a026d926072cf696cd905af847afd143df962cd9
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59
60 #include <trace/events/kvm.h>
61
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71 #include <asm/mshyperv.h>
72 #include <asm/hypervisor.h>
73 #include <asm/intel_pt.h>
74 #include <asm/emulate_prefix.h>
75 #include <clocksource/hyperv_timer.h>
76
77 #define CREATE_TRACE_POINTS
78 #include "trace.h"
79
80 #define MAX_IO_MSRS 256
81 #define KVM_MAX_MCE_BANKS 32
82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
84
85 #define emul_to_vcpu(ctxt) \
86         ((struct kvm_vcpu *)(ctxt)->vcpu)
87
88 /* EFER defaults:
89  * - enable syscall per default because its emulated by KVM
90  * - enable LME and LMA per default on 64 bit KVM
91  */
92 #ifdef CONFIG_X86_64
93 static
94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
95 #else
96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
97 #endif
98
99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
100
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
103
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void enter_smm(struct kvm_vcpu *vcpu);
107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
108 static void store_regs(struct kvm_vcpu *vcpu);
109 static int sync_regs(struct kvm_vcpu *vcpu);
110
111 struct kvm_x86_ops kvm_x86_ops __read_mostly;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops);
113
114 static bool __read_mostly ignore_msrs = 0;
115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
116
117 static bool __read_mostly report_ignored_msrs = true;
118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
119
120 unsigned int min_timer_period_us = 200;
121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
122
123 static bool __read_mostly kvmclock_periodic_sync = true;
124 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
125
126 bool __read_mostly kvm_has_tsc_control;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
128 u32  __read_mostly kvm_max_guest_tsc_khz;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
130 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
132 u64  __read_mostly kvm_max_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
136
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm = 250;
139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140
141 /*
142  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
143  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
144  * advancement entirely.  Any other value is used as-is and disables adaptive
145  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
146  */
147 static int __read_mostly lapic_timer_advance_ns = -1;
148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
149
150 static bool __read_mostly vector_hashing = true;
151 module_param(vector_hashing, bool, S_IRUGO);
152
153 bool __read_mostly enable_vmware_backdoor = false;
154 module_param(enable_vmware_backdoor, bool, S_IRUGO);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
156
157 static bool __read_mostly force_emulation_prefix = false;
158 module_param(force_emulation_prefix, bool, S_IRUGO);
159
160 int __read_mostly pi_inject_timer = -1;
161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
162
163 #define KVM_NR_SHARED_MSRS 16
164
165 struct kvm_shared_msrs_global {
166         int nr;
167         u32 msrs[KVM_NR_SHARED_MSRS];
168 };
169
170 struct kvm_shared_msrs {
171         struct user_return_notifier urn;
172         bool registered;
173         struct kvm_shared_msr_values {
174                 u64 host;
175                 u64 curr;
176         } values[KVM_NR_SHARED_MSRS];
177 };
178
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
180 static struct kvm_shared_msrs __percpu *shared_msrs;
181
182 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
183                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
184                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
185                                 | XFEATURE_MASK_PKRU)
186
187 u64 __read_mostly host_efer;
188 EXPORT_SYMBOL_GPL(host_efer);
189
190 static u64 __read_mostly host_xss;
191 u64 __read_mostly supported_xss;
192 EXPORT_SYMBOL_GPL(supported_xss);
193
194 struct kvm_stats_debugfs_item debugfs_entries[] = {
195         VCPU_STAT("pf_fixed", pf_fixed),
196         VCPU_STAT("pf_guest", pf_guest),
197         VCPU_STAT("tlb_flush", tlb_flush),
198         VCPU_STAT("invlpg", invlpg),
199         VCPU_STAT("exits", exits),
200         VCPU_STAT("io_exits", io_exits),
201         VCPU_STAT("mmio_exits", mmio_exits),
202         VCPU_STAT("signal_exits", signal_exits),
203         VCPU_STAT("irq_window", irq_window_exits),
204         VCPU_STAT("nmi_window", nmi_window_exits),
205         VCPU_STAT("halt_exits", halt_exits),
206         VCPU_STAT("halt_successful_poll", halt_successful_poll),
207         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
208         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
209         VCPU_STAT("halt_wakeup", halt_wakeup),
210         VCPU_STAT("hypercalls", hypercalls),
211         VCPU_STAT("request_irq", request_irq_exits),
212         VCPU_STAT("irq_exits", irq_exits),
213         VCPU_STAT("host_state_reload", host_state_reload),
214         VCPU_STAT("fpu_reload", fpu_reload),
215         VCPU_STAT("insn_emulation", insn_emulation),
216         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
217         VCPU_STAT("irq_injections", irq_injections),
218         VCPU_STAT("nmi_injections", nmi_injections),
219         VCPU_STAT("req_event", req_event),
220         VCPU_STAT("l1d_flush", l1d_flush),
221         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
222         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
223         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
224         VM_STAT("mmu_pte_write", mmu_pte_write),
225         VM_STAT("mmu_pte_updated", mmu_pte_updated),
226         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
227         VM_STAT("mmu_flooded", mmu_flooded),
228         VM_STAT("mmu_recycled", mmu_recycled),
229         VM_STAT("mmu_cache_miss", mmu_cache_miss),
230         VM_STAT("mmu_unsync", mmu_unsync),
231         VM_STAT("remote_tlb_flush", remote_tlb_flush),
232         VM_STAT("largepages", lpages, .mode = 0444),
233         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
234         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
235         { NULL }
236 };
237
238 u64 __read_mostly host_xcr0;
239 u64 __read_mostly supported_xcr0;
240 EXPORT_SYMBOL_GPL(supported_xcr0);
241
242 static struct kmem_cache *x86_fpu_cache;
243
244 static struct kmem_cache *x86_emulator_cache;
245
246 static struct kmem_cache *kvm_alloc_emulator_cache(void)
247 {
248         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
249         unsigned int size = sizeof(struct x86_emulate_ctxt);
250
251         return kmem_cache_create_usercopy("x86_emulator", size,
252                                           __alignof__(struct x86_emulate_ctxt),
253                                           SLAB_ACCOUNT, useroffset,
254                                           size - useroffset, NULL);
255 }
256
257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
258
259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
260 {
261         int i;
262         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
263                 vcpu->arch.apf.gfns[i] = ~0;
264 }
265
266 static void kvm_on_user_return(struct user_return_notifier *urn)
267 {
268         unsigned slot;
269         struct kvm_shared_msrs *locals
270                 = container_of(urn, struct kvm_shared_msrs, urn);
271         struct kvm_shared_msr_values *values;
272         unsigned long flags;
273
274         /*
275          * Disabling irqs at this point since the following code could be
276          * interrupted and executed through kvm_arch_hardware_disable()
277          */
278         local_irq_save(flags);
279         if (locals->registered) {
280                 locals->registered = false;
281                 user_return_notifier_unregister(urn);
282         }
283         local_irq_restore(flags);
284         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
285                 values = &locals->values[slot];
286                 if (values->host != values->curr) {
287                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
288                         values->curr = values->host;
289                 }
290         }
291 }
292
293 void kvm_define_shared_msr(unsigned slot, u32 msr)
294 {
295         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
296         shared_msrs_global.msrs[slot] = msr;
297         if (slot >= shared_msrs_global.nr)
298                 shared_msrs_global.nr = slot + 1;
299 }
300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
301
302 static void kvm_shared_msr_cpu_online(void)
303 {
304         unsigned int cpu = smp_processor_id();
305         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
306         u64 value;
307         int i;
308
309         for (i = 0; i < shared_msrs_global.nr; ++i) {
310                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
311                 smsr->values[i].host = value;
312                 smsr->values[i].curr = value;
313         }
314 }
315
316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
317 {
318         unsigned int cpu = smp_processor_id();
319         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320         int err;
321
322         value = (value & mask) | (smsr->values[slot].host & ~mask);
323         if (value == smsr->values[slot].curr)
324                 return 0;
325         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
326         if (err)
327                 return 1;
328
329         smsr->values[slot].curr = value;
330         if (!smsr->registered) {
331                 smsr->urn.on_user_return = kvm_on_user_return;
332                 user_return_notifier_register(&smsr->urn);
333                 smsr->registered = true;
334         }
335         return 0;
336 }
337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
338
339 static void drop_user_return_notifiers(void)
340 {
341         unsigned int cpu = smp_processor_id();
342         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
343
344         if (smsr->registered)
345                 kvm_on_user_return(&smsr->urn);
346 }
347
348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
349 {
350         return vcpu->arch.apic_base;
351 }
352 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
353
354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
355 {
356         return kvm_apic_mode(kvm_get_apic_base(vcpu));
357 }
358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
359
360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
361 {
362         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
363         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
364         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
365                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
366
367         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
368                 return 1;
369         if (!msr_info->host_initiated) {
370                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
371                         return 1;
372                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
373                         return 1;
374         }
375
376         kvm_lapic_set_base(vcpu, msr_info->data);
377         kvm_recalculate_apic_map(vcpu->kvm);
378         return 0;
379 }
380 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
381
382 asmlinkage __visible void kvm_spurious_fault(void)
383 {
384         /* Fault while not rebooting.  We want the trace. */
385         BUG_ON(!kvm_rebooting);
386 }
387 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
388
389 #define EXCPT_BENIGN            0
390 #define EXCPT_CONTRIBUTORY      1
391 #define EXCPT_PF                2
392
393 static int exception_class(int vector)
394 {
395         switch (vector) {
396         case PF_VECTOR:
397                 return EXCPT_PF;
398         case DE_VECTOR:
399         case TS_VECTOR:
400         case NP_VECTOR:
401         case SS_VECTOR:
402         case GP_VECTOR:
403                 return EXCPT_CONTRIBUTORY;
404         default:
405                 break;
406         }
407         return EXCPT_BENIGN;
408 }
409
410 #define EXCPT_FAULT             0
411 #define EXCPT_TRAP              1
412 #define EXCPT_ABORT             2
413 #define EXCPT_INTERRUPT         3
414
415 static int exception_type(int vector)
416 {
417         unsigned int mask;
418
419         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
420                 return EXCPT_INTERRUPT;
421
422         mask = 1 << vector;
423
424         /* #DB is trap, as instruction watchpoints are handled elsewhere */
425         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
426                 return EXCPT_TRAP;
427
428         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
429                 return EXCPT_ABORT;
430
431         /* Reserved exceptions will result in fault */
432         return EXCPT_FAULT;
433 }
434
435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
436 {
437         unsigned nr = vcpu->arch.exception.nr;
438         bool has_payload = vcpu->arch.exception.has_payload;
439         unsigned long payload = vcpu->arch.exception.payload;
440
441         if (!has_payload)
442                 return;
443
444         switch (nr) {
445         case DB_VECTOR:
446                 /*
447                  * "Certain debug exceptions may clear bit 0-3.  The
448                  * remaining contents of the DR6 register are never
449                  * cleared by the processor".
450                  */
451                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
452                 /*
453                  * DR6.RTM is set by all #DB exceptions that don't clear it.
454                  */
455                 vcpu->arch.dr6 |= DR6_RTM;
456                 vcpu->arch.dr6 |= payload;
457                 /*
458                  * Bit 16 should be set in the payload whenever the #DB
459                  * exception should clear DR6.RTM. This makes the payload
460                  * compatible with the pending debug exceptions under VMX.
461                  * Though not currently documented in the SDM, this also
462                  * makes the payload compatible with the exit qualification
463                  * for #DB exceptions under VMX.
464                  */
465                 vcpu->arch.dr6 ^= payload & DR6_RTM;
466
467                 /*
468                  * The #DB payload is defined as compatible with the 'pending
469                  * debug exceptions' field under VMX, not DR6. While bit 12 is
470                  * defined in the 'pending debug exceptions' field (enabled
471                  * breakpoint), it is reserved and must be zero in DR6.
472                  */
473                 vcpu->arch.dr6 &= ~BIT(12);
474                 break;
475         case PF_VECTOR:
476                 vcpu->arch.cr2 = payload;
477                 break;
478         }
479
480         vcpu->arch.exception.has_payload = false;
481         vcpu->arch.exception.payload = 0;
482 }
483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
484
485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
486                 unsigned nr, bool has_error, u32 error_code,
487                 bool has_payload, unsigned long payload, bool reinject)
488 {
489         u32 prev_nr;
490         int class1, class2;
491
492         kvm_make_request(KVM_REQ_EVENT, vcpu);
493
494         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
495         queue:
496                 if (has_error && !is_protmode(vcpu))
497                         has_error = false;
498                 if (reinject) {
499                         /*
500                          * On vmentry, vcpu->arch.exception.pending is only
501                          * true if an event injection was blocked by
502                          * nested_run_pending.  In that case, however,
503                          * vcpu_enter_guest requests an immediate exit,
504                          * and the guest shouldn't proceed far enough to
505                          * need reinjection.
506                          */
507                         WARN_ON_ONCE(vcpu->arch.exception.pending);
508                         vcpu->arch.exception.injected = true;
509                         if (WARN_ON_ONCE(has_payload)) {
510                                 /*
511                                  * A reinjected event has already
512                                  * delivered its payload.
513                                  */
514                                 has_payload = false;
515                                 payload = 0;
516                         }
517                 } else {
518                         vcpu->arch.exception.pending = true;
519                         vcpu->arch.exception.injected = false;
520                 }
521                 vcpu->arch.exception.has_error_code = has_error;
522                 vcpu->arch.exception.nr = nr;
523                 vcpu->arch.exception.error_code = error_code;
524                 vcpu->arch.exception.has_payload = has_payload;
525                 vcpu->arch.exception.payload = payload;
526                 if (!is_guest_mode(vcpu))
527                         kvm_deliver_exception_payload(vcpu);
528                 return;
529         }
530
531         /* to check exception */
532         prev_nr = vcpu->arch.exception.nr;
533         if (prev_nr == DF_VECTOR) {
534                 /* triple fault -> shutdown */
535                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
536                 return;
537         }
538         class1 = exception_class(prev_nr);
539         class2 = exception_class(nr);
540         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
541                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
542                 /*
543                  * Generate double fault per SDM Table 5-5.  Set
544                  * exception.pending = true so that the double fault
545                  * can trigger a nested vmexit.
546                  */
547                 vcpu->arch.exception.pending = true;
548                 vcpu->arch.exception.injected = false;
549                 vcpu->arch.exception.has_error_code = true;
550                 vcpu->arch.exception.nr = DF_VECTOR;
551                 vcpu->arch.exception.error_code = 0;
552                 vcpu->arch.exception.has_payload = false;
553                 vcpu->arch.exception.payload = 0;
554         } else
555                 /* replace previous exception with a new one in a hope
556                    that instruction re-execution will regenerate lost
557                    exception */
558                 goto queue;
559 }
560
561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
562 {
563         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
564 }
565 EXPORT_SYMBOL_GPL(kvm_queue_exception);
566
567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
568 {
569         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
570 }
571 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
572
573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
574                            unsigned long payload)
575 {
576         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
577 }
578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
579
580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
581                                     u32 error_code, unsigned long payload)
582 {
583         kvm_multiple_exception(vcpu, nr, true, error_code,
584                                true, payload, false);
585 }
586
587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
588 {
589         if (err)
590                 kvm_inject_gp(vcpu, 0);
591         else
592                 return kvm_skip_emulated_instruction(vcpu);
593
594         return 1;
595 }
596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
597
598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
599 {
600         ++vcpu->stat.pf_guest;
601         vcpu->arch.exception.nested_apf =
602                 is_guest_mode(vcpu) && fault->async_page_fault;
603         if (vcpu->arch.exception.nested_apf) {
604                 vcpu->arch.apf.nested_apf_token = fault->address;
605                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
606         } else {
607                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
608                                         fault->address);
609         }
610 }
611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
612
613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
614                                     struct x86_exception *fault)
615 {
616         struct kvm_mmu *fault_mmu;
617         WARN_ON_ONCE(fault->vector != PF_VECTOR);
618
619         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
620                                                vcpu->arch.walk_mmu;
621
622         /*
623          * Invalidate the TLB entry for the faulting address, if it exists,
624          * else the access will fault indefinitely (and to emulate hardware).
625          */
626         if ((fault->error_code & PFERR_PRESENT_MASK) &&
627             !(fault->error_code & PFERR_RSVD_MASK))
628                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
629                                        fault_mmu->root_hpa);
630
631         fault_mmu->inject_page_fault(vcpu, fault);
632         return fault->nested_page_fault;
633 }
634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
635
636 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
637 {
638         atomic_inc(&vcpu->arch.nmi_queued);
639         kvm_make_request(KVM_REQ_NMI, vcpu);
640 }
641 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
642
643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
644 {
645         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
646 }
647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
648
649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
650 {
651         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
652 }
653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
654
655 /*
656  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
657  * a #GP and return false.
658  */
659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
660 {
661         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
662                 return true;
663         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
664         return false;
665 }
666 EXPORT_SYMBOL_GPL(kvm_require_cpl);
667
668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
669 {
670         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
671                 return true;
672
673         kvm_queue_exception(vcpu, UD_VECTOR);
674         return false;
675 }
676 EXPORT_SYMBOL_GPL(kvm_require_dr);
677
678 /*
679  * This function will be used to read from the physical memory of the currently
680  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
681  * can read from guest physical or from the guest's guest physical memory.
682  */
683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
684                             gfn_t ngfn, void *data, int offset, int len,
685                             u32 access)
686 {
687         struct x86_exception exception;
688         gfn_t real_gfn;
689         gpa_t ngpa;
690
691         ngpa     = gfn_to_gpa(ngfn);
692         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
693         if (real_gfn == UNMAPPED_GVA)
694                 return -EFAULT;
695
696         real_gfn = gpa_to_gfn(real_gfn);
697
698         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
699 }
700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
701
702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
703                                void *data, int offset, int len, u32 access)
704 {
705         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
706                                        data, offset, len, access);
707 }
708
709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
710 {
711         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
712                rsvd_bits(1, 2);
713 }
714
715 /*
716  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
717  */
718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
719 {
720         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
721         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
722         int i;
723         int ret;
724         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
725
726         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
727                                       offset * sizeof(u64), sizeof(pdpte),
728                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
729         if (ret < 0) {
730                 ret = 0;
731                 goto out;
732         }
733         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
734                 if ((pdpte[i] & PT_PRESENT_MASK) &&
735                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
736                         ret = 0;
737                         goto out;
738                 }
739         }
740         ret = 1;
741
742         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
743         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
744
745 out:
746
747         return ret;
748 }
749 EXPORT_SYMBOL_GPL(load_pdptrs);
750
751 bool pdptrs_changed(struct kvm_vcpu *vcpu)
752 {
753         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
754         int offset;
755         gfn_t gfn;
756         int r;
757
758         if (!is_pae_paging(vcpu))
759                 return false;
760
761         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
762                 return true;
763
764         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
765         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
766         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
767                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
768         if (r < 0)
769                 return true;
770
771         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
772 }
773 EXPORT_SYMBOL_GPL(pdptrs_changed);
774
775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
776 {
777         unsigned long old_cr0 = kvm_read_cr0(vcpu);
778         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
779
780         cr0 |= X86_CR0_ET;
781
782 #ifdef CONFIG_X86_64
783         if (cr0 & 0xffffffff00000000UL)
784                 return 1;
785 #endif
786
787         cr0 &= ~CR0_RESERVED_BITS;
788
789         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
790                 return 1;
791
792         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
793                 return 1;
794
795         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
796 #ifdef CONFIG_X86_64
797                 if ((vcpu->arch.efer & EFER_LME)) {
798                         int cs_db, cs_l;
799
800                         if (!is_pae(vcpu))
801                                 return 1;
802                         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
803                         if (cs_l)
804                                 return 1;
805                 } else
806 #endif
807                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808                                                  kvm_read_cr3(vcpu)))
809                         return 1;
810         }
811
812         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
813                 return 1;
814
815         kvm_x86_ops.set_cr0(vcpu, cr0);
816
817         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
818                 kvm_clear_async_pf_completion_queue(vcpu);
819                 kvm_async_pf_hash_reset(vcpu);
820         }
821
822         if ((cr0 ^ old_cr0) & update_bits)
823                 kvm_mmu_reset_context(vcpu);
824
825         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
826             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
827             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
828                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
829
830         return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr0);
833
834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
835 {
836         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
837 }
838 EXPORT_SYMBOL_GPL(kvm_lmsw);
839
840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
841 {
842         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
843
844                 if (vcpu->arch.xcr0 != host_xcr0)
845                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
846
847                 if (vcpu->arch.xsaves_enabled &&
848                     vcpu->arch.ia32_xss != host_xss)
849                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
850         }
851
852         if (static_cpu_has(X86_FEATURE_PKU) &&
853             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
854              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
855             vcpu->arch.pkru != vcpu->arch.host_pkru)
856                 __write_pkru(vcpu->arch.pkru);
857 }
858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
859
860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
861 {
862         if (static_cpu_has(X86_FEATURE_PKU) &&
863             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
864              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
865                 vcpu->arch.pkru = rdpkru();
866                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
867                         __write_pkru(vcpu->arch.host_pkru);
868         }
869
870         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871
872                 if (vcpu->arch.xcr0 != host_xcr0)
873                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
874
875                 if (vcpu->arch.xsaves_enabled &&
876                     vcpu->arch.ia32_xss != host_xss)
877                         wrmsrl(MSR_IA32_XSS, host_xss);
878         }
879
880 }
881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
882
883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
884 {
885         u64 xcr0 = xcr;
886         u64 old_xcr0 = vcpu->arch.xcr0;
887         u64 valid_bits;
888
889         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
890         if (index != XCR_XFEATURE_ENABLED_MASK)
891                 return 1;
892         if (!(xcr0 & XFEATURE_MASK_FP))
893                 return 1;
894         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
895                 return 1;
896
897         /*
898          * Do not allow the guest to set bits that we do not support
899          * saving.  However, xcr0 bit 0 is always set, even if the
900          * emulated CPU does not support XSAVE (see fx_init).
901          */
902         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
903         if (xcr0 & ~valid_bits)
904                 return 1;
905
906         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
907             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
908                 return 1;
909
910         if (xcr0 & XFEATURE_MASK_AVX512) {
911                 if (!(xcr0 & XFEATURE_MASK_YMM))
912                         return 1;
913                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
914                         return 1;
915         }
916         vcpu->arch.xcr0 = xcr0;
917
918         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
919                 kvm_update_cpuid(vcpu);
920         return 0;
921 }
922
923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
924 {
925         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
926             __kvm_set_xcr(vcpu, index, xcr)) {
927                 kvm_inject_gp(vcpu, 0);
928                 return 1;
929         }
930         return 0;
931 }
932 EXPORT_SYMBOL_GPL(kvm_set_xcr);
933
934 #define __cr4_reserved_bits(__cpu_has, __c)             \
935 ({                                                      \
936         u64 __reserved_bits = CR4_RESERVED_BITS;        \
937                                                         \
938         if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
939                 __reserved_bits |= X86_CR4_OSXSAVE;     \
940         if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
941                 __reserved_bits |= X86_CR4_SMEP;        \
942         if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
943                 __reserved_bits |= X86_CR4_SMAP;        \
944         if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
945                 __reserved_bits |= X86_CR4_FSGSBASE;    \
946         if (!__cpu_has(__c, X86_FEATURE_PKU))           \
947                 __reserved_bits |= X86_CR4_PKE;         \
948         if (!__cpu_has(__c, X86_FEATURE_LA57))          \
949                 __reserved_bits |= X86_CR4_LA57;        \
950         if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
951                 __reserved_bits |= X86_CR4_UMIP;        \
952         __reserved_bits;                                \
953 })
954
955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
956 {
957         if (cr4 & cr4_reserved_bits)
958                 return -EINVAL;
959
960         if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
961                 return -EINVAL;
962
963         return 0;
964 }
965
966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
967 {
968         unsigned long old_cr4 = kvm_read_cr4(vcpu);
969         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
970                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
971
972         if (kvm_valid_cr4(vcpu, cr4))
973                 return 1;
974
975         if (is_long_mode(vcpu)) {
976                 if (!(cr4 & X86_CR4_PAE))
977                         return 1;
978         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
979                    && ((cr4 ^ old_cr4) & pdptr_bits)
980                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
981                                    kvm_read_cr3(vcpu)))
982                 return 1;
983
984         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
985                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
986                         return 1;
987
988                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
989                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
990                         return 1;
991         }
992
993         if (kvm_x86_ops.set_cr4(vcpu, cr4))
994                 return 1;
995
996         if (((cr4 ^ old_cr4) & pdptr_bits) ||
997             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
998                 kvm_mmu_reset_context(vcpu);
999
1000         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1001                 kvm_update_cpuid(vcpu);
1002
1003         return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1006
1007 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1008 {
1009         bool skip_tlb_flush = false;
1010 #ifdef CONFIG_X86_64
1011         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1012
1013         if (pcid_enabled) {
1014                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1015                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1016         }
1017 #endif
1018
1019         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1020                 if (!skip_tlb_flush) {
1021                         kvm_mmu_sync_roots(vcpu);
1022                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1023                 }
1024                 return 0;
1025         }
1026
1027         if (is_long_mode(vcpu) &&
1028             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1029                 return 1;
1030         else if (is_pae_paging(vcpu) &&
1031                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1032                 return 1;
1033
1034         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1035         vcpu->arch.cr3 = cr3;
1036         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1037
1038         return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1041
1042 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1043 {
1044         if (cr8 & CR8_RESERVED_BITS)
1045                 return 1;
1046         if (lapic_in_kernel(vcpu))
1047                 kvm_lapic_set_tpr(vcpu, cr8);
1048         else
1049                 vcpu->arch.cr8 = cr8;
1050         return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1053
1054 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1055 {
1056         if (lapic_in_kernel(vcpu))
1057                 return kvm_lapic_get_cr8(vcpu);
1058         else
1059                 return vcpu->arch.cr8;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1062
1063 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1064 {
1065         int i;
1066
1067         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1068                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1069                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1070                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1071         }
1072 }
1073
1074 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1075 {
1076         unsigned long dr7;
1077
1078         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1079                 dr7 = vcpu->arch.guest_debug_dr7;
1080         else
1081                 dr7 = vcpu->arch.dr7;
1082         kvm_x86_ops.set_dr7(vcpu, dr7);
1083         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1084         if (dr7 & DR7_BP_EN_MASK)
1085                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1088
1089 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1090 {
1091         u64 fixed = DR6_FIXED_1;
1092
1093         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1094                 fixed |= DR6_RTM;
1095         return fixed;
1096 }
1097
1098 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1099 {
1100         size_t size = ARRAY_SIZE(vcpu->arch.db);
1101
1102         switch (dr) {
1103         case 0 ... 3:
1104                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1105                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1106                         vcpu->arch.eff_db[dr] = val;
1107                 break;
1108         case 4:
1109                 /* fall through */
1110         case 6:
1111                 if (val & 0xffffffff00000000ULL)
1112                         return -1; /* #GP */
1113                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1114                 break;
1115         case 5:
1116                 /* fall through */
1117         default: /* 7 */
1118                 if (!kvm_dr7_valid(val))
1119                         return -1; /* #GP */
1120                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1121                 kvm_update_dr7(vcpu);
1122                 break;
1123         }
1124
1125         return 0;
1126 }
1127
1128 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1129 {
1130         if (__kvm_set_dr(vcpu, dr, val)) {
1131                 kvm_inject_gp(vcpu, 0);
1132                 return 1;
1133         }
1134         return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_set_dr);
1137
1138 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1139 {
1140         size_t size = ARRAY_SIZE(vcpu->arch.db);
1141
1142         switch (dr) {
1143         case 0 ... 3:
1144                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1145                 break;
1146         case 4:
1147                 /* fall through */
1148         case 6:
1149                 *val = vcpu->arch.dr6;
1150                 break;
1151         case 5:
1152                 /* fall through */
1153         default: /* 7 */
1154                 *val = vcpu->arch.dr7;
1155                 break;
1156         }
1157         return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_get_dr);
1160
1161 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1162 {
1163         u32 ecx = kvm_rcx_read(vcpu);
1164         u64 data;
1165         int err;
1166
1167         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1168         if (err)
1169                 return err;
1170         kvm_rax_write(vcpu, (u32)data);
1171         kvm_rdx_write(vcpu, data >> 32);
1172         return err;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1175
1176 /*
1177  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1178  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1179  *
1180  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1181  * extract the supported MSRs from the related const lists.
1182  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1183  * capabilities of the host cpu. This capabilities test skips MSRs that are
1184  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1185  * may depend on host virtualization features rather than host cpu features.
1186  */
1187
1188 static const u32 msrs_to_save_all[] = {
1189         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1190         MSR_STAR,
1191 #ifdef CONFIG_X86_64
1192         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1193 #endif
1194         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1195         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1196         MSR_IA32_SPEC_CTRL,
1197         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1198         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1199         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1200         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1201         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1202         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1203         MSR_IA32_UMWAIT_CONTROL,
1204
1205         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1206         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1207         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1208         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1209         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1210         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1211         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1212         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1213         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1214         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1215         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1216         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1217         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1218         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1219         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1220         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1221         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1222         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1223         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1224         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1225         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1226         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1227 };
1228
1229 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1230 static unsigned num_msrs_to_save;
1231
1232 static const u32 emulated_msrs_all[] = {
1233         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1234         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1235         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1236         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1237         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1238         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1239         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1240         HV_X64_MSR_RESET,
1241         HV_X64_MSR_VP_INDEX,
1242         HV_X64_MSR_VP_RUNTIME,
1243         HV_X64_MSR_SCONTROL,
1244         HV_X64_MSR_STIMER0_CONFIG,
1245         HV_X64_MSR_VP_ASSIST_PAGE,
1246         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1247         HV_X64_MSR_TSC_EMULATION_STATUS,
1248         HV_X64_MSR_SYNDBG_OPTIONS,
1249         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1250         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1251         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1252
1253         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1254         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1255
1256         MSR_IA32_TSC_ADJUST,
1257         MSR_IA32_TSCDEADLINE,
1258         MSR_IA32_ARCH_CAPABILITIES,
1259         MSR_IA32_PERF_CAPABILITIES,
1260         MSR_IA32_MISC_ENABLE,
1261         MSR_IA32_MCG_STATUS,
1262         MSR_IA32_MCG_CTL,
1263         MSR_IA32_MCG_EXT_CTL,
1264         MSR_IA32_SMBASE,
1265         MSR_SMI_COUNT,
1266         MSR_PLATFORM_INFO,
1267         MSR_MISC_FEATURES_ENABLES,
1268         MSR_AMD64_VIRT_SPEC_CTRL,
1269         MSR_IA32_POWER_CTL,
1270         MSR_IA32_UCODE_REV,
1271
1272         /*
1273          * The following list leaves out MSRs whose values are determined
1274          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1275          * We always support the "true" VMX control MSRs, even if the host
1276          * processor does not, so I am putting these registers here rather
1277          * than in msrs_to_save_all.
1278          */
1279         MSR_IA32_VMX_BASIC,
1280         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1281         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1282         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1283         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1284         MSR_IA32_VMX_MISC,
1285         MSR_IA32_VMX_CR0_FIXED0,
1286         MSR_IA32_VMX_CR4_FIXED0,
1287         MSR_IA32_VMX_VMCS_ENUM,
1288         MSR_IA32_VMX_PROCBASED_CTLS2,
1289         MSR_IA32_VMX_EPT_VPID_CAP,
1290         MSR_IA32_VMX_VMFUNC,
1291
1292         MSR_K7_HWCR,
1293         MSR_KVM_POLL_CONTROL,
1294 };
1295
1296 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1297 static unsigned num_emulated_msrs;
1298
1299 /*
1300  * List of msr numbers which are used to expose MSR-based features that
1301  * can be used by a hypervisor to validate requested CPU features.
1302  */
1303 static const u32 msr_based_features_all[] = {
1304         MSR_IA32_VMX_BASIC,
1305         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1306         MSR_IA32_VMX_PINBASED_CTLS,
1307         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1308         MSR_IA32_VMX_PROCBASED_CTLS,
1309         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1310         MSR_IA32_VMX_EXIT_CTLS,
1311         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1312         MSR_IA32_VMX_ENTRY_CTLS,
1313         MSR_IA32_VMX_MISC,
1314         MSR_IA32_VMX_CR0_FIXED0,
1315         MSR_IA32_VMX_CR0_FIXED1,
1316         MSR_IA32_VMX_CR4_FIXED0,
1317         MSR_IA32_VMX_CR4_FIXED1,
1318         MSR_IA32_VMX_VMCS_ENUM,
1319         MSR_IA32_VMX_PROCBASED_CTLS2,
1320         MSR_IA32_VMX_EPT_VPID_CAP,
1321         MSR_IA32_VMX_VMFUNC,
1322
1323         MSR_F10H_DECFG,
1324         MSR_IA32_UCODE_REV,
1325         MSR_IA32_ARCH_CAPABILITIES,
1326         MSR_IA32_PERF_CAPABILITIES,
1327 };
1328
1329 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1330 static unsigned int num_msr_based_features;
1331
1332 static u64 kvm_get_arch_capabilities(void)
1333 {
1334         u64 data = 0;
1335
1336         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1337                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1338
1339         /*
1340          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1341          * the nested hypervisor runs with NX huge pages.  If it is not,
1342          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1343          * L1 guests, so it need not worry about its own (L2) guests.
1344          */
1345         data |= ARCH_CAP_PSCHANGE_MC_NO;
1346
1347         /*
1348          * If we're doing cache flushes (either "always" or "cond")
1349          * we will do one whenever the guest does a vmlaunch/vmresume.
1350          * If an outer hypervisor is doing the cache flush for us
1351          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1352          * capability to the guest too, and if EPT is disabled we're not
1353          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1354          * require a nested hypervisor to do a flush of its own.
1355          */
1356         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1357                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1358
1359         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1360                 data |= ARCH_CAP_RDCL_NO;
1361         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1362                 data |= ARCH_CAP_SSB_NO;
1363         if (!boot_cpu_has_bug(X86_BUG_MDS))
1364                 data |= ARCH_CAP_MDS_NO;
1365
1366         /*
1367          * On TAA affected systems:
1368          *      - nothing to do if TSX is disabled on the host.
1369          *      - we emulate TSX_CTRL if present on the host.
1370          *        This lets the guest use VERW to clear CPU buffers.
1371          */
1372         if (!boot_cpu_has(X86_FEATURE_RTM))
1373                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1374         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1375                 data |= ARCH_CAP_TAA_NO;
1376
1377         return data;
1378 }
1379
1380 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1381 {
1382         switch (msr->index) {
1383         case MSR_IA32_ARCH_CAPABILITIES:
1384                 msr->data = kvm_get_arch_capabilities();
1385                 break;
1386         case MSR_IA32_UCODE_REV:
1387                 rdmsrl_safe(msr->index, &msr->data);
1388                 break;
1389         default:
1390                 if (kvm_x86_ops.get_msr_feature(msr))
1391                         return 1;
1392         }
1393         return 0;
1394 }
1395
1396 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1397 {
1398         struct kvm_msr_entry msr;
1399         int r;
1400
1401         msr.index = index;
1402         r = kvm_get_msr_feature(&msr);
1403         if (r)
1404                 return r;
1405
1406         *data = msr.data;
1407
1408         return 0;
1409 }
1410
1411 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1412 {
1413         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1414                 return false;
1415
1416         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1417                 return false;
1418
1419         if (efer & (EFER_LME | EFER_LMA) &&
1420             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1421                 return false;
1422
1423         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1424                 return false;
1425
1426         return true;
1427
1428 }
1429 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1430 {
1431         if (efer & efer_reserved_bits)
1432                 return false;
1433
1434         return __kvm_valid_efer(vcpu, efer);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1437
1438 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1439 {
1440         u64 old_efer = vcpu->arch.efer;
1441         u64 efer = msr_info->data;
1442
1443         if (efer & efer_reserved_bits)
1444                 return 1;
1445
1446         if (!msr_info->host_initiated) {
1447                 if (!__kvm_valid_efer(vcpu, efer))
1448                         return 1;
1449
1450                 if (is_paging(vcpu) &&
1451                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1452                         return 1;
1453         }
1454
1455         efer &= ~EFER_LMA;
1456         efer |= vcpu->arch.efer & EFER_LMA;
1457
1458         kvm_x86_ops.set_efer(vcpu, efer);
1459
1460         /* Update reserved bits */
1461         if ((efer ^ old_efer) & EFER_NX)
1462                 kvm_mmu_reset_context(vcpu);
1463
1464         return 0;
1465 }
1466
1467 void kvm_enable_efer_bits(u64 mask)
1468 {
1469        efer_reserved_bits &= ~mask;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1472
1473 /*
1474  * Write @data into the MSR specified by @index.  Select MSR specific fault
1475  * checks are bypassed if @host_initiated is %true.
1476  * Returns 0 on success, non-0 otherwise.
1477  * Assumes vcpu_load() was already called.
1478  */
1479 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1480                          bool host_initiated)
1481 {
1482         struct msr_data msr;
1483
1484         switch (index) {
1485         case MSR_FS_BASE:
1486         case MSR_GS_BASE:
1487         case MSR_KERNEL_GS_BASE:
1488         case MSR_CSTAR:
1489         case MSR_LSTAR:
1490                 if (is_noncanonical_address(data, vcpu))
1491                         return 1;
1492                 break;
1493         case MSR_IA32_SYSENTER_EIP:
1494         case MSR_IA32_SYSENTER_ESP:
1495                 /*
1496                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1497                  * non-canonical address is written on Intel but not on
1498                  * AMD (which ignores the top 32-bits, because it does
1499                  * not implement 64-bit SYSENTER).
1500                  *
1501                  * 64-bit code should hence be able to write a non-canonical
1502                  * value on AMD.  Making the address canonical ensures that
1503                  * vmentry does not fail on Intel after writing a non-canonical
1504                  * value, and that something deterministic happens if the guest
1505                  * invokes 64-bit SYSENTER.
1506                  */
1507                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1508         }
1509
1510         msr.data = data;
1511         msr.index = index;
1512         msr.host_initiated = host_initiated;
1513
1514         return kvm_x86_ops.set_msr(vcpu, &msr);
1515 }
1516
1517 /*
1518  * Read the MSR specified by @index into @data.  Select MSR specific fault
1519  * checks are bypassed if @host_initiated is %true.
1520  * Returns 0 on success, non-0 otherwise.
1521  * Assumes vcpu_load() was already called.
1522  */
1523 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1524                   bool host_initiated)
1525 {
1526         struct msr_data msr;
1527         int ret;
1528
1529         msr.index = index;
1530         msr.host_initiated = host_initiated;
1531
1532         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1533         if (!ret)
1534                 *data = msr.data;
1535         return ret;
1536 }
1537
1538 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1539 {
1540         return __kvm_get_msr(vcpu, index, data, false);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_get_msr);
1543
1544 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1545 {
1546         return __kvm_set_msr(vcpu, index, data, false);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_set_msr);
1549
1550 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1551 {
1552         u32 ecx = kvm_rcx_read(vcpu);
1553         u64 data;
1554
1555         if (kvm_get_msr(vcpu, ecx, &data)) {
1556                 trace_kvm_msr_read_ex(ecx);
1557                 kvm_inject_gp(vcpu, 0);
1558                 return 1;
1559         }
1560
1561         trace_kvm_msr_read(ecx, data);
1562
1563         kvm_rax_write(vcpu, data & -1u);
1564         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1565         return kvm_skip_emulated_instruction(vcpu);
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1568
1569 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1570 {
1571         u32 ecx = kvm_rcx_read(vcpu);
1572         u64 data = kvm_read_edx_eax(vcpu);
1573
1574         if (kvm_set_msr(vcpu, ecx, data)) {
1575                 trace_kvm_msr_write_ex(ecx, data);
1576                 kvm_inject_gp(vcpu, 0);
1577                 return 1;
1578         }
1579
1580         trace_kvm_msr_write(ecx, data);
1581         return kvm_skip_emulated_instruction(vcpu);
1582 }
1583 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1584
1585 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1586 {
1587         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1588                 need_resched() || signal_pending(current);
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1591
1592 /*
1593  * The fast path for frequent and performance sensitive wrmsr emulation,
1594  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1595  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1596  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1597  * other cases which must be called after interrupts are enabled on the host.
1598  */
1599 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1600 {
1601         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1602                 return 1;
1603
1604         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1605                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1606                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1607                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1608
1609                 data &= ~(1 << 12);
1610                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1611                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1612                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1613                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1614                 return 0;
1615         }
1616
1617         return 1;
1618 }
1619
1620 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1621 {
1622         if (!kvm_can_use_hv_timer(vcpu))
1623                 return 1;
1624
1625         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1626         return 0;
1627 }
1628
1629 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1630 {
1631         u32 msr = kvm_rcx_read(vcpu);
1632         u64 data;
1633         fastpath_t ret = EXIT_FASTPATH_NONE;
1634
1635         switch (msr) {
1636         case APIC_BASE_MSR + (APIC_ICR >> 4):
1637                 data = kvm_read_edx_eax(vcpu);
1638                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1639                         kvm_skip_emulated_instruction(vcpu);
1640                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1641                 }
1642                 break;
1643         case MSR_IA32_TSCDEADLINE:
1644                 data = kvm_read_edx_eax(vcpu);
1645                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1646                         kvm_skip_emulated_instruction(vcpu);
1647                         ret = EXIT_FASTPATH_REENTER_GUEST;
1648                 }
1649                 break;
1650         default:
1651                 break;
1652         }
1653
1654         if (ret != EXIT_FASTPATH_NONE)
1655                 trace_kvm_msr_write(msr, data);
1656
1657         return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1660
1661 /*
1662  * Adapt set_msr() to msr_io()'s calling convention
1663  */
1664 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1665 {
1666         return __kvm_get_msr(vcpu, index, data, true);
1667 }
1668
1669 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1670 {
1671         return __kvm_set_msr(vcpu, index, *data, true);
1672 }
1673
1674 #ifdef CONFIG_X86_64
1675 struct pvclock_clock {
1676         int vclock_mode;
1677         u64 cycle_last;
1678         u64 mask;
1679         u32 mult;
1680         u32 shift;
1681         u64 base_cycles;
1682         u64 offset;
1683 };
1684
1685 struct pvclock_gtod_data {
1686         seqcount_t      seq;
1687
1688         struct pvclock_clock clock; /* extract of a clocksource struct */
1689         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1690
1691         ktime_t         offs_boot;
1692         u64             wall_time_sec;
1693 };
1694
1695 static struct pvclock_gtod_data pvclock_gtod_data;
1696
1697 static void update_pvclock_gtod(struct timekeeper *tk)
1698 {
1699         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1700
1701         write_seqcount_begin(&vdata->seq);
1702
1703         /* copy pvclock gtod data */
1704         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1705         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1706         vdata->clock.mask               = tk->tkr_mono.mask;
1707         vdata->clock.mult               = tk->tkr_mono.mult;
1708         vdata->clock.shift              = tk->tkr_mono.shift;
1709         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1710         vdata->clock.offset             = tk->tkr_mono.base;
1711
1712         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1713         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1714         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1715         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1716         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1717         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1718         vdata->raw_clock.offset         = tk->tkr_raw.base;
1719
1720         vdata->wall_time_sec            = tk->xtime_sec;
1721
1722         vdata->offs_boot                = tk->offs_boot;
1723
1724         write_seqcount_end(&vdata->seq);
1725 }
1726
1727 static s64 get_kvmclock_base_ns(void)
1728 {
1729         /* Count up from boot time, but with the frequency of the raw clock.  */
1730         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1731 }
1732 #else
1733 static s64 get_kvmclock_base_ns(void)
1734 {
1735         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1736         return ktime_get_boottime_ns();
1737 }
1738 #endif
1739
1740 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1741 {
1742         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1743         kvm_vcpu_kick(vcpu);
1744 }
1745
1746 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1747 {
1748         int version;
1749         int r;
1750         struct pvclock_wall_clock wc;
1751         u64 wall_nsec;
1752
1753         if (!wall_clock)
1754                 return;
1755
1756         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1757         if (r)
1758                 return;
1759
1760         if (version & 1)
1761                 ++version;  /* first time write, random junk */
1762
1763         ++version;
1764
1765         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1766                 return;
1767
1768         /*
1769          * The guest calculates current wall clock time by adding
1770          * system time (updated by kvm_guest_time_update below) to the
1771          * wall clock specified here.  We do the reverse here.
1772          */
1773         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1774
1775         wc.nsec = do_div(wall_nsec, 1000000000);
1776         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1777         wc.version = version;
1778
1779         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1780
1781         version++;
1782         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1783 }
1784
1785 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1786 {
1787         do_shl32_div32(dividend, divisor);
1788         return dividend;
1789 }
1790
1791 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1792                                s8 *pshift, u32 *pmultiplier)
1793 {
1794         uint64_t scaled64;
1795         int32_t  shift = 0;
1796         uint64_t tps64;
1797         uint32_t tps32;
1798
1799         tps64 = base_hz;
1800         scaled64 = scaled_hz;
1801         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1802                 tps64 >>= 1;
1803                 shift--;
1804         }
1805
1806         tps32 = (uint32_t)tps64;
1807         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1808                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1809                         scaled64 >>= 1;
1810                 else
1811                         tps32 <<= 1;
1812                 shift++;
1813         }
1814
1815         *pshift = shift;
1816         *pmultiplier = div_frac(scaled64, tps32);
1817 }
1818
1819 #ifdef CONFIG_X86_64
1820 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1821 #endif
1822
1823 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1824 static unsigned long max_tsc_khz;
1825
1826 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1827 {
1828         u64 v = (u64)khz * (1000000 + ppm);
1829         do_div(v, 1000000);
1830         return v;
1831 }
1832
1833 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1834 {
1835         u64 ratio;
1836
1837         /* Guest TSC same frequency as host TSC? */
1838         if (!scale) {
1839                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1840                 return 0;
1841         }
1842
1843         /* TSC scaling supported? */
1844         if (!kvm_has_tsc_control) {
1845                 if (user_tsc_khz > tsc_khz) {
1846                         vcpu->arch.tsc_catchup = 1;
1847                         vcpu->arch.tsc_always_catchup = 1;
1848                         return 0;
1849                 } else {
1850                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1851                         return -1;
1852                 }
1853         }
1854
1855         /* TSC scaling required  - calculate ratio */
1856         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1857                                 user_tsc_khz, tsc_khz);
1858
1859         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1860                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1861                                     user_tsc_khz);
1862                 return -1;
1863         }
1864
1865         vcpu->arch.tsc_scaling_ratio = ratio;
1866         return 0;
1867 }
1868
1869 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1870 {
1871         u32 thresh_lo, thresh_hi;
1872         int use_scaling = 0;
1873
1874         /* tsc_khz can be zero if TSC calibration fails */
1875         if (user_tsc_khz == 0) {
1876                 /* set tsc_scaling_ratio to a safe value */
1877                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1878                 return -1;
1879         }
1880
1881         /* Compute a scale to convert nanoseconds in TSC cycles */
1882         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1883                            &vcpu->arch.virtual_tsc_shift,
1884                            &vcpu->arch.virtual_tsc_mult);
1885         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1886
1887         /*
1888          * Compute the variation in TSC rate which is acceptable
1889          * within the range of tolerance and decide if the
1890          * rate being applied is within that bounds of the hardware
1891          * rate.  If so, no scaling or compensation need be done.
1892          */
1893         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1894         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1895         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1896                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1897                 use_scaling = 1;
1898         }
1899         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1900 }
1901
1902 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1903 {
1904         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1905                                       vcpu->arch.virtual_tsc_mult,
1906                                       vcpu->arch.virtual_tsc_shift);
1907         tsc += vcpu->arch.this_tsc_write;
1908         return tsc;
1909 }
1910
1911 static inline int gtod_is_based_on_tsc(int mode)
1912 {
1913         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1914 }
1915
1916 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1917 {
1918 #ifdef CONFIG_X86_64
1919         bool vcpus_matched;
1920         struct kvm_arch *ka = &vcpu->kvm->arch;
1921         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1922
1923         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1924                          atomic_read(&vcpu->kvm->online_vcpus));
1925
1926         /*
1927          * Once the masterclock is enabled, always perform request in
1928          * order to update it.
1929          *
1930          * In order to enable masterclock, the host clocksource must be TSC
1931          * and the vcpus need to have matched TSCs.  When that happens,
1932          * perform request to enable masterclock.
1933          */
1934         if (ka->use_master_clock ||
1935             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1936                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1937
1938         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1939                             atomic_read(&vcpu->kvm->online_vcpus),
1940                             ka->use_master_clock, gtod->clock.vclock_mode);
1941 #endif
1942 }
1943
1944 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1945 {
1946         u64 curr_offset = vcpu->arch.l1_tsc_offset;
1947         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1948 }
1949
1950 /*
1951  * Multiply tsc by a fixed point number represented by ratio.
1952  *
1953  * The most significant 64-N bits (mult) of ratio represent the
1954  * integral part of the fixed point number; the remaining N bits
1955  * (frac) represent the fractional part, ie. ratio represents a fixed
1956  * point number (mult + frac * 2^(-N)).
1957  *
1958  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1959  */
1960 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1961 {
1962         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1963 }
1964
1965 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1966 {
1967         u64 _tsc = tsc;
1968         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1969
1970         if (ratio != kvm_default_tsc_scaling_ratio)
1971                 _tsc = __scale_tsc(ratio, tsc);
1972
1973         return _tsc;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1976
1977 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1978 {
1979         u64 tsc;
1980
1981         tsc = kvm_scale_tsc(vcpu, rdtsc());
1982
1983         return target_tsc - tsc;
1984 }
1985
1986 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1987 {
1988         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1991
1992 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1993 {
1994         vcpu->arch.l1_tsc_offset = offset;
1995         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1996 }
1997
1998 static inline bool kvm_check_tsc_unstable(void)
1999 {
2000 #ifdef CONFIG_X86_64
2001         /*
2002          * TSC is marked unstable when we're running on Hyper-V,
2003          * 'TSC page' clocksource is good.
2004          */
2005         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2006                 return false;
2007 #endif
2008         return check_tsc_unstable();
2009 }
2010
2011 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2012 {
2013         struct kvm *kvm = vcpu->kvm;
2014         u64 offset, ns, elapsed;
2015         unsigned long flags;
2016         bool matched;
2017         bool already_matched;
2018         u64 data = msr->data;
2019         bool synchronizing = false;
2020
2021         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2022         offset = kvm_compute_tsc_offset(vcpu, data);
2023         ns = get_kvmclock_base_ns();
2024         elapsed = ns - kvm->arch.last_tsc_nsec;
2025
2026         if (vcpu->arch.virtual_tsc_khz) {
2027                 if (data == 0 && msr->host_initiated) {
2028                         /*
2029                          * detection of vcpu initialization -- need to sync
2030                          * with other vCPUs. This particularly helps to keep
2031                          * kvm_clock stable after CPU hotplug
2032                          */
2033                         synchronizing = true;
2034                 } else {
2035                         u64 tsc_exp = kvm->arch.last_tsc_write +
2036                                                 nsec_to_cycles(vcpu, elapsed);
2037                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2038                         /*
2039                          * Special case: TSC write with a small delta (1 second)
2040                          * of virtual cycle time against real time is
2041                          * interpreted as an attempt to synchronize the CPU.
2042                          */
2043                         synchronizing = data < tsc_exp + tsc_hz &&
2044                                         data + tsc_hz > tsc_exp;
2045                 }
2046         }
2047
2048         /*
2049          * For a reliable TSC, we can match TSC offsets, and for an unstable
2050          * TSC, we add elapsed time in this computation.  We could let the
2051          * compensation code attempt to catch up if we fall behind, but
2052          * it's better to try to match offsets from the beginning.
2053          */
2054         if (synchronizing &&
2055             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2056                 if (!kvm_check_tsc_unstable()) {
2057                         offset = kvm->arch.cur_tsc_offset;
2058                 } else {
2059                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2060                         data += delta;
2061                         offset = kvm_compute_tsc_offset(vcpu, data);
2062                 }
2063                 matched = true;
2064                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2065         } else {
2066                 /*
2067                  * We split periods of matched TSC writes into generations.
2068                  * For each generation, we track the original measured
2069                  * nanosecond time, offset, and write, so if TSCs are in
2070                  * sync, we can match exact offset, and if not, we can match
2071                  * exact software computation in compute_guest_tsc()
2072                  *
2073                  * These values are tracked in kvm->arch.cur_xxx variables.
2074                  */
2075                 kvm->arch.cur_tsc_generation++;
2076                 kvm->arch.cur_tsc_nsec = ns;
2077                 kvm->arch.cur_tsc_write = data;
2078                 kvm->arch.cur_tsc_offset = offset;
2079                 matched = false;
2080         }
2081
2082         /*
2083          * We also track th most recent recorded KHZ, write and time to
2084          * allow the matching interval to be extended at each write.
2085          */
2086         kvm->arch.last_tsc_nsec = ns;
2087         kvm->arch.last_tsc_write = data;
2088         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2089
2090         vcpu->arch.last_guest_tsc = data;
2091
2092         /* Keep track of which generation this VCPU has synchronized to */
2093         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2094         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2095         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2096
2097         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2098                 update_ia32_tsc_adjust_msr(vcpu, offset);
2099
2100         kvm_vcpu_write_tsc_offset(vcpu, offset);
2101         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2102
2103         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2104         if (!matched) {
2105                 kvm->arch.nr_vcpus_matched_tsc = 0;
2106         } else if (!already_matched) {
2107                 kvm->arch.nr_vcpus_matched_tsc++;
2108         }
2109
2110         kvm_track_tsc_matching(vcpu);
2111         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2112 }
2113
2114 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2115
2116 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2117                                            s64 adjustment)
2118 {
2119         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2120         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2121 }
2122
2123 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2124 {
2125         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2126                 WARN_ON(adjustment < 0);
2127         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2128         adjust_tsc_offset_guest(vcpu, adjustment);
2129 }
2130
2131 #ifdef CONFIG_X86_64
2132
2133 static u64 read_tsc(void)
2134 {
2135         u64 ret = (u64)rdtsc_ordered();
2136         u64 last = pvclock_gtod_data.clock.cycle_last;
2137
2138         if (likely(ret >= last))
2139                 return ret;
2140
2141         /*
2142          * GCC likes to generate cmov here, but this branch is extremely
2143          * predictable (it's just a function of time and the likely is
2144          * very likely) and there's a data dependence, so force GCC
2145          * to generate a branch instead.  I don't barrier() because
2146          * we don't actually need a barrier, and if this function
2147          * ever gets inlined it will generate worse code.
2148          */
2149         asm volatile ("");
2150         return last;
2151 }
2152
2153 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2154                           int *mode)
2155 {
2156         long v;
2157         u64 tsc_pg_val;
2158
2159         switch (clock->vclock_mode) {
2160         case VDSO_CLOCKMODE_HVCLOCK:
2161                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2162                                                   tsc_timestamp);
2163                 if (tsc_pg_val != U64_MAX) {
2164                         /* TSC page valid */
2165                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2166                         v = (tsc_pg_val - clock->cycle_last) &
2167                                 clock->mask;
2168                 } else {
2169                         /* TSC page invalid */
2170                         *mode = VDSO_CLOCKMODE_NONE;
2171                 }
2172                 break;
2173         case VDSO_CLOCKMODE_TSC:
2174                 *mode = VDSO_CLOCKMODE_TSC;
2175                 *tsc_timestamp = read_tsc();
2176                 v = (*tsc_timestamp - clock->cycle_last) &
2177                         clock->mask;
2178                 break;
2179         default:
2180                 *mode = VDSO_CLOCKMODE_NONE;
2181         }
2182
2183         if (*mode == VDSO_CLOCKMODE_NONE)
2184                 *tsc_timestamp = v = 0;
2185
2186         return v * clock->mult;
2187 }
2188
2189 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2190 {
2191         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2192         unsigned long seq;
2193         int mode;
2194         u64 ns;
2195
2196         do {
2197                 seq = read_seqcount_begin(&gtod->seq);
2198                 ns = gtod->raw_clock.base_cycles;
2199                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2200                 ns >>= gtod->raw_clock.shift;
2201                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2202         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2203         *t = ns;
2204
2205         return mode;
2206 }
2207
2208 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2209 {
2210         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2211         unsigned long seq;
2212         int mode;
2213         u64 ns;
2214
2215         do {
2216                 seq = read_seqcount_begin(&gtod->seq);
2217                 ts->tv_sec = gtod->wall_time_sec;
2218                 ns = gtod->clock.base_cycles;
2219                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2220                 ns >>= gtod->clock.shift;
2221         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2222
2223         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2224         ts->tv_nsec = ns;
2225
2226         return mode;
2227 }
2228
2229 /* returns true if host is using TSC based clocksource */
2230 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2231 {
2232         /* checked again under seqlock below */
2233         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2234                 return false;
2235
2236         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2237                                                       tsc_timestamp));
2238 }
2239
2240 /* returns true if host is using TSC based clocksource */
2241 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2242                                            u64 *tsc_timestamp)
2243 {
2244         /* checked again under seqlock below */
2245         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2246                 return false;
2247
2248         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2249 }
2250 #endif
2251
2252 /*
2253  *
2254  * Assuming a stable TSC across physical CPUS, and a stable TSC
2255  * across virtual CPUs, the following condition is possible.
2256  * Each numbered line represents an event visible to both
2257  * CPUs at the next numbered event.
2258  *
2259  * "timespecX" represents host monotonic time. "tscX" represents
2260  * RDTSC value.
2261  *
2262  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2263  *
2264  * 1.  read timespec0,tsc0
2265  * 2.                                   | timespec1 = timespec0 + N
2266  *                                      | tsc1 = tsc0 + M
2267  * 3. transition to guest               | transition to guest
2268  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2269  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2270  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2271  *
2272  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2273  *
2274  *      - ret0 < ret1
2275  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2276  *              ...
2277  *      - 0 < N - M => M < N
2278  *
2279  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2280  * always the case (the difference between two distinct xtime instances
2281  * might be smaller then the difference between corresponding TSC reads,
2282  * when updating guest vcpus pvclock areas).
2283  *
2284  * To avoid that problem, do not allow visibility of distinct
2285  * system_timestamp/tsc_timestamp values simultaneously: use a master
2286  * copy of host monotonic time values. Update that master copy
2287  * in lockstep.
2288  *
2289  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2290  *
2291  */
2292
2293 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2294 {
2295 #ifdef CONFIG_X86_64
2296         struct kvm_arch *ka = &kvm->arch;
2297         int vclock_mode;
2298         bool host_tsc_clocksource, vcpus_matched;
2299
2300         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2301                         atomic_read(&kvm->online_vcpus));
2302
2303         /*
2304          * If the host uses TSC clock, then passthrough TSC as stable
2305          * to the guest.
2306          */
2307         host_tsc_clocksource = kvm_get_time_and_clockread(
2308                                         &ka->master_kernel_ns,
2309                                         &ka->master_cycle_now);
2310
2311         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2312                                 && !ka->backwards_tsc_observed
2313                                 && !ka->boot_vcpu_runs_old_kvmclock;
2314
2315         if (ka->use_master_clock)
2316                 atomic_set(&kvm_guest_has_master_clock, 1);
2317
2318         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2319         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2320                                         vcpus_matched);
2321 #endif
2322 }
2323
2324 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2325 {
2326         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2327 }
2328
2329 static void kvm_gen_update_masterclock(struct kvm *kvm)
2330 {
2331 #ifdef CONFIG_X86_64
2332         int i;
2333         struct kvm_vcpu *vcpu;
2334         struct kvm_arch *ka = &kvm->arch;
2335
2336         spin_lock(&ka->pvclock_gtod_sync_lock);
2337         kvm_make_mclock_inprogress_request(kvm);
2338         /* no guest entries from this point */
2339         pvclock_update_vm_gtod_copy(kvm);
2340
2341         kvm_for_each_vcpu(i, vcpu, kvm)
2342                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2343
2344         /* guest entries allowed */
2345         kvm_for_each_vcpu(i, vcpu, kvm)
2346                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2347
2348         spin_unlock(&ka->pvclock_gtod_sync_lock);
2349 #endif
2350 }
2351
2352 u64 get_kvmclock_ns(struct kvm *kvm)
2353 {
2354         struct kvm_arch *ka = &kvm->arch;
2355         struct pvclock_vcpu_time_info hv_clock;
2356         u64 ret;
2357
2358         spin_lock(&ka->pvclock_gtod_sync_lock);
2359         if (!ka->use_master_clock) {
2360                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2361                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2362         }
2363
2364         hv_clock.tsc_timestamp = ka->master_cycle_now;
2365         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2366         spin_unlock(&ka->pvclock_gtod_sync_lock);
2367
2368         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2369         get_cpu();
2370
2371         if (__this_cpu_read(cpu_tsc_khz)) {
2372                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2373                                    &hv_clock.tsc_shift,
2374                                    &hv_clock.tsc_to_system_mul);
2375                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2376         } else
2377                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2378
2379         put_cpu();
2380
2381         return ret;
2382 }
2383
2384 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2385 {
2386         struct kvm_vcpu_arch *vcpu = &v->arch;
2387         struct pvclock_vcpu_time_info guest_hv_clock;
2388
2389         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2390                 &guest_hv_clock, sizeof(guest_hv_clock))))
2391                 return;
2392
2393         /* This VCPU is paused, but it's legal for a guest to read another
2394          * VCPU's kvmclock, so we really have to follow the specification where
2395          * it says that version is odd if data is being modified, and even after
2396          * it is consistent.
2397          *
2398          * Version field updates must be kept separate.  This is because
2399          * kvm_write_guest_cached might use a "rep movs" instruction, and
2400          * writes within a string instruction are weakly ordered.  So there
2401          * are three writes overall.
2402          *
2403          * As a small optimization, only write the version field in the first
2404          * and third write.  The vcpu->pv_time cache is still valid, because the
2405          * version field is the first in the struct.
2406          */
2407         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2408
2409         if (guest_hv_clock.version & 1)
2410                 ++guest_hv_clock.version;  /* first time write, random junk */
2411
2412         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2413         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2414                                 &vcpu->hv_clock,
2415                                 sizeof(vcpu->hv_clock.version));
2416
2417         smp_wmb();
2418
2419         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2420         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2421
2422         if (vcpu->pvclock_set_guest_stopped_request) {
2423                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2424                 vcpu->pvclock_set_guest_stopped_request = false;
2425         }
2426
2427         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2428
2429         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2430                                 &vcpu->hv_clock,
2431                                 sizeof(vcpu->hv_clock));
2432
2433         smp_wmb();
2434
2435         vcpu->hv_clock.version++;
2436         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2437                                 &vcpu->hv_clock,
2438                                 sizeof(vcpu->hv_clock.version));
2439 }
2440
2441 static int kvm_guest_time_update(struct kvm_vcpu *v)
2442 {
2443         unsigned long flags, tgt_tsc_khz;
2444         struct kvm_vcpu_arch *vcpu = &v->arch;
2445         struct kvm_arch *ka = &v->kvm->arch;
2446         s64 kernel_ns;
2447         u64 tsc_timestamp, host_tsc;
2448         u8 pvclock_flags;
2449         bool use_master_clock;
2450
2451         kernel_ns = 0;
2452         host_tsc = 0;
2453
2454         /*
2455          * If the host uses TSC clock, then passthrough TSC as stable
2456          * to the guest.
2457          */
2458         spin_lock(&ka->pvclock_gtod_sync_lock);
2459         use_master_clock = ka->use_master_clock;
2460         if (use_master_clock) {
2461                 host_tsc = ka->master_cycle_now;
2462                 kernel_ns = ka->master_kernel_ns;
2463         }
2464         spin_unlock(&ka->pvclock_gtod_sync_lock);
2465
2466         /* Keep irq disabled to prevent changes to the clock */
2467         local_irq_save(flags);
2468         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2469         if (unlikely(tgt_tsc_khz == 0)) {
2470                 local_irq_restore(flags);
2471                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2472                 return 1;
2473         }
2474         if (!use_master_clock) {
2475                 host_tsc = rdtsc();
2476                 kernel_ns = get_kvmclock_base_ns();
2477         }
2478
2479         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2480
2481         /*
2482          * We may have to catch up the TSC to match elapsed wall clock
2483          * time for two reasons, even if kvmclock is used.
2484          *   1) CPU could have been running below the maximum TSC rate
2485          *   2) Broken TSC compensation resets the base at each VCPU
2486          *      entry to avoid unknown leaps of TSC even when running
2487          *      again on the same CPU.  This may cause apparent elapsed
2488          *      time to disappear, and the guest to stand still or run
2489          *      very slowly.
2490          */
2491         if (vcpu->tsc_catchup) {
2492                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2493                 if (tsc > tsc_timestamp) {
2494                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2495                         tsc_timestamp = tsc;
2496                 }
2497         }
2498
2499         local_irq_restore(flags);
2500
2501         /* With all the info we got, fill in the values */
2502
2503         if (kvm_has_tsc_control)
2504                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2505
2506         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2507                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2508                                    &vcpu->hv_clock.tsc_shift,
2509                                    &vcpu->hv_clock.tsc_to_system_mul);
2510                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2511         }
2512
2513         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2514         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2515         vcpu->last_guest_tsc = tsc_timestamp;
2516
2517         /* If the host uses TSC clocksource, then it is stable */
2518         pvclock_flags = 0;
2519         if (use_master_clock)
2520                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2521
2522         vcpu->hv_clock.flags = pvclock_flags;
2523
2524         if (vcpu->pv_time_enabled)
2525                 kvm_setup_pvclock_page(v);
2526         if (v == kvm_get_vcpu(v->kvm, 0))
2527                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2528         return 0;
2529 }
2530
2531 /*
2532  * kvmclock updates which are isolated to a given vcpu, such as
2533  * vcpu->cpu migration, should not allow system_timestamp from
2534  * the rest of the vcpus to remain static. Otherwise ntp frequency
2535  * correction applies to one vcpu's system_timestamp but not
2536  * the others.
2537  *
2538  * So in those cases, request a kvmclock update for all vcpus.
2539  * We need to rate-limit these requests though, as they can
2540  * considerably slow guests that have a large number of vcpus.
2541  * The time for a remote vcpu to update its kvmclock is bound
2542  * by the delay we use to rate-limit the updates.
2543  */
2544
2545 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2546
2547 static void kvmclock_update_fn(struct work_struct *work)
2548 {
2549         int i;
2550         struct delayed_work *dwork = to_delayed_work(work);
2551         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2552                                            kvmclock_update_work);
2553         struct kvm *kvm = container_of(ka, struct kvm, arch);
2554         struct kvm_vcpu *vcpu;
2555
2556         kvm_for_each_vcpu(i, vcpu, kvm) {
2557                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2558                 kvm_vcpu_kick(vcpu);
2559         }
2560 }
2561
2562 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2563 {
2564         struct kvm *kvm = v->kvm;
2565
2566         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2567         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2568                                         KVMCLOCK_UPDATE_DELAY);
2569 }
2570
2571 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2572
2573 static void kvmclock_sync_fn(struct work_struct *work)
2574 {
2575         struct delayed_work *dwork = to_delayed_work(work);
2576         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2577                                            kvmclock_sync_work);
2578         struct kvm *kvm = container_of(ka, struct kvm, arch);
2579
2580         if (!kvmclock_periodic_sync)
2581                 return;
2582
2583         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2584         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2585                                         KVMCLOCK_SYNC_PERIOD);
2586 }
2587
2588 /*
2589  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2590  */
2591 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2592 {
2593         /* McStatusWrEn enabled? */
2594         if (guest_cpuid_is_amd_or_hygon(vcpu))
2595                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2596
2597         return false;
2598 }
2599
2600 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2601 {
2602         u64 mcg_cap = vcpu->arch.mcg_cap;
2603         unsigned bank_num = mcg_cap & 0xff;
2604         u32 msr = msr_info->index;
2605         u64 data = msr_info->data;
2606
2607         switch (msr) {
2608         case MSR_IA32_MCG_STATUS:
2609                 vcpu->arch.mcg_status = data;
2610                 break;
2611         case MSR_IA32_MCG_CTL:
2612                 if (!(mcg_cap & MCG_CTL_P) &&
2613                     (data || !msr_info->host_initiated))
2614                         return 1;
2615                 if (data != 0 && data != ~(u64)0)
2616                         return 1;
2617                 vcpu->arch.mcg_ctl = data;
2618                 break;
2619         default:
2620                 if (msr >= MSR_IA32_MC0_CTL &&
2621                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2622                         u32 offset = array_index_nospec(
2623                                 msr - MSR_IA32_MC0_CTL,
2624                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2625
2626                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2627                          * some Linux kernels though clear bit 10 in bank 4 to
2628                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2629                          * this to avoid an uncatched #GP in the guest
2630                          */
2631                         if ((offset & 0x3) == 0 &&
2632                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2633                                 return -1;
2634
2635                         /* MCi_STATUS */
2636                         if (!msr_info->host_initiated &&
2637                             (offset & 0x3) == 1 && data != 0) {
2638                                 if (!can_set_mci_status(vcpu))
2639                                         return -1;
2640                         }
2641
2642                         vcpu->arch.mce_banks[offset] = data;
2643                         break;
2644                 }
2645                 return 1;
2646         }
2647         return 0;
2648 }
2649
2650 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2651 {
2652         struct kvm *kvm = vcpu->kvm;
2653         int lm = is_long_mode(vcpu);
2654         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2655                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2656         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2657                 : kvm->arch.xen_hvm_config.blob_size_32;
2658         u32 page_num = data & ~PAGE_MASK;
2659         u64 page_addr = data & PAGE_MASK;
2660         u8 *page;
2661         int r;
2662
2663         r = -E2BIG;
2664         if (page_num >= blob_size)
2665                 goto out;
2666         r = -ENOMEM;
2667         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2668         if (IS_ERR(page)) {
2669                 r = PTR_ERR(page);
2670                 goto out;
2671         }
2672         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2673                 goto out_free;
2674         r = 0;
2675 out_free:
2676         kfree(page);
2677 out:
2678         return r;
2679 }
2680
2681 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2682 {
2683         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2684
2685         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2686 }
2687
2688 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2689 {
2690         gpa_t gpa = data & ~0x3f;
2691
2692         /* Bits 4:5 are reserved, Should be zero */
2693         if (data & 0x30)
2694                 return 1;
2695
2696         if (!lapic_in_kernel(vcpu))
2697                 return 1;
2698
2699         vcpu->arch.apf.msr_en_val = data;
2700
2701         if (!kvm_pv_async_pf_enabled(vcpu)) {
2702                 kvm_clear_async_pf_completion_queue(vcpu);
2703                 kvm_async_pf_hash_reset(vcpu);
2704                 return 0;
2705         }
2706
2707         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2708                                         sizeof(u64)))
2709                 return 1;
2710
2711         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2712         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2713
2714         kvm_async_pf_wakeup_all(vcpu);
2715
2716         return 0;
2717 }
2718
2719 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2720 {
2721         /* Bits 8-63 are reserved */
2722         if (data >> 8)
2723                 return 1;
2724
2725         if (!lapic_in_kernel(vcpu))
2726                 return 1;
2727
2728         vcpu->arch.apf.msr_int_val = data;
2729
2730         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2731
2732         return 0;
2733 }
2734
2735 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2736 {
2737         vcpu->arch.pv_time_enabled = false;
2738         vcpu->arch.time = 0;
2739 }
2740
2741 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2742 {
2743         ++vcpu->stat.tlb_flush;
2744         kvm_x86_ops.tlb_flush_all(vcpu);
2745 }
2746
2747 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2748 {
2749         ++vcpu->stat.tlb_flush;
2750         kvm_x86_ops.tlb_flush_guest(vcpu);
2751 }
2752
2753 static void record_steal_time(struct kvm_vcpu *vcpu)
2754 {
2755         struct kvm_host_map map;
2756         struct kvm_steal_time *st;
2757
2758         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2759                 return;
2760
2761         /* -EAGAIN is returned in atomic context so we can just return. */
2762         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2763                         &map, &vcpu->arch.st.cache, false))
2764                 return;
2765
2766         st = map.hva +
2767                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2768
2769         /*
2770          * Doing a TLB flush here, on the guest's behalf, can avoid
2771          * expensive IPIs.
2772          */
2773         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2774                 st->preempted & KVM_VCPU_FLUSH_TLB);
2775         if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2776                 kvm_vcpu_flush_tlb_guest(vcpu);
2777
2778         vcpu->arch.st.preempted = 0;
2779
2780         if (st->version & 1)
2781                 st->version += 1;  /* first time write, random junk */
2782
2783         st->version += 1;
2784
2785         smp_wmb();
2786
2787         st->steal += current->sched_info.run_delay -
2788                 vcpu->arch.st.last_steal;
2789         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2790
2791         smp_wmb();
2792
2793         st->version += 1;
2794
2795         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2796 }
2797
2798 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2799 {
2800         bool pr = false;
2801         u32 msr = msr_info->index;
2802         u64 data = msr_info->data;
2803
2804         switch (msr) {
2805         case MSR_AMD64_NB_CFG:
2806         case MSR_IA32_UCODE_WRITE:
2807         case MSR_VM_HSAVE_PA:
2808         case MSR_AMD64_PATCH_LOADER:
2809         case MSR_AMD64_BU_CFG2:
2810         case MSR_AMD64_DC_CFG:
2811         case MSR_F15H_EX_CFG:
2812                 break;
2813
2814         case MSR_IA32_UCODE_REV:
2815                 if (msr_info->host_initiated)
2816                         vcpu->arch.microcode_version = data;
2817                 break;
2818         case MSR_IA32_ARCH_CAPABILITIES:
2819                 if (!msr_info->host_initiated)
2820                         return 1;
2821                 vcpu->arch.arch_capabilities = data;
2822                 break;
2823         case MSR_EFER:
2824                 return set_efer(vcpu, msr_info);
2825         case MSR_K7_HWCR:
2826                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2827                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2828                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2829
2830                 /* Handle McStatusWrEn */
2831                 if (data == BIT_ULL(18)) {
2832                         vcpu->arch.msr_hwcr = data;
2833                 } else if (data != 0) {
2834                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2835                                     data);
2836                         return 1;
2837                 }
2838                 break;
2839         case MSR_FAM10H_MMIO_CONF_BASE:
2840                 if (data != 0) {
2841                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2842                                     "0x%llx\n", data);
2843                         return 1;
2844                 }
2845                 break;
2846         case MSR_IA32_DEBUGCTLMSR:
2847                 if (!data) {
2848                         /* We support the non-activated case already */
2849                         break;
2850                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2851                         /* Values other than LBR and BTF are vendor-specific,
2852                            thus reserved and should throw a #GP */
2853                         return 1;
2854                 }
2855                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2856                             __func__, data);
2857                 break;
2858         case 0x200 ... 0x2ff:
2859                 return kvm_mtrr_set_msr(vcpu, msr, data);
2860         case MSR_IA32_APICBASE:
2861                 return kvm_set_apic_base(vcpu, msr_info);
2862         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2863                 return kvm_x2apic_msr_write(vcpu, msr, data);
2864         case MSR_IA32_TSCDEADLINE:
2865                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2866                 break;
2867         case MSR_IA32_TSC_ADJUST:
2868                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2869                         if (!msr_info->host_initiated) {
2870                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2871                                 adjust_tsc_offset_guest(vcpu, adj);
2872                         }
2873                         vcpu->arch.ia32_tsc_adjust_msr = data;
2874                 }
2875                 break;
2876         case MSR_IA32_MISC_ENABLE:
2877                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2878                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2879                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2880                                 return 1;
2881                         vcpu->arch.ia32_misc_enable_msr = data;
2882                         kvm_update_cpuid(vcpu);
2883                 } else {
2884                         vcpu->arch.ia32_misc_enable_msr = data;
2885                 }
2886                 break;
2887         case MSR_IA32_SMBASE:
2888                 if (!msr_info->host_initiated)
2889                         return 1;
2890                 vcpu->arch.smbase = data;
2891                 break;
2892         case MSR_IA32_POWER_CTL:
2893                 vcpu->arch.msr_ia32_power_ctl = data;
2894                 break;
2895         case MSR_IA32_TSC:
2896                 kvm_write_tsc(vcpu, msr_info);
2897                 break;
2898         case MSR_IA32_XSS:
2899                 if (!msr_info->host_initiated &&
2900                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2901                         return 1;
2902                 /*
2903                  * KVM supports exposing PT to the guest, but does not support
2904                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2905                  * XSAVES/XRSTORS to save/restore PT MSRs.
2906                  */
2907                 if (data & ~supported_xss)
2908                         return 1;
2909                 vcpu->arch.ia32_xss = data;
2910                 break;
2911         case MSR_SMI_COUNT:
2912                 if (!msr_info->host_initiated)
2913                         return 1;
2914                 vcpu->arch.smi_count = data;
2915                 break;
2916         case MSR_KVM_WALL_CLOCK_NEW:
2917         case MSR_KVM_WALL_CLOCK:
2918                 vcpu->kvm->arch.wall_clock = data;
2919                 kvm_write_wall_clock(vcpu->kvm, data);
2920                 break;
2921         case MSR_KVM_SYSTEM_TIME_NEW:
2922         case MSR_KVM_SYSTEM_TIME: {
2923                 struct kvm_arch *ka = &vcpu->kvm->arch;
2924
2925                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2926                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2927
2928                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2929                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2930
2931                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2932                 }
2933
2934                 vcpu->arch.time = data;
2935                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2936
2937                 /* we verify if the enable bit is set... */
2938                 vcpu->arch.pv_time_enabled = false;
2939                 if (!(data & 1))
2940                         break;
2941
2942                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2943                      &vcpu->arch.pv_time, data & ~1ULL,
2944                      sizeof(struct pvclock_vcpu_time_info)))
2945                         vcpu->arch.pv_time_enabled = true;
2946
2947                 break;
2948         }
2949         case MSR_KVM_ASYNC_PF_EN:
2950                 if (kvm_pv_enable_async_pf(vcpu, data))
2951                         return 1;
2952                 break;
2953         case MSR_KVM_ASYNC_PF_INT:
2954                 if (kvm_pv_enable_async_pf_int(vcpu, data))
2955                         return 1;
2956                 break;
2957         case MSR_KVM_ASYNC_PF_ACK:
2958                 if (data & 0x1) {
2959                         vcpu->arch.apf.pageready_pending = false;
2960                         kvm_check_async_pf_completion(vcpu);
2961                 }
2962                 break;
2963         case MSR_KVM_STEAL_TIME:
2964
2965                 if (unlikely(!sched_info_on()))
2966                         return 1;
2967
2968                 if (data & KVM_STEAL_RESERVED_MASK)
2969                         return 1;
2970
2971                 vcpu->arch.st.msr_val = data;
2972
2973                 if (!(data & KVM_MSR_ENABLED))
2974                         break;
2975
2976                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2977
2978                 break;
2979         case MSR_KVM_PV_EOI_EN:
2980                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2981                         return 1;
2982                 break;
2983
2984         case MSR_KVM_POLL_CONTROL:
2985                 /* only enable bit supported */
2986                 if (data & (-1ULL << 1))
2987                         return 1;
2988
2989                 vcpu->arch.msr_kvm_poll_control = data;
2990                 break;
2991
2992         case MSR_IA32_MCG_CTL:
2993         case MSR_IA32_MCG_STATUS:
2994         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2995                 return set_msr_mce(vcpu, msr_info);
2996
2997         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2998         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2999                 pr = true; /* fall through */
3000         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3001         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3002                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3003                         return kvm_pmu_set_msr(vcpu, msr_info);
3004
3005                 if (pr || data != 0)
3006                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3007                                     "0x%x data 0x%llx\n", msr, data);
3008                 break;
3009         case MSR_K7_CLK_CTL:
3010                 /*
3011                  * Ignore all writes to this no longer documented MSR.
3012                  * Writes are only relevant for old K7 processors,
3013                  * all pre-dating SVM, but a recommended workaround from
3014                  * AMD for these chips. It is possible to specify the
3015                  * affected processor models on the command line, hence
3016                  * the need to ignore the workaround.
3017                  */
3018                 break;
3019         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3020         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3021         case HV_X64_MSR_SYNDBG_OPTIONS:
3022         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3023         case HV_X64_MSR_CRASH_CTL:
3024         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3025         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3026         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3027         case HV_X64_MSR_TSC_EMULATION_STATUS:
3028                 return kvm_hv_set_msr_common(vcpu, msr, data,
3029                                              msr_info->host_initiated);
3030         case MSR_IA32_BBL_CR_CTL3:
3031                 /* Drop writes to this legacy MSR -- see rdmsr
3032                  * counterpart for further detail.
3033                  */
3034                 if (report_ignored_msrs)
3035                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3036                                 msr, data);
3037                 break;
3038         case MSR_AMD64_OSVW_ID_LENGTH:
3039                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3040                         return 1;
3041                 vcpu->arch.osvw.length = data;
3042                 break;
3043         case MSR_AMD64_OSVW_STATUS:
3044                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3045                         return 1;
3046                 vcpu->arch.osvw.status = data;
3047                 break;
3048         case MSR_PLATFORM_INFO:
3049                 if (!msr_info->host_initiated ||
3050                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3051                      cpuid_fault_enabled(vcpu)))
3052                         return 1;
3053                 vcpu->arch.msr_platform_info = data;
3054                 break;
3055         case MSR_MISC_FEATURES_ENABLES:
3056                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3057                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3058                      !supports_cpuid_fault(vcpu)))
3059                         return 1;
3060                 vcpu->arch.msr_misc_features_enables = data;
3061                 break;
3062         default:
3063                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3064                         return xen_hvm_config(vcpu, data);
3065                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3066                         return kvm_pmu_set_msr(vcpu, msr_info);
3067                 if (!ignore_msrs) {
3068                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
3069                                     msr, data);
3070                         return 1;
3071                 } else {
3072                         if (report_ignored_msrs)
3073                                 vcpu_unimpl(vcpu,
3074                                         "ignored wrmsr: 0x%x data 0x%llx\n",
3075                                         msr, data);
3076                         break;
3077                 }
3078         }
3079         return 0;
3080 }
3081 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3082
3083 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3084 {
3085         u64 data;
3086         u64 mcg_cap = vcpu->arch.mcg_cap;
3087         unsigned bank_num = mcg_cap & 0xff;
3088
3089         switch (msr) {
3090         case MSR_IA32_P5_MC_ADDR:
3091         case MSR_IA32_P5_MC_TYPE:
3092                 data = 0;
3093                 break;
3094         case MSR_IA32_MCG_CAP:
3095                 data = vcpu->arch.mcg_cap;
3096                 break;
3097         case MSR_IA32_MCG_CTL:
3098                 if (!(mcg_cap & MCG_CTL_P) && !host)
3099                         return 1;
3100                 data = vcpu->arch.mcg_ctl;
3101                 break;
3102         case MSR_IA32_MCG_STATUS:
3103                 data = vcpu->arch.mcg_status;
3104                 break;
3105         default:
3106                 if (msr >= MSR_IA32_MC0_CTL &&
3107                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3108                         u32 offset = array_index_nospec(
3109                                 msr - MSR_IA32_MC0_CTL,
3110                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3111
3112                         data = vcpu->arch.mce_banks[offset];
3113                         break;
3114                 }
3115                 return 1;
3116         }
3117         *pdata = data;
3118         return 0;
3119 }
3120
3121 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3122 {
3123         switch (msr_info->index) {
3124         case MSR_IA32_PLATFORM_ID:
3125         case MSR_IA32_EBL_CR_POWERON:
3126         case MSR_IA32_DEBUGCTLMSR:
3127         case MSR_IA32_LASTBRANCHFROMIP:
3128         case MSR_IA32_LASTBRANCHTOIP:
3129         case MSR_IA32_LASTINTFROMIP:
3130         case MSR_IA32_LASTINTTOIP:
3131         case MSR_K8_SYSCFG:
3132         case MSR_K8_TSEG_ADDR:
3133         case MSR_K8_TSEG_MASK:
3134         case MSR_VM_HSAVE_PA:
3135         case MSR_K8_INT_PENDING_MSG:
3136         case MSR_AMD64_NB_CFG:
3137         case MSR_FAM10H_MMIO_CONF_BASE:
3138         case MSR_AMD64_BU_CFG2:
3139         case MSR_IA32_PERF_CTL:
3140         case MSR_AMD64_DC_CFG:
3141         case MSR_F15H_EX_CFG:
3142         /*
3143          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3144          * limit) MSRs. Just return 0, as we do not want to expose the host
3145          * data here. Do not conditionalize this on CPUID, as KVM does not do
3146          * so for existing CPU-specific MSRs.
3147          */
3148         case MSR_RAPL_POWER_UNIT:
3149         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3150         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3151         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3152         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3153                 msr_info->data = 0;
3154                 break;
3155         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3156         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3157         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3158         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3159         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3160                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3161                         return kvm_pmu_get_msr(vcpu, msr_info);
3162                 msr_info->data = 0;
3163                 break;
3164         case MSR_IA32_UCODE_REV:
3165                 msr_info->data = vcpu->arch.microcode_version;
3166                 break;
3167         case MSR_IA32_ARCH_CAPABILITIES:
3168                 if (!msr_info->host_initiated &&
3169                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3170                         return 1;
3171                 msr_info->data = vcpu->arch.arch_capabilities;
3172                 break;
3173         case MSR_IA32_POWER_CTL:
3174                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3175                 break;
3176         case MSR_IA32_TSC:
3177                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3178                 break;
3179         case MSR_MTRRcap:
3180         case 0x200 ... 0x2ff:
3181                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3182         case 0xcd: /* fsb frequency */
3183                 msr_info->data = 3;
3184                 break;
3185                 /*
3186                  * MSR_EBC_FREQUENCY_ID
3187                  * Conservative value valid for even the basic CPU models.
3188                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3189                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3190                  * and 266MHz for model 3, or 4. Set Core Clock
3191                  * Frequency to System Bus Frequency Ratio to 1 (bits
3192                  * 31:24) even though these are only valid for CPU
3193                  * models > 2, however guests may end up dividing or
3194                  * multiplying by zero otherwise.
3195                  */
3196         case MSR_EBC_FREQUENCY_ID:
3197                 msr_info->data = 1 << 24;
3198                 break;
3199         case MSR_IA32_APICBASE:
3200                 msr_info->data = kvm_get_apic_base(vcpu);
3201                 break;
3202         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3203                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3204         case MSR_IA32_TSCDEADLINE:
3205                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3206                 break;
3207         case MSR_IA32_TSC_ADJUST:
3208                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3209                 break;
3210         case MSR_IA32_MISC_ENABLE:
3211                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3212                 break;
3213         case MSR_IA32_SMBASE:
3214                 if (!msr_info->host_initiated)
3215                         return 1;
3216                 msr_info->data = vcpu->arch.smbase;
3217                 break;
3218         case MSR_SMI_COUNT:
3219                 msr_info->data = vcpu->arch.smi_count;
3220                 break;
3221         case MSR_IA32_PERF_STATUS:
3222                 /* TSC increment by tick */
3223                 msr_info->data = 1000ULL;
3224                 /* CPU multiplier */
3225                 msr_info->data |= (((uint64_t)4ULL) << 40);
3226                 break;
3227         case MSR_EFER:
3228                 msr_info->data = vcpu->arch.efer;
3229                 break;
3230         case MSR_KVM_WALL_CLOCK:
3231         case MSR_KVM_WALL_CLOCK_NEW:
3232                 msr_info->data = vcpu->kvm->arch.wall_clock;
3233                 break;
3234         case MSR_KVM_SYSTEM_TIME:
3235         case MSR_KVM_SYSTEM_TIME_NEW:
3236                 msr_info->data = vcpu->arch.time;
3237                 break;
3238         case MSR_KVM_ASYNC_PF_EN:
3239                 msr_info->data = vcpu->arch.apf.msr_en_val;
3240                 break;
3241         case MSR_KVM_ASYNC_PF_INT:
3242                 msr_info->data = vcpu->arch.apf.msr_int_val;
3243                 break;
3244         case MSR_KVM_ASYNC_PF_ACK:
3245                 msr_info->data = 0;
3246                 break;
3247         case MSR_KVM_STEAL_TIME:
3248                 msr_info->data = vcpu->arch.st.msr_val;
3249                 break;
3250         case MSR_KVM_PV_EOI_EN:
3251                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3252                 break;
3253         case MSR_KVM_POLL_CONTROL:
3254                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3255                 break;
3256         case MSR_IA32_P5_MC_ADDR:
3257         case MSR_IA32_P5_MC_TYPE:
3258         case MSR_IA32_MCG_CAP:
3259         case MSR_IA32_MCG_CTL:
3260         case MSR_IA32_MCG_STATUS:
3261         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3262                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3263                                    msr_info->host_initiated);
3264         case MSR_IA32_XSS:
3265                 if (!msr_info->host_initiated &&
3266                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3267                         return 1;
3268                 msr_info->data = vcpu->arch.ia32_xss;
3269                 break;
3270         case MSR_K7_CLK_CTL:
3271                 /*
3272                  * Provide expected ramp-up count for K7. All other
3273                  * are set to zero, indicating minimum divisors for
3274                  * every field.
3275                  *
3276                  * This prevents guest kernels on AMD host with CPU
3277                  * type 6, model 8 and higher from exploding due to
3278                  * the rdmsr failing.
3279                  */
3280                 msr_info->data = 0x20000000;
3281                 break;
3282         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3283         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3284         case HV_X64_MSR_SYNDBG_OPTIONS:
3285         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3286         case HV_X64_MSR_CRASH_CTL:
3287         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3288         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3289         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3290         case HV_X64_MSR_TSC_EMULATION_STATUS:
3291                 return kvm_hv_get_msr_common(vcpu,
3292                                              msr_info->index, &msr_info->data,
3293                                              msr_info->host_initiated);
3294         case MSR_IA32_BBL_CR_CTL3:
3295                 /* This legacy MSR exists but isn't fully documented in current
3296                  * silicon.  It is however accessed by winxp in very narrow
3297                  * scenarios where it sets bit #19, itself documented as
3298                  * a "reserved" bit.  Best effort attempt to source coherent
3299                  * read data here should the balance of the register be
3300                  * interpreted by the guest:
3301                  *
3302                  * L2 cache control register 3: 64GB range, 256KB size,
3303                  * enabled, latency 0x1, configured
3304                  */
3305                 msr_info->data = 0xbe702111;
3306                 break;
3307         case MSR_AMD64_OSVW_ID_LENGTH:
3308                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3309                         return 1;
3310                 msr_info->data = vcpu->arch.osvw.length;
3311                 break;
3312         case MSR_AMD64_OSVW_STATUS:
3313                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3314                         return 1;
3315                 msr_info->data = vcpu->arch.osvw.status;
3316                 break;
3317         case MSR_PLATFORM_INFO:
3318                 if (!msr_info->host_initiated &&
3319                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3320                         return 1;
3321                 msr_info->data = vcpu->arch.msr_platform_info;
3322                 break;
3323         case MSR_MISC_FEATURES_ENABLES:
3324                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3325                 break;
3326         case MSR_K7_HWCR:
3327                 msr_info->data = vcpu->arch.msr_hwcr;
3328                 break;
3329         default:
3330                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3331                         return kvm_pmu_get_msr(vcpu, msr_info);
3332                 if (!ignore_msrs) {
3333                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3334                                                msr_info->index);
3335                         return 1;
3336                 } else {
3337                         if (report_ignored_msrs)
3338                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3339                                         msr_info->index);
3340                         msr_info->data = 0;
3341                 }
3342                 break;
3343         }
3344         return 0;
3345 }
3346 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3347
3348 /*
3349  * Read or write a bunch of msrs. All parameters are kernel addresses.
3350  *
3351  * @return number of msrs set successfully.
3352  */
3353 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3354                     struct kvm_msr_entry *entries,
3355                     int (*do_msr)(struct kvm_vcpu *vcpu,
3356                                   unsigned index, u64 *data))
3357 {
3358         int i;
3359
3360         for (i = 0; i < msrs->nmsrs; ++i)
3361                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3362                         break;
3363
3364         return i;
3365 }
3366
3367 /*
3368  * Read or write a bunch of msrs. Parameters are user addresses.
3369  *
3370  * @return number of msrs set successfully.
3371  */
3372 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3373                   int (*do_msr)(struct kvm_vcpu *vcpu,
3374                                 unsigned index, u64 *data),
3375                   int writeback)
3376 {
3377         struct kvm_msrs msrs;
3378         struct kvm_msr_entry *entries;
3379         int r, n;
3380         unsigned size;
3381
3382         r = -EFAULT;
3383         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3384                 goto out;
3385
3386         r = -E2BIG;
3387         if (msrs.nmsrs >= MAX_IO_MSRS)
3388                 goto out;
3389
3390         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3391         entries = memdup_user(user_msrs->entries, size);
3392         if (IS_ERR(entries)) {
3393                 r = PTR_ERR(entries);
3394                 goto out;
3395         }
3396
3397         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3398         if (r < 0)
3399                 goto out_free;
3400
3401         r = -EFAULT;
3402         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3403                 goto out_free;
3404
3405         r = n;
3406
3407 out_free:
3408         kfree(entries);
3409 out:
3410         return r;
3411 }
3412
3413 static inline bool kvm_can_mwait_in_guest(void)
3414 {
3415         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3416                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3417                 boot_cpu_has(X86_FEATURE_ARAT);
3418 }
3419
3420 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3421 {
3422         int r = 0;
3423
3424         switch (ext) {
3425         case KVM_CAP_IRQCHIP:
3426         case KVM_CAP_HLT:
3427         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3428         case KVM_CAP_SET_TSS_ADDR:
3429         case KVM_CAP_EXT_CPUID:
3430         case KVM_CAP_EXT_EMUL_CPUID:
3431         case KVM_CAP_CLOCKSOURCE:
3432         case KVM_CAP_PIT:
3433         case KVM_CAP_NOP_IO_DELAY:
3434         case KVM_CAP_MP_STATE:
3435         case KVM_CAP_SYNC_MMU:
3436         case KVM_CAP_USER_NMI:
3437         case KVM_CAP_REINJECT_CONTROL:
3438         case KVM_CAP_IRQ_INJECT_STATUS:
3439         case KVM_CAP_IOEVENTFD:
3440         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3441         case KVM_CAP_PIT2:
3442         case KVM_CAP_PIT_STATE2:
3443         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3444         case KVM_CAP_XEN_HVM:
3445         case KVM_CAP_VCPU_EVENTS:
3446         case KVM_CAP_HYPERV:
3447         case KVM_CAP_HYPERV_VAPIC:
3448         case KVM_CAP_HYPERV_SPIN:
3449         case KVM_CAP_HYPERV_SYNIC:
3450         case KVM_CAP_HYPERV_SYNIC2:
3451         case KVM_CAP_HYPERV_VP_INDEX:
3452         case KVM_CAP_HYPERV_EVENTFD:
3453         case KVM_CAP_HYPERV_TLBFLUSH:
3454         case KVM_CAP_HYPERV_SEND_IPI:
3455         case KVM_CAP_HYPERV_CPUID:
3456         case KVM_CAP_PCI_SEGMENT:
3457         case KVM_CAP_DEBUGREGS:
3458         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3459         case KVM_CAP_XSAVE:
3460         case KVM_CAP_ASYNC_PF:
3461         case KVM_CAP_ASYNC_PF_INT:
3462         case KVM_CAP_GET_TSC_KHZ:
3463         case KVM_CAP_KVMCLOCK_CTRL:
3464         case KVM_CAP_READONLY_MEM:
3465         case KVM_CAP_HYPERV_TIME:
3466         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3467         case KVM_CAP_TSC_DEADLINE_TIMER:
3468         case KVM_CAP_DISABLE_QUIRKS:
3469         case KVM_CAP_SET_BOOT_CPU_ID:
3470         case KVM_CAP_SPLIT_IRQCHIP:
3471         case KVM_CAP_IMMEDIATE_EXIT:
3472         case KVM_CAP_PMU_EVENT_FILTER:
3473         case KVM_CAP_GET_MSR_FEATURES:
3474         case KVM_CAP_MSR_PLATFORM_INFO:
3475         case KVM_CAP_EXCEPTION_PAYLOAD:
3476         case KVM_CAP_SET_GUEST_DEBUG:
3477                 r = 1;
3478                 break;
3479         case KVM_CAP_SYNC_REGS:
3480                 r = KVM_SYNC_X86_VALID_FIELDS;
3481                 break;
3482         case KVM_CAP_ADJUST_CLOCK:
3483                 r = KVM_CLOCK_TSC_STABLE;
3484                 break;
3485         case KVM_CAP_X86_DISABLE_EXITS:
3486                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3487                       KVM_X86_DISABLE_EXITS_CSTATE;
3488                 if(kvm_can_mwait_in_guest())
3489                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3490                 break;
3491         case KVM_CAP_X86_SMM:
3492                 /* SMBASE is usually relocated above 1M on modern chipsets,
3493                  * and SMM handlers might indeed rely on 4G segment limits,
3494                  * so do not report SMM to be available if real mode is
3495                  * emulated via vm86 mode.  Still, do not go to great lengths
3496                  * to avoid userspace's usage of the feature, because it is a
3497                  * fringe case that is not enabled except via specific settings
3498                  * of the module parameters.
3499                  */
3500                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3501                 break;
3502         case KVM_CAP_VAPIC:
3503                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3504                 break;
3505         case KVM_CAP_NR_VCPUS:
3506                 r = KVM_SOFT_MAX_VCPUS;
3507                 break;
3508         case KVM_CAP_MAX_VCPUS:
3509                 r = KVM_MAX_VCPUS;
3510                 break;
3511         case KVM_CAP_MAX_VCPU_ID:
3512                 r = KVM_MAX_VCPU_ID;
3513                 break;
3514         case KVM_CAP_PV_MMU:    /* obsolete */
3515                 r = 0;
3516                 break;
3517         case KVM_CAP_MCE:
3518                 r = KVM_MAX_MCE_BANKS;
3519                 break;
3520         case KVM_CAP_XCRS:
3521                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3522                 break;
3523         case KVM_CAP_TSC_CONTROL:
3524                 r = kvm_has_tsc_control;
3525                 break;
3526         case KVM_CAP_X2APIC_API:
3527                 r = KVM_X2APIC_API_VALID_FLAGS;
3528                 break;
3529         case KVM_CAP_NESTED_STATE:
3530                 r = kvm_x86_ops.nested_ops->get_state ?
3531                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3532                 break;
3533         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3534                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3535                 break;
3536         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3537                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3538                 break;
3539         default:
3540                 break;
3541         }
3542         return r;
3543
3544 }
3545
3546 long kvm_arch_dev_ioctl(struct file *filp,
3547                         unsigned int ioctl, unsigned long arg)
3548 {
3549         void __user *argp = (void __user *)arg;
3550         long r;
3551
3552         switch (ioctl) {
3553         case KVM_GET_MSR_INDEX_LIST: {
3554                 struct kvm_msr_list __user *user_msr_list = argp;
3555                 struct kvm_msr_list msr_list;
3556                 unsigned n;
3557
3558                 r = -EFAULT;
3559                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3560                         goto out;
3561                 n = msr_list.nmsrs;
3562                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3563                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3564                         goto out;
3565                 r = -E2BIG;
3566                 if (n < msr_list.nmsrs)
3567                         goto out;
3568                 r = -EFAULT;
3569                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3570                                  num_msrs_to_save * sizeof(u32)))
3571                         goto out;
3572                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3573                                  &emulated_msrs,
3574                                  num_emulated_msrs * sizeof(u32)))
3575                         goto out;
3576                 r = 0;
3577                 break;
3578         }
3579         case KVM_GET_SUPPORTED_CPUID:
3580         case KVM_GET_EMULATED_CPUID: {
3581                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3582                 struct kvm_cpuid2 cpuid;
3583
3584                 r = -EFAULT;
3585                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3586                         goto out;
3587
3588                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3589                                             ioctl);
3590                 if (r)
3591                         goto out;
3592
3593                 r = -EFAULT;
3594                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3595                         goto out;
3596                 r = 0;
3597                 break;
3598         }
3599         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3600                 r = -EFAULT;
3601                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3602                                  sizeof(kvm_mce_cap_supported)))
3603                         goto out;
3604                 r = 0;
3605                 break;
3606         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3607                 struct kvm_msr_list __user *user_msr_list = argp;
3608                 struct kvm_msr_list msr_list;
3609                 unsigned int n;
3610
3611                 r = -EFAULT;
3612                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3613                         goto out;
3614                 n = msr_list.nmsrs;
3615                 msr_list.nmsrs = num_msr_based_features;
3616                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3617                         goto out;
3618                 r = -E2BIG;
3619                 if (n < msr_list.nmsrs)
3620                         goto out;
3621                 r = -EFAULT;
3622                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3623                                  num_msr_based_features * sizeof(u32)))
3624                         goto out;
3625                 r = 0;
3626                 break;
3627         }
3628         case KVM_GET_MSRS:
3629                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3630                 break;
3631         default:
3632                 r = -EINVAL;
3633                 break;
3634         }
3635 out:
3636         return r;
3637 }
3638
3639 static void wbinvd_ipi(void *garbage)
3640 {
3641         wbinvd();
3642 }
3643
3644 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3645 {
3646         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3647 }
3648
3649 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3650 {
3651         /* Address WBINVD may be executed by guest */
3652         if (need_emulate_wbinvd(vcpu)) {
3653                 if (kvm_x86_ops.has_wbinvd_exit())
3654                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3655                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3656                         smp_call_function_single(vcpu->cpu,
3657                                         wbinvd_ipi, NULL, 1);
3658         }
3659
3660         kvm_x86_ops.vcpu_load(vcpu, cpu);
3661
3662         /* Save host pkru register if supported */
3663         vcpu->arch.host_pkru = read_pkru();
3664
3665         /* Apply any externally detected TSC adjustments (due to suspend) */
3666         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3667                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3668                 vcpu->arch.tsc_offset_adjustment = 0;
3669                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3670         }
3671
3672         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3673                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3674                                 rdtsc() - vcpu->arch.last_host_tsc;
3675                 if (tsc_delta < 0)
3676                         mark_tsc_unstable("KVM discovered backwards TSC");
3677
3678                 if (kvm_check_tsc_unstable()) {
3679                         u64 offset = kvm_compute_tsc_offset(vcpu,
3680                                                 vcpu->arch.last_guest_tsc);
3681                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3682                         vcpu->arch.tsc_catchup = 1;
3683                 }
3684
3685                 if (kvm_lapic_hv_timer_in_use(vcpu))
3686                         kvm_lapic_restart_hv_timer(vcpu);
3687
3688                 /*
3689                  * On a host with synchronized TSC, there is no need to update
3690                  * kvmclock on vcpu->cpu migration
3691                  */
3692                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3693                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3694                 if (vcpu->cpu != cpu)
3695                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3696                 vcpu->cpu = cpu;
3697         }
3698
3699         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3700 }
3701
3702 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3703 {
3704         struct kvm_host_map map;
3705         struct kvm_steal_time *st;
3706
3707         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3708                 return;
3709
3710         if (vcpu->arch.st.preempted)
3711                 return;
3712
3713         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3714                         &vcpu->arch.st.cache, true))
3715                 return;
3716
3717         st = map.hva +
3718                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3719
3720         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3721
3722         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3723 }
3724
3725 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3726 {
3727         int idx;
3728
3729         if (vcpu->preempted)
3730                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3731
3732         /*
3733          * Disable page faults because we're in atomic context here.
3734          * kvm_write_guest_offset_cached() would call might_fault()
3735          * that relies on pagefault_disable() to tell if there's a
3736          * bug. NOTE: the write to guest memory may not go through if
3737          * during postcopy live migration or if there's heavy guest
3738          * paging.
3739          */
3740         pagefault_disable();
3741         /*
3742          * kvm_memslots() will be called by
3743          * kvm_write_guest_offset_cached() so take the srcu lock.
3744          */
3745         idx = srcu_read_lock(&vcpu->kvm->srcu);
3746         kvm_steal_time_set_preempted(vcpu);
3747         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3748         pagefault_enable();
3749         kvm_x86_ops.vcpu_put(vcpu);
3750         vcpu->arch.last_host_tsc = rdtsc();
3751         /*
3752          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3753          * on every vmexit, but if not, we might have a stale dr6 from the
3754          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3755          */
3756         set_debugreg(0, 6);
3757 }
3758
3759 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3760                                     struct kvm_lapic_state *s)
3761 {
3762         if (vcpu->arch.apicv_active)
3763                 kvm_x86_ops.sync_pir_to_irr(vcpu);
3764
3765         return kvm_apic_get_state(vcpu, s);
3766 }
3767
3768 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3769                                     struct kvm_lapic_state *s)
3770 {
3771         int r;
3772
3773         r = kvm_apic_set_state(vcpu, s);
3774         if (r)
3775                 return r;
3776         update_cr8_intercept(vcpu);
3777
3778         return 0;
3779 }
3780
3781 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3782 {
3783         return (!lapic_in_kernel(vcpu) ||
3784                 kvm_apic_accept_pic_intr(vcpu));
3785 }
3786
3787 /*
3788  * if userspace requested an interrupt window, check that the
3789  * interrupt window is open.
3790  *
3791  * No need to exit to userspace if we already have an interrupt queued.
3792  */
3793 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3794 {
3795         return kvm_arch_interrupt_allowed(vcpu) &&
3796                 !kvm_cpu_has_interrupt(vcpu) &&
3797                 !kvm_event_needs_reinjection(vcpu) &&
3798                 kvm_cpu_accept_dm_intr(vcpu);
3799 }
3800
3801 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3802                                     struct kvm_interrupt *irq)
3803 {
3804         if (irq->irq >= KVM_NR_INTERRUPTS)
3805                 return -EINVAL;
3806
3807         if (!irqchip_in_kernel(vcpu->kvm)) {
3808                 kvm_queue_interrupt(vcpu, irq->irq, false);
3809                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3810                 return 0;
3811         }
3812
3813         /*
3814          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3815          * fail for in-kernel 8259.
3816          */
3817         if (pic_in_kernel(vcpu->kvm))
3818                 return -ENXIO;
3819
3820         if (vcpu->arch.pending_external_vector != -1)
3821                 return -EEXIST;
3822
3823         vcpu->arch.pending_external_vector = irq->irq;
3824         kvm_make_request(KVM_REQ_EVENT, vcpu);
3825         return 0;
3826 }
3827
3828 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3829 {
3830         kvm_inject_nmi(vcpu);
3831
3832         return 0;
3833 }
3834
3835 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3836 {
3837         kvm_make_request(KVM_REQ_SMI, vcpu);
3838
3839         return 0;
3840 }
3841
3842 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3843                                            struct kvm_tpr_access_ctl *tac)
3844 {
3845         if (tac->flags)
3846                 return -EINVAL;
3847         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3848         return 0;
3849 }
3850
3851 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3852                                         u64 mcg_cap)
3853 {
3854         int r;
3855         unsigned bank_num = mcg_cap & 0xff, bank;
3856
3857         r = -EINVAL;
3858         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3859                 goto out;
3860         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3861                 goto out;
3862         r = 0;
3863         vcpu->arch.mcg_cap = mcg_cap;
3864         /* Init IA32_MCG_CTL to all 1s */
3865         if (mcg_cap & MCG_CTL_P)
3866                 vcpu->arch.mcg_ctl = ~(u64)0;
3867         /* Init IA32_MCi_CTL to all 1s */
3868         for (bank = 0; bank < bank_num; bank++)
3869                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3870
3871         kvm_x86_ops.setup_mce(vcpu);
3872 out:
3873         return r;
3874 }
3875
3876 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3877                                       struct kvm_x86_mce *mce)
3878 {
3879         u64 mcg_cap = vcpu->arch.mcg_cap;
3880         unsigned bank_num = mcg_cap & 0xff;
3881         u64 *banks = vcpu->arch.mce_banks;
3882
3883         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3884                 return -EINVAL;
3885         /*
3886          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3887          * reporting is disabled
3888          */
3889         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3890             vcpu->arch.mcg_ctl != ~(u64)0)
3891                 return 0;
3892         banks += 4 * mce->bank;
3893         /*
3894          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3895          * reporting is disabled for the bank
3896          */
3897         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3898                 return 0;
3899         if (mce->status & MCI_STATUS_UC) {
3900                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3901                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3902                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3903                         return 0;
3904                 }
3905                 if (banks[1] & MCI_STATUS_VAL)
3906                         mce->status |= MCI_STATUS_OVER;
3907                 banks[2] = mce->addr;
3908                 banks[3] = mce->misc;
3909                 vcpu->arch.mcg_status = mce->mcg_status;
3910                 banks[1] = mce->status;
3911                 kvm_queue_exception(vcpu, MC_VECTOR);
3912         } else if (!(banks[1] & MCI_STATUS_VAL)
3913                    || !(banks[1] & MCI_STATUS_UC)) {
3914                 if (banks[1] & MCI_STATUS_VAL)
3915                         mce->status |= MCI_STATUS_OVER;
3916                 banks[2] = mce->addr;
3917                 banks[3] = mce->misc;
3918                 banks[1] = mce->status;
3919         } else
3920                 banks[1] |= MCI_STATUS_OVER;
3921         return 0;
3922 }
3923
3924 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3925                                                struct kvm_vcpu_events *events)
3926 {
3927         process_nmi(vcpu);
3928
3929         /*
3930          * In guest mode, payload delivery should be deferred,
3931          * so that the L1 hypervisor can intercept #PF before
3932          * CR2 is modified (or intercept #DB before DR6 is
3933          * modified under nVMX). Unless the per-VM capability,
3934          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3935          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3936          * opportunistically defer the exception payload, deliver it if the
3937          * capability hasn't been requested before processing a
3938          * KVM_GET_VCPU_EVENTS.
3939          */
3940         if (!vcpu->kvm->arch.exception_payload_enabled &&
3941             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3942                 kvm_deliver_exception_payload(vcpu);
3943
3944         /*
3945          * The API doesn't provide the instruction length for software
3946          * exceptions, so don't report them. As long as the guest RIP
3947          * isn't advanced, we should expect to encounter the exception
3948          * again.
3949          */
3950         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3951                 events->exception.injected = 0;
3952                 events->exception.pending = 0;
3953         } else {
3954                 events->exception.injected = vcpu->arch.exception.injected;
3955                 events->exception.pending = vcpu->arch.exception.pending;
3956                 /*
3957                  * For ABI compatibility, deliberately conflate
3958                  * pending and injected exceptions when
3959                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3960                  */
3961                 if (!vcpu->kvm->arch.exception_payload_enabled)
3962                         events->exception.injected |=
3963                                 vcpu->arch.exception.pending;
3964         }
3965         events->exception.nr = vcpu->arch.exception.nr;
3966         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3967         events->exception.error_code = vcpu->arch.exception.error_code;
3968         events->exception_has_payload = vcpu->arch.exception.has_payload;
3969         events->exception_payload = vcpu->arch.exception.payload;
3970
3971         events->interrupt.injected =
3972                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3973         events->interrupt.nr = vcpu->arch.interrupt.nr;
3974         events->interrupt.soft = 0;
3975         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3976
3977         events->nmi.injected = vcpu->arch.nmi_injected;
3978         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3979         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3980         events->nmi.pad = 0;
3981
3982         events->sipi_vector = 0; /* never valid when reporting to user space */
3983
3984         events->smi.smm = is_smm(vcpu);
3985         events->smi.pending = vcpu->arch.smi_pending;
3986         events->smi.smm_inside_nmi =
3987                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3988         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3989
3990         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3991                          | KVM_VCPUEVENT_VALID_SHADOW
3992                          | KVM_VCPUEVENT_VALID_SMM);
3993         if (vcpu->kvm->arch.exception_payload_enabled)
3994                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3995
3996         memset(&events->reserved, 0, sizeof(events->reserved));
3997 }
3998
3999 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4000
4001 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4002                                               struct kvm_vcpu_events *events)
4003 {
4004         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4005                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4006                               | KVM_VCPUEVENT_VALID_SHADOW
4007                               | KVM_VCPUEVENT_VALID_SMM
4008                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4009                 return -EINVAL;
4010
4011         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4012                 if (!vcpu->kvm->arch.exception_payload_enabled)
4013                         return -EINVAL;
4014                 if (events->exception.pending)
4015                         events->exception.injected = 0;
4016                 else
4017                         events->exception_has_payload = 0;
4018         } else {
4019                 events->exception.pending = 0;
4020                 events->exception_has_payload = 0;
4021         }
4022
4023         if ((events->exception.injected || events->exception.pending) &&
4024             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4025                 return -EINVAL;
4026
4027         /* INITs are latched while in SMM */
4028         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4029             (events->smi.smm || events->smi.pending) &&
4030             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4031                 return -EINVAL;
4032
4033         process_nmi(vcpu);
4034         vcpu->arch.exception.injected = events->exception.injected;
4035         vcpu->arch.exception.pending = events->exception.pending;
4036         vcpu->arch.exception.nr = events->exception.nr;
4037         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4038         vcpu->arch.exception.error_code = events->exception.error_code;
4039         vcpu->arch.exception.has_payload = events->exception_has_payload;
4040         vcpu->arch.exception.payload = events->exception_payload;
4041
4042         vcpu->arch.interrupt.injected = events->interrupt.injected;
4043         vcpu->arch.interrupt.nr = events->interrupt.nr;
4044         vcpu->arch.interrupt.soft = events->interrupt.soft;
4045         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4046                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4047                                                   events->interrupt.shadow);
4048
4049         vcpu->arch.nmi_injected = events->nmi.injected;
4050         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4051                 vcpu->arch.nmi_pending = events->nmi.pending;
4052         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4053
4054         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4055             lapic_in_kernel(vcpu))
4056                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4057
4058         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4059                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4060                         if (events->smi.smm)
4061                                 vcpu->arch.hflags |= HF_SMM_MASK;
4062                         else
4063                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4064                         kvm_smm_changed(vcpu);
4065                 }
4066
4067                 vcpu->arch.smi_pending = events->smi.pending;
4068
4069                 if (events->smi.smm) {
4070                         if (events->smi.smm_inside_nmi)
4071                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4072                         else
4073                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4074                 }
4075
4076                 if (lapic_in_kernel(vcpu)) {
4077                         if (events->smi.latched_init)
4078                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4079                         else
4080                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4081                 }
4082         }
4083
4084         kvm_make_request(KVM_REQ_EVENT, vcpu);
4085
4086         return 0;
4087 }
4088
4089 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4090                                              struct kvm_debugregs *dbgregs)
4091 {
4092         unsigned long val;
4093
4094         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4095         kvm_get_dr(vcpu, 6, &val);
4096         dbgregs->dr6 = val;
4097         dbgregs->dr7 = vcpu->arch.dr7;
4098         dbgregs->flags = 0;
4099         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4100 }
4101
4102 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4103                                             struct kvm_debugregs *dbgregs)
4104 {
4105         if (dbgregs->flags)
4106                 return -EINVAL;
4107
4108         if (dbgregs->dr6 & ~0xffffffffull)
4109                 return -EINVAL;
4110         if (dbgregs->dr7 & ~0xffffffffull)
4111                 return -EINVAL;
4112
4113         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4114         kvm_update_dr0123(vcpu);
4115         vcpu->arch.dr6 = dbgregs->dr6;
4116         vcpu->arch.dr7 = dbgregs->dr7;
4117         kvm_update_dr7(vcpu);
4118
4119         return 0;
4120 }
4121
4122 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4123
4124 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4125 {
4126         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4127         u64 xstate_bv = xsave->header.xfeatures;
4128         u64 valid;
4129
4130         /*
4131          * Copy legacy XSAVE area, to avoid complications with CPUID
4132          * leaves 0 and 1 in the loop below.
4133          */
4134         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4135
4136         /* Set XSTATE_BV */
4137         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4138         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4139
4140         /*
4141          * Copy each region from the possibly compacted offset to the
4142          * non-compacted offset.
4143          */
4144         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4145         while (valid) {
4146                 u64 xfeature_mask = valid & -valid;
4147                 int xfeature_nr = fls64(xfeature_mask) - 1;
4148                 void *src = get_xsave_addr(xsave, xfeature_nr);
4149
4150                 if (src) {
4151                         u32 size, offset, ecx, edx;
4152                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4153                                     &size, &offset, &ecx, &edx);
4154                         if (xfeature_nr == XFEATURE_PKRU)
4155                                 memcpy(dest + offset, &vcpu->arch.pkru,
4156                                        sizeof(vcpu->arch.pkru));
4157                         else
4158                                 memcpy(dest + offset, src, size);
4159
4160                 }
4161
4162                 valid -= xfeature_mask;
4163         }
4164 }
4165
4166 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4167 {
4168         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4169         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4170         u64 valid;
4171
4172         /*
4173          * Copy legacy XSAVE area, to avoid complications with CPUID
4174          * leaves 0 and 1 in the loop below.
4175          */
4176         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4177
4178         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4179         xsave->header.xfeatures = xstate_bv;
4180         if (boot_cpu_has(X86_FEATURE_XSAVES))
4181                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4182
4183         /*
4184          * Copy each region from the non-compacted offset to the
4185          * possibly compacted offset.
4186          */
4187         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4188         while (valid) {
4189                 u64 xfeature_mask = valid & -valid;
4190                 int xfeature_nr = fls64(xfeature_mask) - 1;
4191                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4192
4193                 if (dest) {
4194                         u32 size, offset, ecx, edx;
4195                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4196                                     &size, &offset, &ecx, &edx);
4197                         if (xfeature_nr == XFEATURE_PKRU)
4198                                 memcpy(&vcpu->arch.pkru, src + offset,
4199                                        sizeof(vcpu->arch.pkru));
4200                         else
4201                                 memcpy(dest, src + offset, size);
4202                 }
4203
4204                 valid -= xfeature_mask;
4205         }
4206 }
4207
4208 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4209                                          struct kvm_xsave *guest_xsave)
4210 {
4211         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4212                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4213                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4214         } else {
4215                 memcpy(guest_xsave->region,
4216                         &vcpu->arch.guest_fpu->state.fxsave,
4217                         sizeof(struct fxregs_state));
4218                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4219                         XFEATURE_MASK_FPSSE;
4220         }
4221 }
4222
4223 #define XSAVE_MXCSR_OFFSET 24
4224
4225 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4226                                         struct kvm_xsave *guest_xsave)
4227 {
4228         u64 xstate_bv =
4229                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4230         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4231
4232         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4233                 /*
4234                  * Here we allow setting states that are not present in
4235                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4236                  * with old userspace.
4237                  */
4238                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4239                         return -EINVAL;
4240                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4241         } else {
4242                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4243                         mxcsr & ~mxcsr_feature_mask)
4244                         return -EINVAL;
4245                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4246                         guest_xsave->region, sizeof(struct fxregs_state));
4247         }
4248         return 0;
4249 }
4250
4251 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4252                                         struct kvm_xcrs *guest_xcrs)
4253 {
4254         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4255                 guest_xcrs->nr_xcrs = 0;
4256                 return;
4257         }
4258
4259         guest_xcrs->nr_xcrs = 1;
4260         guest_xcrs->flags = 0;
4261         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4262         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4263 }
4264
4265 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4266                                        struct kvm_xcrs *guest_xcrs)
4267 {
4268         int i, r = 0;
4269
4270         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4271                 return -EINVAL;
4272
4273         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4274                 return -EINVAL;
4275
4276         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4277                 /* Only support XCR0 currently */
4278                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4279                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4280                                 guest_xcrs->xcrs[i].value);
4281                         break;
4282                 }
4283         if (r)
4284                 r = -EINVAL;
4285         return r;
4286 }
4287
4288 /*
4289  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4290  * stopped by the hypervisor.  This function will be called from the host only.
4291  * EINVAL is returned when the host attempts to set the flag for a guest that
4292  * does not support pv clocks.
4293  */
4294 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4295 {
4296         if (!vcpu->arch.pv_time_enabled)
4297                 return -EINVAL;
4298         vcpu->arch.pvclock_set_guest_stopped_request = true;
4299         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4300         return 0;
4301 }
4302
4303 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4304                                      struct kvm_enable_cap *cap)
4305 {
4306         int r;
4307         uint16_t vmcs_version;
4308         void __user *user_ptr;
4309
4310         if (cap->flags)
4311                 return -EINVAL;
4312
4313         switch (cap->cap) {
4314         case KVM_CAP_HYPERV_SYNIC2:
4315                 if (cap->args[0])
4316                         return -EINVAL;
4317                 /* fall through */
4318
4319         case KVM_CAP_HYPERV_SYNIC:
4320                 if (!irqchip_in_kernel(vcpu->kvm))
4321                         return -EINVAL;
4322                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4323                                              KVM_CAP_HYPERV_SYNIC2);
4324         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4325                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4326                         return -ENOTTY;
4327                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4328                 if (!r) {
4329                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4330                         if (copy_to_user(user_ptr, &vmcs_version,
4331                                          sizeof(vmcs_version)))
4332                                 r = -EFAULT;
4333                 }
4334                 return r;
4335         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4336                 if (!kvm_x86_ops.enable_direct_tlbflush)
4337                         return -ENOTTY;
4338
4339                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4340
4341         default:
4342                 return -EINVAL;
4343         }
4344 }
4345
4346 long kvm_arch_vcpu_ioctl(struct file *filp,
4347                          unsigned int ioctl, unsigned long arg)
4348 {
4349         struct kvm_vcpu *vcpu = filp->private_data;
4350         void __user *argp = (void __user *)arg;
4351         int r;
4352         union {
4353                 struct kvm_lapic_state *lapic;
4354                 struct kvm_xsave *xsave;
4355                 struct kvm_xcrs *xcrs;
4356                 void *buffer;
4357         } u;
4358
4359         vcpu_load(vcpu);
4360
4361         u.buffer = NULL;
4362         switch (ioctl) {
4363         case KVM_GET_LAPIC: {
4364                 r = -EINVAL;
4365                 if (!lapic_in_kernel(vcpu))
4366                         goto out;
4367                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4368                                 GFP_KERNEL_ACCOUNT);
4369
4370                 r = -ENOMEM;
4371                 if (!u.lapic)
4372                         goto out;
4373                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4374                 if (r)
4375                         goto out;
4376                 r = -EFAULT;
4377                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4378                         goto out;
4379                 r = 0;
4380                 break;
4381         }
4382         case KVM_SET_LAPIC: {
4383                 r = -EINVAL;
4384                 if (!lapic_in_kernel(vcpu))
4385                         goto out;
4386                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4387                 if (IS_ERR(u.lapic)) {
4388                         r = PTR_ERR(u.lapic);
4389                         goto out_nofree;
4390                 }
4391
4392                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4393                 break;
4394         }
4395         case KVM_INTERRUPT: {
4396                 struct kvm_interrupt irq;
4397
4398                 r = -EFAULT;
4399                 if (copy_from_user(&irq, argp, sizeof(irq)))
4400                         goto out;
4401                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4402                 break;
4403         }
4404         case KVM_NMI: {
4405                 r = kvm_vcpu_ioctl_nmi(vcpu);
4406                 break;
4407         }
4408         case KVM_SMI: {
4409                 r = kvm_vcpu_ioctl_smi(vcpu);
4410                 break;
4411         }
4412         case KVM_SET_CPUID: {
4413                 struct kvm_cpuid __user *cpuid_arg = argp;
4414                 struct kvm_cpuid cpuid;
4415
4416                 r = -EFAULT;
4417                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4418                         goto out;
4419                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4420                 break;
4421         }
4422         case KVM_SET_CPUID2: {
4423                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4424                 struct kvm_cpuid2 cpuid;
4425
4426                 r = -EFAULT;
4427                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4428                         goto out;
4429                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4430                                               cpuid_arg->entries);
4431                 break;
4432         }
4433         case KVM_GET_CPUID2: {
4434                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4435                 struct kvm_cpuid2 cpuid;
4436
4437                 r = -EFAULT;
4438                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4439                         goto out;
4440                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4441                                               cpuid_arg->entries);
4442                 if (r)
4443                         goto out;
4444                 r = -EFAULT;
4445                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4446                         goto out;
4447                 r = 0;
4448                 break;
4449         }
4450         case KVM_GET_MSRS: {
4451                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4452                 r = msr_io(vcpu, argp, do_get_msr, 1);
4453                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4454                 break;
4455         }
4456         case KVM_SET_MSRS: {
4457                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4458                 r = msr_io(vcpu, argp, do_set_msr, 0);
4459                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4460                 break;
4461         }
4462         case KVM_TPR_ACCESS_REPORTING: {
4463                 struct kvm_tpr_access_ctl tac;
4464
4465                 r = -EFAULT;
4466                 if (copy_from_user(&tac, argp, sizeof(tac)))
4467                         goto out;
4468                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4469                 if (r)
4470                         goto out;
4471                 r = -EFAULT;
4472                 if (copy_to_user(argp, &tac, sizeof(tac)))
4473                         goto out;
4474                 r = 0;
4475                 break;
4476         };
4477         case KVM_SET_VAPIC_ADDR: {
4478                 struct kvm_vapic_addr va;
4479                 int idx;
4480
4481                 r = -EINVAL;
4482                 if (!lapic_in_kernel(vcpu))
4483                         goto out;
4484                 r = -EFAULT;
4485                 if (copy_from_user(&va, argp, sizeof(va)))
4486                         goto out;
4487                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4488                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4489                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4490                 break;
4491         }
4492         case KVM_X86_SETUP_MCE: {
4493                 u64 mcg_cap;
4494
4495                 r = -EFAULT;
4496                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4497                         goto out;
4498                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4499                 break;
4500         }
4501         case KVM_X86_SET_MCE: {
4502                 struct kvm_x86_mce mce;
4503
4504                 r = -EFAULT;
4505                 if (copy_from_user(&mce, argp, sizeof(mce)))
4506                         goto out;
4507                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4508                 break;
4509         }
4510         case KVM_GET_VCPU_EVENTS: {
4511                 struct kvm_vcpu_events events;
4512
4513                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4514
4515                 r = -EFAULT;
4516                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4517                         break;
4518                 r = 0;
4519                 break;
4520         }
4521         case KVM_SET_VCPU_EVENTS: {
4522                 struct kvm_vcpu_events events;
4523
4524                 r = -EFAULT;
4525                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4526                         break;
4527
4528                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4529                 break;
4530         }
4531         case KVM_GET_DEBUGREGS: {
4532                 struct kvm_debugregs dbgregs;
4533
4534                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4535
4536                 r = -EFAULT;
4537                 if (copy_to_user(argp, &dbgregs,
4538                                  sizeof(struct kvm_debugregs)))
4539                         break;
4540                 r = 0;
4541                 break;
4542         }
4543         case KVM_SET_DEBUGREGS: {
4544                 struct kvm_debugregs dbgregs;
4545
4546                 r = -EFAULT;
4547                 if (copy_from_user(&dbgregs, argp,
4548                                    sizeof(struct kvm_debugregs)))
4549                         break;
4550
4551                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4552                 break;
4553         }
4554         case KVM_GET_XSAVE: {
4555                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4556                 r = -ENOMEM;
4557                 if (!u.xsave)
4558                         break;
4559
4560                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4561
4562                 r = -EFAULT;
4563                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4564                         break;
4565                 r = 0;
4566                 break;
4567         }
4568         case KVM_SET_XSAVE: {
4569                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4570                 if (IS_ERR(u.xsave)) {
4571                         r = PTR_ERR(u.xsave);
4572                         goto out_nofree;
4573                 }
4574
4575                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4576                 break;
4577         }
4578         case KVM_GET_XCRS: {
4579                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4580                 r = -ENOMEM;
4581                 if (!u.xcrs)
4582                         break;
4583
4584                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4585
4586                 r = -EFAULT;
4587                 if (copy_to_user(argp, u.xcrs,
4588                                  sizeof(struct kvm_xcrs)))
4589                         break;
4590                 r = 0;
4591                 break;
4592         }
4593         case KVM_SET_XCRS: {
4594                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4595                 if (IS_ERR(u.xcrs)) {
4596                         r = PTR_ERR(u.xcrs);
4597                         goto out_nofree;
4598                 }
4599
4600                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4601                 break;
4602         }
4603         case KVM_SET_TSC_KHZ: {
4604                 u32 user_tsc_khz;
4605
4606                 r = -EINVAL;
4607                 user_tsc_khz = (u32)arg;
4608
4609                 if (kvm_has_tsc_control &&
4610                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4611                         goto out;
4612
4613                 if (user_tsc_khz == 0)
4614                         user_tsc_khz = tsc_khz;
4615
4616                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4617                         r = 0;
4618
4619                 goto out;
4620         }
4621         case KVM_GET_TSC_KHZ: {
4622                 r = vcpu->arch.virtual_tsc_khz;
4623                 goto out;
4624         }
4625         case KVM_KVMCLOCK_CTRL: {
4626                 r = kvm_set_guest_paused(vcpu);
4627                 goto out;
4628         }
4629         case KVM_ENABLE_CAP: {
4630                 struct kvm_enable_cap cap;
4631
4632                 r = -EFAULT;
4633                 if (copy_from_user(&cap, argp, sizeof(cap)))
4634                         goto out;
4635                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4636                 break;
4637         }
4638         case KVM_GET_NESTED_STATE: {
4639                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4640                 u32 user_data_size;
4641
4642                 r = -EINVAL;
4643                 if (!kvm_x86_ops.nested_ops->get_state)
4644                         break;
4645
4646                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4647                 r = -EFAULT;
4648                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4649                         break;
4650
4651                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4652                                                      user_data_size);
4653                 if (r < 0)
4654                         break;
4655
4656                 if (r > user_data_size) {
4657                         if (put_user(r, &user_kvm_nested_state->size))
4658                                 r = -EFAULT;
4659                         else
4660                                 r = -E2BIG;
4661                         break;
4662                 }
4663
4664                 r = 0;
4665                 break;
4666         }
4667         case KVM_SET_NESTED_STATE: {
4668                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4669                 struct kvm_nested_state kvm_state;
4670                 int idx;
4671
4672                 r = -EINVAL;
4673                 if (!kvm_x86_ops.nested_ops->set_state)
4674                         break;
4675
4676                 r = -EFAULT;
4677                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4678                         break;
4679
4680                 r = -EINVAL;
4681                 if (kvm_state.size < sizeof(kvm_state))
4682                         break;
4683
4684                 if (kvm_state.flags &
4685                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4686                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4687                       | KVM_STATE_NESTED_GIF_SET))
4688                         break;
4689
4690                 /* nested_run_pending implies guest_mode.  */
4691                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4692                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4693                         break;
4694
4695                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4696                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4697                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4698                 break;
4699         }
4700         case KVM_GET_SUPPORTED_HV_CPUID: {
4701                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4702                 struct kvm_cpuid2 cpuid;
4703
4704                 r = -EFAULT;
4705                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4706                         goto out;
4707
4708                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4709                                                 cpuid_arg->entries);
4710                 if (r)
4711                         goto out;
4712
4713                 r = -EFAULT;
4714                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4715                         goto out;
4716                 r = 0;
4717                 break;
4718         }
4719         default:
4720                 r = -EINVAL;
4721         }
4722 out:
4723         kfree(u.buffer);
4724 out_nofree:
4725         vcpu_put(vcpu);
4726         return r;
4727 }
4728
4729 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4730 {
4731         return VM_FAULT_SIGBUS;
4732 }
4733
4734 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4735 {
4736         int ret;
4737
4738         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4739                 return -EINVAL;
4740         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4741         return ret;
4742 }
4743
4744 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4745                                               u64 ident_addr)
4746 {
4747         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4748 }
4749
4750 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4751                                          unsigned long kvm_nr_mmu_pages)
4752 {
4753         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4754                 return -EINVAL;
4755
4756         mutex_lock(&kvm->slots_lock);
4757
4758         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4759         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4760
4761         mutex_unlock(&kvm->slots_lock);
4762         return 0;
4763 }
4764
4765 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4766 {
4767         return kvm->arch.n_max_mmu_pages;
4768 }
4769
4770 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4771 {
4772         struct kvm_pic *pic = kvm->arch.vpic;
4773         int r;
4774
4775         r = 0;
4776         switch (chip->chip_id) {
4777         case KVM_IRQCHIP_PIC_MASTER:
4778                 memcpy(&chip->chip.pic, &pic->pics[0],
4779                         sizeof(struct kvm_pic_state));
4780                 break;
4781         case KVM_IRQCHIP_PIC_SLAVE:
4782                 memcpy(&chip->chip.pic, &pic->pics[1],
4783                         sizeof(struct kvm_pic_state));
4784                 break;
4785         case KVM_IRQCHIP_IOAPIC:
4786                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4787                 break;
4788         default:
4789                 r = -EINVAL;
4790                 break;
4791         }
4792         return r;
4793 }
4794
4795 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4796 {
4797         struct kvm_pic *pic = kvm->arch.vpic;
4798         int r;
4799
4800         r = 0;
4801         switch (chip->chip_id) {
4802         case KVM_IRQCHIP_PIC_MASTER:
4803                 spin_lock(&pic->lock);
4804                 memcpy(&pic->pics[0], &chip->chip.pic,
4805                         sizeof(struct kvm_pic_state));
4806                 spin_unlock(&pic->lock);
4807                 break;
4808         case KVM_IRQCHIP_PIC_SLAVE:
4809                 spin_lock(&pic->lock);
4810                 memcpy(&pic->pics[1], &chip->chip.pic,
4811                         sizeof(struct kvm_pic_state));
4812                 spin_unlock(&pic->lock);
4813                 break;
4814         case KVM_IRQCHIP_IOAPIC:
4815                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4816                 break;
4817         default:
4818                 r = -EINVAL;
4819                 break;
4820         }
4821         kvm_pic_update_irq(pic);
4822         return r;
4823 }
4824
4825 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4826 {
4827         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4828
4829         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4830
4831         mutex_lock(&kps->lock);
4832         memcpy(ps, &kps->channels, sizeof(*ps));
4833         mutex_unlock(&kps->lock);
4834         return 0;
4835 }
4836
4837 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4838 {
4839         int i;
4840         struct kvm_pit *pit = kvm->arch.vpit;
4841
4842         mutex_lock(&pit->pit_state.lock);
4843         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4844         for (i = 0; i < 3; i++)
4845                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4846         mutex_unlock(&pit->pit_state.lock);
4847         return 0;
4848 }
4849
4850 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4851 {
4852         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4853         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4854                 sizeof(ps->channels));
4855         ps->flags = kvm->arch.vpit->pit_state.flags;
4856         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4857         memset(&ps->reserved, 0, sizeof(ps->reserved));
4858         return 0;
4859 }
4860
4861 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4862 {
4863         int start = 0;
4864         int i;
4865         u32 prev_legacy, cur_legacy;
4866         struct kvm_pit *pit = kvm->arch.vpit;
4867
4868         mutex_lock(&pit->pit_state.lock);
4869         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4870         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4871         if (!prev_legacy && cur_legacy)
4872                 start = 1;
4873         memcpy(&pit->pit_state.channels, &ps->channels,
4874                sizeof(pit->pit_state.channels));
4875         pit->pit_state.flags = ps->flags;
4876         for (i = 0; i < 3; i++)
4877                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4878                                    start && i == 0);
4879         mutex_unlock(&pit->pit_state.lock);
4880         return 0;
4881 }
4882
4883 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4884                                  struct kvm_reinject_control *control)
4885 {
4886         struct kvm_pit *pit = kvm->arch.vpit;
4887
4888         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4889          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4890          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4891          */
4892         mutex_lock(&pit->pit_state.lock);
4893         kvm_pit_set_reinject(pit, control->pit_reinject);
4894         mutex_unlock(&pit->pit_state.lock);
4895
4896         return 0;
4897 }
4898
4899 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4900 {
4901         /*
4902          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4903          */
4904         if (kvm_x86_ops.flush_log_dirty)
4905                 kvm_x86_ops.flush_log_dirty(kvm);
4906 }
4907
4908 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4909                         bool line_status)
4910 {
4911         if (!irqchip_in_kernel(kvm))
4912                 return -ENXIO;
4913
4914         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4915                                         irq_event->irq, irq_event->level,
4916                                         line_status);
4917         return 0;
4918 }
4919
4920 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4921                             struct kvm_enable_cap *cap)
4922 {
4923         int r;
4924
4925         if (cap->flags)
4926                 return -EINVAL;
4927
4928         switch (cap->cap) {
4929         case KVM_CAP_DISABLE_QUIRKS:
4930                 kvm->arch.disabled_quirks = cap->args[0];
4931                 r = 0;
4932                 break;
4933         case KVM_CAP_SPLIT_IRQCHIP: {
4934                 mutex_lock(&kvm->lock);
4935                 r = -EINVAL;
4936                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4937                         goto split_irqchip_unlock;
4938                 r = -EEXIST;
4939                 if (irqchip_in_kernel(kvm))
4940                         goto split_irqchip_unlock;
4941                 if (kvm->created_vcpus)
4942                         goto split_irqchip_unlock;
4943                 r = kvm_setup_empty_irq_routing(kvm);
4944                 if (r)
4945                         goto split_irqchip_unlock;
4946                 /* Pairs with irqchip_in_kernel. */
4947                 smp_wmb();
4948                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4949                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4950                 r = 0;
4951 split_irqchip_unlock:
4952                 mutex_unlock(&kvm->lock);
4953                 break;
4954         }
4955         case KVM_CAP_X2APIC_API:
4956                 r = -EINVAL;
4957                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4958                         break;
4959
4960                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4961                         kvm->arch.x2apic_format = true;
4962                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4963                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4964
4965                 r = 0;
4966                 break;
4967         case KVM_CAP_X86_DISABLE_EXITS:
4968                 r = -EINVAL;
4969                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4970                         break;
4971
4972                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4973                         kvm_can_mwait_in_guest())
4974                         kvm->arch.mwait_in_guest = true;
4975                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4976                         kvm->arch.hlt_in_guest = true;
4977                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4978                         kvm->arch.pause_in_guest = true;
4979                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4980                         kvm->arch.cstate_in_guest = true;
4981                 r = 0;
4982                 break;
4983         case KVM_CAP_MSR_PLATFORM_INFO:
4984                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4985                 r = 0;
4986                 break;
4987         case KVM_CAP_EXCEPTION_PAYLOAD:
4988                 kvm->arch.exception_payload_enabled = cap->args[0];
4989                 r = 0;
4990                 break;
4991         default:
4992                 r = -EINVAL;
4993                 break;
4994         }
4995         return r;
4996 }
4997
4998 long kvm_arch_vm_ioctl(struct file *filp,
4999                        unsigned int ioctl, unsigned long arg)
5000 {
5001         struct kvm *kvm = filp->private_data;
5002         void __user *argp = (void __user *)arg;
5003         int r = -ENOTTY;
5004         /*
5005          * This union makes it completely explicit to gcc-3.x
5006          * that these two variables' stack usage should be
5007          * combined, not added together.
5008          */
5009         union {
5010                 struct kvm_pit_state ps;
5011                 struct kvm_pit_state2 ps2;
5012                 struct kvm_pit_config pit_config;
5013         } u;
5014
5015         switch (ioctl) {
5016         case KVM_SET_TSS_ADDR:
5017                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5018                 break;
5019         case KVM_SET_IDENTITY_MAP_ADDR: {
5020                 u64 ident_addr;
5021
5022                 mutex_lock(&kvm->lock);
5023                 r = -EINVAL;
5024                 if (kvm->created_vcpus)
5025                         goto set_identity_unlock;
5026                 r = -EFAULT;
5027                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5028                         goto set_identity_unlock;
5029                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5030 set_identity_unlock:
5031                 mutex_unlock(&kvm->lock);
5032                 break;
5033         }
5034         case KVM_SET_NR_MMU_PAGES:
5035                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5036                 break;
5037         case KVM_GET_NR_MMU_PAGES:
5038                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5039                 break;
5040         case KVM_CREATE_IRQCHIP: {
5041                 mutex_lock(&kvm->lock);
5042
5043                 r = -EEXIST;
5044                 if (irqchip_in_kernel(kvm))
5045                         goto create_irqchip_unlock;
5046
5047                 r = -EINVAL;
5048                 if (kvm->created_vcpus)
5049                         goto create_irqchip_unlock;
5050
5051                 r = kvm_pic_init(kvm);
5052                 if (r)
5053                         goto create_irqchip_unlock;
5054
5055                 r = kvm_ioapic_init(kvm);
5056                 if (r) {
5057                         kvm_pic_destroy(kvm);
5058                         goto create_irqchip_unlock;
5059                 }
5060
5061                 r = kvm_setup_default_irq_routing(kvm);
5062                 if (r) {
5063                         kvm_ioapic_destroy(kvm);
5064                         kvm_pic_destroy(kvm);
5065                         goto create_irqchip_unlock;
5066                 }
5067                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5068                 smp_wmb();
5069                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5070         create_irqchip_unlock:
5071                 mutex_unlock(&kvm->lock);
5072                 break;
5073         }
5074         case KVM_CREATE_PIT:
5075                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5076                 goto create_pit;
5077         case KVM_CREATE_PIT2:
5078                 r = -EFAULT;
5079                 if (copy_from_user(&u.pit_config, argp,
5080                                    sizeof(struct kvm_pit_config)))
5081                         goto out;
5082         create_pit:
5083                 mutex_lock(&kvm->lock);
5084                 r = -EEXIST;
5085                 if (kvm->arch.vpit)
5086                         goto create_pit_unlock;
5087                 r = -ENOMEM;
5088                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5089                 if (kvm->arch.vpit)
5090                         r = 0;
5091         create_pit_unlock:
5092                 mutex_unlock(&kvm->lock);
5093                 break;
5094         case KVM_GET_IRQCHIP: {
5095                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5096                 struct kvm_irqchip *chip;
5097
5098                 chip = memdup_user(argp, sizeof(*chip));
5099                 if (IS_ERR(chip)) {
5100                         r = PTR_ERR(chip);
5101                         goto out;
5102                 }
5103
5104                 r = -ENXIO;
5105                 if (!irqchip_kernel(kvm))
5106                         goto get_irqchip_out;
5107                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5108                 if (r)
5109                         goto get_irqchip_out;
5110                 r = -EFAULT;
5111                 if (copy_to_user(argp, chip, sizeof(*chip)))
5112                         goto get_irqchip_out;
5113                 r = 0;
5114         get_irqchip_out:
5115                 kfree(chip);
5116                 break;
5117         }
5118         case KVM_SET_IRQCHIP: {
5119                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5120                 struct kvm_irqchip *chip;
5121
5122                 chip = memdup_user(argp, sizeof(*chip));
5123                 if (IS_ERR(chip)) {
5124                         r = PTR_ERR(chip);
5125                         goto out;
5126                 }
5127
5128                 r = -ENXIO;
5129                 if (!irqchip_kernel(kvm))
5130                         goto set_irqchip_out;
5131                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5132         set_irqchip_out:
5133                 kfree(chip);
5134                 break;
5135         }
5136         case KVM_GET_PIT: {
5137                 r = -EFAULT;
5138                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5139                         goto out;
5140                 r = -ENXIO;
5141                 if (!kvm->arch.vpit)
5142                         goto out;
5143                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5144                 if (r)
5145                         goto out;
5146                 r = -EFAULT;
5147                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5148                         goto out;
5149                 r = 0;
5150                 break;
5151         }
5152         case KVM_SET_PIT: {
5153                 r = -EFAULT;
5154                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5155                         goto out;
5156                 mutex_lock(&kvm->lock);
5157                 r = -ENXIO;
5158                 if (!kvm->arch.vpit)
5159                         goto set_pit_out;
5160                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5161 set_pit_out:
5162                 mutex_unlock(&kvm->lock);
5163                 break;
5164         }
5165         case KVM_GET_PIT2: {
5166                 r = -ENXIO;
5167                 if (!kvm->arch.vpit)
5168                         goto out;
5169                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5170                 if (r)
5171                         goto out;
5172                 r = -EFAULT;
5173                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5174                         goto out;
5175                 r = 0;
5176                 break;
5177         }
5178         case KVM_SET_PIT2: {
5179                 r = -EFAULT;
5180                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5181                         goto out;
5182                 mutex_lock(&kvm->lock);
5183                 r = -ENXIO;
5184                 if (!kvm->arch.vpit)
5185                         goto set_pit2_out;
5186                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5187 set_pit2_out:
5188                 mutex_unlock(&kvm->lock);
5189                 break;
5190         }
5191         case KVM_REINJECT_CONTROL: {
5192                 struct kvm_reinject_control control;
5193                 r =  -EFAULT;
5194                 if (copy_from_user(&control, argp, sizeof(control)))
5195                         goto out;
5196                 r = -ENXIO;
5197                 if (!kvm->arch.vpit)
5198                         goto out;
5199                 r = kvm_vm_ioctl_reinject(kvm, &control);
5200                 break;
5201         }
5202         case KVM_SET_BOOT_CPU_ID:
5203                 r = 0;
5204                 mutex_lock(&kvm->lock);
5205                 if (kvm->created_vcpus)
5206                         r = -EBUSY;
5207                 else
5208                         kvm->arch.bsp_vcpu_id = arg;
5209                 mutex_unlock(&kvm->lock);
5210                 break;
5211         case KVM_XEN_HVM_CONFIG: {
5212                 struct kvm_xen_hvm_config xhc;
5213                 r = -EFAULT;
5214                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5215                         goto out;
5216                 r = -EINVAL;
5217                 if (xhc.flags)
5218                         goto out;
5219                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5220                 r = 0;
5221                 break;
5222         }
5223         case KVM_SET_CLOCK: {
5224                 struct kvm_clock_data user_ns;
5225                 u64 now_ns;
5226
5227                 r = -EFAULT;
5228                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5229                         goto out;
5230
5231                 r = -EINVAL;
5232                 if (user_ns.flags)
5233                         goto out;
5234
5235                 r = 0;
5236                 /*
5237                  * TODO: userspace has to take care of races with VCPU_RUN, so
5238                  * kvm_gen_update_masterclock() can be cut down to locked
5239                  * pvclock_update_vm_gtod_copy().
5240                  */
5241                 kvm_gen_update_masterclock(kvm);
5242                 now_ns = get_kvmclock_ns(kvm);
5243                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5244                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5245                 break;
5246         }
5247         case KVM_GET_CLOCK: {
5248                 struct kvm_clock_data user_ns;
5249                 u64 now_ns;
5250
5251                 now_ns = get_kvmclock_ns(kvm);
5252                 user_ns.clock = now_ns;
5253                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5254                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5255
5256                 r = -EFAULT;
5257                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5258                         goto out;
5259                 r = 0;
5260                 break;
5261         }
5262         case KVM_MEMORY_ENCRYPT_OP: {
5263                 r = -ENOTTY;
5264                 if (kvm_x86_ops.mem_enc_op)
5265                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5266                 break;
5267         }
5268         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5269                 struct kvm_enc_region region;
5270
5271                 r = -EFAULT;
5272                 if (copy_from_user(&region, argp, sizeof(region)))
5273                         goto out;
5274
5275                 r = -ENOTTY;
5276                 if (kvm_x86_ops.mem_enc_reg_region)
5277                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5278                 break;
5279         }
5280         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5281                 struct kvm_enc_region region;
5282
5283                 r = -EFAULT;
5284                 if (copy_from_user(&region, argp, sizeof(region)))
5285                         goto out;
5286
5287                 r = -ENOTTY;
5288                 if (kvm_x86_ops.mem_enc_unreg_region)
5289                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5290                 break;
5291         }
5292         case KVM_HYPERV_EVENTFD: {
5293                 struct kvm_hyperv_eventfd hvevfd;
5294
5295                 r = -EFAULT;
5296                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5297                         goto out;
5298                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5299                 break;
5300         }
5301         case KVM_SET_PMU_EVENT_FILTER:
5302                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5303                 break;
5304         default:
5305                 r = -ENOTTY;
5306         }
5307 out:
5308         return r;
5309 }
5310
5311 static void kvm_init_msr_list(void)
5312 {
5313         struct x86_pmu_capability x86_pmu;
5314         u32 dummy[2];
5315         unsigned i;
5316
5317         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5318                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5319
5320         perf_get_x86_pmu_capability(&x86_pmu);
5321
5322         num_msrs_to_save = 0;
5323         num_emulated_msrs = 0;
5324         num_msr_based_features = 0;
5325
5326         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5327                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5328                         continue;
5329
5330                 /*
5331                  * Even MSRs that are valid in the host may not be exposed
5332                  * to the guests in some cases.
5333                  */
5334                 switch (msrs_to_save_all[i]) {
5335                 case MSR_IA32_BNDCFGS:
5336                         if (!kvm_mpx_supported())
5337                                 continue;
5338                         break;
5339                 case MSR_TSC_AUX:
5340                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5341                                 continue;
5342                         break;
5343                 case MSR_IA32_UMWAIT_CONTROL:
5344                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5345                                 continue;
5346                         break;
5347                 case MSR_IA32_RTIT_CTL:
5348                 case MSR_IA32_RTIT_STATUS:
5349                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5350                                 continue;
5351                         break;
5352                 case MSR_IA32_RTIT_CR3_MATCH:
5353                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5354                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5355                                 continue;
5356                         break;
5357                 case MSR_IA32_RTIT_OUTPUT_BASE:
5358                 case MSR_IA32_RTIT_OUTPUT_MASK:
5359                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5360                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5361                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5362                                 continue;
5363                         break;
5364                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5365                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5366                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5367                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5368                                 continue;
5369                         break;
5370                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5371                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5372                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5373                                 continue;
5374                         break;
5375                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5376                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5377                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5378                                 continue;
5379                         break;
5380                 default:
5381                         break;
5382                 }
5383
5384                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5385         }
5386
5387         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5388                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5389                         continue;
5390
5391                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5392         }
5393
5394         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5395                 struct kvm_msr_entry msr;
5396
5397                 msr.index = msr_based_features_all[i];
5398                 if (kvm_get_msr_feature(&msr))
5399                         continue;
5400
5401                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5402         }
5403 }
5404
5405 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5406                            const void *v)
5407 {
5408         int handled = 0;
5409         int n;
5410
5411         do {
5412                 n = min(len, 8);
5413                 if (!(lapic_in_kernel(vcpu) &&
5414                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5415                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5416                         break;
5417                 handled += n;
5418                 addr += n;
5419                 len -= n;
5420                 v += n;
5421         } while (len);
5422
5423         return handled;
5424 }
5425
5426 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5427 {
5428         int handled = 0;
5429         int n;
5430
5431         do {
5432                 n = min(len, 8);
5433                 if (!(lapic_in_kernel(vcpu) &&
5434                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5435                                          addr, n, v))
5436                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5437                         break;
5438                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5439                 handled += n;
5440                 addr += n;
5441                 len -= n;
5442                 v += n;
5443         } while (len);
5444
5445         return handled;
5446 }
5447
5448 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5449                         struct kvm_segment *var, int seg)
5450 {
5451         kvm_x86_ops.set_segment(vcpu, var, seg);
5452 }
5453
5454 void kvm_get_segment(struct kvm_vcpu *vcpu,
5455                      struct kvm_segment *var, int seg)
5456 {
5457         kvm_x86_ops.get_segment(vcpu, var, seg);
5458 }
5459
5460 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5461                            struct x86_exception *exception)
5462 {
5463         gpa_t t_gpa;
5464
5465         BUG_ON(!mmu_is_nested(vcpu));
5466
5467         /* NPT walks are always user-walks */
5468         access |= PFERR_USER_MASK;
5469         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5470
5471         return t_gpa;
5472 }
5473
5474 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5475                               struct x86_exception *exception)
5476 {
5477         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5478         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5479 }
5480
5481  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5482                                 struct x86_exception *exception)
5483 {
5484         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5485         access |= PFERR_FETCH_MASK;
5486         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5487 }
5488
5489 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5490                                struct x86_exception *exception)
5491 {
5492         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5493         access |= PFERR_WRITE_MASK;
5494         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5495 }
5496
5497 /* uses this to access any guest's mapped memory without checking CPL */
5498 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5499                                 struct x86_exception *exception)
5500 {
5501         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5502 }
5503
5504 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5505                                       struct kvm_vcpu *vcpu, u32 access,
5506                                       struct x86_exception *exception)
5507 {
5508         void *data = val;
5509         int r = X86EMUL_CONTINUE;
5510
5511         while (bytes) {
5512                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5513                                                             exception);
5514                 unsigned offset = addr & (PAGE_SIZE-1);
5515                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5516                 int ret;
5517
5518                 if (gpa == UNMAPPED_GVA)
5519                         return X86EMUL_PROPAGATE_FAULT;
5520                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5521                                                offset, toread);
5522                 if (ret < 0) {
5523                         r = X86EMUL_IO_NEEDED;
5524                         goto out;
5525                 }
5526
5527                 bytes -= toread;
5528                 data += toread;
5529                 addr += toread;
5530         }
5531 out:
5532         return r;
5533 }
5534
5535 /* used for instruction fetching */
5536 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5537                                 gva_t addr, void *val, unsigned int bytes,
5538                                 struct x86_exception *exception)
5539 {
5540         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5541         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5542         unsigned offset;
5543         int ret;
5544
5545         /* Inline kvm_read_guest_virt_helper for speed.  */
5546         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5547                                                     exception);
5548         if (unlikely(gpa == UNMAPPED_GVA))
5549                 return X86EMUL_PROPAGATE_FAULT;
5550
5551         offset = addr & (PAGE_SIZE-1);
5552         if (WARN_ON(offset + bytes > PAGE_SIZE))
5553                 bytes = (unsigned)PAGE_SIZE - offset;
5554         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5555                                        offset, bytes);
5556         if (unlikely(ret < 0))
5557                 return X86EMUL_IO_NEEDED;
5558
5559         return X86EMUL_CONTINUE;
5560 }
5561
5562 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5563                                gva_t addr, void *val, unsigned int bytes,
5564                                struct x86_exception *exception)
5565 {
5566         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5567
5568         /*
5569          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5570          * is returned, but our callers are not ready for that and they blindly
5571          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5572          * uninitialized kernel stack memory into cr2 and error code.
5573          */
5574         memset(exception, 0, sizeof(*exception));
5575         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5576                                           exception);
5577 }
5578 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5579
5580 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5581                              gva_t addr, void *val, unsigned int bytes,
5582                              struct x86_exception *exception, bool system)
5583 {
5584         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5585         u32 access = 0;
5586
5587         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5588                 access |= PFERR_USER_MASK;
5589
5590         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5591 }
5592
5593 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5594                 unsigned long addr, void *val, unsigned int bytes)
5595 {
5596         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5597         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5598
5599         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5600 }
5601
5602 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5603                                       struct kvm_vcpu *vcpu, u32 access,
5604                                       struct x86_exception *exception)
5605 {
5606         void *data = val;
5607         int r = X86EMUL_CONTINUE;
5608
5609         while (bytes) {
5610                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5611                                                              access,
5612                                                              exception);
5613                 unsigned offset = addr & (PAGE_SIZE-1);
5614                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5615                 int ret;
5616
5617                 if (gpa == UNMAPPED_GVA)
5618                         return X86EMUL_PROPAGATE_FAULT;
5619                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5620                 if (ret < 0) {
5621                         r = X86EMUL_IO_NEEDED;
5622                         goto out;
5623                 }
5624
5625                 bytes -= towrite;
5626                 data += towrite;
5627                 addr += towrite;
5628         }
5629 out:
5630         return r;
5631 }
5632
5633 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5634                               unsigned int bytes, struct x86_exception *exception,
5635                               bool system)
5636 {
5637         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5638         u32 access = PFERR_WRITE_MASK;
5639
5640         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5641                 access |= PFERR_USER_MASK;
5642
5643         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5644                                            access, exception);
5645 }
5646
5647 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5648                                 unsigned int bytes, struct x86_exception *exception)
5649 {
5650         /* kvm_write_guest_virt_system can pull in tons of pages. */
5651         vcpu->arch.l1tf_flush_l1d = true;
5652
5653         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5654                                            PFERR_WRITE_MASK, exception);
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5657
5658 int handle_ud(struct kvm_vcpu *vcpu)
5659 {
5660         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5661         int emul_type = EMULTYPE_TRAP_UD;
5662         char sig[5]; /* ud2; .ascii "kvm" */
5663         struct x86_exception e;
5664
5665         if (force_emulation_prefix &&
5666             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5667                                 sig, sizeof(sig), &e) == 0 &&
5668             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5669                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5670                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5671         }
5672
5673         return kvm_emulate_instruction(vcpu, emul_type);
5674 }
5675 EXPORT_SYMBOL_GPL(handle_ud);
5676
5677 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5678                             gpa_t gpa, bool write)
5679 {
5680         /* For APIC access vmexit */
5681         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5682                 return 1;
5683
5684         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5685                 trace_vcpu_match_mmio(gva, gpa, write, true);
5686                 return 1;
5687         }
5688
5689         return 0;
5690 }
5691
5692 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5693                                 gpa_t *gpa, struct x86_exception *exception,
5694                                 bool write)
5695 {
5696         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5697                 | (write ? PFERR_WRITE_MASK : 0);
5698
5699         /*
5700          * currently PKRU is only applied to ept enabled guest so
5701          * there is no pkey in EPT page table for L1 guest or EPT
5702          * shadow page table for L2 guest.
5703          */
5704         if (vcpu_match_mmio_gva(vcpu, gva)
5705             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5706                                  vcpu->arch.mmio_access, 0, access)) {
5707                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5708                                         (gva & (PAGE_SIZE - 1));
5709                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5710                 return 1;
5711         }
5712
5713         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5714
5715         if (*gpa == UNMAPPED_GVA)
5716                 return -1;
5717
5718         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5719 }
5720
5721 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5722                         const void *val, int bytes)
5723 {
5724         int ret;
5725
5726         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5727         if (ret < 0)
5728                 return 0;
5729         kvm_page_track_write(vcpu, gpa, val, bytes);
5730         return 1;
5731 }
5732
5733 struct read_write_emulator_ops {
5734         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5735                                   int bytes);
5736         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5737                                   void *val, int bytes);
5738         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5739                                int bytes, void *val);
5740         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5741                                     void *val, int bytes);
5742         bool write;
5743 };
5744
5745 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5746 {
5747         if (vcpu->mmio_read_completed) {
5748                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5749                                vcpu->mmio_fragments[0].gpa, val);
5750                 vcpu->mmio_read_completed = 0;
5751                 return 1;
5752         }
5753
5754         return 0;
5755 }
5756
5757 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5758                         void *val, int bytes)
5759 {
5760         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5761 }
5762
5763 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5764                          void *val, int bytes)
5765 {
5766         return emulator_write_phys(vcpu, gpa, val, bytes);
5767 }
5768
5769 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5770 {
5771         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5772         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5773 }
5774
5775 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5776                           void *val, int bytes)
5777 {
5778         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5779         return X86EMUL_IO_NEEDED;
5780 }
5781
5782 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5783                            void *val, int bytes)
5784 {
5785         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5786
5787         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5788         return X86EMUL_CONTINUE;
5789 }
5790
5791 static const struct read_write_emulator_ops read_emultor = {
5792         .read_write_prepare = read_prepare,
5793         .read_write_emulate = read_emulate,
5794         .read_write_mmio = vcpu_mmio_read,
5795         .read_write_exit_mmio = read_exit_mmio,
5796 };
5797
5798 static const struct read_write_emulator_ops write_emultor = {
5799         .read_write_emulate = write_emulate,
5800         .read_write_mmio = write_mmio,
5801         .read_write_exit_mmio = write_exit_mmio,
5802         .write = true,
5803 };
5804
5805 static int emulator_read_write_onepage(unsigned long addr, void *val,
5806                                        unsigned int bytes,
5807                                        struct x86_exception *exception,
5808                                        struct kvm_vcpu *vcpu,
5809                                        const struct read_write_emulator_ops *ops)
5810 {
5811         gpa_t gpa;
5812         int handled, ret;
5813         bool write = ops->write;
5814         struct kvm_mmio_fragment *frag;
5815         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5816
5817         /*
5818          * If the exit was due to a NPF we may already have a GPA.
5819          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5820          * Note, this cannot be used on string operations since string
5821          * operation using rep will only have the initial GPA from the NPF
5822          * occurred.
5823          */
5824         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5825             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5826                 gpa = ctxt->gpa_val;
5827                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5828         } else {
5829                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5830                 if (ret < 0)
5831                         return X86EMUL_PROPAGATE_FAULT;
5832         }
5833
5834         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5835                 return X86EMUL_CONTINUE;
5836
5837         /*
5838          * Is this MMIO handled locally?
5839          */
5840         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5841         if (handled == bytes)
5842                 return X86EMUL_CONTINUE;
5843
5844         gpa += handled;
5845         bytes -= handled;
5846         val += handled;
5847
5848         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5849         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5850         frag->gpa = gpa;
5851         frag->data = val;
5852         frag->len = bytes;
5853         return X86EMUL_CONTINUE;
5854 }
5855
5856 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5857                         unsigned long addr,
5858                         void *val, unsigned int bytes,
5859                         struct x86_exception *exception,
5860                         const struct read_write_emulator_ops *ops)
5861 {
5862         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5863         gpa_t gpa;
5864         int rc;
5865
5866         if (ops->read_write_prepare &&
5867                   ops->read_write_prepare(vcpu, val, bytes))
5868                 return X86EMUL_CONTINUE;
5869
5870         vcpu->mmio_nr_fragments = 0;
5871
5872         /* Crossing a page boundary? */
5873         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5874                 int now;
5875
5876                 now = -addr & ~PAGE_MASK;
5877                 rc = emulator_read_write_onepage(addr, val, now, exception,
5878                                                  vcpu, ops);
5879
5880                 if (rc != X86EMUL_CONTINUE)
5881                         return rc;
5882                 addr += now;
5883                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5884                         addr = (u32)addr;
5885                 val += now;
5886                 bytes -= now;
5887         }
5888
5889         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5890                                          vcpu, ops);
5891         if (rc != X86EMUL_CONTINUE)
5892                 return rc;
5893
5894         if (!vcpu->mmio_nr_fragments)
5895                 return rc;
5896
5897         gpa = vcpu->mmio_fragments[0].gpa;
5898
5899         vcpu->mmio_needed = 1;
5900         vcpu->mmio_cur_fragment = 0;
5901
5902         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5903         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5904         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5905         vcpu->run->mmio.phys_addr = gpa;
5906
5907         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5908 }
5909
5910 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5911                                   unsigned long addr,
5912                                   void *val,
5913                                   unsigned int bytes,
5914                                   struct x86_exception *exception)
5915 {
5916         return emulator_read_write(ctxt, addr, val, bytes,
5917                                    exception, &read_emultor);
5918 }
5919
5920 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5921                             unsigned long addr,
5922                             const void *val,
5923                             unsigned int bytes,
5924                             struct x86_exception *exception)
5925 {
5926         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5927                                    exception, &write_emultor);
5928 }
5929
5930 #define CMPXCHG_TYPE(t, ptr, old, new) \
5931         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5932
5933 #ifdef CONFIG_X86_64
5934 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5935 #else
5936 #  define CMPXCHG64(ptr, old, new) \
5937         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5938 #endif
5939
5940 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5941                                      unsigned long addr,
5942                                      const void *old,
5943                                      const void *new,
5944                                      unsigned int bytes,
5945                                      struct x86_exception *exception)
5946 {
5947         struct kvm_host_map map;
5948         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5949         u64 page_line_mask;
5950         gpa_t gpa;
5951         char *kaddr;
5952         bool exchanged;
5953
5954         /* guests cmpxchg8b have to be emulated atomically */
5955         if (bytes > 8 || (bytes & (bytes - 1)))
5956                 goto emul_write;
5957
5958         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5959
5960         if (gpa == UNMAPPED_GVA ||
5961             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5962                 goto emul_write;
5963
5964         /*
5965          * Emulate the atomic as a straight write to avoid #AC if SLD is
5966          * enabled in the host and the access splits a cache line.
5967          */
5968         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5969                 page_line_mask = ~(cache_line_size() - 1);
5970         else
5971                 page_line_mask = PAGE_MASK;
5972
5973         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5974                 goto emul_write;
5975
5976         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5977                 goto emul_write;
5978
5979         kaddr = map.hva + offset_in_page(gpa);
5980
5981         switch (bytes) {
5982         case 1:
5983                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5984                 break;
5985         case 2:
5986                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5987                 break;
5988         case 4:
5989                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5990                 break;
5991         case 8:
5992                 exchanged = CMPXCHG64(kaddr, old, new);
5993                 break;
5994         default:
5995                 BUG();
5996         }
5997
5998         kvm_vcpu_unmap(vcpu, &map, true);
5999
6000         if (!exchanged)
6001                 return X86EMUL_CMPXCHG_FAILED;
6002
6003         kvm_page_track_write(vcpu, gpa, new, bytes);
6004
6005         return X86EMUL_CONTINUE;
6006
6007 emul_write:
6008         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6009
6010         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6011 }
6012
6013 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6014 {
6015         int r = 0, i;
6016
6017         for (i = 0; i < vcpu->arch.pio.count; i++) {
6018                 if (vcpu->arch.pio.in)
6019                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6020                                             vcpu->arch.pio.size, pd);
6021                 else
6022                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6023                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6024                                              pd);
6025                 if (r)
6026                         break;
6027                 pd += vcpu->arch.pio.size;
6028         }
6029         return r;
6030 }
6031
6032 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6033                                unsigned short port, void *val,
6034                                unsigned int count, bool in)
6035 {
6036         vcpu->arch.pio.port = port;
6037         vcpu->arch.pio.in = in;
6038         vcpu->arch.pio.count  = count;
6039         vcpu->arch.pio.size = size;
6040
6041         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6042                 vcpu->arch.pio.count = 0;
6043                 return 1;
6044         }
6045
6046         vcpu->run->exit_reason = KVM_EXIT_IO;
6047         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6048         vcpu->run->io.size = size;
6049         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6050         vcpu->run->io.count = count;
6051         vcpu->run->io.port = port;
6052
6053         return 0;
6054 }
6055
6056 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6057                            unsigned short port, void *val, unsigned int count)
6058 {
6059         int ret;
6060
6061         if (vcpu->arch.pio.count)
6062                 goto data_avail;
6063
6064         memset(vcpu->arch.pio_data, 0, size * count);
6065
6066         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6067         if (ret) {
6068 data_avail:
6069                 memcpy(val, vcpu->arch.pio_data, size * count);
6070                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6071                 vcpu->arch.pio.count = 0;
6072                 return 1;
6073         }
6074
6075         return 0;
6076 }
6077
6078 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6079                                     int size, unsigned short port, void *val,
6080                                     unsigned int count)
6081 {
6082         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6083
6084 }
6085
6086 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6087                             unsigned short port, const void *val,
6088                             unsigned int count)
6089 {
6090         memcpy(vcpu->arch.pio_data, val, size * count);
6091         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6092         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6093 }
6094
6095 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6096                                      int size, unsigned short port,
6097                                      const void *val, unsigned int count)
6098 {
6099         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6100 }
6101
6102 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6103 {
6104         return kvm_x86_ops.get_segment_base(vcpu, seg);
6105 }
6106
6107 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6108 {
6109         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6110 }
6111
6112 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6113 {
6114         if (!need_emulate_wbinvd(vcpu))
6115                 return X86EMUL_CONTINUE;
6116
6117         if (kvm_x86_ops.has_wbinvd_exit()) {
6118                 int cpu = get_cpu();
6119
6120                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6121                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6122                                 wbinvd_ipi, NULL, 1);
6123                 put_cpu();
6124                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6125         } else
6126                 wbinvd();
6127         return X86EMUL_CONTINUE;
6128 }
6129
6130 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6131 {
6132         kvm_emulate_wbinvd_noskip(vcpu);
6133         return kvm_skip_emulated_instruction(vcpu);
6134 }
6135 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6136
6137
6138
6139 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6140 {
6141         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6142 }
6143
6144 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6145                            unsigned long *dest)
6146 {
6147         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6148 }
6149
6150 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6151                            unsigned long value)
6152 {
6153
6154         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6155 }
6156
6157 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6158 {
6159         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6160 }
6161
6162 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6163 {
6164         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6165         unsigned long value;
6166
6167         switch (cr) {
6168         case 0:
6169                 value = kvm_read_cr0(vcpu);
6170                 break;
6171         case 2:
6172                 value = vcpu->arch.cr2;
6173                 break;
6174         case 3:
6175                 value = kvm_read_cr3(vcpu);
6176                 break;
6177         case 4:
6178                 value = kvm_read_cr4(vcpu);
6179                 break;
6180         case 8:
6181                 value = kvm_get_cr8(vcpu);
6182                 break;
6183         default:
6184                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6185                 return 0;
6186         }
6187
6188         return value;
6189 }
6190
6191 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6192 {
6193         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6194         int res = 0;
6195
6196         switch (cr) {
6197         case 0:
6198                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6199                 break;
6200         case 2:
6201                 vcpu->arch.cr2 = val;
6202                 break;
6203         case 3:
6204                 res = kvm_set_cr3(vcpu, val);
6205                 break;
6206         case 4:
6207                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6208                 break;
6209         case 8:
6210                 res = kvm_set_cr8(vcpu, val);
6211                 break;
6212         default:
6213                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6214                 res = -1;
6215         }
6216
6217         return res;
6218 }
6219
6220 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6221 {
6222         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6223 }
6224
6225 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6226 {
6227         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6228 }
6229
6230 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6231 {
6232         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6233 }
6234
6235 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6236 {
6237         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6238 }
6239
6240 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6241 {
6242         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6243 }
6244
6245 static unsigned long emulator_get_cached_segment_base(
6246         struct x86_emulate_ctxt *ctxt, int seg)
6247 {
6248         return get_segment_base(emul_to_vcpu(ctxt), seg);
6249 }
6250
6251 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6252                                  struct desc_struct *desc, u32 *base3,
6253                                  int seg)
6254 {
6255         struct kvm_segment var;
6256
6257         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6258         *selector = var.selector;
6259
6260         if (var.unusable) {
6261                 memset(desc, 0, sizeof(*desc));
6262                 if (base3)
6263                         *base3 = 0;
6264                 return false;
6265         }
6266
6267         if (var.g)
6268                 var.limit >>= 12;
6269         set_desc_limit(desc, var.limit);
6270         set_desc_base(desc, (unsigned long)var.base);
6271 #ifdef CONFIG_X86_64
6272         if (base3)
6273                 *base3 = var.base >> 32;
6274 #endif
6275         desc->type = var.type;
6276         desc->s = var.s;
6277         desc->dpl = var.dpl;
6278         desc->p = var.present;
6279         desc->avl = var.avl;
6280         desc->l = var.l;
6281         desc->d = var.db;
6282         desc->g = var.g;
6283
6284         return true;
6285 }
6286
6287 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6288                                  struct desc_struct *desc, u32 base3,
6289                                  int seg)
6290 {
6291         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6292         struct kvm_segment var;
6293
6294         var.selector = selector;
6295         var.base = get_desc_base(desc);
6296 #ifdef CONFIG_X86_64
6297         var.base |= ((u64)base3) << 32;
6298 #endif
6299         var.limit = get_desc_limit(desc);
6300         if (desc->g)
6301                 var.limit = (var.limit << 12) | 0xfff;
6302         var.type = desc->type;
6303         var.dpl = desc->dpl;
6304         var.db = desc->d;
6305         var.s = desc->s;
6306         var.l = desc->l;
6307         var.g = desc->g;
6308         var.avl = desc->avl;
6309         var.present = desc->p;
6310         var.unusable = !var.present;
6311         var.padding = 0;
6312
6313         kvm_set_segment(vcpu, &var, seg);
6314         return;
6315 }
6316
6317 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6318                             u32 msr_index, u64 *pdata)
6319 {
6320         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6321 }
6322
6323 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6324                             u32 msr_index, u64 data)
6325 {
6326         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6327 }
6328
6329 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6330 {
6331         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6332
6333         return vcpu->arch.smbase;
6334 }
6335
6336 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6337 {
6338         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6339
6340         vcpu->arch.smbase = smbase;
6341 }
6342
6343 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6344                               u32 pmc)
6345 {
6346         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6347 }
6348
6349 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6350                              u32 pmc, u64 *pdata)
6351 {
6352         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6353 }
6354
6355 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6356 {
6357         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6358 }
6359
6360 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6361                               struct x86_instruction_info *info,
6362                               enum x86_intercept_stage stage)
6363 {
6364         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6365                                             &ctxt->exception);
6366 }
6367
6368 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6369                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6370                               bool exact_only)
6371 {
6372         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6373 }
6374
6375 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6376 {
6377         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6378 }
6379
6380 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6381 {
6382         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6383 }
6384
6385 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6386 {
6387         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6388 }
6389
6390 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6391 {
6392         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6393 }
6394
6395 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6396 {
6397         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6398 }
6399
6400 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6401 {
6402         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6403 }
6404
6405 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6406 {
6407         return emul_to_vcpu(ctxt)->arch.hflags;
6408 }
6409
6410 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6411 {
6412         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6413 }
6414
6415 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6416                                   const char *smstate)
6417 {
6418         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6419 }
6420
6421 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6422 {
6423         kvm_smm_changed(emul_to_vcpu(ctxt));
6424 }
6425
6426 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6427 {
6428         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6429 }
6430
6431 static const struct x86_emulate_ops emulate_ops = {
6432         .read_gpr            = emulator_read_gpr,
6433         .write_gpr           = emulator_write_gpr,
6434         .read_std            = emulator_read_std,
6435         .write_std           = emulator_write_std,
6436         .read_phys           = kvm_read_guest_phys_system,
6437         .fetch               = kvm_fetch_guest_virt,
6438         .read_emulated       = emulator_read_emulated,
6439         .write_emulated      = emulator_write_emulated,
6440         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6441         .invlpg              = emulator_invlpg,
6442         .pio_in_emulated     = emulator_pio_in_emulated,
6443         .pio_out_emulated    = emulator_pio_out_emulated,
6444         .get_segment         = emulator_get_segment,
6445         .set_segment         = emulator_set_segment,
6446         .get_cached_segment_base = emulator_get_cached_segment_base,
6447         .get_gdt             = emulator_get_gdt,
6448         .get_idt             = emulator_get_idt,
6449         .set_gdt             = emulator_set_gdt,
6450         .set_idt             = emulator_set_idt,
6451         .get_cr              = emulator_get_cr,
6452         .set_cr              = emulator_set_cr,
6453         .cpl                 = emulator_get_cpl,
6454         .get_dr              = emulator_get_dr,
6455         .set_dr              = emulator_set_dr,
6456         .get_smbase          = emulator_get_smbase,
6457         .set_smbase          = emulator_set_smbase,
6458         .set_msr             = emulator_set_msr,
6459         .get_msr             = emulator_get_msr,
6460         .check_pmc           = emulator_check_pmc,
6461         .read_pmc            = emulator_read_pmc,
6462         .halt                = emulator_halt,
6463         .wbinvd              = emulator_wbinvd,
6464         .fix_hypercall       = emulator_fix_hypercall,
6465         .intercept           = emulator_intercept,
6466         .get_cpuid           = emulator_get_cpuid,
6467         .guest_has_long_mode = emulator_guest_has_long_mode,
6468         .guest_has_movbe     = emulator_guest_has_movbe,
6469         .guest_has_fxsr      = emulator_guest_has_fxsr,
6470         .set_nmi_mask        = emulator_set_nmi_mask,
6471         .get_hflags          = emulator_get_hflags,
6472         .set_hflags          = emulator_set_hflags,
6473         .pre_leave_smm       = emulator_pre_leave_smm,
6474         .post_leave_smm      = emulator_post_leave_smm,
6475         .set_xcr             = emulator_set_xcr,
6476 };
6477
6478 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6479 {
6480         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6481         /*
6482          * an sti; sti; sequence only disable interrupts for the first
6483          * instruction. So, if the last instruction, be it emulated or
6484          * not, left the system with the INT_STI flag enabled, it
6485          * means that the last instruction is an sti. We should not
6486          * leave the flag on in this case. The same goes for mov ss
6487          */
6488         if (int_shadow & mask)
6489                 mask = 0;
6490         if (unlikely(int_shadow || mask)) {
6491                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6492                 if (!mask)
6493                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6494         }
6495 }
6496
6497 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6498 {
6499         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6500         if (ctxt->exception.vector == PF_VECTOR)
6501                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6502
6503         if (ctxt->exception.error_code_valid)
6504                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6505                                       ctxt->exception.error_code);
6506         else
6507                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6508         return false;
6509 }
6510
6511 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6512 {
6513         struct x86_emulate_ctxt *ctxt;
6514
6515         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6516         if (!ctxt) {
6517                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6518                 return NULL;
6519         }
6520
6521         ctxt->vcpu = vcpu;
6522         ctxt->ops = &emulate_ops;
6523         vcpu->arch.emulate_ctxt = ctxt;
6524
6525         return ctxt;
6526 }
6527
6528 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6529 {
6530         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6531         int cs_db, cs_l;
6532
6533         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6534
6535         ctxt->gpa_available = false;
6536         ctxt->eflags = kvm_get_rflags(vcpu);
6537         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6538
6539         ctxt->eip = kvm_rip_read(vcpu);
6540         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6541                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6542                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6543                      cs_db                              ? X86EMUL_MODE_PROT32 :
6544                                                           X86EMUL_MODE_PROT16;
6545         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6546         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6547         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6548
6549         init_decode_cache(ctxt);
6550         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6551 }
6552
6553 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6554 {
6555         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6556         int ret;
6557
6558         init_emulate_ctxt(vcpu);
6559
6560         ctxt->op_bytes = 2;
6561         ctxt->ad_bytes = 2;
6562         ctxt->_eip = ctxt->eip + inc_eip;
6563         ret = emulate_int_real(ctxt, irq);
6564
6565         if (ret != X86EMUL_CONTINUE) {
6566                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6567         } else {
6568                 ctxt->eip = ctxt->_eip;
6569                 kvm_rip_write(vcpu, ctxt->eip);
6570                 kvm_set_rflags(vcpu, ctxt->eflags);
6571         }
6572 }
6573 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6574
6575 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6576 {
6577         ++vcpu->stat.insn_emulation_fail;
6578         trace_kvm_emulate_insn_failed(vcpu);
6579
6580         if (emulation_type & EMULTYPE_VMWARE_GP) {
6581                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6582                 return 1;
6583         }
6584
6585         if (emulation_type & EMULTYPE_SKIP) {
6586                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6587                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6588                 vcpu->run->internal.ndata = 0;
6589                 return 0;
6590         }
6591
6592         kvm_queue_exception(vcpu, UD_VECTOR);
6593
6594         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6595                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6596                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6597                 vcpu->run->internal.ndata = 0;
6598                 return 0;
6599         }
6600
6601         return 1;
6602 }
6603
6604 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6605                                   bool write_fault_to_shadow_pgtable,
6606                                   int emulation_type)
6607 {
6608         gpa_t gpa = cr2_or_gpa;
6609         kvm_pfn_t pfn;
6610
6611         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6612                 return false;
6613
6614         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6615             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6616                 return false;
6617
6618         if (!vcpu->arch.mmu->direct_map) {
6619                 /*
6620                  * Write permission should be allowed since only
6621                  * write access need to be emulated.
6622                  */
6623                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6624
6625                 /*
6626                  * If the mapping is invalid in guest, let cpu retry
6627                  * it to generate fault.
6628                  */
6629                 if (gpa == UNMAPPED_GVA)
6630                         return true;
6631         }
6632
6633         /*
6634          * Do not retry the unhandleable instruction if it faults on the
6635          * readonly host memory, otherwise it will goto a infinite loop:
6636          * retry instruction -> write #PF -> emulation fail -> retry
6637          * instruction -> ...
6638          */
6639         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6640
6641         /*
6642          * If the instruction failed on the error pfn, it can not be fixed,
6643          * report the error to userspace.
6644          */
6645         if (is_error_noslot_pfn(pfn))
6646                 return false;
6647
6648         kvm_release_pfn_clean(pfn);
6649
6650         /* The instructions are well-emulated on direct mmu. */
6651         if (vcpu->arch.mmu->direct_map) {
6652                 unsigned int indirect_shadow_pages;
6653
6654                 spin_lock(&vcpu->kvm->mmu_lock);
6655                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6656                 spin_unlock(&vcpu->kvm->mmu_lock);
6657
6658                 if (indirect_shadow_pages)
6659                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6660
6661                 return true;
6662         }
6663
6664         /*
6665          * if emulation was due to access to shadowed page table
6666          * and it failed try to unshadow page and re-enter the
6667          * guest to let CPU execute the instruction.
6668          */
6669         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6670
6671         /*
6672          * If the access faults on its page table, it can not
6673          * be fixed by unprotecting shadow page and it should
6674          * be reported to userspace.
6675          */
6676         return !write_fault_to_shadow_pgtable;
6677 }
6678
6679 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6680                               gpa_t cr2_or_gpa,  int emulation_type)
6681 {
6682         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6683         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6684
6685         last_retry_eip = vcpu->arch.last_retry_eip;
6686         last_retry_addr = vcpu->arch.last_retry_addr;
6687
6688         /*
6689          * If the emulation is caused by #PF and it is non-page_table
6690          * writing instruction, it means the VM-EXIT is caused by shadow
6691          * page protected, we can zap the shadow page and retry this
6692          * instruction directly.
6693          *
6694          * Note: if the guest uses a non-page-table modifying instruction
6695          * on the PDE that points to the instruction, then we will unmap
6696          * the instruction and go to an infinite loop. So, we cache the
6697          * last retried eip and the last fault address, if we meet the eip
6698          * and the address again, we can break out of the potential infinite
6699          * loop.
6700          */
6701         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6702
6703         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6704                 return false;
6705
6706         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6707             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6708                 return false;
6709
6710         if (x86_page_table_writing_insn(ctxt))
6711                 return false;
6712
6713         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6714                 return false;
6715
6716         vcpu->arch.last_retry_eip = ctxt->eip;
6717         vcpu->arch.last_retry_addr = cr2_or_gpa;
6718
6719         if (!vcpu->arch.mmu->direct_map)
6720                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6721
6722         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6723
6724         return true;
6725 }
6726
6727 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6728 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6729
6730 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6731 {
6732         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6733                 /* This is a good place to trace that we are exiting SMM.  */
6734                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6735
6736                 /* Process a latched INIT or SMI, if any.  */
6737                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6738         }
6739
6740         kvm_mmu_reset_context(vcpu);
6741 }
6742
6743 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6744                                 unsigned long *db)
6745 {
6746         u32 dr6 = 0;
6747         int i;
6748         u32 enable, rwlen;
6749
6750         enable = dr7;
6751         rwlen = dr7 >> 16;
6752         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6753                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6754                         dr6 |= (1 << i);
6755         return dr6;
6756 }
6757
6758 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6759 {
6760         struct kvm_run *kvm_run = vcpu->run;
6761
6762         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6763                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6764                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6765                 kvm_run->debug.arch.exception = DB_VECTOR;
6766                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6767                 return 0;
6768         }
6769         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6770         return 1;
6771 }
6772
6773 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6774 {
6775         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6776         int r;
6777
6778         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6779         if (unlikely(!r))
6780                 return 0;
6781
6782         /*
6783          * rflags is the old, "raw" value of the flags.  The new value has
6784          * not been saved yet.
6785          *
6786          * This is correct even for TF set by the guest, because "the
6787          * processor will not generate this exception after the instruction
6788          * that sets the TF flag".
6789          */
6790         if (unlikely(rflags & X86_EFLAGS_TF))
6791                 r = kvm_vcpu_do_singlestep(vcpu);
6792         return r;
6793 }
6794 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6795
6796 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6797 {
6798         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6799             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6800                 struct kvm_run *kvm_run = vcpu->run;
6801                 unsigned long eip = kvm_get_linear_rip(vcpu);
6802                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6803                                            vcpu->arch.guest_debug_dr7,
6804                                            vcpu->arch.eff_db);
6805
6806                 if (dr6 != 0) {
6807                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6808                         kvm_run->debug.arch.pc = eip;
6809                         kvm_run->debug.arch.exception = DB_VECTOR;
6810                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6811                         *r = 0;
6812                         return true;
6813                 }
6814         }
6815
6816         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6817             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6818                 unsigned long eip = kvm_get_linear_rip(vcpu);
6819                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6820                                            vcpu->arch.dr7,
6821                                            vcpu->arch.db);
6822
6823                 if (dr6 != 0) {
6824                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6825                         *r = 1;
6826                         return true;
6827                 }
6828         }
6829
6830         return false;
6831 }
6832
6833 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6834 {
6835         switch (ctxt->opcode_len) {
6836         case 1:
6837                 switch (ctxt->b) {
6838                 case 0xe4:      /* IN */
6839                 case 0xe5:
6840                 case 0xec:
6841                 case 0xed:
6842                 case 0xe6:      /* OUT */
6843                 case 0xe7:
6844                 case 0xee:
6845                 case 0xef:
6846                 case 0x6c:      /* INS */
6847                 case 0x6d:
6848                 case 0x6e:      /* OUTS */
6849                 case 0x6f:
6850                         return true;
6851                 }
6852                 break;
6853         case 2:
6854                 switch (ctxt->b) {
6855                 case 0x33:      /* RDPMC */
6856                         return true;
6857                 }
6858                 break;
6859         }
6860
6861         return false;
6862 }
6863
6864 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6865                             int emulation_type, void *insn, int insn_len)
6866 {
6867         int r;
6868         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6869         bool writeback = true;
6870         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6871
6872         vcpu->arch.l1tf_flush_l1d = true;
6873
6874         /*
6875          * Clear write_fault_to_shadow_pgtable here to ensure it is
6876          * never reused.
6877          */
6878         vcpu->arch.write_fault_to_shadow_pgtable = false;
6879         kvm_clear_exception_queue(vcpu);
6880
6881         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6882                 init_emulate_ctxt(vcpu);
6883
6884                 /*
6885                  * We will reenter on the same instruction since
6886                  * we do not set complete_userspace_io.  This does not
6887                  * handle watchpoints yet, those would be handled in
6888                  * the emulate_ops.
6889                  */
6890                 if (!(emulation_type & EMULTYPE_SKIP) &&
6891                     kvm_vcpu_check_breakpoint(vcpu, &r))
6892                         return r;
6893
6894                 ctxt->interruptibility = 0;
6895                 ctxt->have_exception = false;
6896                 ctxt->exception.vector = -1;
6897                 ctxt->perm_ok = false;
6898
6899                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6900
6901                 r = x86_decode_insn(ctxt, insn, insn_len);
6902
6903                 trace_kvm_emulate_insn_start(vcpu);
6904                 ++vcpu->stat.insn_emulation;
6905                 if (r != EMULATION_OK)  {
6906                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6907                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6908                                 kvm_queue_exception(vcpu, UD_VECTOR);
6909                                 return 1;
6910                         }
6911                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6912                                                   write_fault_to_spt,
6913                                                   emulation_type))
6914                                 return 1;
6915                         if (ctxt->have_exception) {
6916                                 /*
6917                                  * #UD should result in just EMULATION_FAILED, and trap-like
6918                                  * exception should not be encountered during decode.
6919                                  */
6920                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6921                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6922                                 inject_emulated_exception(vcpu);
6923                                 return 1;
6924                         }
6925                         return handle_emulation_failure(vcpu, emulation_type);
6926                 }
6927         }
6928
6929         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6930             !is_vmware_backdoor_opcode(ctxt)) {
6931                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6932                 return 1;
6933         }
6934
6935         /*
6936          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6937          * for kvm_skip_emulated_instruction().  The caller is responsible for
6938          * updating interruptibility state and injecting single-step #DBs.
6939          */
6940         if (emulation_type & EMULTYPE_SKIP) {
6941                 kvm_rip_write(vcpu, ctxt->_eip);
6942                 if (ctxt->eflags & X86_EFLAGS_RF)
6943                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6944                 return 1;
6945         }
6946
6947         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6948                 return 1;
6949
6950         /* this is needed for vmware backdoor interface to work since it
6951            changes registers values  during IO operation */
6952         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6953                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6954                 emulator_invalidate_register_cache(ctxt);
6955         }
6956
6957 restart:
6958         if (emulation_type & EMULTYPE_PF) {
6959                 /* Save the faulting GPA (cr2) in the address field */
6960                 ctxt->exception.address = cr2_or_gpa;
6961
6962                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
6963                 if (vcpu->arch.mmu->direct_map) {
6964                         ctxt->gpa_available = true;
6965                         ctxt->gpa_val = cr2_or_gpa;
6966                 }
6967         } else {
6968                 /* Sanitize the address out of an abundance of paranoia. */
6969                 ctxt->exception.address = 0;
6970         }
6971
6972         r = x86_emulate_insn(ctxt);
6973
6974         if (r == EMULATION_INTERCEPTED)
6975                 return 1;
6976
6977         if (r == EMULATION_FAILED) {
6978                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6979                                         emulation_type))
6980                         return 1;
6981
6982                 return handle_emulation_failure(vcpu, emulation_type);
6983         }
6984
6985         if (ctxt->have_exception) {
6986                 r = 1;
6987                 if (inject_emulated_exception(vcpu))
6988                         return r;
6989         } else if (vcpu->arch.pio.count) {
6990                 if (!vcpu->arch.pio.in) {
6991                         /* FIXME: return into emulator if single-stepping.  */
6992                         vcpu->arch.pio.count = 0;
6993                 } else {
6994                         writeback = false;
6995                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6996                 }
6997                 r = 0;
6998         } else if (vcpu->mmio_needed) {
6999                 ++vcpu->stat.mmio_exits;
7000
7001                 if (!vcpu->mmio_is_write)
7002                         writeback = false;
7003                 r = 0;
7004                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7005         } else if (r == EMULATION_RESTART)
7006                 goto restart;
7007         else
7008                 r = 1;
7009
7010         if (writeback) {
7011                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7012                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7013                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7014                 if (!ctxt->have_exception ||
7015                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7016                         kvm_rip_write(vcpu, ctxt->eip);
7017                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7018                                 r = kvm_vcpu_do_singlestep(vcpu);
7019                         if (kvm_x86_ops.update_emulated_instruction)
7020                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7021                         __kvm_set_rflags(vcpu, ctxt->eflags);
7022                 }
7023
7024                 /*
7025                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7026                  * do nothing, and it will be requested again as soon as
7027                  * the shadow expires.  But we still need to check here,
7028                  * because POPF has no interrupt shadow.
7029                  */
7030                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7031                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7032         } else
7033                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7034
7035         return r;
7036 }
7037
7038 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7039 {
7040         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7041 }
7042 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7043
7044 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7045                                         void *insn, int insn_len)
7046 {
7047         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7048 }
7049 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7050
7051 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7052 {
7053         vcpu->arch.pio.count = 0;
7054         return 1;
7055 }
7056
7057 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7058 {
7059         vcpu->arch.pio.count = 0;
7060
7061         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7062                 return 1;
7063
7064         return kvm_skip_emulated_instruction(vcpu);
7065 }
7066
7067 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7068                             unsigned short port)
7069 {
7070         unsigned long val = kvm_rax_read(vcpu);
7071         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7072
7073         if (ret)
7074                 return ret;
7075
7076         /*
7077          * Workaround userspace that relies on old KVM behavior of %rip being
7078          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7079          */
7080         if (port == 0x7e &&
7081             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7082                 vcpu->arch.complete_userspace_io =
7083                         complete_fast_pio_out_port_0x7e;
7084                 kvm_skip_emulated_instruction(vcpu);
7085         } else {
7086                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7087                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7088         }
7089         return 0;
7090 }
7091
7092 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7093 {
7094         unsigned long val;
7095
7096         /* We should only ever be called with arch.pio.count equal to 1 */
7097         BUG_ON(vcpu->arch.pio.count != 1);
7098
7099         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7100                 vcpu->arch.pio.count = 0;
7101                 return 1;
7102         }
7103
7104         /* For size less than 4 we merge, else we zero extend */
7105         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7106
7107         /*
7108          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7109          * the copy and tracing
7110          */
7111         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7112         kvm_rax_write(vcpu, val);
7113
7114         return kvm_skip_emulated_instruction(vcpu);
7115 }
7116
7117 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7118                            unsigned short port)
7119 {
7120         unsigned long val;
7121         int ret;
7122
7123         /* For size less than 4 we merge, else we zero extend */
7124         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7125
7126         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7127         if (ret) {
7128                 kvm_rax_write(vcpu, val);
7129                 return ret;
7130         }
7131
7132         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7133         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7134
7135         return 0;
7136 }
7137
7138 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7139 {
7140         int ret;
7141
7142         if (in)
7143                 ret = kvm_fast_pio_in(vcpu, size, port);
7144         else
7145                 ret = kvm_fast_pio_out(vcpu, size, port);
7146         return ret && kvm_skip_emulated_instruction(vcpu);
7147 }
7148 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7149
7150 static int kvmclock_cpu_down_prep(unsigned int cpu)
7151 {
7152         __this_cpu_write(cpu_tsc_khz, 0);
7153         return 0;
7154 }
7155
7156 static void tsc_khz_changed(void *data)
7157 {
7158         struct cpufreq_freqs *freq = data;
7159         unsigned long khz = 0;
7160
7161         if (data)
7162                 khz = freq->new;
7163         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7164                 khz = cpufreq_quick_get(raw_smp_processor_id());
7165         if (!khz)
7166                 khz = tsc_khz;
7167         __this_cpu_write(cpu_tsc_khz, khz);
7168 }
7169
7170 #ifdef CONFIG_X86_64
7171 static void kvm_hyperv_tsc_notifier(void)
7172 {
7173         struct kvm *kvm;
7174         struct kvm_vcpu *vcpu;
7175         int cpu;
7176
7177         mutex_lock(&kvm_lock);
7178         list_for_each_entry(kvm, &vm_list, vm_list)
7179                 kvm_make_mclock_inprogress_request(kvm);
7180
7181         hyperv_stop_tsc_emulation();
7182
7183         /* TSC frequency always matches when on Hyper-V */
7184         for_each_present_cpu(cpu)
7185                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7186         kvm_max_guest_tsc_khz = tsc_khz;
7187
7188         list_for_each_entry(kvm, &vm_list, vm_list) {
7189                 struct kvm_arch *ka = &kvm->arch;
7190
7191                 spin_lock(&ka->pvclock_gtod_sync_lock);
7192
7193                 pvclock_update_vm_gtod_copy(kvm);
7194
7195                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7196                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7197
7198                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7199                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7200
7201                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7202         }
7203         mutex_unlock(&kvm_lock);
7204 }
7205 #endif
7206
7207 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7208 {
7209         struct kvm *kvm;
7210         struct kvm_vcpu *vcpu;
7211         int i, send_ipi = 0;
7212
7213         /*
7214          * We allow guests to temporarily run on slowing clocks,
7215          * provided we notify them after, or to run on accelerating
7216          * clocks, provided we notify them before.  Thus time never
7217          * goes backwards.
7218          *
7219          * However, we have a problem.  We can't atomically update
7220          * the frequency of a given CPU from this function; it is
7221          * merely a notifier, which can be called from any CPU.
7222          * Changing the TSC frequency at arbitrary points in time
7223          * requires a recomputation of local variables related to
7224          * the TSC for each VCPU.  We must flag these local variables
7225          * to be updated and be sure the update takes place with the
7226          * new frequency before any guests proceed.
7227          *
7228          * Unfortunately, the combination of hotplug CPU and frequency
7229          * change creates an intractable locking scenario; the order
7230          * of when these callouts happen is undefined with respect to
7231          * CPU hotplug, and they can race with each other.  As such,
7232          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7233          * undefined; you can actually have a CPU frequency change take
7234          * place in between the computation of X and the setting of the
7235          * variable.  To protect against this problem, all updates of
7236          * the per_cpu tsc_khz variable are done in an interrupt
7237          * protected IPI, and all callers wishing to update the value
7238          * must wait for a synchronous IPI to complete (which is trivial
7239          * if the caller is on the CPU already).  This establishes the
7240          * necessary total order on variable updates.
7241          *
7242          * Note that because a guest time update may take place
7243          * anytime after the setting of the VCPU's request bit, the
7244          * correct TSC value must be set before the request.  However,
7245          * to ensure the update actually makes it to any guest which
7246          * starts running in hardware virtualization between the set
7247          * and the acquisition of the spinlock, we must also ping the
7248          * CPU after setting the request bit.
7249          *
7250          */
7251
7252         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7253
7254         mutex_lock(&kvm_lock);
7255         list_for_each_entry(kvm, &vm_list, vm_list) {
7256                 kvm_for_each_vcpu(i, vcpu, kvm) {
7257                         if (vcpu->cpu != cpu)
7258                                 continue;
7259                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7260                         if (vcpu->cpu != raw_smp_processor_id())
7261                                 send_ipi = 1;
7262                 }
7263         }
7264         mutex_unlock(&kvm_lock);
7265
7266         if (freq->old < freq->new && send_ipi) {
7267                 /*
7268                  * We upscale the frequency.  Must make the guest
7269                  * doesn't see old kvmclock values while running with
7270                  * the new frequency, otherwise we risk the guest sees
7271                  * time go backwards.
7272                  *
7273                  * In case we update the frequency for another cpu
7274                  * (which might be in guest context) send an interrupt
7275                  * to kick the cpu out of guest context.  Next time
7276                  * guest context is entered kvmclock will be updated,
7277                  * so the guest will not see stale values.
7278                  */
7279                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7280         }
7281 }
7282
7283 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7284                                      void *data)
7285 {
7286         struct cpufreq_freqs *freq = data;
7287         int cpu;
7288
7289         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7290                 return 0;
7291         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7292                 return 0;
7293
7294         for_each_cpu(cpu, freq->policy->cpus)
7295                 __kvmclock_cpufreq_notifier(freq, cpu);
7296
7297         return 0;
7298 }
7299
7300 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7301         .notifier_call  = kvmclock_cpufreq_notifier
7302 };
7303
7304 static int kvmclock_cpu_online(unsigned int cpu)
7305 {
7306         tsc_khz_changed(NULL);
7307         return 0;
7308 }
7309
7310 static void kvm_timer_init(void)
7311 {
7312         max_tsc_khz = tsc_khz;
7313
7314         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7315 #ifdef CONFIG_CPU_FREQ
7316                 struct cpufreq_policy *policy;
7317                 int cpu;
7318
7319                 cpu = get_cpu();
7320                 policy = cpufreq_cpu_get(cpu);
7321                 if (policy) {
7322                         if (policy->cpuinfo.max_freq)
7323                                 max_tsc_khz = policy->cpuinfo.max_freq;
7324                         cpufreq_cpu_put(policy);
7325                 }
7326                 put_cpu();
7327 #endif
7328                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7329                                           CPUFREQ_TRANSITION_NOTIFIER);
7330         }
7331
7332         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7333                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7334 }
7335
7336 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7337 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7338
7339 int kvm_is_in_guest(void)
7340 {
7341         return __this_cpu_read(current_vcpu) != NULL;
7342 }
7343
7344 static int kvm_is_user_mode(void)
7345 {
7346         int user_mode = 3;
7347
7348         if (__this_cpu_read(current_vcpu))
7349                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7350
7351         return user_mode != 0;
7352 }
7353
7354 static unsigned long kvm_get_guest_ip(void)
7355 {
7356         unsigned long ip = 0;
7357
7358         if (__this_cpu_read(current_vcpu))
7359                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7360
7361         return ip;
7362 }
7363
7364 static void kvm_handle_intel_pt_intr(void)
7365 {
7366         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7367
7368         kvm_make_request(KVM_REQ_PMI, vcpu);
7369         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7370                         (unsigned long *)&vcpu->arch.pmu.global_status);
7371 }
7372
7373 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7374         .is_in_guest            = kvm_is_in_guest,
7375         .is_user_mode           = kvm_is_user_mode,
7376         .get_guest_ip           = kvm_get_guest_ip,
7377         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7378 };
7379
7380 #ifdef CONFIG_X86_64
7381 static void pvclock_gtod_update_fn(struct work_struct *work)
7382 {
7383         struct kvm *kvm;
7384
7385         struct kvm_vcpu *vcpu;
7386         int i;
7387
7388         mutex_lock(&kvm_lock);
7389         list_for_each_entry(kvm, &vm_list, vm_list)
7390                 kvm_for_each_vcpu(i, vcpu, kvm)
7391                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7392         atomic_set(&kvm_guest_has_master_clock, 0);
7393         mutex_unlock(&kvm_lock);
7394 }
7395
7396 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7397
7398 /*
7399  * Notification about pvclock gtod data update.
7400  */
7401 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7402                                void *priv)
7403 {
7404         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7405         struct timekeeper *tk = priv;
7406
7407         update_pvclock_gtod(tk);
7408
7409         /* disable master clock if host does not trust, or does not
7410          * use, TSC based clocksource.
7411          */
7412         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7413             atomic_read(&kvm_guest_has_master_clock) != 0)
7414                 queue_work(system_long_wq, &pvclock_gtod_work);
7415
7416         return 0;
7417 }
7418
7419 static struct notifier_block pvclock_gtod_notifier = {
7420         .notifier_call = pvclock_gtod_notify,
7421 };
7422 #endif
7423
7424 int kvm_arch_init(void *opaque)
7425 {
7426         struct kvm_x86_init_ops *ops = opaque;
7427         int r;
7428
7429         if (kvm_x86_ops.hardware_enable) {
7430                 printk(KERN_ERR "kvm: already loaded the other module\n");
7431                 r = -EEXIST;
7432                 goto out;
7433         }
7434
7435         if (!ops->cpu_has_kvm_support()) {
7436                 pr_err_ratelimited("kvm: no hardware support\n");
7437                 r = -EOPNOTSUPP;
7438                 goto out;
7439         }
7440         if (ops->disabled_by_bios()) {
7441                 pr_err_ratelimited("kvm: disabled by bios\n");
7442                 r = -EOPNOTSUPP;
7443                 goto out;
7444         }
7445
7446         /*
7447          * KVM explicitly assumes that the guest has an FPU and
7448          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7449          * vCPU's FPU state as a fxregs_state struct.
7450          */
7451         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7452                 printk(KERN_ERR "kvm: inadequate fpu\n");
7453                 r = -EOPNOTSUPP;
7454                 goto out;
7455         }
7456
7457         r = -ENOMEM;
7458         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7459                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7460                                           NULL);
7461         if (!x86_fpu_cache) {
7462                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7463                 goto out;
7464         }
7465
7466         x86_emulator_cache = kvm_alloc_emulator_cache();
7467         if (!x86_emulator_cache) {
7468                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7469                 goto out_free_x86_fpu_cache;
7470         }
7471
7472         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7473         if (!shared_msrs) {
7474                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7475                 goto out_free_x86_emulator_cache;
7476         }
7477
7478         r = kvm_mmu_module_init();
7479         if (r)
7480                 goto out_free_percpu;
7481
7482         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7483                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7484                         PT_PRESENT_MASK, 0, sme_me_mask);
7485         kvm_timer_init();
7486
7487         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7488
7489         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7490                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7491                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7492         }
7493
7494         kvm_lapic_init();
7495         if (pi_inject_timer == -1)
7496                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7497 #ifdef CONFIG_X86_64
7498         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7499
7500         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7501                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7502 #endif
7503
7504         return 0;
7505
7506 out_free_percpu:
7507         free_percpu(shared_msrs);
7508 out_free_x86_emulator_cache:
7509         kmem_cache_destroy(x86_emulator_cache);
7510 out_free_x86_fpu_cache:
7511         kmem_cache_destroy(x86_fpu_cache);
7512 out:
7513         return r;
7514 }
7515
7516 void kvm_arch_exit(void)
7517 {
7518 #ifdef CONFIG_X86_64
7519         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7520                 clear_hv_tscchange_cb();
7521 #endif
7522         kvm_lapic_exit();
7523         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7524
7525         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7526                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7527                                             CPUFREQ_TRANSITION_NOTIFIER);
7528         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7529 #ifdef CONFIG_X86_64
7530         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7531 #endif
7532         kvm_x86_ops.hardware_enable = NULL;
7533         kvm_mmu_module_exit();
7534         free_percpu(shared_msrs);
7535         kmem_cache_destroy(x86_fpu_cache);
7536 }
7537
7538 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7539 {
7540         ++vcpu->stat.halt_exits;
7541         if (lapic_in_kernel(vcpu)) {
7542                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7543                 return 1;
7544         } else {
7545                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7546                 return 0;
7547         }
7548 }
7549 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7550
7551 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7552 {
7553         int ret = kvm_skip_emulated_instruction(vcpu);
7554         /*
7555          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7556          * KVM_EXIT_DEBUG here.
7557          */
7558         return kvm_vcpu_halt(vcpu) && ret;
7559 }
7560 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7561
7562 #ifdef CONFIG_X86_64
7563 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7564                                 unsigned long clock_type)
7565 {
7566         struct kvm_clock_pairing clock_pairing;
7567         struct timespec64 ts;
7568         u64 cycle;
7569         int ret;
7570
7571         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7572                 return -KVM_EOPNOTSUPP;
7573
7574         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7575                 return -KVM_EOPNOTSUPP;
7576
7577         clock_pairing.sec = ts.tv_sec;
7578         clock_pairing.nsec = ts.tv_nsec;
7579         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7580         clock_pairing.flags = 0;
7581         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7582
7583         ret = 0;
7584         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7585                             sizeof(struct kvm_clock_pairing)))
7586                 ret = -KVM_EFAULT;
7587
7588         return ret;
7589 }
7590 #endif
7591
7592 /*
7593  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7594  *
7595  * @apicid - apicid of vcpu to be kicked.
7596  */
7597 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7598 {
7599         struct kvm_lapic_irq lapic_irq;
7600
7601         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7602         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7603         lapic_irq.level = 0;
7604         lapic_irq.dest_id = apicid;
7605         lapic_irq.msi_redir_hint = false;
7606
7607         lapic_irq.delivery_mode = APIC_DM_REMRD;
7608         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7609 }
7610
7611 bool kvm_apicv_activated(struct kvm *kvm)
7612 {
7613         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7614 }
7615 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7616
7617 void kvm_apicv_init(struct kvm *kvm, bool enable)
7618 {
7619         if (enable)
7620                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7621                           &kvm->arch.apicv_inhibit_reasons);
7622         else
7623                 set_bit(APICV_INHIBIT_REASON_DISABLE,
7624                         &kvm->arch.apicv_inhibit_reasons);
7625 }
7626 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7627
7628 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7629 {
7630         struct kvm_vcpu *target = NULL;
7631         struct kvm_apic_map *map;
7632
7633         rcu_read_lock();
7634         map = rcu_dereference(kvm->arch.apic_map);
7635
7636         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7637                 target = map->phys_map[dest_id]->vcpu;
7638
7639         rcu_read_unlock();
7640
7641         if (target && READ_ONCE(target->ready))
7642                 kvm_vcpu_yield_to(target);
7643 }
7644
7645 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7646 {
7647         unsigned long nr, a0, a1, a2, a3, ret;
7648         int op_64_bit;
7649
7650         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7651                 return kvm_hv_hypercall(vcpu);
7652
7653         nr = kvm_rax_read(vcpu);
7654         a0 = kvm_rbx_read(vcpu);
7655         a1 = kvm_rcx_read(vcpu);
7656         a2 = kvm_rdx_read(vcpu);
7657         a3 = kvm_rsi_read(vcpu);
7658
7659         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7660
7661         op_64_bit = is_64_bit_mode(vcpu);
7662         if (!op_64_bit) {
7663                 nr &= 0xFFFFFFFF;
7664                 a0 &= 0xFFFFFFFF;
7665                 a1 &= 0xFFFFFFFF;
7666                 a2 &= 0xFFFFFFFF;
7667                 a3 &= 0xFFFFFFFF;
7668         }
7669
7670         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7671                 ret = -KVM_EPERM;
7672                 goto out;
7673         }
7674
7675         switch (nr) {
7676         case KVM_HC_VAPIC_POLL_IRQ:
7677                 ret = 0;
7678                 break;
7679         case KVM_HC_KICK_CPU:
7680                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7681                 kvm_sched_yield(vcpu->kvm, a1);
7682                 ret = 0;
7683                 break;
7684 #ifdef CONFIG_X86_64
7685         case KVM_HC_CLOCK_PAIRING:
7686                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7687                 break;
7688 #endif
7689         case KVM_HC_SEND_IPI:
7690                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7691                 break;
7692         case KVM_HC_SCHED_YIELD:
7693                 kvm_sched_yield(vcpu->kvm, a0);
7694                 ret = 0;
7695                 break;
7696         default:
7697                 ret = -KVM_ENOSYS;
7698                 break;
7699         }
7700 out:
7701         if (!op_64_bit)
7702                 ret = (u32)ret;
7703         kvm_rax_write(vcpu, ret);
7704
7705         ++vcpu->stat.hypercalls;
7706         return kvm_skip_emulated_instruction(vcpu);
7707 }
7708 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7709
7710 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7711 {
7712         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7713         char instruction[3];
7714         unsigned long rip = kvm_rip_read(vcpu);
7715
7716         kvm_x86_ops.patch_hypercall(vcpu, instruction);
7717
7718         return emulator_write_emulated(ctxt, rip, instruction, 3,
7719                 &ctxt->exception);
7720 }
7721
7722 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7723 {
7724         return vcpu->run->request_interrupt_window &&
7725                 likely(!pic_in_kernel(vcpu->kvm));
7726 }
7727
7728 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7729 {
7730         struct kvm_run *kvm_run = vcpu->run;
7731
7732         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7733         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7734         kvm_run->cr8 = kvm_get_cr8(vcpu);
7735         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7736         kvm_run->ready_for_interrupt_injection =
7737                 pic_in_kernel(vcpu->kvm) ||
7738                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7739 }
7740
7741 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7742 {
7743         int max_irr, tpr;
7744
7745         if (!kvm_x86_ops.update_cr8_intercept)
7746                 return;
7747
7748         if (!lapic_in_kernel(vcpu))
7749                 return;
7750
7751         if (vcpu->arch.apicv_active)
7752                 return;
7753
7754         if (!vcpu->arch.apic->vapic_addr)
7755                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7756         else
7757                 max_irr = -1;
7758
7759         if (max_irr != -1)
7760                 max_irr >>= 4;
7761
7762         tpr = kvm_lapic_get_cr8(vcpu);
7763
7764         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7765 }
7766
7767 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7768 {
7769         int r;
7770         bool can_inject = true;
7771
7772         /* try to reinject previous events if any */
7773
7774         if (vcpu->arch.exception.injected) {
7775                 kvm_x86_ops.queue_exception(vcpu);
7776                 can_inject = false;
7777         }
7778         /*
7779          * Do not inject an NMI or interrupt if there is a pending
7780          * exception.  Exceptions and interrupts are recognized at
7781          * instruction boundaries, i.e. the start of an instruction.
7782          * Trap-like exceptions, e.g. #DB, have higher priority than
7783          * NMIs and interrupts, i.e. traps are recognized before an
7784          * NMI/interrupt that's pending on the same instruction.
7785          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7786          * priority, but are only generated (pended) during instruction
7787          * execution, i.e. a pending fault-like exception means the
7788          * fault occurred on the *previous* instruction and must be
7789          * serviced prior to recognizing any new events in order to
7790          * fully complete the previous instruction.
7791          */
7792         else if (!vcpu->arch.exception.pending) {
7793                 if (vcpu->arch.nmi_injected) {
7794                         kvm_x86_ops.set_nmi(vcpu);
7795                         can_inject = false;
7796                 } else if (vcpu->arch.interrupt.injected) {
7797                         kvm_x86_ops.set_irq(vcpu);
7798                         can_inject = false;
7799                 }
7800         }
7801
7802         WARN_ON_ONCE(vcpu->arch.exception.injected &&
7803                      vcpu->arch.exception.pending);
7804
7805         /*
7806          * Call check_nested_events() even if we reinjected a previous event
7807          * in order for caller to determine if it should require immediate-exit
7808          * from L2 to L1 due to pending L1 events which require exit
7809          * from L2 to L1.
7810          */
7811         if (is_guest_mode(vcpu)) {
7812                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
7813                 if (r < 0)
7814                         goto busy;
7815         }
7816
7817         /* try to inject new event if pending */
7818         if (vcpu->arch.exception.pending) {
7819                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7820                                         vcpu->arch.exception.has_error_code,
7821                                         vcpu->arch.exception.error_code);
7822
7823                 vcpu->arch.exception.pending = false;
7824                 vcpu->arch.exception.injected = true;
7825
7826                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7827                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7828                                              X86_EFLAGS_RF);
7829
7830                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7831                         kvm_deliver_exception_payload(vcpu);
7832                         if (vcpu->arch.dr7 & DR7_GD) {
7833                                 vcpu->arch.dr7 &= ~DR7_GD;
7834                                 kvm_update_dr7(vcpu);
7835                         }
7836                 }
7837
7838                 kvm_x86_ops.queue_exception(vcpu);
7839                 can_inject = false;
7840         }
7841
7842         /*
7843          * Finally, inject interrupt events.  If an event cannot be injected
7844          * due to architectural conditions (e.g. IF=0) a window-open exit
7845          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7846          * and can architecturally be injected, but we cannot do it right now:
7847          * an interrupt could have arrived just now and we have to inject it
7848          * as a vmexit, or there could already an event in the queue, which is
7849          * indicated by can_inject.  In that case we request an immediate exit
7850          * in order to make progress and get back here for another iteration.
7851          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7852          */
7853         if (vcpu->arch.smi_pending) {
7854                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7855                 if (r < 0)
7856                         goto busy;
7857                 if (r) {
7858                         vcpu->arch.smi_pending = false;
7859                         ++vcpu->arch.smi_count;
7860                         enter_smm(vcpu);
7861                         can_inject = false;
7862                 } else
7863                         kvm_x86_ops.enable_smi_window(vcpu);
7864         }
7865
7866         if (vcpu->arch.nmi_pending) {
7867                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7868                 if (r < 0)
7869                         goto busy;
7870                 if (r) {
7871                         --vcpu->arch.nmi_pending;
7872                         vcpu->arch.nmi_injected = true;
7873                         kvm_x86_ops.set_nmi(vcpu);
7874                         can_inject = false;
7875                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7876                 }
7877                 if (vcpu->arch.nmi_pending)
7878                         kvm_x86_ops.enable_nmi_window(vcpu);
7879         }
7880
7881         if (kvm_cpu_has_injectable_intr(vcpu)) {
7882                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7883                 if (r < 0)
7884                         goto busy;
7885                 if (r) {
7886                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7887                         kvm_x86_ops.set_irq(vcpu);
7888                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7889                 }
7890                 if (kvm_cpu_has_injectable_intr(vcpu))
7891                         kvm_x86_ops.enable_irq_window(vcpu);
7892         }
7893
7894         if (is_guest_mode(vcpu) &&
7895             kvm_x86_ops.nested_ops->hv_timer_pending &&
7896             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7897                 *req_immediate_exit = true;
7898
7899         WARN_ON(vcpu->arch.exception.pending);
7900         return;
7901
7902 busy:
7903         *req_immediate_exit = true;
7904         return;
7905 }
7906
7907 static void process_nmi(struct kvm_vcpu *vcpu)
7908 {
7909         unsigned limit = 2;
7910
7911         /*
7912          * x86 is limited to one NMI running, and one NMI pending after it.
7913          * If an NMI is already in progress, limit further NMIs to just one.
7914          * Otherwise, allow two (and we'll inject the first one immediately).
7915          */
7916         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7917                 limit = 1;
7918
7919         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7920         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7921         kvm_make_request(KVM_REQ_EVENT, vcpu);
7922 }
7923
7924 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7925 {
7926         u32 flags = 0;
7927         flags |= seg->g       << 23;
7928         flags |= seg->db      << 22;
7929         flags |= seg->l       << 21;
7930         flags |= seg->avl     << 20;
7931         flags |= seg->present << 15;
7932         flags |= seg->dpl     << 13;
7933         flags |= seg->s       << 12;
7934         flags |= seg->type    << 8;
7935         return flags;
7936 }
7937
7938 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7939 {
7940         struct kvm_segment seg;
7941         int offset;
7942
7943         kvm_get_segment(vcpu, &seg, n);
7944         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7945
7946         if (n < 3)
7947                 offset = 0x7f84 + n * 12;
7948         else
7949                 offset = 0x7f2c + (n - 3) * 12;
7950
7951         put_smstate(u32, buf, offset + 8, seg.base);
7952         put_smstate(u32, buf, offset + 4, seg.limit);
7953         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7954 }
7955
7956 #ifdef CONFIG_X86_64
7957 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7958 {
7959         struct kvm_segment seg;
7960         int offset;
7961         u16 flags;
7962
7963         kvm_get_segment(vcpu, &seg, n);
7964         offset = 0x7e00 + n * 16;
7965
7966         flags = enter_smm_get_segment_flags(&seg) >> 8;
7967         put_smstate(u16, buf, offset, seg.selector);
7968         put_smstate(u16, buf, offset + 2, flags);
7969         put_smstate(u32, buf, offset + 4, seg.limit);
7970         put_smstate(u64, buf, offset + 8, seg.base);
7971 }
7972 #endif
7973
7974 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7975 {
7976         struct desc_ptr dt;
7977         struct kvm_segment seg;
7978         unsigned long val;
7979         int i;
7980
7981         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7982         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7983         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7984         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7985
7986         for (i = 0; i < 8; i++)
7987                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7988
7989         kvm_get_dr(vcpu, 6, &val);
7990         put_smstate(u32, buf, 0x7fcc, (u32)val);
7991         kvm_get_dr(vcpu, 7, &val);
7992         put_smstate(u32, buf, 0x7fc8, (u32)val);
7993
7994         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7995         put_smstate(u32, buf, 0x7fc4, seg.selector);
7996         put_smstate(u32, buf, 0x7f64, seg.base);
7997         put_smstate(u32, buf, 0x7f60, seg.limit);
7998         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7999
8000         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8001         put_smstate(u32, buf, 0x7fc0, seg.selector);
8002         put_smstate(u32, buf, 0x7f80, seg.base);
8003         put_smstate(u32, buf, 0x7f7c, seg.limit);
8004         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8005
8006         kvm_x86_ops.get_gdt(vcpu, &dt);
8007         put_smstate(u32, buf, 0x7f74, dt.address);
8008         put_smstate(u32, buf, 0x7f70, dt.size);
8009
8010         kvm_x86_ops.get_idt(vcpu, &dt);
8011         put_smstate(u32, buf, 0x7f58, dt.address);
8012         put_smstate(u32, buf, 0x7f54, dt.size);
8013
8014         for (i = 0; i < 6; i++)
8015                 enter_smm_save_seg_32(vcpu, buf, i);
8016
8017         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8018
8019         /* revision id */
8020         put_smstate(u32, buf, 0x7efc, 0x00020000);
8021         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8022 }
8023
8024 #ifdef CONFIG_X86_64
8025 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8026 {
8027         struct desc_ptr dt;
8028         struct kvm_segment seg;
8029         unsigned long val;
8030         int i;
8031
8032         for (i = 0; i < 16; i++)
8033                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8034
8035         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8036         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8037
8038         kvm_get_dr(vcpu, 6, &val);
8039         put_smstate(u64, buf, 0x7f68, val);
8040         kvm_get_dr(vcpu, 7, &val);
8041         put_smstate(u64, buf, 0x7f60, val);
8042
8043         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8044         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8045         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8046
8047         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8048
8049         /* revision id */
8050         put_smstate(u32, buf, 0x7efc, 0x00020064);
8051
8052         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8053
8054         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8055         put_smstate(u16, buf, 0x7e90, seg.selector);
8056         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8057         put_smstate(u32, buf, 0x7e94, seg.limit);
8058         put_smstate(u64, buf, 0x7e98, seg.base);
8059
8060         kvm_x86_ops.get_idt(vcpu, &dt);
8061         put_smstate(u32, buf, 0x7e84, dt.size);
8062         put_smstate(u64, buf, 0x7e88, dt.address);
8063
8064         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8065         put_smstate(u16, buf, 0x7e70, seg.selector);
8066         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8067         put_smstate(u32, buf, 0x7e74, seg.limit);
8068         put_smstate(u64, buf, 0x7e78, seg.base);
8069
8070         kvm_x86_ops.get_gdt(vcpu, &dt);
8071         put_smstate(u32, buf, 0x7e64, dt.size);
8072         put_smstate(u64, buf, 0x7e68, dt.address);
8073
8074         for (i = 0; i < 6; i++)
8075                 enter_smm_save_seg_64(vcpu, buf, i);
8076 }
8077 #endif
8078
8079 static void enter_smm(struct kvm_vcpu *vcpu)
8080 {
8081         struct kvm_segment cs, ds;
8082         struct desc_ptr dt;
8083         char buf[512];
8084         u32 cr0;
8085
8086         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8087         memset(buf, 0, 512);
8088 #ifdef CONFIG_X86_64
8089         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8090                 enter_smm_save_state_64(vcpu, buf);
8091         else
8092 #endif
8093                 enter_smm_save_state_32(vcpu, buf);
8094
8095         /*
8096          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8097          * vCPU state (e.g. leave guest mode) after we've saved the state into
8098          * the SMM state-save area.
8099          */
8100         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8101
8102         vcpu->arch.hflags |= HF_SMM_MASK;
8103         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8104
8105         if (kvm_x86_ops.get_nmi_mask(vcpu))
8106                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8107         else
8108                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8109
8110         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8111         kvm_rip_write(vcpu, 0x8000);
8112
8113         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8114         kvm_x86_ops.set_cr0(vcpu, cr0);
8115         vcpu->arch.cr0 = cr0;
8116
8117         kvm_x86_ops.set_cr4(vcpu, 0);
8118
8119         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8120         dt.address = dt.size = 0;
8121         kvm_x86_ops.set_idt(vcpu, &dt);
8122
8123         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8124
8125         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8126         cs.base = vcpu->arch.smbase;
8127
8128         ds.selector = 0;
8129         ds.base = 0;
8130
8131         cs.limit    = ds.limit = 0xffffffff;
8132         cs.type     = ds.type = 0x3;
8133         cs.dpl      = ds.dpl = 0;
8134         cs.db       = ds.db = 0;
8135         cs.s        = ds.s = 1;
8136         cs.l        = ds.l = 0;
8137         cs.g        = ds.g = 1;
8138         cs.avl      = ds.avl = 0;
8139         cs.present  = ds.present = 1;
8140         cs.unusable = ds.unusable = 0;
8141         cs.padding  = ds.padding = 0;
8142
8143         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8144         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8145         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8146         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8147         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8148         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8149
8150 #ifdef CONFIG_X86_64
8151         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8152                 kvm_x86_ops.set_efer(vcpu, 0);
8153 #endif
8154
8155         kvm_update_cpuid(vcpu);
8156         kvm_mmu_reset_context(vcpu);
8157 }
8158
8159 static void process_smi(struct kvm_vcpu *vcpu)
8160 {
8161         vcpu->arch.smi_pending = true;
8162         kvm_make_request(KVM_REQ_EVENT, vcpu);
8163 }
8164
8165 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8166                                        unsigned long *vcpu_bitmap)
8167 {
8168         cpumask_var_t cpus;
8169
8170         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8171
8172         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8173                                     NULL, vcpu_bitmap, cpus);
8174
8175         free_cpumask_var(cpus);
8176 }
8177
8178 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8179 {
8180         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8181 }
8182
8183 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8184 {
8185         if (!lapic_in_kernel(vcpu))
8186                 return;
8187
8188         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8189         kvm_apic_update_apicv(vcpu);
8190         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8191 }
8192 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8193
8194 /*
8195  * NOTE: Do not hold any lock prior to calling this.
8196  *
8197  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8198  * locked, because it calls __x86_set_memory_region() which does
8199  * synchronize_srcu(&kvm->srcu).
8200  */
8201 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8202 {
8203         struct kvm_vcpu *except;
8204         unsigned long old, new, expected;
8205
8206         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8207             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8208                 return;
8209
8210         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8211         do {
8212                 expected = new = old;
8213                 if (activate)
8214                         __clear_bit(bit, &new);
8215                 else
8216                         __set_bit(bit, &new);
8217                 if (new == old)
8218                         break;
8219                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8220         } while (old != expected);
8221
8222         if (!!old == !!new)
8223                 return;
8224
8225         trace_kvm_apicv_update_request(activate, bit);
8226         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8227                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8228
8229         /*
8230          * Sending request to update APICV for all other vcpus,
8231          * while update the calling vcpu immediately instead of
8232          * waiting for another #VMEXIT to handle the request.
8233          */
8234         except = kvm_get_running_vcpu();
8235         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8236                                          except);
8237         if (except)
8238                 kvm_vcpu_update_apicv(except);
8239 }
8240 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8241
8242 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8243 {
8244         if (!kvm_apic_present(vcpu))
8245                 return;
8246
8247         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8248
8249         if (irqchip_split(vcpu->kvm))
8250                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8251         else {
8252                 if (vcpu->arch.apicv_active)
8253                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8254                 if (ioapic_in_kernel(vcpu->kvm))
8255                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8256         }
8257
8258         if (is_guest_mode(vcpu))
8259                 vcpu->arch.load_eoi_exitmap_pending = true;
8260         else
8261                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8262 }
8263
8264 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8265 {
8266         u64 eoi_exit_bitmap[4];
8267
8268         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8269                 return;
8270
8271         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8272                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8273         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8274 }
8275
8276 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8277                                             unsigned long start, unsigned long end)
8278 {
8279         unsigned long apic_address;
8280
8281         /*
8282          * The physical address of apic access page is stored in the VMCS.
8283          * Update it when it becomes invalid.
8284          */
8285         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8286         if (start <= apic_address && apic_address < end)
8287                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8288 }
8289
8290 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8291 {
8292         if (!lapic_in_kernel(vcpu))
8293                 return;
8294
8295         if (!kvm_x86_ops.set_apic_access_page_addr)
8296                 return;
8297
8298         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8299 }
8300
8301 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8302 {
8303         smp_send_reschedule(vcpu->cpu);
8304 }
8305 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8306
8307 /*
8308  * Returns 1 to let vcpu_run() continue the guest execution loop without
8309  * exiting to the userspace.  Otherwise, the value will be returned to the
8310  * userspace.
8311  */
8312 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8313 {
8314         int r;
8315         bool req_int_win =
8316                 dm_request_for_irq_injection(vcpu) &&
8317                 kvm_cpu_accept_dm_intr(vcpu);
8318         fastpath_t exit_fastpath;
8319
8320         bool req_immediate_exit = false;
8321
8322         if (kvm_request_pending(vcpu)) {
8323                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8324                         if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8325                                 r = 0;
8326                                 goto out;
8327                         }
8328                 }
8329                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8330                         kvm_mmu_unload(vcpu);
8331                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8332                         __kvm_migrate_timers(vcpu);
8333                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8334                         kvm_gen_update_masterclock(vcpu->kvm);
8335                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8336                         kvm_gen_kvmclock_update(vcpu);
8337                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8338                         r = kvm_guest_time_update(vcpu);
8339                         if (unlikely(r))
8340                                 goto out;
8341                 }
8342                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8343                         kvm_mmu_sync_roots(vcpu);
8344                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8345                         kvm_mmu_load_pgd(vcpu);
8346                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8347                         kvm_vcpu_flush_tlb_all(vcpu);
8348
8349                         /* Flushing all ASIDs flushes the current ASID... */
8350                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8351                 }
8352                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8353                         kvm_vcpu_flush_tlb_current(vcpu);
8354                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8355                         kvm_vcpu_flush_tlb_guest(vcpu);
8356
8357                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8358                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8359                         r = 0;
8360                         goto out;
8361                 }
8362                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8363                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8364                         vcpu->mmio_needed = 0;
8365                         r = 0;
8366                         goto out;
8367                 }
8368                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8369                         /* Page is swapped out. Do synthetic halt */
8370                         vcpu->arch.apf.halted = true;
8371                         r = 1;
8372                         goto out;
8373                 }
8374                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8375                         record_steal_time(vcpu);
8376                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8377                         process_smi(vcpu);
8378                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8379                         process_nmi(vcpu);
8380                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8381                         kvm_pmu_handle_event(vcpu);
8382                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8383                         kvm_pmu_deliver_pmi(vcpu);
8384                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8385                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8386                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8387                                      vcpu->arch.ioapic_handled_vectors)) {
8388                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8389                                 vcpu->run->eoi.vector =
8390                                                 vcpu->arch.pending_ioapic_eoi;
8391                                 r = 0;
8392                                 goto out;
8393                         }
8394                 }
8395                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8396                         vcpu_scan_ioapic(vcpu);
8397                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8398                         vcpu_load_eoi_exitmap(vcpu);
8399                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8400                         kvm_vcpu_reload_apic_access_page(vcpu);
8401                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8402                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8403                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8404                         r = 0;
8405                         goto out;
8406                 }
8407                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8408                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8409                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8410                         r = 0;
8411                         goto out;
8412                 }
8413                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8414                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8415                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8416                         r = 0;
8417                         goto out;
8418                 }
8419
8420                 /*
8421                  * KVM_REQ_HV_STIMER has to be processed after
8422                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8423                  * depend on the guest clock being up-to-date
8424                  */
8425                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8426                         kvm_hv_process_stimers(vcpu);
8427                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8428                         kvm_vcpu_update_apicv(vcpu);
8429                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8430                         kvm_check_async_pf_completion(vcpu);
8431         }
8432
8433         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8434                 ++vcpu->stat.req_event;
8435                 kvm_apic_accept_events(vcpu);
8436                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8437                         r = 1;
8438                         goto out;
8439                 }
8440
8441                 inject_pending_event(vcpu, &req_immediate_exit);
8442                 if (req_int_win)
8443                         kvm_x86_ops.enable_irq_window(vcpu);
8444
8445                 if (kvm_lapic_enabled(vcpu)) {
8446                         update_cr8_intercept(vcpu);
8447                         kvm_lapic_sync_to_vapic(vcpu);
8448                 }
8449         }
8450
8451         r = kvm_mmu_reload(vcpu);
8452         if (unlikely(r)) {
8453                 goto cancel_injection;
8454         }
8455
8456         preempt_disable();
8457
8458         kvm_x86_ops.prepare_guest_switch(vcpu);
8459
8460         /*
8461          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8462          * IPI are then delayed after guest entry, which ensures that they
8463          * result in virtual interrupt delivery.
8464          */
8465         local_irq_disable();
8466         vcpu->mode = IN_GUEST_MODE;
8467
8468         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8469
8470         /*
8471          * 1) We should set ->mode before checking ->requests.  Please see
8472          * the comment in kvm_vcpu_exiting_guest_mode().
8473          *
8474          * 2) For APICv, we should set ->mode before checking PID.ON. This
8475          * pairs with the memory barrier implicit in pi_test_and_set_on
8476          * (see vmx_deliver_posted_interrupt).
8477          *
8478          * 3) This also orders the write to mode from any reads to the page
8479          * tables done while the VCPU is running.  Please see the comment
8480          * in kvm_flush_remote_tlbs.
8481          */
8482         smp_mb__after_srcu_read_unlock();
8483
8484         /*
8485          * This handles the case where a posted interrupt was
8486          * notified with kvm_vcpu_kick.
8487          */
8488         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8489                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8490
8491         if (kvm_vcpu_exit_request(vcpu)) {
8492                 vcpu->mode = OUTSIDE_GUEST_MODE;
8493                 smp_wmb();
8494                 local_irq_enable();
8495                 preempt_enable();
8496                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8497                 r = 1;
8498                 goto cancel_injection;
8499         }
8500
8501         if (req_immediate_exit) {
8502                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8503                 kvm_x86_ops.request_immediate_exit(vcpu);
8504         }
8505
8506         trace_kvm_entry(vcpu->vcpu_id);
8507         guest_enter_irqoff();
8508
8509         fpregs_assert_state_consistent();
8510         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8511                 switch_fpu_return();
8512
8513         if (unlikely(vcpu->arch.switch_db_regs)) {
8514                 set_debugreg(0, 7);
8515                 set_debugreg(vcpu->arch.eff_db[0], 0);
8516                 set_debugreg(vcpu->arch.eff_db[1], 1);
8517                 set_debugreg(vcpu->arch.eff_db[2], 2);
8518                 set_debugreg(vcpu->arch.eff_db[3], 3);
8519                 set_debugreg(vcpu->arch.dr6, 6);
8520                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8521         }
8522
8523         exit_fastpath = kvm_x86_ops.run(vcpu);
8524
8525         /*
8526          * Do this here before restoring debug registers on the host.  And
8527          * since we do this before handling the vmexit, a DR access vmexit
8528          * can (a) read the correct value of the debug registers, (b) set
8529          * KVM_DEBUGREG_WONT_EXIT again.
8530          */
8531         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8532                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8533                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8534                 kvm_update_dr0123(vcpu);
8535                 kvm_update_dr7(vcpu);
8536                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8537         }
8538
8539         /*
8540          * If the guest has used debug registers, at least dr7
8541          * will be disabled while returning to the host.
8542          * If we don't have active breakpoints in the host, we don't
8543          * care about the messed up debug address registers. But if
8544          * we have some of them active, restore the old state.
8545          */
8546         if (hw_breakpoint_active())
8547                 hw_breakpoint_restore();
8548
8549         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8550
8551         vcpu->mode = OUTSIDE_GUEST_MODE;
8552         smp_wmb();
8553
8554         kvm_x86_ops.handle_exit_irqoff(vcpu);
8555
8556         /*
8557          * Consume any pending interrupts, including the possible source of
8558          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8559          * An instruction is required after local_irq_enable() to fully unblock
8560          * interrupts on processors that implement an interrupt shadow, the
8561          * stat.exits increment will do nicely.
8562          */
8563         kvm_before_interrupt(vcpu);
8564         local_irq_enable();
8565         ++vcpu->stat.exits;
8566         local_irq_disable();
8567         kvm_after_interrupt(vcpu);
8568
8569         guest_exit_irqoff();
8570         if (lapic_in_kernel(vcpu)) {
8571                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8572                 if (delta != S64_MIN) {
8573                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8574                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8575                 }
8576         }
8577
8578         local_irq_enable();
8579         preempt_enable();
8580
8581         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8582
8583         /*
8584          * Profile KVM exit RIPs:
8585          */
8586         if (unlikely(prof_on == KVM_PROFILING)) {
8587                 unsigned long rip = kvm_rip_read(vcpu);
8588                 profile_hit(KVM_PROFILING, (void *)rip);
8589         }
8590
8591         if (unlikely(vcpu->arch.tsc_always_catchup))
8592                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8593
8594         if (vcpu->arch.apic_attention)
8595                 kvm_lapic_sync_from_vapic(vcpu);
8596
8597         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8598         return r;
8599
8600 cancel_injection:
8601         if (req_immediate_exit)
8602                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8603         kvm_x86_ops.cancel_injection(vcpu);
8604         if (unlikely(vcpu->arch.apic_attention))
8605                 kvm_lapic_sync_from_vapic(vcpu);
8606 out:
8607         return r;
8608 }
8609
8610 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8611 {
8612         if (!kvm_arch_vcpu_runnable(vcpu) &&
8613             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8614                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8615                 kvm_vcpu_block(vcpu);
8616                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8617
8618                 if (kvm_x86_ops.post_block)
8619                         kvm_x86_ops.post_block(vcpu);
8620
8621                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8622                         return 1;
8623         }
8624
8625         kvm_apic_accept_events(vcpu);
8626         switch(vcpu->arch.mp_state) {
8627         case KVM_MP_STATE_HALTED:
8628                 vcpu->arch.pv.pv_unhalted = false;
8629                 vcpu->arch.mp_state =
8630                         KVM_MP_STATE_RUNNABLE;
8631                 /* fall through */
8632         case KVM_MP_STATE_RUNNABLE:
8633                 vcpu->arch.apf.halted = false;
8634                 break;
8635         case KVM_MP_STATE_INIT_RECEIVED:
8636                 break;
8637         default:
8638                 return -EINTR;
8639         }
8640         return 1;
8641 }
8642
8643 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8644 {
8645         if (is_guest_mode(vcpu))
8646                 kvm_x86_ops.nested_ops->check_events(vcpu);
8647
8648         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8649                 !vcpu->arch.apf.halted);
8650 }
8651
8652 static int vcpu_run(struct kvm_vcpu *vcpu)
8653 {
8654         int r;
8655         struct kvm *kvm = vcpu->kvm;
8656
8657         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8658         vcpu->arch.l1tf_flush_l1d = true;
8659
8660         for (;;) {
8661                 if (kvm_vcpu_running(vcpu)) {
8662                         r = vcpu_enter_guest(vcpu);
8663                 } else {
8664                         r = vcpu_block(kvm, vcpu);
8665                 }
8666
8667                 if (r <= 0)
8668                         break;
8669
8670                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8671                 if (kvm_cpu_has_pending_timer(vcpu))
8672                         kvm_inject_pending_timer_irqs(vcpu);
8673
8674                 if (dm_request_for_irq_injection(vcpu) &&
8675                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8676                         r = 0;
8677                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8678                         ++vcpu->stat.request_irq_exits;
8679                         break;
8680                 }
8681
8682                 if (signal_pending(current)) {
8683                         r = -EINTR;
8684                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8685                         ++vcpu->stat.signal_exits;
8686                         break;
8687                 }
8688                 if (need_resched()) {
8689                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8690                         cond_resched();
8691                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8692                 }
8693         }
8694
8695         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8696
8697         return r;
8698 }
8699
8700 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8701 {
8702         int r;
8703
8704         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8705         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8706         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8707         return r;
8708 }
8709
8710 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8711 {
8712         BUG_ON(!vcpu->arch.pio.count);
8713
8714         return complete_emulated_io(vcpu);
8715 }
8716
8717 /*
8718  * Implements the following, as a state machine:
8719  *
8720  * read:
8721  *   for each fragment
8722  *     for each mmio piece in the fragment
8723  *       write gpa, len
8724  *       exit
8725  *       copy data
8726  *   execute insn
8727  *
8728  * write:
8729  *   for each fragment
8730  *     for each mmio piece in the fragment
8731  *       write gpa, len
8732  *       copy data
8733  *       exit
8734  */
8735 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8736 {
8737         struct kvm_run *run = vcpu->run;
8738         struct kvm_mmio_fragment *frag;
8739         unsigned len;
8740
8741         BUG_ON(!vcpu->mmio_needed);
8742
8743         /* Complete previous fragment */
8744         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8745         len = min(8u, frag->len);
8746         if (!vcpu->mmio_is_write)
8747                 memcpy(frag->data, run->mmio.data, len);
8748
8749         if (frag->len <= 8) {
8750                 /* Switch to the next fragment. */
8751                 frag++;
8752                 vcpu->mmio_cur_fragment++;
8753         } else {
8754                 /* Go forward to the next mmio piece. */
8755                 frag->data += len;
8756                 frag->gpa += len;
8757                 frag->len -= len;
8758         }
8759
8760         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8761                 vcpu->mmio_needed = 0;
8762
8763                 /* FIXME: return into emulator if single-stepping.  */
8764                 if (vcpu->mmio_is_write)
8765                         return 1;
8766                 vcpu->mmio_read_completed = 1;
8767                 return complete_emulated_io(vcpu);
8768         }
8769
8770         run->exit_reason = KVM_EXIT_MMIO;
8771         run->mmio.phys_addr = frag->gpa;
8772         if (vcpu->mmio_is_write)
8773                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8774         run->mmio.len = min(8u, frag->len);
8775         run->mmio.is_write = vcpu->mmio_is_write;
8776         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8777         return 0;
8778 }
8779
8780 static void kvm_save_current_fpu(struct fpu *fpu)
8781 {
8782         /*
8783          * If the target FPU state is not resident in the CPU registers, just
8784          * memcpy() from current, else save CPU state directly to the target.
8785          */
8786         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8787                 memcpy(&fpu->state, &current->thread.fpu.state,
8788                        fpu_kernel_xstate_size);
8789         else
8790                 copy_fpregs_to_fpstate(fpu);
8791 }
8792
8793 /* Swap (qemu) user FPU context for the guest FPU context. */
8794 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8795 {
8796         fpregs_lock();
8797
8798         kvm_save_current_fpu(vcpu->arch.user_fpu);
8799
8800         /* PKRU is separately restored in kvm_x86_ops.run.  */
8801         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8802                                 ~XFEATURE_MASK_PKRU);
8803
8804         fpregs_mark_activate();
8805         fpregs_unlock();
8806
8807         trace_kvm_fpu(1);
8808 }
8809
8810 /* When vcpu_run ends, restore user space FPU context. */
8811 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8812 {
8813         fpregs_lock();
8814
8815         kvm_save_current_fpu(vcpu->arch.guest_fpu);
8816
8817         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8818
8819         fpregs_mark_activate();
8820         fpregs_unlock();
8821
8822         ++vcpu->stat.fpu_reload;
8823         trace_kvm_fpu(0);
8824 }
8825
8826 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8827 {
8828         struct kvm_run *kvm_run = vcpu->run;
8829         int r;
8830
8831         vcpu_load(vcpu);
8832         kvm_sigset_activate(vcpu);
8833         kvm_load_guest_fpu(vcpu);
8834
8835         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8836                 if (kvm_run->immediate_exit) {
8837                         r = -EINTR;
8838                         goto out;
8839                 }
8840                 kvm_vcpu_block(vcpu);
8841                 kvm_apic_accept_events(vcpu);
8842                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8843                 r = -EAGAIN;
8844                 if (signal_pending(current)) {
8845                         r = -EINTR;
8846                         kvm_run->exit_reason = KVM_EXIT_INTR;
8847                         ++vcpu->stat.signal_exits;
8848                 }
8849                 goto out;
8850         }
8851
8852         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8853                 r = -EINVAL;
8854                 goto out;
8855         }
8856
8857         if (kvm_run->kvm_dirty_regs) {
8858                 r = sync_regs(vcpu);
8859                 if (r != 0)
8860                         goto out;
8861         }
8862
8863         /* re-sync apic's tpr */
8864         if (!lapic_in_kernel(vcpu)) {
8865                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8866                         r = -EINVAL;
8867                         goto out;
8868                 }
8869         }
8870
8871         if (unlikely(vcpu->arch.complete_userspace_io)) {
8872                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8873                 vcpu->arch.complete_userspace_io = NULL;
8874                 r = cui(vcpu);
8875                 if (r <= 0)
8876                         goto out;
8877         } else
8878                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8879
8880         if (kvm_run->immediate_exit)
8881                 r = -EINTR;
8882         else
8883                 r = vcpu_run(vcpu);
8884
8885 out:
8886         kvm_put_guest_fpu(vcpu);
8887         if (kvm_run->kvm_valid_regs)
8888                 store_regs(vcpu);
8889         post_kvm_run_save(vcpu);
8890         kvm_sigset_deactivate(vcpu);
8891
8892         vcpu_put(vcpu);
8893         return r;
8894 }
8895
8896 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8897 {
8898         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8899                 /*
8900                  * We are here if userspace calls get_regs() in the middle of
8901                  * instruction emulation. Registers state needs to be copied
8902                  * back from emulation context to vcpu. Userspace shouldn't do
8903                  * that usually, but some bad designed PV devices (vmware
8904                  * backdoor interface) need this to work
8905                  */
8906                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8907                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8908         }
8909         regs->rax = kvm_rax_read(vcpu);
8910         regs->rbx = kvm_rbx_read(vcpu);
8911         regs->rcx = kvm_rcx_read(vcpu);
8912         regs->rdx = kvm_rdx_read(vcpu);
8913         regs->rsi = kvm_rsi_read(vcpu);
8914         regs->rdi = kvm_rdi_read(vcpu);
8915         regs->rsp = kvm_rsp_read(vcpu);
8916         regs->rbp = kvm_rbp_read(vcpu);
8917 #ifdef CONFIG_X86_64
8918         regs->r8 = kvm_r8_read(vcpu);
8919         regs->r9 = kvm_r9_read(vcpu);
8920         regs->r10 = kvm_r10_read(vcpu);
8921         regs->r11 = kvm_r11_read(vcpu);
8922         regs->r12 = kvm_r12_read(vcpu);
8923         regs->r13 = kvm_r13_read(vcpu);
8924         regs->r14 = kvm_r14_read(vcpu);
8925         regs->r15 = kvm_r15_read(vcpu);
8926 #endif
8927
8928         regs->rip = kvm_rip_read(vcpu);
8929         regs->rflags = kvm_get_rflags(vcpu);
8930 }
8931
8932 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8933 {
8934         vcpu_load(vcpu);
8935         __get_regs(vcpu, regs);
8936         vcpu_put(vcpu);
8937         return 0;
8938 }
8939
8940 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8941 {
8942         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8943         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8944
8945         kvm_rax_write(vcpu, regs->rax);
8946         kvm_rbx_write(vcpu, regs->rbx);
8947         kvm_rcx_write(vcpu, regs->rcx);
8948         kvm_rdx_write(vcpu, regs->rdx);
8949         kvm_rsi_write(vcpu, regs->rsi);
8950         kvm_rdi_write(vcpu, regs->rdi);
8951         kvm_rsp_write(vcpu, regs->rsp);
8952         kvm_rbp_write(vcpu, regs->rbp);
8953 #ifdef CONFIG_X86_64
8954         kvm_r8_write(vcpu, regs->r8);
8955         kvm_r9_write(vcpu, regs->r9);
8956         kvm_r10_write(vcpu, regs->r10);
8957         kvm_r11_write(vcpu, regs->r11);
8958         kvm_r12_write(vcpu, regs->r12);
8959         kvm_r13_write(vcpu, regs->r13);
8960         kvm_r14_write(vcpu, regs->r14);
8961         kvm_r15_write(vcpu, regs->r15);
8962 #endif
8963
8964         kvm_rip_write(vcpu, regs->rip);
8965         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8966
8967         vcpu->arch.exception.pending = false;
8968
8969         kvm_make_request(KVM_REQ_EVENT, vcpu);
8970 }
8971
8972 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8973 {
8974         vcpu_load(vcpu);
8975         __set_regs(vcpu, regs);
8976         vcpu_put(vcpu);
8977         return 0;
8978 }
8979
8980 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8981 {
8982         struct kvm_segment cs;
8983
8984         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8985         *db = cs.db;
8986         *l = cs.l;
8987 }
8988 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8989
8990 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8991 {
8992         struct desc_ptr dt;
8993
8994         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8995         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8996         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8997         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8998         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8999         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9000
9001         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9002         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9003
9004         kvm_x86_ops.get_idt(vcpu, &dt);
9005         sregs->idt.limit = dt.size;
9006         sregs->idt.base = dt.address;
9007         kvm_x86_ops.get_gdt(vcpu, &dt);
9008         sregs->gdt.limit = dt.size;
9009         sregs->gdt.base = dt.address;
9010
9011         sregs->cr0 = kvm_read_cr0(vcpu);
9012         sregs->cr2 = vcpu->arch.cr2;
9013         sregs->cr3 = kvm_read_cr3(vcpu);
9014         sregs->cr4 = kvm_read_cr4(vcpu);
9015         sregs->cr8 = kvm_get_cr8(vcpu);
9016         sregs->efer = vcpu->arch.efer;
9017         sregs->apic_base = kvm_get_apic_base(vcpu);
9018
9019         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9020
9021         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9022                 set_bit(vcpu->arch.interrupt.nr,
9023                         (unsigned long *)sregs->interrupt_bitmap);
9024 }
9025
9026 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9027                                   struct kvm_sregs *sregs)
9028 {
9029         vcpu_load(vcpu);
9030         __get_sregs(vcpu, sregs);
9031         vcpu_put(vcpu);
9032         return 0;
9033 }
9034
9035 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9036                                     struct kvm_mp_state *mp_state)
9037 {
9038         vcpu_load(vcpu);
9039         if (kvm_mpx_supported())
9040                 kvm_load_guest_fpu(vcpu);
9041
9042         kvm_apic_accept_events(vcpu);
9043         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9044                                         vcpu->arch.pv.pv_unhalted)
9045                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9046         else
9047                 mp_state->mp_state = vcpu->arch.mp_state;
9048
9049         if (kvm_mpx_supported())
9050                 kvm_put_guest_fpu(vcpu);
9051         vcpu_put(vcpu);
9052         return 0;
9053 }
9054
9055 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9056                                     struct kvm_mp_state *mp_state)
9057 {
9058         int ret = -EINVAL;
9059
9060         vcpu_load(vcpu);
9061
9062         if (!lapic_in_kernel(vcpu) &&
9063             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9064                 goto out;
9065
9066         /*
9067          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9068          * INIT state; latched init should be reported using
9069          * KVM_SET_VCPU_EVENTS, so reject it here.
9070          */
9071         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9072             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9073              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9074                 goto out;
9075
9076         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9077                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9078                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9079         } else
9080                 vcpu->arch.mp_state = mp_state->mp_state;
9081         kvm_make_request(KVM_REQ_EVENT, vcpu);
9082
9083         ret = 0;
9084 out:
9085         vcpu_put(vcpu);
9086         return ret;
9087 }
9088
9089 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9090                     int reason, bool has_error_code, u32 error_code)
9091 {
9092         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9093         int ret;
9094
9095         init_emulate_ctxt(vcpu);
9096
9097         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9098                                    has_error_code, error_code);
9099         if (ret) {
9100                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9101                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9102                 vcpu->run->internal.ndata = 0;
9103                 return 0;
9104         }
9105
9106         kvm_rip_write(vcpu, ctxt->eip);
9107         kvm_set_rflags(vcpu, ctxt->eflags);
9108         return 1;
9109 }
9110 EXPORT_SYMBOL_GPL(kvm_task_switch);
9111
9112 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9113 {
9114         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9115                 /*
9116                  * When EFER.LME and CR0.PG are set, the processor is in
9117                  * 64-bit mode (though maybe in a 32-bit code segment).
9118                  * CR4.PAE and EFER.LMA must be set.
9119                  */
9120                 if (!(sregs->cr4 & X86_CR4_PAE)
9121                     || !(sregs->efer & EFER_LMA))
9122                         return -EINVAL;
9123         } else {
9124                 /*
9125                  * Not in 64-bit mode: EFER.LMA is clear and the code
9126                  * segment cannot be 64-bit.
9127                  */
9128                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9129                         return -EINVAL;
9130         }
9131
9132         return kvm_valid_cr4(vcpu, sregs->cr4);
9133 }
9134
9135 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9136 {
9137         struct msr_data apic_base_msr;
9138         int mmu_reset_needed = 0;
9139         int cpuid_update_needed = 0;
9140         int pending_vec, max_bits, idx;
9141         struct desc_ptr dt;
9142         int ret = -EINVAL;
9143
9144         if (kvm_valid_sregs(vcpu, sregs))
9145                 goto out;
9146
9147         apic_base_msr.data = sregs->apic_base;
9148         apic_base_msr.host_initiated = true;
9149         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9150                 goto out;
9151
9152         dt.size = sregs->idt.limit;
9153         dt.address = sregs->idt.base;
9154         kvm_x86_ops.set_idt(vcpu, &dt);
9155         dt.size = sregs->gdt.limit;
9156         dt.address = sregs->gdt.base;
9157         kvm_x86_ops.set_gdt(vcpu, &dt);
9158
9159         vcpu->arch.cr2 = sregs->cr2;
9160         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9161         vcpu->arch.cr3 = sregs->cr3;
9162         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9163
9164         kvm_set_cr8(vcpu, sregs->cr8);
9165
9166         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9167         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9168
9169         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9170         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9171         vcpu->arch.cr0 = sregs->cr0;
9172
9173         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9174         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9175                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9176         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9177         if (cpuid_update_needed)
9178                 kvm_update_cpuid(vcpu);
9179
9180         idx = srcu_read_lock(&vcpu->kvm->srcu);
9181         if (is_pae_paging(vcpu)) {
9182                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9183                 mmu_reset_needed = 1;
9184         }
9185         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9186
9187         if (mmu_reset_needed)
9188                 kvm_mmu_reset_context(vcpu);
9189
9190         max_bits = KVM_NR_INTERRUPTS;
9191         pending_vec = find_first_bit(
9192                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9193         if (pending_vec < max_bits) {
9194                 kvm_queue_interrupt(vcpu, pending_vec, false);
9195                 pr_debug("Set back pending irq %d\n", pending_vec);
9196         }
9197
9198         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9199         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9200         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9201         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9202         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9203         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9204
9205         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9206         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9207
9208         update_cr8_intercept(vcpu);
9209
9210         /* Older userspace won't unhalt the vcpu on reset. */
9211         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9212             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9213             !is_protmode(vcpu))
9214                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9215
9216         kvm_make_request(KVM_REQ_EVENT, vcpu);
9217
9218         ret = 0;
9219 out:
9220         return ret;
9221 }
9222
9223 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9224                                   struct kvm_sregs *sregs)
9225 {
9226         int ret;
9227
9228         vcpu_load(vcpu);
9229         ret = __set_sregs(vcpu, sregs);
9230         vcpu_put(vcpu);
9231         return ret;
9232 }
9233
9234 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9235                                         struct kvm_guest_debug *dbg)
9236 {
9237         unsigned long rflags;
9238         int i, r;
9239
9240         vcpu_load(vcpu);
9241
9242         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9243                 r = -EBUSY;
9244                 if (vcpu->arch.exception.pending)
9245                         goto out;
9246                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9247                         kvm_queue_exception(vcpu, DB_VECTOR);
9248                 else
9249                         kvm_queue_exception(vcpu, BP_VECTOR);
9250         }
9251
9252         /*
9253          * Read rflags as long as potentially injected trace flags are still
9254          * filtered out.
9255          */
9256         rflags = kvm_get_rflags(vcpu);
9257
9258         vcpu->guest_debug = dbg->control;
9259         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9260                 vcpu->guest_debug = 0;
9261
9262         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9263                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9264                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9265                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9266         } else {
9267                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9268                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9269         }
9270         kvm_update_dr7(vcpu);
9271
9272         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9273                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9274                         get_segment_base(vcpu, VCPU_SREG_CS);
9275
9276         /*
9277          * Trigger an rflags update that will inject or remove the trace
9278          * flags.
9279          */
9280         kvm_set_rflags(vcpu, rflags);
9281
9282         kvm_x86_ops.update_bp_intercept(vcpu);
9283
9284         r = 0;
9285
9286 out:
9287         vcpu_put(vcpu);
9288         return r;
9289 }
9290
9291 /*
9292  * Translate a guest virtual address to a guest physical address.
9293  */
9294 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9295                                     struct kvm_translation *tr)
9296 {
9297         unsigned long vaddr = tr->linear_address;
9298         gpa_t gpa;
9299         int idx;
9300
9301         vcpu_load(vcpu);
9302
9303         idx = srcu_read_lock(&vcpu->kvm->srcu);
9304         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9305         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9306         tr->physical_address = gpa;
9307         tr->valid = gpa != UNMAPPED_GVA;
9308         tr->writeable = 1;
9309         tr->usermode = 0;
9310
9311         vcpu_put(vcpu);
9312         return 0;
9313 }
9314
9315 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9316 {
9317         struct fxregs_state *fxsave;
9318
9319         vcpu_load(vcpu);
9320
9321         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9322         memcpy(fpu->fpr, fxsave->st_space, 128);
9323         fpu->fcw = fxsave->cwd;
9324         fpu->fsw = fxsave->swd;
9325         fpu->ftwx = fxsave->twd;
9326         fpu->last_opcode = fxsave->fop;
9327         fpu->last_ip = fxsave->rip;
9328         fpu->last_dp = fxsave->rdp;
9329         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9330
9331         vcpu_put(vcpu);
9332         return 0;
9333 }
9334
9335 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9336 {
9337         struct fxregs_state *fxsave;
9338
9339         vcpu_load(vcpu);
9340
9341         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9342
9343         memcpy(fxsave->st_space, fpu->fpr, 128);
9344         fxsave->cwd = fpu->fcw;
9345         fxsave->swd = fpu->fsw;
9346         fxsave->twd = fpu->ftwx;
9347         fxsave->fop = fpu->last_opcode;
9348         fxsave->rip = fpu->last_ip;
9349         fxsave->rdp = fpu->last_dp;
9350         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9351
9352         vcpu_put(vcpu);
9353         return 0;
9354 }
9355
9356 static void store_regs(struct kvm_vcpu *vcpu)
9357 {
9358         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9359
9360         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9361                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9362
9363         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9364                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9365
9366         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9367                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9368                                 vcpu, &vcpu->run->s.regs.events);
9369 }
9370
9371 static int sync_regs(struct kvm_vcpu *vcpu)
9372 {
9373         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9374                 return -EINVAL;
9375
9376         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9377                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9378                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9379         }
9380         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9381                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9382                         return -EINVAL;
9383                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9384         }
9385         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9386                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9387                                 vcpu, &vcpu->run->s.regs.events))
9388                         return -EINVAL;
9389                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9390         }
9391
9392         return 0;
9393 }
9394
9395 static void fx_init(struct kvm_vcpu *vcpu)
9396 {
9397         fpstate_init(&vcpu->arch.guest_fpu->state);
9398         if (boot_cpu_has(X86_FEATURE_XSAVES))
9399                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9400                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9401
9402         /*
9403          * Ensure guest xcr0 is valid for loading
9404          */
9405         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9406
9407         vcpu->arch.cr0 |= X86_CR0_ET;
9408 }
9409
9410 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9411 {
9412         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9413                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9414                              "guest TSC will not be reliable\n");
9415
9416         return 0;
9417 }
9418
9419 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9420 {
9421         struct page *page;
9422         int r;
9423
9424         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9425                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9426         else
9427                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9428
9429         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9430
9431         r = kvm_mmu_create(vcpu);
9432         if (r < 0)
9433                 return r;
9434
9435         if (irqchip_in_kernel(vcpu->kvm)) {
9436                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9437                 if (r < 0)
9438                         goto fail_mmu_destroy;
9439                 if (kvm_apicv_activated(vcpu->kvm))
9440                         vcpu->arch.apicv_active = true;
9441         } else
9442                 static_key_slow_inc(&kvm_no_apic_vcpu);
9443
9444         r = -ENOMEM;
9445
9446         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9447         if (!page)
9448                 goto fail_free_lapic;
9449         vcpu->arch.pio_data = page_address(page);
9450
9451         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9452                                        GFP_KERNEL_ACCOUNT);
9453         if (!vcpu->arch.mce_banks)
9454                 goto fail_free_pio_data;
9455         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9456
9457         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9458                                 GFP_KERNEL_ACCOUNT))
9459                 goto fail_free_mce_banks;
9460
9461         if (!alloc_emulate_ctxt(vcpu))
9462                 goto free_wbinvd_dirty_mask;
9463
9464         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9465                                                 GFP_KERNEL_ACCOUNT);
9466         if (!vcpu->arch.user_fpu) {
9467                 pr_err("kvm: failed to allocate userspace's fpu\n");
9468                 goto free_emulate_ctxt;
9469         }
9470
9471         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9472                                                  GFP_KERNEL_ACCOUNT);
9473         if (!vcpu->arch.guest_fpu) {
9474                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9475                 goto free_user_fpu;
9476         }
9477         fx_init(vcpu);
9478
9479         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9480         vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu);
9481
9482         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9483
9484         kvm_async_pf_hash_reset(vcpu);
9485         kvm_pmu_init(vcpu);
9486
9487         vcpu->arch.pending_external_vector = -1;
9488         vcpu->arch.preempted_in_kernel = false;
9489
9490         kvm_hv_vcpu_init(vcpu);
9491
9492         r = kvm_x86_ops.vcpu_create(vcpu);
9493         if (r)
9494                 goto free_guest_fpu;
9495
9496         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9497         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9498         kvm_vcpu_mtrr_init(vcpu);
9499         vcpu_load(vcpu);
9500         kvm_vcpu_reset(vcpu, false);
9501         kvm_init_mmu(vcpu, false);
9502         vcpu_put(vcpu);
9503         return 0;
9504
9505 free_guest_fpu:
9506         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9507 free_user_fpu:
9508         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9509 free_emulate_ctxt:
9510         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9511 free_wbinvd_dirty_mask:
9512         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9513 fail_free_mce_banks:
9514         kfree(vcpu->arch.mce_banks);
9515 fail_free_pio_data:
9516         free_page((unsigned long)vcpu->arch.pio_data);
9517 fail_free_lapic:
9518         kvm_free_lapic(vcpu);
9519 fail_mmu_destroy:
9520         kvm_mmu_destroy(vcpu);
9521         return r;
9522 }
9523
9524 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9525 {
9526         struct msr_data msr;
9527         struct kvm *kvm = vcpu->kvm;
9528
9529         kvm_hv_vcpu_postcreate(vcpu);
9530
9531         if (mutex_lock_killable(&vcpu->mutex))
9532                 return;
9533         vcpu_load(vcpu);
9534         msr.data = 0x0;
9535         msr.index = MSR_IA32_TSC;
9536         msr.host_initiated = true;
9537         kvm_write_tsc(vcpu, &msr);
9538         vcpu_put(vcpu);
9539
9540         /* poll control enabled by default */
9541         vcpu->arch.msr_kvm_poll_control = 1;
9542
9543         mutex_unlock(&vcpu->mutex);
9544
9545         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9546                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9547                                                 KVMCLOCK_SYNC_PERIOD);
9548 }
9549
9550 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9551 {
9552         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9553         int idx;
9554
9555         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9556
9557         kvmclock_reset(vcpu);
9558
9559         kvm_x86_ops.vcpu_free(vcpu);
9560
9561         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9562         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9563         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9564         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9565
9566         kvm_hv_vcpu_uninit(vcpu);
9567         kvm_pmu_destroy(vcpu);
9568         kfree(vcpu->arch.mce_banks);
9569         kvm_free_lapic(vcpu);
9570         idx = srcu_read_lock(&vcpu->kvm->srcu);
9571         kvm_mmu_destroy(vcpu);
9572         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9573         free_page((unsigned long)vcpu->arch.pio_data);
9574         if (!lapic_in_kernel(vcpu))
9575                 static_key_slow_dec(&kvm_no_apic_vcpu);
9576 }
9577
9578 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9579 {
9580         kvm_lapic_reset(vcpu, init_event);
9581
9582         vcpu->arch.hflags = 0;
9583
9584         vcpu->arch.smi_pending = 0;
9585         vcpu->arch.smi_count = 0;
9586         atomic_set(&vcpu->arch.nmi_queued, 0);
9587         vcpu->arch.nmi_pending = 0;
9588         vcpu->arch.nmi_injected = false;
9589         kvm_clear_interrupt_queue(vcpu);
9590         kvm_clear_exception_queue(vcpu);
9591
9592         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9593         kvm_update_dr0123(vcpu);
9594         vcpu->arch.dr6 = DR6_INIT;
9595         vcpu->arch.dr7 = DR7_FIXED_1;
9596         kvm_update_dr7(vcpu);
9597
9598         vcpu->arch.cr2 = 0;
9599
9600         kvm_make_request(KVM_REQ_EVENT, vcpu);
9601         vcpu->arch.apf.msr_en_val = 0;
9602         vcpu->arch.apf.msr_int_val = 0;
9603         vcpu->arch.st.msr_val = 0;
9604
9605         kvmclock_reset(vcpu);
9606
9607         kvm_clear_async_pf_completion_queue(vcpu);
9608         kvm_async_pf_hash_reset(vcpu);
9609         vcpu->arch.apf.halted = false;
9610
9611         if (kvm_mpx_supported()) {
9612                 void *mpx_state_buffer;
9613
9614                 /*
9615                  * To avoid have the INIT path from kvm_apic_has_events() that be
9616                  * called with loaded FPU and does not let userspace fix the state.
9617                  */
9618                 if (init_event)
9619                         kvm_put_guest_fpu(vcpu);
9620                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9621                                         XFEATURE_BNDREGS);
9622                 if (mpx_state_buffer)
9623                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9624                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9625                                         XFEATURE_BNDCSR);
9626                 if (mpx_state_buffer)
9627                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9628                 if (init_event)
9629                         kvm_load_guest_fpu(vcpu);
9630         }
9631
9632         if (!init_event) {
9633                 kvm_pmu_reset(vcpu);
9634                 vcpu->arch.smbase = 0x30000;
9635
9636                 vcpu->arch.msr_misc_features_enables = 0;
9637
9638                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9639         }
9640
9641         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9642         vcpu->arch.regs_avail = ~0;
9643         vcpu->arch.regs_dirty = ~0;
9644
9645         vcpu->arch.ia32_xss = 0;
9646
9647         kvm_x86_ops.vcpu_reset(vcpu, init_event);
9648 }
9649
9650 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9651 {
9652         struct kvm_segment cs;
9653
9654         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9655         cs.selector = vector << 8;
9656         cs.base = vector << 12;
9657         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9658         kvm_rip_write(vcpu, 0);
9659 }
9660
9661 int kvm_arch_hardware_enable(void)
9662 {
9663         struct kvm *kvm;
9664         struct kvm_vcpu *vcpu;
9665         int i;
9666         int ret;
9667         u64 local_tsc;
9668         u64 max_tsc = 0;
9669         bool stable, backwards_tsc = false;
9670
9671         kvm_shared_msr_cpu_online();
9672         ret = kvm_x86_ops.hardware_enable();
9673         if (ret != 0)
9674                 return ret;
9675
9676         local_tsc = rdtsc();
9677         stable = !kvm_check_tsc_unstable();
9678         list_for_each_entry(kvm, &vm_list, vm_list) {
9679                 kvm_for_each_vcpu(i, vcpu, kvm) {
9680                         if (!stable && vcpu->cpu == smp_processor_id())
9681                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9682                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9683                                 backwards_tsc = true;
9684                                 if (vcpu->arch.last_host_tsc > max_tsc)
9685                                         max_tsc = vcpu->arch.last_host_tsc;
9686                         }
9687                 }
9688         }
9689
9690         /*
9691          * Sometimes, even reliable TSCs go backwards.  This happens on
9692          * platforms that reset TSC during suspend or hibernate actions, but
9693          * maintain synchronization.  We must compensate.  Fortunately, we can
9694          * detect that condition here, which happens early in CPU bringup,
9695          * before any KVM threads can be running.  Unfortunately, we can't
9696          * bring the TSCs fully up to date with real time, as we aren't yet far
9697          * enough into CPU bringup that we know how much real time has actually
9698          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9699          * variables that haven't been updated yet.
9700          *
9701          * So we simply find the maximum observed TSC above, then record the
9702          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9703          * the adjustment will be applied.  Note that we accumulate
9704          * adjustments, in case multiple suspend cycles happen before some VCPU
9705          * gets a chance to run again.  In the event that no KVM threads get a
9706          * chance to run, we will miss the entire elapsed period, as we'll have
9707          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9708          * loose cycle time.  This isn't too big a deal, since the loss will be
9709          * uniform across all VCPUs (not to mention the scenario is extremely
9710          * unlikely). It is possible that a second hibernate recovery happens
9711          * much faster than a first, causing the observed TSC here to be
9712          * smaller; this would require additional padding adjustment, which is
9713          * why we set last_host_tsc to the local tsc observed here.
9714          *
9715          * N.B. - this code below runs only on platforms with reliable TSC,
9716          * as that is the only way backwards_tsc is set above.  Also note
9717          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9718          * have the same delta_cyc adjustment applied if backwards_tsc
9719          * is detected.  Note further, this adjustment is only done once,
9720          * as we reset last_host_tsc on all VCPUs to stop this from being
9721          * called multiple times (one for each physical CPU bringup).
9722          *
9723          * Platforms with unreliable TSCs don't have to deal with this, they
9724          * will be compensated by the logic in vcpu_load, which sets the TSC to
9725          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9726          * guarantee that they stay in perfect synchronization.
9727          */
9728         if (backwards_tsc) {
9729                 u64 delta_cyc = max_tsc - local_tsc;
9730                 list_for_each_entry(kvm, &vm_list, vm_list) {
9731                         kvm->arch.backwards_tsc_observed = true;
9732                         kvm_for_each_vcpu(i, vcpu, kvm) {
9733                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9734                                 vcpu->arch.last_host_tsc = local_tsc;
9735                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9736                         }
9737
9738                         /*
9739                          * We have to disable TSC offset matching.. if you were
9740                          * booting a VM while issuing an S4 host suspend....
9741                          * you may have some problem.  Solving this issue is
9742                          * left as an exercise to the reader.
9743                          */
9744                         kvm->arch.last_tsc_nsec = 0;
9745                         kvm->arch.last_tsc_write = 0;
9746                 }
9747
9748         }
9749         return 0;
9750 }
9751
9752 void kvm_arch_hardware_disable(void)
9753 {
9754         kvm_x86_ops.hardware_disable();
9755         drop_user_return_notifiers();
9756 }
9757
9758 int kvm_arch_hardware_setup(void *opaque)
9759 {
9760         struct kvm_x86_init_ops *ops = opaque;
9761         int r;
9762
9763         rdmsrl_safe(MSR_EFER, &host_efer);
9764
9765         if (boot_cpu_has(X86_FEATURE_XSAVES))
9766                 rdmsrl(MSR_IA32_XSS, host_xss);
9767
9768         r = ops->hardware_setup();
9769         if (r != 0)
9770                 return r;
9771
9772         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9773
9774         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9775                 supported_xss = 0;
9776
9777 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9778         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9779 #undef __kvm_cpu_cap_has
9780
9781         if (kvm_has_tsc_control) {
9782                 /*
9783                  * Make sure the user can only configure tsc_khz values that
9784                  * fit into a signed integer.
9785                  * A min value is not calculated because it will always
9786                  * be 1 on all machines.
9787                  */
9788                 u64 max = min(0x7fffffffULL,
9789                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9790                 kvm_max_guest_tsc_khz = max;
9791
9792                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9793         }
9794
9795         kvm_init_msr_list();
9796         return 0;
9797 }
9798
9799 void kvm_arch_hardware_unsetup(void)
9800 {
9801         kvm_x86_ops.hardware_unsetup();
9802 }
9803
9804 int kvm_arch_check_processor_compat(void *opaque)
9805 {
9806         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9807         struct kvm_x86_init_ops *ops = opaque;
9808
9809         WARN_ON(!irqs_disabled());
9810
9811         if (__cr4_reserved_bits(cpu_has, c) !=
9812             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9813                 return -EIO;
9814
9815         return ops->check_processor_compatibility();
9816 }
9817
9818 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9819 {
9820         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9821 }
9822 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9823
9824 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9825 {
9826         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9827 }
9828
9829 struct static_key kvm_no_apic_vcpu __read_mostly;
9830 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9831
9832 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9833 {
9834         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9835
9836         vcpu->arch.l1tf_flush_l1d = true;
9837         if (pmu->version && unlikely(pmu->event_count)) {
9838                 pmu->need_cleanup = true;
9839                 kvm_make_request(KVM_REQ_PMU, vcpu);
9840         }
9841         kvm_x86_ops.sched_in(vcpu, cpu);
9842 }
9843
9844 void kvm_arch_free_vm(struct kvm *kvm)
9845 {
9846         kfree(kvm->arch.hyperv.hv_pa_pg);
9847         vfree(kvm);
9848 }
9849
9850
9851 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9852 {
9853         if (type)
9854                 return -EINVAL;
9855
9856         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9857         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9858         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9859         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9860         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9861         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9862
9863         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9864         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9865         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9866         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9867                 &kvm->arch.irq_sources_bitmap);
9868
9869         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9870         mutex_init(&kvm->arch.apic_map_lock);
9871         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9872
9873         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9874         pvclock_update_vm_gtod_copy(kvm);
9875
9876         kvm->arch.guest_can_read_msr_platform_info = true;
9877
9878         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9879         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9880
9881         kvm_hv_init_vm(kvm);
9882         kvm_page_track_init(kvm);
9883         kvm_mmu_init_vm(kvm);
9884
9885         return kvm_x86_ops.vm_init(kvm);
9886 }
9887
9888 int kvm_arch_post_init_vm(struct kvm *kvm)
9889 {
9890         return kvm_mmu_post_init_vm(kvm);
9891 }
9892
9893 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9894 {
9895         vcpu_load(vcpu);
9896         kvm_mmu_unload(vcpu);
9897         vcpu_put(vcpu);
9898 }
9899
9900 static void kvm_free_vcpus(struct kvm *kvm)
9901 {
9902         unsigned int i;
9903         struct kvm_vcpu *vcpu;
9904
9905         /*
9906          * Unpin any mmu pages first.
9907          */
9908         kvm_for_each_vcpu(i, vcpu, kvm) {
9909                 kvm_clear_async_pf_completion_queue(vcpu);
9910                 kvm_unload_vcpu_mmu(vcpu);
9911         }
9912         kvm_for_each_vcpu(i, vcpu, kvm)
9913                 kvm_vcpu_destroy(vcpu);
9914
9915         mutex_lock(&kvm->lock);
9916         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9917                 kvm->vcpus[i] = NULL;
9918
9919         atomic_set(&kvm->online_vcpus, 0);
9920         mutex_unlock(&kvm->lock);
9921 }
9922
9923 void kvm_arch_sync_events(struct kvm *kvm)
9924 {
9925         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9926         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9927         kvm_free_pit(kvm);
9928 }
9929
9930 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9931 {
9932         int i, r;
9933         unsigned long hva, uninitialized_var(old_npages);
9934         struct kvm_memslots *slots = kvm_memslots(kvm);
9935         struct kvm_memory_slot *slot;
9936
9937         /* Called with kvm->slots_lock held.  */
9938         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9939                 return -EINVAL;
9940
9941         slot = id_to_memslot(slots, id);
9942         if (size) {
9943                 if (slot && slot->npages)
9944                         return -EEXIST;
9945
9946                 /*
9947                  * MAP_SHARED to prevent internal slot pages from being moved
9948                  * by fork()/COW.
9949                  */
9950                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9951                               MAP_SHARED | MAP_ANONYMOUS, 0);
9952                 if (IS_ERR((void *)hva))
9953                         return PTR_ERR((void *)hva);
9954         } else {
9955                 if (!slot || !slot->npages)
9956                         return 0;
9957
9958                 old_npages = slot->npages;
9959                 hva = 0;
9960         }
9961
9962         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9963                 struct kvm_userspace_memory_region m;
9964
9965                 m.slot = id | (i << 16);
9966                 m.flags = 0;
9967                 m.guest_phys_addr = gpa;
9968                 m.userspace_addr = hva;
9969                 m.memory_size = size;
9970                 r = __kvm_set_memory_region(kvm, &m);
9971                 if (r < 0)
9972                         return r;
9973         }
9974
9975         if (!size)
9976                 vm_munmap(hva, old_npages * PAGE_SIZE);
9977
9978         return 0;
9979 }
9980 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9981
9982 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9983 {
9984         kvm_mmu_pre_destroy_vm(kvm);
9985 }
9986
9987 void kvm_arch_destroy_vm(struct kvm *kvm)
9988 {
9989         if (current->mm == kvm->mm) {
9990                 /*
9991                  * Free memory regions allocated on behalf of userspace,
9992                  * unless the the memory map has changed due to process exit
9993                  * or fd copying.
9994                  */
9995                 mutex_lock(&kvm->slots_lock);
9996                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9997                                         0, 0);
9998                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9999                                         0, 0);
10000                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10001                 mutex_unlock(&kvm->slots_lock);
10002         }
10003         if (kvm_x86_ops.vm_destroy)
10004                 kvm_x86_ops.vm_destroy(kvm);
10005         kvm_pic_destroy(kvm);
10006         kvm_ioapic_destroy(kvm);
10007         kvm_free_vcpus(kvm);
10008         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10009         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10010         kvm_mmu_uninit_vm(kvm);
10011         kvm_page_track_cleanup(kvm);
10012         kvm_hv_destroy_vm(kvm);
10013 }
10014
10015 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10016 {
10017         int i;
10018
10019         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10020                 kvfree(slot->arch.rmap[i]);
10021                 slot->arch.rmap[i] = NULL;
10022
10023                 if (i == 0)
10024                         continue;
10025
10026                 kvfree(slot->arch.lpage_info[i - 1]);
10027                 slot->arch.lpage_info[i - 1] = NULL;
10028         }
10029
10030         kvm_page_track_free_memslot(slot);
10031 }
10032
10033 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10034                                       unsigned long npages)
10035 {
10036         int i;
10037
10038         /*
10039          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10040          * old arrays will be freed by __kvm_set_memory_region() if installing
10041          * the new memslot is successful.
10042          */
10043         memset(&slot->arch, 0, sizeof(slot->arch));
10044
10045         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10046                 struct kvm_lpage_info *linfo;
10047                 unsigned long ugfn;
10048                 int lpages;
10049                 int level = i + 1;
10050
10051                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10052                                       slot->base_gfn, level) + 1;
10053
10054                 slot->arch.rmap[i] =
10055                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10056                                  GFP_KERNEL_ACCOUNT);
10057                 if (!slot->arch.rmap[i])
10058                         goto out_free;
10059                 if (i == 0)
10060                         continue;
10061
10062                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10063                 if (!linfo)
10064                         goto out_free;
10065
10066                 slot->arch.lpage_info[i - 1] = linfo;
10067
10068                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10069                         linfo[0].disallow_lpage = 1;
10070                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10071                         linfo[lpages - 1].disallow_lpage = 1;
10072                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10073                 /*
10074                  * If the gfn and userspace address are not aligned wrt each
10075                  * other, disable large page support for this slot.
10076                  */
10077                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10078                         unsigned long j;
10079
10080                         for (j = 0; j < lpages; ++j)
10081                                 linfo[j].disallow_lpage = 1;
10082                 }
10083         }
10084
10085         if (kvm_page_track_create_memslot(slot, npages))
10086                 goto out_free;
10087
10088         return 0;
10089
10090 out_free:
10091         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10092                 kvfree(slot->arch.rmap[i]);
10093                 slot->arch.rmap[i] = NULL;
10094                 if (i == 0)
10095                         continue;
10096
10097                 kvfree(slot->arch.lpage_info[i - 1]);
10098                 slot->arch.lpage_info[i - 1] = NULL;
10099         }
10100         return -ENOMEM;
10101 }
10102
10103 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10104 {
10105         struct kvm_vcpu *vcpu;
10106         int i;
10107
10108         /*
10109          * memslots->generation has been incremented.
10110          * mmio generation may have reached its maximum value.
10111          */
10112         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10113
10114         /* Force re-initialization of steal_time cache */
10115         kvm_for_each_vcpu(i, vcpu, kvm)
10116                 kvm_vcpu_kick(vcpu);
10117 }
10118
10119 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10120                                 struct kvm_memory_slot *memslot,
10121                                 const struct kvm_userspace_memory_region *mem,
10122                                 enum kvm_mr_change change)
10123 {
10124         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10125                 return kvm_alloc_memslot_metadata(memslot,
10126                                                   mem->memory_size >> PAGE_SHIFT);
10127         return 0;
10128 }
10129
10130 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10131                                      struct kvm_memory_slot *old,
10132                                      struct kvm_memory_slot *new,
10133                                      enum kvm_mr_change change)
10134 {
10135         /*
10136          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10137          * See comments below.
10138          */
10139         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10140                 return;
10141
10142         /*
10143          * Dirty logging tracks sptes in 4k granularity, meaning that large
10144          * sptes have to be split.  If live migration is successful, the guest
10145          * in the source machine will be destroyed and large sptes will be
10146          * created in the destination. However, if the guest continues to run
10147          * in the source machine (for example if live migration fails), small
10148          * sptes will remain around and cause bad performance.
10149          *
10150          * Scan sptes if dirty logging has been stopped, dropping those
10151          * which can be collapsed into a single large-page spte.  Later
10152          * page faults will create the large-page sptes.
10153          *
10154          * There is no need to do this in any of the following cases:
10155          * CREATE:      No dirty mappings will already exist.
10156          * MOVE/DELETE: The old mappings will already have been cleaned up by
10157          *              kvm_arch_flush_shadow_memslot()
10158          */
10159         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10160             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10161                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10162
10163         /*
10164          * Enable or disable dirty logging for the slot.
10165          *
10166          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10167          * slot have been zapped so no dirty logging updates are needed for
10168          * the old slot.
10169          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10170          * any mappings that might be created in it will consume the
10171          * properties of the new slot and do not need to be updated here.
10172          *
10173          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10174          * called to enable/disable dirty logging.
10175          *
10176          * When disabling dirty logging with PML enabled, the D-bit is set
10177          * for sptes in the slot in order to prevent unnecessary GPA
10178          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10179          * This guarantees leaving PML enabled for the guest's lifetime
10180          * won't have any additional overhead from PML when the guest is
10181          * running with dirty logging disabled.
10182          *
10183          * When enabling dirty logging, large sptes are write-protected
10184          * so they can be split on first write.  New large sptes cannot
10185          * be created for this slot until the end of the logging.
10186          * See the comments in fast_page_fault().
10187          * For small sptes, nothing is done if the dirty log is in the
10188          * initial-all-set state.  Otherwise, depending on whether pml
10189          * is enabled the D-bit or the W-bit will be cleared.
10190          */
10191         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10192                 if (kvm_x86_ops.slot_enable_log_dirty) {
10193                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10194                 } else {
10195                         int level =
10196                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10197                                 PG_LEVEL_2M : PG_LEVEL_4K;
10198
10199                         /*
10200                          * If we're with initial-all-set, we don't need
10201                          * to write protect any small page because
10202                          * they're reported as dirty already.  However
10203                          * we still need to write-protect huge pages
10204                          * so that the page split can happen lazily on
10205                          * the first write to the huge page.
10206                          */
10207                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10208                 }
10209         } else {
10210                 if (kvm_x86_ops.slot_disable_log_dirty)
10211                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10212         }
10213 }
10214
10215 void kvm_arch_commit_memory_region(struct kvm *kvm,
10216                                 const struct kvm_userspace_memory_region *mem,
10217                                 struct kvm_memory_slot *old,
10218                                 const struct kvm_memory_slot *new,
10219                                 enum kvm_mr_change change)
10220 {
10221         if (!kvm->arch.n_requested_mmu_pages)
10222                 kvm_mmu_change_mmu_pages(kvm,
10223                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10224
10225         /*
10226          * FIXME: const-ify all uses of struct kvm_memory_slot.
10227          */
10228         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10229
10230         /* Free the arrays associated with the old memslot. */
10231         if (change == KVM_MR_MOVE)
10232                 kvm_arch_free_memslot(kvm, old);
10233 }
10234
10235 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10236 {
10237         kvm_mmu_zap_all(kvm);
10238 }
10239
10240 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10241                                    struct kvm_memory_slot *slot)
10242 {
10243         kvm_page_track_flush_slot(kvm, slot);
10244 }
10245
10246 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10247 {
10248         return (is_guest_mode(vcpu) &&
10249                         kvm_x86_ops.guest_apic_has_interrupt &&
10250                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10251 }
10252
10253 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10254 {
10255         if (!list_empty_careful(&vcpu->async_pf.done))
10256                 return true;
10257
10258         if (kvm_apic_has_events(vcpu))
10259                 return true;
10260
10261         if (vcpu->arch.pv.pv_unhalted)
10262                 return true;
10263
10264         if (vcpu->arch.exception.pending)
10265                 return true;
10266
10267         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10268             (vcpu->arch.nmi_pending &&
10269              kvm_x86_ops.nmi_allowed(vcpu, false)))
10270                 return true;
10271
10272         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10273             (vcpu->arch.smi_pending &&
10274              kvm_x86_ops.smi_allowed(vcpu, false)))
10275                 return true;
10276
10277         if (kvm_arch_interrupt_allowed(vcpu) &&
10278             (kvm_cpu_has_interrupt(vcpu) ||
10279             kvm_guest_apic_has_interrupt(vcpu)))
10280                 return true;
10281
10282         if (kvm_hv_has_stimer_pending(vcpu))
10283                 return true;
10284
10285         if (is_guest_mode(vcpu) &&
10286             kvm_x86_ops.nested_ops->hv_timer_pending &&
10287             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10288                 return true;
10289
10290         return false;
10291 }
10292
10293 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10294 {
10295         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10296 }
10297
10298 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10299 {
10300         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10301                 return true;
10302
10303         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10304                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10305                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10306                 return true;
10307
10308         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10309                 return true;
10310
10311         return false;
10312 }
10313
10314 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10315 {
10316         return vcpu->arch.preempted_in_kernel;
10317 }
10318
10319 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10320 {
10321         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10322 }
10323
10324 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10325 {
10326         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10327 }
10328
10329 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10330 {
10331         if (is_64_bit_mode(vcpu))
10332                 return kvm_rip_read(vcpu);
10333         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10334                      kvm_rip_read(vcpu));
10335 }
10336 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10337
10338 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10339 {
10340         return kvm_get_linear_rip(vcpu) == linear_rip;
10341 }
10342 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10343
10344 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10345 {
10346         unsigned long rflags;
10347
10348         rflags = kvm_x86_ops.get_rflags(vcpu);
10349         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10350                 rflags &= ~X86_EFLAGS_TF;
10351         return rflags;
10352 }
10353 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10354
10355 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10356 {
10357         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10358             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10359                 rflags |= X86_EFLAGS_TF;
10360         kvm_x86_ops.set_rflags(vcpu, rflags);
10361 }
10362
10363 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10364 {
10365         __kvm_set_rflags(vcpu, rflags);
10366         kvm_make_request(KVM_REQ_EVENT, vcpu);
10367 }
10368 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10369
10370 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10371 {
10372         int r;
10373
10374         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10375               work->wakeup_all)
10376                 return;
10377
10378         r = kvm_mmu_reload(vcpu);
10379         if (unlikely(r))
10380                 return;
10381
10382         if (!vcpu->arch.mmu->direct_map &&
10383               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10384                 return;
10385
10386         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10387 }
10388
10389 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10390 {
10391         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10392
10393         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10394 }
10395
10396 static inline u32 kvm_async_pf_next_probe(u32 key)
10397 {
10398         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10399 }
10400
10401 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10402 {
10403         u32 key = kvm_async_pf_hash_fn(gfn);
10404
10405         while (vcpu->arch.apf.gfns[key] != ~0)
10406                 key = kvm_async_pf_next_probe(key);
10407
10408         vcpu->arch.apf.gfns[key] = gfn;
10409 }
10410
10411 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10412 {
10413         int i;
10414         u32 key = kvm_async_pf_hash_fn(gfn);
10415
10416         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10417                      (vcpu->arch.apf.gfns[key] != gfn &&
10418                       vcpu->arch.apf.gfns[key] != ~0); i++)
10419                 key = kvm_async_pf_next_probe(key);
10420
10421         return key;
10422 }
10423
10424 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10425 {
10426         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10427 }
10428
10429 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10430 {
10431         u32 i, j, k;
10432
10433         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10434
10435         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10436                 return;
10437
10438         while (true) {
10439                 vcpu->arch.apf.gfns[i] = ~0;
10440                 do {
10441                         j = kvm_async_pf_next_probe(j);
10442                         if (vcpu->arch.apf.gfns[j] == ~0)
10443                                 return;
10444                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10445                         /*
10446                          * k lies cyclically in ]i,j]
10447                          * |    i.k.j |
10448                          * |....j i.k.| or  |.k..j i...|
10449                          */
10450                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10451                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10452                 i = j;
10453         }
10454 }
10455
10456 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10457 {
10458         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10459
10460         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10461                                       sizeof(reason));
10462 }
10463
10464 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10465 {
10466         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10467
10468         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10469                                              &token, offset, sizeof(token));
10470 }
10471
10472 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10473 {
10474         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10475         u32 val;
10476
10477         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10478                                          &val, offset, sizeof(val)))
10479                 return false;
10480
10481         return !val;
10482 }
10483
10484 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10485 {
10486         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10487                 return false;
10488
10489         if (!kvm_pv_async_pf_enabled(vcpu) ||
10490             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10491                 return false;
10492
10493         return true;
10494 }
10495
10496 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10497 {
10498         if (unlikely(!lapic_in_kernel(vcpu) ||
10499                      kvm_event_needs_reinjection(vcpu) ||
10500                      vcpu->arch.exception.pending))
10501                 return false;
10502
10503         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10504                 return false;
10505
10506         /*
10507          * If interrupts are off we cannot even use an artificial
10508          * halt state.
10509          */
10510         return kvm_arch_interrupt_allowed(vcpu);
10511 }
10512
10513 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10514                                      struct kvm_async_pf *work)
10515 {
10516         struct x86_exception fault;
10517
10518         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10519         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10520
10521         if (kvm_can_deliver_async_pf(vcpu) &&
10522             !apf_put_user_notpresent(vcpu)) {
10523                 fault.vector = PF_VECTOR;
10524                 fault.error_code_valid = true;
10525                 fault.error_code = 0;
10526                 fault.nested_page_fault = false;
10527                 fault.address = work->arch.token;
10528                 fault.async_page_fault = true;
10529                 kvm_inject_page_fault(vcpu, &fault);
10530                 return true;
10531         } else {
10532                 /*
10533                  * It is not possible to deliver a paravirtualized asynchronous
10534                  * page fault, but putting the guest in an artificial halt state
10535                  * can be beneficial nevertheless: if an interrupt arrives, we
10536                  * can deliver it timely and perhaps the guest will schedule
10537                  * another process.  When the instruction that triggered a page
10538                  * fault is retried, hopefully the page will be ready in the host.
10539                  */
10540                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10541                 return false;
10542         }
10543 }
10544
10545 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10546                                  struct kvm_async_pf *work)
10547 {
10548         struct kvm_lapic_irq irq = {
10549                 .delivery_mode = APIC_DM_FIXED,
10550                 .vector = vcpu->arch.apf.vec
10551         };
10552
10553         if (work->wakeup_all)
10554                 work->arch.token = ~0; /* broadcast wakeup */
10555         else
10556                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10557         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10558
10559         if ((work->wakeup_all || work->notpresent_injected) &&
10560             kvm_pv_async_pf_enabled(vcpu) &&
10561             !apf_put_user_ready(vcpu, work->arch.token)) {
10562                 vcpu->arch.apf.pageready_pending = true;
10563                 kvm_apic_set_irq(vcpu, &irq, NULL);
10564         }
10565
10566         vcpu->arch.apf.halted = false;
10567         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10568 }
10569
10570 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10571 {
10572         kvm_make_request(KVM_REQ_APF_READY, vcpu);
10573         if (!vcpu->arch.apf.pageready_pending)
10574                 kvm_vcpu_kick(vcpu);
10575 }
10576
10577 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10578 {
10579         if (!kvm_pv_async_pf_enabled(vcpu))
10580                 return true;
10581         else
10582                 return apf_pageready_slot_free(vcpu);
10583 }
10584
10585 void kvm_arch_start_assignment(struct kvm *kvm)
10586 {
10587         atomic_inc(&kvm->arch.assigned_device_count);
10588 }
10589 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10590
10591 void kvm_arch_end_assignment(struct kvm *kvm)
10592 {
10593         atomic_dec(&kvm->arch.assigned_device_count);
10594 }
10595 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10596
10597 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10598 {
10599         return atomic_read(&kvm->arch.assigned_device_count);
10600 }
10601 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10602
10603 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10604 {
10605         atomic_inc(&kvm->arch.noncoherent_dma_count);
10606 }
10607 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10608
10609 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10610 {
10611         atomic_dec(&kvm->arch.noncoherent_dma_count);
10612 }
10613 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10614
10615 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10616 {
10617         return atomic_read(&kvm->arch.noncoherent_dma_count);
10618 }
10619 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10620
10621 bool kvm_arch_has_irq_bypass(void)
10622 {
10623         return true;
10624 }
10625
10626 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10627                                       struct irq_bypass_producer *prod)
10628 {
10629         struct kvm_kernel_irqfd *irqfd =
10630                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10631
10632         irqfd->producer = prod;
10633
10634         return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10635                                            prod->irq, irqfd->gsi, 1);
10636 }
10637
10638 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10639                                       struct irq_bypass_producer *prod)
10640 {
10641         int ret;
10642         struct kvm_kernel_irqfd *irqfd =
10643                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10644
10645         WARN_ON(irqfd->producer != prod);
10646         irqfd->producer = NULL;
10647
10648         /*
10649          * When producer of consumer is unregistered, we change back to
10650          * remapped mode, so we can re-use the current implementation
10651          * when the irq is masked/disabled or the consumer side (KVM
10652          * int this case doesn't want to receive the interrupts.
10653         */
10654         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10655         if (ret)
10656                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10657                        " fails: %d\n", irqfd->consumer.token, ret);
10658 }
10659
10660 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10661                                    uint32_t guest_irq, bool set)
10662 {
10663         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10664 }
10665
10666 bool kvm_vector_hashing_enabled(void)
10667 {
10668         return vector_hashing;
10669 }
10670
10671 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10672 {
10673         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10674 }
10675 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10676
10677 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10678 {
10679         uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10680
10681         /* The STIBP bit doesn't fault even if it's not advertised */
10682         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10683             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10684                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10685         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10686             !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10687                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10688
10689         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10690             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10691                 bits &= ~SPEC_CTRL_SSBD;
10692         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10693             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10694                 bits &= ~SPEC_CTRL_SSBD;
10695
10696         return bits;
10697 }
10698 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10699
10700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);