Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36
37 #include "zram_drv.h"
38
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53
54 static const struct block_device_operations zram_devops;
55
56 static void zram_free_page(struct zram *zram, size_t index);
57 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
58                           struct bio *parent);
59
60 static int zram_slot_trylock(struct zram *zram, u32 index)
61 {
62         return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
63 }
64
65 static void zram_slot_lock(struct zram *zram, u32 index)
66 {
67         bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
68 }
69
70 static void zram_slot_unlock(struct zram *zram, u32 index)
71 {
72         bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
73 }
74
75 static inline bool init_done(struct zram *zram)
76 {
77         return zram->disksize;
78 }
79
80 static inline struct zram *dev_to_zram(struct device *dev)
81 {
82         return (struct zram *)dev_to_disk(dev)->private_data;
83 }
84
85 static unsigned long zram_get_handle(struct zram *zram, u32 index)
86 {
87         return zram->table[index].handle;
88 }
89
90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91 {
92         zram->table[index].handle = handle;
93 }
94
95 /* flag operations require table entry bit_spin_lock() being held */
96 static bool zram_test_flag(struct zram *zram, u32 index,
97                         enum zram_pageflags flag)
98 {
99         return zram->table[index].flags & BIT(flag);
100 }
101
102 static void zram_set_flag(struct zram *zram, u32 index,
103                         enum zram_pageflags flag)
104 {
105         zram->table[index].flags |= BIT(flag);
106 }
107
108 static void zram_clear_flag(struct zram *zram, u32 index,
109                         enum zram_pageflags flag)
110 {
111         zram->table[index].flags &= ~BIT(flag);
112 }
113
114 static inline void zram_set_element(struct zram *zram, u32 index,
115                         unsigned long element)
116 {
117         zram->table[index].element = element;
118 }
119
120 static unsigned long zram_get_element(struct zram *zram, u32 index)
121 {
122         return zram->table[index].element;
123 }
124
125 static size_t zram_get_obj_size(struct zram *zram, u32 index)
126 {
127         return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
128 }
129
130 static void zram_set_obj_size(struct zram *zram,
131                                         u32 index, size_t size)
132 {
133         unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134
135         zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
136 }
137
138 static inline bool zram_allocated(struct zram *zram, u32 index)
139 {
140         return zram_get_obj_size(zram, index) ||
141                         zram_test_flag(zram, index, ZRAM_SAME) ||
142                         zram_test_flag(zram, index, ZRAM_WB);
143 }
144
145 #if PAGE_SIZE != 4096
146 static inline bool is_partial_io(struct bio_vec *bvec)
147 {
148         return bvec->bv_len != PAGE_SIZE;
149 }
150 #define ZRAM_PARTIAL_IO         1
151 #else
152 static inline bool is_partial_io(struct bio_vec *bvec)
153 {
154         return false;
155 }
156 #endif
157
158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
159 {
160         prio &= ZRAM_COMP_PRIORITY_MASK;
161         /*
162          * Clear previous priority value first, in case if we recompress
163          * further an already recompressed page
164          */
165         zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
166                                       ZRAM_COMP_PRIORITY_BIT1);
167         zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
168 }
169
170 static inline u32 zram_get_priority(struct zram *zram, u32 index)
171 {
172         u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
173
174         return prio & ZRAM_COMP_PRIORITY_MASK;
175 }
176
177 static void zram_accessed(struct zram *zram, u32 index)
178 {
179         zram_clear_flag(zram, index, ZRAM_IDLE);
180 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
181         zram->table[index].ac_time = ktime_get_boottime();
182 #endif
183 }
184
185 static inline void update_used_max(struct zram *zram,
186                                         const unsigned long pages)
187 {
188         unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
189
190         do {
191                 if (cur_max >= pages)
192                         return;
193         } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
194                                           &cur_max, pages));
195 }
196
197 static inline void zram_fill_page(void *ptr, unsigned long len,
198                                         unsigned long value)
199 {
200         WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
201         memset_l(ptr, value, len / sizeof(unsigned long));
202 }
203
204 static bool page_same_filled(void *ptr, unsigned long *element)
205 {
206         unsigned long *page;
207         unsigned long val;
208         unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
209
210         page = (unsigned long *)ptr;
211         val = page[0];
212
213         if (val != page[last_pos])
214                 return false;
215
216         for (pos = 1; pos < last_pos; pos++) {
217                 if (val != page[pos])
218                         return false;
219         }
220
221         *element = val;
222
223         return true;
224 }
225
226 static ssize_t initstate_show(struct device *dev,
227                 struct device_attribute *attr, char *buf)
228 {
229         u32 val;
230         struct zram *zram = dev_to_zram(dev);
231
232         down_read(&zram->init_lock);
233         val = init_done(zram);
234         up_read(&zram->init_lock);
235
236         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
237 }
238
239 static ssize_t disksize_show(struct device *dev,
240                 struct device_attribute *attr, char *buf)
241 {
242         struct zram *zram = dev_to_zram(dev);
243
244         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
245 }
246
247 static ssize_t mem_limit_store(struct device *dev,
248                 struct device_attribute *attr, const char *buf, size_t len)
249 {
250         u64 limit;
251         char *tmp;
252         struct zram *zram = dev_to_zram(dev);
253
254         limit = memparse(buf, &tmp);
255         if (buf == tmp) /* no chars parsed, invalid input */
256                 return -EINVAL;
257
258         down_write(&zram->init_lock);
259         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
260         up_write(&zram->init_lock);
261
262         return len;
263 }
264
265 static ssize_t mem_used_max_store(struct device *dev,
266                 struct device_attribute *attr, const char *buf, size_t len)
267 {
268         int err;
269         unsigned long val;
270         struct zram *zram = dev_to_zram(dev);
271
272         err = kstrtoul(buf, 10, &val);
273         if (err || val != 0)
274                 return -EINVAL;
275
276         down_read(&zram->init_lock);
277         if (init_done(zram)) {
278                 atomic_long_set(&zram->stats.max_used_pages,
279                                 zs_get_total_pages(zram->mem_pool));
280         }
281         up_read(&zram->init_lock);
282
283         return len;
284 }
285
286 /*
287  * Mark all pages which are older than or equal to cutoff as IDLE.
288  * Callers should hold the zram init lock in read mode
289  */
290 static void mark_idle(struct zram *zram, ktime_t cutoff)
291 {
292         int is_idle = 1;
293         unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
294         int index;
295
296         for (index = 0; index < nr_pages; index++) {
297                 /*
298                  * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
299                  * See the comment in writeback_store.
300                  */
301                 zram_slot_lock(zram, index);
302                 if (zram_allocated(zram, index) &&
303                                 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
304 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
305                         is_idle = !cutoff || ktime_after(cutoff,
306                                                          zram->table[index].ac_time);
307 #endif
308                         if (is_idle)
309                                 zram_set_flag(zram, index, ZRAM_IDLE);
310                 }
311                 zram_slot_unlock(zram, index);
312         }
313 }
314
315 static ssize_t idle_store(struct device *dev,
316                 struct device_attribute *attr, const char *buf, size_t len)
317 {
318         struct zram *zram = dev_to_zram(dev);
319         ktime_t cutoff_time = 0;
320         ssize_t rv = -EINVAL;
321
322         if (!sysfs_streq(buf, "all")) {
323                 /*
324                  * If it did not parse as 'all' try to treat it as an integer
325                  * when we have memory tracking enabled.
326                  */
327                 u64 age_sec;
328
329                 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
330                         cutoff_time = ktime_sub(ktime_get_boottime(),
331                                         ns_to_ktime(age_sec * NSEC_PER_SEC));
332                 else
333                         goto out;
334         }
335
336         down_read(&zram->init_lock);
337         if (!init_done(zram))
338                 goto out_unlock;
339
340         /*
341          * A cutoff_time of 0 marks everything as idle, this is the
342          * "all" behavior.
343          */
344         mark_idle(zram, cutoff_time);
345         rv = len;
346
347 out_unlock:
348         up_read(&zram->init_lock);
349 out:
350         return rv;
351 }
352
353 #ifdef CONFIG_ZRAM_WRITEBACK
354 static ssize_t writeback_limit_enable_store(struct device *dev,
355                 struct device_attribute *attr, const char *buf, size_t len)
356 {
357         struct zram *zram = dev_to_zram(dev);
358         u64 val;
359         ssize_t ret = -EINVAL;
360
361         if (kstrtoull(buf, 10, &val))
362                 return ret;
363
364         down_read(&zram->init_lock);
365         spin_lock(&zram->wb_limit_lock);
366         zram->wb_limit_enable = val;
367         spin_unlock(&zram->wb_limit_lock);
368         up_read(&zram->init_lock);
369         ret = len;
370
371         return ret;
372 }
373
374 static ssize_t writeback_limit_enable_show(struct device *dev,
375                 struct device_attribute *attr, char *buf)
376 {
377         bool val;
378         struct zram *zram = dev_to_zram(dev);
379
380         down_read(&zram->init_lock);
381         spin_lock(&zram->wb_limit_lock);
382         val = zram->wb_limit_enable;
383         spin_unlock(&zram->wb_limit_lock);
384         up_read(&zram->init_lock);
385
386         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
387 }
388
389 static ssize_t writeback_limit_store(struct device *dev,
390                 struct device_attribute *attr, const char *buf, size_t len)
391 {
392         struct zram *zram = dev_to_zram(dev);
393         u64 val;
394         ssize_t ret = -EINVAL;
395
396         if (kstrtoull(buf, 10, &val))
397                 return ret;
398
399         down_read(&zram->init_lock);
400         spin_lock(&zram->wb_limit_lock);
401         zram->bd_wb_limit = val;
402         spin_unlock(&zram->wb_limit_lock);
403         up_read(&zram->init_lock);
404         ret = len;
405
406         return ret;
407 }
408
409 static ssize_t writeback_limit_show(struct device *dev,
410                 struct device_attribute *attr, char *buf)
411 {
412         u64 val;
413         struct zram *zram = dev_to_zram(dev);
414
415         down_read(&zram->init_lock);
416         spin_lock(&zram->wb_limit_lock);
417         val = zram->bd_wb_limit;
418         spin_unlock(&zram->wb_limit_lock);
419         up_read(&zram->init_lock);
420
421         return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
422 }
423
424 static void reset_bdev(struct zram *zram)
425 {
426         if (!zram->backing_dev)
427                 return;
428
429         fput(zram->bdev_file);
430         /* hope filp_close flush all of IO */
431         filp_close(zram->backing_dev, NULL);
432         zram->backing_dev = NULL;
433         zram->bdev_file = NULL;
434         zram->disk->fops = &zram_devops;
435         kvfree(zram->bitmap);
436         zram->bitmap = NULL;
437 }
438
439 static ssize_t backing_dev_show(struct device *dev,
440                 struct device_attribute *attr, char *buf)
441 {
442         struct file *file;
443         struct zram *zram = dev_to_zram(dev);
444         char *p;
445         ssize_t ret;
446
447         down_read(&zram->init_lock);
448         file = zram->backing_dev;
449         if (!file) {
450                 memcpy(buf, "none\n", 5);
451                 up_read(&zram->init_lock);
452                 return 5;
453         }
454
455         p = file_path(file, buf, PAGE_SIZE - 1);
456         if (IS_ERR(p)) {
457                 ret = PTR_ERR(p);
458                 goto out;
459         }
460
461         ret = strlen(p);
462         memmove(buf, p, ret);
463         buf[ret++] = '\n';
464 out:
465         up_read(&zram->init_lock);
466         return ret;
467 }
468
469 static ssize_t backing_dev_store(struct device *dev,
470                 struct device_attribute *attr, const char *buf, size_t len)
471 {
472         char *file_name;
473         size_t sz;
474         struct file *backing_dev = NULL;
475         struct inode *inode;
476         struct address_space *mapping;
477         unsigned int bitmap_sz;
478         unsigned long nr_pages, *bitmap = NULL;
479         struct file *bdev_file = NULL;
480         int err;
481         struct zram *zram = dev_to_zram(dev);
482
483         file_name = kmalloc(PATH_MAX, GFP_KERNEL);
484         if (!file_name)
485                 return -ENOMEM;
486
487         down_write(&zram->init_lock);
488         if (init_done(zram)) {
489                 pr_info("Can't setup backing device for initialized device\n");
490                 err = -EBUSY;
491                 goto out;
492         }
493
494         strscpy(file_name, buf, PATH_MAX);
495         /* ignore trailing newline */
496         sz = strlen(file_name);
497         if (sz > 0 && file_name[sz - 1] == '\n')
498                 file_name[sz - 1] = 0x00;
499
500         backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
501         if (IS_ERR(backing_dev)) {
502                 err = PTR_ERR(backing_dev);
503                 backing_dev = NULL;
504                 goto out;
505         }
506
507         mapping = backing_dev->f_mapping;
508         inode = mapping->host;
509
510         /* Support only block device in this moment */
511         if (!S_ISBLK(inode->i_mode)) {
512                 err = -ENOTBLK;
513                 goto out;
514         }
515
516         bdev_file = bdev_file_open_by_dev(inode->i_rdev,
517                                 BLK_OPEN_READ | BLK_OPEN_WRITE, zram, NULL);
518         if (IS_ERR(bdev_file)) {
519                 err = PTR_ERR(bdev_file);
520                 bdev_file = NULL;
521                 goto out;
522         }
523
524         nr_pages = i_size_read(inode) >> PAGE_SHIFT;
525         bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
526         bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
527         if (!bitmap) {
528                 err = -ENOMEM;
529                 goto out;
530         }
531
532         reset_bdev(zram);
533
534         zram->bdev_file = bdev_file;
535         zram->backing_dev = backing_dev;
536         zram->bitmap = bitmap;
537         zram->nr_pages = nr_pages;
538         up_write(&zram->init_lock);
539
540         pr_info("setup backing device %s\n", file_name);
541         kfree(file_name);
542
543         return len;
544 out:
545         kvfree(bitmap);
546
547         if (bdev_file)
548                 fput(bdev_file);
549
550         if (backing_dev)
551                 filp_close(backing_dev, NULL);
552
553         up_write(&zram->init_lock);
554
555         kfree(file_name);
556
557         return err;
558 }
559
560 static unsigned long alloc_block_bdev(struct zram *zram)
561 {
562         unsigned long blk_idx = 1;
563 retry:
564         /* skip 0 bit to confuse zram.handle = 0 */
565         blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
566         if (blk_idx == zram->nr_pages)
567                 return 0;
568
569         if (test_and_set_bit(blk_idx, zram->bitmap))
570                 goto retry;
571
572         atomic64_inc(&zram->stats.bd_count);
573         return blk_idx;
574 }
575
576 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
577 {
578         int was_set;
579
580         was_set = test_and_clear_bit(blk_idx, zram->bitmap);
581         WARN_ON_ONCE(!was_set);
582         atomic64_dec(&zram->stats.bd_count);
583 }
584
585 static void read_from_bdev_async(struct zram *zram, struct page *page,
586                         unsigned long entry, struct bio *parent)
587 {
588         struct bio *bio;
589
590         bio = bio_alloc(file_bdev(zram->bdev_file), 1, parent->bi_opf, GFP_NOIO);
591         bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
592         __bio_add_page(bio, page, PAGE_SIZE, 0);
593         bio_chain(bio, parent);
594         submit_bio(bio);
595 }
596
597 #define PAGE_WB_SIG "page_index="
598
599 #define PAGE_WRITEBACK                  0
600 #define HUGE_WRITEBACK                  (1<<0)
601 #define IDLE_WRITEBACK                  (1<<1)
602 #define INCOMPRESSIBLE_WRITEBACK        (1<<2)
603
604 static ssize_t writeback_store(struct device *dev,
605                 struct device_attribute *attr, const char *buf, size_t len)
606 {
607         struct zram *zram = dev_to_zram(dev);
608         unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
609         unsigned long index = 0;
610         struct bio bio;
611         struct bio_vec bio_vec;
612         struct page *page;
613         ssize_t ret = len;
614         int mode, err;
615         unsigned long blk_idx = 0;
616
617         if (sysfs_streq(buf, "idle"))
618                 mode = IDLE_WRITEBACK;
619         else if (sysfs_streq(buf, "huge"))
620                 mode = HUGE_WRITEBACK;
621         else if (sysfs_streq(buf, "huge_idle"))
622                 mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
623         else if (sysfs_streq(buf, "incompressible"))
624                 mode = INCOMPRESSIBLE_WRITEBACK;
625         else {
626                 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
627                         return -EINVAL;
628
629                 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
630                                 index >= nr_pages)
631                         return -EINVAL;
632
633                 nr_pages = 1;
634                 mode = PAGE_WRITEBACK;
635         }
636
637         down_read(&zram->init_lock);
638         if (!init_done(zram)) {
639                 ret = -EINVAL;
640                 goto release_init_lock;
641         }
642
643         if (!zram->backing_dev) {
644                 ret = -ENODEV;
645                 goto release_init_lock;
646         }
647
648         page = alloc_page(GFP_KERNEL);
649         if (!page) {
650                 ret = -ENOMEM;
651                 goto release_init_lock;
652         }
653
654         for (; nr_pages != 0; index++, nr_pages--) {
655                 spin_lock(&zram->wb_limit_lock);
656                 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
657                         spin_unlock(&zram->wb_limit_lock);
658                         ret = -EIO;
659                         break;
660                 }
661                 spin_unlock(&zram->wb_limit_lock);
662
663                 if (!blk_idx) {
664                         blk_idx = alloc_block_bdev(zram);
665                         if (!blk_idx) {
666                                 ret = -ENOSPC;
667                                 break;
668                         }
669                 }
670
671                 zram_slot_lock(zram, index);
672                 if (!zram_allocated(zram, index))
673                         goto next;
674
675                 if (zram_test_flag(zram, index, ZRAM_WB) ||
676                                 zram_test_flag(zram, index, ZRAM_SAME) ||
677                                 zram_test_flag(zram, index, ZRAM_UNDER_WB))
678                         goto next;
679
680                 if (mode & IDLE_WRITEBACK &&
681                     !zram_test_flag(zram, index, ZRAM_IDLE))
682                         goto next;
683                 if (mode & HUGE_WRITEBACK &&
684                     !zram_test_flag(zram, index, ZRAM_HUGE))
685                         goto next;
686                 if (mode & INCOMPRESSIBLE_WRITEBACK &&
687                     !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
688                         goto next;
689
690                 /*
691                  * Clearing ZRAM_UNDER_WB is duty of caller.
692                  * IOW, zram_free_page never clear it.
693                  */
694                 zram_set_flag(zram, index, ZRAM_UNDER_WB);
695                 /* Need for hugepage writeback racing */
696                 zram_set_flag(zram, index, ZRAM_IDLE);
697                 zram_slot_unlock(zram, index);
698                 if (zram_read_page(zram, page, index, NULL)) {
699                         zram_slot_lock(zram, index);
700                         zram_clear_flag(zram, index, ZRAM_UNDER_WB);
701                         zram_clear_flag(zram, index, ZRAM_IDLE);
702                         zram_slot_unlock(zram, index);
703                         continue;
704                 }
705
706                 bio_init(&bio, file_bdev(zram->bdev_file), &bio_vec, 1,
707                          REQ_OP_WRITE | REQ_SYNC);
708                 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
709                 __bio_add_page(&bio, page, PAGE_SIZE, 0);
710
711                 /*
712                  * XXX: A single page IO would be inefficient for write
713                  * but it would be not bad as starter.
714                  */
715                 err = submit_bio_wait(&bio);
716                 if (err) {
717                         zram_slot_lock(zram, index);
718                         zram_clear_flag(zram, index, ZRAM_UNDER_WB);
719                         zram_clear_flag(zram, index, ZRAM_IDLE);
720                         zram_slot_unlock(zram, index);
721                         /*
722                          * BIO errors are not fatal, we continue and simply
723                          * attempt to writeback the remaining objects (pages).
724                          * At the same time we need to signal user-space that
725                          * some writes (at least one, but also could be all of
726                          * them) were not successful and we do so by returning
727                          * the most recent BIO error.
728                          */
729                         ret = err;
730                         continue;
731                 }
732
733                 atomic64_inc(&zram->stats.bd_writes);
734                 /*
735                  * We released zram_slot_lock so need to check if the slot was
736                  * changed. If there is freeing for the slot, we can catch it
737                  * easily by zram_allocated.
738                  * A subtle case is the slot is freed/reallocated/marked as
739                  * ZRAM_IDLE again. To close the race, idle_store doesn't
740                  * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
741                  * Thus, we could close the race by checking ZRAM_IDLE bit.
742                  */
743                 zram_slot_lock(zram, index);
744                 if (!zram_allocated(zram, index) ||
745                           !zram_test_flag(zram, index, ZRAM_IDLE)) {
746                         zram_clear_flag(zram, index, ZRAM_UNDER_WB);
747                         zram_clear_flag(zram, index, ZRAM_IDLE);
748                         goto next;
749                 }
750
751                 zram_free_page(zram, index);
752                 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
753                 zram_set_flag(zram, index, ZRAM_WB);
754                 zram_set_element(zram, index, blk_idx);
755                 blk_idx = 0;
756                 atomic64_inc(&zram->stats.pages_stored);
757                 spin_lock(&zram->wb_limit_lock);
758                 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
759                         zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
760                 spin_unlock(&zram->wb_limit_lock);
761 next:
762                 zram_slot_unlock(zram, index);
763         }
764
765         if (blk_idx)
766                 free_block_bdev(zram, blk_idx);
767         __free_page(page);
768 release_init_lock:
769         up_read(&zram->init_lock);
770
771         return ret;
772 }
773
774 struct zram_work {
775         struct work_struct work;
776         struct zram *zram;
777         unsigned long entry;
778         struct page *page;
779         int error;
780 };
781
782 static void zram_sync_read(struct work_struct *work)
783 {
784         struct zram_work *zw = container_of(work, struct zram_work, work);
785         struct bio_vec bv;
786         struct bio bio;
787
788         bio_init(&bio, file_bdev(zw->zram->bdev_file), &bv, 1, REQ_OP_READ);
789         bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
790         __bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
791         zw->error = submit_bio_wait(&bio);
792 }
793
794 /*
795  * Block layer want one ->submit_bio to be active at a time, so if we use
796  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
797  * use a worker thread context.
798  */
799 static int read_from_bdev_sync(struct zram *zram, struct page *page,
800                                 unsigned long entry)
801 {
802         struct zram_work work;
803
804         work.page = page;
805         work.zram = zram;
806         work.entry = entry;
807
808         INIT_WORK_ONSTACK(&work.work, zram_sync_read);
809         queue_work(system_unbound_wq, &work.work);
810         flush_work(&work.work);
811         destroy_work_on_stack(&work.work);
812
813         return work.error;
814 }
815
816 static int read_from_bdev(struct zram *zram, struct page *page,
817                         unsigned long entry, struct bio *parent)
818 {
819         atomic64_inc(&zram->stats.bd_reads);
820         if (!parent) {
821                 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
822                         return -EIO;
823                 return read_from_bdev_sync(zram, page, entry);
824         }
825         read_from_bdev_async(zram, page, entry, parent);
826         return 0;
827 }
828 #else
829 static inline void reset_bdev(struct zram *zram) {};
830 static int read_from_bdev(struct zram *zram, struct page *page,
831                         unsigned long entry, struct bio *parent)
832 {
833         return -EIO;
834 }
835
836 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
837 #endif
838
839 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
840
841 static struct dentry *zram_debugfs_root;
842
843 static void zram_debugfs_create(void)
844 {
845         zram_debugfs_root = debugfs_create_dir("zram", NULL);
846 }
847
848 static void zram_debugfs_destroy(void)
849 {
850         debugfs_remove_recursive(zram_debugfs_root);
851 }
852
853 static ssize_t read_block_state(struct file *file, char __user *buf,
854                                 size_t count, loff_t *ppos)
855 {
856         char *kbuf;
857         ssize_t index, written = 0;
858         struct zram *zram = file->private_data;
859         unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
860         struct timespec64 ts;
861
862         kbuf = kvmalloc(count, GFP_KERNEL);
863         if (!kbuf)
864                 return -ENOMEM;
865
866         down_read(&zram->init_lock);
867         if (!init_done(zram)) {
868                 up_read(&zram->init_lock);
869                 kvfree(kbuf);
870                 return -EINVAL;
871         }
872
873         for (index = *ppos; index < nr_pages; index++) {
874                 int copied;
875
876                 zram_slot_lock(zram, index);
877                 if (!zram_allocated(zram, index))
878                         goto next;
879
880                 ts = ktime_to_timespec64(zram->table[index].ac_time);
881                 copied = snprintf(kbuf + written, count,
882                         "%12zd %12lld.%06lu %c%c%c%c%c%c\n",
883                         index, (s64)ts.tv_sec,
884                         ts.tv_nsec / NSEC_PER_USEC,
885                         zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
886                         zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
887                         zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
888                         zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
889                         zram_get_priority(zram, index) ? 'r' : '.',
890                         zram_test_flag(zram, index,
891                                        ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
892
893                 if (count <= copied) {
894                         zram_slot_unlock(zram, index);
895                         break;
896                 }
897                 written += copied;
898                 count -= copied;
899 next:
900                 zram_slot_unlock(zram, index);
901                 *ppos += 1;
902         }
903
904         up_read(&zram->init_lock);
905         if (copy_to_user(buf, kbuf, written))
906                 written = -EFAULT;
907         kvfree(kbuf);
908
909         return written;
910 }
911
912 static const struct file_operations proc_zram_block_state_op = {
913         .open = simple_open,
914         .read = read_block_state,
915         .llseek = default_llseek,
916 };
917
918 static void zram_debugfs_register(struct zram *zram)
919 {
920         if (!zram_debugfs_root)
921                 return;
922
923         zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
924                                                 zram_debugfs_root);
925         debugfs_create_file("block_state", 0400, zram->debugfs_dir,
926                                 zram, &proc_zram_block_state_op);
927 }
928
929 static void zram_debugfs_unregister(struct zram *zram)
930 {
931         debugfs_remove_recursive(zram->debugfs_dir);
932 }
933 #else
934 static void zram_debugfs_create(void) {};
935 static void zram_debugfs_destroy(void) {};
936 static void zram_debugfs_register(struct zram *zram) {};
937 static void zram_debugfs_unregister(struct zram *zram) {};
938 #endif
939
940 /*
941  * We switched to per-cpu streams and this attr is not needed anymore.
942  * However, we will keep it around for some time, because:
943  * a) we may revert per-cpu streams in the future
944  * b) it's visible to user space and we need to follow our 2 years
945  *    retirement rule; but we already have a number of 'soon to be
946  *    altered' attrs, so max_comp_streams need to wait for the next
947  *    layoff cycle.
948  */
949 static ssize_t max_comp_streams_show(struct device *dev,
950                 struct device_attribute *attr, char *buf)
951 {
952         return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
953 }
954
955 static ssize_t max_comp_streams_store(struct device *dev,
956                 struct device_attribute *attr, const char *buf, size_t len)
957 {
958         return len;
959 }
960
961 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
962 {
963         /* Do not free statically defined compression algorithms */
964         if (zram->comp_algs[prio] != default_compressor)
965                 kfree(zram->comp_algs[prio]);
966
967         zram->comp_algs[prio] = alg;
968 }
969
970 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
971 {
972         ssize_t sz;
973
974         down_read(&zram->init_lock);
975         sz = zcomp_available_show(zram->comp_algs[prio], buf);
976         up_read(&zram->init_lock);
977
978         return sz;
979 }
980
981 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
982 {
983         char *compressor;
984         size_t sz;
985
986         sz = strlen(buf);
987         if (sz >= CRYPTO_MAX_ALG_NAME)
988                 return -E2BIG;
989
990         compressor = kstrdup(buf, GFP_KERNEL);
991         if (!compressor)
992                 return -ENOMEM;
993
994         /* ignore trailing newline */
995         if (sz > 0 && compressor[sz - 1] == '\n')
996                 compressor[sz - 1] = 0x00;
997
998         if (!zcomp_available_algorithm(compressor)) {
999                 kfree(compressor);
1000                 return -EINVAL;
1001         }
1002
1003         down_write(&zram->init_lock);
1004         if (init_done(zram)) {
1005                 up_write(&zram->init_lock);
1006                 kfree(compressor);
1007                 pr_info("Can't change algorithm for initialized device\n");
1008                 return -EBUSY;
1009         }
1010
1011         comp_algorithm_set(zram, prio, compressor);
1012         up_write(&zram->init_lock);
1013         return 0;
1014 }
1015
1016 static ssize_t comp_algorithm_show(struct device *dev,
1017                                    struct device_attribute *attr,
1018                                    char *buf)
1019 {
1020         struct zram *zram = dev_to_zram(dev);
1021
1022         return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1023 }
1024
1025 static ssize_t comp_algorithm_store(struct device *dev,
1026                                     struct device_attribute *attr,
1027                                     const char *buf,
1028                                     size_t len)
1029 {
1030         struct zram *zram = dev_to_zram(dev);
1031         int ret;
1032
1033         ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1034         return ret ? ret : len;
1035 }
1036
1037 #ifdef CONFIG_ZRAM_MULTI_COMP
1038 static ssize_t recomp_algorithm_show(struct device *dev,
1039                                      struct device_attribute *attr,
1040                                      char *buf)
1041 {
1042         struct zram *zram = dev_to_zram(dev);
1043         ssize_t sz = 0;
1044         u32 prio;
1045
1046         for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1047                 if (!zram->comp_algs[prio])
1048                         continue;
1049
1050                 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1051                 sz += __comp_algorithm_show(zram, prio, buf + sz);
1052         }
1053
1054         return sz;
1055 }
1056
1057 static ssize_t recomp_algorithm_store(struct device *dev,
1058                                       struct device_attribute *attr,
1059                                       const char *buf,
1060                                       size_t len)
1061 {
1062         struct zram *zram = dev_to_zram(dev);
1063         int prio = ZRAM_SECONDARY_COMP;
1064         char *args, *param, *val;
1065         char *alg = NULL;
1066         int ret;
1067
1068         args = skip_spaces(buf);
1069         while (*args) {
1070                 args = next_arg(args, &param, &val);
1071
1072                 if (!val || !*val)
1073                         return -EINVAL;
1074
1075                 if (!strcmp(param, "algo")) {
1076                         alg = val;
1077                         continue;
1078                 }
1079
1080                 if (!strcmp(param, "priority")) {
1081                         ret = kstrtoint(val, 10, &prio);
1082                         if (ret)
1083                                 return ret;
1084                         continue;
1085                 }
1086         }
1087
1088         if (!alg)
1089                 return -EINVAL;
1090
1091         if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1092                 return -EINVAL;
1093
1094         ret = __comp_algorithm_store(zram, prio, alg);
1095         return ret ? ret : len;
1096 }
1097 #endif
1098
1099 static ssize_t compact_store(struct device *dev,
1100                 struct device_attribute *attr, const char *buf, size_t len)
1101 {
1102         struct zram *zram = dev_to_zram(dev);
1103
1104         down_read(&zram->init_lock);
1105         if (!init_done(zram)) {
1106                 up_read(&zram->init_lock);
1107                 return -EINVAL;
1108         }
1109
1110         zs_compact(zram->mem_pool);
1111         up_read(&zram->init_lock);
1112
1113         return len;
1114 }
1115
1116 static ssize_t io_stat_show(struct device *dev,
1117                 struct device_attribute *attr, char *buf)
1118 {
1119         struct zram *zram = dev_to_zram(dev);
1120         ssize_t ret;
1121
1122         down_read(&zram->init_lock);
1123         ret = scnprintf(buf, PAGE_SIZE,
1124                         "%8llu %8llu 0 %8llu\n",
1125                         (u64)atomic64_read(&zram->stats.failed_reads),
1126                         (u64)atomic64_read(&zram->stats.failed_writes),
1127                         (u64)atomic64_read(&zram->stats.notify_free));
1128         up_read(&zram->init_lock);
1129
1130         return ret;
1131 }
1132
1133 static ssize_t mm_stat_show(struct device *dev,
1134                 struct device_attribute *attr, char *buf)
1135 {
1136         struct zram *zram = dev_to_zram(dev);
1137         struct zs_pool_stats pool_stats;
1138         u64 orig_size, mem_used = 0;
1139         long max_used;
1140         ssize_t ret;
1141
1142         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1143
1144         down_read(&zram->init_lock);
1145         if (init_done(zram)) {
1146                 mem_used = zs_get_total_pages(zram->mem_pool);
1147                 zs_pool_stats(zram->mem_pool, &pool_stats);
1148         }
1149
1150         orig_size = atomic64_read(&zram->stats.pages_stored);
1151         max_used = atomic_long_read(&zram->stats.max_used_pages);
1152
1153         ret = scnprintf(buf, PAGE_SIZE,
1154                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1155                         orig_size << PAGE_SHIFT,
1156                         (u64)atomic64_read(&zram->stats.compr_data_size),
1157                         mem_used << PAGE_SHIFT,
1158                         zram->limit_pages << PAGE_SHIFT,
1159                         max_used << PAGE_SHIFT,
1160                         (u64)atomic64_read(&zram->stats.same_pages),
1161                         atomic_long_read(&pool_stats.pages_compacted),
1162                         (u64)atomic64_read(&zram->stats.huge_pages),
1163                         (u64)atomic64_read(&zram->stats.huge_pages_since));
1164         up_read(&zram->init_lock);
1165
1166         return ret;
1167 }
1168
1169 #ifdef CONFIG_ZRAM_WRITEBACK
1170 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1171 static ssize_t bd_stat_show(struct device *dev,
1172                 struct device_attribute *attr, char *buf)
1173 {
1174         struct zram *zram = dev_to_zram(dev);
1175         ssize_t ret;
1176
1177         down_read(&zram->init_lock);
1178         ret = scnprintf(buf, PAGE_SIZE,
1179                 "%8llu %8llu %8llu\n",
1180                         FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1181                         FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1182                         FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1183         up_read(&zram->init_lock);
1184
1185         return ret;
1186 }
1187 #endif
1188
1189 static ssize_t debug_stat_show(struct device *dev,
1190                 struct device_attribute *attr, char *buf)
1191 {
1192         int version = 1;
1193         struct zram *zram = dev_to_zram(dev);
1194         ssize_t ret;
1195
1196         down_read(&zram->init_lock);
1197         ret = scnprintf(buf, PAGE_SIZE,
1198                         "version: %d\n%8llu %8llu\n",
1199                         version,
1200                         (u64)atomic64_read(&zram->stats.writestall),
1201                         (u64)atomic64_read(&zram->stats.miss_free));
1202         up_read(&zram->init_lock);
1203
1204         return ret;
1205 }
1206
1207 static DEVICE_ATTR_RO(io_stat);
1208 static DEVICE_ATTR_RO(mm_stat);
1209 #ifdef CONFIG_ZRAM_WRITEBACK
1210 static DEVICE_ATTR_RO(bd_stat);
1211 #endif
1212 static DEVICE_ATTR_RO(debug_stat);
1213
1214 static void zram_meta_free(struct zram *zram, u64 disksize)
1215 {
1216         size_t num_pages = disksize >> PAGE_SHIFT;
1217         size_t index;
1218
1219         /* Free all pages that are still in this zram device */
1220         for (index = 0; index < num_pages; index++)
1221                 zram_free_page(zram, index);
1222
1223         zs_destroy_pool(zram->mem_pool);
1224         vfree(zram->table);
1225 }
1226
1227 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1228 {
1229         size_t num_pages;
1230
1231         num_pages = disksize >> PAGE_SHIFT;
1232         zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1233         if (!zram->table)
1234                 return false;
1235
1236         zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1237         if (!zram->mem_pool) {
1238                 vfree(zram->table);
1239                 return false;
1240         }
1241
1242         if (!huge_class_size)
1243                 huge_class_size = zs_huge_class_size(zram->mem_pool);
1244         return true;
1245 }
1246
1247 /*
1248  * To protect concurrent access to the same index entry,
1249  * caller should hold this table index entry's bit_spinlock to
1250  * indicate this index entry is accessing.
1251  */
1252 static void zram_free_page(struct zram *zram, size_t index)
1253 {
1254         unsigned long handle;
1255
1256 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1257         zram->table[index].ac_time = 0;
1258 #endif
1259         if (zram_test_flag(zram, index, ZRAM_IDLE))
1260                 zram_clear_flag(zram, index, ZRAM_IDLE);
1261
1262         if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1263                 zram_clear_flag(zram, index, ZRAM_HUGE);
1264                 atomic64_dec(&zram->stats.huge_pages);
1265         }
1266
1267         if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1268                 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1269
1270         zram_set_priority(zram, index, 0);
1271
1272         if (zram_test_flag(zram, index, ZRAM_WB)) {
1273                 zram_clear_flag(zram, index, ZRAM_WB);
1274                 free_block_bdev(zram, zram_get_element(zram, index));
1275                 goto out;
1276         }
1277
1278         /*
1279          * No memory is allocated for same element filled pages.
1280          * Simply clear same page flag.
1281          */
1282         if (zram_test_flag(zram, index, ZRAM_SAME)) {
1283                 zram_clear_flag(zram, index, ZRAM_SAME);
1284                 atomic64_dec(&zram->stats.same_pages);
1285                 goto out;
1286         }
1287
1288         handle = zram_get_handle(zram, index);
1289         if (!handle)
1290                 return;
1291
1292         zs_free(zram->mem_pool, handle);
1293
1294         atomic64_sub(zram_get_obj_size(zram, index),
1295                         &zram->stats.compr_data_size);
1296 out:
1297         atomic64_dec(&zram->stats.pages_stored);
1298         zram_set_handle(zram, index, 0);
1299         zram_set_obj_size(zram, index, 0);
1300         WARN_ON_ONCE(zram->table[index].flags &
1301                 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1302 }
1303
1304 /*
1305  * Reads (decompresses if needed) a page from zspool (zsmalloc).
1306  * Corresponding ZRAM slot should be locked.
1307  */
1308 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1309                                  u32 index)
1310 {
1311         struct zcomp_strm *zstrm;
1312         unsigned long handle;
1313         unsigned int size;
1314         void *src, *dst;
1315         u32 prio;
1316         int ret;
1317
1318         handle = zram_get_handle(zram, index);
1319         if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1320                 unsigned long value;
1321                 void *mem;
1322
1323                 value = handle ? zram_get_element(zram, index) : 0;
1324                 mem = kmap_local_page(page);
1325                 zram_fill_page(mem, PAGE_SIZE, value);
1326                 kunmap_local(mem);
1327                 return 0;
1328         }
1329
1330         size = zram_get_obj_size(zram, index);
1331
1332         if (size != PAGE_SIZE) {
1333                 prio = zram_get_priority(zram, index);
1334                 zstrm = zcomp_stream_get(zram->comps[prio]);
1335         }
1336
1337         src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1338         if (size == PAGE_SIZE) {
1339                 dst = kmap_local_page(page);
1340                 copy_page(dst, src);
1341                 kunmap_local(dst);
1342                 ret = 0;
1343         } else {
1344                 dst = kmap_local_page(page);
1345                 ret = zcomp_decompress(zstrm, src, size, dst);
1346                 kunmap_local(dst);
1347                 zcomp_stream_put(zram->comps[prio]);
1348         }
1349         zs_unmap_object(zram->mem_pool, handle);
1350         return ret;
1351 }
1352
1353 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1354                           struct bio *parent)
1355 {
1356         int ret;
1357
1358         zram_slot_lock(zram, index);
1359         if (!zram_test_flag(zram, index, ZRAM_WB)) {
1360                 /* Slot should be locked through out the function call */
1361                 ret = zram_read_from_zspool(zram, page, index);
1362                 zram_slot_unlock(zram, index);
1363         } else {
1364                 /*
1365                  * The slot should be unlocked before reading from the backing
1366                  * device.
1367                  */
1368                 zram_slot_unlock(zram, index);
1369
1370                 ret = read_from_bdev(zram, page, zram_get_element(zram, index),
1371                                      parent);
1372         }
1373
1374         /* Should NEVER happen. Return bio error if it does. */
1375         if (WARN_ON(ret < 0))
1376                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1377
1378         return ret;
1379 }
1380
1381 /*
1382  * Use a temporary buffer to decompress the page, as the decompressor
1383  * always expects a full page for the output.
1384  */
1385 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1386                                   u32 index, int offset)
1387 {
1388         struct page *page = alloc_page(GFP_NOIO);
1389         int ret;
1390
1391         if (!page)
1392                 return -ENOMEM;
1393         ret = zram_read_page(zram, page, index, NULL);
1394         if (likely(!ret))
1395                 memcpy_to_bvec(bvec, page_address(page) + offset);
1396         __free_page(page);
1397         return ret;
1398 }
1399
1400 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1401                           u32 index, int offset, struct bio *bio)
1402 {
1403         if (is_partial_io(bvec))
1404                 return zram_bvec_read_partial(zram, bvec, index, offset);
1405         return zram_read_page(zram, bvec->bv_page, index, bio);
1406 }
1407
1408 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1409 {
1410         int ret = 0;
1411         unsigned long alloced_pages;
1412         unsigned long handle = -ENOMEM;
1413         unsigned int comp_len = 0;
1414         void *src, *dst, *mem;
1415         struct zcomp_strm *zstrm;
1416         unsigned long element = 0;
1417         enum zram_pageflags flags = 0;
1418
1419         mem = kmap_local_page(page);
1420         if (page_same_filled(mem, &element)) {
1421                 kunmap_local(mem);
1422                 /* Free memory associated with this sector now. */
1423                 flags = ZRAM_SAME;
1424                 atomic64_inc(&zram->stats.same_pages);
1425                 goto out;
1426         }
1427         kunmap_local(mem);
1428
1429 compress_again:
1430         zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1431         src = kmap_local_page(page);
1432         ret = zcomp_compress(zstrm, src, &comp_len);
1433         kunmap_local(src);
1434
1435         if (unlikely(ret)) {
1436                 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1437                 pr_err("Compression failed! err=%d\n", ret);
1438                 zs_free(zram->mem_pool, handle);
1439                 return ret;
1440         }
1441
1442         if (comp_len >= huge_class_size)
1443                 comp_len = PAGE_SIZE;
1444         /*
1445          * handle allocation has 2 paths:
1446          * a) fast path is executed with preemption disabled (for
1447          *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1448          *  since we can't sleep;
1449          * b) slow path enables preemption and attempts to allocate
1450          *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1451          *  put per-cpu compression stream and, thus, to re-do
1452          *  the compression once handle is allocated.
1453          *
1454          * if we have a 'non-null' handle here then we are coming
1455          * from the slow path and handle has already been allocated.
1456          */
1457         if (IS_ERR_VALUE(handle))
1458                 handle = zs_malloc(zram->mem_pool, comp_len,
1459                                 __GFP_KSWAPD_RECLAIM |
1460                                 __GFP_NOWARN |
1461                                 __GFP_HIGHMEM |
1462                                 __GFP_MOVABLE);
1463         if (IS_ERR_VALUE(handle)) {
1464                 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1465                 atomic64_inc(&zram->stats.writestall);
1466                 handle = zs_malloc(zram->mem_pool, comp_len,
1467                                 GFP_NOIO | __GFP_HIGHMEM |
1468                                 __GFP_MOVABLE);
1469                 if (IS_ERR_VALUE(handle))
1470                         return PTR_ERR((void *)handle);
1471
1472                 if (comp_len != PAGE_SIZE)
1473                         goto compress_again;
1474                 /*
1475                  * If the page is not compressible, you need to acquire the
1476                  * lock and execute the code below. The zcomp_stream_get()
1477                  * call is needed to disable the cpu hotplug and grab the
1478                  * zstrm buffer back. It is necessary that the dereferencing
1479                  * of the zstrm variable below occurs correctly.
1480                  */
1481                 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1482         }
1483
1484         alloced_pages = zs_get_total_pages(zram->mem_pool);
1485         update_used_max(zram, alloced_pages);
1486
1487         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1488                 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1489                 zs_free(zram->mem_pool, handle);
1490                 return -ENOMEM;
1491         }
1492
1493         dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1494
1495         src = zstrm->buffer;
1496         if (comp_len == PAGE_SIZE)
1497                 src = kmap_local_page(page);
1498         memcpy(dst, src, comp_len);
1499         if (comp_len == PAGE_SIZE)
1500                 kunmap_local(src);
1501
1502         zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1503         zs_unmap_object(zram->mem_pool, handle);
1504         atomic64_add(comp_len, &zram->stats.compr_data_size);
1505 out:
1506         /*
1507          * Free memory associated with this sector
1508          * before overwriting unused sectors.
1509          */
1510         zram_slot_lock(zram, index);
1511         zram_free_page(zram, index);
1512
1513         if (comp_len == PAGE_SIZE) {
1514                 zram_set_flag(zram, index, ZRAM_HUGE);
1515                 atomic64_inc(&zram->stats.huge_pages);
1516                 atomic64_inc(&zram->stats.huge_pages_since);
1517         }
1518
1519         if (flags) {
1520                 zram_set_flag(zram, index, flags);
1521                 zram_set_element(zram, index, element);
1522         }  else {
1523                 zram_set_handle(zram, index, handle);
1524                 zram_set_obj_size(zram, index, comp_len);
1525         }
1526         zram_slot_unlock(zram, index);
1527
1528         /* Update stats */
1529         atomic64_inc(&zram->stats.pages_stored);
1530         return ret;
1531 }
1532
1533 /*
1534  * This is a partial IO. Read the full page before writing the changes.
1535  */
1536 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1537                                    u32 index, int offset, struct bio *bio)
1538 {
1539         struct page *page = alloc_page(GFP_NOIO);
1540         int ret;
1541
1542         if (!page)
1543                 return -ENOMEM;
1544
1545         ret = zram_read_page(zram, page, index, bio);
1546         if (!ret) {
1547                 memcpy_from_bvec(page_address(page) + offset, bvec);
1548                 ret = zram_write_page(zram, page, index);
1549         }
1550         __free_page(page);
1551         return ret;
1552 }
1553
1554 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1555                            u32 index, int offset, struct bio *bio)
1556 {
1557         if (is_partial_io(bvec))
1558                 return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1559         return zram_write_page(zram, bvec->bv_page, index);
1560 }
1561
1562 #ifdef CONFIG_ZRAM_MULTI_COMP
1563 /*
1564  * This function will decompress (unless it's ZRAM_HUGE) the page and then
1565  * attempt to compress it using provided compression algorithm priority
1566  * (which is potentially more effective).
1567  *
1568  * Corresponding ZRAM slot should be locked.
1569  */
1570 static int zram_recompress(struct zram *zram, u32 index, struct page *page,
1571                            u32 threshold, u32 prio, u32 prio_max)
1572 {
1573         struct zcomp_strm *zstrm = NULL;
1574         unsigned long handle_old;
1575         unsigned long handle_new;
1576         unsigned int comp_len_old;
1577         unsigned int comp_len_new;
1578         unsigned int class_index_old;
1579         unsigned int class_index_new;
1580         u32 num_recomps = 0;
1581         void *src, *dst;
1582         int ret;
1583
1584         handle_old = zram_get_handle(zram, index);
1585         if (!handle_old)
1586                 return -EINVAL;
1587
1588         comp_len_old = zram_get_obj_size(zram, index);
1589         /*
1590          * Do not recompress objects that are already "small enough".
1591          */
1592         if (comp_len_old < threshold)
1593                 return 0;
1594
1595         ret = zram_read_from_zspool(zram, page, index);
1596         if (ret)
1597                 return ret;
1598
1599         class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
1600         /*
1601          * Iterate the secondary comp algorithms list (in order of priority)
1602          * and try to recompress the page.
1603          */
1604         for (; prio < prio_max; prio++) {
1605                 if (!zram->comps[prio])
1606                         continue;
1607
1608                 /*
1609                  * Skip if the object is already re-compressed with a higher
1610                  * priority algorithm (or same algorithm).
1611                  */
1612                 if (prio <= zram_get_priority(zram, index))
1613                         continue;
1614
1615                 num_recomps++;
1616                 zstrm = zcomp_stream_get(zram->comps[prio]);
1617                 src = kmap_local_page(page);
1618                 ret = zcomp_compress(zstrm, src, &comp_len_new);
1619                 kunmap_local(src);
1620
1621                 if (ret) {
1622                         zcomp_stream_put(zram->comps[prio]);
1623                         return ret;
1624                 }
1625
1626                 class_index_new = zs_lookup_class_index(zram->mem_pool,
1627                                                         comp_len_new);
1628
1629                 /* Continue until we make progress */
1630                 if (class_index_new >= class_index_old ||
1631                     (threshold && comp_len_new >= threshold)) {
1632                         zcomp_stream_put(zram->comps[prio]);
1633                         continue;
1634                 }
1635
1636                 /* Recompression was successful so break out */
1637                 break;
1638         }
1639
1640         /*
1641          * We did not try to recompress, e.g. when we have only one
1642          * secondary algorithm and the page is already recompressed
1643          * using that algorithm
1644          */
1645         if (!zstrm)
1646                 return 0;
1647
1648         if (class_index_new >= class_index_old) {
1649                 /*
1650                  * Secondary algorithms failed to re-compress the page
1651                  * in a way that would save memory, mark the object as
1652                  * incompressible so that we will not try to compress
1653                  * it again.
1654                  *
1655                  * We need to make sure that all secondary algorithms have
1656                  * failed, so we test if the number of recompressions matches
1657                  * the number of active secondary algorithms.
1658                  */
1659                 if (num_recomps == zram->num_active_comps - 1)
1660                         zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1661                 return 0;
1662         }
1663
1664         /* Successful recompression but above threshold */
1665         if (threshold && comp_len_new >= threshold)
1666                 return 0;
1667
1668         /*
1669          * No direct reclaim (slow path) for handle allocation and no
1670          * re-compression attempt (unlike in zram_write_bvec()) since
1671          * we already have stored that object in zsmalloc. If we cannot
1672          * alloc memory for recompressed object then we bail out and
1673          * simply keep the old (existing) object in zsmalloc.
1674          */
1675         handle_new = zs_malloc(zram->mem_pool, comp_len_new,
1676                                __GFP_KSWAPD_RECLAIM |
1677                                __GFP_NOWARN |
1678                                __GFP_HIGHMEM |
1679                                __GFP_MOVABLE);
1680         if (IS_ERR_VALUE(handle_new)) {
1681                 zcomp_stream_put(zram->comps[prio]);
1682                 return PTR_ERR((void *)handle_new);
1683         }
1684
1685         dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
1686         memcpy(dst, zstrm->buffer, comp_len_new);
1687         zcomp_stream_put(zram->comps[prio]);
1688
1689         zs_unmap_object(zram->mem_pool, handle_new);
1690
1691         zram_free_page(zram, index);
1692         zram_set_handle(zram, index, handle_new);
1693         zram_set_obj_size(zram, index, comp_len_new);
1694         zram_set_priority(zram, index, prio);
1695
1696         atomic64_add(comp_len_new, &zram->stats.compr_data_size);
1697         atomic64_inc(&zram->stats.pages_stored);
1698
1699         return 0;
1700 }
1701
1702 #define RECOMPRESS_IDLE         (1 << 0)
1703 #define RECOMPRESS_HUGE         (1 << 1)
1704
1705 static ssize_t recompress_store(struct device *dev,
1706                                 struct device_attribute *attr,
1707                                 const char *buf, size_t len)
1708 {
1709         u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
1710         struct zram *zram = dev_to_zram(dev);
1711         unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1712         char *args, *param, *val, *algo = NULL;
1713         u32 mode = 0, threshold = 0;
1714         unsigned long index;
1715         struct page *page;
1716         ssize_t ret;
1717
1718         args = skip_spaces(buf);
1719         while (*args) {
1720                 args = next_arg(args, &param, &val);
1721
1722                 if (!val || !*val)
1723                         return -EINVAL;
1724
1725                 if (!strcmp(param, "type")) {
1726                         if (!strcmp(val, "idle"))
1727                                 mode = RECOMPRESS_IDLE;
1728                         if (!strcmp(val, "huge"))
1729                                 mode = RECOMPRESS_HUGE;
1730                         if (!strcmp(val, "huge_idle"))
1731                                 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
1732                         continue;
1733                 }
1734
1735                 if (!strcmp(param, "threshold")) {
1736                         /*
1737                          * We will re-compress only idle objects equal or
1738                          * greater in size than watermark.
1739                          */
1740                         ret = kstrtouint(val, 10, &threshold);
1741                         if (ret)
1742                                 return ret;
1743                         continue;
1744                 }
1745
1746                 if (!strcmp(param, "algo")) {
1747                         algo = val;
1748                         continue;
1749                 }
1750         }
1751
1752         if (threshold >= huge_class_size)
1753                 return -EINVAL;
1754
1755         down_read(&zram->init_lock);
1756         if (!init_done(zram)) {
1757                 ret = -EINVAL;
1758                 goto release_init_lock;
1759         }
1760
1761         if (algo) {
1762                 bool found = false;
1763
1764                 for (; prio < ZRAM_MAX_COMPS; prio++) {
1765                         if (!zram->comp_algs[prio])
1766                                 continue;
1767
1768                         if (!strcmp(zram->comp_algs[prio], algo)) {
1769                                 prio_max = min(prio + 1, ZRAM_MAX_COMPS);
1770                                 found = true;
1771                                 break;
1772                         }
1773                 }
1774
1775                 if (!found) {
1776                         ret = -EINVAL;
1777                         goto release_init_lock;
1778                 }
1779         }
1780
1781         page = alloc_page(GFP_KERNEL);
1782         if (!page) {
1783                 ret = -ENOMEM;
1784                 goto release_init_lock;
1785         }
1786
1787         ret = len;
1788         for (index = 0; index < nr_pages; index++) {
1789                 int err = 0;
1790
1791                 zram_slot_lock(zram, index);
1792
1793                 if (!zram_allocated(zram, index))
1794                         goto next;
1795
1796                 if (mode & RECOMPRESS_IDLE &&
1797                     !zram_test_flag(zram, index, ZRAM_IDLE))
1798                         goto next;
1799
1800                 if (mode & RECOMPRESS_HUGE &&
1801                     !zram_test_flag(zram, index, ZRAM_HUGE))
1802                         goto next;
1803
1804                 if (zram_test_flag(zram, index, ZRAM_WB) ||
1805                     zram_test_flag(zram, index, ZRAM_UNDER_WB) ||
1806                     zram_test_flag(zram, index, ZRAM_SAME) ||
1807                     zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1808                         goto next;
1809
1810                 err = zram_recompress(zram, index, page, threshold,
1811                                       prio, prio_max);
1812 next:
1813                 zram_slot_unlock(zram, index);
1814                 if (err) {
1815                         ret = err;
1816                         break;
1817                 }
1818
1819                 cond_resched();
1820         }
1821
1822         __free_page(page);
1823
1824 release_init_lock:
1825         up_read(&zram->init_lock);
1826         return ret;
1827 }
1828 #endif
1829
1830 static void zram_bio_discard(struct zram *zram, struct bio *bio)
1831 {
1832         size_t n = bio->bi_iter.bi_size;
1833         u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1834         u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1835                         SECTOR_SHIFT;
1836
1837         /*
1838          * zram manages data in physical block size units. Because logical block
1839          * size isn't identical with physical block size on some arch, we
1840          * could get a discard request pointing to a specific offset within a
1841          * certain physical block.  Although we can handle this request by
1842          * reading that physiclal block and decompressing and partially zeroing
1843          * and re-compressing and then re-storing it, this isn't reasonable
1844          * because our intent with a discard request is to save memory.  So
1845          * skipping this logical block is appropriate here.
1846          */
1847         if (offset) {
1848                 if (n <= (PAGE_SIZE - offset))
1849                         return;
1850
1851                 n -= (PAGE_SIZE - offset);
1852                 index++;
1853         }
1854
1855         while (n >= PAGE_SIZE) {
1856                 zram_slot_lock(zram, index);
1857                 zram_free_page(zram, index);
1858                 zram_slot_unlock(zram, index);
1859                 atomic64_inc(&zram->stats.notify_free);
1860                 index++;
1861                 n -= PAGE_SIZE;
1862         }
1863
1864         bio_endio(bio);
1865 }
1866
1867 static void zram_bio_read(struct zram *zram, struct bio *bio)
1868 {
1869         unsigned long start_time = bio_start_io_acct(bio);
1870         struct bvec_iter iter = bio->bi_iter;
1871
1872         do {
1873                 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1874                 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1875                                 SECTOR_SHIFT;
1876                 struct bio_vec bv = bio_iter_iovec(bio, iter);
1877
1878                 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1879
1880                 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
1881                         atomic64_inc(&zram->stats.failed_reads);
1882                         bio->bi_status = BLK_STS_IOERR;
1883                         break;
1884                 }
1885                 flush_dcache_page(bv.bv_page);
1886
1887                 zram_slot_lock(zram, index);
1888                 zram_accessed(zram, index);
1889                 zram_slot_unlock(zram, index);
1890
1891                 bio_advance_iter_single(bio, &iter, bv.bv_len);
1892         } while (iter.bi_size);
1893
1894         bio_end_io_acct(bio, start_time);
1895         bio_endio(bio);
1896 }
1897
1898 static void zram_bio_write(struct zram *zram, struct bio *bio)
1899 {
1900         unsigned long start_time = bio_start_io_acct(bio);
1901         struct bvec_iter iter = bio->bi_iter;
1902
1903         do {
1904                 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1905                 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1906                                 SECTOR_SHIFT;
1907                 struct bio_vec bv = bio_iter_iovec(bio, iter);
1908
1909                 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1910
1911                 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
1912                         atomic64_inc(&zram->stats.failed_writes);
1913                         bio->bi_status = BLK_STS_IOERR;
1914                         break;
1915                 }
1916
1917                 zram_slot_lock(zram, index);
1918                 zram_accessed(zram, index);
1919                 zram_slot_unlock(zram, index);
1920
1921                 bio_advance_iter_single(bio, &iter, bv.bv_len);
1922         } while (iter.bi_size);
1923
1924         bio_end_io_acct(bio, start_time);
1925         bio_endio(bio);
1926 }
1927
1928 /*
1929  * Handler function for all zram I/O requests.
1930  */
1931 static void zram_submit_bio(struct bio *bio)
1932 {
1933         struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1934
1935         switch (bio_op(bio)) {
1936         case REQ_OP_READ:
1937                 zram_bio_read(zram, bio);
1938                 break;
1939         case REQ_OP_WRITE:
1940                 zram_bio_write(zram, bio);
1941                 break;
1942         case REQ_OP_DISCARD:
1943         case REQ_OP_WRITE_ZEROES:
1944                 zram_bio_discard(zram, bio);
1945                 break;
1946         default:
1947                 WARN_ON_ONCE(1);
1948                 bio_endio(bio);
1949         }
1950 }
1951
1952 static void zram_slot_free_notify(struct block_device *bdev,
1953                                 unsigned long index)
1954 {
1955         struct zram *zram;
1956
1957         zram = bdev->bd_disk->private_data;
1958
1959         atomic64_inc(&zram->stats.notify_free);
1960         if (!zram_slot_trylock(zram, index)) {
1961                 atomic64_inc(&zram->stats.miss_free);
1962                 return;
1963         }
1964
1965         zram_free_page(zram, index);
1966         zram_slot_unlock(zram, index);
1967 }
1968
1969 static void zram_destroy_comps(struct zram *zram)
1970 {
1971         u32 prio;
1972
1973         for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
1974                 struct zcomp *comp = zram->comps[prio];
1975
1976                 zram->comps[prio] = NULL;
1977                 if (!comp)
1978                         continue;
1979                 zcomp_destroy(comp);
1980                 zram->num_active_comps--;
1981         }
1982 }
1983
1984 static void zram_reset_device(struct zram *zram)
1985 {
1986         down_write(&zram->init_lock);
1987
1988         zram->limit_pages = 0;
1989
1990         if (!init_done(zram)) {
1991                 up_write(&zram->init_lock);
1992                 return;
1993         }
1994
1995         set_capacity_and_notify(zram->disk, 0);
1996         part_stat_set_all(zram->disk->part0, 0);
1997
1998         /* I/O operation under all of CPU are done so let's free */
1999         zram_meta_free(zram, zram->disksize);
2000         zram->disksize = 0;
2001         zram_destroy_comps(zram);
2002         memset(&zram->stats, 0, sizeof(zram->stats));
2003         reset_bdev(zram);
2004
2005         comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2006         up_write(&zram->init_lock);
2007 }
2008
2009 static ssize_t disksize_store(struct device *dev,
2010                 struct device_attribute *attr, const char *buf, size_t len)
2011 {
2012         u64 disksize;
2013         struct zcomp *comp;
2014         struct zram *zram = dev_to_zram(dev);
2015         int err;
2016         u32 prio;
2017
2018         disksize = memparse(buf, NULL);
2019         if (!disksize)
2020                 return -EINVAL;
2021
2022         down_write(&zram->init_lock);
2023         if (init_done(zram)) {
2024                 pr_info("Cannot change disksize for initialized device\n");
2025                 err = -EBUSY;
2026                 goto out_unlock;
2027         }
2028
2029         disksize = PAGE_ALIGN(disksize);
2030         if (!zram_meta_alloc(zram, disksize)) {
2031                 err = -ENOMEM;
2032                 goto out_unlock;
2033         }
2034
2035         for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2036                 if (!zram->comp_algs[prio])
2037                         continue;
2038
2039                 comp = zcomp_create(zram->comp_algs[prio]);
2040                 if (IS_ERR(comp)) {
2041                         pr_err("Cannot initialise %s compressing backend\n",
2042                                zram->comp_algs[prio]);
2043                         err = PTR_ERR(comp);
2044                         goto out_free_comps;
2045                 }
2046
2047                 zram->comps[prio] = comp;
2048                 zram->num_active_comps++;
2049         }
2050         zram->disksize = disksize;
2051         set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2052         up_write(&zram->init_lock);
2053
2054         return len;
2055
2056 out_free_comps:
2057         zram_destroy_comps(zram);
2058         zram_meta_free(zram, disksize);
2059 out_unlock:
2060         up_write(&zram->init_lock);
2061         return err;
2062 }
2063
2064 static ssize_t reset_store(struct device *dev,
2065                 struct device_attribute *attr, const char *buf, size_t len)
2066 {
2067         int ret;
2068         unsigned short do_reset;
2069         struct zram *zram;
2070         struct gendisk *disk;
2071
2072         ret = kstrtou16(buf, 10, &do_reset);
2073         if (ret)
2074                 return ret;
2075
2076         if (!do_reset)
2077                 return -EINVAL;
2078
2079         zram = dev_to_zram(dev);
2080         disk = zram->disk;
2081
2082         mutex_lock(&disk->open_mutex);
2083         /* Do not reset an active device or claimed device */
2084         if (disk_openers(disk) || zram->claim) {
2085                 mutex_unlock(&disk->open_mutex);
2086                 return -EBUSY;
2087         }
2088
2089         /* From now on, anyone can't open /dev/zram[0-9] */
2090         zram->claim = true;
2091         mutex_unlock(&disk->open_mutex);
2092
2093         /* Make sure all the pending I/O are finished */
2094         sync_blockdev(disk->part0);
2095         zram_reset_device(zram);
2096
2097         mutex_lock(&disk->open_mutex);
2098         zram->claim = false;
2099         mutex_unlock(&disk->open_mutex);
2100
2101         return len;
2102 }
2103
2104 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2105 {
2106         struct zram *zram = disk->private_data;
2107
2108         WARN_ON(!mutex_is_locked(&disk->open_mutex));
2109
2110         /* zram was claimed to reset so open request fails */
2111         if (zram->claim)
2112                 return -EBUSY;
2113         return 0;
2114 }
2115
2116 static const struct block_device_operations zram_devops = {
2117         .open = zram_open,
2118         .submit_bio = zram_submit_bio,
2119         .swap_slot_free_notify = zram_slot_free_notify,
2120         .owner = THIS_MODULE
2121 };
2122
2123 static DEVICE_ATTR_WO(compact);
2124 static DEVICE_ATTR_RW(disksize);
2125 static DEVICE_ATTR_RO(initstate);
2126 static DEVICE_ATTR_WO(reset);
2127 static DEVICE_ATTR_WO(mem_limit);
2128 static DEVICE_ATTR_WO(mem_used_max);
2129 static DEVICE_ATTR_WO(idle);
2130 static DEVICE_ATTR_RW(max_comp_streams);
2131 static DEVICE_ATTR_RW(comp_algorithm);
2132 #ifdef CONFIG_ZRAM_WRITEBACK
2133 static DEVICE_ATTR_RW(backing_dev);
2134 static DEVICE_ATTR_WO(writeback);
2135 static DEVICE_ATTR_RW(writeback_limit);
2136 static DEVICE_ATTR_RW(writeback_limit_enable);
2137 #endif
2138 #ifdef CONFIG_ZRAM_MULTI_COMP
2139 static DEVICE_ATTR_RW(recomp_algorithm);
2140 static DEVICE_ATTR_WO(recompress);
2141 #endif
2142
2143 static struct attribute *zram_disk_attrs[] = {
2144         &dev_attr_disksize.attr,
2145         &dev_attr_initstate.attr,
2146         &dev_attr_reset.attr,
2147         &dev_attr_compact.attr,
2148         &dev_attr_mem_limit.attr,
2149         &dev_attr_mem_used_max.attr,
2150         &dev_attr_idle.attr,
2151         &dev_attr_max_comp_streams.attr,
2152         &dev_attr_comp_algorithm.attr,
2153 #ifdef CONFIG_ZRAM_WRITEBACK
2154         &dev_attr_backing_dev.attr,
2155         &dev_attr_writeback.attr,
2156         &dev_attr_writeback_limit.attr,
2157         &dev_attr_writeback_limit_enable.attr,
2158 #endif
2159         &dev_attr_io_stat.attr,
2160         &dev_attr_mm_stat.attr,
2161 #ifdef CONFIG_ZRAM_WRITEBACK
2162         &dev_attr_bd_stat.attr,
2163 #endif
2164         &dev_attr_debug_stat.attr,
2165 #ifdef CONFIG_ZRAM_MULTI_COMP
2166         &dev_attr_recomp_algorithm.attr,
2167         &dev_attr_recompress.attr,
2168 #endif
2169         NULL,
2170 };
2171
2172 ATTRIBUTE_GROUPS(zram_disk);
2173
2174 /*
2175  * Allocate and initialize new zram device. the function returns
2176  * '>= 0' device_id upon success, and negative value otherwise.
2177  */
2178 static int zram_add(void)
2179 {
2180         struct queue_limits lim = {
2181                 .logical_block_size             = ZRAM_LOGICAL_BLOCK_SIZE,
2182                 /*
2183                  * To ensure that we always get PAGE_SIZE aligned and
2184                  * n*PAGE_SIZED sized I/O requests.
2185                  */
2186                 .physical_block_size            = PAGE_SIZE,
2187                 .io_min                         = PAGE_SIZE,
2188                 .io_opt                         = PAGE_SIZE,
2189                 .max_hw_discard_sectors         = UINT_MAX,
2190                 /*
2191                  * zram_bio_discard() will clear all logical blocks if logical
2192                  * block size is identical with physical block size(PAGE_SIZE).
2193                  * But if it is different, we will skip discarding some parts of
2194                  * logical blocks in the part of the request range which isn't
2195                  * aligned to physical block size.  So we can't ensure that all
2196                  * discarded logical blocks are zeroed.
2197                  */
2198 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2199                 .max_write_zeroes_sectors       = UINT_MAX,
2200 #endif
2201         };
2202         struct zram *zram;
2203         int ret, device_id;
2204
2205         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2206         if (!zram)
2207                 return -ENOMEM;
2208
2209         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2210         if (ret < 0)
2211                 goto out_free_dev;
2212         device_id = ret;
2213
2214         init_rwsem(&zram->init_lock);
2215 #ifdef CONFIG_ZRAM_WRITEBACK
2216         spin_lock_init(&zram->wb_limit_lock);
2217 #endif
2218
2219         /* gendisk structure */
2220         zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2221         if (IS_ERR(zram->disk)) {
2222                 pr_err("Error allocating disk structure for device %d\n",
2223                         device_id);
2224                 ret = PTR_ERR(zram->disk);
2225                 goto out_free_idr;
2226         }
2227
2228         zram->disk->major = zram_major;
2229         zram->disk->first_minor = device_id;
2230         zram->disk->minors = 1;
2231         zram->disk->flags |= GENHD_FL_NO_PART;
2232         zram->disk->fops = &zram_devops;
2233         zram->disk->private_data = zram;
2234         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2235
2236         /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2237         set_capacity(zram->disk, 0);
2238         /* zram devices sort of resembles non-rotational disks */
2239         blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
2240         blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue);
2241         blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
2242         ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2243         if (ret)
2244                 goto out_cleanup_disk;
2245
2246         comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2247
2248         zram_debugfs_register(zram);
2249         pr_info("Added device: %s\n", zram->disk->disk_name);
2250         return device_id;
2251
2252 out_cleanup_disk:
2253         put_disk(zram->disk);
2254 out_free_idr:
2255         idr_remove(&zram_index_idr, device_id);
2256 out_free_dev:
2257         kfree(zram);
2258         return ret;
2259 }
2260
2261 static int zram_remove(struct zram *zram)
2262 {
2263         bool claimed;
2264
2265         mutex_lock(&zram->disk->open_mutex);
2266         if (disk_openers(zram->disk)) {
2267                 mutex_unlock(&zram->disk->open_mutex);
2268                 return -EBUSY;
2269         }
2270
2271         claimed = zram->claim;
2272         if (!claimed)
2273                 zram->claim = true;
2274         mutex_unlock(&zram->disk->open_mutex);
2275
2276         zram_debugfs_unregister(zram);
2277
2278         if (claimed) {
2279                 /*
2280                  * If we were claimed by reset_store(), del_gendisk() will
2281                  * wait until reset_store() is done, so nothing need to do.
2282                  */
2283                 ;
2284         } else {
2285                 /* Make sure all the pending I/O are finished */
2286                 sync_blockdev(zram->disk->part0);
2287                 zram_reset_device(zram);
2288         }
2289
2290         pr_info("Removed device: %s\n", zram->disk->disk_name);
2291
2292         del_gendisk(zram->disk);
2293
2294         /* del_gendisk drains pending reset_store */
2295         WARN_ON_ONCE(claimed && zram->claim);
2296
2297         /*
2298          * disksize_store() may be called in between zram_reset_device()
2299          * and del_gendisk(), so run the last reset to avoid leaking
2300          * anything allocated with disksize_store()
2301          */
2302         zram_reset_device(zram);
2303
2304         put_disk(zram->disk);
2305         kfree(zram);
2306         return 0;
2307 }
2308
2309 /* zram-control sysfs attributes */
2310
2311 /*
2312  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2313  * sense that reading from this file does alter the state of your system -- it
2314  * creates a new un-initialized zram device and returns back this device's
2315  * device_id (or an error code if it fails to create a new device).
2316  */
2317 static ssize_t hot_add_show(const struct class *class,
2318                         const struct class_attribute *attr,
2319                         char *buf)
2320 {
2321         int ret;
2322
2323         mutex_lock(&zram_index_mutex);
2324         ret = zram_add();
2325         mutex_unlock(&zram_index_mutex);
2326
2327         if (ret < 0)
2328                 return ret;
2329         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2330 }
2331 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2332 static struct class_attribute class_attr_hot_add =
2333         __ATTR(hot_add, 0400, hot_add_show, NULL);
2334
2335 static ssize_t hot_remove_store(const struct class *class,
2336                         const struct class_attribute *attr,
2337                         const char *buf,
2338                         size_t count)
2339 {
2340         struct zram *zram;
2341         int ret, dev_id;
2342
2343         /* dev_id is gendisk->first_minor, which is `int' */
2344         ret = kstrtoint(buf, 10, &dev_id);
2345         if (ret)
2346                 return ret;
2347         if (dev_id < 0)
2348                 return -EINVAL;
2349
2350         mutex_lock(&zram_index_mutex);
2351
2352         zram = idr_find(&zram_index_idr, dev_id);
2353         if (zram) {
2354                 ret = zram_remove(zram);
2355                 if (!ret)
2356                         idr_remove(&zram_index_idr, dev_id);
2357         } else {
2358                 ret = -ENODEV;
2359         }
2360
2361         mutex_unlock(&zram_index_mutex);
2362         return ret ? ret : count;
2363 }
2364 static CLASS_ATTR_WO(hot_remove);
2365
2366 static struct attribute *zram_control_class_attrs[] = {
2367         &class_attr_hot_add.attr,
2368         &class_attr_hot_remove.attr,
2369         NULL,
2370 };
2371 ATTRIBUTE_GROUPS(zram_control_class);
2372
2373 static struct class zram_control_class = {
2374         .name           = "zram-control",
2375         .class_groups   = zram_control_class_groups,
2376 };
2377
2378 static int zram_remove_cb(int id, void *ptr, void *data)
2379 {
2380         WARN_ON_ONCE(zram_remove(ptr));
2381         return 0;
2382 }
2383
2384 static void destroy_devices(void)
2385 {
2386         class_unregister(&zram_control_class);
2387         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2388         zram_debugfs_destroy();
2389         idr_destroy(&zram_index_idr);
2390         unregister_blkdev(zram_major, "zram");
2391         cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2392 }
2393
2394 static int __init zram_init(void)
2395 {
2396         int ret;
2397
2398         BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG);
2399
2400         ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2401                                       zcomp_cpu_up_prepare, zcomp_cpu_dead);
2402         if (ret < 0)
2403                 return ret;
2404
2405         ret = class_register(&zram_control_class);
2406         if (ret) {
2407                 pr_err("Unable to register zram-control class\n");
2408                 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2409                 return ret;
2410         }
2411
2412         zram_debugfs_create();
2413         zram_major = register_blkdev(0, "zram");
2414         if (zram_major <= 0) {
2415                 pr_err("Unable to get major number\n");
2416                 class_unregister(&zram_control_class);
2417                 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2418                 return -EBUSY;
2419         }
2420
2421         while (num_devices != 0) {
2422                 mutex_lock(&zram_index_mutex);
2423                 ret = zram_add();
2424                 mutex_unlock(&zram_index_mutex);
2425                 if (ret < 0)
2426                         goto out_error;
2427                 num_devices--;
2428         }
2429
2430         return 0;
2431
2432 out_error:
2433         destroy_devices();
2434         return ret;
2435 }
2436
2437 static void __exit zram_exit(void)
2438 {
2439         destroy_devices();
2440 }
2441
2442 module_init(zram_init);
2443 module_exit(zram_exit);
2444
2445 module_param(num_devices, uint, 0);
2446 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2447
2448 MODULE_LICENSE("Dual BSD/GPL");
2449 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2450 MODULE_DESCRIPTION("Compressed RAM Block Device");