Merge v6.5-rc1 into drm-misc-fixes
[sfrench/cifs-2.6.git] / drivers / gpu / drm / bridge / ti-sn65dsi86.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23
24 #include <asm/unaligned.h>
25
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_panel.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_probe_helper.h>
38
39 #define SN_DEVICE_REV_REG                       0x08
40 #define SN_DPPLL_SRC_REG                        0x0A
41 #define  DPPLL_CLK_SRC_DSICLK                   BIT(0)
42 #define  REFCLK_FREQ_MASK                       GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)                         ((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK                  BIT(7)
45 #define SN_PLL_ENABLE_REG                       0x0D
46 #define SN_DSI_LANES_REG                        0x10
47 #define  CHA_DSI_LANES_MASK                     GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)                       ((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG                    0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG       0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG    0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG        0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG       0x2D
54 #define  CHA_HSYNC_POLARITY                     BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG        0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG       0x31
57 #define  CHA_VSYNC_POLARITY                     BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG        0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG          0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG       0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG         0x3A
62 #define SN_LN_ASSIGN_REG                        0x59
63 #define  LN_ASSIGN_WIDTH                        2
64 #define SN_ENH_FRAME_REG                        0x5A
65 #define  VSTREAM_ENABLE                         BIT(3)
66 #define  LN_POLRS_OFFSET                        4
67 #define  LN_POLRS_MASK                          0xf0
68 #define SN_DATA_FORMAT_REG                      0x5B
69 #define  BPP_18_RGB                             BIT(0)
70 #define SN_HPD_DISABLE_REG                      0x5C
71 #define  HPD_DISABLE                            BIT(0)
72 #define  HPD_DEBOUNCED_STATE                    BIT(4)
73 #define SN_GPIO_IO_REG                          0x5E
74 #define  SN_GPIO_INPUT_SHIFT                    4
75 #define  SN_GPIO_OUTPUT_SHIFT                   0
76 #define SN_GPIO_CTRL_REG                        0x5F
77 #define  SN_GPIO_MUX_INPUT                      0
78 #define  SN_GPIO_MUX_OUTPUT                     1
79 #define  SN_GPIO_MUX_SPECIAL                    2
80 #define  SN_GPIO_MUX_MASK                       0x3
81 #define SN_AUX_WDATA_REG(x)                     (0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG                   0x74
83 #define SN_AUX_ADDR_15_8_REG                    0x75
84 #define SN_AUX_ADDR_7_0_REG                     0x76
85 #define SN_AUX_ADDR_MASK                        GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG                       0x77
87 #define SN_AUX_CMD_REG                          0x78
88 #define  AUX_CMD_SEND                           BIT(0)
89 #define  AUX_CMD_REQ(x)                         ((x) << 4)
90 #define SN_AUX_RDATA_REG(x)                     (0x79 + (x))
91 #define SN_SSC_CONFIG_REG                       0x93
92 #define  DP_NUM_LANES_MASK                      GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)                        ((x) << 4)
94 #define SN_DATARATE_CONFIG_REG                  0x94
95 #define  DP_DATARATE_MASK                       GENMASK(7, 5)
96 #define  DP_DATARATE(x)                         ((x) << 5)
97 #define SN_TRAINING_SETTING_REG                 0x95
98 #define  SCRAMBLE_DISABLE                       BIT(4)
99 #define SN_ML_TX_MODE_REG                       0x96
100 #define  ML_TX_MAIN_LINK_OFF                    0
101 #define  ML_TX_NORMAL_MODE                      BIT(0)
102 #define SN_PWM_PRE_DIV_REG                      0xA0
103 #define SN_BACKLIGHT_SCALE_REG                  0xA1
104 #define  BACKLIGHT_SCALE_MAX                    0xFFFF
105 #define SN_BACKLIGHT_REG                        0xA3
106 #define SN_PWM_EN_INV_REG                       0xA5
107 #define  SN_PWM_INV_MASK                        BIT(0)
108 #define  SN_PWM_EN_MASK                         BIT(1)
109 #define SN_AUX_CMD_STATUS_REG                   0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT           BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT               BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL            BIT(6)
113
114 #define MIN_DSI_CLK_FREQ_MHZ    40
115
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM        10
118 #define DP_CLK_FUDGE_DEN        8
119
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES        16
122
123 #define SN_REGULATOR_SUPPLY_NUM         4
124
125 #define SN_MAX_DP_LANES                 4
126 #define SN_NUM_GPIOS                    4
127 #define SN_GPIO_PHYSICAL_OFFSET         1
128
129 #define SN_LINK_TRAINING_TRIES          10
130
131 #define SN_PWM_GPIO_IDX                 3 /* 4th GPIO */
132
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173         struct auxiliary_device         *bridge_aux;
174         struct auxiliary_device         *gpio_aux;
175         struct auxiliary_device         *aux_aux;
176         struct auxiliary_device         *pwm_aux;
177
178         struct device                   *dev;
179         struct regmap                   *regmap;
180         struct drm_dp_aux               aux;
181         struct drm_bridge               bridge;
182         struct drm_connector            *connector;
183         struct device_node              *host_node;
184         struct mipi_dsi_device          *dsi;
185         struct clk                      *refclk;
186         struct drm_bridge               *next_bridge;
187         struct gpio_desc                *enable_gpio;
188         struct regulator_bulk_data      supplies[SN_REGULATOR_SUPPLY_NUM];
189         int                             dp_lanes;
190         u8                              ln_assign;
191         u8                              ln_polrs;
192         bool                            comms_enabled;
193         struct mutex                    comms_mutex;
194
195 #if defined(CONFIG_OF_GPIO)
196         struct gpio_chip                gchip;
197         DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if defined(CONFIG_PWM)
200         struct pwm_chip                 pchip;
201         bool                            pwm_enabled;
202         atomic_t                        pwm_pin_busy;
203 #endif
204         unsigned int                    pwm_refclk_freq;
205 };
206
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208         { .range_min = 0, .range_max = 0xFF },
209 };
210
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212         .yes_ranges = ti_sn65dsi86_volatile_ranges,
213         .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217         .reg_bits = 8,
218         .val_bits = 8,
219         .volatile_table = &ti_sn_bridge_volatile_table,
220         .cache_type = REGCACHE_NONE,
221         .max_register = 0xFF,
222 };
223
224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225                                                 unsigned int reg, u16 *val)
226 {
227         u8 buf[2];
228         int ret;
229
230         ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231         if (ret)
232                 return ret;
233
234         *val = buf[0] | (buf[1] << 8);
235
236         return 0;
237 }
238
239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240                                    unsigned int reg, u16 val)
241 {
242         u8 buf[2] = { val & 0xff, val >> 8 };
243
244         regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246
247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248 {
249         u32 bit_rate_khz, clk_freq_khz;
250         struct drm_display_mode *mode =
251                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
252
253         bit_rate_khz = mode->clock *
254                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255         clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256
257         return clk_freq_khz;
258 }
259
260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261 static const u32 ti_sn_bridge_refclk_lut[] = {
262         12000000,
263         19200000,
264         26000000,
265         27000000,
266         38400000,
267 };
268
269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270 static const u32 ti_sn_bridge_dsiclk_lut[] = {
271         468000000,
272         384000000,
273         416000000,
274         486000000,
275         460800000,
276 };
277
278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279 {
280         int i;
281         u32 refclk_rate;
282         const u32 *refclk_lut;
283         size_t refclk_lut_size;
284
285         if (pdata->refclk) {
286                 refclk_rate = clk_get_rate(pdata->refclk);
287                 refclk_lut = ti_sn_bridge_refclk_lut;
288                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289                 clk_prepare_enable(pdata->refclk);
290         } else {
291                 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292                 refclk_lut = ti_sn_bridge_dsiclk_lut;
293                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294         }
295
296         /* for i equals to refclk_lut_size means default frequency */
297         for (i = 0; i < refclk_lut_size; i++)
298                 if (refclk_lut[i] == refclk_rate)
299                         break;
300
301         /* avoid buffer overflow and "1" is the default rate in the datasheet. */
302         if (i >= refclk_lut_size)
303                 i = 1;
304
305         regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
306                            REFCLK_FREQ(i));
307
308         /*
309          * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
310          * regardless of its actual sourcing.
311          */
312         pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
313 }
314
315 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
316 {
317         mutex_lock(&pdata->comms_mutex);
318
319         /* configure bridge ref_clk */
320         ti_sn_bridge_set_refclk_freq(pdata);
321
322         /*
323          * HPD on this bridge chip is a bit useless.  This is an eDP bridge
324          * so the HPD is an internal signal that's only there to signal that
325          * the panel is done powering up.  ...but the bridge chip debounces
326          * this signal by between 100 ms and 400 ms (depending on process,
327          * voltage, and temperate--I measured it at about 200 ms).  One
328          * particular panel asserted HPD 84 ms after it was powered on meaning
329          * that we saw HPD 284 ms after power on.  ...but the same panel said
330          * that instead of looking at HPD you could just hardcode a delay of
331          * 200 ms.  We'll assume that the panel driver will have the hardcoded
332          * delay in its prepare and always disable HPD.
333          *
334          * If HPD somehow makes sense on some future panel we'll have to
335          * change this to be conditional on someone specifying that HPD should
336          * be used.
337          */
338         regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
339                            HPD_DISABLE);
340
341         pdata->comms_enabled = true;
342
343         mutex_unlock(&pdata->comms_mutex);
344 }
345
346 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
347 {
348         mutex_lock(&pdata->comms_mutex);
349
350         pdata->comms_enabled = false;
351         clk_disable_unprepare(pdata->refclk);
352
353         mutex_unlock(&pdata->comms_mutex);
354 }
355
356 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
357 {
358         struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
359         int ret;
360
361         ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
362         if (ret) {
363                 DRM_ERROR("failed to enable supplies %d\n", ret);
364                 return ret;
365         }
366
367         /* td2: min 100 us after regulators before enabling the GPIO */
368         usleep_range(100, 110);
369
370         gpiod_set_value_cansleep(pdata->enable_gpio, 1);
371
372         /*
373          * If we have a reference clock we can enable communication w/ the
374          * panel (including the aux channel) w/out any need for an input clock
375          * so we can do it in resume which lets us read the EDID before
376          * pre_enable(). Without a reference clock we need the MIPI reference
377          * clock so reading early doesn't work.
378          */
379         if (pdata->refclk)
380                 ti_sn65dsi86_enable_comms(pdata);
381
382         return ret;
383 }
384
385 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
386 {
387         struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
388         int ret;
389
390         if (pdata->refclk)
391                 ti_sn65dsi86_disable_comms(pdata);
392
393         gpiod_set_value_cansleep(pdata->enable_gpio, 0);
394
395         ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
396         if (ret)
397                 DRM_ERROR("failed to disable supplies %d\n", ret);
398
399         return ret;
400 }
401
402 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
403         SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
404         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
405                                 pm_runtime_force_resume)
406 };
407
408 static int status_show(struct seq_file *s, void *data)
409 {
410         struct ti_sn65dsi86 *pdata = s->private;
411         unsigned int reg, val;
412
413         seq_puts(s, "STATUS REGISTERS:\n");
414
415         pm_runtime_get_sync(pdata->dev);
416
417         /* IRQ Status Registers, see Table 31 in datasheet */
418         for (reg = 0xf0; reg <= 0xf8; reg++) {
419                 regmap_read(pdata->regmap, reg, &val);
420                 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
421         }
422
423         pm_runtime_put_autosuspend(pdata->dev);
424
425         return 0;
426 }
427
428 DEFINE_SHOW_ATTRIBUTE(status);
429
430 static void ti_sn65dsi86_debugfs_remove(void *data)
431 {
432         debugfs_remove_recursive(data);
433 }
434
435 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
436 {
437         struct device *dev = pdata->dev;
438         struct dentry *debugfs;
439         int ret;
440
441         debugfs = debugfs_create_dir(dev_name(dev), NULL);
442
443         /*
444          * We might get an error back if debugfs wasn't enabled in the kernel
445          * so let's just silently return upon failure.
446          */
447         if (IS_ERR_OR_NULL(debugfs))
448                 return;
449
450         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
451         if (ret)
452                 return;
453
454         debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
455 }
456
457 /* -----------------------------------------------------------------------------
458  * Auxiliary Devices (*not* AUX)
459  */
460
461 static void ti_sn65dsi86_uninit_aux(void *data)
462 {
463         auxiliary_device_uninit(data);
464 }
465
466 static void ti_sn65dsi86_delete_aux(void *data)
467 {
468         auxiliary_device_delete(data);
469 }
470
471 static void ti_sn65dsi86_aux_device_release(struct device *dev)
472 {
473         struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
474
475         kfree(aux);
476 }
477
478 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
479                                        struct auxiliary_device **aux_out,
480                                        const char *name)
481 {
482         struct device *dev = pdata->dev;
483         struct auxiliary_device *aux;
484         int ret;
485
486         aux = kzalloc(sizeof(*aux), GFP_KERNEL);
487         if (!aux)
488                 return -ENOMEM;
489
490         aux->name = name;
491         aux->dev.parent = dev;
492         aux->dev.release = ti_sn65dsi86_aux_device_release;
493         device_set_of_node_from_dev(&aux->dev, dev);
494         ret = auxiliary_device_init(aux);
495         if (ret) {
496                 kfree(aux);
497                 return ret;
498         }
499         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
500         if (ret)
501                 return ret;
502
503         ret = auxiliary_device_add(aux);
504         if (ret)
505                 return ret;
506         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
507         if (!ret)
508                 *aux_out = aux;
509
510         return ret;
511 }
512
513 /* -----------------------------------------------------------------------------
514  * AUX Adapter
515  */
516
517 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
518 {
519         return container_of(aux, struct ti_sn65dsi86, aux);
520 }
521
522 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
523                                   struct drm_dp_aux_msg *msg)
524 {
525         struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
526         u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
527         u32 request_val = AUX_CMD_REQ(msg->request);
528         u8 *buf = msg->buffer;
529         unsigned int len = msg->size;
530         unsigned int val;
531         int ret;
532         u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
533
534         if (len > SN_AUX_MAX_PAYLOAD_BYTES)
535                 return -EINVAL;
536
537         pm_runtime_get_sync(pdata->dev);
538         mutex_lock(&pdata->comms_mutex);
539
540         /*
541          * If someone tries to do a DDC over AUX transaction before pre_enable()
542          * on a device without a dedicated reference clock then we just can't
543          * do it. Fail right away. This prevents non-refclk users from reading
544          * the EDID before enabling the panel but such is life.
545          */
546         if (!pdata->comms_enabled) {
547                 ret = -EIO;
548                 goto exit;
549         }
550
551         switch (request) {
552         case DP_AUX_NATIVE_WRITE:
553         case DP_AUX_I2C_WRITE:
554         case DP_AUX_NATIVE_READ:
555         case DP_AUX_I2C_READ:
556                 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
557                 /* Assume it's good */
558                 msg->reply = 0;
559                 break;
560         default:
561                 ret = -EINVAL;
562                 goto exit;
563         }
564
565         BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
566         put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
567                            addr_len);
568         regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
569                           ARRAY_SIZE(addr_len));
570
571         if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
572                 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
573
574         /* Clear old status bits before start so we don't get confused */
575         regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
576                      AUX_IRQ_STATUS_NAT_I2C_FAIL |
577                      AUX_IRQ_STATUS_AUX_RPLY_TOUT |
578                      AUX_IRQ_STATUS_AUX_SHORT);
579
580         regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
581
582         /* Zero delay loop because i2c transactions are slow already */
583         ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
584                                        !(val & AUX_CMD_SEND), 0, 50 * 1000);
585         if (ret)
586                 goto exit;
587
588         ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
589         if (ret)
590                 goto exit;
591
592         if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
593                 /*
594                  * The hardware tried the message seven times per the DP spec
595                  * but it hit a timeout. We ignore defers here because they're
596                  * handled in hardware.
597                  */
598                 ret = -ETIMEDOUT;
599                 goto exit;
600         }
601
602         if (val & AUX_IRQ_STATUS_AUX_SHORT) {
603                 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
604                 if (ret)
605                         goto exit;
606         } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
607                 switch (request) {
608                 case DP_AUX_I2C_WRITE:
609                 case DP_AUX_I2C_READ:
610                         msg->reply |= DP_AUX_I2C_REPLY_NACK;
611                         break;
612                 case DP_AUX_NATIVE_READ:
613                 case DP_AUX_NATIVE_WRITE:
614                         msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
615                         break;
616                 }
617                 len = 0;
618                 goto exit;
619         }
620
621         if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
622                 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
623
624 exit:
625         mutex_unlock(&pdata->comms_mutex);
626         pm_runtime_mark_last_busy(pdata->dev);
627         pm_runtime_put_autosuspend(pdata->dev);
628
629         if (ret)
630                 return ret;
631         return len;
632 }
633
634 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
635 {
636         /*
637          * The HPD in this chip is a bit useless (See comment in
638          * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
639          * for HPD, we just assume it's asserted after the wait_us delay.
640          *
641          * In case we are asked to wait forever (wait_us=0) take conservative
642          * 500ms delay.
643          */
644         if (wait_us == 0)
645                 wait_us = 500000;
646
647         usleep_range(wait_us, wait_us + 1000);
648
649         return 0;
650 }
651
652 static int ti_sn_aux_probe(struct auxiliary_device *adev,
653                            const struct auxiliary_device_id *id)
654 {
655         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
656         int ret;
657
658         pdata->aux.name = "ti-sn65dsi86-aux";
659         pdata->aux.dev = &adev->dev;
660         pdata->aux.transfer = ti_sn_aux_transfer;
661         pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
662         drm_dp_aux_init(&pdata->aux);
663
664         ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
665         if (ret)
666                 return ret;
667
668         /*
669          * The eDP to MIPI bridge parts don't work until the AUX channel is
670          * setup so we don't add it in the main driver probe, we add it now.
671          */
672         return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
673 }
674
675 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
676         { .name = "ti_sn65dsi86.aux", },
677         {},
678 };
679
680 static struct auxiliary_driver ti_sn_aux_driver = {
681         .name = "aux",
682         .probe = ti_sn_aux_probe,
683         .id_table = ti_sn_aux_id_table,
684 };
685
686 /*------------------------------------------------------------------------------
687  * DRM Bridge
688  */
689
690 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
691 {
692         return container_of(bridge, struct ti_sn65dsi86, bridge);
693 }
694
695 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
696 {
697         int val;
698         struct mipi_dsi_host *host;
699         struct mipi_dsi_device *dsi;
700         struct device *dev = pdata->dev;
701         const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
702                                                    .channel = 0,
703                                                    .node = NULL,
704         };
705
706         host = of_find_mipi_dsi_host_by_node(pdata->host_node);
707         if (!host)
708                 return -EPROBE_DEFER;
709
710         dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
711         if (IS_ERR(dsi))
712                 return PTR_ERR(dsi);
713
714         /* TODO: setting to 4 MIPI lanes always for now */
715         dsi->lanes = 4;
716         dsi->format = MIPI_DSI_FMT_RGB888;
717         dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
718
719         /* check if continuous dsi clock is required or not */
720         pm_runtime_get_sync(dev);
721         regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
722         pm_runtime_put_autosuspend(dev);
723         if (!(val & DPPLL_CLK_SRC_DSICLK))
724                 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
725
726         pdata->dsi = dsi;
727
728         return devm_mipi_dsi_attach(dev, dsi);
729 }
730
731 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
732                                enum drm_bridge_attach_flags flags)
733 {
734         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
735         int ret;
736
737         pdata->aux.drm_dev = bridge->dev;
738         ret = drm_dp_aux_register(&pdata->aux);
739         if (ret < 0) {
740                 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
741                 return ret;
742         }
743
744         /*
745          * Attach the next bridge.
746          * We never want the next bridge to *also* create a connector.
747          */
748         ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
749                                 &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
750         if (ret < 0)
751                 goto err_initted_aux;
752
753         if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
754                 return 0;
755
756         pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
757                                                      pdata->bridge.encoder);
758         if (IS_ERR(pdata->connector)) {
759                 ret = PTR_ERR(pdata->connector);
760                 goto err_initted_aux;
761         }
762
763         drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
764
765         return 0;
766
767 err_initted_aux:
768         drm_dp_aux_unregister(&pdata->aux);
769         return ret;
770 }
771
772 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
773 {
774         drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
775 }
776
777 static enum drm_mode_status
778 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
779                         const struct drm_display_info *info,
780                         const struct drm_display_mode *mode)
781 {
782         /* maximum supported resolution is 4K at 60 fps */
783         if (mode->clock > 594000)
784                 return MODE_CLOCK_HIGH;
785
786         /*
787          * The front and back porch registers are 8 bits, and pulse width
788          * registers are 15 bits, so reject any modes with larger periods.
789          */
790
791         if ((mode->hsync_start - mode->hdisplay) > 0xff)
792                 return MODE_HBLANK_WIDE;
793
794         if ((mode->vsync_start - mode->vdisplay) > 0xff)
795                 return MODE_VBLANK_WIDE;
796
797         if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
798                 return MODE_HSYNC_WIDE;
799
800         if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
801                 return MODE_VSYNC_WIDE;
802
803         if ((mode->htotal - mode->hsync_end) > 0xff)
804                 return MODE_HBLANK_WIDE;
805
806         if ((mode->vtotal - mode->vsync_end) > 0xff)
807                 return MODE_VBLANK_WIDE;
808
809         return MODE_OK;
810 }
811
812 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
813                                         struct drm_bridge_state *old_bridge_state)
814 {
815         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
816
817         /* disable video stream */
818         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
819 }
820
821 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
822 {
823         unsigned int bit_rate_mhz, clk_freq_mhz;
824         unsigned int val;
825         struct drm_display_mode *mode =
826                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
827
828         /* set DSIA clk frequency */
829         bit_rate_mhz = (mode->clock / 1000) *
830                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
831         clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
832
833         /* for each increment in val, frequency increases by 5MHz */
834         val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
835                 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
836         regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
837 }
838
839 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
840 {
841         if (connector->display_info.bpc <= 6)
842                 return 18;
843         else
844                 return 24;
845 }
846
847 /*
848  * LUT index corresponds to register value and
849  * LUT values corresponds to dp data rate supported
850  * by the bridge in Mbps unit.
851  */
852 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
853         0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
854 };
855
856 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
857 {
858         unsigned int bit_rate_khz, dp_rate_mhz;
859         unsigned int i;
860         struct drm_display_mode *mode =
861                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
862
863         /* Calculate minimum bit rate based on our pixel clock. */
864         bit_rate_khz = mode->clock * bpp;
865
866         /* Calculate minimum DP data rate, taking 80% as per DP spec */
867         dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
868                                    1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
869
870         for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
871                 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
872                         break;
873
874         return i;
875 }
876
877 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
878 {
879         unsigned int valid_rates = 0;
880         unsigned int rate_per_200khz;
881         unsigned int rate_mhz;
882         u8 dpcd_val;
883         int ret;
884         int i, j;
885
886         ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
887         if (ret != 1) {
888                 DRM_DEV_ERROR(pdata->dev,
889                               "Can't read eDP rev (%d), assuming 1.1\n", ret);
890                 dpcd_val = DP_EDP_11;
891         }
892
893         if (dpcd_val >= DP_EDP_14) {
894                 /* eDP 1.4 devices must provide a custom table */
895                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
896
897                 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
898                                        sink_rates, sizeof(sink_rates));
899
900                 if (ret != sizeof(sink_rates)) {
901                         DRM_DEV_ERROR(pdata->dev,
902                                 "Can't read supported rate table (%d)\n", ret);
903
904                         /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
905                         memset(sink_rates, 0, sizeof(sink_rates));
906                 }
907
908                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
909                         rate_per_200khz = le16_to_cpu(sink_rates[i]);
910
911                         if (!rate_per_200khz)
912                                 break;
913
914                         rate_mhz = rate_per_200khz * 200 / 1000;
915                         for (j = 0;
916                              j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
917                              j++) {
918                                 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
919                                         valid_rates |= BIT(j);
920                         }
921                 }
922
923                 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
924                         if (valid_rates & BIT(i))
925                                 return valid_rates;
926                 }
927                 DRM_DEV_ERROR(pdata->dev,
928                               "No matching eDP rates in table; falling back\n");
929         }
930
931         /* On older versions best we can do is use DP_MAX_LINK_RATE */
932         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
933         if (ret != 1) {
934                 DRM_DEV_ERROR(pdata->dev,
935                               "Can't read max rate (%d); assuming 5.4 GHz\n",
936                               ret);
937                 dpcd_val = DP_LINK_BW_5_4;
938         }
939
940         switch (dpcd_val) {
941         default:
942                 DRM_DEV_ERROR(pdata->dev,
943                               "Unexpected max rate (%#x); assuming 5.4 GHz\n",
944                               (int)dpcd_val);
945                 fallthrough;
946         case DP_LINK_BW_5_4:
947                 valid_rates |= BIT(7);
948                 fallthrough;
949         case DP_LINK_BW_2_7:
950                 valid_rates |= BIT(4);
951                 fallthrough;
952         case DP_LINK_BW_1_62:
953                 valid_rates |= BIT(1);
954                 break;
955         }
956
957         return valid_rates;
958 }
959
960 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
961 {
962         struct drm_display_mode *mode =
963                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
964         u8 hsync_polarity = 0, vsync_polarity = 0;
965
966         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
967                 hsync_polarity = CHA_HSYNC_POLARITY;
968         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
969                 vsync_polarity = CHA_VSYNC_POLARITY;
970
971         ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
972                                mode->hdisplay);
973         ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
974                                mode->vdisplay);
975         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
976                      (mode->hsync_end - mode->hsync_start) & 0xFF);
977         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
978                      (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
979                      hsync_polarity);
980         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
981                      (mode->vsync_end - mode->vsync_start) & 0xFF);
982         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
983                      (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
984                      vsync_polarity);
985
986         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
987                      (mode->htotal - mode->hsync_end) & 0xFF);
988         regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
989                      (mode->vtotal - mode->vsync_end) & 0xFF);
990
991         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
992                      (mode->hsync_start - mode->hdisplay) & 0xFF);
993         regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
994                      (mode->vsync_start - mode->vdisplay) & 0xFF);
995
996         usleep_range(10000, 10500); /* 10ms delay recommended by spec */
997 }
998
999 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
1000 {
1001         u8 data;
1002         int ret;
1003
1004         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
1005         if (ret != 1) {
1006                 DRM_DEV_ERROR(pdata->dev,
1007                               "Can't read lane count (%d); assuming 4\n", ret);
1008                 return 4;
1009         }
1010
1011         return data & DP_LANE_COUNT_MASK;
1012 }
1013
1014 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
1015                                const char **last_err_str)
1016 {
1017         unsigned int val;
1018         int ret;
1019         int i;
1020
1021         /* set dp clk frequency value */
1022         regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1023                            DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1024
1025         /* enable DP PLL */
1026         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1027
1028         ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1029                                        val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1030                                        50 * 1000);
1031         if (ret) {
1032                 *last_err_str = "DP_PLL_LOCK polling failed";
1033                 goto exit;
1034         }
1035
1036         /*
1037          * We'll try to link train several times.  As part of link training
1038          * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1039          * the panel isn't ready quite it might respond NAK here which means
1040          * we need to try again.
1041          */
1042         for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1043                 /* Semi auto link training mode */
1044                 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1045                 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1046                                                val == ML_TX_MAIN_LINK_OFF ||
1047                                                val == ML_TX_NORMAL_MODE, 1000,
1048                                                500 * 1000);
1049                 if (ret) {
1050                         *last_err_str = "Training complete polling failed";
1051                 } else if (val == ML_TX_MAIN_LINK_OFF) {
1052                         *last_err_str = "Link training failed, link is off";
1053                         ret = -EIO;
1054                         continue;
1055                 }
1056
1057                 break;
1058         }
1059
1060         /* If we saw quite a few retries, add a note about it */
1061         if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1062                 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1063
1064 exit:
1065         /* Disable the PLL if we failed */
1066         if (ret)
1067                 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1068
1069         return ret;
1070 }
1071
1072 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1073                                        struct drm_bridge_state *old_bridge_state)
1074 {
1075         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1076         struct drm_connector *connector;
1077         const char *last_err_str = "No supported DP rate";
1078         unsigned int valid_rates;
1079         int dp_rate_idx;
1080         unsigned int val;
1081         int ret = -EINVAL;
1082         int max_dp_lanes;
1083         unsigned int bpp;
1084
1085         connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1086                                                              bridge->encoder);
1087         if (!connector) {
1088                 dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1089                 return;
1090         }
1091
1092         max_dp_lanes = ti_sn_get_max_lanes(pdata);
1093         pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1094
1095         /* DSI_A lane config */
1096         val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1097         regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1098                            CHA_DSI_LANES_MASK, val);
1099
1100         regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1101         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1102                            pdata->ln_polrs << LN_POLRS_OFFSET);
1103
1104         /* set dsi clk frequency value */
1105         ti_sn_bridge_set_dsi_rate(pdata);
1106
1107         /*
1108          * The SN65DSI86 only supports ASSR Display Authentication method and
1109          * this method is enabled for eDP panels. An eDP panel must support this
1110          * authentication method. We need to enable this method in the eDP panel
1111          * at DisplayPort address 0x0010A prior to link training.
1112          *
1113          * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1114          * we need to disable the scrambler.
1115          */
1116         if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1117                 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1118                                    DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1119
1120                 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1121                                    SCRAMBLE_DISABLE, 0);
1122         } else {
1123                 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1124                                    SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1125         }
1126
1127         bpp = ti_sn_bridge_get_bpp(connector);
1128         /* Set the DP output format (18 bpp or 24 bpp) */
1129         val = bpp == 18 ? BPP_18_RGB : 0;
1130         regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1131
1132         /* DP lane config */
1133         val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1134         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1135                            val);
1136
1137         valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1138
1139         /* Train until we run out of rates */
1140         for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1141              dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1142              dp_rate_idx++) {
1143                 if (!(valid_rates & BIT(dp_rate_idx)))
1144                         continue;
1145
1146                 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1147                 if (!ret)
1148                         break;
1149         }
1150         if (ret) {
1151                 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1152                 return;
1153         }
1154
1155         /* config video parameters */
1156         ti_sn_bridge_set_video_timings(pdata);
1157
1158         /* enable video stream */
1159         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1160                            VSTREAM_ENABLE);
1161 }
1162
1163 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1164                                            struct drm_bridge_state *old_bridge_state)
1165 {
1166         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1167
1168         pm_runtime_get_sync(pdata->dev);
1169
1170         if (!pdata->refclk)
1171                 ti_sn65dsi86_enable_comms(pdata);
1172
1173         /* td7: min 100 us after enable before DSI data */
1174         usleep_range(100, 110);
1175 }
1176
1177 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1178                                              struct drm_bridge_state *old_bridge_state)
1179 {
1180         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1181
1182         /* semi auto link training mode OFF */
1183         regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1184         /* Num lanes to 0 as per power sequencing in data sheet */
1185         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1186         /* disable DP PLL */
1187         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1188
1189         if (!pdata->refclk)
1190                 ti_sn65dsi86_disable_comms(pdata);
1191
1192         pm_runtime_put_sync(pdata->dev);
1193 }
1194
1195 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1196 {
1197         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1198         int val = 0;
1199
1200         pm_runtime_get_sync(pdata->dev);
1201         regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1202         pm_runtime_put_autosuspend(pdata->dev);
1203
1204         return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1205                                          : connector_status_disconnected;
1206 }
1207
1208 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1209                                           struct drm_connector *connector)
1210 {
1211         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1212
1213         return drm_get_edid(connector, &pdata->aux.ddc);
1214 }
1215
1216 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1217         .attach = ti_sn_bridge_attach,
1218         .detach = ti_sn_bridge_detach,
1219         .mode_valid = ti_sn_bridge_mode_valid,
1220         .get_edid = ti_sn_bridge_get_edid,
1221         .detect = ti_sn_bridge_detect,
1222         .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1223         .atomic_enable = ti_sn_bridge_atomic_enable,
1224         .atomic_disable = ti_sn_bridge_atomic_disable,
1225         .atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1226         .atomic_reset = drm_atomic_helper_bridge_reset,
1227         .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1228         .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1229 };
1230
1231 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1232                                      struct device_node *np)
1233 {
1234         u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1235         u32 lane_polarities[SN_MAX_DP_LANES] = { };
1236         struct device_node *endpoint;
1237         u8 ln_assign = 0;
1238         u8 ln_polrs = 0;
1239         int dp_lanes;
1240         int i;
1241
1242         /*
1243          * Read config from the device tree about lane remapping and lane
1244          * polarities.  These are optional and we assume identity map and
1245          * normal polarity if nothing is specified.  It's OK to specify just
1246          * data-lanes but not lane-polarities but not vice versa.
1247          *
1248          * Error checking is light (we just make sure we don't crash or
1249          * buffer overrun) and we assume dts is well formed and specifying
1250          * mappings that the hardware supports.
1251          */
1252         endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1253         dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1254         if (dp_lanes > 0) {
1255                 of_property_read_u32_array(endpoint, "data-lanes",
1256                                            lane_assignments, dp_lanes);
1257                 of_property_read_u32_array(endpoint, "lane-polarities",
1258                                            lane_polarities, dp_lanes);
1259         } else {
1260                 dp_lanes = SN_MAX_DP_LANES;
1261         }
1262         of_node_put(endpoint);
1263
1264         /*
1265          * Convert into register format.  Loop over all lanes even if
1266          * data-lanes had fewer elements so that we nicely initialize
1267          * the LN_ASSIGN register.
1268          */
1269         for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1270                 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1271                 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1272         }
1273
1274         /* Stash in our struct for when we power on */
1275         pdata->dp_lanes = dp_lanes;
1276         pdata->ln_assign = ln_assign;
1277         pdata->ln_polrs = ln_polrs;
1278 }
1279
1280 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1281 {
1282         struct device_node *np = pdata->dev->of_node;
1283
1284         pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1285
1286         if (!pdata->host_node) {
1287                 DRM_ERROR("remote dsi host node not found\n");
1288                 return -ENODEV;
1289         }
1290
1291         return 0;
1292 }
1293
1294 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1295                               const struct auxiliary_device_id *id)
1296 {
1297         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1298         struct device_node *np = pdata->dev->of_node;
1299         int ret;
1300
1301         pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1302         if (IS_ERR(pdata->next_bridge))
1303                 return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
1304                                      "failed to create panel bridge\n");
1305
1306         ti_sn_bridge_parse_lanes(pdata, np);
1307
1308         ret = ti_sn_bridge_parse_dsi_host(pdata);
1309         if (ret)
1310                 return ret;
1311
1312         pdata->bridge.funcs = &ti_sn_bridge_funcs;
1313         pdata->bridge.of_node = np;
1314         pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1315                            ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1316
1317         if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1318                 pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1319
1320         drm_bridge_add(&pdata->bridge);
1321
1322         ret = ti_sn_attach_host(pdata);
1323         if (ret) {
1324                 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1325                 goto err_remove_bridge;
1326         }
1327
1328         return 0;
1329
1330 err_remove_bridge:
1331         drm_bridge_remove(&pdata->bridge);
1332         return ret;
1333 }
1334
1335 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1336 {
1337         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1338
1339         if (!pdata)
1340                 return;
1341
1342         drm_bridge_remove(&pdata->bridge);
1343
1344         of_node_put(pdata->host_node);
1345 }
1346
1347 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1348         { .name = "ti_sn65dsi86.bridge", },
1349         {},
1350 };
1351
1352 static struct auxiliary_driver ti_sn_bridge_driver = {
1353         .name = "bridge",
1354         .probe = ti_sn_bridge_probe,
1355         .remove = ti_sn_bridge_remove,
1356         .id_table = ti_sn_bridge_id_table,
1357 };
1358
1359 /* -----------------------------------------------------------------------------
1360  * PWM Controller
1361  */
1362 #if defined(CONFIG_PWM)
1363 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1364 {
1365         return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1366 }
1367
1368 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1369 {
1370         atomic_set(&pdata->pwm_pin_busy, 0);
1371 }
1372
1373 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1374 {
1375         return container_of(chip, struct ti_sn65dsi86, pchip);
1376 }
1377
1378 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1379 {
1380         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1381
1382         return ti_sn_pwm_pin_request(pdata);
1383 }
1384
1385 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1386 {
1387         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1388
1389         ti_sn_pwm_pin_release(pdata);
1390 }
1391
1392 /*
1393  * Limitations:
1394  * - The PWM signal is not driven when the chip is powered down, or in its
1395  *   reset state and the driver does not implement the "suspend state"
1396  *   described in the documentation. In order to save power, state->enabled is
1397  *   interpreted as denoting if the signal is expected to be valid, and is used
1398  *   to determine if the chip needs to be kept powered.
1399  * - Changing both period and duty_cycle is not done atomically, neither is the
1400  *   multi-byte register updates, so the output might briefly be undefined
1401  *   during update.
1402  */
1403 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1404                            const struct pwm_state *state)
1405 {
1406         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1407         unsigned int pwm_en_inv;
1408         unsigned int backlight;
1409         unsigned int pre_div;
1410         unsigned int scale;
1411         u64 period_max;
1412         u64 period;
1413         int ret;
1414
1415         if (!pdata->pwm_enabled) {
1416                 ret = pm_runtime_get_sync(pdata->dev);
1417                 if (ret < 0) {
1418                         pm_runtime_put_sync(pdata->dev);
1419                         return ret;
1420                 }
1421         }
1422
1423         if (state->enabled) {
1424                 if (!pdata->pwm_enabled) {
1425                         /*
1426                          * The chip might have been powered down while we
1427                          * didn't hold a PM runtime reference, so mux in the
1428                          * PWM function on the GPIO pin again.
1429                          */
1430                         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1431                                                  SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1432                                                  SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1433                         if (ret) {
1434                                 dev_err(pdata->dev, "failed to mux in PWM function\n");
1435                                 goto out;
1436                         }
1437                 }
1438
1439                 /*
1440                  * Per the datasheet the PWM frequency is given by:
1441                  *
1442                  *                          REFCLK_FREQ
1443                  *   PWM_FREQ = -----------------------------------
1444                  *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1445                  *
1446                  * However, after careful review the author is convinced that
1447                  * the documentation has lost some parenthesis around
1448                  * "BACKLIGHT_SCALE + 1".
1449                  *
1450                  * With the period T_pwm = 1/PWM_FREQ this can be written:
1451                  *
1452                  *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1453                  *
1454                  * In order to keep BACKLIGHT_SCALE within its 16 bits,
1455                  * PWM_PRE_DIV must be:
1456                  *
1457                  *                     T_pwm * REFCLK_FREQ
1458                  *   PWM_PRE_DIV >= -------------------------
1459                  *                   BACKLIGHT_SCALE_MAX + 1
1460                  *
1461                  * To simplify the search and to favour higher resolution of
1462                  * the duty cycle over accuracy of the period, the lowest
1463                  * possible PWM_PRE_DIV is used. Finally the scale is
1464                  * calculated as:
1465                  *
1466                  *                      T_pwm * REFCLK_FREQ
1467                  *   BACKLIGHT_SCALE = ---------------------- - 1
1468                  *                          PWM_PRE_DIV
1469                  *
1470                  * Here T_pwm is represented in seconds, so appropriate scaling
1471                  * to nanoseconds is necessary.
1472                  */
1473
1474                 /* Minimum T_pwm is 1 / REFCLK_FREQ */
1475                 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1476                         ret = -EINVAL;
1477                         goto out;
1478                 }
1479
1480                 /*
1481                  * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1482                  * Limit period to this to avoid overflows
1483                  */
1484                 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1485                                      pdata->pwm_refclk_freq);
1486                 period = min(state->period, period_max);
1487
1488                 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1489                                              (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1490                 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1491
1492                 /*
1493                  * The documentation has the duty ratio given as:
1494                  *
1495                  *     duty          BACKLIGHT
1496                  *   ------- = ---------------------
1497                  *    period    BACKLIGHT_SCALE + 1
1498                  *
1499                  * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1500                  * to definition above and adjusting for nanosecond
1501                  * representation of duty cycle gives us:
1502                  */
1503                 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1504                                       (u64)NSEC_PER_SEC * pre_div);
1505                 if (backlight > scale)
1506                         backlight = scale;
1507
1508                 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1509                 if (ret) {
1510                         dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1511                         goto out;
1512                 }
1513
1514                 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1515                 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1516         }
1517
1518         pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1519                      FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1520         ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1521         if (ret) {
1522                 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1523                 goto out;
1524         }
1525
1526         pdata->pwm_enabled = state->enabled;
1527 out:
1528
1529         if (!pdata->pwm_enabled)
1530                 pm_runtime_put_sync(pdata->dev);
1531
1532         return ret;
1533 }
1534
1535 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1536                                struct pwm_state *state)
1537 {
1538         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1539         unsigned int pwm_en_inv;
1540         unsigned int pre_div;
1541         u16 backlight;
1542         u16 scale;
1543         int ret;
1544
1545         ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1546         if (ret)
1547                 return ret;
1548
1549         ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1550         if (ret)
1551                 return ret;
1552
1553         ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1554         if (ret)
1555                 return ret;
1556
1557         ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1558         if (ret)
1559                 return ret;
1560
1561         state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1562         if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1563                 state->polarity = PWM_POLARITY_INVERSED;
1564         else
1565                 state->polarity = PWM_POLARITY_NORMAL;
1566
1567         state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1568                                          pdata->pwm_refclk_freq);
1569         state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1570                                              pdata->pwm_refclk_freq);
1571
1572         if (state->duty_cycle > state->period)
1573                 state->duty_cycle = state->period;
1574
1575         return 0;
1576 }
1577
1578 static const struct pwm_ops ti_sn_pwm_ops = {
1579         .request = ti_sn_pwm_request,
1580         .free = ti_sn_pwm_free,
1581         .apply = ti_sn_pwm_apply,
1582         .get_state = ti_sn_pwm_get_state,
1583         .owner = THIS_MODULE,
1584 };
1585
1586 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1587                            const struct auxiliary_device_id *id)
1588 {
1589         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1590
1591         pdata->pchip.dev = pdata->dev;
1592         pdata->pchip.ops = &ti_sn_pwm_ops;
1593         pdata->pchip.npwm = 1;
1594         pdata->pchip.of_xlate = of_pwm_single_xlate;
1595         pdata->pchip.of_pwm_n_cells = 1;
1596
1597         return pwmchip_add(&pdata->pchip);
1598 }
1599
1600 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1601 {
1602         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1603
1604         pwmchip_remove(&pdata->pchip);
1605
1606         if (pdata->pwm_enabled)
1607                 pm_runtime_put_sync(pdata->dev);
1608 }
1609
1610 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1611         { .name = "ti_sn65dsi86.pwm", },
1612         {},
1613 };
1614
1615 static struct auxiliary_driver ti_sn_pwm_driver = {
1616         .name = "pwm",
1617         .probe = ti_sn_pwm_probe,
1618         .remove = ti_sn_pwm_remove,
1619         .id_table = ti_sn_pwm_id_table,
1620 };
1621
1622 static int __init ti_sn_pwm_register(void)
1623 {
1624         return auxiliary_driver_register(&ti_sn_pwm_driver);
1625 }
1626
1627 static void ti_sn_pwm_unregister(void)
1628 {
1629         auxiliary_driver_unregister(&ti_sn_pwm_driver);
1630 }
1631
1632 #else
1633 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1634 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1635
1636 static inline int ti_sn_pwm_register(void) { return 0; }
1637 static inline void ti_sn_pwm_unregister(void) {}
1638 #endif
1639
1640 /* -----------------------------------------------------------------------------
1641  * GPIO Controller
1642  */
1643 #if defined(CONFIG_OF_GPIO)
1644
1645 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1646                                  const struct of_phandle_args *gpiospec,
1647                                  u32 *flags)
1648 {
1649         if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1650                 return -EINVAL;
1651
1652         if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1653                 return -EINVAL;
1654
1655         if (flags)
1656                 *flags = gpiospec->args[1];
1657
1658         return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1659 }
1660
1661 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1662                                            unsigned int offset)
1663 {
1664         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1665
1666         /*
1667          * We already have to keep track of the direction because we use
1668          * that to figure out whether we've powered the device.  We can
1669          * just return that rather than (maybe) powering up the device
1670          * to ask its direction.
1671          */
1672         return test_bit(offset, pdata->gchip_output) ?
1673                 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1674 }
1675
1676 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1677 {
1678         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1679         unsigned int val;
1680         int ret;
1681
1682         /*
1683          * When the pin is an input we don't forcibly keep the bridge
1684          * powered--we just power it on to read the pin.  NOTE: part of
1685          * the reason this works is that the bridge defaults (when
1686          * powered back on) to all 4 GPIOs being configured as GPIO input.
1687          * Also note that if something else is keeping the chip powered the
1688          * pm_runtime functions are lightweight increments of a refcount.
1689          */
1690         pm_runtime_get_sync(pdata->dev);
1691         ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1692         pm_runtime_put_autosuspend(pdata->dev);
1693
1694         if (ret)
1695                 return ret;
1696
1697         return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1698 }
1699
1700 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1701                                   int val)
1702 {
1703         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1704         int ret;
1705
1706         if (!test_bit(offset, pdata->gchip_output)) {
1707                 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1708                 return;
1709         }
1710
1711         val &= 1;
1712         ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1713                                  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1714                                  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1715         if (ret)
1716                 dev_warn(pdata->dev,
1717                          "Failed to set bridge GPIO %u: %d\n", offset, ret);
1718 }
1719
1720 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1721                                              unsigned int offset)
1722 {
1723         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1724         int shift = offset * 2;
1725         int ret;
1726
1727         if (!test_and_clear_bit(offset, pdata->gchip_output))
1728                 return 0;
1729
1730         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1731                                  SN_GPIO_MUX_MASK << shift,
1732                                  SN_GPIO_MUX_INPUT << shift);
1733         if (ret) {
1734                 set_bit(offset, pdata->gchip_output);
1735                 return ret;
1736         }
1737
1738         /*
1739          * NOTE: if nobody else is powering the device this may fully power
1740          * it off and when it comes back it will have lost all state, but
1741          * that's OK because the default is input and we're now an input.
1742          */
1743         pm_runtime_put_autosuspend(pdata->dev);
1744
1745         return 0;
1746 }
1747
1748 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1749                                               unsigned int offset, int val)
1750 {
1751         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1752         int shift = offset * 2;
1753         int ret;
1754
1755         if (test_and_set_bit(offset, pdata->gchip_output))
1756                 return 0;
1757
1758         pm_runtime_get_sync(pdata->dev);
1759
1760         /* Set value first to avoid glitching */
1761         ti_sn_bridge_gpio_set(chip, offset, val);
1762
1763         /* Set direction */
1764         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1765                                  SN_GPIO_MUX_MASK << shift,
1766                                  SN_GPIO_MUX_OUTPUT << shift);
1767         if (ret) {
1768                 clear_bit(offset, pdata->gchip_output);
1769                 pm_runtime_put_autosuspend(pdata->dev);
1770         }
1771
1772         return ret;
1773 }
1774
1775 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1776 {
1777         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1778
1779         if (offset == SN_PWM_GPIO_IDX)
1780                 return ti_sn_pwm_pin_request(pdata);
1781
1782         return 0;
1783 }
1784
1785 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1786 {
1787         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1788
1789         /* We won't keep pm_runtime if we're input, so switch there on free */
1790         ti_sn_bridge_gpio_direction_input(chip, offset);
1791
1792         if (offset == SN_PWM_GPIO_IDX)
1793                 ti_sn_pwm_pin_release(pdata);
1794 }
1795
1796 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1797         "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1798 };
1799
1800 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1801                             const struct auxiliary_device_id *id)
1802 {
1803         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1804         int ret;
1805
1806         /* Only init if someone is going to use us as a GPIO controller */
1807         if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1808                 return 0;
1809
1810         pdata->gchip.label = dev_name(pdata->dev);
1811         pdata->gchip.parent = pdata->dev;
1812         pdata->gchip.owner = THIS_MODULE;
1813         pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1814         pdata->gchip.of_gpio_n_cells = 2;
1815         pdata->gchip.request = ti_sn_bridge_gpio_request;
1816         pdata->gchip.free = ti_sn_bridge_gpio_free;
1817         pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1818         pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1819         pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1820         pdata->gchip.get = ti_sn_bridge_gpio_get;
1821         pdata->gchip.set = ti_sn_bridge_gpio_set;
1822         pdata->gchip.can_sleep = true;
1823         pdata->gchip.names = ti_sn_bridge_gpio_names;
1824         pdata->gchip.ngpio = SN_NUM_GPIOS;
1825         pdata->gchip.base = -1;
1826         ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1827         if (ret)
1828                 dev_err(pdata->dev, "can't add gpio chip\n");
1829
1830         return ret;
1831 }
1832
1833 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1834         { .name = "ti_sn65dsi86.gpio", },
1835         {},
1836 };
1837
1838 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1839
1840 static struct auxiliary_driver ti_sn_gpio_driver = {
1841         .name = "gpio",
1842         .probe = ti_sn_gpio_probe,
1843         .id_table = ti_sn_gpio_id_table,
1844 };
1845
1846 static int __init ti_sn_gpio_register(void)
1847 {
1848         return auxiliary_driver_register(&ti_sn_gpio_driver);
1849 }
1850
1851 static void ti_sn_gpio_unregister(void)
1852 {
1853         auxiliary_driver_unregister(&ti_sn_gpio_driver);
1854 }
1855
1856 #else
1857
1858 static inline int ti_sn_gpio_register(void) { return 0; }
1859 static inline void ti_sn_gpio_unregister(void) {}
1860
1861 #endif
1862
1863 /* -----------------------------------------------------------------------------
1864  * Probe & Remove
1865  */
1866
1867 static void ti_sn65dsi86_runtime_disable(void *data)
1868 {
1869         pm_runtime_dont_use_autosuspend(data);
1870         pm_runtime_disable(data);
1871 }
1872
1873 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1874 {
1875         unsigned int i;
1876         const char * const ti_sn_bridge_supply_names[] = {
1877                 "vcca", "vcc", "vccio", "vpll",
1878         };
1879
1880         for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1881                 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1882
1883         return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1884                                        pdata->supplies);
1885 }
1886
1887 static int ti_sn65dsi86_probe(struct i2c_client *client)
1888 {
1889         struct device *dev = &client->dev;
1890         struct ti_sn65dsi86 *pdata;
1891         int ret;
1892
1893         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1894                 DRM_ERROR("device doesn't support I2C\n");
1895                 return -ENODEV;
1896         }
1897
1898         pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1899         if (!pdata)
1900                 return -ENOMEM;
1901         dev_set_drvdata(dev, pdata);
1902         pdata->dev = dev;
1903
1904         mutex_init(&pdata->comms_mutex);
1905
1906         pdata->regmap = devm_regmap_init_i2c(client,
1907                                              &ti_sn65dsi86_regmap_config);
1908         if (IS_ERR(pdata->regmap))
1909                 return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1910                                      "regmap i2c init failed\n");
1911
1912         pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1913                                                      GPIOD_OUT_LOW);
1914         if (IS_ERR(pdata->enable_gpio))
1915                 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1916                                      "failed to get enable gpio from DT\n");
1917
1918         ret = ti_sn65dsi86_parse_regulators(pdata);
1919         if (ret)
1920                 return dev_err_probe(dev, ret, "failed to parse regulators\n");
1921
1922         pdata->refclk = devm_clk_get_optional(dev, "refclk");
1923         if (IS_ERR(pdata->refclk))
1924                 return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1925                                      "failed to get reference clock\n");
1926
1927         pm_runtime_enable(dev);
1928         pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1929         pm_runtime_use_autosuspend(pdata->dev);
1930         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1931         if (ret)
1932                 return ret;
1933
1934         ti_sn65dsi86_debugfs_init(pdata);
1935
1936         /*
1937          * Break ourselves up into a collection of aux devices. The only real
1938          * motiviation here is to solve the chicken-and-egg problem of probe
1939          * ordering. The bridge wants the panel to be there when it probes.
1940          * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1941          * when it probes. The panel and maybe backlight might want the DDC
1942          * bus or the pwm_chip. Having sub-devices allows the some sub devices
1943          * to finish probing even if others return -EPROBE_DEFER and gets us
1944          * around the problems.
1945          */
1946
1947         if (IS_ENABLED(CONFIG_OF_GPIO)) {
1948                 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1949                 if (ret)
1950                         return ret;
1951         }
1952
1953         if (IS_ENABLED(CONFIG_PWM)) {
1954                 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1955                 if (ret)
1956                         return ret;
1957         }
1958
1959         /*
1960          * NOTE: At the end of the AUX channel probe we'll add the aux device
1961          * for the bridge. This is because the bridge can't be used until the
1962          * AUX channel is there and this is a very simple solution to the
1963          * dependency problem.
1964          */
1965         return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1966 }
1967
1968 static struct i2c_device_id ti_sn65dsi86_id[] = {
1969         { "ti,sn65dsi86", 0},
1970         {},
1971 };
1972 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1973
1974 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1975         {.compatible = "ti,sn65dsi86"},
1976         {},
1977 };
1978 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1979
1980 static struct i2c_driver ti_sn65dsi86_driver = {
1981         .driver = {
1982                 .name = "ti_sn65dsi86",
1983                 .of_match_table = ti_sn65dsi86_match_table,
1984                 .pm = &ti_sn65dsi86_pm_ops,
1985         },
1986         .probe = ti_sn65dsi86_probe,
1987         .id_table = ti_sn65dsi86_id,
1988 };
1989
1990 static int __init ti_sn65dsi86_init(void)
1991 {
1992         int ret;
1993
1994         ret = i2c_add_driver(&ti_sn65dsi86_driver);
1995         if (ret)
1996                 return ret;
1997
1998         ret = ti_sn_gpio_register();
1999         if (ret)
2000                 goto err_main_was_registered;
2001
2002         ret = ti_sn_pwm_register();
2003         if (ret)
2004                 goto err_gpio_was_registered;
2005
2006         ret = auxiliary_driver_register(&ti_sn_aux_driver);
2007         if (ret)
2008                 goto err_pwm_was_registered;
2009
2010         ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2011         if (ret)
2012                 goto err_aux_was_registered;
2013
2014         return 0;
2015
2016 err_aux_was_registered:
2017         auxiliary_driver_unregister(&ti_sn_aux_driver);
2018 err_pwm_was_registered:
2019         ti_sn_pwm_unregister();
2020 err_gpio_was_registered:
2021         ti_sn_gpio_unregister();
2022 err_main_was_registered:
2023         i2c_del_driver(&ti_sn65dsi86_driver);
2024
2025         return ret;
2026 }
2027 module_init(ti_sn65dsi86_init);
2028
2029 static void __exit ti_sn65dsi86_exit(void)
2030 {
2031         auxiliary_driver_unregister(&ti_sn_bridge_driver);
2032         auxiliary_driver_unregister(&ti_sn_aux_driver);
2033         ti_sn_pwm_unregister();
2034         ti_sn_gpio_unregister();
2035         i2c_del_driver(&ti_sn65dsi86_driver);
2036 }
2037 module_exit(ti_sn65dsi86_exit);
2038
2039 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2040 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2041 MODULE_LICENSE("GPL v2");