Linux 6.9-rc6
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v8.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gfx_v8_0.h"
26 #include "gca/gfx_8_0_sh_mask.h"
27 #include "gca/gfx_8_0_d.h"
28 #include "gca/gfx_8_0_enum.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 #include "oss/oss_3_0_d.h"
31 #include "gmc/gmc_8_1_sh_mask.h"
32 #include "gmc/gmc_8_1_d.h"
33 #include "vi_structs.h"
34 #include "vid.h"
35
36 enum hqd_dequeue_request_type {
37         NO_ACTION = 0,
38         DRAIN_PIPE,
39         RESET_WAVES
40 };
41
42 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
43                         uint32_t queue, uint32_t vmid)
44 {
45         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
46
47         mutex_lock(&adev->srbm_mutex);
48         WREG32(mmSRBM_GFX_CNTL, value);
49 }
50
51 static void unlock_srbm(struct amdgpu_device *adev)
52 {
53         WREG32(mmSRBM_GFX_CNTL, 0);
54         mutex_unlock(&adev->srbm_mutex);
55 }
56
57 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
58                                 uint32_t queue_id)
59 {
60         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
61         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
62
63         lock_srbm(adev, mec, pipe, queue_id, 0);
64 }
65
66 static void release_queue(struct amdgpu_device *adev)
67 {
68         unlock_srbm(adev);
69 }
70
71 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
72                                         uint32_t sh_mem_config,
73                                         uint32_t sh_mem_ape1_base,
74                                         uint32_t sh_mem_ape1_limit,
75                                         uint32_t sh_mem_bases, uint32_t inst)
76 {
77         lock_srbm(adev, 0, 0, 0, vmid);
78
79         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
80         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
81         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
82         WREG32(mmSH_MEM_BASES, sh_mem_bases);
83
84         unlock_srbm(adev);
85 }
86
87 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
88                                         unsigned int vmid, uint32_t inst)
89 {
90         /*
91          * We have to assume that there is no outstanding mapping.
92          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
93          * a mapping is in progress or because a mapping finished
94          * and the SW cleared it.
95          * So the protocol is to always wait & clear.
96          */
97         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
98                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
99
100         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
101
102         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
103                 cpu_relax();
104         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
105
106         /* Mapping vmid to pasid also for IH block */
107         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
108
109         return 0;
110 }
111
112 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
113                                 uint32_t inst)
114 {
115         uint32_t mec;
116         uint32_t pipe;
117
118         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
119         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
120
121         lock_srbm(adev, mec, pipe, 0, 0);
122
123         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
124                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
125
126         unlock_srbm(adev);
127
128         return 0;
129 }
130
131 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
132 {
133         uint32_t retval;
134
135         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
136                 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
137
138         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
139                         m->sdma_engine_id, m->sdma_queue_id, retval);
140
141         return retval;
142 }
143
144 static inline struct vi_mqd *get_mqd(void *mqd)
145 {
146         return (struct vi_mqd *)mqd;
147 }
148
149 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
150 {
151         return (struct vi_sdma_mqd *)mqd;
152 }
153
154 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
155                         uint32_t pipe_id, uint32_t queue_id,
156                         uint32_t __user *wptr, uint32_t wptr_shift,
157                         uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst)
158 {
159         struct vi_mqd *m;
160         uint32_t *mqd_hqd;
161         uint32_t reg, wptr_val, data;
162         bool valid_wptr = false;
163
164         m = get_mqd(mqd);
165
166         acquire_queue(adev, pipe_id, queue_id);
167
168         /* HIQ is set during driver init period with vmid set to 0*/
169         if (m->cp_hqd_vmid == 0) {
170                 uint32_t value, mec, pipe;
171
172                 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
173                 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
174
175                 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
176                         mec, pipe, queue_id);
177                 value = RREG32(mmRLC_CP_SCHEDULERS);
178                 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
179                         ((mec << 5) | (pipe << 3) | queue_id | 0x80));
180                 WREG32(mmRLC_CP_SCHEDULERS, value);
181         }
182
183         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
184         mqd_hqd = &m->cp_mqd_base_addr_lo;
185
186         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
187                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
188
189         /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
190          * This is safe since EOP RPTR==WPTR for any inactive HQD
191          * on ASICs that do not support context-save.
192          * EOP writes/reads can start anywhere in the ring.
193          */
194         if (adev->asic_type != CHIP_TONGA) {
195                 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
196                 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
197                 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
198         }
199
200         for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
201                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
202
203         /* Copy userspace write pointer value to register.
204          * Activate doorbell logic to monitor subsequent changes.
205          */
206         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
207                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
208         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
209
210         /* read_user_ptr may take the mm->mmap_lock.
211          * release srbm_mutex to avoid circular dependency between
212          * srbm_mutex->mmap_lock->reservation_ww_class_mutex->srbm_mutex.
213          */
214         release_queue(adev);
215         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
216         acquire_queue(adev, pipe_id, queue_id);
217         if (valid_wptr)
218                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
219
220         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
221         WREG32(mmCP_HQD_ACTIVE, data);
222
223         release_queue(adev);
224
225         return 0;
226 }
227
228 static int kgd_hqd_dump(struct amdgpu_device *adev,
229                         uint32_t pipe_id, uint32_t queue_id,
230                         uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
231 {
232         uint32_t i = 0, reg;
233 #define HQD_N_REGS (54+4)
234 #define DUMP_REG(addr) do {                             \
235                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
236                         break;                          \
237                 (*dump)[i][0] = (addr) << 2;            \
238                 (*dump)[i++][1] = RREG32(addr);         \
239         } while (0)
240
241         *dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
242         if (*dump == NULL)
243                 return -ENOMEM;
244
245         acquire_queue(adev, pipe_id, queue_id);
246
247         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
248         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
249         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
250         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
251
252         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
253                 DUMP_REG(reg);
254
255         release_queue(adev);
256
257         WARN_ON_ONCE(i != HQD_N_REGS);
258         *n_regs = i;
259
260         return 0;
261 }
262
263 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
264                              uint32_t __user *wptr, struct mm_struct *mm)
265 {
266         struct vi_sdma_mqd *m;
267         unsigned long end_jiffies;
268         uint32_t sdma_rlc_reg_offset;
269         uint32_t data;
270
271         m = get_sdma_mqd(mqd);
272         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
273         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
274                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
275
276         end_jiffies = msecs_to_jiffies(2000) + jiffies;
277         while (true) {
278                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
279                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
280                         break;
281                 if (time_after(jiffies, end_jiffies)) {
282                         pr_err("SDMA RLC not idle in %s\n", __func__);
283                         return -ETIME;
284                 }
285                 usleep_range(500, 1000);
286         }
287
288         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
289                              ENABLE, 1);
290         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
291         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
292                                 m->sdmax_rlcx_rb_rptr);
293
294         if (read_user_wptr(mm, wptr, data))
295                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
296         else
297                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
298                        m->sdmax_rlcx_rb_rptr);
299
300         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
301                                 m->sdmax_rlcx_virtual_addr);
302         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
303         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
304                         m->sdmax_rlcx_rb_base_hi);
305         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
306                         m->sdmax_rlcx_rb_rptr_addr_lo);
307         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
308                         m->sdmax_rlcx_rb_rptr_addr_hi);
309
310         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
311                              RB_ENABLE, 1);
312         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
313
314         return 0;
315 }
316
317 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
318                              uint32_t engine_id, uint32_t queue_id,
319                              uint32_t (**dump)[2], uint32_t *n_regs)
320 {
321         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
322                 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
323         uint32_t i = 0, reg;
324 #undef HQD_N_REGS
325 #define HQD_N_REGS (19+4+2+3+7)
326
327         *dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
328         if (*dump == NULL)
329                 return -ENOMEM;
330
331         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
332                 DUMP_REG(sdma_offset + reg);
333         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
334              reg++)
335                 DUMP_REG(sdma_offset + reg);
336         for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
337              reg++)
338                 DUMP_REG(sdma_offset + reg);
339         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
340              reg++)
341                 DUMP_REG(sdma_offset + reg);
342         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
343              reg++)
344                 DUMP_REG(sdma_offset + reg);
345
346         WARN_ON_ONCE(i != HQD_N_REGS);
347         *n_regs = i;
348
349         return 0;
350 }
351
352 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
353                                 uint64_t queue_address, uint32_t pipe_id,
354                                 uint32_t queue_id, uint32_t inst)
355 {
356         uint32_t act;
357         bool retval = false;
358         uint32_t low, high;
359
360         acquire_queue(adev, pipe_id, queue_id);
361         act = RREG32(mmCP_HQD_ACTIVE);
362         if (act) {
363                 low = lower_32_bits(queue_address >> 8);
364                 high = upper_32_bits(queue_address >> 8);
365
366                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
367                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
368                         retval = true;
369         }
370         release_queue(adev);
371         return retval;
372 }
373
374 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
375 {
376         struct vi_sdma_mqd *m;
377         uint32_t sdma_rlc_reg_offset;
378         uint32_t sdma_rlc_rb_cntl;
379
380         m = get_sdma_mqd(mqd);
381         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
382
383         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
384
385         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
386                 return true;
387
388         return false;
389 }
390
391 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
392                                 enum kfd_preempt_type reset_type,
393                                 unsigned int utimeout, uint32_t pipe_id,
394                                 uint32_t queue_id, uint32_t inst)
395 {
396         uint32_t temp;
397         enum hqd_dequeue_request_type type;
398         unsigned long flags, end_jiffies;
399         int retry;
400         struct vi_mqd *m = get_mqd(mqd);
401
402         if (amdgpu_in_reset(adev))
403                 return -EIO;
404
405         acquire_queue(adev, pipe_id, queue_id);
406
407         if (m->cp_hqd_vmid == 0)
408                 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
409
410         switch (reset_type) {
411         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
412                 type = DRAIN_PIPE;
413                 break;
414         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
415                 type = RESET_WAVES;
416                 break;
417         default:
418                 type = DRAIN_PIPE;
419                 break;
420         }
421
422         /* Workaround: If IQ timer is active and the wait time is close to or
423          * equal to 0, dequeueing is not safe. Wait until either the wait time
424          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
425          * cleared before continuing. Also, ensure wait times are set to at
426          * least 0x3.
427          */
428         local_irq_save(flags);
429         preempt_disable();
430         retry = 5000; /* wait for 500 usecs at maximum */
431         while (true) {
432                 temp = RREG32(mmCP_HQD_IQ_TIMER);
433                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
434                         pr_debug("HW is processing IQ\n");
435                         goto loop;
436                 }
437                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
438                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
439                                         == 3) /* SEM-rearm is safe */
440                                 break;
441                         /* Wait time 3 is safe for CP, but our MMIO read/write
442                          * time is close to 1 microsecond, so check for 10 to
443                          * leave more buffer room
444                          */
445                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
446                                         >= 10)
447                                 break;
448                         pr_debug("IQ timer is active\n");
449                 } else
450                         break;
451 loop:
452                 if (!retry) {
453                         pr_err("CP HQD IQ timer status time out\n");
454                         break;
455                 }
456                 ndelay(100);
457                 --retry;
458         }
459         retry = 1000;
460         while (true) {
461                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
462                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
463                         break;
464                 pr_debug("Dequeue request is pending\n");
465
466                 if (!retry) {
467                         pr_err("CP HQD dequeue request time out\n");
468                         break;
469                 }
470                 ndelay(100);
471                 --retry;
472         }
473         local_irq_restore(flags);
474         preempt_enable();
475
476         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
477
478         end_jiffies = (utimeout * HZ / 1000) + jiffies;
479         while (true) {
480                 temp = RREG32(mmCP_HQD_ACTIVE);
481                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
482                         break;
483                 if (time_after(jiffies, end_jiffies)) {
484                         pr_err("cp queue preemption time out.\n");
485                         release_queue(adev);
486                         return -ETIME;
487                 }
488                 usleep_range(500, 1000);
489         }
490
491         release_queue(adev);
492         return 0;
493 }
494
495 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
496                                 unsigned int utimeout)
497 {
498         struct vi_sdma_mqd *m;
499         uint32_t sdma_rlc_reg_offset;
500         uint32_t temp;
501         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
502
503         m = get_sdma_mqd(mqd);
504         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
505
506         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
507         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
508         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
509
510         while (true) {
511                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
512                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
513                         break;
514                 if (time_after(jiffies, end_jiffies)) {
515                         pr_err("SDMA RLC not idle in %s\n", __func__);
516                         return -ETIME;
517                 }
518                 usleep_range(500, 1000);
519         }
520
521         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
522         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
523                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
524                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
525
526         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
527
528         return 0;
529 }
530
531 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
532                                         uint8_t vmid, uint16_t *p_pasid)
533 {
534         uint32_t value;
535
536         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
537         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
538
539         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
540 }
541
542 static int kgd_wave_control_execute(struct amdgpu_device *adev,
543                                         uint32_t gfx_index_val,
544                                         uint32_t sq_cmd, uint32_t inst)
545 {
546         uint32_t data = 0;
547
548         mutex_lock(&adev->grbm_idx_mutex);
549
550         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
551         WREG32(mmSQ_CMD, sq_cmd);
552
553         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
554                 INSTANCE_BROADCAST_WRITES, 1);
555         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
556                 SH_BROADCAST_WRITES, 1);
557         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
558                 SE_BROADCAST_WRITES, 1);
559
560         WREG32(mmGRBM_GFX_INDEX, data);
561         mutex_unlock(&adev->grbm_idx_mutex);
562
563         return 0;
564 }
565
566 static void set_scratch_backing_va(struct amdgpu_device *adev,
567                                         uint64_t va, uint32_t vmid)
568 {
569         lock_srbm(adev, 0, 0, 0, vmid);
570         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
571         unlock_srbm(adev);
572 }
573
574 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
575                 uint32_t vmid, uint64_t page_table_base)
576 {
577         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
578                 pr_err("trying to set page table base for wrong VMID\n");
579                 return;
580         }
581         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
582                         lower_32_bits(page_table_base));
583 }
584
585 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
586         .program_sh_mem_settings = kgd_program_sh_mem_settings,
587         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
588         .init_interrupts = kgd_init_interrupts,
589         .hqd_load = kgd_hqd_load,
590         .hqd_sdma_load = kgd_hqd_sdma_load,
591         .hqd_dump = kgd_hqd_dump,
592         .hqd_sdma_dump = kgd_hqd_sdma_dump,
593         .hqd_is_occupied = kgd_hqd_is_occupied,
594         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
595         .hqd_destroy = kgd_hqd_destroy,
596         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
597         .wave_control_execute = kgd_wave_control_execute,
598         .get_atc_vmid_pasid_mapping_info =
599                         get_atc_vmid_pasid_mapping_info,
600         .set_scratch_backing_va = set_scratch_backing_va,
601         .set_vm_context_page_table_base = set_vm_context_page_table_base,
602 };