License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[sfrench/cifs-2.6.git] / drivers / clocksource / timer-fttmr010.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Faraday Technology FTTMR010 timer driver
4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5  *
6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7  * Copyright (C) 2001-2006 Storlink, Corp.
8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9  */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22
23 /*
24  * Register definitions for the timers
25  */
26 #define TIMER1_COUNT            (0x00)
27 #define TIMER1_LOAD             (0x04)
28 #define TIMER1_MATCH1           (0x08)
29 #define TIMER1_MATCH2           (0x0c)
30 #define TIMER2_COUNT            (0x10)
31 #define TIMER2_LOAD             (0x14)
32 #define TIMER2_MATCH1           (0x18)
33 #define TIMER2_MATCH2           (0x1c)
34 #define TIMER3_COUNT            (0x20)
35 #define TIMER3_LOAD             (0x24)
36 #define TIMER3_MATCH1           (0x28)
37 #define TIMER3_MATCH2           (0x2c)
38 #define TIMER_CR                (0x30)
39 #define TIMER_INTR_STATE        (0x34)
40 #define TIMER_INTR_MASK         (0x38)
41
42 #define TIMER_1_CR_ENABLE       BIT(0)
43 #define TIMER_1_CR_CLOCK        BIT(1)
44 #define TIMER_1_CR_INT          BIT(2)
45 #define TIMER_2_CR_ENABLE       BIT(3)
46 #define TIMER_2_CR_CLOCK        BIT(4)
47 #define TIMER_2_CR_INT          BIT(5)
48 #define TIMER_3_CR_ENABLE       BIT(6)
49 #define TIMER_3_CR_CLOCK        BIT(7)
50 #define TIMER_3_CR_INT          BIT(8)
51 #define TIMER_1_CR_UPDOWN       BIT(9)
52 #define TIMER_2_CR_UPDOWN       BIT(10)
53 #define TIMER_3_CR_UPDOWN       BIT(11)
54
55 /*
56  * The Aspeed AST2400 moves bits around in the control register
57  * and lacks bits for setting the timer to count upwards.
58  */
59 #define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
60 #define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
61 #define TIMER_1_CR_ASPEED_INT           BIT(2)
62 #define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
63 #define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
64 #define TIMER_2_CR_ASPEED_INT           BIT(6)
65 #define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
66 #define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
67 #define TIMER_3_CR_ASPEED_INT           BIT(10)
68
69 #define TIMER_1_INT_MATCH1      BIT(0)
70 #define TIMER_1_INT_MATCH2      BIT(1)
71 #define TIMER_1_INT_OVERFLOW    BIT(2)
72 #define TIMER_2_INT_MATCH1      BIT(3)
73 #define TIMER_2_INT_MATCH2      BIT(4)
74 #define TIMER_2_INT_OVERFLOW    BIT(5)
75 #define TIMER_3_INT_MATCH1      BIT(6)
76 #define TIMER_3_INT_MATCH2      BIT(7)
77 #define TIMER_3_INT_OVERFLOW    BIT(8)
78 #define TIMER_INT_ALL_MASK      0x1ff
79
80 struct fttmr010 {
81         void __iomem *base;
82         unsigned int tick_rate;
83         bool count_down;
84         u32 t1_enable_val;
85         struct clock_event_device clkevt;
86 #ifdef CONFIG_ARM
87         struct delay_timer delay_timer;
88 #endif
89 };
90
91 /*
92  * A local singleton used by sched_clock and delay timer reads, which are
93  * fast and stateless
94  */
95 static struct fttmr010 *local_fttmr;
96
97 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
98 {
99         return container_of(evt, struct fttmr010, clkevt);
100 }
101
102 static unsigned long fttmr010_read_current_timer_up(void)
103 {
104         return readl(local_fttmr->base + TIMER2_COUNT);
105 }
106
107 static unsigned long fttmr010_read_current_timer_down(void)
108 {
109         return ~readl(local_fttmr->base + TIMER2_COUNT);
110 }
111
112 static u64 notrace fttmr010_read_sched_clock_up(void)
113 {
114         return fttmr010_read_current_timer_up();
115 }
116
117 static u64 notrace fttmr010_read_sched_clock_down(void)
118 {
119         return fttmr010_read_current_timer_down();
120 }
121
122 static int fttmr010_timer_set_next_event(unsigned long cycles,
123                                        struct clock_event_device *evt)
124 {
125         struct fttmr010 *fttmr010 = to_fttmr010(evt);
126         u32 cr;
127
128         /* Stop */
129         cr = readl(fttmr010->base + TIMER_CR);
130         cr &= ~fttmr010->t1_enable_val;
131         writel(cr, fttmr010->base + TIMER_CR);
132
133         /* Setup the match register forward/backward in time */
134         cr = readl(fttmr010->base + TIMER1_COUNT);
135         if (fttmr010->count_down)
136                 cr -= cycles;
137         else
138                 cr += cycles;
139         writel(cr, fttmr010->base + TIMER1_MATCH1);
140
141         /* Start */
142         cr = readl(fttmr010->base + TIMER_CR);
143         cr |= fttmr010->t1_enable_val;
144         writel(cr, fttmr010->base + TIMER_CR);
145
146         return 0;
147 }
148
149 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
150 {
151         struct fttmr010 *fttmr010 = to_fttmr010(evt);
152         u32 cr;
153
154         /* Stop */
155         cr = readl(fttmr010->base + TIMER_CR);
156         cr &= ~fttmr010->t1_enable_val;
157         writel(cr, fttmr010->base + TIMER_CR);
158
159         return 0;
160 }
161
162 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
163 {
164         struct fttmr010 *fttmr010 = to_fttmr010(evt);
165         u32 cr;
166
167         /* Stop */
168         cr = readl(fttmr010->base + TIMER_CR);
169         cr &= ~fttmr010->t1_enable_val;
170         writel(cr, fttmr010->base + TIMER_CR);
171
172         /* Setup counter start from 0 or ~0 */
173         writel(0, fttmr010->base + TIMER1_COUNT);
174         if (fttmr010->count_down)
175                 writel(~0, fttmr010->base + TIMER1_LOAD);
176         else
177                 writel(0, fttmr010->base + TIMER1_LOAD);
178
179         /* Enable interrupt */
180         cr = readl(fttmr010->base + TIMER_INTR_MASK);
181         cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
182         cr |= TIMER_1_INT_MATCH1;
183         writel(cr, fttmr010->base + TIMER_INTR_MASK);
184
185         return 0;
186 }
187
188 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
189 {
190         struct fttmr010 *fttmr010 = to_fttmr010(evt);
191         u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
192         u32 cr;
193
194         /* Stop */
195         cr = readl(fttmr010->base + TIMER_CR);
196         cr &= ~fttmr010->t1_enable_val;
197         writel(cr, fttmr010->base + TIMER_CR);
198
199         /* Setup timer to fire at 1/HZ intervals. */
200         if (fttmr010->count_down) {
201                 writel(period, fttmr010->base + TIMER1_LOAD);
202                 writel(0, fttmr010->base + TIMER1_MATCH1);
203         } else {
204                 cr = 0xffffffff - (period - 1);
205                 writel(cr, fttmr010->base + TIMER1_COUNT);
206                 writel(cr, fttmr010->base + TIMER1_LOAD);
207
208                 /* Enable interrupt on overflow */
209                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
210                 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
211                 cr |= TIMER_1_INT_OVERFLOW;
212                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
213         }
214
215         /* Start the timer */
216         cr = readl(fttmr010->base + TIMER_CR);
217         cr |= fttmr010->t1_enable_val;
218         writel(cr, fttmr010->base + TIMER_CR);
219
220         return 0;
221 }
222
223 /*
224  * IRQ handler for the timer
225  */
226 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
227 {
228         struct clock_event_device *evt = dev_id;
229
230         evt->event_handler(evt);
231         return IRQ_HANDLED;
232 }
233
234 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
235 {
236         struct fttmr010 *fttmr010;
237         int irq;
238         struct clk *clk;
239         int ret;
240         u32 val;
241
242         /*
243          * These implementations require a clock reference.
244          * FIXME: we currently only support clocking using PCLK
245          * and using EXTCLK is not supported in the driver.
246          */
247         clk = of_clk_get_by_name(np, "PCLK");
248         if (IS_ERR(clk)) {
249                 pr_err("could not get PCLK\n");
250                 return PTR_ERR(clk);
251         }
252         ret = clk_prepare_enable(clk);
253         if (ret) {
254                 pr_err("failed to enable PCLK\n");
255                 return ret;
256         }
257
258         fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
259         if (!fttmr010) {
260                 ret = -ENOMEM;
261                 goto out_disable_clock;
262         }
263         fttmr010->tick_rate = clk_get_rate(clk);
264
265         fttmr010->base = of_iomap(np, 0);
266         if (!fttmr010->base) {
267                 pr_err("Can't remap registers");
268                 ret = -ENXIO;
269                 goto out_free;
270         }
271         /* IRQ for timer 1 */
272         irq = irq_of_parse_and_map(np, 0);
273         if (irq <= 0) {
274                 pr_err("Can't parse IRQ");
275                 ret = -EINVAL;
276                 goto out_unmap;
277         }
278
279         /*
280          * The Aspeed AST2400 moves bits around in the control register,
281          * otherwise it works the same.
282          */
283         if (is_aspeed) {
284                 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
285                         TIMER_1_CR_ASPEED_INT;
286                 /* Downward not available */
287                 fttmr010->count_down = true;
288         } else {
289                 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
290         }
291
292         /*
293          * Reset the interrupt mask and status
294          */
295         writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
296         writel(0, fttmr010->base + TIMER_INTR_STATE);
297
298         /*
299          * Enable timer 1 count up, timer 2 count up, except on Aspeed,
300          * where everything just counts down.
301          */
302         if (is_aspeed)
303                 val = TIMER_2_CR_ASPEED_ENABLE;
304         else {
305                 val = TIMER_2_CR_ENABLE;
306                 if (!fttmr010->count_down)
307                         val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
308         }
309         writel(val, fttmr010->base + TIMER_CR);
310
311         /*
312          * Setup free-running clocksource timer (interrupts
313          * disabled.)
314          */
315         local_fttmr = fttmr010;
316         writel(0, fttmr010->base + TIMER2_COUNT);
317         writel(0, fttmr010->base + TIMER2_MATCH1);
318         writel(0, fttmr010->base + TIMER2_MATCH2);
319
320         if (fttmr010->count_down) {
321                 writel(~0, fttmr010->base + TIMER2_LOAD);
322                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
323                                       "FTTMR010-TIMER2",
324                                       fttmr010->tick_rate,
325                                       300, 32, clocksource_mmio_readl_down);
326                 sched_clock_register(fttmr010_read_sched_clock_down, 32,
327                                      fttmr010->tick_rate);
328         } else {
329                 writel(0, fttmr010->base + TIMER2_LOAD);
330                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
331                                       "FTTMR010-TIMER2",
332                                       fttmr010->tick_rate,
333                                       300, 32, clocksource_mmio_readl_up);
334                 sched_clock_register(fttmr010_read_sched_clock_up, 32,
335                                      fttmr010->tick_rate);
336         }
337
338         /*
339          * Setup clockevent timer (interrupt-driven) on timer 1.
340          */
341         writel(0, fttmr010->base + TIMER1_COUNT);
342         writel(0, fttmr010->base + TIMER1_LOAD);
343         writel(0, fttmr010->base + TIMER1_MATCH1);
344         writel(0, fttmr010->base + TIMER1_MATCH2);
345         ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
346                           "FTTMR010-TIMER1", &fttmr010->clkevt);
347         if (ret) {
348                 pr_err("FTTMR010-TIMER1 no IRQ\n");
349                 goto out_unmap;
350         }
351
352         fttmr010->clkevt.name = "FTTMR010-TIMER1";
353         /* Reasonably fast and accurate clock event */
354         fttmr010->clkevt.rating = 300;
355         fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
356                 CLOCK_EVT_FEAT_ONESHOT;
357         fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
358         fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
359         fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
360         fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
361         fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
362         fttmr010->clkevt.cpumask = cpumask_of(0);
363         fttmr010->clkevt.irq = irq;
364         clockevents_config_and_register(&fttmr010->clkevt,
365                                         fttmr010->tick_rate,
366                                         1, 0xffffffff);
367
368 #ifdef CONFIG_ARM
369         /* Also use this timer for delays */
370         if (fttmr010->count_down)
371                 fttmr010->delay_timer.read_current_timer =
372                         fttmr010_read_current_timer_down;
373         else
374                 fttmr010->delay_timer.read_current_timer =
375                         fttmr010_read_current_timer_up;
376         fttmr010->delay_timer.freq = fttmr010->tick_rate;
377         register_current_timer_delay(&fttmr010->delay_timer);
378 #endif
379
380         return 0;
381
382 out_unmap:
383         iounmap(fttmr010->base);
384 out_free:
385         kfree(fttmr010);
386 out_disable_clock:
387         clk_disable_unprepare(clk);
388
389         return ret;
390 }
391
392 static __init int aspeed_timer_init(struct device_node *np)
393 {
394         return fttmr010_common_init(np, true);
395 }
396
397 static __init int fttmr010_timer_init(struct device_node *np)
398 {
399         return fttmr010_common_init(np, false);
400 }
401
402 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
403 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
404 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
405 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
406 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);