * The driver parses the VBT during load. The relevant information is stored in
60  * driver private data for ease of use, and the actual VBT is not read after
61  * that.
62  */
63
64 /* Wrapper for VBT child device config */
65 struct intel_bios_encoder_data {
66         struct drm_i915_private *i915;
67
68         struct child_device_config child;
69         struct dsc_compression_parameters_entry *dsc;
70         struct list_head node;
71 };
72
73 #define SLAVE_ADDR1     0x70
74 #define SLAVE_ADDR2     0x72
75
76 /* Get BDB block size given a pointer to Block ID. */
77 static u32 _get_blocksize(const u8 *block_base)
78 {
79         /* The MIPI Sequence Block v3+ has a separate size field. */
80         if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
81                 return *((const u32 *)(block_base + 4));
82         else
83                 return *((const u16 *)(block_base + 1));
84 }
85
86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
87 static u32 get_blocksize(const void *block_data)
88 {
89         return _get_blocksize(block_data - 3);
90 }
91
92 static const void *
93 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
94 {
95         const struct bdb_header *bdb = _bdb;
96         const u8 *base = _bdb;
97         int index = 0;
98         u32 total, current_size;
99         enum bdb_block_id current_id;
100
101         /* skip to first section */
102         index += bdb->header_size;
103         total = bdb->bdb_size;
104
105         /* walk the sections looking for section_id */
106         while (index + 3 < total) {
107                 current_id = *(base + index);
108                 current_size = _get_blocksize(base + index);
109                 index += 3;
110
111                 if (index + current_size > total)
112                         return NULL;
113
114                 if (current_id == section_id)
115                         return base + index;
116
117                 index += current_size;
118         }
119
120         return NULL;
121 }
122
123 /*
124  * Offset from the start of BDB to the start of the
125  * block data (just past the block header).
126  */
127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
128 {
129         const void *block;
130
131         block = find_raw_section(bdb, section_id);
132         if (!block)
133                 return 0;
134
135         return block - bdb;
136 }
137
138 /* size of the block excluding the header */
139 static u32 raw_block_size(const void *bdb, enum bdb_block_id section_id)
140 {
141         const void *block;
142
143         block = find_raw_section(bdb, section_id);
144         if (!block)
145                 return 0;
146
147         return get_blocksize(block);
148 }
149
150 struct bdb_block_entry {
151         struct list_head node;
152         enum bdb_block_id section_id;
153         u8 data[];
154 };
155
156 static const void *
157 find_section(struct drm_i915_private *i915,
158              enum bdb_block_id section_id)
159 {
160         struct bdb_block_entry *entry;
161
162         list_for_each_entry(entry, &i915->vbt.bdb_blocks, node) {
163                 if (entry->section_id == section_id)
164                         return entry->data + 3;
165         }
166
167         return NULL;
168 }
169
170 static const struct {
171         enum bdb_block_id section_id;
172         size_t min_size;
173 } bdb_blocks[] = {
174         { .section_id = BDB_GENERAL_FEATURES,
175           .min_size = sizeof(struct bdb_general_features), },
176         { .section_id = BDB_GENERAL_DEFINITIONS,
177           .min_size = sizeof(struct bdb_general_definitions), },
178         { .section_id = BDB_PSR,
179           .min_size = sizeof(struct bdb_psr), },
180         { .section_id = BDB_DRIVER_FEATURES,
181           .min_size = sizeof(struct bdb_driver_features), },
182         { .section_id = BDB_SDVO_LVDS_OPTIONS,
183           .min_size = sizeof(struct bdb_sdvo_lvds_options), },
184         { .section_id = BDB_SDVO_PANEL_DTDS,
185           .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
186         { .section_id = BDB_EDP,
187           .min_size = sizeof(struct bdb_edp), },
188         { .section_id = BDB_LVDS_OPTIONS,
189           .min_size = sizeof(struct bdb_lvds_options), },
190         /*
191          * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
192          * so keep the two ordered.
193          */
194         { .section_id = BDB_LVDS_LFP_DATA_PTRS,
195           .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
196         { .section_id = BDB_LVDS_LFP_DATA,
197           .min_size = 0, /* special case */ },
198         { .section_id = BDB_LVDS_BACKLIGHT,
199           .min_size = sizeof(struct bdb_lfp_backlight_data), },
200         { .section_id = BDB_LFP_POWER,
201           .min_size = sizeof(struct bdb_lfp_power), },
202         { .section_id = BDB_MIPI_CONFIG,
203           .min_size = sizeof(struct bdb_mipi_config), },
204         { .section_id = BDB_MIPI_SEQUENCE,
205           .min_size = sizeof(struct bdb_mipi_sequence) },
206         { .section_id = BDB_COMPRESSION_PARAMETERS,
207           .min_size = sizeof(struct bdb_compression_parameters), },
208         { .section_id = BDB_GENERIC_DTD,
209           .min_size = sizeof(struct bdb_generic_dtd), },
210 };
211
212 static size_t lfp_data_min_size(struct drm_i915_private *i915)
213 {
214         const struct bdb_lvds_lfp_data_ptrs *ptrs;
215         size_t size;
216
217         ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
218         if (!ptrs)
219                 return 0;
220
221         size = sizeof(struct bdb_lvds_lfp_data);
222         if (ptrs->panel_name.table_size)
223                 size = max(size, ptrs->panel_name.offset +
224                            sizeof(struct bdb_lvds_lfp_data_tail));
225
226         return size;
227 }
228
229 static bool validate_lfp_data_ptrs(const void *bdb,
230                                    const struct bdb_lvds_lfp_data_ptrs *ptrs)
231 {
232         int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
233         int data_block_size, lfp_data_size;
234         int i;
235
236         data_block_size = raw_block_size(bdb, BDB_LVDS_LFP_DATA);
237         if (data_block_size == 0)
238                 return false;
239
240         /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
241         if (ptrs->lvds_entries != 3)
242                 return false;
243
244         fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
245         dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
246         panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
247         panel_name_size = ptrs->panel_name.table_size;
248
249         /* fp_timing has variable size */
250         if (fp_timing_size < 32 ||
251             dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
252             panel_pnp_id_size != sizeof(struct lvds_pnp_id))
253                 return false;
254
255         /* panel_name is not present in old VBTs */
256         if (panel_name_size != 0 &&
257             panel_name_size != sizeof(struct lvds_lfp_panel_name))
258                 return false;
259
260         lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
261         if (16 * lfp_data_size > data_block_size)
262                 return false;
263
264         /*
265          * Except for vlv/chv machines all real VBTs seem to have 6
266          * unaccounted bytes in the fp_timing table. And it doesn't
267          * appear to be a really intentional hole as the fp_timing
268          * 0xffff terminator is always within those 6 missing bytes.
269          */
270         if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size &&
271             fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
272                 return false;
273
274         if (ptrs->ptr[0].fp_timing.offset + fp_timing_size > ptrs->ptr[0].dvo_timing.offset ||
275             ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
276             ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
277                 return false;
278
279         /* make sure the table entries have uniform size */
280         for (i = 1; i < 16; i++) {
281                 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
282                     ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
283                     ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
284                         return false;
285
286                 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
287                     ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
288                     ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
289                         return false;
290         }
291
292         /* make sure the tables fit inside the data block */
293         for (i = 0; i < 16; i++) {
294                 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
295                     ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
296                     ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
297                         return false;
298         }
299
300         if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
301                 return false;
302
303         return true;
304 }
305
306 /* make the data table offsets relative to the data block */
307 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
308 {
309         struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
310         u32 offset;
311         int i;
312
313         offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
314
315         for (i = 0; i < 16; i++) {
316                 if (ptrs->ptr[i].fp_timing.offset < offset ||
317                     ptrs->ptr[i].dvo_timing.offset < offset ||
318                     ptrs->ptr[i].panel_pnp_id.offset < offset)
319                         return false;
320
321                 ptrs->ptr[i].fp_timing.offset -= offset;
322                 ptrs->ptr[i].dvo_timing.offset -= offset;
323                 ptrs->ptr[i].panel_pnp_id.offset -= offset;
324         }
325
326         if (ptrs->panel_name.table_size) {
327                 if (ptrs->panel_name.offset < offset)
328                         return false;
329
330                 ptrs->panel_name.offset -= offset;
331         }
332
333         return validate_lfp_data_ptrs(bdb, ptrs);
334 }
335
336 static const void *find_fp_timing_terminator(const u8 *data, int size)
337 {
338         int i;
339
340         for (i = 0; i < size - 1; i++) {
341                 if (data[i] == 0xff && data[i+1] == 0xff)
342                         return &data[i];
343         }
344
345         return NULL;
346 }
347
348 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
349                              int table_size, int total_size)
350 {
351         if (total_size < table_size)
352                 return total_size;
353
354         table->table_size = table_size;
355         table->offset = total_size - table_size;
356
357         return total_size - table_size;
358 }
359
360 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
361                               const struct lvds_lfp_data_ptr_table *prev,
362                               int size)
363 {
364         next->table_size = prev->table_size;
365         next->offset = prev->offset + size;
366 }
367
368 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
369                                     const void *bdb)
370 {
371         int i, size, table_size, block_size, offset;
372         const void *t0, *t1, *block;
373         struct bdb_lvds_lfp_data_ptrs *ptrs;
374         void *ptrs_block;
375
376         block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
377         if (!block)
378                 return NULL;
379
380         drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
381
382         block_size = get_blocksize(block);
383
384         size = block_size;
385         t0 = find_fp_timing_terminator(block, size);
386         if (!t0)
387                 return NULL;
388
389         size -= t0 - block - 2;
390         t1 = find_fp_timing_terminator(t0 + 2, size);
391         if (!t1)
392                 return NULL;
393
394         size = t1 - t0;
395         if (size * 16 > block_size)
396                 return NULL;
397
398         ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
399         if (!ptrs_block)
400                 return NULL;
401
402         *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
403         *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
404         ptrs = ptrs_block + 3;
405
406         table_size = sizeof(struct lvds_pnp_id);
407         size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
408
409         table_size = sizeof(struct lvds_dvo_timing);
410         size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
411
412         table_size = t0 - block + 2;
413         size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
414
415         if (ptrs->ptr[0].fp_timing.table_size)
416                 ptrs->lvds_entries++;
417         if (ptrs->ptr[0].dvo_timing.table_size)
418                 ptrs->lvds_entries++;
419         if (ptrs->ptr[0].panel_pnp_id.table_size)
420                 ptrs->lvds_entries++;
421
422         if (size != 0 || ptrs->lvds_entries != 3) {
423                 kfree(ptrs);
424                 return NULL;
425         }
426
427         size = t1 - t0;
428         for (i = 1; i < 16; i++) {
429                 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
430                 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
431                 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
432         }
433
434         size = t1 - t0;
435         table_size = sizeof(struct lvds_lfp_panel_name);
436
437         if (16 * (size + table_size) <= block_size) {
438                 ptrs->panel_name.table_size = table_size;
439                 ptrs->panel_name.offset = size * 16;
440         }
441
442         offset = block - bdb;
443
444         for (i = 0; i < 16; i++) {
445                 ptrs->ptr[i].fp_timing.offset += offset;
446                 ptrs->ptr[i].dvo_timing.offset += offset;
447                 ptrs->ptr[i].panel_pnp_id.offset += offset;
448         }
449
450         if (ptrs->panel_name.table_size)
451                 ptrs->panel_name.offset += offset;
452
453         return ptrs_block;
454 }
455
456 static void
457 init_bdb_block(struct drm_i915_private *i915,
458                const void *bdb, enum bdb_block_id section_id,
459                size_t min_size)
460 {
461         struct bdb_block_entry *entry;
462         void *temp_block = NULL;
463         const void *block;
464         size_t block_size;
465
466         block = find_raw_section(bdb, section_id);
467
468         /* Modern VBTs lack the LFP data table pointers block, make one up */
469         if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
470                 temp_block = generate_lfp_data_ptrs(i915, bdb);
471                 if (temp_block)
472                         block = temp_block + 3;
473         }
474         if (!block)
475                 return;
476
477         drm_WARN(&i915->drm, min_size == 0,
478                  "Block %d min_size is zero\n", section_id);
479
480         block_size = get_blocksize(block);
481
482         entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483                         GFP_KERNEL);
484         if (!entry) {
485                 kfree(temp_block);
486                 return;
487         }
488
489         entry->section_id = section_id;
490         memcpy(entry->data, block - 3, block_size + 3);
491
492         kfree(temp_block);
493
494         drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495                     section_id, block_size, min_size);
496
497         if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498             !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499                 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500                 kfree(entry);
501                 return;
502         }
503
504         list_add_tail(&entry->node, &i915->vbt.bdb_blocks);
505 }
506
507 static void init_bdb_blocks(struct drm_i915_private *i915,
508                             const void *bdb)
509 {
510         int i;
511
512         for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513                 enum bdb_block_id section_id = bdb_blocks[i].section_id;
514                 size_t min_size = bdb_blocks[i].min_size;
515
516                 if (section_id == BDB_LVDS_LFP_DATA)
517                         min_size = lfp_data_min_size(i915);
518
519                 init_bdb_block(i915, bdb, section_id, min_size);
520         }
521 }
522
523 static void
524 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
525                         const struct lvds_dvo_timing *dvo_timing)
526 {
527         panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
528                 dvo_timing->hactive_lo;
529         panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
530                 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
531         panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
532                 ((dvo_timing->hsync_pulse_width_hi << 8) |
533                         dvo_timing->hsync_pulse_width_lo);
534         panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
535                 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
536
537         panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
538                 dvo_timing->vactive_lo;
539         panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
540                 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
541         panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
542                 ((dvo_timing->vsync_pulse_width_hi << 4) |
543                         dvo_timing->vsync_pulse_width_lo);
544         panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
545                 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
546         panel_fixed_mode->clock = dvo_timing->clock * 10;
547         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
548
549         if (dvo_timing->hsync_positive)
550                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
551         else
552                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
553
554         if (dvo_timing->vsync_positive)
555                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
556         else
557                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
558
559         panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
560                 dvo_timing->himage_lo;
561         panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
562                 dvo_timing->vimage_lo;
563
564         /* Some VBTs have bogus h/vtotal values */
565         if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
566                 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
567         if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
568                 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
569
570         drm_mode_set_name(panel_fixed_mode);
571 }
572
573 static const struct lvds_dvo_timing *
574 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
575                     const struct bdb_lvds_lfp_data_ptrs *ptrs,
576                     int index)
577 {
578         return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
579 }
580
581 static const struct lvds_fp_timing *
582 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
583                    const struct bdb_lvds_lfp_data_ptrs *ptrs,
584                    int index)
585 {
586         return (const void *)data + ptrs->ptr[index].fp_timing.offset;
587 }
588
589 static const struct lvds_pnp_id *
590 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
591                 const struct bdb_lvds_lfp_data_ptrs *ptrs,
592                 int index)
593 {
594         return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
595 }
596
597 static const struct bdb_lvds_lfp_data_tail *
598 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
599                   const struct bdb_lvds_lfp_data_ptrs *ptrs)
600 {
601         if (ptrs->panel_name.table_size)
602                 return (const void *)data + ptrs->panel_name.offset;
603         else
604                 return NULL;
605 }
606
607 static int opregion_get_panel_type(struct drm_i915_private *i915,
608                                    const struct intel_bios_encoder_data *devdata,
609                                    const struct edid *edid)
610 {
611         return intel_opregion_get_panel_type(i915);
612 }
613
614 static int vbt_get_panel_type(struct drm_i915_private *i915,
615                               const struct intel_bios_encoder_data *devdata,
616                               const struct edid *edid)
617 {
618         const struct bdb_lvds_options *lvds_options;
619
620         lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
621         if (!lvds_options)
622                 return -1;
623
624         if (lvds_options->panel_type > 0xf &&
625             lvds_options->panel_type != 0xff) {
626                 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
627                             lvds_options->panel_type);
628                 return -1;
629         }
630
631         if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
632                 return lvds_options->panel_type2;
633
634         drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
635
636         return lvds_options->panel_type;
637 }
638
639 static int pnpid_get_panel_type(struct drm_i915_private *i915,
640                                 const struct intel_bios_encoder_data *devdata,
641                                 const struct edid *edid)
642 {
643         const struct bdb_lvds_lfp_data *data;
644         const struct bdb_lvds_lfp_data_ptrs *ptrs;
645         const struct lvds_pnp_id *edid_id;
646         struct lvds_pnp_id edid_id_nodate;
647         int i, best = -1;
648
649         if (!edid)
650                 return -1;
651
652         edid_id = (const void *)&edid->mfg_id[0];
653
654         edid_id_nodate = *edid_id;
655         edid_id_nodate.mfg_week = 0;
656         edid_id_nodate.mfg_year = 0;
657
658         ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
659         if (!ptrs)
660                 return -1;
661
662         data = find_section(i915, BDB_LVDS_LFP_DATA);
663         if (!data)
664                 return -1;
665
666         for (i = 0; i < 16; i++) {
667                 const struct lvds_pnp_id *vbt_id =
668                         get_lvds_pnp_id(data, ptrs, i);
669
670                 /* full match? */
671                 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
672                         return i;
673
674                 /*
675                  * Accept a match w/o date if no full match is found,
676                  * and the VBT entry does not specify a date.
677                  */
678                 if (best < 0 &&
679                     !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
680                         best = i;
681         }
682
683         return best;
684 }
685
686 static int fallback_get_panel_type(struct drm_i915_private *i915,
687                                    const struct intel_bios_encoder_data *devdata,
688                                    const struct edid *edid)
689 {
690         return 0;
691 }
692
693 enum panel_type {
694         PANEL_TYPE_OPREGION,
695         PANEL_TYPE_VBT,
696         PANEL_TYPE_PNPID,
697         PANEL_TYPE_FALLBACK,
698 };
699
700 static int get_panel_type(struct drm_i915_private *i915,
701                           const struct intel_bios_encoder_data *devdata,
702                           const struct edid *edid)
703 {
704         struct {
705                 const char *name;
706                 int (*get_panel_type)(struct drm_i915_private *i915,
707                                       const struct intel_bios_encoder_data *devdata,
708                                       const struct edid *edid);
709                 int panel_type;
710         } panel_types[] = {
711                 [PANEL_TYPE_OPREGION] = {
712                         .name = "OpRegion",
713                         .get_panel_type = opregion_get_panel_type,
714                 },
715                 [PANEL_TYPE_VBT] = {
716                         .name = "VBT",
717                         .get_panel_type = vbt_get_panel_type,
718                 },
719                 [PANEL_TYPE_PNPID] = {
720                         .name = "PNPID",
721                         .get_panel_type = pnpid_get_panel_type,
722                 },
723                 [PANEL_TYPE_FALLBACK] = {
724                         .name = "fallback",
725                         .get_panel_type = fallback_get_panel_type,
726                 },
727         };
728         int i;
729
730         for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
731                 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid);
732
733                 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
734                             panel_types[i].panel_type != 0xff);
735
736                 if (panel_types[i].panel_type >= 0)
737                         drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
738                                     panel_types[i].name, panel_types[i].panel_type);
739         }
740
741         if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
742                 i = PANEL_TYPE_OPREGION;
743         else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
744                  panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
745                 i = PANEL_TYPE_PNPID;
746         else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
747                  panel_types[PANEL_TYPE_VBT].panel_type >= 0)
748                 i = PANEL_TYPE_VBT;
749         else
750                 i = PANEL_TYPE_FALLBACK;
751
752         drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
753                     panel_types[i].name, panel_types[i].panel_type);
754
755         return panel_types[i].panel_type;
756 }
757
758 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
759 {
760         return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
761 }
762
763 static bool panel_bool(unsigned int value, int panel_type)
764 {
765         return panel_bits(value, panel_type, 1);
766 }
767
768 /* Parse general panel options */
769 static void
770 parse_panel_options(struct drm_i915_private *i915,
771                     struct intel_panel *panel)
772 {
773         const struct bdb_lvds_options *lvds_options;
774         int panel_type = panel->vbt.panel_type;
775         int drrs_mode;
776
777         lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
778         if (!lvds_options)
779                 return;
780
781         panel->vbt.lvds_dither = lvds_options->pixel_dither;
782
783         /*
784          * Empirical evidence indicates the block size can be
785          * either 4,14,16,24+ bytes. For older VBTs no clear
786          * relationship between the block size vs. BDB version.
787          */
788         if (get_blocksize(lvds_options) < 16)
789                 return;
790
791         drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
792                                panel_type, 2);
793         /*
794          * VBT has static DRRS = 0 and seamless DRRS = 2.
795          * The below piece of code is required to adjust vbt.drrs_type
796          * to match the enum drrs_support_type.
797          */
798         switch (drrs_mode) {
799         case 0:
800                 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
801                 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
802                 break;
803         case 2:
804                 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
805                 drm_dbg_kms(&i915->drm,
806                             "DRRS supported mode is seamless\n");
807                 break;
808         default:
809                 panel->vbt.drrs_type = DRRS_TYPE_NONE;
810                 drm_dbg_kms(&i915->drm,
811                             "DRRS not supported (VBT input)\n");
812                 break;
813         }
814 }
815
816 static void
817 parse_lfp_panel_dtd(struct drm_i915_private *i915,
818                     struct intel_panel *panel,
819                     const struct bdb_lvds_lfp_data *lvds_lfp_data,
820                     const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
821 {
822         const struct lvds_dvo_timing *panel_dvo_timing;
823         const struct lvds_fp_timing *fp_timing;
824         struct drm_display_mode *panel_fixed_mode;
825         int panel_type = panel->vbt.panel_type;
826
827         panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
828                                                lvds_lfp_data_ptrs,
829                                                panel_type);
830
831         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
832         if (!panel_fixed_mode)
833                 return;
834
835         fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
836
837         panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
838
839         drm_dbg_kms(&i915->drm,
840                     "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
841                     DRM_MODE_ARG(panel_fixed_mode));
842
843         fp_timing = get_lvds_fp_timing(lvds_lfp_data,
844                                        lvds_lfp_data_ptrs,
845                                        panel_type);
846
847         /* check the resolution, just to be sure */
848         if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
849             fp_timing->y_res == panel_fixed_mode->vdisplay) {
850                 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
851                 drm_dbg_kms(&i915->drm,
852                             "VBT initial LVDS value %x\n",
853                             panel->vbt.bios_lvds_val);
854         }
855 }
856
857 static void
858 parse_lfp_data(struct drm_i915_private *i915,
859                struct intel_panel *panel)
860 {
861         const struct bdb_lvds_lfp_data *data;
862         const struct bdb_lvds_lfp_data_tail *tail;
863         const struct bdb_lvds_lfp_data_ptrs *ptrs;
864         int panel_type = panel->vbt.panel_type;
865
866         ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
867         if (!ptrs)
868                 return;
869
870         data = find_section(i915, BDB_LVDS_LFP_DATA);
871         if (!data)
872                 return;
873
874         if (!panel->vbt.lfp_lvds_vbt_mode)
875                 parse_lfp_panel_dtd(i915, panel, data, ptrs);
876
877         tail = get_lfp_data_tail(data, ptrs);
878         if (!tail)
879                 return;
880
881         if (i915->vbt.version >= 188) {
882                 panel->vbt.seamless_drrs_min_refresh_rate =
883                         tail->seamless_drrs_min_refresh_rate[panel_type];
884                 drm_dbg_kms(&i915->drm,
885                             "Seamless DRRS min refresh rate: %d Hz\n",
886                             panel->vbt.seamless_drrs_min_refresh_rate);
887         }
888 }
889
890 static void
891 parse_generic_dtd(struct drm_i915_private *i915,
892                   struct intel_panel *panel)
893 {
894         const struct bdb_generic_dtd *generic_dtd;
895         const struct generic_dtd_entry *dtd;
896         struct drm_display_mode *panel_fixed_mode;
897         int num_dtd;
898
899         /*
900          * Older VBTs provided DTD information for internal displays through
901          * the "LFP panel tables" block (42).  As of VBT revision 229 the
902          * DTD information should be provided via a newer "generic DTD"
903          * block (58).  Just to be safe, we'll try the new generic DTD block
904          * first on VBT >= 229, but still fall back to trying the old LFP
905          * block if that fails.
906          */
907         if (i915->vbt.version < 229)
908                 return;
909
910         generic_dtd = find_section(i915, BDB_GENERIC_DTD);
911         if (!generic_dtd)
912                 return;
913
914         if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
915                 drm_err(&i915->drm, "GDTD size %u is too small.\n",
916                         generic_dtd->gdtd_size);
917                 return;
918         } else if (generic_dtd->gdtd_size !=
919                    sizeof(struct generic_dtd_entry)) {
920                 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
921                         generic_dtd->gdtd_size);
922                 /* DTD has unknown fields, but keep going */
923         }
924
925         num_dtd = (get_blocksize(generic_dtd) -
926                    sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
927         if (panel->vbt.panel_type >= num_dtd) {
928                 drm_err(&i915->drm,
929                         "Panel type %d not found in table of %d DTD's\n",
930                         panel->vbt.panel_type, num_dtd);
931                 return;
932         }
933
934         dtd = &generic_dtd->dtd[panel->vbt.panel_type];
935
936         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
937         if (!panel_fixed_mode)
938                 return;
939
940         panel_fixed_mode->hdisplay = dtd->hactive;
941         panel_fixed_mode->hsync_start =
942                 panel_fixed_mode->hdisplay + dtd->hfront_porch;
943         panel_fixed_mode->hsync_end =
944                 panel_fixed_mode->hsync_start + dtd->hsync;
945         panel_fixed_mode->htotal =
946                 panel_fixed_mode->hdisplay + dtd->hblank;
947
948         panel_fixed_mode->vdisplay = dtd->vactive;
949         panel_fixed_mode->vsync_start =
950                 panel_fixed_mode->vdisplay + dtd->vfront_porch;
951         panel_fixed_mode->vsync_end =
952                 panel_fixed_mode->vsync_start + dtd->vsync;
953         panel_fixed_mode->vtotal =
954                 panel_fixed_mode->vdisplay + dtd->vblank;
955
956         panel_fixed_mode->clock = dtd->pixel_clock;
957         panel_fixed_mode->width_mm = dtd->width_mm;
958         panel_fixed_mode->height_mm = dtd->height_mm;
959
960         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
961         drm_mode_set_name(panel_fixed_mode);
962
963         if (dtd->hsync_positive_polarity)
964                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
965         else
966                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
967
968         if (dtd->vsync_positive_polarity)
969                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
970         else
971                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
972
973         drm_dbg_kms(&i915->drm,
974                     "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
975                     DRM_MODE_ARG(panel_fixed_mode));
976
977         panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
978 }
979
980 static void
981 parse_lfp_backlight(struct drm_i915_private *i915,
982                     struct intel_panel *panel)
983 {
984         const struct bdb_lfp_backlight_data *backlight_data;
985         const struct lfp_backlight_data_entry *entry;
986         int panel_type = panel->vbt.panel_type;
987         u16 level;
988
989         backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
990         if (!backlight_data)
991                 return;
992
993         if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
994                 drm_dbg_kms(&i915->drm,
995                             "Unsupported backlight data entry size %u\n",
996                             backlight_data->entry_size);
997                 return;
998         }
999
1000         entry = &backlight_data->data[panel_type];
1001
1002         panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1003         if (!panel->vbt.backlight.present) {
1004                 drm_dbg_kms(&i915->drm,
1005                             "PWM backlight not present in VBT (type %u)\n",
1006                             entry->type);
1007                 return;
1008         }
1009
1010         panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1011         if (i915->vbt.version >= 191) {
1012                 size_t exp_size;
1013
1014                 if (i915->vbt.version >= 236)
1015                         exp_size = sizeof(struct bdb_lfp_backlight_data);
1016                 else if (i915->vbt.version >= 234)
1017                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1018                 else
1019                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1020
1021                 if (get_blocksize(backlight_data) >= exp_size) {
1022                         const struct lfp_backlight_control_method *method;
1023
1024                         method = &backlight_data->backlight_control[panel_type];
1025                         panel->vbt.backlight.type = method->type;
1026                         panel->vbt.backlight.controller = method->controller;
1027                 }
1028         }
1029
1030         panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1031         panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1032
1033         if (i915->vbt.version >= 234) {
1034                 u16 min_level;
1035                 bool scale;
1036
1037                 level = backlight_data->brightness_level[panel_type].level;
1038                 min_level = backlight_data->brightness_min_level[panel_type].level;
1039
1040                 if (i915->vbt.version >= 236)
1041                         scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1042                 else
1043                         scale = level > 255;
1044
1045                 if (scale)
1046                         min_level = min_level / 255;
1047
1048                 if (min_level > 255) {
1049                         drm_warn(&i915->drm, "Brightness min level > 255\n");
1050                         level = 255;
1051                 }
1052                 panel->vbt.backlight.min_brightness = min_level;
1053
1054                 panel->vbt.backlight.brightness_precision_bits =
1055                         backlight_data->brightness_precision_bits[panel_type];
1056         } else {
1057                 level = backlight_data->level[panel_type];
1058                 panel->vbt.backlight.min_brightness = entry->min_brightness;
1059         }
1060
1061         drm_dbg_kms(&i915->drm,
1062                     "VBT backlight PWM modulation frequency %u Hz, "
1063                     "active %s, min brightness %u, level %u, controller %u\n",
1064                     panel->vbt.backlight.pwm_freq_hz,
1065                     panel->vbt.backlight.active_low_pwm ? "low" : "high",
1066                     panel->vbt.backlight.min_brightness,
1067                     level,
1068                     panel->vbt.backlight.controller);
1069 }
1070
1071 /* Try to find sdvo panel data */
1072 static void
1073 parse_sdvo_panel_data(struct drm_i915_private *i915,
1074                       struct intel_panel *panel)
1075 {
1076         const struct bdb_sdvo_panel_dtds *dtds;
1077         struct drm_display_mode *panel_fixed_mode;
1078         int index;
1079
1080         index = i915->params.vbt_sdvo_panel_type;
1081         if (index == -2) {
1082                 drm_dbg_kms(&i915->drm,
1083                             "Ignore SDVO panel mode from BIOS VBT tables.\n");
1084                 return;
1085         }
1086
1087         if (index == -1) {
1088                 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1089
1090                 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1091                 if (!sdvo_lvds_options)
1092                         return;
1093
1094                 index = sdvo_lvds_options->panel_type;
1095         }
1096
1097         dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1098         if (!dtds)
1099                 return;
1100
1101         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1102         if (!panel_fixed_mode)
1103                 return;
1104
1105         fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1106
1107         panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1108
1109         drm_dbg_kms(&i915->drm,
1110                     "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1111                     DRM_MODE_ARG(panel_fixed_mode));
1112 }
1113
1114 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1115                                     bool alternate)
1116 {
1117         switch (DISPLAY_VER(i915)) {
1118         case 2:
1119                 return alternate ? 66667 : 48000;
1120         case 3:
1121         case 4:
1122                 return alternate ? 100000 : 96000;
1123         default:
1124                 return alternate ? 100000 : 120000;
1125         }
1126 }
1127
1128 static void
1129 parse_general_features(struct drm_i915_private *i915)
1130 {
1131         const struct bdb_general_features *general;
1132
1133         general = find_section(i915, BDB_GENERAL_FEATURES);
1134         if (!general)
1135                 return;
1136
1137         i915->vbt.int_tv_support = general->int_tv_support;
1138         /* int_crt_support can't be trusted on earlier platforms */
1139         if (i915->vbt.version >= 155 &&
1140             (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1141                 i915->vbt.int_crt_support = general->int_crt_support;
1142         i915->vbt.lvds_use_ssc = general->enable_ssc;
1143         i915->vbt.lvds_ssc_freq =
1144                 intel_bios_ssc_frequency(i915, general->ssc_freq);
1145         i915->vbt.display_clock_mode = general->display_clock_mode;
1146         i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1147         if (i915->vbt.version >= 181) {
1148                 i915->vbt.orientation = general->rotate_180 ?
1149                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1150                         DRM_MODE_PANEL_ORIENTATION_NORMAL;
1151         } else {
1152                 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1153         }
1154
1155         if (i915->vbt.version >= 249 && general->afc_startup_config) {
1156                 i915->vbt.override_afc_startup = true;
1157                 i915->vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1158         }
1159
1160         drm_dbg_kms(&i915->drm,
1161                     "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1162                     i915->vbt.int_tv_support,
1163                     i915->vbt.int_crt_support,
1164                     i915->vbt.lvds_use_ssc,
1165                     i915->vbt.lvds_ssc_freq,
1166                     i915->vbt.display_clock_mode,
1167                     i915->vbt.fdi_rx_polarity_inverted);
1168 }
1169
1170 static const struct child_device_config *
1171 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1172 {
1173         return (const void *) &defs->devices[i * defs->child_dev_size];
1174 }
1175
1176 static void
1177 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1178 {
1179         struct sdvo_device_mapping *mapping;
1180         const struct intel_bios_encoder_data *devdata;
1181         const struct child_device_config *child;
1182         int count = 0;
1183
1184         /*
1185          * Only parse SDVO mappings on gens that could have SDVO. This isn't
1186          * accurate and doesn't have to be, as long as it's not too strict.
1187          */
1188         if (!IS_DISPLAY_VER(i915, 3, 7)) {
1189                 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1190                 return;
1191         }
1192
1193         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1194                 child = &devdata->child;
1195
1196                 if (child->slave_addr != SLAVE_ADDR1 &&
1197                     child->slave_addr != SLAVE_ADDR2) {
1198                         /*
1199                          * If the slave address is neither 0x70 nor 0x72,
1200                          * it is not a SDVO device. Skip it.
1201                          */
1202                         continue;
1203                 }
1204                 if (child->dvo_port != DEVICE_PORT_DVOB &&
1205                     child->dvo_port != DEVICE_PORT_DVOC) {
1206                         /* skip the incorrect SDVO port */
1207                         drm_dbg_kms(&i915->drm,
1208                                     "Incorrect SDVO port. Skip it\n");
1209                         continue;
1210                 }
1211                 drm_dbg_kms(&i915->drm,
1212                             "the SDVO device with slave addr %2x is found on"
1213                             " %s port\n",
1214                             child->slave_addr,
1215                             (child->dvo_port == DEVICE_PORT_DVOB) ?
1216                             "SDVOB" : "SDVOC");
1217                 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
1218                 if (!mapping->initialized) {
1219                         mapping->dvo_port = child->dvo_port;
1220                         mapping->slave_addr = child->slave_addr;
1221                         mapping->dvo_wiring = child->dvo_wiring;
1222                         mapping->ddc_pin = child->ddc_pin;
1223                         mapping->i2c_pin = child->i2c_pin;
1224                         mapping->initialized = 1;
1225                         drm_dbg_kms(&i915->drm,
1226                                     "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1227                                     mapping->dvo_port, mapping->slave_addr,
1228                                     mapping->dvo_wiring, mapping->ddc_pin,
1229                                     mapping->i2c_pin);
1230                 } else {
1231                         drm_dbg_kms(&i915->drm,
1232                                     "Maybe one SDVO port is shared by "
1233                                     "two SDVO device.\n");
1234                 }
1235                 if (child->slave2_addr) {
1236                         /* Maybe this is a SDVO device with multiple inputs */
1237                         /* And the mapping info is not added */
1238                         drm_dbg_kms(&i915->drm,
1239                                     "there exists the slave2_addr. Maybe this"
1240                                     " is a SDVO device with multiple inputs.\n");
1241                 }
1242                 count++;
1243         }
1244
1245         if (!count) {
1246                 /* No SDVO device info is found */
1247                 drm_dbg_kms(&i915->drm,
1248                             "No SDVO device info is found in VBT\n");
1249         }
1250 }
1251
1252 static void
1253 parse_driver_features(struct drm_i915_private *i915)
1254 {
1255         const struct bdb_driver_features *driver;
1256
1257         driver = find_section(i915, BDB_DRIVER_FEATURES);
1258         if (!driver)
1259                 return;
1260
1261         if (DISPLAY_VER(i915) >= 5) {
1262                 /*
1263                  * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1264                  * to mean "eDP". The VBT spec doesn't agree with that
1265                  * interpretation, but real world VBTs seem to.
1266                  */
1267                 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1268                         i915->vbt.int_lvds_support = 0;
1269         } else {
1270                 /*
1271                  * FIXME it's not clear which BDB version has the LVDS config
1272                  * bits defined. Revision history in the VBT spec says:
1273                  * "0.92 | Add two definitions for VBT value of LVDS Active
1274                  *  Config (00b and 11b values defined) | 06/13/2005"
1275                  * but does not the specify the BDB version.
1276                  *
1277                  * So far version 134 (on i945gm) is the oldest VBT observed
1278                  * in the wild with the bits correctly populated. Version
1279                  * 108 (on i85x) does not have the bits correctly populated.
1280                  */
1281                 if (i915->vbt.version >= 134 &&
1282                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1283                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1284                         i915->vbt.int_lvds_support = 0;
1285         }
1286 }
1287
1288 static void
1289 parse_panel_driver_features(struct drm_i915_private *i915,
1290                             struct intel_panel *panel)
1291 {
1292         const struct bdb_driver_features *driver;
1293
1294         driver = find_section(i915, BDB_DRIVER_FEATURES);
1295         if (!driver)
1296                 return;
1297
1298         if (i915->vbt.version < 228) {
1299                 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1300                             driver->drrs_enabled);
1301                 /*
1302                  * If DRRS is not supported, drrs_type has to be set to 0.
1303                  * This is because, VBT is configured in such a way that
1304                  * static DRRS is 0 and DRRS not supported is represented by
1305                  * driver->drrs_enabled=false
1306                  */
1307                 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1308                         /*
1309                          * FIXME Should DMRRS perhaps be treated as seamless
1310                          * but without the automatic downclocking?
1311                          */
1312                         if (driver->dmrrs_enabled)
1313                                 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1314                         else
1315                                 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1316                 }
1317
1318                 panel->vbt.psr.enable = driver->psr_enabled;
1319         }
1320 }
1321
1322 static void
1323 parse_power_conservation_features(struct drm_i915_private *i915,
1324                                   struct intel_panel *panel)
1325 {
1326         const struct bdb_lfp_power *power;
1327         u8 panel_type = panel->vbt.panel_type;
1328
1329         panel->vbt.vrr = true; /* matches Windows behaviour */
1330
1331         if (i915->vbt.version < 228)
1332                 return;
1333
1334         power = find_section(i915, BDB_LFP_POWER);
1335         if (!power)
1336                 return;
1337
1338         panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1339
1340         /*
1341          * If DRRS is not supported, drrs_type has to be set to 0.
1342          * This is because, VBT is configured in such a way that
1343          * static DRRS is 0 and DRRS not supported is represented by
1344          * power->drrs & BIT(panel_type)=false
1345          */
1346         if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1347                 /*
1348                  * FIXME Should DMRRS perhaps be treated as seamless
1349                  * but without the automatic downclocking?
1350                  */
1351                 if (panel_bool(power->dmrrs, panel_type))
1352                         panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1353                 else
1354                         panel->vbt.drrs_type = DRRS_TYPE_NONE;
1355         }
1356
1357         if (i915->vbt.version >= 232)
1358                 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1359
1360         if (i915->vbt.version >= 233)
1361                 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1362                                             panel_type);
1363 }
1364
1365 static void
1366 parse_edp(struct drm_i915_private *i915,
1367           struct intel_panel *panel)
1368 {
1369         const struct bdb_edp *edp;
1370         const struct edp_power_seq *edp_pps;
1371         const struct edp_fast_link_params *edp_link_params;
1372         int panel_type = panel->vbt.panel_type;
1373
1374         edp = find_section(i915, BDB_EDP);
1375         if (!edp)
1376                 return;
1377
1378         switch (panel_bits(edp->color_depth, panel_type, 2)) {
1379         case EDP_18BPP:
1380                 panel->vbt.edp.bpp = 18;
1381                 break;
1382         case EDP_24BPP:
1383                 panel->vbt.edp.bpp = 24;
1384                 break;
1385         case EDP_30BPP:
1386                 panel->vbt.edp.bpp = 30;
1387                 break;
1388         }
1389
1390         /* Get the eDP sequencing and link info */
1391         edp_pps = &edp->power_seqs[panel_type];
1392         edp_link_params = &edp->fast_link_params[panel_type];
1393
1394         panel->vbt.edp.pps = *edp_pps;
1395
1396         if (i915->vbt.version >= 224) {
1397                 panel->vbt.edp.rate =
1398                         edp->edp_fast_link_training_rate[panel_type] * 20;
1399         } else {
1400                 switch (edp_link_params->rate) {
1401                 case EDP_RATE_1_62:
1402                         panel->vbt.edp.rate = 162000;
1403                         break;
1404                 case EDP_RATE_2_7:
1405                         panel->vbt.edp.rate = 270000;
1406                         break;
1407                 case EDP_RATE_5_4:
1408                         panel->vbt.edp.rate = 540000;
1409                         break;
1410                 default:
1411                         drm_dbg_kms(&i915->drm,
1412                                     "VBT has unknown eDP link rate value %u\n",
1413                                     edp_link_params->rate);
1414                         break;
1415                 }
1416         }
1417
1418         switch (edp_link_params->lanes) {
1419         case EDP_LANE_1:
1420                 panel->vbt.edp.lanes = 1;
1421                 break;
1422         case EDP_LANE_2:
1423                 panel->vbt.edp.lanes = 2;
1424                 break;
1425         case EDP_LANE_4:
1426                 panel->vbt.edp.lanes = 4;
1427                 break;
1428         default:
1429                 drm_dbg_kms(&i915->drm,
1430                             "VBT has unknown eDP lane count value %u\n",
1431                             edp_link_params->lanes);
1432                 break;
1433         }
1434
1435         switch (edp_link_params->preemphasis) {
1436         case EDP_PREEMPHASIS_NONE:
1437                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1438                 break;
1439         case EDP_PREEMPHASIS_3_5dB:
1440                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1441                 break;
1442         case EDP_PREEMPHASIS_6dB:
1443                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1444                 break;
1445         case EDP_PREEMPHASIS_9_5dB:
1446                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1447                 break;
1448         default:
1449                 drm_dbg_kms(&i915->drm,
1450                             "VBT has unknown eDP pre-emphasis value %u\n",
1451                             edp_link_params->preemphasis);
1452                 break;
1453         }
1454
1455         switch (edp_link_params->vswing) {
1456         case EDP_VSWING_0_4V:
1457                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1458                 break;
1459         case EDP_VSWING_0_6V:
1460                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1461                 break;
1462         case EDP_VSWING_0_8V:
1463                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1464                 break;
1465         case EDP_VSWING_1_2V:
1466                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1467                 break;
1468         default:
1469                 drm_dbg_kms(&i915->drm,
1470                             "VBT has unknown eDP voltage swing value %u\n",
1471                             edp_link_params->vswing);
1472                 break;
1473         }
1474
1475         if (i915->vbt.version >= 173) {
1476                 u8 vswing;
1477
1478                 /* Don't read from VBT if module parameter has valid value*/
1479                 if (i915->params.edp_vswing) {
1480                         panel->vbt.edp.low_vswing =
1481                                 i915->params.edp_vswing == 1;
1482                 } else {
1483                         vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1484                         panel->vbt.edp.low_vswing = vswing == 0;
1485                 }
1486         }
1487
1488         panel->vbt.edp.drrs_msa_timing_delay =
1489                 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1490
1491         if (i915->vbt.version >= 244)
1492                 panel->vbt.edp.max_link_rate =
1493                         edp->edp_max_port_link_rate[panel_type] * 20;
1494 }
1495
1496 static void
1497 parse_psr(struct drm_i915_private *i915,
1498           struct intel_panel *panel)
1499 {
1500         const struct bdb_psr *psr;
1501         const struct psr_table *psr_table;
1502         int panel_type = panel->vbt.panel_type;
1503
1504         psr = find_section(i915, BDB_PSR);
1505         if (!psr) {
1506                 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1507                 return;
1508         }
1509
1510         psr_table = &psr->psr_table[panel_type];
1511
1512         panel->vbt.psr.full_link = psr_table->full_link;
1513         panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1514
1515         /* Allowed VBT values goes from 0 to 15 */
1516         panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1517                 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1518
1519         /*
1520          * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1521          * Old decimal value is wake up time in multiples of 100 us.
1522          */
1523         if (i915->vbt.version >= 205 &&
1524             (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1525                 switch (psr_table->tp1_wakeup_time) {
1526                 case 0:
1527                         panel->vbt.psr.tp1_wakeup_time_us = 500;
1528                         break;
1529                 case 1:
1530                         panel->vbt.psr.tp1_wakeup_time_us = 100;
1531                         break;
1532                 case 3:
1533                         panel->vbt.psr.tp1_wakeup_time_us = 0;
1534                         break;
1535                 default:
1536                         drm_dbg_kms(&i915->drm,
1537                                     "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1538                                     psr_table->tp1_wakeup_time);
1539                         fallthrough;
1540                 case 2:
1541                         panel->vbt.psr.tp1_wakeup_time_us = 2500;
1542                         break;
1543                 }
1544
1545                 switch (psr_table->tp2_tp3_wakeup_time) {
1546                 case 0:
1547                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1548                         break;
1549                 case 1:
1550                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1551                         break;
1552                 case 3:
1553                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1554                         break;
1555                 default:
1556                         drm_dbg_kms(&i915->drm,
1557                                     "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1558                                     psr_table->tp2_tp3_wakeup_time);
1559                         fallthrough;
1560                 case 2:
1561                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1562                 break;
1563                 }
1564         } else {
1565                 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1566                 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1567         }
1568
1569         if (i915->vbt.version >= 226) {
1570                 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1571
1572                 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1573                 switch (wakeup_time) {
1574                 case 0:
1575                         wakeup_time = 500;
1576                         break;
1577                 case 1:
1578                         wakeup_time = 100;
1579                         break;
1580                 case 3:
1581                         wakeup_time = 50;
1582                         break;
1583                 default:
1584                 case 2:
1585                         wakeup_time = 2500;
1586                         break;
1587                 }
1588                 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1589         } else {
1590                 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1591                 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1592         }
1593 }
1594
1595 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1596                                       struct intel_panel *panel,
1597                                       enum port port)
1598 {
1599         if (!panel->vbt.dsi.config->dual_link || i915->vbt.version < 197) {
1600                 panel->vbt.dsi.bl_ports = BIT(port);
1601                 if (panel->vbt.dsi.config->cabc_supported)
1602                         panel->vbt.dsi.cabc_ports = BIT(port);
1603
1604                 return;
1605         }
1606
1607         switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1608         case DL_DCS_PORT_A:
1609                 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1610                 break;
1611         case DL_DCS_PORT_C:
1612                 panel->vbt.dsi.bl_ports = BIT(PORT_C);
1613                 break;
1614         default:
1615         case DL_DCS_PORT_A_AND_C:
1616                 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1617                 break;
1618         }
1619
1620         if (!panel->vbt.dsi.config->cabc_supported)
1621                 return;
1622
1623         switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1624         case DL_DCS_PORT_A:
1625                 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1626                 break;
1627         case DL_DCS_PORT_C:
1628                 panel->vbt.dsi.cabc_ports = BIT(PORT_C);
1629                 break;
1630         default:
1631         case DL_DCS_PORT_A_AND_C:
1632                 panel->vbt.dsi.cabc_ports =
1633                                         BIT(PORT_A) | BIT(PORT_C);
1634                 break;
1635         }
1636 }
1637
1638 static void
1639 parse_mipi_config(struct drm_i915_private *i915,
1640                   struct intel_panel *panel)
1641 {
1642         const struct bdb_mipi_config *start;
1643         const struct mipi_config *config;
1644         const struct mipi_pps_data *pps;
1645         int panel_type = panel->vbt.panel_type;
1646         enum port port;
1647
1648         /* parse MIPI blocks only if LFP type is MIPI */
1649         if (!intel_bios_is_dsi_present(i915, &port))
1650                 return;
1651
1652         /* Initialize this to undefined indicating no generic MIPI support */
1653         panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1654
1655         /* Block #40 is already parsed and panel_fixed_mode is
1656          * stored in i915->lfp_lvds_vbt_mode
1657          * resuse this when needed
1658          */
1659
1660         /* Parse #52 for panel index used from panel_type already
1661          * parsed
1662          */
1663         start = find_section(i915, BDB_MIPI_CONFIG);
1664         if (!start) {
1665                 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1666                 return;
1667         }
1668
1669         drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1670                 panel_type);
1671
1672         /*
1673          * get hold of the correct configuration block and pps data as per
1674          * the panel_type as index
1675          */
1676         config = &start->config[panel_type];
1677         pps = &start->pps[panel_type];
1678
1679         /* store as of now full data. Trim when we realise all is not needed */
1680         panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1681         if (!panel->vbt.dsi.config)
1682                 return;
1683
1684         panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1685         if (!panel->vbt.dsi.pps) {
1686                 kfree(panel->vbt.dsi.config);
1687                 return;
1688         }
1689
1690         parse_dsi_backlight_ports(i915, panel, port);
1691
1692         /* FIXME is the 90 vs. 270 correct? */
1693         switch (config->rotation) {
1694         case ENABLE_ROTATION_0:
1695                 /*
1696                  * Most (all?) VBTs claim 0 degrees despite having
1697                  * an upside down panel, thus we do not trust this.
1698                  */
1699                 panel->vbt.dsi.orientation =
1700                         DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1701                 break;
1702         case ENABLE_ROTATION_90:
1703                 panel->vbt.dsi.orientation =
1704                         DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1705                 break;
1706         case ENABLE_ROTATION_180:
1707                 panel->vbt.dsi.orientation =
1708                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1709                 break;
1710         case ENABLE_ROTATION_270:
1711                 panel->vbt.dsi.orientation =
1712                         DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1713                 break;
1714         }
1715
1716         /* We have mandatory mipi config blocks. Initialize as generic panel */
1717         panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1718 }
1719
1720 /* Find the sequence block and size for the given panel. */
1721 static const u8 *
1722 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1723                           u16 panel_id, u32 *seq_size)
1724 {
1725         u32 total = get_blocksize(sequence);
1726         const u8 *data = &sequence->data[0];
1727         u8 current_id;
1728         u32 current_size;
1729         int header_size = sequence->version >= 3 ? 5 : 3;
1730         int index = 0;
1731         int i;
1732
1733         /* skip new block size */
1734         if (sequence->version >= 3)
1735                 data += 4;
1736
1737         for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1738                 if (index + header_size > total) {
1739                         DRM_ERROR("Invalid sequence block (header)\n");
1740                         return NULL;
1741                 }
1742
1743                 current_id = *(data + index);
1744                 if (sequence->version >= 3)
1745                         current_size = *((const u32 *)(data + index + 1));
1746                 else
1747                         current_size = *((const u16 *)(data + index + 1));
1748
1749                 index += header_size;
1750
1751                 if (index + current_size > total) {
1752                         DRM_ERROR("Invalid sequence block\n");
1753                         return NULL;
1754                 }
1755
1756                 if (current_id == panel_id) {
1757                         *seq_size = current_size;
1758                         return data + index;
1759                 }
1760
1761                 index += current_size;
1762         }
1763
1764         DRM_ERROR("Sequence block detected but no valid configuration\n");
1765
1766         return NULL;
1767 }
1768
1769 static int goto_next_sequence(const u8 *data, int index, int total)
1770 {
1771         u16 len;
1772
1773         /* Skip Sequence Byte. */
1774         for (index = index + 1; index < total; index += len) {
1775                 u8 operation_byte = *(data + index);
1776                 index++;
1777
1778                 switch (operation_byte) {
1779                 case MIPI_SEQ_ELEM_END:
1780                         return index;
1781                 case MIPI_SEQ_ELEM_SEND_PKT:
1782                         if (index + 4 > total)
1783                                 return 0;
1784
1785                         len = *((const u16 *)(data + index + 2)) + 4;
1786                         break;
1787                 case MIPI_SEQ_ELEM_DELAY:
1788                         len = 4;
1789                         break;
1790                 case MIPI_SEQ_ELEM_GPIO:
1791                         len = 2;
1792                         break;
1793                 case MIPI_SEQ_ELEM_I2C:
1794                         if (index + 7 > total)
1795                                 return 0;
1796                         len = *(data + index + 6) + 7;
1797                         break;
1798                 default:
1799                         DRM_ERROR("Unknown operation byte\n");
1800                         return 0;
1801                 }
1802         }
1803
1804         return 0;
1805 }
1806
1807 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1808 {
1809         int seq_end;
1810         u16 len;
1811         u32 size_of_sequence;
1812
1813         /*
1814          * Could skip sequence based on Size of Sequence alone, but also do some
1815          * checking on the structure.
1816          */
1817         if (total < 5) {
1818                 DRM_ERROR("Too small sequence size\n");
1819                 return 0;
1820         }
1821
1822         /* Skip Sequence Byte. */
1823         index++;
1824
1825         /*
1826          * Size of Sequence. Excludes the Sequence Byte and the size itself,
1827          * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1828          * byte.
1829          */
1830         size_of_sequence = *((const u32 *)(data + index));
1831         index += 4;
1832
1833         seq_end = index + size_of_sequence;
1834         if (seq_end > total) {
1835                 DRM_ERROR("Invalid sequence size\n");
1836                 return 0;
1837         }
1838
1839         for (; index < total; index += len) {
1840                 u8 operation_byte = *(data + index);
1841                 index++;
1842
1843                 if (operation_byte == MIPI_SEQ_ELEM_END) {
1844                         if (index != seq_end) {
1845                                 DRM_ERROR("Invalid element structure\n");
1846                                 return 0;
1847                         }
1848                         return index;
1849                 }
1850
1851                 len = *(data + index);
1852                 index++;
1853
1854                 /*
1855                  * FIXME: Would be nice to check elements like for v1/v2 in
1856                  * goto_next_sequence() above.
1857                  */
1858                 switch (operation_byte) {
1859                 case MIPI_SEQ_ELEM_SEND_PKT:
1860                 case MIPI_SEQ_ELEM_DELAY:
1861                 case MIPI_SEQ_ELEM_GPIO:
1862                 case MIPI_SEQ_ELEM_I2C:
1863                 case MIPI_SEQ_ELEM_SPI:
1864                 case MIPI_SEQ_ELEM_PMIC:
1865                         break;
1866                 default:
1867                         DRM_ERROR("Unknown operation byte %u\n",
1868                                   operation_byte);
1869                         break;
1870                 }
1871         }
1872
1873         return 0;
1874 }
1875
1876 /*
1877  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1878  * skip all delay + gpio operands and stop at the first DSI packet op.
1879  */
1880 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1881                                               struct intel_panel *panel)
1882 {
1883         const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1884         int index, len;
1885
1886         if (drm_WARN_ON(&i915->drm,
1887                         !data || panel->vbt.dsi.seq_version != 1))
1888                 return 0;
1889
1890         /* index = 1 to skip sequence byte */
1891         for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1892                 switch (data[index]) {
1893                 case MIPI_SEQ_ELEM_SEND_PKT:
1894                         return index == 1 ? 0 : index;
1895                 case MIPI_SEQ_ELEM_DELAY:
1896                         len = 5; /* 1 byte for operand + uint32 */
1897                         break;
1898                 case MIPI_SEQ_ELEM_GPIO:
1899                         len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1900                         break;
1901                 default:
1902                         return 0;
1903                 }
1904         }
1905
1906         return 0;
1907 }
1908
1909 /*
1910  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1911  * The deassert must be done before calling intel_dsi_device_ready, so for
1912  * these devices we split the init OTP sequence into a deassert sequence and
1913  * the actual init OTP part.
1914  */
1915 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1916                                  struct intel_panel *panel)
1917 {
1918         u8 *init_otp;
1919         int len;
1920
1921         /* Limit this to VLV for now. */
1922         if (!IS_VALLEYVIEW(i915))
1923                 return;
1924
1925         /* Limit this to v1 vid-mode sequences */
1926         if (panel->vbt.dsi.config->is_cmd_mode ||
1927             panel->vbt.dsi.seq_version != 1)
1928                 return;
1929
1930         /* Only do this if there are otp and assert seqs and no deassert seq */
1931         if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1932             !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1933             panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1934                 return;
1935
1936         /* The deassert-sequence ends at the first DSI packet */
1937         len = get_init_otp_deassert_fragment_len(i915, panel);
1938         if (!len)
1939                 return;
1940
1941         drm_dbg_kms(&i915->drm,
1942                     "Using init OTP fragment to deassert reset\n");
1943
1944         /* Copy the fragment, update seq byte and terminate it */
1945         init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1946         panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1947         if (!panel->vbt.dsi.deassert_seq)
1948                 return;
1949         panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1950         panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1951         /* Use the copy for deassert */
1952         panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1953                 panel->vbt.dsi.deassert_seq;
1954         /* Replace the last byte of the fragment with init OTP seq byte */
1955         init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1956         /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1957         panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1958 }
1959
1960 static void
1961 parse_mipi_sequence(struct drm_i915_private *i915,
1962                     struct intel_panel *panel)
1963 {
1964         int panel_type = panel->vbt.panel_type;
1965         const struct bdb_mipi_sequence *sequence;
1966         const u8 *seq_data;
1967         u32 seq_size;
1968         u8 *data;
1969         int index = 0;
1970
1971         /* Only our generic panel driver uses the sequence block. */
1972         if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1973                 return;
1974
1975         sequence = find_section(i915, BDB_MIPI_SEQUENCE);
1976         if (!sequence) {
1977                 drm_dbg_kms(&i915->drm,
1978                             "No MIPI Sequence found, parsing complete\n");
1979                 return;
1980         }
1981
1982         /* Fail gracefully for forward incompatible sequence block. */
1983         if (sequence->version >= 4) {
1984                 drm_err(&i915->drm,
1985                         "Unable to parse MIPI Sequence Block v%u\n",
1986                         sequence->version);
1987                 return;
1988         }
1989
1990         drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1991                 sequence->version);
1992
1993         seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1994         if (!seq_data)
1995                 return;
1996
1997         data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1998         if (!data)
1999                 return;
2000
2001         /* Parse the sequences, store pointers to each sequence. */
2002         for (;;) {
2003                 u8 seq_id = *(data + index);
2004                 if (seq_id == MIPI_SEQ_END)
2005                         break;
2006
2007                 if (seq_id >= MIPI_SEQ_MAX) {
2008                         drm_err(&i915->drm, "Unknown sequence %u\n",
2009                                 seq_id);
2010                         goto err;
2011                 }
2012
2013                 /* Log about presence of sequences we won't run. */
2014                 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2015                         drm_dbg_kms(&i915->drm,
2016                                     "Unsupported sequence %u\n", seq_id);
2017
2018                 panel->vbt.dsi.sequence[seq_id] = data + index;
2019
2020                 if (sequence->version >= 3)
2021                         index = goto_next_sequence_v3(data, index, seq_size);
2022                 else
2023                         index = goto_next_sequence(data, index, seq_size);
2024                 if (!index) {
2025                         drm_err(&i915->drm, "Invalid sequence %u\n",
2026                                 seq_id);
2027                         goto err;
2028                 }
2029         }
2030
2031         panel->vbt.dsi.data = data;
2032         panel->vbt.dsi.size = seq_size;
2033         panel->vbt.dsi.seq_version = sequence->version;
2034
2035         fixup_mipi_sequences(i915, panel);
2036
2037         drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2038         return;
2039
2040 err:
2041         kfree(data);
2042         memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2043 }
2044
2045 static void
2046 parse_compression_parameters(struct drm_i915_private *i915)
2047 {
2048         const struct bdb_compression_parameters *params;
2049         struct intel_bios_encoder_data *devdata;
2050         const struct child_device_config *child;
2051         u16 block_size;
2052         int index;
2053
2054         if (i915->vbt.version < 198)
2055                 return;
2056
2057         params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
2058         if (params) {
2059                 /* Sanity checks */
2060                 if (params->entry_size != sizeof(params->data[0])) {
2061                         drm_dbg_kms(&i915->drm,
2062                                     "VBT: unsupported compression param entry size\n");
2063                         return;
2064                 }
2065
2066                 block_size = get_blocksize(params);
2067                 if (block_size < sizeof(*params)) {
2068                         drm_dbg_kms(&i915->drm,
2069                                     "VBT: expected 16 compression param entries\n");
2070                         return;
2071                 }
2072         }
2073
2074         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2075                 child = &devdata->child;
2076
2077                 if (!child->compression_enable)
2078                         continue;
2079
2080                 if (!params) {
2081                         drm_dbg_kms(&i915->drm,
2082                                     "VBT: compression params not available\n");
2083                         continue;
2084                 }
2085
2086                 if (child->compression_method_cps) {
2087                         drm_dbg_kms(&i915->drm,
2088                                     "VBT: CPS compression not supported\n");
2089                         continue;
2090                 }
2091
2092                 index = child->compression_structure_index;
2093
2094                 devdata->dsc = kmemdup(&params->data[index],
2095                                        sizeof(*devdata->dsc), GFP_KERNEL);
2096         }
2097 }
2098
2099 static u8 translate_iboost(u8 val)
2100 {
2101         static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2102
2103         if (val >= ARRAY_SIZE(mapping)) {
2104                 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2105                 return 0;
2106         }
2107         return mapping[val];
2108 }
2109
2110 static const u8 cnp_ddc_pin_map[] = {
2111         [0] = 0, /* N/A */
2112         [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2113         [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2114         [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2115         [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2116 };
2117
2118 static const u8 icp_ddc_pin_map[] = {
2119         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2120         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2121         [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2122         [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2123         [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2124         [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2125         [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2126         [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2127         [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2128 };
2129
2130 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2131         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2132         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2133         [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2134         [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2135 };
2136
2137 static const u8 adls_ddc_pin_map[] = {
2138         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2139         [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2140         [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2141         [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2142         [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2143 };
2144
2145 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2146         [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2147         [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2148         [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2149 };
2150
2151 static const u8 adlp_ddc_pin_map[] = {
2152         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2153         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2154         [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2155         [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2156         [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2157         [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2158 };
2159
2160 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2161 {
2162         const u8 *ddc_pin_map;
2163         int n_entries;
2164
2165         if (IS_ALDERLAKE_P(i915)) {
2166                 ddc_pin_map = adlp_ddc_pin_map;
2167                 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2168         } else if (IS_ALDERLAKE_S(i915)) {
2169                 ddc_pin_map = adls_ddc_pin_map;
2170                 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2171         } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2172                 return vbt_pin;
2173         } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2174                 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2175                 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2176         } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2177                 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2178                 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2179         } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2180                 ddc_pin_map = icp_ddc_pin_map;
2181                 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2182         } else if (HAS_PCH_CNP(i915)) {
2183                 ddc_pin_map = cnp_ddc_pin_map;
2184                 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2185         } else {
2186                 /* Assuming direct map */
2187                 return vbt_pin;
2188         }
2189
2190         if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2191                 return ddc_pin_map[vbt_pin];
2192
2193         drm_dbg_kms(&i915->drm,
2194                     "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2195                     vbt_pin);
2196         return 0;
2197 }
2198
2199 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2200 {
2201         const struct intel_bios_encoder_data *devdata;
2202         enum port port;
2203
2204         if (!ddc_pin)
2205                 return PORT_NONE;
2206
2207         for_each_port(port) {
2208                 devdata = i915->vbt.ports[port];
2209
2210                 if (devdata && ddc_pin == devdata->child.ddc_pin)
2211                         return port;
2212         }
2213
2214         return PORT_NONE;
2215 }
2216
2217 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2218                              enum port port)
2219 {
2220         struct drm_i915_private *i915 = devdata->i915;
2221         struct child_device_config *child;
2222         u8 mapped_ddc_pin;
2223         enum port p;
2224
2225         if (!devdata->child.ddc_pin)
2226                 return;
2227
2228         mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2229         if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2230                 drm_dbg_kms(&i915->drm,
2231                             "Port %c has invalid DDC pin %d, "
2232                             "sticking to defaults\n",
2233                             port_name(port), mapped_ddc_pin);
2234                 devdata->child.ddc_pin = 0;
2235                 return;
2236         }
2237
2238         p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2239         if (p == PORT_NONE)
2240                 return;
2241
2242         drm_dbg_kms(&i915->drm,
2243                     "port %c trying to use the same DDC pin (0x%x) as port %c, "
2244                     "disabling port %c DVI/HDMI support\n",
2245                     port_name(port), mapped_ddc_pin,
2246                     port_name(p), port_name(p));
2247
2248         /*
2249          * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2250          * couldn't exist on the shared port. Otherwise they share the same ddc
2251          * pin and system couldn't communicate with them separately.
2252          *
2253          * Give inverse child device order the priority, last one wins. Yes,
2254          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2255          * port A and port E with the same AUX ch and we must pick port E :(
2256          */
2257         child = &i915->vbt.ports[p]->child;
2258
2259         child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2260         child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2261
2262         child->ddc_pin = 0;
2263 }
2264
2265 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2266 {
2267         const struct intel_bios_encoder_data *devdata;
2268         enum port port;
2269
2270         if (!aux_ch)
2271                 return PORT_NONE;
2272
2273         for_each_port(port) {
2274                 devdata = i915->vbt.ports[port];
2275
2276                 if (devdata && aux_ch == devdata->child.aux_channel)
2277                         return port;
2278         }
2279
2280         return PORT_NONE;
2281 }
2282
2283 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2284                             enum port port)
2285 {
2286         struct drm_i915_private *i915 = devdata->i915;
2287         struct child_device_config *child;
2288         enum port p;
2289
2290         p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2291         if (p == PORT_NONE)
2292                 return;
2293
2294         drm_dbg_kms(&i915->drm,
2295                     "port %c trying to use the same AUX CH (0x%x) as port %c, "
2296                     "disabling port %c DP support\n",
2297                     port_name(port), devdata->child.aux_channel,
2298                     port_name(p), port_name(p));
2299
2300         /*
2301          * If we have multiple ports supposedly sharing the aux channel, then DP
2302          * couldn't exist on the shared port. Otherwise they share the same aux
2303          * channel and system couldn't communicate with them separately.
2304          *
2305          * Give inverse child device order the priority, last one wins. Yes,
2306          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2307          * port A and port E with the same AUX ch and we must pick port E :(
2308          */
2309         child = &i915->vbt.ports[p]->child;
2310
2311         child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2312         child->aux_channel = 0;
2313 }
2314
2315 static u8 dvo_port_type(u8 dvo_port)
2316 {
2317         switch (dvo_port) {
2318         case DVO_PORT_HDMIA:
2319         case DVO_PORT_HDMIB:
2320         case DVO_PORT_HDMIC:
2321         case DVO_PORT_HDMID:
2322         case DVO_PORT_HDMIE:
2323         case DVO_PORT_HDMIF:
2324         case DVO_PORT_HDMIG:
2325         case DVO_PORT_HDMIH:
2326         case DVO_PORT_HDMII:
2327                 return DVO_PORT_HDMIA;
2328         case DVO_PORT_DPA:
2329         case DVO_PORT_DPB:
2330         case DVO_PORT_DPC:
2331         case DVO_PORT_DPD:
2332         case DVO_PORT_DPE:
2333         case DVO_PORT_DPF:
2334         case DVO_PORT_DPG:
2335         case DVO_PORT_DPH:
2336         case DVO_PORT_DPI:
2337                 return DVO_PORT_DPA;
2338         case DVO_PORT_MIPIA:
2339         case DVO_PORT_MIPIB:
2340         case DVO_PORT_MIPIC:
2341         case DVO_PORT_MIPID:
2342                 return DVO_PORT_MIPIA;
2343         default:
2344                 return dvo_port;
2345         }
2346 }
2347
2348 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2349                                     const int port_mapping[][3], u8 dvo_port)
2350 {
2351         enum port port;
2352         int i;
2353
2354         for (port = PORT_A; port < n_ports; port++) {
2355                 for (i = 0; i < n_dvo; i++) {
2356                         if (port_mapping[port][i] == -1)
2357                                 break;
2358
2359                         if (dvo_port == port_mapping[port][i])
2360                                 return port;
2361                 }
2362         }
2363
2364         return PORT_NONE;
2365 }
2366
2367 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2368                                   u8 dvo_port)
2369 {
2370         /*
2371          * Each DDI port can have more than one value on the "DVO Port" field,
2372          * so look for all the possible values for each port.
2373          */
2374         static const int port_mapping[][3] = {
2375                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2376                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2377                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2378                 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2379                 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2380                 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2381                 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2382                 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2383                 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2384         };
2385         /*
2386          * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2387          * map to DDI A,B,TC1,TC2 respectively.
2388          */
2389         static const int rkl_port_mapping[][3] = {
2390                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2391                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2392                 [PORT_C] = { -1 },
2393                 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2394                 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2395         };
2396         /*
2397          * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2398          * PORT_F and PORT_G, we need to map that to correct VBT sections.
2399          */
2400         static const int adls_port_mapping[][3] = {
2401                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2402                 [PORT_B] = { -1 },
2403                 [PORT_C] = { -1 },
2404                 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2405                 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2406                 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2407                 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2408         };
2409         static const int xelpd_port_mapping[][3] = {
2410                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2411                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2412                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2413                 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2414                 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2415                 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2416                 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2417                 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2418                 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2419         };
2420
2421         if (DISPLAY_VER(i915) == 13)
2422                 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2423                                           ARRAY_SIZE(xelpd_port_mapping[0]),
2424                                           xelpd_port_mapping,
2425                                           dvo_port);
2426         else if (IS_ALDERLAKE_S(i915))
2427                 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2428                                           ARRAY_SIZE(adls_port_mapping[0]),
2429                                           adls_port_mapping,
2430                                           dvo_port);
2431         else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2432                 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2433                                           ARRAY_SIZE(rkl_port_mapping[0]),
2434                                           rkl_port_mapping,
2435                                           dvo_port);
2436         else
2437                 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2438                                           ARRAY_SIZE(port_mapping[0]),
2439                                           port_mapping,
2440                                           dvo_port);
2441 }
2442
2443 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2444 {
2445         switch (vbt_max_link_rate) {
2446         default:
2447         case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2448                 return 0;
2449         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2450                 return 2000000;
2451         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2452                 return 1350000;
2453         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2454                 return 1000000;
2455         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2456                 return 810000;
2457         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2458                 return 540000;
2459         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2460                 return 270000;
2461         case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2462                 return 162000;
2463         }
2464 }
2465
2466 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2467 {
2468         switch (vbt_max_link_rate) {
2469         default:
2470         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2471                 return 810000;
2472         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2473                 return 540000;
2474         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2475                 return 270000;
2476         case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2477                 return 162000;
2478         }
2479 }
2480
2481 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2482 {
2483         if (!devdata || devdata->i915->vbt.version < 216)
2484                 return 0;
2485
2486         if (devdata->i915->vbt.version >= 230)
2487                 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2488         else
2489                 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2490 }
2491
2492 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2493                                  enum port port)
2494 {
2495         struct drm_i915_private *i915 = devdata->i915;
2496         bool is_hdmi;
2497
2498         if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2499                 return;
2500
2501         if (!intel_bios_encoder_supports_dvi(devdata))
2502                 return;
2503
2504         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2505
2506         drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2507                     is_hdmi ? "/HDMI" : "");
2508
2509         devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2510         devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2511 }
2512
2513 static bool
2514 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2515 {
2516         return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2517 }
2518
2519 bool
2520 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2521 {
2522         return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2523 }
2524
2525 bool
2526 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2527 {
2528         return intel_bios_encoder_supports_dvi(devdata) &&
2529                 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2530 }
2531
2532 bool
2533 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2534 {
2535         return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2536 }
2537
2538 static bool
2539 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2540 {
2541         return intel_bios_encoder_supports_dp(devdata) &&
2542                 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2543 }
2544
2545 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2546 {
2547         if (!devdata || devdata->i915->vbt.version < 158)
2548                 return -1;
2549
2550         return devdata->child.hdmi_level_shifter_value;
2551 }
2552
2553 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2554 {
2555         if (!devdata || devdata->i915->vbt.version < 204)
2556                 return 0;
2557
2558         switch (devdata->child.hdmi_max_data_rate) {
2559         default:
2560                 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2561                 fallthrough;
2562         case HDMI_MAX_DATA_RATE_PLATFORM:
2563                 return 0;
2564         case HDMI_MAX_DATA_RATE_594:
2565                 return 594000;
2566         case HDMI_MAX_DATA_RATE_340:
2567                 return 340000;
2568         case HDMI_MAX_DATA_RATE_300:
2569                 return 300000;
2570         case HDMI_MAX_DATA_RATE_297:
2571                 return 297000;
2572         case HDMI_MAX_DATA_RATE_165:
2573                 return 165000;
2574         }
2575 }
2576
2577 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2578 {
2579         /*
2580          * On some ICL SKUs port F is not present, but broken VBTs mark
2581          * the port as present. Only try to initialize port F for the
2582          * SKUs that may actually have it.
2583          */
2584         if (port == PORT_F && IS_ICELAKE(i915))
2585                 return IS_ICL_WITH_PORT_F(i915);
2586
2587         return true;
2588 }
2589
2590 static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2591                            enum port port)
2592 {
2593         struct drm_i915_private *i915 = devdata->i915;
2594         const struct child_device_config *child = &devdata->child;
2595         bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2596         int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2597
2598         is_dvi = intel_bios_encoder_supports_dvi(devdata);
2599         is_dp = intel_bios_encoder_supports_dp(devdata);
2600         is_crt = intel_bios_encoder_supports_crt(devdata);
2601         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2602         is_edp = intel_bios_encoder_supports_edp(devdata);
2603
2604         supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2605         supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2606
2607         drm_dbg_kms(&i915->drm,
2608                     "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2609                     port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2610                     HAS_LSPCON(i915) && child->lspcon,
2611                     supports_typec_usb, supports_tbt,
2612                     devdata->dsc != NULL);
2613
2614         hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2615         if (hdmi_level_shift >= 0) {
2616                 drm_dbg_kms(&i915->drm,
2617                             "Port %c VBT HDMI level shift: %d\n",
2618                             port_name(port), hdmi_level_shift);
2619         }
2620
2621         max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2622         if (max_tmds_clock)
2623                 drm_dbg_kms(&i915->drm,
2624                             "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2625                             port_name(port), max_tmds_clock);
2626
2627         /* I_boost config for SKL and above */
2628         dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2629         if (dp_boost_level)
2630                 drm_dbg_kms(&i915->drm,
2631                             "Port %c VBT (e)DP boost level: %d\n",
2632                             port_name(port), dp_boost_level);
2633
2634         hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2635         if (hdmi_boost_level)
2636                 drm_dbg_kms(&i915->drm,
2637                             "Port %c VBT HDMI boost level: %d\n",
2638                             port_name(port), hdmi_boost_level);
2639
2640         dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2641         if (dp_max_link_rate)
2642                 drm_dbg_kms(&i915->drm,
2643                             "Port %c VBT DP max link rate: %d\n",
2644                             port_name(port), dp_max_link_rate);
2645 }
2646
2647 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2648 {
2649         struct drm_i915_private *i915 = devdata->i915;
2650         const struct child_device_config *child = &devdata->child;
2651         enum port port;
2652
2653         port = dvo_port_to_port(i915, child->dvo_port);
2654         if (port == PORT_NONE)
2655                 return;
2656
2657         if (!is_port_valid(i915, port)) {
2658                 drm_dbg_kms(&i915->drm,
2659                             "VBT reports port %c as supported, but that can't be true: skipping\n",
2660                             port_name(port));
2661                 return;
2662         }
2663
2664         if (i915->vbt.ports[port]) {
2665                 drm_dbg_kms(&i915->drm,
2666                             "More than one child device for port %c in VBT, using the first.\n",
2667                             port_name(port));
2668                 return;
2669         }
2670
2671         sanitize_device_type(devdata, port);
2672
2673         print_ddi_port(devdata, port);
2674
2675         if (intel_bios_encoder_supports_dvi(devdata))
2676                 sanitize_ddc_pin(devdata, port);
2677
2678         if (intel_bios_encoder_supports_dp(devdata))
2679                 sanitize_aux_ch(devdata, port);
2680
2681         i915->vbt.ports[port] = devdata;
2682 }
2683
2684 static bool has_ddi_port_info(struct drm_i915_private *i915)
2685 {
2686         return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2687 }
2688
2689 static void parse_ddi_ports(struct drm_i915_private *i915)
2690 {
2691         struct intel_bios_encoder_data *devdata;
2692
2693         if (!has_ddi_port_info(i915))
2694                 return;
2695
2696         list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2697                 parse_ddi_port(devdata);
2698 }
2699
2700 static void
2701 parse_general_definitions(struct drm_i915_private *i915)
2702 {
2703         const struct bdb_general_definitions *defs;
2704         struct intel_bios_encoder_data *devdata;
2705         const struct child_device_config *child;
2706         int i, child_device_num;
2707         u8 expected_size;
2708         u16 block_size;
2709         int bus_pin;
2710
2711         defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2712         if (!defs) {
2713                 drm_dbg_kms(&i915->drm,
2714                             "No general definition block is found, no devices defined.\n");
2715                 return;
2716         }
2717
2718         block_size = get_blocksize(defs);
2719         if (block_size < sizeof(*defs)) {
2720                 drm_dbg_kms(&i915->drm,
2721                             "General definitions block too small (%u)\n",
2722                             block_size);
2723                 return;
2724         }
2725
2726         bus_pin = defs->crt_ddc_gmbus_pin;
2727         drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2728         if (intel_gmbus_is_valid_pin(i915, bus_pin))
2729                 i915->vbt.crt_ddc_pin = bus_pin;
2730
2731         if (i915->vbt.version < 106) {
2732                 expected_size = 22;
2733         } else if (i915->vbt.version < 111) {
2734                 expected_size = 27;
2735         } else if (i915->vbt.version < 195) {
2736                 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2737         } else if (i915->vbt.version == 195) {
2738                 expected_size = 37;
2739         } else if (i915->vbt.version <= 215) {
2740                 expected_size = 38;
2741         } else if (i915->vbt.version <= 237) {
2742                 expected_size = 39;
2743         } else {
2744                 expected_size = sizeof(*child);
2745                 BUILD_BUG_ON(sizeof(*child) < 39);
2746                 drm_dbg(&i915->drm,
2747                         "Expected child device config size for VBT version %u not known; assuming %u\n",
2748                         i915->vbt.version, expected_size);
2749         }
2750
2751         /* Flag an error for unexpected size, but continue anyway. */
2752         if (defs->child_dev_size != expected_size)
2753                 drm_err(&i915->drm,
2754                         "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2755                         defs->child_dev_size, expected_size, i915->vbt.version);
2756
2757         /* The legacy sized child device config is the minimum we need. */
2758         if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2759                 drm_dbg_kms(&i915->drm,
2760                             "Child device config size %u is too small.\n",
2761                             defs->child_dev_size);
2762                 return;
2763         }
2764
2765         /* get the number of child device */
2766         child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2767
2768         for (i = 0; i < child_device_num; i++) {
2769                 child = child_device_ptr(defs, i);
2770                 if (!child->device_type)
2771                         continue;
2772
2773                 drm_dbg_kms(&i915->drm,
2774                             "Found VBT child device with type 0x%x\n",
2775                             child->device_type);
2776
2777                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2778                 if (!devdata)
2779                         break;
2780
2781                 devdata->i915 = i915;
2782
2783                 /*
2784                  * Copy as much as we know (sizeof) and is available
2785                  * (child_dev_size) of the child device config. Accessing the
2786                  * data must depend on VBT version.
2787                  */
2788                 memcpy(&devdata->child, child,
2789                        min_t(size_t, defs->child_dev_size, sizeof(*child)));
2790
2791                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2792         }
2793
2794         if (list_empty(&i915->vbt.display_devices))
2795                 drm_dbg_kms(&i915->drm,
2796                             "no child dev is parsed from VBT\n");
2797 }
2798
2799 /* Common defaults which may be overridden by VBT. */
2800 static void
2801 init_vbt_defaults(struct drm_i915_private *i915)
2802 {
2803         i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2804
2805         /* general features */
2806         i915->vbt.int_tv_support = 1;
2807         i915->vbt.int_crt_support = 1;
2808
2809         /* driver features */
2810         i915->vbt.int_lvds_support = 1;
2811
2812         /* Default to using SSC */
2813         i915->vbt.lvds_use_ssc = 1;
2814         /*
2815          * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2816          * clock for LVDS.
2817          */
2818         i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2819                                                            !HAS_PCH_SPLIT(i915));
2820         drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2821                     i915->vbt.lvds_ssc_freq);
2822 }
2823
2824 /* Common defaults which may be overridden by VBT. */
2825 static void
2826 init_vbt_panel_defaults(struct intel_panel *panel)
2827 {
2828         /* Default to having backlight */
2829         panel->vbt.backlight.present = true;
2830
2831         /* LFP panel data */
2832         panel->vbt.lvds_dither = true;
2833 }
2834
2835 /* Defaults to initialize only if there is no VBT. */
2836 static void
2837 init_vbt_missing_defaults(struct drm_i915_private *i915)
2838 {
2839         enum port port;
2840         int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2841                     BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2842
2843         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2844                 return;
2845
2846         for_each_port_masked(port, ports) {
2847                 struct intel_bios_encoder_data *devdata;
2848                 struct child_device_config *child;
2849                 enum phy phy = intel_port_to_phy(i915, port);
2850
2851                 /*
2852                  * VBT has the TypeC mode (native,TBT/USB) and we don't want
2853                  * to detect it.
2854                  */
2855                 if (intel_phy_is_tc(i915, phy))
2856                         continue;
2857
2858                 /* Create fake child device config */
2859                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2860                 if (!devdata)
2861                         break;
2862
2863                 devdata->i915 = i915;
2864                 child = &devdata->child;
2865
2866                 if (port == PORT_F)
2867                         child->dvo_port = DVO_PORT_HDMIF;
2868                 else if (port == PORT_E)
2869                         child->dvo_port = DVO_PORT_HDMIE;
2870                 else
2871                         child->dvo_port = DVO_PORT_HDMIA + port;
2872
2873                 if (port != PORT_A && port != PORT_E)
2874                         child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2875
2876                 if (port != PORT_E)
2877                         child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2878
2879                 if (port == PORT_A)
2880                         child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2881
2882                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2883
2884                 drm_dbg_kms(&i915->drm,
2885                             "Generating default VBT child device with type 0x04%x on port %c\n",
2886                             child->device_type, port_name(port));
2887         }
2888
2889         /* Bypass some minimum baseline VBT version checks */
2890         i915->vbt.version = 155;
2891 }
2892
2893 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2894 {
2895         const void *_vbt = vbt;
2896
2897         return _vbt + vbt->bdb_offset;
2898 }
2899
2900 /**
2901  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2902  * @buf:        pointer to a buffer to validate
2903  * @size:       size of the buffer
2904  *
2905  * Returns true on valid VBT.
2906  */
2907 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2908 {
2909         const struct vbt_header *vbt = buf;
2910         const struct bdb_header *bdb;
2911
2912         if (!vbt)
2913                 return false;
2914
2915         if (sizeof(struct vbt_header) > size) {
2916                 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2917                 return false;
2918         }
2919
2920         if (memcmp(vbt->signature, "$VBT", 4)) {
2921                 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2922                 return false;
2923         }
2924
2925         if (vbt->vbt_size > size) {
2926                 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2927                 return false;
2928         }
2929
2930         size = vbt->vbt_size;
2931
2932         if (range_overflows_t(size_t,
2933                               vbt->bdb_offset,
2934                               sizeof(struct bdb_header),
2935                               size)) {
2936                 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2937                 return false;
2938         }
2939
2940         bdb = get_bdb_header(vbt);
2941         if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2942                 DRM_DEBUG_DRIVER("BDB incomplete\n");
2943                 return false;
2944         }
2945
2946         return vbt;
2947 }
2948
2949 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2950 {
2951         u32 count, data, found, store = 0;
2952         u32 static_region, oprom_offset;
2953         u32 oprom_size = 0x200000;
2954         u16 vbt_size;
2955         u32 *vbt;
2956
2957         static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2958         static_region &= OPTIONROM_SPI_REGIONID_MASK;
2959         intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2960
2961         oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2962         oprom_offset &= OROM_OFFSET_MASK;
2963
2964         for (count = 0; count < oprom_size; count += 4) {
2965                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
2966                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2967
2968                 if (data == *((const u32 *)"$VBT")) {
2969                         found = oprom_offset + count;
2970                         break;
2971                 }
2972         }
2973
2974         if (count >= oprom_size)
2975                 goto err_not_found;
2976
2977         /* Get VBT size and allocate space for the VBT */
2978         intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
2979                    offsetof(struct vbt_header, vbt_size));
2980         vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2981         vbt_size &= 0xffff;
2982
2983         vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2984         if (!vbt)
2985                 goto err_not_found;
2986
2987         for (count = 0; count < vbt_size; count += 4) {
2988                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
2989                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2990                 *(vbt + store++) = data;
2991         }
2992
2993         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2994                 goto err_free_vbt;
2995
2996         drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2997
2998         return (struct vbt_header *)vbt;
2999
3000 err_free_vbt:
3001         kfree(vbt);
3002 err_not_found:
3003         return NULL;
3004 }
3005
3006 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3007 {
3008         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3009         void __iomem *p = NULL, *oprom;
3010         struct vbt_header *vbt;
3011         u16 vbt_size;
3012         size_t i, size;
3013
3014         oprom = pci_map_rom(pdev, &size);
3015         if (!oprom)
3016                 return NULL;
3017
3018         /* Scour memory looking for the VBT signature. */
3019         for (i = 0; i + 4 < size; i += 4) {
3020                 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3021                         continue;
3022
3023                 p = oprom + i;
3024                 size -= i;
3025                 break;
3026         }
3027
3028         if (!p)
3029                 goto err_unmap_oprom;
3030
3031         if (sizeof(struct vbt_header) > size) {
3032                 drm_dbg(&i915->drm, "VBT header incomplete\n");
3033                 goto err_unmap_oprom;
3034         }
3035
3036         vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3037         if (vbt_size > size) {
3038                 drm_dbg(&i915->drm,
3039                         "VBT incomplete (vbt_size overflows)\n");
3040                 goto err_unmap_oprom;
3041         }
3042
3043         /* The rest will be validated by intel_bios_is_valid_vbt() */
3044         vbt = kmalloc(vbt_size, GFP_KERNEL);
3045         if (!vbt)
3046                 goto err_unmap_oprom;
3047
3048         memcpy_fromio(vbt, p, vbt_size);
3049
3050         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3051                 goto err_free_vbt;
3052
3053         pci_unmap_rom(pdev, oprom);
3054
3055         drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3056
3057         return vbt;
3058
3059 err_free_vbt:
3060         kfree(vbt);
3061 err_unmap_oprom:
3062         pci_unmap_rom(pdev, oprom);
3063
3064         return NULL;
3065 }
3066
3067 /**
3068  * intel_bios_init - find VBT and initialize settings from the BIOS
3069  * @i915: i915 device instance
3070  *
3071  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3072  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3073  * initialize some defaults if the VBT is not present at all.
3074  */
3075 void intel_bios_init(struct drm_i915_private *i915)
3076 {
3077         const struct vbt_header *vbt = i915->opregion.vbt;
3078         struct vbt_header *oprom_vbt = NULL;
3079         const struct bdb_header *bdb;
3080
3081         INIT_LIST_HEAD(&i915->vbt.display_devices);
3082         INIT_LIST_HEAD(&i915->vbt.bdb_blocks);
3083
3084         if (!HAS_DISPLAY(i915)) {
3085                 drm_dbg_kms(&i915->drm,
3086                             "Skipping VBT init due to disabled display.\n");
3087                 return;
3088         }
3089
3090         init_vbt_defaults(i915);
3091
3092         /*
3093          * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3094          * PCI mapping
3095          */
3096         if (!vbt && IS_DGFX(i915)) {
3097                 oprom_vbt = spi_oprom_get_vbt(i915);
3098                 vbt = oprom_vbt;
3099         }
3100
3101         if (!vbt) {
3102                 oprom_vbt = oprom_get_vbt(i915);
3103                 vbt = oprom_vbt;
3104         }
3105
3106         if (!vbt)
3107                 goto out;
3108
3109         bdb = get_bdb_header(vbt);
3110         i915->vbt.version = bdb->version;
3111
3112         drm_dbg_kms(&i915->drm,
3113                     "VBT signature \"%.*s\", BDB version %d\n",
3114                     (int)sizeof(vbt->signature), vbt->signature, i915->vbt.version);
3115
3116         init_bdb_blocks(i915, bdb);
3117
3118         /* Grab useful general definitions */
3119         parse_general_features(i915);
3120         parse_general_definitions(i915);
3121         parse_driver_features(i915);
3122
3123         /* Depends on child device list */
3124         parse_compression_parameters(i915);
3125
3126 out:
3127         if (!vbt) {
3128                 drm_info(&i915->drm,
3129                          "Failed to find VBIOS tables (VBT)\n");
3130                 init_vbt_missing_defaults(i915);
3131         }
3132
3133         /* Further processing on pre-parsed or generated child device data */
3134         parse_sdvo_device_mapping(i915);
3135         parse_ddi_ports(i915);
3136
3137         kfree(oprom_vbt);
3138 }
3139
3140 void intel_bios_init_panel(struct drm_i915_private *i915,
3141                            struct intel_panel *panel,
3142                            const struct intel_bios_encoder_data *devdata,
3143                            const struct edid *edid)
3144 {
3145         init_vbt_panel_defaults(panel);
3146
3147         panel->vbt.panel_type = get_panel_type(i915, devdata, edid);
3148
3149         parse_panel_options(i915, panel);
3150         parse_generic_dtd(i915, panel);
3151         parse_lfp_data(i915, panel);
3152         parse_lfp_backlight(i915, panel);
3153         parse_sdvo_panel_data(i915, panel);
3154         parse_panel_driver_features(i915, panel);
3155         parse_power_conservation_features(i915, panel);
3156         parse_edp(i915, panel);
3157         parse_psr(i915, panel);
3158         parse_mipi_config(i915, panel);
3159         parse_mipi_sequence(i915, panel);
3160 }
3161
3162 /**
3163  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3164  * @i915: i915 device instance
3165  */
3166 void intel_bios_driver_remove(struct drm_i915_private *i915)
3167 {
3168         struct intel_bios_encoder_data *devdata, *nd;
3169         struct bdb_block_entry *entry, *ne;
3170
3171         list_for_each_entry_safe(devdata, nd, &i915->vbt.display_devices, node) {
3172                 list_del(&devdata->node);
3173                 kfree(devdata->dsc);
3174                 kfree(devdata);
3175         }
3176
3177         list_for_each_entry_safe(entry, ne, &i915->vbt.bdb_blocks, node) {
3178                 list_del(&entry->node);
3179                 kfree(entry);
3180         }
3181 }
3182
3183 void intel_bios_fini_panel(struct intel_panel *panel)
3184 {
3185         kfree(panel->vbt.sdvo_lvds_vbt_mode);
3186         panel->vbt.sdvo_lvds_vbt_mode = NULL;
3187         kfree(panel->vbt.lfp_lvds_vbt_mode);
3188         panel->vbt.lfp_lvds_vbt_mode = NULL;
3189         kfree(panel->vbt.dsi.data);
3190         panel->vbt.dsi.data = NULL;
3191         kfree(panel->vbt.dsi.pps);
3192         panel->vbt.dsi.pps = NULL;
3193         kfree(panel->vbt.dsi.config);
3194         panel->vbt.dsi.config = NULL;
3195         kfree(panel->vbt.dsi.deassert_seq);
3196         panel->vbt.dsi.deassert_seq = NULL;
3197 }
3198
3199 /**
3200  * intel_bios_is_tv_present - is integrated TV present in VBT
3201  * @i915: i915 device instance
3202  *
3203  * Return true if TV is present. If no child devices were parsed from VBT,
3204  * assume TV is present.
3205  */
3206 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3207 {
3208         const struct intel_bios_encoder_data *devdata;
3209         const struct child_device_config *child;
3210
3211         if (!i915->vbt.int_tv_support)
3212                 return false;
3213
3214         if (list_empty(&i915->vbt.display_devices))
3215                 return true;
3216
3217         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3218                 child = &devdata->child;
3219
3220                 /*
3221                  * If the device type is not TV, continue.
3222                  */
3223                 switch (child->device_type) {
3224                 case DEVICE_TYPE_INT_TV:
3225                 case DEVICE_TYPE_TV:
3226                 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3227                         break;
3228                 default:
3229                         continue;
3230                 }
3231                 /* Only when the addin_offset is non-zero, it is regarded
3232                  * as present.
3233                  */
3234                 if (child->addin_offset)
3235                         return true;
3236         }
3237
3238         return false;
3239 }
3240
3241 /**
3242  * intel_bios_is_lvds_present - is LVDS present in VBT
3243  * @i915:       i915 device instance
3244  * @i2c_pin:    i2c pin for LVDS if present
3245  *
3246  * Return true if LVDS is present. If no child devices were parsed from VBT,
3247  * assume LVDS is present.
3248  */
3249 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3250 {
3251         const struct intel_bios_encoder_data *devdata;
3252         const struct child_device_config *child;
3253
3254         if (list_empty(&i915->vbt.display_devices))
3255                 return true;
3256
3257         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3258                 child = &devdata->child;
3259
3260                 /* If the device type is not LFP, continue.
3261                  * We have to check both the new identifiers as well as the
3262                  * old for compatibility with some BIOSes.
3263                  */
3264                 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3265                     child->device_type != DEVICE_TYPE_LFP)
3266                         continue;
3267
3268                 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3269                         *i2c_pin = child->i2c_pin;
3270
3271                 /* However, we cannot trust the BIOS writers to populate
3272                  * the VBT correctly.  Since LVDS requires additional
3273                  * information from AIM blocks, a non-zero addin offset is
3274                  * a good indicator that the LVDS is actually present.
3275                  */
3276                 if (child->addin_offset)
3277                         return true;
3278
3279                 /* But even then some BIOS writers perform some black magic
3280                  * and instantiate the device without reference to any
3281                  * additional data.  Trust that if the VBT was written into
3282                  * the OpRegion then they have validated the LVDS's existence.
3283                  */
3284                 if (i915->opregion.vbt)
3285                         return true;
3286         }
3287
3288         return false;
3289 }
3290
3291 /**
3292  * intel_bios_is_port_present - is the specified digital port present
3293  * @i915:       i915 device instance
3294  * @port:       port to check
3295  *
3296  * Return true if the device in %port is present.
3297  */
3298 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3299 {
3300         if (WARN_ON(!has_ddi_port_info(i915)))
3301                 return true;
3302
3303         return i915->vbt.ports[port];
3304 }
3305
3306 /**
3307  * intel_bios_is_port_edp - is the device in given port eDP
3308  * @i915:       i915 device instance
3309  * @port:       port to check
3310  *
3311  * Return true if the device in %port is eDP.
3312  */
3313 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3314 {
3315         const struct intel_bios_encoder_data *devdata =
3316                 intel_bios_encoder_data_lookup(i915, port);
3317
3318         return devdata && intel_bios_encoder_supports_edp(devdata);
3319 }
3320
3321 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3322 {
3323         const struct child_device_config *child = &devdata->child;
3324
3325         if (!intel_bios_encoder_supports_dp(devdata) ||
3326             !intel_bios_encoder_supports_hdmi(devdata))
3327                 return false;
3328
3329         if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3330                 return true;
3331
3332         /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3333         if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3334             child->aux_channel != 0)
3335                 return true;
3336
3337         return false;
3338 }
3339
3340 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3341                                      enum port port)
3342 {
3343         const struct intel_bios_encoder_data *devdata =
3344                 intel_bios_encoder_data_lookup(i915, port);
3345
3346         return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3347 }
3348
3349 /**
3350  * intel_bios_is_dsi_present - is DSI present in VBT
3351  * @i915:       i915 device instance
3352  * @port:       port for DSI if present
3353  *
3354  * Return true if DSI is present, and return the port in %port.
3355  */
3356 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3357                                enum port *port)
3358 {
3359         const struct intel_bios_encoder_data *devdata;
3360         const struct child_device_config *child;
3361         u8 dvo_port;
3362
3363         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3364                 child = &devdata->child;
3365
3366                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3367                         continue;
3368
3369                 dvo_port = child->dvo_port;
3370
3371                 if (dvo_port == DVO_PORT_MIPIA ||
3372                     (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
3373                     (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
3374                         if (port)
3375                                 *port = dvo_port - DVO_PORT_MIPIA;
3376                         return true;
3377                 } else if (dvo_port == DVO_PORT_MIPIB ||
3378                            dvo_port == DVO_PORT_MIPIC ||
3379                            dvo_port == DVO_PORT_MIPID) {
3380                         drm_dbg_kms(&i915->drm,
3381                                     "VBT has unsupported DSI port %c\n",
3382                                     port_name(dvo_port - DVO_PORT_MIPIA));
3383                 }
3384         }
3385
3386         return false;
3387 }
3388
3389 static void fill_dsc(struct intel_crtc_state *crtc_state,
3390                      struct dsc_compression_parameters_entry *dsc,
3391                      int dsc_max_bpc)
3392 {
3393         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3394         int bpc = 8;
3395
3396         vdsc_cfg->dsc_version_major = dsc->version_major;
3397         vdsc_cfg->dsc_version_minor = dsc->version_minor;
3398
3399         if (dsc->support_12bpc && dsc_max_bpc >= 12)
3400                 bpc = 12;
3401         else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3402                 bpc = 10;
3403         else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3404                 bpc = 8;
3405         else
3406                 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3407                               dsc_max_bpc);
3408
3409         crtc_state->pipe_bpp = bpc * 3;
3410
3411         crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3412                                              VBT_DSC_MAX_BPP(dsc->max_bpp));
3413
3414         /*
3415          * FIXME: This is ugly, and slice count should take DSC engine
3416          * throughput etc. into account.
3417          *
3418          * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3419          */
3420         if (dsc->slices_per_line & BIT(2)) {
3421                 crtc_state->dsc.slice_count = 4;
3422         } else if (dsc->slices_per_line & BIT(1)) {
3423                 crtc_state->dsc.slice_count = 2;
3424         } else {
3425                 /* FIXME */
3426                 if (!(dsc->slices_per_line & BIT(0)))
3427                         DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3428
3429                 crtc_state->dsc.slice_count = 1;
3430         }
3431
3432         if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3433             crtc_state->dsc.slice_count != 0)
3434                 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3435                               crtc_state->hw.adjusted_mode.crtc_hdisplay,
3436                               crtc_state->dsc.slice_count);
3437
3438         /*
3439          * The VBT rc_buffer_block_size and rc_buffer_size definitions
3440          * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3441          */
3442         vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3443                                                             dsc->rc_buffer_size);
3444
3445         /* FIXME: DSI spec says bpc + 1 for this one */
3446         vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3447
3448         vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3449
3450         vdsc_cfg->slice_height = dsc->slice_height;
3451 }
3452
3453 /* FIXME: initially DSI specific */
3454 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3455                                struct intel_crtc_state *crtc_state,
3456                                int dsc_max_bpc)
3457 {
3458         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3459         const struct intel_bios_encoder_data *devdata;
3460         const struct child_device_config *child;
3461
3462         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3463                 child = &devdata->child;
3464
3465                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3466                         continue;
3467
3468                 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
3469                         if (!devdata->dsc)
3470                                 return false;
3471
3472                         if (crtc_state)
3473                                 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3474
3475                         return true;
3476                 }
3477         }
3478
3479         return false;
3480 }
3481
3482 /**
3483  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3484  * @i915:       i915 device instance
3485  * @port:       port to check
3486  *
3487  * Return true if HPD should be inverted for %port.
3488  */
3489 bool
3490 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3491                                 enum port port)
3492 {
3493         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3494
3495         if (drm_WARN_ON_ONCE(&i915->drm,
3496                              !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3497                 return false;
3498
3499         return devdata && devdata->child.hpd_invert;
3500 }
3501
3502 /**
3503  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3504  * @i915:       i915 device instance
3505  * @port:       port to check
3506  *
3507  * Return true if LSPCON is present on this port
3508  */
3509 bool
3510 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3511                              enum port port)
3512 {
3513         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3514
3515         return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3516 }
3517
3518 /**
3519  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3520  * @i915:       i915 device instance
3521  * @port:       port to check
3522  *
3523  * Return true if port requires lane reversal
3524  */
3525 bool
3526 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3527                                    enum port port)
3528 {
3529         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3530
3531         return devdata && devdata->child.lane_reversal;
3532 }
3533
3534 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3535                                    enum port port)
3536 {
3537         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3538         enum aux_ch aux_ch;
3539
3540         if (!devdata || !devdata->child.aux_channel) {
3541                 aux_ch = (enum aux_ch)port;
3542
3543                 drm_dbg_kms(&i915->drm,
3544                             "using AUX %c for port %c (platform default)\n",
3545                             aux_ch_name(aux_ch), port_name(port));
3546                 return aux_ch;
3547         }
3548
3549         /*
3550          * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3551          * map to DDI A,B,TC1,TC2 respectively.
3552          *
3553          * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3554          * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3555          */
3556         switch (devdata->child.aux_channel) {
3557         case DP_AUX_A:
3558                 aux_ch = AUX_CH_A;
3559                 break;
3560         case DP_AUX_B:
3561                 if (IS_ALDERLAKE_S(i915))
3562                         aux_ch = AUX_CH_USBC1;
3563                 else
3564                         aux_ch = AUX_CH_B;
3565                 break;
3566         case DP_AUX_C:
3567                 if (IS_ALDERLAKE_S(i915))
3568                         aux_ch = AUX_CH_USBC2;
3569                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3570                         aux_ch = AUX_CH_USBC1;
3571                 else
3572                         aux_ch = AUX_CH_C;
3573                 break;
3574         case DP_AUX_D:
3575                 if (DISPLAY_VER(i915) == 13)
3576                         aux_ch = AUX_CH_D_XELPD;
3577                 else if (IS_ALDERLAKE_S(i915))
3578                         aux_ch = AUX_CH_USBC3;
3579                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3580                         aux_ch = AUX_CH_USBC2;
3581                 else
3582                         aux_ch = AUX_CH_D;
3583                 break;
3584         case DP_AUX_E:
3585                 if (DISPLAY_VER(i915) == 13)
3586                         aux_ch = AUX_CH_E_XELPD;
3587                 else if (IS_ALDERLAKE_S(i915))
3588                         aux_ch = AUX_CH_USBC4;
3589                 else
3590                         aux_ch = AUX_CH_E;
3591                 break;
3592         case DP_AUX_F:
3593                 if (DISPLAY_VER(i915) == 13)
3594                         aux_ch = AUX_CH_USBC1;
3595                 else
3596                         aux_ch = AUX_CH_F;
3597                 break;
3598         case DP_AUX_G:
3599                 if (DISPLAY_VER(i915) == 13)
3600                         aux_ch = AUX_CH_USBC2;
3601                 else
3602                         aux_ch = AUX_CH_G;
3603                 break;
3604         case DP_AUX_H:
3605                 if (DISPLAY_VER(i915) == 13)
3606                         aux_ch = AUX_CH_USBC3;
3607                 else
3608                         aux_ch = AUX_CH_H;
3609                 break;
3610         case DP_AUX_I:
3611                 if (DISPLAY_VER(i915) == 13)
3612                         aux_ch = AUX_CH_USBC4;
3613                 else
3614                         aux_ch = AUX_CH_I;
3615                 break;
3616         default:
3617                 MISSING_CASE(devdata->child.aux_channel);
3618                 aux_ch = AUX_CH_A;
3619                 break;
3620         }
3621
3622         drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3623                     aux_ch_name(aux_ch), port_name(port));
3624
3625         return aux_ch;
3626 }
3627
3628 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3629 {
3630         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3631         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3632
3633         return _intel_bios_max_tmds_clock(devdata);
3634 }
3635
3636 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3637 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3638 {
3639         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3640         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3641
3642         return _intel_bios_hdmi_level_shift(devdata);
3643 }
3644
3645 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3646 {
3647         if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3648                 return 0;
3649
3650         return translate_iboost(devdata->child.dp_iboost_level);
3651 }
3652
3653 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3654 {
3655         if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3656                 return 0;
3657
3658         return translate_iboost(devdata->child.hdmi_iboost_level);
3659 }
3660
3661 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3662 {
3663         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3664         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3665
3666         return _intel_bios_dp_max_link_rate(devdata);
3667 }
3668
3669 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3670 {
3671         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3672         const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3673
3674         if (!devdata || !devdata->child.ddc_pin)
3675                 return 0;
3676
3677         return map_ddc_pin(i915, devdata->child.ddc_pin);
3678 }
3679
3680 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3681 {
3682         return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3683 }
3684
3685 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3686 {
3687         return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3688 }
3689
3690 const struct intel_bios_encoder_data *
3691 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3692 {
3693         return i915->vbt.ports[port];
3694 }