Merge tag 'drm-fixes-2022-11-25' of git://anongit.freedesktop.org/drm/drm
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / dcn10 / dcn10_dpp_cm.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dm_services.h"
27
28 #include "core_types.h"
29
30 #include "reg_helper.h"
31 #include "dcn10_dpp.h"
32 #include "basics/conversion.h"
33 #include "dcn10_cm_common.h"
34
35 #define NUM_PHASES    64
36 #define HORZ_MAX_TAPS 8
37 #define VERT_MAX_TAPS 8
38
39 #define BLACK_OFFSET_RGB_Y 0x0
40 #define BLACK_OFFSET_CBCR  0x8000
41
42 #define REG(reg)\
43         dpp->tf_regs->reg
44
45 #define CTX \
46         dpp->base.ctx
47
48 #undef FN
49 #define FN(reg_name, field_name) \
50         dpp->tf_shift->field_name, dpp->tf_mask->field_name
51
52 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
53
54
55 enum dcn10_coef_filter_type_sel {
56         SCL_COEF_LUMA_VERT_FILTER = 0,
57         SCL_COEF_LUMA_HORZ_FILTER = 1,
58         SCL_COEF_CHROMA_VERT_FILTER = 2,
59         SCL_COEF_CHROMA_HORZ_FILTER = 3,
60         SCL_COEF_ALPHA_VERT_FILTER = 4,
61         SCL_COEF_ALPHA_HORZ_FILTER = 5
62 };
63
64 enum dscl_autocal_mode {
65         AUTOCAL_MODE_OFF = 0,
66
67         /* Autocal calculate the scaling ratio and initial phase and the
68          * DSCL_MODE_SEL must be set to 1
69          */
70         AUTOCAL_MODE_AUTOSCALE = 1,
71         /* Autocal perform auto centering without replication and the
72          * DSCL_MODE_SEL must be set to 0
73          */
74         AUTOCAL_MODE_AUTOCENTER = 2,
75         /* Autocal perform auto centering and auto replication and the
76          * DSCL_MODE_SEL must be set to 0
77          */
78         AUTOCAL_MODE_AUTOREPLICATE = 3
79 };
80
81 enum dscl_mode_sel {
82         DSCL_MODE_SCALING_444_BYPASS = 0,
83         DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
84         DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
85         DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
86         DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
87         DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
88         DSCL_MODE_DSCL_BYPASS = 6
89 };
90
91 static void program_gamut_remap(
92                 struct dcn10_dpp *dpp,
93                 const uint16_t *regval,
94                 enum gamut_remap_select select)
95 {
96         uint16_t selection = 0;
97         struct color_matrices_reg gam_regs;
98
99         if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
100                 REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
101                                 CM_GAMUT_REMAP_MODE, 0);
102                 return;
103         }
104         switch (select) {
105         case GAMUT_REMAP_COEFF:
106                 selection = 1;
107                 break;
108         case GAMUT_REMAP_COMA_COEFF:
109                 selection = 2;
110                 break;
111         case GAMUT_REMAP_COMB_COEFF:
112                 selection = 3;
113                 break;
114         default:
115                 break;
116         }
117
118         gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
119         gam_regs.masks.csc_c11  = dpp->tf_mask->CM_GAMUT_REMAP_C11;
120         gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
121         gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
122
123
124         if (select == GAMUT_REMAP_COEFF) {
125                 gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
126                 gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
127
128                 cm_helper_program_color_matrices(
129                                 dpp->base.ctx,
130                                 regval,
131                                 &gam_regs);
132
133         } else  if (select == GAMUT_REMAP_COMA_COEFF) {
134
135                 gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
136                 gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
137
138                 cm_helper_program_color_matrices(
139                                 dpp->base.ctx,
140                                 regval,
141                                 &gam_regs);
142
143         } else {
144
145                 gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
146                 gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
147
148                 cm_helper_program_color_matrices(
149                                 dpp->base.ctx,
150                                 regval,
151                                 &gam_regs);
152         }
153
154         REG_SET(
155                         CM_GAMUT_REMAP_CONTROL, 0,
156                         CM_GAMUT_REMAP_MODE, selection);
157
158 }
159
160 void dpp1_cm_set_gamut_remap(
161         struct dpp *dpp_base,
162         const struct dpp_grph_csc_adjustment *adjust)
163 {
164         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
165         int i = 0;
166
167         if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
168                 /* Bypass if type is bypass or hw */
169                 program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
170         else {
171                 struct fixed31_32 arr_matrix[12];
172                 uint16_t arr_reg_val[12];
173
174                 for (i = 0; i < 12; i++)
175                         arr_matrix[i] = adjust->temperature_matrix[i];
176
177                 convert_float_matrix(
178                         arr_reg_val, arr_matrix, 12);
179
180                 program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF);
181         }
182 }
183
184 static void dpp1_cm_program_color_matrix(
185                 struct dcn10_dpp *dpp,
186                 const uint16_t *regval)
187 {
188         uint32_t ocsc_mode;
189         uint32_t cur_mode;
190         struct color_matrices_reg gam_regs;
191
192         if (regval == NULL) {
193                 BREAK_TO_DEBUGGER();
194                 return;
195         }
196
197         /* determine which CSC matrix (ocsc or comb) we are using
198          * currently.  select the alternate set to double buffer
199          * the CSC update so CSC is updated on frame boundary
200          */
201         REG_SET(CM_TEST_DEBUG_INDEX, 0,
202                         CM_TEST_DEBUG_INDEX, 9);
203
204         REG_GET(CM_TEST_DEBUG_DATA,
205                         CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode);
206
207         if (cur_mode != 4)
208                 ocsc_mode = 4;
209         else
210                 ocsc_mode = 5;
211
212
213         gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11;
214         gam_regs.masks.csc_c11  = dpp->tf_mask->CM_OCSC_C11;
215         gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12;
216         gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12;
217
218         if (ocsc_mode == 4) {
219
220                 gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12);
221                 gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34);
222
223         } else {
224
225                 gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
226                 gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
227
228         }
229
230         cm_helper_program_color_matrices(
231                         dpp->base.ctx,
232                         regval,
233                         &gam_regs);
234
235         REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
236
237 }
238
239 void dpp1_cm_set_output_csc_default(
240                 struct dpp *dpp_base,
241                 enum dc_color_space colorspace)
242 {
243         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
244         const uint16_t *regval = NULL;
245         int arr_size;
246
247         regval = find_color_matrix(colorspace, &arr_size);
248         if (regval == NULL) {
249                 BREAK_TO_DEBUGGER();
250                 return;
251         }
252
253         dpp1_cm_program_color_matrix(dpp, regval);
254 }
255
256 static void dpp1_cm_get_reg_field(
257                 struct dcn10_dpp *dpp,
258                 struct xfer_func_reg *reg)
259 {
260         reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
261         reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
262         reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
263         reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
264         reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
265         reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
266         reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
267         reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
268
269         reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B;
270         reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B;
271         reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
272         reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
273         reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
274         reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
275         reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
276         reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
277         reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B;
278         reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B;
279         reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
280         reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
281 }
282
283 static void dpp1_cm_get_degamma_reg_field(
284                 struct dcn10_dpp *dpp,
285                 struct xfer_func_reg *reg)
286 {
287         reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
288         reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
289         reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
290         reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
291         reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
292         reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
293         reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
294         reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
295
296         reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B;
297         reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B;
298         reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
299         reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
300         reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
301         reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
302         reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
303         reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
304         reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B;
305         reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B;
306         reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
307         reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
308 }
309 void dpp1_cm_set_output_csc_adjustment(
310                 struct dpp *dpp_base,
311                 const uint16_t *regval)
312 {
313         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
314
315         dpp1_cm_program_color_matrix(dpp, regval);
316 }
317
318 void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base,
319                                   bool power_on)
320 {
321         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
322
323         REG_SET(CM_MEM_PWR_CTRL, 0,
324                 RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
325
326 }
327
328 void dpp1_cm_program_regamma_lut(struct dpp *dpp_base,
329                                  const struct pwl_result_data *rgb,
330                                  uint32_t num)
331 {
332         uint32_t i;
333         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
334
335         REG_SEQ_START();
336
337         for (i = 0 ; i < num; i++) {
338                 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
339                 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
340                 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);
341
342                 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
343                 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
344                 REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);
345
346         }
347
348 }
349
350 void dpp1_cm_configure_regamma_lut(
351                 struct dpp *dpp_base,
352                 bool is_ram_a)
353 {
354         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
355
356         REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
357                         CM_RGAM_LUT_WRITE_EN_MASK, 7);
358         REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
359                         CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
360         REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
361 }
362
363 /*program re gamma RAM A*/
364 void dpp1_cm_program_regamma_luta_settings(
365                 struct dpp *dpp_base,
366                 const struct pwl_params *params)
367 {
368         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
369         struct xfer_func_reg gam_regs;
370
371         dpp1_cm_get_reg_field(dpp, &gam_regs);
372
373         gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B);
374         gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G);
375         gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R);
376         gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B);
377         gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G);
378         gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R);
379         gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B);
380         gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B);
381         gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G);
382         gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G);
383         gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R);
384         gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R);
385         gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1);
386         gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33);
387
388         cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
389
390 }
391
392 /*program re gamma RAM B*/
393 void dpp1_cm_program_regamma_lutb_settings(
394                 struct dpp *dpp_base,
395                 const struct pwl_params *params)
396 {
397         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
398         struct xfer_func_reg gam_regs;
399
400         dpp1_cm_get_reg_field(dpp, &gam_regs);
401
402         gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B);
403         gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G);
404         gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R);
405         gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B);
406         gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G);
407         gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R);
408         gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B);
409         gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B);
410         gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G);
411         gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G);
412         gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R);
413         gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R);
414         gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1);
415         gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33);
416
417         cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
418 }
419
420 void dpp1_program_input_csc(
421                 struct dpp *dpp_base,
422                 enum dc_color_space color_space,
423                 enum dcn10_input_csc_select input_select,
424                 const struct out_csc_color_matrix *tbl_entry)
425 {
426         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
427         int i;
428         int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix);
429         const uint16_t *regval = NULL;
430         uint32_t cur_select = 0;
431         enum dcn10_input_csc_select select;
432         struct color_matrices_reg gam_regs;
433
434         if (input_select == INPUT_CSC_SELECT_BYPASS) {
435                 REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
436                 return;
437         }
438
439         if (tbl_entry == NULL) {
440                 for (i = 0; i < arr_size; i++)
441                         if (dpp_input_csc_matrix[i].color_space == color_space) {
442                                 regval = dpp_input_csc_matrix[i].regval;
443                                 break;
444                         }
445
446                 if (regval == NULL) {
447                         BREAK_TO_DEBUGGER();
448                         return;
449                 }
450         } else {
451                 regval = tbl_entry->regval;
452         }
453
454         /* determine which CSC matrix (icsc or coma) we are using
455          * currently.  select the alternate set to double buffer
456          * the CSC update so CSC is updated on frame boundary
457          */
458         REG_SET(CM_TEST_DEBUG_INDEX, 0,
459                         CM_TEST_DEBUG_INDEX, 9);
460
461         REG_GET(CM_TEST_DEBUG_DATA,
462                         CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select);
463
464         if (cur_select != INPUT_CSC_SELECT_ICSC)
465                 select = INPUT_CSC_SELECT_ICSC;
466         else
467                 select = INPUT_CSC_SELECT_COMA;
468
469         gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
470         gam_regs.masks.csc_c11  = dpp->tf_mask->CM_ICSC_C11;
471         gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
472         gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;
473
474         if (select == INPUT_CSC_SELECT_ICSC) {
475
476                 gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
477                 gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);
478
479         } else {
480
481                 gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
482                 gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
483
484         }
485
486         cm_helper_program_color_matrices(
487                         dpp->base.ctx,
488                         regval,
489                         &gam_regs);
490
491         REG_SET(CM_ICSC_CONTROL, 0,
492                                 CM_ICSC_MODE, select);
493 }
494
495 //keep here for now, decide multi dce support later
496 void dpp1_program_bias_and_scale(
497         struct dpp *dpp_base,
498         struct dc_bias_and_scale *params)
499 {
500         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
501
502         REG_SET_2(CM_BNS_VALUES_R, 0,
503                 CM_BNS_SCALE_R, params->scale_red,
504                 CM_BNS_BIAS_R, params->bias_red);
505
506         REG_SET_2(CM_BNS_VALUES_G, 0,
507                 CM_BNS_SCALE_G, params->scale_green,
508                 CM_BNS_BIAS_G, params->bias_green);
509
510         REG_SET_2(CM_BNS_VALUES_B, 0,
511                 CM_BNS_SCALE_B, params->scale_blue,
512                 CM_BNS_BIAS_B, params->bias_blue);
513
514 }
515
516 /*program de gamma RAM B*/
517 void dpp1_program_degamma_lutb_settings(
518                 struct dpp *dpp_base,
519                 const struct pwl_params *params)
520 {
521         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
522         struct xfer_func_reg gam_regs;
523
524         dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
525
526         gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B);
527         gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G);
528         gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R);
529         gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B);
530         gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G);
531         gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R);
532         gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B);
533         gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B);
534         gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G);
535         gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G);
536         gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R);
537         gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R);
538         gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1);
539         gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15);
540
541
542         cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
543 }
544
545 /*program de gamma RAM A*/
546 void dpp1_program_degamma_luta_settings(
547                 struct dpp *dpp_base,
548                 const struct pwl_params *params)
549 {
550         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
551         struct xfer_func_reg gam_regs;
552
553         dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
554
555         gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B);
556         gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G);
557         gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R);
558         gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B);
559         gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G);
560         gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R);
561         gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B);
562         gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B);
563         gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G);
564         gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G);
565         gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R);
566         gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R);
567         gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1);
568         gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15);
569
570         cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
571 }
572
573 void dpp1_power_on_degamma_lut(
574                 struct dpp *dpp_base,
575         bool power_on)
576 {
577         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
578
579         REG_SET(CM_MEM_PWR_CTRL, 0,
580                         SHARED_MEM_PWR_DIS, power_on ? 0:1);
581
582 }
583
584 static void dpp1_enable_cm_block(
585                 struct dpp *dpp_base)
586 {
587         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
588
589         REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8);
590         REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
591 }
592
593 void dpp1_set_degamma(
594                 struct dpp *dpp_base,
595                 enum ipp_degamma_mode mode)
596 {
597         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
598         dpp1_enable_cm_block(dpp_base);
599
600         switch (mode) {
601         case IPP_DEGAMMA_MODE_BYPASS:
602                 /* Setting de gamma bypass for now */
603                 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
604                 break;
605         case IPP_DEGAMMA_MODE_HW_sRGB:
606                 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
607                 break;
608         case IPP_DEGAMMA_MODE_HW_xvYCC:
609                 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
610                         break;
611         case IPP_DEGAMMA_MODE_USER_PWL:
612                 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
613                 break;
614         default:
615                 BREAK_TO_DEBUGGER();
616                 break;
617         }
618
619         REG_SEQ_SUBMIT();
620         REG_SEQ_WAIT_DONE();
621 }
622
623 void dpp1_degamma_ram_select(
624                 struct dpp *dpp_base,
625                                                         bool use_ram_a)
626 {
627         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
628
629         if (use_ram_a)
630                 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
631         else
632                 REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);
633
634 }
635
636 static bool dpp1_degamma_ram_inuse(
637                 struct dpp *dpp_base,
638                                                         bool *ram_a_inuse)
639 {
640         bool ret = false;
641         uint32_t status_reg = 0;
642         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
643
644         REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
645                         &status_reg);
646
647         if (status_reg == 9) {
648                 *ram_a_inuse = true;
649                 ret = true;
650         } else if (status_reg == 10) {
651                 *ram_a_inuse = false;
652                 ret = true;
653         }
654         return ret;
655 }
656
657 void dpp1_program_degamma_lut(
658                 struct dpp *dpp_base,
659                 const struct pwl_result_data *rgb,
660                 uint32_t num,
661                 bool is_ram_a)
662 {
663         uint32_t i;
664
665         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
666         REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
667         REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
668                                    CM_DGAM_LUT_WRITE_EN_MASK, 7);
669         REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
670                                         is_ram_a == true ? 0:1);
671
672         REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
673         for (i = 0 ; i < num; i++) {
674                 REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
675                 REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
676                 REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
677
678                 REG_SET(CM_DGAM_LUT_DATA, 0,
679                                 CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
680                 REG_SET(CM_DGAM_LUT_DATA, 0,
681                                 CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
682                 REG_SET(CM_DGAM_LUT_DATA, 0,
683                                 CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
684         }
685 }
686
687 void dpp1_set_degamma_pwl(struct dpp *dpp_base,
688                                                                  const struct pwl_params *params)
689 {
690         bool is_ram_a = true;
691
692         dpp1_power_on_degamma_lut(dpp_base, true);
693         dpp1_enable_cm_block(dpp_base);
694         dpp1_degamma_ram_inuse(dpp_base, &is_ram_a);
695         if (is_ram_a == true)
696                 dpp1_program_degamma_lutb_settings(dpp_base, params);
697         else
698                 dpp1_program_degamma_luta_settings(dpp_base, params);
699
700         dpp1_program_degamma_lut(dpp_base, params->rgb_resulted,
701                                                         params->hw_points_num, !is_ram_a);
702         dpp1_degamma_ram_select(dpp_base, !is_ram_a);
703 }
704
705 void dpp1_full_bypass(struct dpp *dpp_base)
706 {
707         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
708
709         /* Input pixel format: ARGB8888 */
710         REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
711                         CNVC_SURFACE_PIXEL_FORMAT, 0x8);
712
713         /* Zero expansion */
714         REG_SET_3(FORMAT_CONTROL, 0,
715                         CNVC_BYPASS, 0,
716                         FORMAT_CONTROL__ALPHA_EN, 0,
717                         FORMAT_EXPANSION_MODE, 0);
718
719         /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
720         if (dpp->tf_mask->CM_BYPASS_EN)
721                 REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);
722         else
723                 REG_SET(CM_CONTROL, 0, CM_BYPASS, 1);
724
725         /* Setting degamma bypass for now */
726         REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
727 }
728
729 static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base,
730                                                         bool *ram_a_inuse)
731 {
732         bool in_use = false;
733         uint32_t status_reg = 0;
734         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
735
736         REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
737                                 &status_reg);
738
739         // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB
740         if (status_reg == 1 || status_reg == 3 || status_reg == 4) {
741                 *ram_a_inuse = true;
742                 in_use = true;
743         // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB
744         } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) {
745                 *ram_a_inuse = false;
746                 in_use = true;
747         }
748         return in_use;
749 }
750
751 /*
752  * Input gamma LUT currently supports 256 values only. This means input color
753  * can have a maximum of 8 bits per channel (= 256 possible values) in order to
754  * have a one-to-one mapping with the LUT. Truncation will occur with color
755  * values greater than 8 bits.
756  *
757  * In the future, this function should support additional input gamma methods,
758  * such as piecewise linear mapping, and input gamma bypass.
759  */
760 void dpp1_program_input_lut(
761                 struct dpp *dpp_base,
762                 const struct dc_gamma *gamma)
763 {
764         int i;
765         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
766         bool rama_occupied = false;
767         uint32_t ram_num;
768         // Power on LUT memory.
769         REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1);
770         dpp1_enable_cm_block(dpp_base);
771         // Determine whether to use RAM A or RAM B
772         dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied);
773         if (!rama_occupied)
774                 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0);
775         else
776                 REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1);
777         // RW mode is 256-entry LUT
778         REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0);
779         // IGAM Input format should be 8 bits per channel.
780         REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0);
781         // Do not mask any R,G,B values
782         REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7);
783         // LUT-256, unsigned, integer, new u0.12 format
784         REG_UPDATE_3(
785                 CM_IGAM_CONTROL,
786                 CM_IGAM_LUT_FORMAT_R, 3,
787                 CM_IGAM_LUT_FORMAT_G, 3,
788                 CM_IGAM_LUT_FORMAT_B, 3);
789         // Start at index 0 of IGAM LUT
790         REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0);
791         for (i = 0; i < gamma->num_entries; i++) {
792                 REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
793                                 dc_fixpt_round(
794                                         gamma->entries.red[i]));
795                 REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
796                                 dc_fixpt_round(
797                                         gamma->entries.green[i]));
798                 REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
799                                 dc_fixpt_round(
800                                         gamma->entries.blue[i]));
801         }
802         // Power off LUT memory
803         REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0);
804         // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB
805         REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2);
806         REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num);
807 }
808
809 void dpp1_set_hdr_multiplier(
810                 struct dpp *dpp_base,
811                 uint32_t multiplier)
812 {
813         struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
814
815         REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);
816 }