08a6f04a5c6d2b4aa7407e7144900bd05cf2fbdf
[sfrench/cifs-2.6.git] / arch / x86 / mm / pageattr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18
19 #include <asm/e820/api.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <linux/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
27 #include <asm/pat.h>
28 #include <asm/set_memory.h>
29
30 #include "mm_internal.h"
31
32 /*
33  * The current flushing context - we pass it instead of 5 arguments:
34  */
35 struct cpa_data {
36         unsigned long   *vaddr;
37         pgd_t           *pgd;
38         pgprot_t        mask_set;
39         pgprot_t        mask_clr;
40         unsigned long   numpages;
41         unsigned long   curpage;
42         unsigned long   pfn;
43         unsigned int    flags;
44         unsigned int    force_split             : 1,
45                         force_static_prot       : 1;
46         struct page     **pages;
47 };
48
49 enum cpa_warn {
50         CPA_CONFLICT,
51         CPA_PROTECT,
52         CPA_DETECT,
53 };
54
55 static const int cpa_warn_level = CPA_PROTECT;
56
57 /*
58  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
59  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
60  * entries change the page attribute in parallel to some other cpu
61  * splitting a large page entry along with changing the attribute.
62  */
63 static DEFINE_SPINLOCK(cpa_lock);
64
65 #define CPA_FLUSHTLB 1
66 #define CPA_ARRAY 2
67 #define CPA_PAGES_ARRAY 4
68 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
69
70 #ifdef CONFIG_PROC_FS
71 static unsigned long direct_pages_count[PG_LEVEL_NUM];
72
73 void update_page_count(int level, unsigned long pages)
74 {
75         /* Protect against CPA */
76         spin_lock(&pgd_lock);
77         direct_pages_count[level] += pages;
78         spin_unlock(&pgd_lock);
79 }
80
81 static void split_page_count(int level)
82 {
83         if (direct_pages_count[level] == 0)
84                 return;
85
86         direct_pages_count[level]--;
87         direct_pages_count[level - 1] += PTRS_PER_PTE;
88 }
89
90 void arch_report_meminfo(struct seq_file *m)
91 {
92         seq_printf(m, "DirectMap4k:    %8lu kB\n",
93                         direct_pages_count[PG_LEVEL_4K] << 2);
94 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
95         seq_printf(m, "DirectMap2M:    %8lu kB\n",
96                         direct_pages_count[PG_LEVEL_2M] << 11);
97 #else
98         seq_printf(m, "DirectMap4M:    %8lu kB\n",
99                         direct_pages_count[PG_LEVEL_2M] << 12);
100 #endif
101         if (direct_gbpages)
102                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
103                         direct_pages_count[PG_LEVEL_1G] << 20);
104 }
105 #else
106 static inline void split_page_count(int level) { }
107 #endif
108
109 #ifdef CONFIG_X86_CPA_STATISTICS
110
111 static unsigned long cpa_1g_checked;
112 static unsigned long cpa_1g_sameprot;
113 static unsigned long cpa_1g_preserved;
114 static unsigned long cpa_2m_checked;
115 static unsigned long cpa_2m_sameprot;
116 static unsigned long cpa_2m_preserved;
117 static unsigned long cpa_4k_install;
118
119 static inline void cpa_inc_1g_checked(void)
120 {
121         cpa_1g_checked++;
122 }
123
124 static inline void cpa_inc_2m_checked(void)
125 {
126         cpa_2m_checked++;
127 }
128
129 static inline void cpa_inc_4k_install(void)
130 {
131         cpa_4k_install++;
132 }
133
134 static inline void cpa_inc_lp_sameprot(int level)
135 {
136         if (level == PG_LEVEL_1G)
137                 cpa_1g_sameprot++;
138         else
139                 cpa_2m_sameprot++;
140 }
141
142 static inline void cpa_inc_lp_preserved(int level)
143 {
144         if (level == PG_LEVEL_1G)
145                 cpa_1g_preserved++;
146         else
147                 cpa_2m_preserved++;
148 }
149
150 static int cpastats_show(struct seq_file *m, void *p)
151 {
152         seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
153         seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
154         seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
155         seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
156         seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
157         seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
158         seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
159         return 0;
160 }
161
162 static int cpastats_open(struct inode *inode, struct file *file)
163 {
164         return single_open(file, cpastats_show, NULL);
165 }
166
167 static const struct file_operations cpastats_fops = {
168         .open           = cpastats_open,
169         .read           = seq_read,
170         .llseek         = seq_lseek,
171         .release        = single_release,
172 };
173
174 static int __init cpa_stats_init(void)
175 {
176         debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
177                             &cpastats_fops);
178         return 0;
179 }
180 late_initcall(cpa_stats_init);
181 #else
182 static inline void cpa_inc_1g_checked(void) { }
183 static inline void cpa_inc_2m_checked(void) { }
184 static inline void cpa_inc_4k_install(void) { }
185 static inline void cpa_inc_lp_sameprot(int level) { }
186 static inline void cpa_inc_lp_preserved(int level) { }
187 #endif
188
189
190 static inline int
191 within(unsigned long addr, unsigned long start, unsigned long end)
192 {
193         return addr >= start && addr < end;
194 }
195
196 static inline int
197 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
198 {
199         return addr >= start && addr <= end;
200 }
201
202 #ifdef CONFIG_X86_64
203
204 static inline unsigned long highmap_start_pfn(void)
205 {
206         return __pa_symbol(_text) >> PAGE_SHIFT;
207 }
208
209 static inline unsigned long highmap_end_pfn(void)
210 {
211         /* Do not reference physical address outside the kernel. */
212         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
213 }
214
215 static bool __cpa_pfn_in_highmap(unsigned long pfn)
216 {
217         /*
218          * Kernel text has an alias mapping at a high address, known
219          * here as "highmap".
220          */
221         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
222 }
223
224 #else
225
226 static bool __cpa_pfn_in_highmap(unsigned long pfn)
227 {
228         /* There is no highmap on 32-bit */
229         return false;
230 }
231
232 #endif
233
234 /*
235  * See set_mce_nospec().
236  *
237  * Machine check recovery code needs to change cache mode of poisoned pages to
238  * UC to avoid speculative access logging another error. But passing the
239  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
240  * speculative access. So we cheat and flip the top bit of the address. This
241  * works fine for the code that updates the page tables. But at the end of the
242  * process we need to flush the TLB and cache and the non-canonical address
243  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
244  *
245  * But in the common case we already have a canonical address. This code
246  * will fix the top bit if needed and is a no-op otherwise.
247  */
248 static inline unsigned long fix_addr(unsigned long addr)
249 {
250 #ifdef CONFIG_X86_64
251         return (long)(addr << 1) >> 1;
252 #else
253         return addr;
254 #endif
255 }
256
257 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
258 {
259         if (cpa->flags & CPA_PAGES_ARRAY) {
260                 struct page *page = cpa->pages[idx];
261
262                 if (unlikely(PageHighMem(page)))
263                         return 0;
264
265                 return (unsigned long)page_address(page);
266         }
267
268         if (cpa->flags & CPA_ARRAY)
269                 return cpa->vaddr[idx];
270
271         return *cpa->vaddr + idx * PAGE_SIZE;
272 }
273
274 /*
275  * Flushing functions
276  */
277
278 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
279 {
280         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
281         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
282         void *vend = vaddr + size;
283
284         if (p >= vend)
285                 return;
286
287         for (; p < vend; p += clflush_size)
288                 clflushopt(p);
289 }
290
291 /**
292  * clflush_cache_range - flush a cache range with clflush
293  * @vaddr:      virtual start address
294  * @size:       number of bytes to flush
295  *
296  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
297  * SFENCE to avoid ordering issues.
298  */
299 void clflush_cache_range(void *vaddr, unsigned int size)
300 {
301         mb();
302         clflush_cache_range_opt(vaddr, size);
303         mb();
304 }
305 EXPORT_SYMBOL_GPL(clflush_cache_range);
306
307 void arch_invalidate_pmem(void *addr, size_t size)
308 {
309         clflush_cache_range(addr, size);
310 }
311 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
312
313 static void __cpa_flush_all(void *arg)
314 {
315         unsigned long cache = (unsigned long)arg;
316
317         /*
318          * Flush all to work around Errata in early athlons regarding
319          * large page flushing.
320          */
321         __flush_tlb_all();
322
323         if (cache && boot_cpu_data.x86 >= 4)
324                 wbinvd();
325 }
326
327 static void cpa_flush_all(unsigned long cache)
328 {
329         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
330
331         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
332 }
333
334 void __cpa_flush_tlb(void *data)
335 {
336         struct cpa_data *cpa = data;
337         unsigned int i;
338
339         for (i = 0; i < cpa->numpages; i++)
340                 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
341 }
342
343 static void cpa_flush(struct cpa_data *data, int cache)
344 {
345         struct cpa_data *cpa = data;
346         unsigned int i;
347
348         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
349
350         if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
351                 cpa_flush_all(cache);
352                 return;
353         }
354
355         if (cpa->numpages <= tlb_single_page_flush_ceiling)
356                 on_each_cpu(__cpa_flush_tlb, cpa, 1);
357         else
358                 flush_tlb_all();
359
360         if (!cache)
361                 return;
362
363         mb();
364         for (i = 0; i < cpa->numpages; i++) {
365                 unsigned long addr = __cpa_addr(cpa, i);
366                 unsigned int level;
367
368                 pte_t *pte = lookup_address(addr, &level);
369
370                 /*
371                  * Only flush present addresses:
372                  */
373                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
374                         clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
375         }
376         mb();
377 }
378
379 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
380                      unsigned long r2_start, unsigned long r2_end)
381 {
382         return (r1_start <= r2_end && r1_end >= r2_start) ||
383                 (r2_start <= r1_end && r2_end >= r1_start);
384 }
385
386 #ifdef CONFIG_PCI_BIOS
387 /*
388  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
389  * based config access (CONFIG_PCI_GOBIOS) support.
390  */
391 #define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
392 #define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
393
394 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
395 {
396         if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
397                 return _PAGE_NX;
398         return 0;
399 }
400 #else
401 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
402 {
403         return 0;
404 }
405 #endif
406
407 /*
408  * The .rodata section needs to be read-only. Using the pfn catches all
409  * aliases.  This also includes __ro_after_init, so do not enforce until
410  * kernel_set_to_readonly is true.
411  */
412 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
413 {
414         unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
415
416         /*
417          * Note: __end_rodata is at page aligned and not inclusive, so
418          * subtract 1 to get the last enforced PFN in the rodata area.
419          */
420         epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
421
422         if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
423                 return _PAGE_RW;
424         return 0;
425 }
426
427 /*
428  * Protect kernel text against becoming non executable by forbidding
429  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
430  * out of which the kernel actually executes.  Do not protect the low
431  * mapping.
432  *
433  * This does not cover __inittext since that is gone after boot.
434  */
435 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
436 {
437         unsigned long t_end = (unsigned long)_etext - 1;
438         unsigned long t_start = (unsigned long)_text;
439
440         if (overlaps(start, end, t_start, t_end))
441                 return _PAGE_NX;
442         return 0;
443 }
444
445 #if defined(CONFIG_X86_64)
446 /*
447  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
448  * kernel text mappings for the large page aligned text, rodata sections
449  * will be always read-only. For the kernel identity mappings covering the
450  * holes caused by this alignment can be anything that user asks.
451  *
452  * This will preserve the large page mappings for kernel text/data at no
453  * extra cost.
454  */
455 static pgprotval_t protect_kernel_text_ro(unsigned long start,
456                                           unsigned long end)
457 {
458         unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
459         unsigned long t_start = (unsigned long)_text;
460         unsigned int level;
461
462         if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
463                 return 0;
464         /*
465          * Don't enforce the !RW mapping for the kernel text mapping, if
466          * the current mapping is already using small page mapping.  No
467          * need to work hard to preserve large page mappings in this case.
468          *
469          * This also fixes the Linux Xen paravirt guest boot failure caused
470          * by unexpected read-only mappings for kernel identity
471          * mappings. In this paravirt guest case, the kernel text mapping
472          * and the kernel identity mapping share the same page-table pages,
473          * so the protections for kernel text and identity mappings have to
474          * be the same.
475          */
476         if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
477                 return _PAGE_RW;
478         return 0;
479 }
480 #else
481 static pgprotval_t protect_kernel_text_ro(unsigned long start,
482                                           unsigned long end)
483 {
484         return 0;
485 }
486 #endif
487
488 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
489 {
490         return (pgprot_val(prot) & ~val) != pgprot_val(prot);
491 }
492
493 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
494                                   unsigned long start, unsigned long end,
495                                   unsigned long pfn, const char *txt)
496 {
497         static const char *lvltxt[] = {
498                 [CPA_CONFLICT]  = "conflict",
499                 [CPA_PROTECT]   = "protect",
500                 [CPA_DETECT]    = "detect",
501         };
502
503         if (warnlvl > cpa_warn_level || !conflicts(prot, val))
504                 return;
505
506         pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
507                 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
508                 (unsigned long long)val);
509 }
510
511 /*
512  * Certain areas of memory on x86 require very specific protection flags,
513  * for example the BIOS area or kernel text. Callers don't always get this
514  * right (again, ioremap() on BIOS memory is not uncommon) so this function
515  * checks and fixes these known static required protection bits.
516  */
517 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
518                                           unsigned long pfn, unsigned long npg,
519                                           unsigned long lpsize, int warnlvl)
520 {
521         pgprotval_t forbidden, res;
522         unsigned long end;
523
524         /*
525          * There is no point in checking RW/NX conflicts when the requested
526          * mapping is setting the page !PRESENT.
527          */
528         if (!(pgprot_val(prot) & _PAGE_PRESENT))
529                 return prot;
530
531         /* Operate on the virtual address */
532         end = start + npg * PAGE_SIZE - 1;
533
534         res = protect_kernel_text(start, end);
535         check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
536         forbidden = res;
537
538         /*
539          * Special case to preserve a large page. If the change spawns the
540          * full large page mapping then there is no point to split it
541          * up. Happens with ftrace and is going to be removed once ftrace
542          * switched to text_poke().
543          */
544         if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
545                 res = protect_kernel_text_ro(start, end);
546                 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
547                 forbidden |= res;
548         }
549
550         /* Check the PFN directly */
551         res = protect_pci_bios(pfn, pfn + npg - 1);
552         check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
553         forbidden |= res;
554
555         res = protect_rodata(pfn, pfn + npg - 1);
556         check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
557         forbidden |= res;
558
559         return __pgprot(pgprot_val(prot) & ~forbidden);
560 }
561
562 /*
563  * Lookup the page table entry for a virtual address in a specific pgd.
564  * Return a pointer to the entry and the level of the mapping.
565  */
566 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
567                              unsigned int *level)
568 {
569         p4d_t *p4d;
570         pud_t *pud;
571         pmd_t *pmd;
572
573         *level = PG_LEVEL_NONE;
574
575         if (pgd_none(*pgd))
576                 return NULL;
577
578         p4d = p4d_offset(pgd, address);
579         if (p4d_none(*p4d))
580                 return NULL;
581
582         *level = PG_LEVEL_512G;
583         if (p4d_large(*p4d) || !p4d_present(*p4d))
584                 return (pte_t *)p4d;
585
586         pud = pud_offset(p4d, address);
587         if (pud_none(*pud))
588                 return NULL;
589
590         *level = PG_LEVEL_1G;
591         if (pud_large(*pud) || !pud_present(*pud))
592                 return (pte_t *)pud;
593
594         pmd = pmd_offset(pud, address);
595         if (pmd_none(*pmd))
596                 return NULL;
597
598         *level = PG_LEVEL_2M;
599         if (pmd_large(*pmd) || !pmd_present(*pmd))
600                 return (pte_t *)pmd;
601
602         *level = PG_LEVEL_4K;
603
604         return pte_offset_kernel(pmd, address);
605 }
606
607 /*
608  * Lookup the page table entry for a virtual address. Return a pointer
609  * to the entry and the level of the mapping.
610  *
611  * Note: We return pud and pmd either when the entry is marked large
612  * or when the present bit is not set. Otherwise we would return a
613  * pointer to a nonexisting mapping.
614  */
615 pte_t *lookup_address(unsigned long address, unsigned int *level)
616 {
617         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
618 }
619 EXPORT_SYMBOL_GPL(lookup_address);
620
621 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
622                                   unsigned int *level)
623 {
624         if (cpa->pgd)
625                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
626                                                address, level);
627
628         return lookup_address(address, level);
629 }
630
631 /*
632  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
633  * or NULL if not present.
634  */
635 pmd_t *lookup_pmd_address(unsigned long address)
636 {
637         pgd_t *pgd;
638         p4d_t *p4d;
639         pud_t *pud;
640
641         pgd = pgd_offset_k(address);
642         if (pgd_none(*pgd))
643                 return NULL;
644
645         p4d = p4d_offset(pgd, address);
646         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
647                 return NULL;
648
649         pud = pud_offset(p4d, address);
650         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
651                 return NULL;
652
653         return pmd_offset(pud, address);
654 }
655
656 /*
657  * This is necessary because __pa() does not work on some
658  * kinds of memory, like vmalloc() or the alloc_remap()
659  * areas on 32-bit NUMA systems.  The percpu areas can
660  * end up in this kind of memory, for instance.
661  *
662  * This could be optimized, but it is only intended to be
663  * used at inititalization time, and keeping it
664  * unoptimized should increase the testing coverage for
665  * the more obscure platforms.
666  */
667 phys_addr_t slow_virt_to_phys(void *__virt_addr)
668 {
669         unsigned long virt_addr = (unsigned long)__virt_addr;
670         phys_addr_t phys_addr;
671         unsigned long offset;
672         enum pg_level level;
673         pte_t *pte;
674
675         pte = lookup_address(virt_addr, &level);
676         BUG_ON(!pte);
677
678         /*
679          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
680          * before being left-shifted PAGE_SHIFT bits -- this trick is to
681          * make 32-PAE kernel work correctly.
682          */
683         switch (level) {
684         case PG_LEVEL_1G:
685                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
686                 offset = virt_addr & ~PUD_PAGE_MASK;
687                 break;
688         case PG_LEVEL_2M:
689                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
690                 offset = virt_addr & ~PMD_PAGE_MASK;
691                 break;
692         default:
693                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
694                 offset = virt_addr & ~PAGE_MASK;
695         }
696
697         return (phys_addr_t)(phys_addr | offset);
698 }
699 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
700
701 /*
702  * Set the new pmd in all the pgds we know about:
703  */
704 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
705 {
706         /* change init_mm */
707         set_pte_atomic(kpte, pte);
708 #ifdef CONFIG_X86_32
709         if (!SHARED_KERNEL_PMD) {
710                 struct page *page;
711
712                 list_for_each_entry(page, &pgd_list, lru) {
713                         pgd_t *pgd;
714                         p4d_t *p4d;
715                         pud_t *pud;
716                         pmd_t *pmd;
717
718                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
719                         p4d = p4d_offset(pgd, address);
720                         pud = pud_offset(p4d, address);
721                         pmd = pmd_offset(pud, address);
722                         set_pte_atomic((pte_t *)pmd, pte);
723                 }
724         }
725 #endif
726 }
727
728 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
729 {
730         /*
731          * _PAGE_GLOBAL means "global page" for present PTEs.
732          * But, it is also used to indicate _PAGE_PROTNONE
733          * for non-present PTEs.
734          *
735          * This ensures that a _PAGE_GLOBAL PTE going from
736          * present to non-present is not confused as
737          * _PAGE_PROTNONE.
738          */
739         if (!(pgprot_val(prot) & _PAGE_PRESENT))
740                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
741
742         return prot;
743 }
744
745 static int __should_split_large_page(pte_t *kpte, unsigned long address,
746                                      struct cpa_data *cpa)
747 {
748         unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
749         pgprot_t old_prot, new_prot, req_prot, chk_prot;
750         pte_t new_pte, *tmp;
751         enum pg_level level;
752
753         /*
754          * Check for races, another CPU might have split this page
755          * up already:
756          */
757         tmp = _lookup_address_cpa(cpa, address, &level);
758         if (tmp != kpte)
759                 return 1;
760
761         switch (level) {
762         case PG_LEVEL_2M:
763                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
764                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
765                 cpa_inc_2m_checked();
766                 break;
767         case PG_LEVEL_1G:
768                 old_prot = pud_pgprot(*(pud_t *)kpte);
769                 old_pfn = pud_pfn(*(pud_t *)kpte);
770                 cpa_inc_1g_checked();
771                 break;
772         default:
773                 return -EINVAL;
774         }
775
776         psize = page_level_size(level);
777         pmask = page_level_mask(level);
778
779         /*
780          * Calculate the number of pages, which fit into this large
781          * page starting at address:
782          */
783         lpaddr = (address + psize) & pmask;
784         numpages = (lpaddr - address) >> PAGE_SHIFT;
785         if (numpages < cpa->numpages)
786                 cpa->numpages = numpages;
787
788         /*
789          * We are safe now. Check whether the new pgprot is the same:
790          * Convert protection attributes to 4k-format, as cpa->mask* are set
791          * up accordingly.
792          */
793
794         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
795         req_prot = pgprot_large_2_4k(old_prot);
796
797         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
798         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
799
800         /*
801          * req_prot is in format of 4k pages. It must be converted to large
802          * page format: the caching mode includes the PAT bit located at
803          * different bit positions in the two formats.
804          */
805         req_prot = pgprot_4k_2_large(req_prot);
806         req_prot = pgprot_clear_protnone_bits(req_prot);
807         if (pgprot_val(req_prot) & _PAGE_PRESENT)
808                 pgprot_val(req_prot) |= _PAGE_PSE;
809
810         /*
811          * old_pfn points to the large page base pfn. So we need to add the
812          * offset of the virtual address:
813          */
814         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
815         cpa->pfn = pfn;
816
817         /*
818          * Calculate the large page base address and the number of 4K pages
819          * in the large page
820          */
821         lpaddr = address & pmask;
822         numpages = psize >> PAGE_SHIFT;
823
824         /*
825          * Sanity check that the existing mapping is correct versus the static
826          * protections. static_protections() guards against !PRESENT, so no
827          * extra conditional required here.
828          */
829         chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
830                                       psize, CPA_CONFLICT);
831
832         if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
833                 /*
834                  * Split the large page and tell the split code to
835                  * enforce static protections.
836                  */
837                 cpa->force_static_prot = 1;
838                 return 1;
839         }
840
841         /*
842          * Optimization: If the requested pgprot is the same as the current
843          * pgprot, then the large page can be preserved and no updates are
844          * required independent of alignment and length of the requested
845          * range. The above already established that the current pgprot is
846          * correct, which in consequence makes the requested pgprot correct
847          * as well if it is the same. The static protection scan below will
848          * not come to a different conclusion.
849          */
850         if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
851                 cpa_inc_lp_sameprot(level);
852                 return 0;
853         }
854
855         /*
856          * If the requested range does not cover the full page, split it up
857          */
858         if (address != lpaddr || cpa->numpages != numpages)
859                 return 1;
860
861         /*
862          * Check whether the requested pgprot is conflicting with a static
863          * protection requirement in the large page.
864          */
865         new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
866                                       psize, CPA_DETECT);
867
868         /*
869          * If there is a conflict, split the large page.
870          *
871          * There used to be a 4k wise evaluation trying really hard to
872          * preserve the large pages, but experimentation has shown, that this
873          * does not help at all. There might be corner cases which would
874          * preserve one large page occasionally, but it's really not worth the
875          * extra code and cycles for the common case.
876          */
877         if (pgprot_val(req_prot) != pgprot_val(new_prot))
878                 return 1;
879
880         /* All checks passed. Update the large page mapping. */
881         new_pte = pfn_pte(old_pfn, new_prot);
882         __set_pmd_pte(kpte, address, new_pte);
883         cpa->flags |= CPA_FLUSHTLB;
884         cpa_inc_lp_preserved(level);
885         return 0;
886 }
887
888 static int should_split_large_page(pte_t *kpte, unsigned long address,
889                                    struct cpa_data *cpa)
890 {
891         int do_split;
892
893         if (cpa->force_split)
894                 return 1;
895
896         spin_lock(&pgd_lock);
897         do_split = __should_split_large_page(kpte, address, cpa);
898         spin_unlock(&pgd_lock);
899
900         return do_split;
901 }
902
903 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
904                           pgprot_t ref_prot, unsigned long address,
905                           unsigned long size)
906 {
907         unsigned int npg = PFN_DOWN(size);
908         pgprot_t prot;
909
910         /*
911          * If should_split_large_page() discovered an inconsistent mapping,
912          * remove the invalid protection in the split mapping.
913          */
914         if (!cpa->force_static_prot)
915                 goto set;
916
917         /* Hand in lpsize = 0 to enforce the protection mechanism */
918         prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
919
920         if (pgprot_val(prot) == pgprot_val(ref_prot))
921                 goto set;
922
923         /*
924          * If this is splitting a PMD, fix it up. PUD splits cannot be
925          * fixed trivially as that would require to rescan the newly
926          * installed PMD mappings after returning from split_large_page()
927          * so an eventual further split can allocate the necessary PTE
928          * pages. Warn for now and revisit it in case this actually
929          * happens.
930          */
931         if (size == PAGE_SIZE)
932                 ref_prot = prot;
933         else
934                 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
935 set:
936         set_pte(pte, pfn_pte(pfn, ref_prot));
937 }
938
939 static int
940 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
941                    struct page *base)
942 {
943         unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
944         pte_t *pbase = (pte_t *)page_address(base);
945         unsigned int i, level;
946         pgprot_t ref_prot;
947         pte_t *tmp;
948
949         spin_lock(&pgd_lock);
950         /*
951          * Check for races, another CPU might have split this page
952          * up for us already:
953          */
954         tmp = _lookup_address_cpa(cpa, address, &level);
955         if (tmp != kpte) {
956                 spin_unlock(&pgd_lock);
957                 return 1;
958         }
959
960         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
961
962         switch (level) {
963         case PG_LEVEL_2M:
964                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
965                 /*
966                  * Clear PSE (aka _PAGE_PAT) and move
967                  * PAT bit to correct position.
968                  */
969                 ref_prot = pgprot_large_2_4k(ref_prot);
970                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
971                 lpaddr = address & PMD_MASK;
972                 lpinc = PAGE_SIZE;
973                 break;
974
975         case PG_LEVEL_1G:
976                 ref_prot = pud_pgprot(*(pud_t *)kpte);
977                 ref_pfn = pud_pfn(*(pud_t *)kpte);
978                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
979                 lpaddr = address & PUD_MASK;
980                 lpinc = PMD_SIZE;
981                 /*
982                  * Clear the PSE flags if the PRESENT flag is not set
983                  * otherwise pmd_present/pmd_huge will return true
984                  * even on a non present pmd.
985                  */
986                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
987                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
988                 break;
989
990         default:
991                 spin_unlock(&pgd_lock);
992                 return 1;
993         }
994
995         ref_prot = pgprot_clear_protnone_bits(ref_prot);
996
997         /*
998          * Get the target pfn from the original entry:
999          */
1000         pfn = ref_pfn;
1001         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1002                 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1003
1004         if (virt_addr_valid(address)) {
1005                 unsigned long pfn = PFN_DOWN(__pa(address));
1006
1007                 if (pfn_range_is_mapped(pfn, pfn + 1))
1008                         split_page_count(level);
1009         }
1010
1011         /*
1012          * Install the new, split up pagetable.
1013          *
1014          * We use the standard kernel pagetable protections for the new
1015          * pagetable protections, the actual ptes set above control the
1016          * primary protection behavior:
1017          */
1018         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1019
1020         /*
1021          * Do a global flush tlb after splitting the large page
1022          * and before we do the actual change page attribute in the PTE.
1023          *
1024          * Without this, we violate the TLB application note, that says:
1025          * "The TLBs may contain both ordinary and large-page
1026          *  translations for a 4-KByte range of linear addresses. This
1027          *  may occur if software modifies the paging structures so that
1028          *  the page size used for the address range changes. If the two
1029          *  translations differ with respect to page frame or attributes
1030          *  (e.g., permissions), processor behavior is undefined and may
1031          *  be implementation-specific."
1032          *
1033          * We do this global tlb flush inside the cpa_lock, so that we
1034          * don't allow any other cpu, with stale tlb entries change the
1035          * page attribute in parallel, that also falls into the
1036          * just split large page entry.
1037          */
1038         flush_tlb_all();
1039         spin_unlock(&pgd_lock);
1040
1041         return 0;
1042 }
1043
1044 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1045                             unsigned long address)
1046 {
1047         struct page *base;
1048
1049         if (!debug_pagealloc_enabled())
1050                 spin_unlock(&cpa_lock);
1051         base = alloc_pages(GFP_KERNEL, 0);
1052         if (!debug_pagealloc_enabled())
1053                 spin_lock(&cpa_lock);
1054         if (!base)
1055                 return -ENOMEM;
1056
1057         if (__split_large_page(cpa, kpte, address, base))
1058                 __free_page(base);
1059
1060         return 0;
1061 }
1062
1063 static bool try_to_free_pte_page(pte_t *pte)
1064 {
1065         int i;
1066
1067         for (i = 0; i < PTRS_PER_PTE; i++)
1068                 if (!pte_none(pte[i]))
1069                         return false;
1070
1071         free_page((unsigned long)pte);
1072         return true;
1073 }
1074
1075 static bool try_to_free_pmd_page(pmd_t *pmd)
1076 {
1077         int i;
1078
1079         for (i = 0; i < PTRS_PER_PMD; i++)
1080                 if (!pmd_none(pmd[i]))
1081                         return false;
1082
1083         free_page((unsigned long)pmd);
1084         return true;
1085 }
1086
1087 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1088 {
1089         pte_t *pte = pte_offset_kernel(pmd, start);
1090
1091         while (start < end) {
1092                 set_pte(pte, __pte(0));
1093
1094                 start += PAGE_SIZE;
1095                 pte++;
1096         }
1097
1098         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1099                 pmd_clear(pmd);
1100                 return true;
1101         }
1102         return false;
1103 }
1104
1105 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1106                               unsigned long start, unsigned long end)
1107 {
1108         if (unmap_pte_range(pmd, start, end))
1109                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1110                         pud_clear(pud);
1111 }
1112
1113 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1114 {
1115         pmd_t *pmd = pmd_offset(pud, start);
1116
1117         /*
1118          * Not on a 2MB page boundary?
1119          */
1120         if (start & (PMD_SIZE - 1)) {
1121                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1122                 unsigned long pre_end = min_t(unsigned long, end, next_page);
1123
1124                 __unmap_pmd_range(pud, pmd, start, pre_end);
1125
1126                 start = pre_end;
1127                 pmd++;
1128         }
1129
1130         /*
1131          * Try to unmap in 2M chunks.
1132          */
1133         while (end - start >= PMD_SIZE) {
1134                 if (pmd_large(*pmd))
1135                         pmd_clear(pmd);
1136                 else
1137                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1138
1139                 start += PMD_SIZE;
1140                 pmd++;
1141         }
1142
1143         /*
1144          * 4K leftovers?
1145          */
1146         if (start < end)
1147                 return __unmap_pmd_range(pud, pmd, start, end);
1148
1149         /*
1150          * Try again to free the PMD page if haven't succeeded above.
1151          */
1152         if (!pud_none(*pud))
1153                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1154                         pud_clear(pud);
1155 }
1156
1157 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1158 {
1159         pud_t *pud = pud_offset(p4d, start);
1160
1161         /*
1162          * Not on a GB page boundary?
1163          */
1164         if (start & (PUD_SIZE - 1)) {
1165                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1166                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
1167
1168                 unmap_pmd_range(pud, start, pre_end);
1169
1170                 start = pre_end;
1171                 pud++;
1172         }
1173
1174         /*
1175          * Try to unmap in 1G chunks?
1176          */
1177         while (end - start >= PUD_SIZE) {
1178
1179                 if (pud_large(*pud))
1180                         pud_clear(pud);
1181                 else
1182                         unmap_pmd_range(pud, start, start + PUD_SIZE);
1183
1184                 start += PUD_SIZE;
1185                 pud++;
1186         }
1187
1188         /*
1189          * 2M leftovers?
1190          */
1191         if (start < end)
1192                 unmap_pmd_range(pud, start, end);
1193
1194         /*
1195          * No need to try to free the PUD page because we'll free it in
1196          * populate_pgd's error path
1197          */
1198 }
1199
1200 static int alloc_pte_page(pmd_t *pmd)
1201 {
1202         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1203         if (!pte)
1204                 return -1;
1205
1206         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1207         return 0;
1208 }
1209
1210 static int alloc_pmd_page(pud_t *pud)
1211 {
1212         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1213         if (!pmd)
1214                 return -1;
1215
1216         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1217         return 0;
1218 }
1219
1220 static void populate_pte(struct cpa_data *cpa,
1221                          unsigned long start, unsigned long end,
1222                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1223 {
1224         pte_t *pte;
1225
1226         pte = pte_offset_kernel(pmd, start);
1227
1228         pgprot = pgprot_clear_protnone_bits(pgprot);
1229
1230         while (num_pages-- && start < end) {
1231                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1232
1233                 start    += PAGE_SIZE;
1234                 cpa->pfn++;
1235                 pte++;
1236         }
1237 }
1238
1239 static long populate_pmd(struct cpa_data *cpa,
1240                          unsigned long start, unsigned long end,
1241                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1242 {
1243         long cur_pages = 0;
1244         pmd_t *pmd;
1245         pgprot_t pmd_pgprot;
1246
1247         /*
1248          * Not on a 2M boundary?
1249          */
1250         if (start & (PMD_SIZE - 1)) {
1251                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1252                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1253
1254                 pre_end   = min_t(unsigned long, pre_end, next_page);
1255                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1256                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1257
1258                 /*
1259                  * Need a PTE page?
1260                  */
1261                 pmd = pmd_offset(pud, start);
1262                 if (pmd_none(*pmd))
1263                         if (alloc_pte_page(pmd))
1264                                 return -1;
1265
1266                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1267
1268                 start = pre_end;
1269         }
1270
1271         /*
1272          * We mapped them all?
1273          */
1274         if (num_pages == cur_pages)
1275                 return cur_pages;
1276
1277         pmd_pgprot = pgprot_4k_2_large(pgprot);
1278
1279         while (end - start >= PMD_SIZE) {
1280
1281                 /*
1282                  * We cannot use a 1G page so allocate a PMD page if needed.
1283                  */
1284                 if (pud_none(*pud))
1285                         if (alloc_pmd_page(pud))
1286                                 return -1;
1287
1288                 pmd = pmd_offset(pud, start);
1289
1290                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1291                                         canon_pgprot(pmd_pgprot))));
1292
1293                 start     += PMD_SIZE;
1294                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1295                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1296         }
1297
1298         /*
1299          * Map trailing 4K pages.
1300          */
1301         if (start < end) {
1302                 pmd = pmd_offset(pud, start);
1303                 if (pmd_none(*pmd))
1304                         if (alloc_pte_page(pmd))
1305                                 return -1;
1306
1307                 populate_pte(cpa, start, end, num_pages - cur_pages,
1308                              pmd, pgprot);
1309         }
1310         return num_pages;
1311 }
1312
1313 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1314                         pgprot_t pgprot)
1315 {
1316         pud_t *pud;
1317         unsigned long end;
1318         long cur_pages = 0;
1319         pgprot_t pud_pgprot;
1320
1321         end = start + (cpa->numpages << PAGE_SHIFT);
1322
1323         /*
1324          * Not on a Gb page boundary? => map everything up to it with
1325          * smaller pages.
1326          */
1327         if (start & (PUD_SIZE - 1)) {
1328                 unsigned long pre_end;
1329                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1330
1331                 pre_end   = min_t(unsigned long, end, next_page);
1332                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1333                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1334
1335                 pud = pud_offset(p4d, start);
1336
1337                 /*
1338                  * Need a PMD page?
1339                  */
1340                 if (pud_none(*pud))
1341                         if (alloc_pmd_page(pud))
1342                                 return -1;
1343
1344                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1345                                          pud, pgprot);
1346                 if (cur_pages < 0)
1347                         return cur_pages;
1348
1349                 start = pre_end;
1350         }
1351
1352         /* We mapped them all? */
1353         if (cpa->numpages == cur_pages)
1354                 return cur_pages;
1355
1356         pud = pud_offset(p4d, start);
1357         pud_pgprot = pgprot_4k_2_large(pgprot);
1358
1359         /*
1360          * Map everything starting from the Gb boundary, possibly with 1G pages
1361          */
1362         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1363                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1364                                    canon_pgprot(pud_pgprot))));
1365
1366                 start     += PUD_SIZE;
1367                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1368                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1369                 pud++;
1370         }
1371
1372         /* Map trailing leftover */
1373         if (start < end) {
1374                 long tmp;
1375
1376                 pud = pud_offset(p4d, start);
1377                 if (pud_none(*pud))
1378                         if (alloc_pmd_page(pud))
1379                                 return -1;
1380
1381                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1382                                    pud, pgprot);
1383                 if (tmp < 0)
1384                         return cur_pages;
1385
1386                 cur_pages += tmp;
1387         }
1388         return cur_pages;
1389 }
1390
1391 /*
1392  * Restrictions for kernel page table do not necessarily apply when mapping in
1393  * an alternate PGD.
1394  */
1395 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1396 {
1397         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1398         pud_t *pud = NULL;      /* shut up gcc */
1399         p4d_t *p4d;
1400         pgd_t *pgd_entry;
1401         long ret;
1402
1403         pgd_entry = cpa->pgd + pgd_index(addr);
1404
1405         if (pgd_none(*pgd_entry)) {
1406                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1407                 if (!p4d)
1408                         return -1;
1409
1410                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1411         }
1412
1413         /*
1414          * Allocate a PUD page and hand it down for mapping.
1415          */
1416         p4d = p4d_offset(pgd_entry, addr);
1417         if (p4d_none(*p4d)) {
1418                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1419                 if (!pud)
1420                         return -1;
1421
1422                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1423         }
1424
1425         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1426         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1427
1428         ret = populate_pud(cpa, addr, p4d, pgprot);
1429         if (ret < 0) {
1430                 /*
1431                  * Leave the PUD page in place in case some other CPU or thread
1432                  * already found it, but remove any useless entries we just
1433                  * added to it.
1434                  */
1435                 unmap_pud_range(p4d, addr,
1436                                 addr + (cpa->numpages << PAGE_SHIFT));
1437                 return ret;
1438         }
1439
1440         cpa->numpages = ret;
1441         return 0;
1442 }
1443
1444 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1445                                int primary)
1446 {
1447         if (cpa->pgd) {
1448                 /*
1449                  * Right now, we only execute this code path when mapping
1450                  * the EFI virtual memory map regions, no other users
1451                  * provide a ->pgd value. This may change in the future.
1452                  */
1453                 return populate_pgd(cpa, vaddr);
1454         }
1455
1456         /*
1457          * Ignore all non primary paths.
1458          */
1459         if (!primary) {
1460                 cpa->numpages = 1;
1461                 return 0;
1462         }
1463
1464         /*
1465          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1466          * to have holes.
1467          * Also set numpages to '1' indicating that we processed cpa req for
1468          * one virtual address page and its pfn. TBD: numpages can be set based
1469          * on the initial value and the level returned by lookup_address().
1470          */
1471         if (within(vaddr, PAGE_OFFSET,
1472                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1473                 cpa->numpages = 1;
1474                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1475                 return 0;
1476
1477         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1478                 /* Faults in the highmap are OK, so do not warn: */
1479                 return -EFAULT;
1480         } else {
1481                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1482                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1483                         *cpa->vaddr);
1484
1485                 return -EFAULT;
1486         }
1487 }
1488
1489 static int __change_page_attr(struct cpa_data *cpa, int primary)
1490 {
1491         unsigned long address;
1492         int do_split, err;
1493         unsigned int level;
1494         pte_t *kpte, old_pte;
1495
1496         address = __cpa_addr(cpa, cpa->curpage);
1497 repeat:
1498         kpte = _lookup_address_cpa(cpa, address, &level);
1499         if (!kpte)
1500                 return __cpa_process_fault(cpa, address, primary);
1501
1502         old_pte = *kpte;
1503         if (pte_none(old_pte))
1504                 return __cpa_process_fault(cpa, address, primary);
1505
1506         if (level == PG_LEVEL_4K) {
1507                 pte_t new_pte;
1508                 pgprot_t new_prot = pte_pgprot(old_pte);
1509                 unsigned long pfn = pte_pfn(old_pte);
1510
1511                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1512                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1513
1514                 cpa_inc_4k_install();
1515                 /* Hand in lpsize = 0 to enforce the protection mechanism */
1516                 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1517                                               CPA_PROTECT);
1518
1519                 new_prot = pgprot_clear_protnone_bits(new_prot);
1520
1521                 /*
1522                  * We need to keep the pfn from the existing PTE,
1523                  * after all we're only going to change it's attributes
1524                  * not the memory it points to
1525                  */
1526                 new_pte = pfn_pte(pfn, new_prot);
1527                 cpa->pfn = pfn;
1528                 /*
1529                  * Do we really change anything ?
1530                  */
1531                 if (pte_val(old_pte) != pte_val(new_pte)) {
1532                         set_pte_atomic(kpte, new_pte);
1533                         cpa->flags |= CPA_FLUSHTLB;
1534                 }
1535                 cpa->numpages = 1;
1536                 return 0;
1537         }
1538
1539         /*
1540          * Check, whether we can keep the large page intact
1541          * and just change the pte:
1542          */
1543         do_split = should_split_large_page(kpte, address, cpa);
1544         /*
1545          * When the range fits into the existing large page,
1546          * return. cp->numpages and cpa->tlbflush have been updated in
1547          * try_large_page:
1548          */
1549         if (do_split <= 0)
1550                 return do_split;
1551
1552         /*
1553          * We have to split the large page:
1554          */
1555         err = split_large_page(cpa, kpte, address);
1556         if (!err)
1557                 goto repeat;
1558
1559         return err;
1560 }
1561
1562 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1563
1564 static int cpa_process_alias(struct cpa_data *cpa)
1565 {
1566         struct cpa_data alias_cpa;
1567         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1568         unsigned long vaddr;
1569         int ret;
1570
1571         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1572                 return 0;
1573
1574         /*
1575          * No need to redo, when the primary call touched the direct
1576          * mapping already:
1577          */
1578         vaddr = __cpa_addr(cpa, cpa->curpage);
1579         if (!(within(vaddr, PAGE_OFFSET,
1580                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1581
1582                 alias_cpa = *cpa;
1583                 alias_cpa.vaddr = &laddr;
1584                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1585                 alias_cpa.curpage = 0;
1586
1587                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1588                 if (ret)
1589                         return ret;
1590         }
1591
1592 #ifdef CONFIG_X86_64
1593         /*
1594          * If the primary call didn't touch the high mapping already
1595          * and the physical address is inside the kernel map, we need
1596          * to touch the high mapped kernel as well:
1597          */
1598         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1599             __cpa_pfn_in_highmap(cpa->pfn)) {
1600                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1601                                                __START_KERNEL_map - phys_base;
1602                 alias_cpa = *cpa;
1603                 alias_cpa.vaddr = &temp_cpa_vaddr;
1604                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1605                 alias_cpa.curpage = 0;
1606
1607                 /*
1608                  * The high mapping range is imprecise, so ignore the
1609                  * return value.
1610                  */
1611                 __change_page_attr_set_clr(&alias_cpa, 0);
1612         }
1613 #endif
1614
1615         return 0;
1616 }
1617
1618 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1619 {
1620         unsigned long numpages = cpa->numpages;
1621         unsigned long rempages = numpages;
1622         int ret = 0;
1623
1624         while (rempages) {
1625                 /*
1626                  * Store the remaining nr of pages for the large page
1627                  * preservation check.
1628                  */
1629                 cpa->numpages = rempages;
1630                 /* for array changes, we can't use large page */
1631                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1632                         cpa->numpages = 1;
1633
1634                 if (!debug_pagealloc_enabled())
1635                         spin_lock(&cpa_lock);
1636                 ret = __change_page_attr(cpa, checkalias);
1637                 if (!debug_pagealloc_enabled())
1638                         spin_unlock(&cpa_lock);
1639                 if (ret)
1640                         goto out;
1641
1642                 if (checkalias) {
1643                         ret = cpa_process_alias(cpa);
1644                         if (ret)
1645                                 goto out;
1646                 }
1647
1648                 /*
1649                  * Adjust the number of pages with the result of the
1650                  * CPA operation. Either a large page has been
1651                  * preserved or a single page update happened.
1652                  */
1653                 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1654                 rempages -= cpa->numpages;
1655                 cpa->curpage += cpa->numpages;
1656         }
1657
1658 out:
1659         /* Restore the original numpages */
1660         cpa->numpages = numpages;
1661         return ret;
1662 }
1663
1664 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1665                                     pgprot_t mask_set, pgprot_t mask_clr,
1666                                     int force_split, int in_flag,
1667                                     struct page **pages)
1668 {
1669         struct cpa_data cpa;
1670         int ret, cache, checkalias;
1671
1672         memset(&cpa, 0, sizeof(cpa));
1673
1674         /*
1675          * Check, if we are requested to set a not supported
1676          * feature.  Clearing non-supported features is OK.
1677          */
1678         mask_set = canon_pgprot(mask_set);
1679
1680         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1681                 return 0;
1682
1683         /* Ensure we are PAGE_SIZE aligned */
1684         if (in_flag & CPA_ARRAY) {
1685                 int i;
1686                 for (i = 0; i < numpages; i++) {
1687                         if (addr[i] & ~PAGE_MASK) {
1688                                 addr[i] &= PAGE_MASK;
1689                                 WARN_ON_ONCE(1);
1690                         }
1691                 }
1692         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1693                 /*
1694                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1695                  * No need to check in that case
1696                  */
1697                 if (*addr & ~PAGE_MASK) {
1698                         *addr &= PAGE_MASK;
1699                         /*
1700                          * People should not be passing in unaligned addresses:
1701                          */
1702                         WARN_ON_ONCE(1);
1703                 }
1704         }
1705
1706         /* Must avoid aliasing mappings in the highmem code */
1707         kmap_flush_unused();
1708
1709         vm_unmap_aliases();
1710
1711         cpa.vaddr = addr;
1712         cpa.pages = pages;
1713         cpa.numpages = numpages;
1714         cpa.mask_set = mask_set;
1715         cpa.mask_clr = mask_clr;
1716         cpa.flags = 0;
1717         cpa.curpage = 0;
1718         cpa.force_split = force_split;
1719
1720         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1721                 cpa.flags |= in_flag;
1722
1723         /* No alias checking for _NX bit modifications */
1724         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1725         /* Has caller explicitly disabled alias checking? */
1726         if (in_flag & CPA_NO_CHECK_ALIAS)
1727                 checkalias = 0;
1728
1729         ret = __change_page_attr_set_clr(&cpa, checkalias);
1730
1731         /*
1732          * Check whether we really changed something:
1733          */
1734         if (!(cpa.flags & CPA_FLUSHTLB))
1735                 goto out;
1736
1737         /*
1738          * No need to flush, when we did not set any of the caching
1739          * attributes:
1740          */
1741         cache = !!pgprot2cachemode(mask_set);
1742
1743         /*
1744          * On error; flush everything to be sure.
1745          */
1746         if (ret) {
1747                 cpa_flush_all(cache);
1748                 goto out;
1749         }
1750
1751         cpa_flush(&cpa, cache);
1752 out:
1753         return ret;
1754 }
1755
1756 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1757                                        pgprot_t mask, int array)
1758 {
1759         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1760                 (array ? CPA_ARRAY : 0), NULL);
1761 }
1762
1763 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1764                                          pgprot_t mask, int array)
1765 {
1766         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1767                 (array ? CPA_ARRAY : 0), NULL);
1768 }
1769
1770 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1771                                        pgprot_t mask)
1772 {
1773         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1774                 CPA_PAGES_ARRAY, pages);
1775 }
1776
1777 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1778                                          pgprot_t mask)
1779 {
1780         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1781                 CPA_PAGES_ARRAY, pages);
1782 }
1783
1784 int _set_memory_uc(unsigned long addr, int numpages)
1785 {
1786         /*
1787          * for now UC MINUS. see comments in ioremap_nocache()
1788          * If you really need strong UC use ioremap_uc(), but note
1789          * that you cannot override IO areas with set_memory_*() as
1790          * these helpers cannot work with IO memory.
1791          */
1792         return change_page_attr_set(&addr, numpages,
1793                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1794                                     0);
1795 }
1796
1797 int set_memory_uc(unsigned long addr, int numpages)
1798 {
1799         int ret;
1800
1801         /*
1802          * for now UC MINUS. see comments in ioremap_nocache()
1803          */
1804         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1805                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1806         if (ret)
1807                 goto out_err;
1808
1809         ret = _set_memory_uc(addr, numpages);
1810         if (ret)
1811                 goto out_free;
1812
1813         return 0;
1814
1815 out_free:
1816         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1817 out_err:
1818         return ret;
1819 }
1820 EXPORT_SYMBOL(set_memory_uc);
1821
1822 static int _set_memory_array(unsigned long *addr, int numpages,
1823                 enum page_cache_mode new_type)
1824 {
1825         enum page_cache_mode set_type;
1826         int i, j;
1827         int ret;
1828
1829         for (i = 0; i < numpages; i++) {
1830                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1831                                         new_type, NULL);
1832                 if (ret)
1833                         goto out_free;
1834         }
1835
1836         /* If WC, set to UC- first and then WC */
1837         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1838                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1839
1840         ret = change_page_attr_set(addr, numpages,
1841                                    cachemode2pgprot(set_type), 1);
1842
1843         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1844                 ret = change_page_attr_set_clr(addr, numpages,
1845                                                cachemode2pgprot(
1846                                                 _PAGE_CACHE_MODE_WC),
1847                                                __pgprot(_PAGE_CACHE_MASK),
1848                                                0, CPA_ARRAY, NULL);
1849         if (ret)
1850                 goto out_free;
1851
1852         return 0;
1853
1854 out_free:
1855         for (j = 0; j < i; j++)
1856                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1857
1858         return ret;
1859 }
1860
1861 int set_memory_array_uc(unsigned long *addr, int numpages)
1862 {
1863         return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
1864 }
1865 EXPORT_SYMBOL(set_memory_array_uc);
1866
1867 int set_memory_array_wc(unsigned long *addr, int numpages)
1868 {
1869         return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
1870 }
1871 EXPORT_SYMBOL(set_memory_array_wc);
1872
1873 int set_memory_array_wt(unsigned long *addr, int numpages)
1874 {
1875         return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
1876 }
1877 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1878
1879 int _set_memory_wc(unsigned long addr, int numpages)
1880 {
1881         int ret;
1882
1883         ret = change_page_attr_set(&addr, numpages,
1884                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1885                                    0);
1886         if (!ret) {
1887                 ret = change_page_attr_set_clr(&addr, numpages,
1888                                                cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1889                                                __pgprot(_PAGE_CACHE_MASK),
1890                                                0, 0, NULL);
1891         }
1892         return ret;
1893 }
1894
1895 int set_memory_wc(unsigned long addr, int numpages)
1896 {
1897         int ret;
1898
1899         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1900                 _PAGE_CACHE_MODE_WC, NULL);
1901         if (ret)
1902                 return ret;
1903
1904         ret = _set_memory_wc(addr, numpages);
1905         if (ret)
1906                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1907
1908         return ret;
1909 }
1910 EXPORT_SYMBOL(set_memory_wc);
1911
1912 int _set_memory_wt(unsigned long addr, int numpages)
1913 {
1914         return change_page_attr_set(&addr, numpages,
1915                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1916 }
1917
1918 int set_memory_wt(unsigned long addr, int numpages)
1919 {
1920         int ret;
1921
1922         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1923                               _PAGE_CACHE_MODE_WT, NULL);
1924         if (ret)
1925                 return ret;
1926
1927         ret = _set_memory_wt(addr, numpages);
1928         if (ret)
1929                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1930
1931         return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(set_memory_wt);
1934
1935 int _set_memory_wb(unsigned long addr, int numpages)
1936 {
1937         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1938         return change_page_attr_clear(&addr, numpages,
1939                                       __pgprot(_PAGE_CACHE_MASK), 0);
1940 }
1941
1942 int set_memory_wb(unsigned long addr, int numpages)
1943 {
1944         int ret;
1945
1946         ret = _set_memory_wb(addr, numpages);
1947         if (ret)
1948                 return ret;
1949
1950         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1951         return 0;
1952 }
1953 EXPORT_SYMBOL(set_memory_wb);
1954
1955 int set_memory_array_wb(unsigned long *addr, int numpages)
1956 {
1957         int i;
1958         int ret;
1959
1960         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1961         ret = change_page_attr_clear(addr, numpages,
1962                                       __pgprot(_PAGE_CACHE_MASK), 1);
1963         if (ret)
1964                 return ret;
1965
1966         for (i = 0; i < numpages; i++)
1967                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1968
1969         return 0;
1970 }
1971 EXPORT_SYMBOL(set_memory_array_wb);
1972
1973 int set_memory_x(unsigned long addr, int numpages)
1974 {
1975         if (!(__supported_pte_mask & _PAGE_NX))
1976                 return 0;
1977
1978         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1979 }
1980
1981 int set_memory_nx(unsigned long addr, int numpages)
1982 {
1983         if (!(__supported_pte_mask & _PAGE_NX))
1984                 return 0;
1985
1986         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1987 }
1988
1989 int set_memory_ro(unsigned long addr, int numpages)
1990 {
1991         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1992 }
1993
1994 int set_memory_rw(unsigned long addr, int numpages)
1995 {
1996         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1997 }
1998
1999 int set_memory_np(unsigned long addr, int numpages)
2000 {
2001         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2002 }
2003
2004 int set_memory_np_noalias(unsigned long addr, int numpages)
2005 {
2006         int cpa_flags = CPA_NO_CHECK_ALIAS;
2007
2008         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2009                                         __pgprot(_PAGE_PRESENT), 0,
2010                                         cpa_flags, NULL);
2011 }
2012
2013 int set_memory_4k(unsigned long addr, int numpages)
2014 {
2015         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2016                                         __pgprot(0), 1, 0, NULL);
2017 }
2018
2019 int set_memory_nonglobal(unsigned long addr, int numpages)
2020 {
2021         return change_page_attr_clear(&addr, numpages,
2022                                       __pgprot(_PAGE_GLOBAL), 0);
2023 }
2024
2025 int set_memory_global(unsigned long addr, int numpages)
2026 {
2027         return change_page_attr_set(&addr, numpages,
2028                                     __pgprot(_PAGE_GLOBAL), 0);
2029 }
2030
2031 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2032 {
2033         struct cpa_data cpa;
2034         int ret;
2035
2036         /* Nothing to do if memory encryption is not active */
2037         if (!mem_encrypt_active())
2038                 return 0;
2039
2040         /* Should not be working on unaligned addresses */
2041         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2042                 addr &= PAGE_MASK;
2043
2044         memset(&cpa, 0, sizeof(cpa));
2045         cpa.vaddr = &addr;
2046         cpa.numpages = numpages;
2047         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2048         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2049         cpa.pgd = init_mm.pgd;
2050
2051         /* Must avoid aliasing mappings in the highmem code */
2052         kmap_flush_unused();
2053         vm_unmap_aliases();
2054
2055         /*
2056          * Before changing the encryption attribute, we need to flush caches.
2057          */
2058         cpa_flush(&cpa, 1);
2059
2060         ret = __change_page_attr_set_clr(&cpa, 1);
2061
2062         /*
2063          * After changing the encryption attribute, we need to flush TLBs again
2064          * in case any speculative TLB caching occurred (but no need to flush
2065          * caches again).  We could just use cpa_flush_all(), but in case TLB
2066          * flushing gets optimized in the cpa_flush() path use the same logic
2067          * as above.
2068          */
2069         cpa_flush(&cpa, 0);
2070
2071         return ret;
2072 }
2073
2074 int set_memory_encrypted(unsigned long addr, int numpages)
2075 {
2076         return __set_memory_enc_dec(addr, numpages, true);
2077 }
2078 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2079
2080 int set_memory_decrypted(unsigned long addr, int numpages)
2081 {
2082         return __set_memory_enc_dec(addr, numpages, false);
2083 }
2084 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2085
2086 int set_pages_uc(struct page *page, int numpages)
2087 {
2088         unsigned long addr = (unsigned long)page_address(page);
2089
2090         return set_memory_uc(addr, numpages);
2091 }
2092 EXPORT_SYMBOL(set_pages_uc);
2093
2094 static int _set_pages_array(struct page **pages, int numpages,
2095                 enum page_cache_mode new_type)
2096 {
2097         unsigned long start;
2098         unsigned long end;
2099         enum page_cache_mode set_type;
2100         int i;
2101         int free_idx;
2102         int ret;
2103
2104         for (i = 0; i < numpages; i++) {
2105                 if (PageHighMem(pages[i]))
2106                         continue;
2107                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2108                 end = start + PAGE_SIZE;
2109                 if (reserve_memtype(start, end, new_type, NULL))
2110                         goto err_out;
2111         }
2112
2113         /* If WC, set to UC- first and then WC */
2114         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2115                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2116
2117         ret = cpa_set_pages_array(pages, numpages,
2118                                   cachemode2pgprot(set_type));
2119         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2120                 ret = change_page_attr_set_clr(NULL, numpages,
2121                                                cachemode2pgprot(
2122                                                 _PAGE_CACHE_MODE_WC),
2123                                                __pgprot(_PAGE_CACHE_MASK),
2124                                                0, CPA_PAGES_ARRAY, pages);
2125         if (ret)
2126                 goto err_out;
2127         return 0; /* Success */
2128 err_out:
2129         free_idx = i;
2130         for (i = 0; i < free_idx; i++) {
2131                 if (PageHighMem(pages[i]))
2132                         continue;
2133                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2134                 end = start + PAGE_SIZE;
2135                 free_memtype(start, end);
2136         }
2137         return -EINVAL;
2138 }
2139
2140 int set_pages_array_uc(struct page **pages, int numpages)
2141 {
2142         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2143 }
2144 EXPORT_SYMBOL(set_pages_array_uc);
2145
2146 int set_pages_array_wc(struct page **pages, int numpages)
2147 {
2148         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2149 }
2150 EXPORT_SYMBOL(set_pages_array_wc);
2151
2152 int set_pages_array_wt(struct page **pages, int numpages)
2153 {
2154         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2155 }
2156 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2157
2158 int set_pages_wb(struct page *page, int numpages)
2159 {
2160         unsigned long addr = (unsigned long)page_address(page);
2161
2162         return set_memory_wb(addr, numpages);
2163 }
2164 EXPORT_SYMBOL(set_pages_wb);
2165
2166 int set_pages_array_wb(struct page **pages, int numpages)
2167 {
2168         int retval;
2169         unsigned long start;
2170         unsigned long end;
2171         int i;
2172
2173         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2174         retval = cpa_clear_pages_array(pages, numpages,
2175                         __pgprot(_PAGE_CACHE_MASK));
2176         if (retval)
2177                 return retval;
2178
2179         for (i = 0; i < numpages; i++) {
2180                 if (PageHighMem(pages[i]))
2181                         continue;
2182                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2183                 end = start + PAGE_SIZE;
2184                 free_memtype(start, end);
2185         }
2186
2187         return 0;
2188 }
2189 EXPORT_SYMBOL(set_pages_array_wb);
2190
2191 int set_pages_x(struct page *page, int numpages)
2192 {
2193         unsigned long addr = (unsigned long)page_address(page);
2194
2195         return set_memory_x(addr, numpages);
2196 }
2197 EXPORT_SYMBOL(set_pages_x);
2198
2199 int set_pages_nx(struct page *page, int numpages)
2200 {
2201         unsigned long addr = (unsigned long)page_address(page);
2202
2203         return set_memory_nx(addr, numpages);
2204 }
2205 EXPORT_SYMBOL(set_pages_nx);
2206
2207 int set_pages_ro(struct page *page, int numpages)
2208 {
2209         unsigned long addr = (unsigned long)page_address(page);
2210
2211         return set_memory_ro(addr, numpages);
2212 }
2213
2214 int set_pages_rw(struct page *page, int numpages)
2215 {
2216         unsigned long addr = (unsigned long)page_address(page);
2217
2218         return set_memory_rw(addr, numpages);
2219 }
2220
2221 static int __set_pages_p(struct page *page, int numpages)
2222 {
2223         unsigned long tempaddr = (unsigned long) page_address(page);
2224         struct cpa_data cpa = { .vaddr = &tempaddr,
2225                                 .pgd = NULL,
2226                                 .numpages = numpages,
2227                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2228                                 .mask_clr = __pgprot(0),
2229                                 .flags = 0};
2230
2231         /*
2232          * No alias checking needed for setting present flag. otherwise,
2233          * we may need to break large pages for 64-bit kernel text
2234          * mappings (this adds to complexity if we want to do this from
2235          * atomic context especially). Let's keep it simple!
2236          */
2237         return __change_page_attr_set_clr(&cpa, 0);
2238 }
2239
2240 static int __set_pages_np(struct page *page, int numpages)
2241 {
2242         unsigned long tempaddr = (unsigned long) page_address(page);
2243         struct cpa_data cpa = { .vaddr = &tempaddr,
2244                                 .pgd = NULL,
2245                                 .numpages = numpages,
2246                                 .mask_set = __pgprot(0),
2247                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2248                                 .flags = 0};
2249
2250         /*
2251          * No alias checking needed for setting not present flag. otherwise,
2252          * we may need to break large pages for 64-bit kernel text
2253          * mappings (this adds to complexity if we want to do this from
2254          * atomic context especially). Let's keep it simple!
2255          */
2256         return __change_page_attr_set_clr(&cpa, 0);
2257 }
2258
2259 int set_direct_map_invalid_noflush(struct page *page)
2260 {
2261         return __set_pages_np(page, 1);
2262 }
2263
2264 int set_direct_map_default_noflush(struct page *page)
2265 {
2266         return __set_pages_p(page, 1);
2267 }
2268
2269 void __kernel_map_pages(struct page *page, int numpages, int enable)
2270 {
2271         if (PageHighMem(page))
2272                 return;
2273         if (!enable) {
2274                 debug_check_no_locks_freed(page_address(page),
2275                                            numpages * PAGE_SIZE);
2276         }
2277
2278         /*
2279          * The return value is ignored as the calls cannot fail.
2280          * Large pages for identity mappings are not used at boot time
2281          * and hence no memory allocations during large page split.
2282          */
2283         if (enable)
2284                 __set_pages_p(page, numpages);
2285         else
2286                 __set_pages_np(page, numpages);
2287
2288         /*
2289          * We should perform an IPI and flush all tlbs,
2290          * but that can deadlock->flush only current cpu.
2291          * Preemption needs to be disabled around __flush_tlb_all() due to
2292          * CR3 reload in __native_flush_tlb().
2293          */
2294         preempt_disable();
2295         __flush_tlb_all();
2296         preempt_enable();
2297
2298         arch_flush_lazy_mmu_mode();
2299 }
2300
2301 #ifdef CONFIG_HIBERNATION
2302 bool kernel_page_present(struct page *page)
2303 {
2304         unsigned int level;
2305         pte_t *pte;
2306
2307         if (PageHighMem(page))
2308                 return false;
2309
2310         pte = lookup_address((unsigned long)page_address(page), &level);
2311         return (pte_val(*pte) & _PAGE_PRESENT);
2312 }
2313 #endif /* CONFIG_HIBERNATION */
2314
2315 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2316                                    unsigned numpages, unsigned long page_flags)
2317 {
2318         int retval = -EINVAL;
2319
2320         struct cpa_data cpa = {
2321                 .vaddr = &address,
2322                 .pfn = pfn,
2323                 .pgd = pgd,
2324                 .numpages = numpages,
2325                 .mask_set = __pgprot(0),
2326                 .mask_clr = __pgprot(0),
2327                 .flags = 0,
2328         };
2329
2330         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2331
2332         if (!(__supported_pte_mask & _PAGE_NX))
2333                 goto out;
2334
2335         if (!(page_flags & _PAGE_NX))
2336                 cpa.mask_clr = __pgprot(_PAGE_NX);
2337
2338         if (!(page_flags & _PAGE_RW))
2339                 cpa.mask_clr = __pgprot(_PAGE_RW);
2340
2341         if (!(page_flags & _PAGE_ENC))
2342                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2343
2344         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2345
2346         retval = __change_page_attr_set_clr(&cpa, 0);
2347         __flush_tlb_all();
2348
2349 out:
2350         return retval;
2351 }
2352
2353 /*
2354  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2355  * function shouldn't be used in an SMP environment. Presently, it's used only
2356  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2357  */
2358 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2359                                      unsigned long numpages)
2360 {
2361         int retval;
2362
2363         /*
2364          * The typical sequence for unmapping is to find a pte through
2365          * lookup_address_in_pgd() (ideally, it should never return NULL because
2366          * the address is already mapped) and change it's protections. As pfn is
2367          * the *target* of a mapping, it's not useful while unmapping.
2368          */
2369         struct cpa_data cpa = {
2370                 .vaddr          = &address,
2371                 .pfn            = 0,
2372                 .pgd            = pgd,
2373                 .numpages       = numpages,
2374                 .mask_set       = __pgprot(0),
2375                 .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2376                 .flags          = 0,
2377         };
2378
2379         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2380
2381         retval = __change_page_attr_set_clr(&cpa, 0);
2382         __flush_tlb_all();
2383
2384         return retval;
2385 }
2386
2387 /*
2388  * The testcases use internal knowledge of the implementation that shouldn't
2389  * be exposed to the rest of the kernel. Include these directly here.
2390  */
2391 #ifdef CONFIG_CPA_DEBUG
2392 #include "pageattr-test.c"
2393 #endif