Merge tag 'kvm-riscv-fixes-5.19-1' of https://github.com/kvm-riscv/linux into HEAD
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func)                                             \
133         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
134                                 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209         struct user_return_notifier urn;
210         bool registered;
211         struct kvm_user_return_msr_values {
212                 u64 host;
213                 u64 curr;
214         } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242         KVM_GENERIC_VM_STATS(),
243         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244         STATS_DESC_COUNTER(VM, mmu_pte_write),
245         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246         STATS_DESC_COUNTER(VM, mmu_flooded),
247         STATS_DESC_COUNTER(VM, mmu_recycled),
248         STATS_DESC_COUNTER(VM, mmu_cache_miss),
249         STATS_DESC_ICOUNTER(VM, mmu_unsync),
250         STATS_DESC_ICOUNTER(VM, pages_4k),
251         STATS_DESC_ICOUNTER(VM, pages_2m),
252         STATS_DESC_ICOUNTER(VM, pages_1g),
253         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259         .name_size = KVM_STATS_NAME_SIZE,
260         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261         .id_offset = sizeof(struct kvm_stats_header),
262         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264                        sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268         KVM_GENERIC_VCPU_STATS(),
269         STATS_DESC_COUNTER(VCPU, pf_taken),
270         STATS_DESC_COUNTER(VCPU, pf_fixed),
271         STATS_DESC_COUNTER(VCPU, pf_emulate),
272         STATS_DESC_COUNTER(VCPU, pf_spurious),
273         STATS_DESC_COUNTER(VCPU, pf_fast),
274         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275         STATS_DESC_COUNTER(VCPU, pf_guest),
276         STATS_DESC_COUNTER(VCPU, tlb_flush),
277         STATS_DESC_COUNTER(VCPU, invlpg),
278         STATS_DESC_COUNTER(VCPU, exits),
279         STATS_DESC_COUNTER(VCPU, io_exits),
280         STATS_DESC_COUNTER(VCPU, mmio_exits),
281         STATS_DESC_COUNTER(VCPU, signal_exits),
282         STATS_DESC_COUNTER(VCPU, irq_window_exits),
283         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284         STATS_DESC_COUNTER(VCPU, l1d_flush),
285         STATS_DESC_COUNTER(VCPU, halt_exits),
286         STATS_DESC_COUNTER(VCPU, request_irq_exits),
287         STATS_DESC_COUNTER(VCPU, irq_exits),
288         STATS_DESC_COUNTER(VCPU, host_state_reload),
289         STATS_DESC_COUNTER(VCPU, fpu_reload),
290         STATS_DESC_COUNTER(VCPU, insn_emulation),
291         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292         STATS_DESC_COUNTER(VCPU, hypercalls),
293         STATS_DESC_COUNTER(VCPU, irq_injections),
294         STATS_DESC_COUNTER(VCPU, nmi_injections),
295         STATS_DESC_COUNTER(VCPU, req_event),
296         STATS_DESC_COUNTER(VCPU, nested_run),
297         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299         STATS_DESC_COUNTER(VCPU, preemption_reported),
300         STATS_DESC_COUNTER(VCPU, preemption_other),
301         STATS_DESC_ICOUNTER(VCPU, guest_mode)
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305         .name_size = KVM_STATS_NAME_SIZE,
306         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307         .id_offset = sizeof(struct kvm_stats_header),
308         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310                        sizeof(kvm_vcpu_stats_desc),
311 };
312
313 u64 __read_mostly host_xcr0;
314 u64 __read_mostly supported_xcr0;
315 EXPORT_SYMBOL_GPL(supported_xcr0);
316
317 static struct kmem_cache *x86_emulator_cache;
318
319 /*
320  * When called, it means the previous get/set msr reached an invalid msr.
321  * Return true if we want to ignore/silent this failed msr access.
322  */
323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
324 {
325         const char *op = write ? "wrmsr" : "rdmsr";
326
327         if (ignore_msrs) {
328                 if (report_ignored_msrs)
329                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330                                       op, msr, data);
331                 /* Mask the error */
332                 return true;
333         } else {
334                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
335                                       op, msr, data);
336                 return false;
337         }
338 }
339
340 static struct kmem_cache *kvm_alloc_emulator_cache(void)
341 {
342         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
343         unsigned int size = sizeof(struct x86_emulate_ctxt);
344
345         return kmem_cache_create_usercopy("x86_emulator", size,
346                                           __alignof__(struct x86_emulate_ctxt),
347                                           SLAB_ACCOUNT, useroffset,
348                                           size - useroffset, NULL);
349 }
350
351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
352
353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 {
355         int i;
356         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
357                 vcpu->arch.apf.gfns[i] = ~0;
358 }
359
360 static void kvm_on_user_return(struct user_return_notifier *urn)
361 {
362         unsigned slot;
363         struct kvm_user_return_msrs *msrs
364                 = container_of(urn, struct kvm_user_return_msrs, urn);
365         struct kvm_user_return_msr_values *values;
366         unsigned long flags;
367
368         /*
369          * Disabling irqs at this point since the following code could be
370          * interrupted and executed through kvm_arch_hardware_disable()
371          */
372         local_irq_save(flags);
373         if (msrs->registered) {
374                 msrs->registered = false;
375                 user_return_notifier_unregister(urn);
376         }
377         local_irq_restore(flags);
378         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
379                 values = &msrs->values[slot];
380                 if (values->host != values->curr) {
381                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
382                         values->curr = values->host;
383                 }
384         }
385 }
386
387 static int kvm_probe_user_return_msr(u32 msr)
388 {
389         u64 val;
390         int ret;
391
392         preempt_disable();
393         ret = rdmsrl_safe(msr, &val);
394         if (ret)
395                 goto out;
396         ret = wrmsrl_safe(msr, val);
397 out:
398         preempt_enable();
399         return ret;
400 }
401
402 int kvm_add_user_return_msr(u32 msr)
403 {
404         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
405
406         if (kvm_probe_user_return_msr(msr))
407                 return -1;
408
409         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
410         return kvm_nr_uret_msrs++;
411 }
412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
413
414 int kvm_find_user_return_msr(u32 msr)
415 {
416         int i;
417
418         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
419                 if (kvm_uret_msrs_list[i] == msr)
420                         return i;
421         }
422         return -1;
423 }
424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
425
426 static void kvm_user_return_msr_cpu_online(void)
427 {
428         unsigned int cpu = smp_processor_id();
429         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430         u64 value;
431         int i;
432
433         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
434                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
435                 msrs->values[i].host = value;
436                 msrs->values[i].curr = value;
437         }
438 }
439
440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
441 {
442         unsigned int cpu = smp_processor_id();
443         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444         int err;
445
446         value = (value & mask) | (msrs->values[slot].host & ~mask);
447         if (value == msrs->values[slot].curr)
448                 return 0;
449         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
450         if (err)
451                 return 1;
452
453         msrs->values[slot].curr = value;
454         if (!msrs->registered) {
455                 msrs->urn.on_user_return = kvm_on_user_return;
456                 user_return_notifier_register(&msrs->urn);
457                 msrs->registered = true;
458         }
459         return 0;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
462
463 static void drop_user_return_notifiers(void)
464 {
465         unsigned int cpu = smp_processor_id();
466         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
467
468         if (msrs->registered)
469                 kvm_on_user_return(&msrs->urn);
470 }
471
472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
473 {
474         return vcpu->arch.apic_base;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
477
478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
479 {
480         return kvm_apic_mode(kvm_get_apic_base(vcpu));
481 }
482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
483
484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
485 {
486         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
487         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
488         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
489                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
490
491         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
492                 return 1;
493         if (!msr_info->host_initiated) {
494                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
495                         return 1;
496                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497                         return 1;
498         }
499
500         kvm_lapic_set_base(vcpu, msr_info->data);
501         kvm_recalculate_apic_map(vcpu->kvm);
502         return 0;
503 }
504 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
505
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515         /* Fault while not rebooting.  We want the trace. */
516         BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN            0
521 #define EXCPT_CONTRIBUTORY      1
522 #define EXCPT_PF                2
523
524 static int exception_class(int vector)
525 {
526         switch (vector) {
527         case PF_VECTOR:
528                 return EXCPT_PF;
529         case DE_VECTOR:
530         case TS_VECTOR:
531         case NP_VECTOR:
532         case SS_VECTOR:
533         case GP_VECTOR:
534                 return EXCPT_CONTRIBUTORY;
535         default:
536                 break;
537         }
538         return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT             0
542 #define EXCPT_TRAP              1
543 #define EXCPT_ABORT             2
544 #define EXCPT_INTERRUPT         3
545
546 static int exception_type(int vector)
547 {
548         unsigned int mask;
549
550         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
551                 return EXCPT_INTERRUPT;
552
553         mask = 1 << vector;
554
555         /* #DB is trap, as instruction watchpoints are handled elsewhere */
556         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
557                 return EXCPT_TRAP;
558
559         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
560                 return EXCPT_ABORT;
561
562         /* Reserved exceptions will result in fault */
563         return EXCPT_FAULT;
564 }
565
566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
567 {
568         unsigned nr = vcpu->arch.exception.nr;
569         bool has_payload = vcpu->arch.exception.has_payload;
570         unsigned long payload = vcpu->arch.exception.payload;
571
572         if (!has_payload)
573                 return;
574
575         switch (nr) {
576         case DB_VECTOR:
577                 /*
578                  * "Certain debug exceptions may clear bit 0-3.  The
579                  * remaining contents of the DR6 register are never
580                  * cleared by the processor".
581                  */
582                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583                 /*
584                  * In order to reflect the #DB exception payload in guest
585                  * dr6, three components need to be considered: active low
586                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587                  * DR6_BS and DR6_BT)
588                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589                  * In the target guest dr6:
590                  * FIXED_1 bits should always be set.
591                  * Active low bits should be cleared if 1-setting in payload.
592                  * Active high bits should be set if 1-setting in payload.
593                  *
594                  * Note, the payload is compatible with the pending debug
595                  * exceptions/exit qualification under VMX, that active_low bits
596                  * are active high in payload.
597                  * So they need to be flipped for DR6.
598                  */
599                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600                 vcpu->arch.dr6 |= payload;
601                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
602
603                 /*
604                  * The #DB payload is defined as compatible with the 'pending
605                  * debug exceptions' field under VMX, not DR6. While bit 12 is
606                  * defined in the 'pending debug exceptions' field (enabled
607                  * breakpoint), it is reserved and must be zero in DR6.
608                  */
609                 vcpu->arch.dr6 &= ~BIT(12);
610                 break;
611         case PF_VECTOR:
612                 vcpu->arch.cr2 = payload;
613                 break;
614         }
615
616         vcpu->arch.exception.has_payload = false;
617         vcpu->arch.exception.payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622                 unsigned nr, bool has_error, u32 error_code,
623                 bool has_payload, unsigned long payload, bool reinject)
624 {
625         u32 prev_nr;
626         int class1, class2;
627
628         kvm_make_request(KVM_REQ_EVENT, vcpu);
629
630         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631         queue:
632                 if (reinject) {
633                         /*
634                          * On vmentry, vcpu->arch.exception.pending is only
635                          * true if an event injection was blocked by
636                          * nested_run_pending.  In that case, however,
637                          * vcpu_enter_guest requests an immediate exit,
638                          * and the guest shouldn't proceed far enough to
639                          * need reinjection.
640                          */
641                         WARN_ON_ONCE(vcpu->arch.exception.pending);
642                         vcpu->arch.exception.injected = true;
643                         if (WARN_ON_ONCE(has_payload)) {
644                                 /*
645                                  * A reinjected event has already
646                                  * delivered its payload.
647                                  */
648                                 has_payload = false;
649                                 payload = 0;
650                         }
651                 } else {
652                         vcpu->arch.exception.pending = true;
653                         vcpu->arch.exception.injected = false;
654                 }
655                 vcpu->arch.exception.has_error_code = has_error;
656                 vcpu->arch.exception.nr = nr;
657                 vcpu->arch.exception.error_code = error_code;
658                 vcpu->arch.exception.has_payload = has_payload;
659                 vcpu->arch.exception.payload = payload;
660                 if (!is_guest_mode(vcpu))
661                         kvm_deliver_exception_payload(vcpu);
662                 return;
663         }
664
665         /* to check exception */
666         prev_nr = vcpu->arch.exception.nr;
667         if (prev_nr == DF_VECTOR) {
668                 /* triple fault -> shutdown */
669                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670                 return;
671         }
672         class1 = exception_class(prev_nr);
673         class2 = exception_class(nr);
674         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676                 /*
677                  * Generate double fault per SDM Table 5-5.  Set
678                  * exception.pending = true so that the double fault
679                  * can trigger a nested vmexit.
680                  */
681                 vcpu->arch.exception.pending = true;
682                 vcpu->arch.exception.injected = false;
683                 vcpu->arch.exception.has_error_code = true;
684                 vcpu->arch.exception.nr = DF_VECTOR;
685                 vcpu->arch.exception.error_code = 0;
686                 vcpu->arch.exception.has_payload = false;
687                 vcpu->arch.exception.payload = 0;
688         } else
689                 /* replace previous exception with a new one in a hope
690                    that instruction re-execution will regenerate lost
691                    exception */
692                 goto queue;
693 }
694
695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700
701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706
707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708                            unsigned long payload)
709 {
710         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713
714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715                                     u32 error_code, unsigned long payload)
716 {
717         kvm_multiple_exception(vcpu, nr, true, error_code,
718                                true, payload, false);
719 }
720
721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723         if (err)
724                 kvm_inject_gp(vcpu, 0);
725         else
726                 return kvm_skip_emulated_instruction(vcpu);
727
728         return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731
732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
733 {
734         if (err) {
735                 kvm_inject_gp(vcpu, 0);
736                 return 1;
737         }
738
739         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
740                                        EMULTYPE_COMPLETE_USER_EXIT);
741 }
742
743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
744 {
745         ++vcpu->stat.pf_guest;
746         vcpu->arch.exception.nested_apf =
747                 is_guest_mode(vcpu) && fault->async_page_fault;
748         if (vcpu->arch.exception.nested_apf) {
749                 vcpu->arch.apf.nested_apf_token = fault->address;
750                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
751         } else {
752                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
753                                         fault->address);
754         }
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
757
758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
760                                     struct x86_exception *fault)
761 {
762         struct kvm_mmu *fault_mmu;
763         WARN_ON_ONCE(fault->vector != PF_VECTOR);
764
765         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
766                                                vcpu->arch.walk_mmu;
767
768         /*
769          * Invalidate the TLB entry for the faulting address, if it exists,
770          * else the access will fault indefinitely (and to emulate hardware).
771          */
772         if ((fault->error_code & PFERR_PRESENT_MASK) &&
773             !(fault->error_code & PFERR_RSVD_MASK))
774                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
775                                        fault_mmu->root.hpa);
776
777         /*
778          * A workaround for KVM's bad exception handling.  If KVM injected an
779          * exception into L2, and L2 encountered a #PF while vectoring the
780          * injected exception, manually check to see if L1 wants to intercept
781          * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
782          * In all other cases, defer the check to nested_ops->check_events(),
783          * which will correctly handle priority (this does not).  Note, other
784          * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
785          * most problematic, e.g. when L0 and L1 are both intercepting #PF for
786          * shadow paging.
787          *
788          * TODO: Rewrite exception handling to track injected and pending
789          *       (VM-Exit) exceptions separately.
790          */
791         if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
792             kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
793                 return true;
794
795         fault_mmu->inject_page_fault(vcpu, fault);
796         return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
799
800 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
801 {
802         atomic_inc(&vcpu->arch.nmi_queued);
803         kvm_make_request(KVM_REQ_NMI, vcpu);
804 }
805 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
806
807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
808 {
809         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
812
813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
814 {
815         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
816 }
817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
818
819 /*
820  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
821  * a #GP and return false.
822  */
823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
824 {
825         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
826                 return true;
827         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
828         return false;
829 }
830 EXPORT_SYMBOL_GPL(kvm_require_cpl);
831
832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
835                 return true;
836
837         kvm_queue_exception(vcpu, UD_VECTOR);
838         return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841
842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846
847 /*
848  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
849  */
850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854         gpa_t real_gpa;
855         int i;
856         int ret;
857         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858
859         /*
860          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861          * to an L1 GPA.
862          */
863         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865         if (real_gpa == UNMAPPED_GVA)
866                 return 0;
867
868         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
871         if (ret < 0)
872                 return 0;
873
874         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875                 if ((pdpte[i] & PT_PRESENT_MASK) &&
876                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877                         return 0;
878                 }
879         }
880
881         /*
882          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883          * Shadow page roots need to be reconstructed instead.
884          */
885         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887
888         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891         vcpu->arch.pdptrs_from_userspace = false;
892
893         return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896
897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
898 {
899         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
900                 kvm_clear_async_pf_completion_queue(vcpu);
901                 kvm_async_pf_hash_reset(vcpu);
902
903                 /*
904                  * Clearing CR0.PG is defined to flush the TLB from the guest's
905                  * perspective.
906                  */
907                 if (!(cr0 & X86_CR0_PG))
908                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
909         }
910
911         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
912                 kvm_mmu_reset_context(vcpu);
913
914         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
915             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
916             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
917                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
918 }
919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
920
921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
922 {
923         unsigned long old_cr0 = kvm_read_cr0(vcpu);
924
925         cr0 |= X86_CR0_ET;
926
927 #ifdef CONFIG_X86_64
928         if (cr0 & 0xffffffff00000000UL)
929                 return 1;
930 #endif
931
932         cr0 &= ~CR0_RESERVED_BITS;
933
934         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
935                 return 1;
936
937         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
938                 return 1;
939
940 #ifdef CONFIG_X86_64
941         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
942             (cr0 & X86_CR0_PG)) {
943                 int cs_db, cs_l;
944
945                 if (!is_pae(vcpu))
946                         return 1;
947                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
948                 if (cs_l)
949                         return 1;
950         }
951 #endif
952         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
953             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
954             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
955                 return 1;
956
957         if (!(cr0 & X86_CR0_PG) &&
958             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
959                 return 1;
960
961         static_call(kvm_x86_set_cr0)(vcpu, cr0);
962
963         kvm_post_set_cr0(vcpu, old_cr0, cr0);
964
965         return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_cr0);
968
969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
970 {
971         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
972 }
973 EXPORT_SYMBOL_GPL(kvm_lmsw);
974
975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
976 {
977         if (vcpu->arch.guest_state_protected)
978                 return;
979
980         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
981
982                 if (vcpu->arch.xcr0 != host_xcr0)
983                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
984
985                 if (vcpu->arch.xsaves_enabled &&
986                     vcpu->arch.ia32_xss != host_xss)
987                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
988         }
989
990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
991         if (static_cpu_has(X86_FEATURE_PKU) &&
992             vcpu->arch.pkru != vcpu->arch.host_pkru &&
993             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
995                 write_pkru(vcpu->arch.pkru);
996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
997 }
998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
999
1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1001 {
1002         if (vcpu->arch.guest_state_protected)
1003                 return;
1004
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006         if (static_cpu_has(X86_FEATURE_PKU) &&
1007             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1009                 vcpu->arch.pkru = rdpkru();
1010                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1011                         write_pkru(vcpu->arch.host_pkru);
1012         }
1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1014
1015         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1016
1017                 if (vcpu->arch.xcr0 != host_xcr0)
1018                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1019
1020                 if (vcpu->arch.xsaves_enabled &&
1021                     vcpu->arch.ia32_xss != host_xss)
1022                         wrmsrl(MSR_IA32_XSS, host_xss);
1023         }
1024
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1027
1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1029 {
1030         return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1031 }
1032
1033 #ifdef CONFIG_X86_64
1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1035 {
1036         return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1037 }
1038 #endif
1039
1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1041 {
1042         u64 xcr0 = xcr;
1043         u64 old_xcr0 = vcpu->arch.xcr0;
1044         u64 valid_bits;
1045
1046         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1047         if (index != XCR_XFEATURE_ENABLED_MASK)
1048                 return 1;
1049         if (!(xcr0 & XFEATURE_MASK_FP))
1050                 return 1;
1051         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1052                 return 1;
1053
1054         /*
1055          * Do not allow the guest to set bits that we do not support
1056          * saving.  However, xcr0 bit 0 is always set, even if the
1057          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1058          */
1059         valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1060         if (xcr0 & ~valid_bits)
1061                 return 1;
1062
1063         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1064             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1065                 return 1;
1066
1067         if (xcr0 & XFEATURE_MASK_AVX512) {
1068                 if (!(xcr0 & XFEATURE_MASK_YMM))
1069                         return 1;
1070                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1071                         return 1;
1072         }
1073
1074         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1075             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1076                 return 1;
1077
1078         vcpu->arch.xcr0 = xcr0;
1079
1080         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1081                 kvm_update_cpuid_runtime(vcpu);
1082         return 0;
1083 }
1084
1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1086 {
1087         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089                 kvm_inject_gp(vcpu, 0);
1090                 return 1;
1091         }
1092
1093         return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096
1097 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099         if (cr4 & cr4_reserved_bits)
1100                 return false;
1101
1102         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103                 return false;
1104
1105         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1108
1109 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1110 {
1111         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1112                 kvm_mmu_reset_context(vcpu);
1113
1114         /*
1115          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1116          * according to the SDM; however, stale prev_roots could be reused
1117          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1118          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1119          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1120          * so fall through.
1121          */
1122         if (!tdp_enabled &&
1123             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1124                 kvm_mmu_unload(vcpu);
1125
1126         /*
1127          * The TLB has to be flushed for all PCIDs if any of the following
1128          * (architecturally required) changes happen:
1129          * - CR4.PCIDE is changed from 1 to 0
1130          * - CR4.PGE is toggled
1131          *
1132          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1133          */
1134         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1135             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1136                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1137
1138         /*
1139          * The TLB has to be flushed for the current PCID if any of the
1140          * following (architecturally required) changes happen:
1141          * - CR4.SMEP is changed from 0 to 1
1142          * - CR4.PAE is toggled
1143          */
1144         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1145                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1146                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1147
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1150
1151 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1152 {
1153         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1154
1155         if (!kvm_is_valid_cr4(vcpu, cr4))
1156                 return 1;
1157
1158         if (is_long_mode(vcpu)) {
1159                 if (!(cr4 & X86_CR4_PAE))
1160                         return 1;
1161                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1162                         return 1;
1163         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1164                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1165                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1166                 return 1;
1167
1168         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1169                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1170                         return 1;
1171
1172                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1173                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1174                         return 1;
1175         }
1176
1177         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1178
1179         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1180
1181         return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1184
1185 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1186 {
1187         struct kvm_mmu *mmu = vcpu->arch.mmu;
1188         unsigned long roots_to_free = 0;
1189         int i;
1190
1191         /*
1192          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1193          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1194          * also via the emulator.  KVM's TDP page tables are not in the scope of
1195          * the invalidation, but the guest's TLB entries need to be flushed as
1196          * the CPU may have cached entries in its TLB for the target PCID.
1197          */
1198         if (unlikely(tdp_enabled)) {
1199                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200                 return;
1201         }
1202
1203         /*
1204          * If neither the current CR3 nor any of the prev_roots use the given
1205          * PCID, then nothing needs to be done here because a resync will
1206          * happen anyway before switching to any other CR3.
1207          */
1208         if (kvm_get_active_pcid(vcpu) == pcid) {
1209                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1210                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211         }
1212
1213         /*
1214          * If PCID is disabled, there is no need to free prev_roots even if the
1215          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1216          * with PCIDE=0.
1217          */
1218         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1219                 return;
1220
1221         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1222                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1223                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1224
1225         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1226 }
1227
1228 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1229 {
1230         bool skip_tlb_flush = false;
1231         unsigned long pcid = 0;
1232 #ifdef CONFIG_X86_64
1233         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1234
1235         if (pcid_enabled) {
1236                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1237                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1238                 pcid = cr3 & X86_CR3_PCID_MASK;
1239         }
1240 #endif
1241
1242         /* PDPTRs are always reloaded for PAE paging. */
1243         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1244                 goto handle_tlb_flush;
1245
1246         /*
1247          * Do not condition the GPA check on long mode, this helper is used to
1248          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1249          * the current vCPU mode is accurate.
1250          */
1251         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1252                 return 1;
1253
1254         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1255                 return 1;
1256
1257         if (cr3 != kvm_read_cr3(vcpu))
1258                 kvm_mmu_new_pgd(vcpu, cr3);
1259
1260         vcpu->arch.cr3 = cr3;
1261         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1262         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1263
1264 handle_tlb_flush:
1265         /*
1266          * A load of CR3 that flushes the TLB flushes only the current PCID,
1267          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1268          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1269          * and it's impossible to use a non-zero PCID when PCID is disabled,
1270          * i.e. only PCID=0 can be relevant.
1271          */
1272         if (!skip_tlb_flush)
1273                 kvm_invalidate_pcid(vcpu, pcid);
1274
1275         return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1278
1279 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1280 {
1281         if (cr8 & CR8_RESERVED_BITS)
1282                 return 1;
1283         if (lapic_in_kernel(vcpu))
1284                 kvm_lapic_set_tpr(vcpu, cr8);
1285         else
1286                 vcpu->arch.cr8 = cr8;
1287         return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1290
1291 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1292 {
1293         if (lapic_in_kernel(vcpu))
1294                 return kvm_lapic_get_cr8(vcpu);
1295         else
1296                 return vcpu->arch.cr8;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1299
1300 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1301 {
1302         int i;
1303
1304         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1305                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1306                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1307         }
1308 }
1309
1310 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1311 {
1312         unsigned long dr7;
1313
1314         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1315                 dr7 = vcpu->arch.guest_debug_dr7;
1316         else
1317                 dr7 = vcpu->arch.dr7;
1318         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1319         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1320         if (dr7 & DR7_BP_EN_MASK)
1321                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1324
1325 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1326 {
1327         u64 fixed = DR6_FIXED_1;
1328
1329         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1330                 fixed |= DR6_RTM;
1331
1332         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1333                 fixed |= DR6_BUS_LOCK;
1334         return fixed;
1335 }
1336
1337 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1338 {
1339         size_t size = ARRAY_SIZE(vcpu->arch.db);
1340
1341         switch (dr) {
1342         case 0 ... 3:
1343                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1344                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1345                         vcpu->arch.eff_db[dr] = val;
1346                 break;
1347         case 4:
1348         case 6:
1349                 if (!kvm_dr6_valid(val))
1350                         return 1; /* #GP */
1351                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1352                 break;
1353         case 5:
1354         default: /* 7 */
1355                 if (!kvm_dr7_valid(val))
1356                         return 1; /* #GP */
1357                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1358                 kvm_update_dr7(vcpu);
1359                 break;
1360         }
1361
1362         return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_dr);
1365
1366 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1367 {
1368         size_t size = ARRAY_SIZE(vcpu->arch.db);
1369
1370         switch (dr) {
1371         case 0 ... 3:
1372                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1373                 break;
1374         case 4:
1375         case 6:
1376                 *val = vcpu->arch.dr6;
1377                 break;
1378         case 5:
1379         default: /* 7 */
1380                 *val = vcpu->arch.dr7;
1381                 break;
1382         }
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_get_dr);
1385
1386 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1387 {
1388         u32 ecx = kvm_rcx_read(vcpu);
1389         u64 data;
1390
1391         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1392                 kvm_inject_gp(vcpu, 0);
1393                 return 1;
1394         }
1395
1396         kvm_rax_write(vcpu, (u32)data);
1397         kvm_rdx_write(vcpu, data >> 32);
1398         return kvm_skip_emulated_instruction(vcpu);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1401
1402 /*
1403  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1404  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1405  *
1406  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1407  * extract the supported MSRs from the related const lists.
1408  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1409  * capabilities of the host cpu. This capabilities test skips MSRs that are
1410  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1411  * may depend on host virtualization features rather than host cpu features.
1412  */
1413
1414 static const u32 msrs_to_save_all[] = {
1415         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1416         MSR_STAR,
1417 #ifdef CONFIG_X86_64
1418         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1419 #endif
1420         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1421         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1422         MSR_IA32_SPEC_CTRL,
1423         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1424         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1425         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1426         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1427         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1428         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1429         MSR_IA32_UMWAIT_CONTROL,
1430
1431         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1432         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1433         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1434         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1435         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1436         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1437         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1438         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1439         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1440         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1441         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1442         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1443         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1444         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1445         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1446         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1447         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1448         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1449         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1450         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1451         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1452         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1453
1454         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1455         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1456         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1457         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1458         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1459         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1460         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1461 };
1462
1463 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1464 static unsigned num_msrs_to_save;
1465
1466 static const u32 emulated_msrs_all[] = {
1467         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1468         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1469         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1470         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1471         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1472         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1473         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1474         HV_X64_MSR_RESET,
1475         HV_X64_MSR_VP_INDEX,
1476         HV_X64_MSR_VP_RUNTIME,
1477         HV_X64_MSR_SCONTROL,
1478         HV_X64_MSR_STIMER0_CONFIG,
1479         HV_X64_MSR_VP_ASSIST_PAGE,
1480         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1481         HV_X64_MSR_TSC_EMULATION_STATUS,
1482         HV_X64_MSR_SYNDBG_OPTIONS,
1483         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1484         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1485         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1486
1487         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1488         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1489
1490         MSR_IA32_TSC_ADJUST,
1491         MSR_IA32_TSC_DEADLINE,
1492         MSR_IA32_ARCH_CAPABILITIES,
1493         MSR_IA32_PERF_CAPABILITIES,
1494         MSR_IA32_MISC_ENABLE,
1495         MSR_IA32_MCG_STATUS,
1496         MSR_IA32_MCG_CTL,
1497         MSR_IA32_MCG_EXT_CTL,
1498         MSR_IA32_SMBASE,
1499         MSR_SMI_COUNT,
1500         MSR_PLATFORM_INFO,
1501         MSR_MISC_FEATURES_ENABLES,
1502         MSR_AMD64_VIRT_SPEC_CTRL,
1503         MSR_AMD64_TSC_RATIO,
1504         MSR_IA32_POWER_CTL,
1505         MSR_IA32_UCODE_REV,
1506
1507         /*
1508          * The following list leaves out MSRs whose values are determined
1509          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1510          * We always support the "true" VMX control MSRs, even if the host
1511          * processor does not, so I am putting these registers here rather
1512          * than in msrs_to_save_all.
1513          */
1514         MSR_IA32_VMX_BASIC,
1515         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1516         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1517         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1518         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1519         MSR_IA32_VMX_MISC,
1520         MSR_IA32_VMX_CR0_FIXED0,
1521         MSR_IA32_VMX_CR4_FIXED0,
1522         MSR_IA32_VMX_VMCS_ENUM,
1523         MSR_IA32_VMX_PROCBASED_CTLS2,
1524         MSR_IA32_VMX_EPT_VPID_CAP,
1525         MSR_IA32_VMX_VMFUNC,
1526
1527         MSR_K7_HWCR,
1528         MSR_KVM_POLL_CONTROL,
1529 };
1530
1531 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1532 static unsigned num_emulated_msrs;
1533
1534 /*
1535  * List of msr numbers which are used to expose MSR-based features that
1536  * can be used by a hypervisor to validate requested CPU features.
1537  */
1538 static const u32 msr_based_features_all[] = {
1539         MSR_IA32_VMX_BASIC,
1540         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541         MSR_IA32_VMX_PINBASED_CTLS,
1542         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543         MSR_IA32_VMX_PROCBASED_CTLS,
1544         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1545         MSR_IA32_VMX_EXIT_CTLS,
1546         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1547         MSR_IA32_VMX_ENTRY_CTLS,
1548         MSR_IA32_VMX_MISC,
1549         MSR_IA32_VMX_CR0_FIXED0,
1550         MSR_IA32_VMX_CR0_FIXED1,
1551         MSR_IA32_VMX_CR4_FIXED0,
1552         MSR_IA32_VMX_CR4_FIXED1,
1553         MSR_IA32_VMX_VMCS_ENUM,
1554         MSR_IA32_VMX_PROCBASED_CTLS2,
1555         MSR_IA32_VMX_EPT_VPID_CAP,
1556         MSR_IA32_VMX_VMFUNC,
1557
1558         MSR_F10H_DECFG,
1559         MSR_IA32_UCODE_REV,
1560         MSR_IA32_ARCH_CAPABILITIES,
1561         MSR_IA32_PERF_CAPABILITIES,
1562 };
1563
1564 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1565 static unsigned int num_msr_based_features;
1566
1567 static u64 kvm_get_arch_capabilities(void)
1568 {
1569         u64 data = 0;
1570
1571         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1572                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1573
1574         /*
1575          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1576          * the nested hypervisor runs with NX huge pages.  If it is not,
1577          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1578          * L1 guests, so it need not worry about its own (L2) guests.
1579          */
1580         data |= ARCH_CAP_PSCHANGE_MC_NO;
1581
1582         /*
1583          * If we're doing cache flushes (either "always" or "cond")
1584          * we will do one whenever the guest does a vmlaunch/vmresume.
1585          * If an outer hypervisor is doing the cache flush for us
1586          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1587          * capability to the guest too, and if EPT is disabled we're not
1588          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1589          * require a nested hypervisor to do a flush of its own.
1590          */
1591         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1592                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1593
1594         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1595                 data |= ARCH_CAP_RDCL_NO;
1596         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1597                 data |= ARCH_CAP_SSB_NO;
1598         if (!boot_cpu_has_bug(X86_BUG_MDS))
1599                 data |= ARCH_CAP_MDS_NO;
1600
1601         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1602                 /*
1603                  * If RTM=0 because the kernel has disabled TSX, the host might
1604                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1605                  * and therefore knows that there cannot be TAA) but keep
1606                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1607                  * and we want to allow migrating those guests to tsx=off hosts.
1608                  */
1609                 data &= ~ARCH_CAP_TAA_NO;
1610         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1611                 data |= ARCH_CAP_TAA_NO;
1612         } else {
1613                 /*
1614                  * Nothing to do here; we emulate TSX_CTRL if present on the
1615                  * host so the guest can choose between disabling TSX or
1616                  * using VERW to clear CPU buffers.
1617                  */
1618         }
1619
1620         return data;
1621 }
1622
1623 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1624 {
1625         switch (msr->index) {
1626         case MSR_IA32_ARCH_CAPABILITIES:
1627                 msr->data = kvm_get_arch_capabilities();
1628                 break;
1629         case MSR_IA32_UCODE_REV:
1630                 rdmsrl_safe(msr->index, &msr->data);
1631                 break;
1632         default:
1633                 return static_call(kvm_x86_get_msr_feature)(msr);
1634         }
1635         return 0;
1636 }
1637
1638 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1639 {
1640         struct kvm_msr_entry msr;
1641         int r;
1642
1643         msr.index = index;
1644         r = kvm_get_msr_feature(&msr);
1645
1646         if (r == KVM_MSR_RET_INVALID) {
1647                 /* Unconditionally clear the output for simplicity */
1648                 *data = 0;
1649                 if (kvm_msr_ignored_check(index, 0, false))
1650                         r = 0;
1651         }
1652
1653         if (r)
1654                 return r;
1655
1656         *data = msr.data;
1657
1658         return 0;
1659 }
1660
1661 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1662 {
1663         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1664                 return false;
1665
1666         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1667                 return false;
1668
1669         if (efer & (EFER_LME | EFER_LMA) &&
1670             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1671                 return false;
1672
1673         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1674                 return false;
1675
1676         return true;
1677
1678 }
1679 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1680 {
1681         if (efer & efer_reserved_bits)
1682                 return false;
1683
1684         return __kvm_valid_efer(vcpu, efer);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1687
1688 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1689 {
1690         u64 old_efer = vcpu->arch.efer;
1691         u64 efer = msr_info->data;
1692         int r;
1693
1694         if (efer & efer_reserved_bits)
1695                 return 1;
1696
1697         if (!msr_info->host_initiated) {
1698                 if (!__kvm_valid_efer(vcpu, efer))
1699                         return 1;
1700
1701                 if (is_paging(vcpu) &&
1702                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1703                         return 1;
1704         }
1705
1706         efer &= ~EFER_LMA;
1707         efer |= vcpu->arch.efer & EFER_LMA;
1708
1709         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1710         if (r) {
1711                 WARN_ON(r > 0);
1712                 return r;
1713         }
1714
1715         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1716                 kvm_mmu_reset_context(vcpu);
1717
1718         return 0;
1719 }
1720
1721 void kvm_enable_efer_bits(u64 mask)
1722 {
1723        efer_reserved_bits &= ~mask;
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1726
1727 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1728 {
1729         struct kvm_x86_msr_filter *msr_filter;
1730         struct msr_bitmap_range *ranges;
1731         struct kvm *kvm = vcpu->kvm;
1732         bool allowed;
1733         int idx;
1734         u32 i;
1735
1736         /* x2APIC MSRs do not support filtering. */
1737         if (index >= 0x800 && index <= 0x8ff)
1738                 return true;
1739
1740         idx = srcu_read_lock(&kvm->srcu);
1741
1742         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1743         if (!msr_filter) {
1744                 allowed = true;
1745                 goto out;
1746         }
1747
1748         allowed = msr_filter->default_allow;
1749         ranges = msr_filter->ranges;
1750
1751         for (i = 0; i < msr_filter->count; i++) {
1752                 u32 start = ranges[i].base;
1753                 u32 end = start + ranges[i].nmsrs;
1754                 u32 flags = ranges[i].flags;
1755                 unsigned long *bitmap = ranges[i].bitmap;
1756
1757                 if ((index >= start) && (index < end) && (flags & type)) {
1758                         allowed = !!test_bit(index - start, bitmap);
1759                         break;
1760                 }
1761         }
1762
1763 out:
1764         srcu_read_unlock(&kvm->srcu, idx);
1765
1766         return allowed;
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1769
1770 /*
1771  * Write @data into the MSR specified by @index.  Select MSR specific fault
1772  * checks are bypassed if @host_initiated is %true.
1773  * Returns 0 on success, non-0 otherwise.
1774  * Assumes vcpu_load() was already called.
1775  */
1776 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1777                          bool host_initiated)
1778 {
1779         struct msr_data msr;
1780
1781         switch (index) {
1782         case MSR_FS_BASE:
1783         case MSR_GS_BASE:
1784         case MSR_KERNEL_GS_BASE:
1785         case MSR_CSTAR:
1786         case MSR_LSTAR:
1787                 if (is_noncanonical_address(data, vcpu))
1788                         return 1;
1789                 break;
1790         case MSR_IA32_SYSENTER_EIP:
1791         case MSR_IA32_SYSENTER_ESP:
1792                 /*
1793                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1794                  * non-canonical address is written on Intel but not on
1795                  * AMD (which ignores the top 32-bits, because it does
1796                  * not implement 64-bit SYSENTER).
1797                  *
1798                  * 64-bit code should hence be able to write a non-canonical
1799                  * value on AMD.  Making the address canonical ensures that
1800                  * vmentry does not fail on Intel after writing a non-canonical
1801                  * value, and that something deterministic happens if the guest
1802                  * invokes 64-bit SYSENTER.
1803                  */
1804                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1805                 break;
1806         case MSR_TSC_AUX:
1807                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1808                         return 1;
1809
1810                 if (!host_initiated &&
1811                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1812                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1813                         return 1;
1814
1815                 /*
1816                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1817                  * incomplete and conflicting architectural behavior.  Current
1818                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1819                  * reserved and always read as zeros.  Enforce Intel's reserved
1820                  * bits check if and only if the guest CPU is Intel, and clear
1821                  * the bits in all other cases.  This ensures cross-vendor
1822                  * migration will provide consistent behavior for the guest.
1823                  */
1824                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1825                         return 1;
1826
1827                 data = (u32)data;
1828                 break;
1829         }
1830
1831         msr.data = data;
1832         msr.index = index;
1833         msr.host_initiated = host_initiated;
1834
1835         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1836 }
1837
1838 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1839                                      u32 index, u64 data, bool host_initiated)
1840 {
1841         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1842
1843         if (ret == KVM_MSR_RET_INVALID)
1844                 if (kvm_msr_ignored_check(index, data, true))
1845                         ret = 0;
1846
1847         return ret;
1848 }
1849
1850 /*
1851  * Read the MSR specified by @index into @data.  Select MSR specific fault
1852  * checks are bypassed if @host_initiated is %true.
1853  * Returns 0 on success, non-0 otherwise.
1854  * Assumes vcpu_load() was already called.
1855  */
1856 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1857                   bool host_initiated)
1858 {
1859         struct msr_data msr;
1860         int ret;
1861
1862         switch (index) {
1863         case MSR_TSC_AUX:
1864                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1865                         return 1;
1866
1867                 if (!host_initiated &&
1868                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1869                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1870                         return 1;
1871                 break;
1872         }
1873
1874         msr.index = index;
1875         msr.host_initiated = host_initiated;
1876
1877         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1878         if (!ret)
1879                 *data = msr.data;
1880         return ret;
1881 }
1882
1883 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1884                                      u32 index, u64 *data, bool host_initiated)
1885 {
1886         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1887
1888         if (ret == KVM_MSR_RET_INVALID) {
1889                 /* Unconditionally clear *data for simplicity */
1890                 *data = 0;
1891                 if (kvm_msr_ignored_check(index, 0, false))
1892                         ret = 0;
1893         }
1894
1895         return ret;
1896 }
1897
1898 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1899 {
1900         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1901                 return KVM_MSR_RET_FILTERED;
1902         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1903 }
1904
1905 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1906 {
1907         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1908                 return KVM_MSR_RET_FILTERED;
1909         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1910 }
1911
1912 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1913 {
1914         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_get_msr);
1917
1918 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1919 {
1920         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_set_msr);
1923
1924 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1925 {
1926         if (!vcpu->run->msr.error) {
1927                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1928                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1929         }
1930 }
1931
1932 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1933 {
1934         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1935 }
1936
1937 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1938 {
1939         complete_userspace_rdmsr(vcpu);
1940         return complete_emulated_msr_access(vcpu);
1941 }
1942
1943 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1944 {
1945         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1946 }
1947
1948 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1949 {
1950         complete_userspace_rdmsr(vcpu);
1951         return complete_fast_msr_access(vcpu);
1952 }
1953
1954 static u64 kvm_msr_reason(int r)
1955 {
1956         switch (r) {
1957         case KVM_MSR_RET_INVALID:
1958                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1959         case KVM_MSR_RET_FILTERED:
1960                 return KVM_MSR_EXIT_REASON_FILTER;
1961         default:
1962                 return KVM_MSR_EXIT_REASON_INVAL;
1963         }
1964 }
1965
1966 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1967                               u32 exit_reason, u64 data,
1968                               int (*completion)(struct kvm_vcpu *vcpu),
1969                               int r)
1970 {
1971         u64 msr_reason = kvm_msr_reason(r);
1972
1973         /* Check if the user wanted to know about this MSR fault */
1974         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1975                 return 0;
1976
1977         vcpu->run->exit_reason = exit_reason;
1978         vcpu->run->msr.error = 0;
1979         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1980         vcpu->run->msr.reason = msr_reason;
1981         vcpu->run->msr.index = index;
1982         vcpu->run->msr.data = data;
1983         vcpu->arch.complete_userspace_io = completion;
1984
1985         return 1;
1986 }
1987
1988 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990         u32 ecx = kvm_rcx_read(vcpu);
1991         u64 data;
1992         int r;
1993
1994         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1995
1996         if (!r) {
1997                 trace_kvm_msr_read(ecx, data);
1998
1999                 kvm_rax_write(vcpu, data & -1u);
2000                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2001         } else {
2002                 /* MSR read failed? See if we should ask user space */
2003                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2004                                        complete_fast_rdmsr, r))
2005                         return 0;
2006                 trace_kvm_msr_read_ex(ecx);
2007         }
2008
2009         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2012
2013 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2014 {
2015         u32 ecx = kvm_rcx_read(vcpu);
2016         u64 data = kvm_read_edx_eax(vcpu);
2017         int r;
2018
2019         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2020
2021         if (!r) {
2022                 trace_kvm_msr_write(ecx, data);
2023         } else {
2024                 /* MSR write failed? See if we should ask user space */
2025                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2026                                        complete_fast_msr_access, r))
2027                         return 0;
2028                 /* Signal all other negative errors to userspace */
2029                 if (r < 0)
2030                         return r;
2031                 trace_kvm_msr_write_ex(ecx, data);
2032         }
2033
2034         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2037
2038 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2039 {
2040         return kvm_skip_emulated_instruction(vcpu);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2043
2044 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2045 {
2046         /* Treat an INVD instruction as a NOP and just skip it. */
2047         return kvm_emulate_as_nop(vcpu);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2050
2051 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2052 {
2053         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2054         return kvm_emulate_as_nop(vcpu);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2057
2058 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2059 {
2060         kvm_queue_exception(vcpu, UD_VECTOR);
2061         return 1;
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2064
2065 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2066 {
2067         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2068         return kvm_emulate_as_nop(vcpu);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2071
2072 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2073 {
2074         xfer_to_guest_mode_prepare();
2075         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2076                 xfer_to_guest_mode_work_pending();
2077 }
2078
2079 /*
2080  * The fast path for frequent and performance sensitive wrmsr emulation,
2081  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2082  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2083  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2084  * other cases which must be called after interrupts are enabled on the host.
2085  */
2086 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2087 {
2088         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2089                 return 1;
2090
2091         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2092             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2093             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2094             ((u32)(data >> 32) != X2APIC_BROADCAST))
2095                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2096
2097         return 1;
2098 }
2099
2100 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2101 {
2102         if (!kvm_can_use_hv_timer(vcpu))
2103                 return 1;
2104
2105         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2106         return 0;
2107 }
2108
2109 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2110 {
2111         u32 msr = kvm_rcx_read(vcpu);
2112         u64 data;
2113         fastpath_t ret = EXIT_FASTPATH_NONE;
2114
2115         switch (msr) {
2116         case APIC_BASE_MSR + (APIC_ICR >> 4):
2117                 data = kvm_read_edx_eax(vcpu);
2118                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2119                         kvm_skip_emulated_instruction(vcpu);
2120                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2121                 }
2122                 break;
2123         case MSR_IA32_TSC_DEADLINE:
2124                 data = kvm_read_edx_eax(vcpu);
2125                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2126                         kvm_skip_emulated_instruction(vcpu);
2127                         ret = EXIT_FASTPATH_REENTER_GUEST;
2128                 }
2129                 break;
2130         default:
2131                 break;
2132         }
2133
2134         if (ret != EXIT_FASTPATH_NONE)
2135                 trace_kvm_msr_write(msr, data);
2136
2137         return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2140
2141 /*
2142  * Adapt set_msr() to msr_io()'s calling convention
2143  */
2144 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2145 {
2146         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2147 }
2148
2149 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2150 {
2151         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2152 }
2153
2154 #ifdef CONFIG_X86_64
2155 struct pvclock_clock {
2156         int vclock_mode;
2157         u64 cycle_last;
2158         u64 mask;
2159         u32 mult;
2160         u32 shift;
2161         u64 base_cycles;
2162         u64 offset;
2163 };
2164
2165 struct pvclock_gtod_data {
2166         seqcount_t      seq;
2167
2168         struct pvclock_clock clock; /* extract of a clocksource struct */
2169         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2170
2171         ktime_t         offs_boot;
2172         u64             wall_time_sec;
2173 };
2174
2175 static struct pvclock_gtod_data pvclock_gtod_data;
2176
2177 static void update_pvclock_gtod(struct timekeeper *tk)
2178 {
2179         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2180
2181         write_seqcount_begin(&vdata->seq);
2182
2183         /* copy pvclock gtod data */
2184         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2185         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2186         vdata->clock.mask               = tk->tkr_mono.mask;
2187         vdata->clock.mult               = tk->tkr_mono.mult;
2188         vdata->clock.shift              = tk->tkr_mono.shift;
2189         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2190         vdata->clock.offset             = tk->tkr_mono.base;
2191
2192         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2193         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2194         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2195         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2196         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2197         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2198         vdata->raw_clock.offset         = tk->tkr_raw.base;
2199
2200         vdata->wall_time_sec            = tk->xtime_sec;
2201
2202         vdata->offs_boot                = tk->offs_boot;
2203
2204         write_seqcount_end(&vdata->seq);
2205 }
2206
2207 static s64 get_kvmclock_base_ns(void)
2208 {
2209         /* Count up from boot time, but with the frequency of the raw clock.  */
2210         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2211 }
2212 #else
2213 static s64 get_kvmclock_base_ns(void)
2214 {
2215         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2216         return ktime_get_boottime_ns();
2217 }
2218 #endif
2219
2220 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2221 {
2222         int version;
2223         int r;
2224         struct pvclock_wall_clock wc;
2225         u32 wc_sec_hi;
2226         u64 wall_nsec;
2227
2228         if (!wall_clock)
2229                 return;
2230
2231         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2232         if (r)
2233                 return;
2234
2235         if (version & 1)
2236                 ++version;  /* first time write, random junk */
2237
2238         ++version;
2239
2240         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2241                 return;
2242
2243         /*
2244          * The guest calculates current wall clock time by adding
2245          * system time (updated by kvm_guest_time_update below) to the
2246          * wall clock specified here.  We do the reverse here.
2247          */
2248         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2249
2250         wc.nsec = do_div(wall_nsec, 1000000000);
2251         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2252         wc.version = version;
2253
2254         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2255
2256         if (sec_hi_ofs) {
2257                 wc_sec_hi = wall_nsec >> 32;
2258                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2259                                 &wc_sec_hi, sizeof(wc_sec_hi));
2260         }
2261
2262         version++;
2263         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2264 }
2265
2266 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2267                                   bool old_msr, bool host_initiated)
2268 {
2269         struct kvm_arch *ka = &vcpu->kvm->arch;
2270
2271         if (vcpu->vcpu_id == 0 && !host_initiated) {
2272                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2273                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2274
2275                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2276         }
2277
2278         vcpu->arch.time = system_time;
2279         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2280
2281         /* we verify if the enable bit is set... */
2282         if (system_time & 1) {
2283                 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2284                                           KVM_HOST_USES_PFN, system_time & ~1ULL,
2285                                           sizeof(struct pvclock_vcpu_time_info));
2286         } else {
2287                 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2288         }
2289
2290         return;
2291 }
2292
2293 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2294 {
2295         do_shl32_div32(dividend, divisor);
2296         return dividend;
2297 }
2298
2299 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2300                                s8 *pshift, u32 *pmultiplier)
2301 {
2302         uint64_t scaled64;
2303         int32_t  shift = 0;
2304         uint64_t tps64;
2305         uint32_t tps32;
2306
2307         tps64 = base_hz;
2308         scaled64 = scaled_hz;
2309         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2310                 tps64 >>= 1;
2311                 shift--;
2312         }
2313
2314         tps32 = (uint32_t)tps64;
2315         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2316                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2317                         scaled64 >>= 1;
2318                 else
2319                         tps32 <<= 1;
2320                 shift++;
2321         }
2322
2323         *pshift = shift;
2324         *pmultiplier = div_frac(scaled64, tps32);
2325 }
2326
2327 #ifdef CONFIG_X86_64
2328 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2329 #endif
2330
2331 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2332 static unsigned long max_tsc_khz;
2333
2334 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2335 {
2336         u64 v = (u64)khz * (1000000 + ppm);
2337         do_div(v, 1000000);
2338         return v;
2339 }
2340
2341 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2342
2343 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2344 {
2345         u64 ratio;
2346
2347         /* Guest TSC same frequency as host TSC? */
2348         if (!scale) {
2349                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2350                 return 0;
2351         }
2352
2353         /* TSC scaling supported? */
2354         if (!kvm_has_tsc_control) {
2355                 if (user_tsc_khz > tsc_khz) {
2356                         vcpu->arch.tsc_catchup = 1;
2357                         vcpu->arch.tsc_always_catchup = 1;
2358                         return 0;
2359                 } else {
2360                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2361                         return -1;
2362                 }
2363         }
2364
2365         /* TSC scaling required  - calculate ratio */
2366         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2367                                 user_tsc_khz, tsc_khz);
2368
2369         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2370                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2371                                     user_tsc_khz);
2372                 return -1;
2373         }
2374
2375         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2376         return 0;
2377 }
2378
2379 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2380 {
2381         u32 thresh_lo, thresh_hi;
2382         int use_scaling = 0;
2383
2384         /* tsc_khz can be zero if TSC calibration fails */
2385         if (user_tsc_khz == 0) {
2386                 /* set tsc_scaling_ratio to a safe value */
2387                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2388                 return -1;
2389         }
2390
2391         /* Compute a scale to convert nanoseconds in TSC cycles */
2392         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2393                            &vcpu->arch.virtual_tsc_shift,
2394                            &vcpu->arch.virtual_tsc_mult);
2395         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2396
2397         /*
2398          * Compute the variation in TSC rate which is acceptable
2399          * within the range of tolerance and decide if the
2400          * rate being applied is within that bounds of the hardware
2401          * rate.  If so, no scaling or compensation need be done.
2402          */
2403         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2404         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2405         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2406                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2407                 use_scaling = 1;
2408         }
2409         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2410 }
2411
2412 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2413 {
2414         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2415                                       vcpu->arch.virtual_tsc_mult,
2416                                       vcpu->arch.virtual_tsc_shift);
2417         tsc += vcpu->arch.this_tsc_write;
2418         return tsc;
2419 }
2420
2421 #ifdef CONFIG_X86_64
2422 static inline int gtod_is_based_on_tsc(int mode)
2423 {
2424         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2425 }
2426 #endif
2427
2428 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2429 {
2430 #ifdef CONFIG_X86_64
2431         bool vcpus_matched;
2432         struct kvm_arch *ka = &vcpu->kvm->arch;
2433         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2434
2435         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2436                          atomic_read(&vcpu->kvm->online_vcpus));
2437
2438         /*
2439          * Once the masterclock is enabled, always perform request in
2440          * order to update it.
2441          *
2442          * In order to enable masterclock, the host clocksource must be TSC
2443          * and the vcpus need to have matched TSCs.  When that happens,
2444          * perform request to enable masterclock.
2445          */
2446         if (ka->use_master_clock ||
2447             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2448                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2449
2450         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2451                             atomic_read(&vcpu->kvm->online_vcpus),
2452                             ka->use_master_clock, gtod->clock.vclock_mode);
2453 #endif
2454 }
2455
2456 /*
2457  * Multiply tsc by a fixed point number represented by ratio.
2458  *
2459  * The most significant 64-N bits (mult) of ratio represent the
2460  * integral part of the fixed point number; the remaining N bits
2461  * (frac) represent the fractional part, ie. ratio represents a fixed
2462  * point number (mult + frac * 2^(-N)).
2463  *
2464  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2465  */
2466 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2467 {
2468         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2469 }
2470
2471 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2472 {
2473         u64 _tsc = tsc;
2474
2475         if (ratio != kvm_default_tsc_scaling_ratio)
2476                 _tsc = __scale_tsc(ratio, tsc);
2477
2478         return _tsc;
2479 }
2480 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2481
2482 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2483 {
2484         u64 tsc;
2485
2486         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2487
2488         return target_tsc - tsc;
2489 }
2490
2491 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2492 {
2493         return vcpu->arch.l1_tsc_offset +
2494                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2495 }
2496 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2497
2498 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2499 {
2500         u64 nested_offset;
2501
2502         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2503                 nested_offset = l1_offset;
2504         else
2505                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2506                                                 kvm_tsc_scaling_ratio_frac_bits);
2507
2508         nested_offset += l2_offset;
2509         return nested_offset;
2510 }
2511 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2512
2513 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2514 {
2515         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2516                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2517                                        kvm_tsc_scaling_ratio_frac_bits);
2518
2519         return l1_multiplier;
2520 }
2521 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2522
2523 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2524 {
2525         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2526                                    vcpu->arch.l1_tsc_offset,
2527                                    l1_offset);
2528
2529         vcpu->arch.l1_tsc_offset = l1_offset;
2530
2531         /*
2532          * If we are here because L1 chose not to trap WRMSR to TSC then
2533          * according to the spec this should set L1's TSC (as opposed to
2534          * setting L1's offset for L2).
2535          */
2536         if (is_guest_mode(vcpu))
2537                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2538                         l1_offset,
2539                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2540                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2541         else
2542                 vcpu->arch.tsc_offset = l1_offset;
2543
2544         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2545 }
2546
2547 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2548 {
2549         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2550
2551         /* Userspace is changing the multiplier while L2 is active */
2552         if (is_guest_mode(vcpu))
2553                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2554                         l1_multiplier,
2555                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2556         else
2557                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2558
2559         if (kvm_has_tsc_control)
2560                 static_call(kvm_x86_write_tsc_multiplier)(
2561                         vcpu, vcpu->arch.tsc_scaling_ratio);
2562 }
2563
2564 static inline bool kvm_check_tsc_unstable(void)
2565 {
2566 #ifdef CONFIG_X86_64
2567         /*
2568          * TSC is marked unstable when we're running on Hyper-V,
2569          * 'TSC page' clocksource is good.
2570          */
2571         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2572                 return false;
2573 #endif
2574         return check_tsc_unstable();
2575 }
2576
2577 /*
2578  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2579  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2580  * participates in.
2581  */
2582 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2583                                   u64 ns, bool matched)
2584 {
2585         struct kvm *kvm = vcpu->kvm;
2586
2587         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2588
2589         /*
2590          * We also track th most recent recorded KHZ, write and time to
2591          * allow the matching interval to be extended at each write.
2592          */
2593         kvm->arch.last_tsc_nsec = ns;
2594         kvm->arch.last_tsc_write = tsc;
2595         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2596         kvm->arch.last_tsc_offset = offset;
2597
2598         vcpu->arch.last_guest_tsc = tsc;
2599
2600         kvm_vcpu_write_tsc_offset(vcpu, offset);
2601
2602         if (!matched) {
2603                 /*
2604                  * We split periods of matched TSC writes into generations.
2605                  * For each generation, we track the original measured
2606                  * nanosecond time, offset, and write, so if TSCs are in
2607                  * sync, we can match exact offset, and if not, we can match
2608                  * exact software computation in compute_guest_tsc()
2609                  *
2610                  * These values are tracked in kvm->arch.cur_xxx variables.
2611                  */
2612                 kvm->arch.cur_tsc_generation++;
2613                 kvm->arch.cur_tsc_nsec = ns;
2614                 kvm->arch.cur_tsc_write = tsc;
2615                 kvm->arch.cur_tsc_offset = offset;
2616                 kvm->arch.nr_vcpus_matched_tsc = 0;
2617         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2618                 kvm->arch.nr_vcpus_matched_tsc++;
2619         }
2620
2621         /* Keep track of which generation this VCPU has synchronized to */
2622         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2623         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2624         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2625
2626         kvm_track_tsc_matching(vcpu);
2627 }
2628
2629 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2630 {
2631         struct kvm *kvm = vcpu->kvm;
2632         u64 offset, ns, elapsed;
2633         unsigned long flags;
2634         bool matched = false;
2635         bool synchronizing = false;
2636
2637         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2638         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2639         ns = get_kvmclock_base_ns();
2640         elapsed = ns - kvm->arch.last_tsc_nsec;
2641
2642         if (vcpu->arch.virtual_tsc_khz) {
2643                 if (data == 0) {
2644                         /*
2645                          * detection of vcpu initialization -- need to sync
2646                          * with other vCPUs. This particularly helps to keep
2647                          * kvm_clock stable after CPU hotplug
2648                          */
2649                         synchronizing = true;
2650                 } else {
2651                         u64 tsc_exp = kvm->arch.last_tsc_write +
2652                                                 nsec_to_cycles(vcpu, elapsed);
2653                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2654                         /*
2655                          * Special case: TSC write with a small delta (1 second)
2656                          * of virtual cycle time against real time is
2657                          * interpreted as an attempt to synchronize the CPU.
2658                          */
2659                         synchronizing = data < tsc_exp + tsc_hz &&
2660                                         data + tsc_hz > tsc_exp;
2661                 }
2662         }
2663
2664         /*
2665          * For a reliable TSC, we can match TSC offsets, and for an unstable
2666          * TSC, we add elapsed time in this computation.  We could let the
2667          * compensation code attempt to catch up if we fall behind, but
2668          * it's better to try to match offsets from the beginning.
2669          */
2670         if (synchronizing &&
2671             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2672                 if (!kvm_check_tsc_unstable()) {
2673                         offset = kvm->arch.cur_tsc_offset;
2674                 } else {
2675                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2676                         data += delta;
2677                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2678                 }
2679                 matched = true;
2680         }
2681
2682         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2683         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2684 }
2685
2686 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2687                                            s64 adjustment)
2688 {
2689         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2690         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2691 }
2692
2693 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2694 {
2695         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2696                 WARN_ON(adjustment < 0);
2697         adjustment = kvm_scale_tsc((u64) adjustment,
2698                                    vcpu->arch.l1_tsc_scaling_ratio);
2699         adjust_tsc_offset_guest(vcpu, adjustment);
2700 }
2701
2702 #ifdef CONFIG_X86_64
2703
2704 static u64 read_tsc(void)
2705 {
2706         u64 ret = (u64)rdtsc_ordered();
2707         u64 last = pvclock_gtod_data.clock.cycle_last;
2708
2709         if (likely(ret >= last))
2710                 return ret;
2711
2712         /*
2713          * GCC likes to generate cmov here, but this branch is extremely
2714          * predictable (it's just a function of time and the likely is
2715          * very likely) and there's a data dependence, so force GCC
2716          * to generate a branch instead.  I don't barrier() because
2717          * we don't actually need a barrier, and if this function
2718          * ever gets inlined it will generate worse code.
2719          */
2720         asm volatile ("");
2721         return last;
2722 }
2723
2724 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2725                           int *mode)
2726 {
2727         long v;
2728         u64 tsc_pg_val;
2729
2730         switch (clock->vclock_mode) {
2731         case VDSO_CLOCKMODE_HVCLOCK:
2732                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2733                                                   tsc_timestamp);
2734                 if (tsc_pg_val != U64_MAX) {
2735                         /* TSC page valid */
2736                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2737                         v = (tsc_pg_val - clock->cycle_last) &
2738                                 clock->mask;
2739                 } else {
2740                         /* TSC page invalid */
2741                         *mode = VDSO_CLOCKMODE_NONE;
2742                 }
2743                 break;
2744         case VDSO_CLOCKMODE_TSC:
2745                 *mode = VDSO_CLOCKMODE_TSC;
2746                 *tsc_timestamp = read_tsc();
2747                 v = (*tsc_timestamp - clock->cycle_last) &
2748                         clock->mask;
2749                 break;
2750         default:
2751                 *mode = VDSO_CLOCKMODE_NONE;
2752         }
2753
2754         if (*mode == VDSO_CLOCKMODE_NONE)
2755                 *tsc_timestamp = v = 0;
2756
2757         return v * clock->mult;
2758 }
2759
2760 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2761 {
2762         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2763         unsigned long seq;
2764         int mode;
2765         u64 ns;
2766
2767         do {
2768                 seq = read_seqcount_begin(&gtod->seq);
2769                 ns = gtod->raw_clock.base_cycles;
2770                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2771                 ns >>= gtod->raw_clock.shift;
2772                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2773         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2774         *t = ns;
2775
2776         return mode;
2777 }
2778
2779 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2780 {
2781         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2782         unsigned long seq;
2783         int mode;
2784         u64 ns;
2785
2786         do {
2787                 seq = read_seqcount_begin(&gtod->seq);
2788                 ts->tv_sec = gtod->wall_time_sec;
2789                 ns = gtod->clock.base_cycles;
2790                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2791                 ns >>= gtod->clock.shift;
2792         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2793
2794         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2795         ts->tv_nsec = ns;
2796
2797         return mode;
2798 }
2799
2800 /* returns true if host is using TSC based clocksource */
2801 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2802 {
2803         /* checked again under seqlock below */
2804         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2805                 return false;
2806
2807         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2808                                                       tsc_timestamp));
2809 }
2810
2811 /* returns true if host is using TSC based clocksource */
2812 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2813                                            u64 *tsc_timestamp)
2814 {
2815         /* checked again under seqlock below */
2816         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2817                 return false;
2818
2819         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2820 }
2821 #endif
2822
2823 /*
2824  *
2825  * Assuming a stable TSC across physical CPUS, and a stable TSC
2826  * across virtual CPUs, the following condition is possible.
2827  * Each numbered line represents an event visible to both
2828  * CPUs at the next numbered event.
2829  *
2830  * "timespecX" represents host monotonic time. "tscX" represents
2831  * RDTSC value.
2832  *
2833  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2834  *
2835  * 1.  read timespec0,tsc0
2836  * 2.                                   | timespec1 = timespec0 + N
2837  *                                      | tsc1 = tsc0 + M
2838  * 3. transition to guest               | transition to guest
2839  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2840  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2841  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2842  *
2843  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2844  *
2845  *      - ret0 < ret1
2846  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2847  *              ...
2848  *      - 0 < N - M => M < N
2849  *
2850  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2851  * always the case (the difference between two distinct xtime instances
2852  * might be smaller then the difference between corresponding TSC reads,
2853  * when updating guest vcpus pvclock areas).
2854  *
2855  * To avoid that problem, do not allow visibility of distinct
2856  * system_timestamp/tsc_timestamp values simultaneously: use a master
2857  * copy of host monotonic time values. Update that master copy
2858  * in lockstep.
2859  *
2860  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2861  *
2862  */
2863
2864 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2865 {
2866 #ifdef CONFIG_X86_64
2867         struct kvm_arch *ka = &kvm->arch;
2868         int vclock_mode;
2869         bool host_tsc_clocksource, vcpus_matched;
2870
2871         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2872         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2873                         atomic_read(&kvm->online_vcpus));
2874
2875         /*
2876          * If the host uses TSC clock, then passthrough TSC as stable
2877          * to the guest.
2878          */
2879         host_tsc_clocksource = kvm_get_time_and_clockread(
2880                                         &ka->master_kernel_ns,
2881                                         &ka->master_cycle_now);
2882
2883         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2884                                 && !ka->backwards_tsc_observed
2885                                 && !ka->boot_vcpu_runs_old_kvmclock;
2886
2887         if (ka->use_master_clock)
2888                 atomic_set(&kvm_guest_has_master_clock, 1);
2889
2890         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2891         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2892                                         vcpus_matched);
2893 #endif
2894 }
2895
2896 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2897 {
2898         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2899 }
2900
2901 static void __kvm_start_pvclock_update(struct kvm *kvm)
2902 {
2903         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2904         write_seqcount_begin(&kvm->arch.pvclock_sc);
2905 }
2906
2907 static void kvm_start_pvclock_update(struct kvm *kvm)
2908 {
2909         kvm_make_mclock_inprogress_request(kvm);
2910
2911         /* no guest entries from this point */
2912         __kvm_start_pvclock_update(kvm);
2913 }
2914
2915 static void kvm_end_pvclock_update(struct kvm *kvm)
2916 {
2917         struct kvm_arch *ka = &kvm->arch;
2918         struct kvm_vcpu *vcpu;
2919         unsigned long i;
2920
2921         write_seqcount_end(&ka->pvclock_sc);
2922         raw_spin_unlock_irq(&ka->tsc_write_lock);
2923         kvm_for_each_vcpu(i, vcpu, kvm)
2924                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2925
2926         /* guest entries allowed */
2927         kvm_for_each_vcpu(i, vcpu, kvm)
2928                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2929 }
2930
2931 static void kvm_update_masterclock(struct kvm *kvm)
2932 {
2933         kvm_hv_request_tsc_page_update(kvm);
2934         kvm_start_pvclock_update(kvm);
2935         pvclock_update_vm_gtod_copy(kvm);
2936         kvm_end_pvclock_update(kvm);
2937 }
2938
2939 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2940 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2941 {
2942         struct kvm_arch *ka = &kvm->arch;
2943         struct pvclock_vcpu_time_info hv_clock;
2944
2945         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2946         get_cpu();
2947
2948         data->flags = 0;
2949         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2950 #ifdef CONFIG_X86_64
2951                 struct timespec64 ts;
2952
2953                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2954                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2955                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2956                 } else
2957 #endif
2958                 data->host_tsc = rdtsc();
2959
2960                 data->flags |= KVM_CLOCK_TSC_STABLE;
2961                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2962                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2963                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2964                                    &hv_clock.tsc_shift,
2965                                    &hv_clock.tsc_to_system_mul);
2966                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2967         } else {
2968                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2969         }
2970
2971         put_cpu();
2972 }
2973
2974 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2975 {
2976         struct kvm_arch *ka = &kvm->arch;
2977         unsigned seq;
2978
2979         do {
2980                 seq = read_seqcount_begin(&ka->pvclock_sc);
2981                 __get_kvmclock(kvm, data);
2982         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2983 }
2984
2985 u64 get_kvmclock_ns(struct kvm *kvm)
2986 {
2987         struct kvm_clock_data data;
2988
2989         get_kvmclock(kvm, &data);
2990         return data.clock;
2991 }
2992
2993 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2994                                     struct gfn_to_pfn_cache *gpc,
2995                                     unsigned int offset)
2996 {
2997         struct kvm_vcpu_arch *vcpu = &v->arch;
2998         struct pvclock_vcpu_time_info *guest_hv_clock;
2999         unsigned long flags;
3000
3001         read_lock_irqsave(&gpc->lock, flags);
3002         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3003                                            offset + sizeof(*guest_hv_clock))) {
3004                 read_unlock_irqrestore(&gpc->lock, flags);
3005
3006                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3007                                                  offset + sizeof(*guest_hv_clock)))
3008                         return;
3009
3010                 read_lock_irqsave(&gpc->lock, flags);
3011         }
3012
3013         guest_hv_clock = (void *)(gpc->khva + offset);
3014
3015         /*
3016          * This VCPU is paused, but it's legal for a guest to read another
3017          * VCPU's kvmclock, so we really have to follow the specification where
3018          * it says that version is odd if data is being modified, and even after
3019          * it is consistent.
3020          */
3021
3022         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3023         smp_wmb();
3024
3025         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3026         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3027
3028         if (vcpu->pvclock_set_guest_stopped_request) {
3029                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3030                 vcpu->pvclock_set_guest_stopped_request = false;
3031         }
3032
3033         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3034         smp_wmb();
3035
3036         guest_hv_clock->version = ++vcpu->hv_clock.version;
3037
3038         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3039         read_unlock_irqrestore(&gpc->lock, flags);
3040
3041         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3042 }
3043
3044 static int kvm_guest_time_update(struct kvm_vcpu *v)
3045 {
3046         unsigned long flags, tgt_tsc_khz;
3047         unsigned seq;
3048         struct kvm_vcpu_arch *vcpu = &v->arch;
3049         struct kvm_arch *ka = &v->kvm->arch;
3050         s64 kernel_ns;
3051         u64 tsc_timestamp, host_tsc;
3052         u8 pvclock_flags;
3053         bool use_master_clock;
3054
3055         kernel_ns = 0;
3056         host_tsc = 0;
3057
3058         /*
3059          * If the host uses TSC clock, then passthrough TSC as stable
3060          * to the guest.
3061          */
3062         do {
3063                 seq = read_seqcount_begin(&ka->pvclock_sc);
3064                 use_master_clock = ka->use_master_clock;
3065                 if (use_master_clock) {
3066                         host_tsc = ka->master_cycle_now;
3067                         kernel_ns = ka->master_kernel_ns;
3068                 }
3069         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3070
3071         /* Keep irq disabled to prevent changes to the clock */
3072         local_irq_save(flags);
3073         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3074         if (unlikely(tgt_tsc_khz == 0)) {
3075                 local_irq_restore(flags);
3076                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3077                 return 1;
3078         }
3079         if (!use_master_clock) {
3080                 host_tsc = rdtsc();
3081                 kernel_ns = get_kvmclock_base_ns();
3082         }
3083
3084         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3085
3086         /*
3087          * We may have to catch up the TSC to match elapsed wall clock
3088          * time for two reasons, even if kvmclock is used.
3089          *   1) CPU could have been running below the maximum TSC rate
3090          *   2) Broken TSC compensation resets the base at each VCPU
3091          *      entry to avoid unknown leaps of TSC even when running
3092          *      again on the same CPU.  This may cause apparent elapsed
3093          *      time to disappear, and the guest to stand still or run
3094          *      very slowly.
3095          */
3096         if (vcpu->tsc_catchup) {
3097                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3098                 if (tsc > tsc_timestamp) {
3099                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3100                         tsc_timestamp = tsc;
3101                 }
3102         }
3103
3104         local_irq_restore(flags);
3105
3106         /* With all the info we got, fill in the values */
3107
3108         if (kvm_has_tsc_control)
3109                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3110                                             v->arch.l1_tsc_scaling_ratio);
3111
3112         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3113                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3114                                    &vcpu->hv_clock.tsc_shift,
3115                                    &vcpu->hv_clock.tsc_to_system_mul);
3116                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3117         }
3118
3119         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3120         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3121         vcpu->last_guest_tsc = tsc_timestamp;
3122
3123         /* If the host uses TSC clocksource, then it is stable */
3124         pvclock_flags = 0;
3125         if (use_master_clock)
3126                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3127
3128         vcpu->hv_clock.flags = pvclock_flags;
3129
3130         if (vcpu->pv_time.active)
3131                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3132         if (vcpu->xen.vcpu_info_cache.active)
3133                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3134                                         offsetof(struct compat_vcpu_info, time));
3135         if (vcpu->xen.vcpu_time_info_cache.active)
3136                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3137         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3138         return 0;
3139 }
3140
3141 /*
3142  * kvmclock updates which are isolated to a given vcpu, such as
3143  * vcpu->cpu migration, should not allow system_timestamp from
3144  * the rest of the vcpus to remain static. Otherwise ntp frequency
3145  * correction applies to one vcpu's system_timestamp but not
3146  * the others.
3147  *
3148  * So in those cases, request a kvmclock update for all vcpus.
3149  * We need to rate-limit these requests though, as they can
3150  * considerably slow guests that have a large number of vcpus.
3151  * The time for a remote vcpu to update its kvmclock is bound
3152  * by the delay we use to rate-limit the updates.
3153  */
3154
3155 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3156
3157 static void kvmclock_update_fn(struct work_struct *work)
3158 {
3159         unsigned long i;
3160         struct delayed_work *dwork = to_delayed_work(work);
3161         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3162                                            kvmclock_update_work);
3163         struct kvm *kvm = container_of(ka, struct kvm, arch);
3164         struct kvm_vcpu *vcpu;
3165
3166         kvm_for_each_vcpu(i, vcpu, kvm) {
3167                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3168                 kvm_vcpu_kick(vcpu);
3169         }
3170 }
3171
3172 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3173 {
3174         struct kvm *kvm = v->kvm;
3175
3176         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3177         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3178                                         KVMCLOCK_UPDATE_DELAY);
3179 }
3180
3181 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3182
3183 static void kvmclock_sync_fn(struct work_struct *work)
3184 {
3185         struct delayed_work *dwork = to_delayed_work(work);
3186         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3187                                            kvmclock_sync_work);
3188         struct kvm *kvm = container_of(ka, struct kvm, arch);
3189
3190         if (!kvmclock_periodic_sync)
3191                 return;
3192
3193         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3194         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3195                                         KVMCLOCK_SYNC_PERIOD);
3196 }
3197
3198 /*
3199  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3200  */
3201 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3202 {
3203         /* McStatusWrEn enabled? */
3204         if (guest_cpuid_is_amd_or_hygon(vcpu))
3205                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3206
3207         return false;
3208 }
3209
3210 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3211 {
3212         u64 mcg_cap = vcpu->arch.mcg_cap;
3213         unsigned bank_num = mcg_cap & 0xff;
3214         u32 msr = msr_info->index;
3215         u64 data = msr_info->data;
3216
3217         switch (msr) {
3218         case MSR_IA32_MCG_STATUS:
3219                 vcpu->arch.mcg_status = data;
3220                 break;
3221         case MSR_IA32_MCG_CTL:
3222                 if (!(mcg_cap & MCG_CTL_P) &&
3223                     (data || !msr_info->host_initiated))
3224                         return 1;
3225                 if (data != 0 && data != ~(u64)0)
3226                         return 1;
3227                 vcpu->arch.mcg_ctl = data;
3228                 break;
3229         default:
3230                 if (msr >= MSR_IA32_MC0_CTL &&
3231                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3232                         u32 offset = array_index_nospec(
3233                                 msr - MSR_IA32_MC0_CTL,
3234                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3235
3236                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3237                          * some Linux kernels though clear bit 10 in bank 4 to
3238                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3239                          * this to avoid an uncatched #GP in the guest
3240                          */
3241                         if ((offset & 0x3) == 0 &&
3242                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3243                                 return -1;
3244
3245                         /* MCi_STATUS */
3246                         if (!msr_info->host_initiated &&
3247                             (offset & 0x3) == 1 && data != 0) {
3248                                 if (!can_set_mci_status(vcpu))
3249                                         return -1;
3250                         }
3251
3252                         vcpu->arch.mce_banks[offset] = data;
3253                         break;
3254                 }
3255                 return 1;
3256         }
3257         return 0;
3258 }
3259
3260 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3261 {
3262         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3263
3264         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3265 }
3266
3267 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3268 {
3269         gpa_t gpa = data & ~0x3f;
3270
3271         /* Bits 4:5 are reserved, Should be zero */
3272         if (data & 0x30)
3273                 return 1;
3274
3275         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3276             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3277                 return 1;
3278
3279         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3280             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3281                 return 1;
3282
3283         if (!lapic_in_kernel(vcpu))
3284                 return data ? 1 : 0;
3285
3286         vcpu->arch.apf.msr_en_val = data;
3287
3288         if (!kvm_pv_async_pf_enabled(vcpu)) {
3289                 kvm_clear_async_pf_completion_queue(vcpu);
3290                 kvm_async_pf_hash_reset(vcpu);
3291                 return 0;
3292         }
3293
3294         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3295                                         sizeof(u64)))
3296                 return 1;
3297
3298         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3299         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3300
3301         kvm_async_pf_wakeup_all(vcpu);
3302
3303         return 0;
3304 }
3305
3306 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3307 {
3308         /* Bits 8-63 are reserved */
3309         if (data >> 8)
3310                 return 1;
3311
3312         if (!lapic_in_kernel(vcpu))
3313                 return 1;
3314
3315         vcpu->arch.apf.msr_int_val = data;
3316
3317         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3318
3319         return 0;
3320 }
3321
3322 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3323 {
3324         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3325         vcpu->arch.time = 0;
3326 }
3327
3328 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3329 {
3330         ++vcpu->stat.tlb_flush;
3331         static_call(kvm_x86_flush_tlb_all)(vcpu);
3332 }
3333
3334 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3335 {
3336         ++vcpu->stat.tlb_flush;
3337
3338         if (!tdp_enabled) {
3339                 /*
3340                  * A TLB flush on behalf of the guest is equivalent to
3341                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3342                  * a forced sync of the shadow page tables.  Ensure all the
3343                  * roots are synced and the guest TLB in hardware is clean.
3344                  */
3345                 kvm_mmu_sync_roots(vcpu);
3346                 kvm_mmu_sync_prev_roots(vcpu);
3347         }
3348
3349         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3350 }
3351
3352
3353 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3354 {
3355         ++vcpu->stat.tlb_flush;
3356         static_call(kvm_x86_flush_tlb_current)(vcpu);
3357 }
3358
3359 /*
3360  * Service "local" TLB flush requests, which are specific to the current MMU
3361  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3362  * TLB flushes that are targeted at an MMU context also need to be serviced
3363  * prior before nested VM-Enter/VM-Exit.
3364  */
3365 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3366 {
3367         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3368                 kvm_vcpu_flush_tlb_current(vcpu);
3369
3370         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3371                 kvm_vcpu_flush_tlb_guest(vcpu);
3372 }
3373 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3374
3375 static void record_steal_time(struct kvm_vcpu *vcpu)
3376 {
3377         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3378         struct kvm_steal_time __user *st;
3379         struct kvm_memslots *slots;
3380         u64 steal;
3381         u32 version;
3382
3383         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3384                 kvm_xen_runstate_set_running(vcpu);
3385                 return;
3386         }
3387
3388         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3389                 return;
3390
3391         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3392                 return;
3393
3394         slots = kvm_memslots(vcpu->kvm);
3395
3396         if (unlikely(slots->generation != ghc->generation ||
3397                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3398                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3399
3400                 /* We rely on the fact that it fits in a single page. */
3401                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3402
3403                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3404                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3405                         return;
3406         }
3407
3408         st = (struct kvm_steal_time __user *)ghc->hva;
3409         /*
3410          * Doing a TLB flush here, on the guest's behalf, can avoid
3411          * expensive IPIs.
3412          */
3413         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3414                 u8 st_preempted = 0;
3415                 int err = -EFAULT;
3416
3417                 if (!user_access_begin(st, sizeof(*st)))
3418                         return;
3419
3420                 asm volatile("1: xchgb %0, %2\n"
3421                              "xor %1, %1\n"
3422                              "2:\n"
3423                              _ASM_EXTABLE_UA(1b, 2b)
3424                              : "+q" (st_preempted),
3425                                "+&r" (err),
3426                                "+m" (st->preempted));
3427                 if (err)
3428                         goto out;
3429
3430                 user_access_end();
3431
3432                 vcpu->arch.st.preempted = 0;
3433
3434                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3435                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3436                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3437                         kvm_vcpu_flush_tlb_guest(vcpu);
3438
3439                 if (!user_access_begin(st, sizeof(*st)))
3440                         goto dirty;
3441         } else {
3442                 if (!user_access_begin(st, sizeof(*st)))
3443                         return;
3444
3445                 unsafe_put_user(0, &st->preempted, out);
3446                 vcpu->arch.st.preempted = 0;
3447         }
3448
3449         unsafe_get_user(version, &st->version, out);
3450         if (version & 1)
3451                 version += 1;  /* first time write, random junk */
3452
3453         version += 1;
3454         unsafe_put_user(version, &st->version, out);
3455
3456         smp_wmb();
3457
3458         unsafe_get_user(steal, &st->steal, out);
3459         steal += current->sched_info.run_delay -
3460                 vcpu->arch.st.last_steal;
3461         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3462         unsafe_put_user(steal, &st->steal, out);
3463
3464         version += 1;
3465         unsafe_put_user(version, &st->version, out);
3466
3467  out:
3468         user_access_end();
3469  dirty:
3470         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3471 }
3472
3473 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3474 {
3475         bool pr = false;
3476         u32 msr = msr_info->index;
3477         u64 data = msr_info->data;
3478
3479         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3480                 return kvm_xen_write_hypercall_page(vcpu, data);
3481
3482         switch (msr) {
3483         case MSR_AMD64_NB_CFG:
3484         case MSR_IA32_UCODE_WRITE:
3485         case MSR_VM_HSAVE_PA:
3486         case MSR_AMD64_PATCH_LOADER:
3487         case MSR_AMD64_BU_CFG2:
3488         case MSR_AMD64_DC_CFG:
3489         case MSR_F15H_EX_CFG:
3490                 break;
3491
3492         case MSR_IA32_UCODE_REV:
3493                 if (msr_info->host_initiated)
3494                         vcpu->arch.microcode_version = data;
3495                 break;
3496         case MSR_IA32_ARCH_CAPABILITIES:
3497                 if (!msr_info->host_initiated)
3498                         return 1;
3499                 vcpu->arch.arch_capabilities = data;
3500                 break;
3501         case MSR_IA32_PERF_CAPABILITIES: {
3502                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3503
3504                 if (!msr_info->host_initiated)
3505                         return 1;
3506                 if (kvm_get_msr_feature(&msr_ent))
3507                         return 1;
3508                 if (data & ~msr_ent.data)
3509                         return 1;
3510
3511                 vcpu->arch.perf_capabilities = data;
3512
3513                 return 0;
3514                 }
3515         case MSR_EFER:
3516                 return set_efer(vcpu, msr_info);
3517         case MSR_K7_HWCR:
3518                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3519                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3520                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3521
3522                 /* Handle McStatusWrEn */
3523                 if (data == BIT_ULL(18)) {
3524                         vcpu->arch.msr_hwcr = data;
3525                 } else if (data != 0) {
3526                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3527                                     data);
3528                         return 1;
3529                 }
3530                 break;
3531         case MSR_FAM10H_MMIO_CONF_BASE:
3532                 if (data != 0) {
3533                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3534                                     "0x%llx\n", data);
3535                         return 1;
3536                 }
3537                 break;
3538         case 0x200 ... 0x2ff:
3539                 return kvm_mtrr_set_msr(vcpu, msr, data);
3540         case MSR_IA32_APICBASE:
3541                 return kvm_set_apic_base(vcpu, msr_info);
3542         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3543                 return kvm_x2apic_msr_write(vcpu, msr, data);
3544         case MSR_IA32_TSC_DEADLINE:
3545                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3546                 break;
3547         case MSR_IA32_TSC_ADJUST:
3548                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3549                         if (!msr_info->host_initiated) {
3550                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3551                                 adjust_tsc_offset_guest(vcpu, adj);
3552                                 /* Before back to guest, tsc_timestamp must be adjusted
3553                                  * as well, otherwise guest's percpu pvclock time could jump.
3554                                  */
3555                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3556                         }
3557                         vcpu->arch.ia32_tsc_adjust_msr = data;
3558                 }
3559                 break;
3560         case MSR_IA32_MISC_ENABLE:
3561                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3562                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3563                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3564                                 return 1;
3565                         vcpu->arch.ia32_misc_enable_msr = data;
3566                         kvm_update_cpuid_runtime(vcpu);
3567                 } else {
3568                         vcpu->arch.ia32_misc_enable_msr = data;
3569                 }
3570                 break;
3571         case MSR_IA32_SMBASE:
3572                 if (!msr_info->host_initiated)
3573                         return 1;
3574                 vcpu->arch.smbase = data;
3575                 break;
3576         case MSR_IA32_POWER_CTL:
3577                 vcpu->arch.msr_ia32_power_ctl = data;
3578                 break;
3579         case MSR_IA32_TSC:
3580                 if (msr_info->host_initiated) {
3581                         kvm_synchronize_tsc(vcpu, data);
3582                 } else {
3583                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3584                         adjust_tsc_offset_guest(vcpu, adj);
3585                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3586                 }
3587                 break;
3588         case MSR_IA32_XSS:
3589                 if (!msr_info->host_initiated &&
3590                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3591                         return 1;
3592                 /*
3593                  * KVM supports exposing PT to the guest, but does not support
3594                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3595                  * XSAVES/XRSTORS to save/restore PT MSRs.
3596                  */
3597                 if (data & ~supported_xss)
3598                         return 1;
3599                 vcpu->arch.ia32_xss = data;
3600                 kvm_update_cpuid_runtime(vcpu);
3601                 break;
3602         case MSR_SMI_COUNT:
3603                 if (!msr_info->host_initiated)
3604                         return 1;
3605                 vcpu->arch.smi_count = data;
3606                 break;
3607         case MSR_KVM_WALL_CLOCK_NEW:
3608                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3609                         return 1;
3610
3611                 vcpu->kvm->arch.wall_clock = data;
3612                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3613                 break;
3614         case MSR_KVM_WALL_CLOCK:
3615                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3616                         return 1;
3617
3618                 vcpu->kvm->arch.wall_clock = data;
3619                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3620                 break;
3621         case MSR_KVM_SYSTEM_TIME_NEW:
3622                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3623                         return 1;
3624
3625                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3626                 break;
3627         case MSR_KVM_SYSTEM_TIME:
3628                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3629                         return 1;
3630
3631                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3632                 break;
3633         case MSR_KVM_ASYNC_PF_EN:
3634                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3635                         return 1;
3636
3637                 if (kvm_pv_enable_async_pf(vcpu, data))
3638                         return 1;
3639                 break;
3640         case MSR_KVM_ASYNC_PF_INT:
3641                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3642                         return 1;
3643
3644                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3645                         return 1;
3646                 break;
3647         case MSR_KVM_ASYNC_PF_ACK:
3648                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3649                         return 1;
3650                 if (data & 0x1) {
3651                         vcpu->arch.apf.pageready_pending = false;
3652                         kvm_check_async_pf_completion(vcpu);
3653                 }
3654                 break;
3655         case MSR_KVM_STEAL_TIME:
3656                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3657                         return 1;
3658
3659                 if (unlikely(!sched_info_on()))
3660                         return 1;
3661
3662                 if (data & KVM_STEAL_RESERVED_MASK)
3663                         return 1;
3664
3665                 vcpu->arch.st.msr_val = data;
3666
3667                 if (!(data & KVM_MSR_ENABLED))
3668                         break;
3669
3670                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3671
3672                 break;
3673         case MSR_KVM_PV_EOI_EN:
3674                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3675                         return 1;
3676
3677                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3678                         return 1;
3679                 break;
3680
3681         case MSR_KVM_POLL_CONTROL:
3682                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3683                         return 1;
3684
3685                 /* only enable bit supported */
3686                 if (data & (-1ULL << 1))
3687                         return 1;
3688
3689                 vcpu->arch.msr_kvm_poll_control = data;
3690                 break;
3691
3692         case MSR_IA32_MCG_CTL:
3693         case MSR_IA32_MCG_STATUS:
3694         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3695                 return set_msr_mce(vcpu, msr_info);
3696
3697         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3698         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3699                 pr = true;
3700                 fallthrough;
3701         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3702         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3703                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3704                         return kvm_pmu_set_msr(vcpu, msr_info);
3705
3706                 if (pr || data != 0)
3707                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3708                                     "0x%x data 0x%llx\n", msr, data);
3709                 break;
3710         case MSR_K7_CLK_CTL:
3711                 /*
3712                  * Ignore all writes to this no longer documented MSR.
3713                  * Writes are only relevant for old K7 processors,
3714                  * all pre-dating SVM, but a recommended workaround from
3715                  * AMD for these chips. It is possible to specify the
3716                  * affected processor models on the command line, hence
3717                  * the need to ignore the workaround.
3718                  */
3719                 break;
3720         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3721         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3722         case HV_X64_MSR_SYNDBG_OPTIONS:
3723         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3724         case HV_X64_MSR_CRASH_CTL:
3725         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3726         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3727         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3728         case HV_X64_MSR_TSC_EMULATION_STATUS:
3729                 return kvm_hv_set_msr_common(vcpu, msr, data,
3730                                              msr_info->host_initiated);
3731         case MSR_IA32_BBL_CR_CTL3:
3732                 /* Drop writes to this legacy MSR -- see rdmsr
3733                  * counterpart for further detail.
3734                  */
3735                 if (report_ignored_msrs)
3736                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3737                                 msr, data);
3738                 break;
3739         case MSR_AMD64_OSVW_ID_LENGTH:
3740                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3741                         return 1;
3742                 vcpu->arch.osvw.length = data;
3743                 break;
3744         case MSR_AMD64_OSVW_STATUS:
3745                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3746                         return 1;
3747                 vcpu->arch.osvw.status = data;
3748                 break;
3749         case MSR_PLATFORM_INFO:
3750                 if (!msr_info->host_initiated ||
3751                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3752                      cpuid_fault_enabled(vcpu)))
3753                         return 1;
3754                 vcpu->arch.msr_platform_info = data;
3755                 break;
3756         case MSR_MISC_FEATURES_ENABLES:
3757                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3758                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3759                      !supports_cpuid_fault(vcpu)))
3760                         return 1;
3761                 vcpu->arch.msr_misc_features_enables = data;
3762                 break;
3763 #ifdef CONFIG_X86_64
3764         case MSR_IA32_XFD:
3765                 if (!msr_info->host_initiated &&
3766                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3767                         return 1;
3768
3769                 if (data & ~kvm_guest_supported_xfd(vcpu))
3770                         return 1;
3771
3772                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3773                 break;
3774         case MSR_IA32_XFD_ERR:
3775                 if (!msr_info->host_initiated &&
3776                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3777                         return 1;
3778
3779                 if (data & ~kvm_guest_supported_xfd(vcpu))
3780                         return 1;
3781
3782                 vcpu->arch.guest_fpu.xfd_err = data;
3783                 break;
3784 #endif
3785         default:
3786                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3787                         return kvm_pmu_set_msr(vcpu, msr_info);
3788                 return KVM_MSR_RET_INVALID;
3789         }
3790         return 0;
3791 }
3792 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3793
3794 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3795 {
3796         u64 data;
3797         u64 mcg_cap = vcpu->arch.mcg_cap;
3798         unsigned bank_num = mcg_cap & 0xff;
3799
3800         switch (msr) {
3801         case MSR_IA32_P5_MC_ADDR:
3802         case MSR_IA32_P5_MC_TYPE:
3803                 data = 0;
3804                 break;
3805         case MSR_IA32_MCG_CAP:
3806                 data = vcpu->arch.mcg_cap;
3807                 break;
3808         case MSR_IA32_MCG_CTL:
3809                 if (!(mcg_cap & MCG_CTL_P) && !host)
3810                         return 1;
3811                 data = vcpu->arch.mcg_ctl;
3812                 break;
3813         case MSR_IA32_MCG_STATUS:
3814                 data = vcpu->arch.mcg_status;
3815                 break;
3816         default:
3817                 if (msr >= MSR_IA32_MC0_CTL &&
3818                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3819                         u32 offset = array_index_nospec(
3820                                 msr - MSR_IA32_MC0_CTL,
3821                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3822
3823                         data = vcpu->arch.mce_banks[offset];
3824                         break;
3825                 }
3826                 return 1;
3827         }
3828         *pdata = data;
3829         return 0;
3830 }
3831
3832 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3833 {
3834         switch (msr_info->index) {
3835         case MSR_IA32_PLATFORM_ID:
3836         case MSR_IA32_EBL_CR_POWERON:
3837         case MSR_IA32_LASTBRANCHFROMIP:
3838         case MSR_IA32_LASTBRANCHTOIP:
3839         case MSR_IA32_LASTINTFROMIP:
3840         case MSR_IA32_LASTINTTOIP:
3841         case MSR_AMD64_SYSCFG:
3842         case MSR_K8_TSEG_ADDR:
3843         case MSR_K8_TSEG_MASK:
3844         case MSR_VM_HSAVE_PA:
3845         case MSR_K8_INT_PENDING_MSG:
3846         case MSR_AMD64_NB_CFG:
3847         case MSR_FAM10H_MMIO_CONF_BASE:
3848         case MSR_AMD64_BU_CFG2:
3849         case MSR_IA32_PERF_CTL:
3850         case MSR_AMD64_DC_CFG:
3851         case MSR_F15H_EX_CFG:
3852         /*
3853          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3854          * limit) MSRs. Just return 0, as we do not want to expose the host
3855          * data here. Do not conditionalize this on CPUID, as KVM does not do
3856          * so for existing CPU-specific MSRs.
3857          */
3858         case MSR_RAPL_POWER_UNIT:
3859         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3860         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3861         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3862         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3863                 msr_info->data = 0;
3864                 break;
3865         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3866                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3867                         return kvm_pmu_get_msr(vcpu, msr_info);
3868                 if (!msr_info->host_initiated)
3869                         return 1;
3870                 msr_info->data = 0;
3871                 break;
3872         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3873         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3874         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3875         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3876                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3877                         return kvm_pmu_get_msr(vcpu, msr_info);
3878                 msr_info->data = 0;
3879                 break;
3880         case MSR_IA32_UCODE_REV:
3881                 msr_info->data = vcpu->arch.microcode_version;
3882                 break;
3883         case MSR_IA32_ARCH_CAPABILITIES:
3884                 if (!msr_info->host_initiated &&
3885                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3886                         return 1;
3887                 msr_info->data = vcpu->arch.arch_capabilities;
3888                 break;
3889         case MSR_IA32_PERF_CAPABILITIES:
3890                 if (!msr_info->host_initiated &&
3891                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3892                         return 1;
3893                 msr_info->data = vcpu->arch.perf_capabilities;
3894                 break;
3895         case MSR_IA32_POWER_CTL:
3896                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3897                 break;
3898         case MSR_IA32_TSC: {
3899                 /*
3900                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3901                  * even when not intercepted. AMD manual doesn't explicitly
3902                  * state this but appears to behave the same.
3903                  *
3904                  * On userspace reads and writes, however, we unconditionally
3905                  * return L1's TSC value to ensure backwards-compatible
3906                  * behavior for migration.
3907                  */
3908                 u64 offset, ratio;
3909
3910                 if (msr_info->host_initiated) {
3911                         offset = vcpu->arch.l1_tsc_offset;
3912                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3913                 } else {
3914                         offset = vcpu->arch.tsc_offset;
3915                         ratio = vcpu->arch.tsc_scaling_ratio;
3916                 }
3917
3918                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3919                 break;
3920         }
3921         case MSR_MTRRcap:
3922         case 0x200 ... 0x2ff:
3923                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3924         case 0xcd: /* fsb frequency */
3925                 msr_info->data = 3;
3926                 break;
3927                 /*
3928                  * MSR_EBC_FREQUENCY_ID
3929                  * Conservative value valid for even the basic CPU models.
3930                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3931                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3932                  * and 266MHz for model 3, or 4. Set Core Clock
3933                  * Frequency to System Bus Frequency Ratio to 1 (bits
3934                  * 31:24) even though these are only valid for CPU
3935                  * models > 2, however guests may end up dividing or
3936                  * multiplying by zero otherwise.
3937                  */
3938         case MSR_EBC_FREQUENCY_ID:
3939                 msr_info->data = 1 << 24;
3940                 break;
3941         case MSR_IA32_APICBASE:
3942                 msr_info->data = kvm_get_apic_base(vcpu);
3943                 break;
3944         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3945                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3946         case MSR_IA32_TSC_DEADLINE:
3947                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3948                 break;
3949         case MSR_IA32_TSC_ADJUST:
3950                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3951                 break;
3952         case MSR_IA32_MISC_ENABLE:
3953                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3954                 break;
3955         case MSR_IA32_SMBASE:
3956                 if (!msr_info->host_initiated)
3957                         return 1;
3958                 msr_info->data = vcpu->arch.smbase;
3959                 break;
3960         case MSR_SMI_COUNT:
3961                 msr_info->data = vcpu->arch.smi_count;
3962                 break;
3963         case MSR_IA32_PERF_STATUS:
3964                 /* TSC increment by tick */
3965                 msr_info->data = 1000ULL;
3966                 /* CPU multiplier */
3967                 msr_info->data |= (((uint64_t)4ULL) << 40);
3968                 break;
3969         case MSR_EFER:
3970                 msr_info->data = vcpu->arch.efer;
3971                 break;
3972         case MSR_KVM_WALL_CLOCK:
3973                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3974                         return 1;
3975
3976                 msr_info->data = vcpu->kvm->arch.wall_clock;
3977                 break;
3978         case MSR_KVM_WALL_CLOCK_NEW:
3979                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3980                         return 1;
3981
3982                 msr_info->data = vcpu->kvm->arch.wall_clock;
3983                 break;
3984         case MSR_KVM_SYSTEM_TIME:
3985                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3986                         return 1;
3987
3988                 msr_info->data = vcpu->arch.time;
3989                 break;
3990         case MSR_KVM_SYSTEM_TIME_NEW:
3991                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3992                         return 1;
3993
3994                 msr_info->data = vcpu->arch.time;
3995                 break;
3996         case MSR_KVM_ASYNC_PF_EN:
3997                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3998                         return 1;
3999
4000                 msr_info->data = vcpu->arch.apf.msr_en_val;
4001                 break;
4002         case MSR_KVM_ASYNC_PF_INT:
4003                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4004                         return 1;
4005
4006                 msr_info->data = vcpu->arch.apf.msr_int_val;
4007                 break;
4008         case MSR_KVM_ASYNC_PF_ACK:
4009                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4010                         return 1;
4011
4012                 msr_info->data = 0;
4013                 break;
4014         case MSR_KVM_STEAL_TIME:
4015                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4016                         return 1;
4017
4018                 msr_info->data = vcpu->arch.st.msr_val;
4019                 break;
4020         case MSR_KVM_PV_EOI_EN:
4021                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4022                         return 1;
4023
4024                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4025                 break;
4026         case MSR_KVM_POLL_CONTROL:
4027                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4028                         return 1;
4029
4030                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4031                 break;
4032         case MSR_IA32_P5_MC_ADDR:
4033         case MSR_IA32_P5_MC_TYPE:
4034         case MSR_IA32_MCG_CAP:
4035         case MSR_IA32_MCG_CTL:
4036         case MSR_IA32_MCG_STATUS:
4037         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4038                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4039                                    msr_info->host_initiated);
4040         case MSR_IA32_XSS:
4041                 if (!msr_info->host_initiated &&
4042                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4043                         return 1;
4044                 msr_info->data = vcpu->arch.ia32_xss;
4045                 break;
4046         case MSR_K7_CLK_CTL:
4047                 /*
4048                  * Provide expected ramp-up count for K7. All other
4049                  * are set to zero, indicating minimum divisors for
4050                  * every field.
4051                  *
4052                  * This prevents guest kernels on AMD host with CPU
4053                  * type 6, model 8 and higher from exploding due to
4054                  * the rdmsr failing.
4055                  */
4056                 msr_info->data = 0x20000000;
4057                 break;
4058         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4059         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4060         case HV_X64_MSR_SYNDBG_OPTIONS:
4061         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4062         case HV_X64_MSR_CRASH_CTL:
4063         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4064         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4065         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4066         case HV_X64_MSR_TSC_EMULATION_STATUS:
4067                 return kvm_hv_get_msr_common(vcpu,
4068                                              msr_info->index, &msr_info->data,
4069                                              msr_info->host_initiated);
4070         case MSR_IA32_BBL_CR_CTL3:
4071                 /* This legacy MSR exists but isn't fully documented in current
4072                  * silicon.  It is however accessed by winxp in very narrow
4073                  * scenarios where it sets bit #19, itself documented as
4074                  * a "reserved" bit.  Best effort attempt to source coherent
4075                  * read data here should the balance of the register be
4076                  * interpreted by the guest:
4077                  *
4078                  * L2 cache control register 3: 64GB range, 256KB size,
4079                  * enabled, latency 0x1, configured
4080                  */
4081                 msr_info->data = 0xbe702111;
4082                 break;
4083         case MSR_AMD64_OSVW_ID_LENGTH:
4084                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4085                         return 1;
4086                 msr_info->data = vcpu->arch.osvw.length;
4087                 break;
4088         case MSR_AMD64_OSVW_STATUS:
4089                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4090                         return 1;
4091                 msr_info->data = vcpu->arch.osvw.status;
4092                 break;
4093         case MSR_PLATFORM_INFO:
4094                 if (!msr_info->host_initiated &&
4095                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4096                         return 1;
4097                 msr_info->data = vcpu->arch.msr_platform_info;
4098                 break;
4099         case MSR_MISC_FEATURES_ENABLES:
4100                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4101                 break;
4102         case MSR_K7_HWCR:
4103                 msr_info->data = vcpu->arch.msr_hwcr;
4104                 break;
4105 #ifdef CONFIG_X86_64
4106         case MSR_IA32_XFD:
4107                 if (!msr_info->host_initiated &&
4108                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4109                         return 1;
4110
4111                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4112                 break;
4113         case MSR_IA32_XFD_ERR:
4114                 if (!msr_info->host_initiated &&
4115                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4116                         return 1;
4117
4118                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4119                 break;
4120 #endif
4121         default:
4122                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4123                         return kvm_pmu_get_msr(vcpu, msr_info);
4124                 return KVM_MSR_RET_INVALID;
4125         }
4126         return 0;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4129
4130 /*
4131  * Read or write a bunch of msrs. All parameters are kernel addresses.
4132  *
4133  * @return number of msrs set successfully.
4134  */
4135 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4136                     struct kvm_msr_entry *entries,
4137                     int (*do_msr)(struct kvm_vcpu *vcpu,
4138                                   unsigned index, u64 *data))
4139 {
4140         int i;
4141
4142         for (i = 0; i < msrs->nmsrs; ++i)
4143                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4144                         break;
4145
4146         return i;
4147 }
4148
4149 /*
4150  * Read or write a bunch of msrs. Parameters are user addresses.
4151  *
4152  * @return number of msrs set successfully.
4153  */
4154 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4155                   int (*do_msr)(struct kvm_vcpu *vcpu,
4156                                 unsigned index, u64 *data),
4157                   int writeback)
4158 {
4159         struct kvm_msrs msrs;
4160         struct kvm_msr_entry *entries;
4161         int r, n;
4162         unsigned size;
4163
4164         r = -EFAULT;
4165         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4166                 goto out;
4167
4168         r = -E2BIG;
4169         if (msrs.nmsrs >= MAX_IO_MSRS)
4170                 goto out;
4171
4172         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4173         entries = memdup_user(user_msrs->entries, size);
4174         if (IS_ERR(entries)) {
4175                 r = PTR_ERR(entries);
4176                 goto out;
4177         }
4178
4179         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4180         if (r < 0)
4181                 goto out_free;
4182
4183         r = -EFAULT;
4184         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4185                 goto out_free;
4186
4187         r = n;
4188
4189 out_free:
4190         kfree(entries);
4191 out:
4192         return r;
4193 }
4194
4195 static inline bool kvm_can_mwait_in_guest(void)
4196 {
4197         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4198                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4199                 boot_cpu_has(X86_FEATURE_ARAT);
4200 }
4201
4202 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4203                                             struct kvm_cpuid2 __user *cpuid_arg)
4204 {
4205         struct kvm_cpuid2 cpuid;
4206         int r;
4207
4208         r = -EFAULT;
4209         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4210                 return r;
4211
4212         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4213         if (r)
4214                 return r;
4215
4216         r = -EFAULT;
4217         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4218                 return r;
4219
4220         return 0;
4221 }
4222
4223 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4224 {
4225         int r = 0;
4226
4227         switch (ext) {
4228         case KVM_CAP_IRQCHIP:
4229         case KVM_CAP_HLT:
4230         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4231         case KVM_CAP_SET_TSS_ADDR:
4232         case KVM_CAP_EXT_CPUID:
4233         case KVM_CAP_EXT_EMUL_CPUID:
4234         case KVM_CAP_CLOCKSOURCE:
4235         case KVM_CAP_PIT:
4236         case KVM_CAP_NOP_IO_DELAY:
4237         case KVM_CAP_MP_STATE:
4238         case KVM_CAP_SYNC_MMU:
4239         case KVM_CAP_USER_NMI:
4240         case KVM_CAP_REINJECT_CONTROL:
4241         case KVM_CAP_IRQ_INJECT_STATUS:
4242         case KVM_CAP_IOEVENTFD:
4243         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4244         case KVM_CAP_PIT2:
4245         case KVM_CAP_PIT_STATE2:
4246         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4247         case KVM_CAP_VCPU_EVENTS:
4248         case KVM_CAP_HYPERV:
4249         case KVM_CAP_HYPERV_VAPIC:
4250         case KVM_CAP_HYPERV_SPIN:
4251         case KVM_CAP_HYPERV_SYNIC:
4252         case KVM_CAP_HYPERV_SYNIC2:
4253         case KVM_CAP_HYPERV_VP_INDEX:
4254         case KVM_CAP_HYPERV_EVENTFD:
4255         case KVM_CAP_HYPERV_TLBFLUSH:
4256         case KVM_CAP_HYPERV_SEND_IPI:
4257         case KVM_CAP_HYPERV_CPUID:
4258         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4259         case KVM_CAP_SYS_HYPERV_CPUID:
4260         case KVM_CAP_PCI_SEGMENT:
4261         case KVM_CAP_DEBUGREGS:
4262         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4263         case KVM_CAP_XSAVE:
4264         case KVM_CAP_ASYNC_PF:
4265         case KVM_CAP_ASYNC_PF_INT:
4266         case KVM_CAP_GET_TSC_KHZ:
4267         case KVM_CAP_KVMCLOCK_CTRL:
4268         case KVM_CAP_READONLY_MEM:
4269         case KVM_CAP_HYPERV_TIME:
4270         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4271         case KVM_CAP_TSC_DEADLINE_TIMER:
4272         case KVM_CAP_DISABLE_QUIRKS:
4273         case KVM_CAP_SET_BOOT_CPU_ID:
4274         case KVM_CAP_SPLIT_IRQCHIP:
4275         case KVM_CAP_IMMEDIATE_EXIT:
4276         case KVM_CAP_PMU_EVENT_FILTER:
4277         case KVM_CAP_GET_MSR_FEATURES:
4278         case KVM_CAP_MSR_PLATFORM_INFO:
4279         case KVM_CAP_EXCEPTION_PAYLOAD:
4280         case KVM_CAP_SET_GUEST_DEBUG:
4281         case KVM_CAP_LAST_CPU:
4282         case KVM_CAP_X86_USER_SPACE_MSR:
4283         case KVM_CAP_X86_MSR_FILTER:
4284         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4285 #ifdef CONFIG_X86_SGX_KVM
4286         case KVM_CAP_SGX_ATTRIBUTE:
4287 #endif
4288         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4289         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4290         case KVM_CAP_SREGS2:
4291         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4292         case KVM_CAP_VCPU_ATTRIBUTES:
4293         case KVM_CAP_SYS_ATTRIBUTES:
4294         case KVM_CAP_VAPIC:
4295         case KVM_CAP_ENABLE_CAP:
4296                 r = 1;
4297                 break;
4298         case KVM_CAP_EXIT_HYPERCALL:
4299                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4300                 break;
4301         case KVM_CAP_SET_GUEST_DEBUG2:
4302                 return KVM_GUESTDBG_VALID_MASK;
4303 #ifdef CONFIG_KVM_XEN
4304         case KVM_CAP_XEN_HVM:
4305                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4306                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4307                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4308                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4309                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4310                 if (sched_info_on())
4311                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4312                 break;
4313 #endif
4314         case KVM_CAP_SYNC_REGS:
4315                 r = KVM_SYNC_X86_VALID_FIELDS;
4316                 break;
4317         case KVM_CAP_ADJUST_CLOCK:
4318                 r = KVM_CLOCK_VALID_FLAGS;
4319                 break;
4320         case KVM_CAP_X86_DISABLE_EXITS:
4321                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4322                       KVM_X86_DISABLE_EXITS_CSTATE;
4323                 if(kvm_can_mwait_in_guest())
4324                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4325                 break;
4326         case KVM_CAP_X86_SMM:
4327                 /* SMBASE is usually relocated above 1M on modern chipsets,
4328                  * and SMM handlers might indeed rely on 4G segment limits,
4329                  * so do not report SMM to be available if real mode is
4330                  * emulated via vm86 mode.  Still, do not go to great lengths
4331                  * to avoid userspace's usage of the feature, because it is a
4332                  * fringe case that is not enabled except via specific settings
4333                  * of the module parameters.
4334                  */
4335                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4336                 break;
4337         case KVM_CAP_NR_VCPUS:
4338                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4339                 break;
4340         case KVM_CAP_MAX_VCPUS:
4341                 r = KVM_MAX_VCPUS;
4342                 break;
4343         case KVM_CAP_MAX_VCPU_ID:
4344                 r = KVM_MAX_VCPU_IDS;
4345                 break;
4346         case KVM_CAP_PV_MMU:    /* obsolete */
4347                 r = 0;
4348                 break;
4349         case KVM_CAP_MCE:
4350                 r = KVM_MAX_MCE_BANKS;
4351                 break;
4352         case KVM_CAP_XCRS:
4353                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4354                 break;
4355         case KVM_CAP_TSC_CONTROL:
4356         case KVM_CAP_VM_TSC_CONTROL:
4357                 r = kvm_has_tsc_control;
4358                 break;
4359         case KVM_CAP_X2APIC_API:
4360                 r = KVM_X2APIC_API_VALID_FLAGS;
4361                 break;
4362         case KVM_CAP_NESTED_STATE:
4363                 r = kvm_x86_ops.nested_ops->get_state ?
4364                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4365                 break;
4366         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4367                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4368                 break;
4369         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4370                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4371                 break;
4372         case KVM_CAP_SMALLER_MAXPHYADDR:
4373                 r = (int) allow_smaller_maxphyaddr;
4374                 break;
4375         case KVM_CAP_STEAL_TIME:
4376                 r = sched_info_on();
4377                 break;
4378         case KVM_CAP_X86_BUS_LOCK_EXIT:
4379                 if (kvm_has_bus_lock_exit)
4380                         r = KVM_BUS_LOCK_DETECTION_OFF |
4381                             KVM_BUS_LOCK_DETECTION_EXIT;
4382                 else
4383                         r = 0;
4384                 break;
4385         case KVM_CAP_XSAVE2: {
4386                 u64 guest_perm = xstate_get_guest_group_perm();
4387
4388                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4389                 if (r < sizeof(struct kvm_xsave))
4390                         r = sizeof(struct kvm_xsave);
4391                 break;
4392         case KVM_CAP_PMU_CAPABILITY:
4393                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4394                 break;
4395         }
4396         case KVM_CAP_DISABLE_QUIRKS2:
4397                 r = KVM_X86_VALID_QUIRKS;
4398                 break;
4399         default:
4400                 break;
4401         }
4402         return r;
4403 }
4404
4405 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4406 {
4407         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4408
4409         if ((u64)(unsigned long)uaddr != attr->addr)
4410                 return ERR_PTR_USR(-EFAULT);
4411         return uaddr;
4412 }
4413
4414 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4415 {
4416         u64 __user *uaddr = kvm_get_attr_addr(attr);
4417
4418         if (attr->group)
4419                 return -ENXIO;
4420
4421         if (IS_ERR(uaddr))
4422                 return PTR_ERR(uaddr);
4423
4424         switch (attr->attr) {
4425         case KVM_X86_XCOMP_GUEST_SUPP:
4426                 if (put_user(supported_xcr0, uaddr))
4427                         return -EFAULT;
4428                 return 0;
4429         default:
4430                 return -ENXIO;
4431                 break;
4432         }
4433 }
4434
4435 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4436 {
4437         if (attr->group)
4438                 return -ENXIO;
4439
4440         switch (attr->attr) {
4441         case KVM_X86_XCOMP_GUEST_SUPP:
4442                 return 0;
4443         default:
4444                 return -ENXIO;
4445         }
4446 }
4447
4448 long kvm_arch_dev_ioctl(struct file *filp,
4449                         unsigned int ioctl, unsigned long arg)
4450 {
4451         void __user *argp = (void __user *)arg;
4452         long r;
4453
4454         switch (ioctl) {
4455         case KVM_GET_MSR_INDEX_LIST: {
4456                 struct kvm_msr_list __user *user_msr_list = argp;
4457                 struct kvm_msr_list msr_list;
4458                 unsigned n;
4459
4460                 r = -EFAULT;
4461                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4462                         goto out;
4463                 n = msr_list.nmsrs;
4464                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4465                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4466                         goto out;
4467                 r = -E2BIG;
4468                 if (n < msr_list.nmsrs)
4469                         goto out;
4470                 r = -EFAULT;
4471                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4472                                  num_msrs_to_save * sizeof(u32)))
4473                         goto out;
4474                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4475                                  &emulated_msrs,
4476                                  num_emulated_msrs * sizeof(u32)))
4477                         goto out;
4478                 r = 0;
4479                 break;
4480         }
4481         case KVM_GET_SUPPORTED_CPUID:
4482         case KVM_GET_EMULATED_CPUID: {
4483                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4484                 struct kvm_cpuid2 cpuid;
4485
4486                 r = -EFAULT;
4487                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4488                         goto out;
4489
4490                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4491                                             ioctl);
4492                 if (r)
4493                         goto out;
4494
4495                 r = -EFAULT;
4496                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4497                         goto out;
4498                 r = 0;
4499                 break;
4500         }
4501         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4502                 r = -EFAULT;
4503                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4504                                  sizeof(kvm_mce_cap_supported)))
4505                         goto out;
4506                 r = 0;
4507                 break;
4508         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4509                 struct kvm_msr_list __user *user_msr_list = argp;
4510                 struct kvm_msr_list msr_list;
4511                 unsigned int n;
4512
4513                 r = -EFAULT;
4514                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4515                         goto out;
4516                 n = msr_list.nmsrs;
4517                 msr_list.nmsrs = num_msr_based_features;
4518                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4519                         goto out;
4520                 r = -E2BIG;
4521                 if (n < msr_list.nmsrs)
4522                         goto out;
4523                 r = -EFAULT;
4524                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4525                                  num_msr_based_features * sizeof(u32)))
4526                         goto out;
4527                 r = 0;
4528                 break;
4529         }
4530         case KVM_GET_MSRS:
4531                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4532                 break;
4533         case KVM_GET_SUPPORTED_HV_CPUID:
4534                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4535                 break;
4536         case KVM_GET_DEVICE_ATTR: {
4537                 struct kvm_device_attr attr;
4538                 r = -EFAULT;
4539                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4540                         break;
4541                 r = kvm_x86_dev_get_attr(&attr);
4542                 break;
4543         }
4544         case KVM_HAS_DEVICE_ATTR: {
4545                 struct kvm_device_attr attr;
4546                 r = -EFAULT;
4547                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4548                         break;
4549                 r = kvm_x86_dev_has_attr(&attr);
4550                 break;
4551         }
4552         default:
4553                 r = -EINVAL;
4554                 break;
4555         }
4556 out:
4557         return r;
4558 }
4559
4560 static void wbinvd_ipi(void *garbage)
4561 {
4562         wbinvd();
4563 }
4564
4565 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4566 {
4567         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4568 }
4569
4570 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4571 {
4572         /* Address WBINVD may be executed by guest */
4573         if (need_emulate_wbinvd(vcpu)) {
4574                 if (static_call(kvm_x86_has_wbinvd_exit)())
4575                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4576                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4577                         smp_call_function_single(vcpu->cpu,
4578                                         wbinvd_ipi, NULL, 1);
4579         }
4580
4581         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4582
4583         /* Save host pkru register if supported */
4584         vcpu->arch.host_pkru = read_pkru();
4585
4586         /* Apply any externally detected TSC adjustments (due to suspend) */
4587         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4588                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4589                 vcpu->arch.tsc_offset_adjustment = 0;
4590                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4591         }
4592
4593         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4594                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4595                                 rdtsc() - vcpu->arch.last_host_tsc;
4596                 if (tsc_delta < 0)
4597                         mark_tsc_unstable("KVM discovered backwards TSC");
4598
4599                 if (kvm_check_tsc_unstable()) {
4600                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4601                                                 vcpu->arch.last_guest_tsc);
4602                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4603                         vcpu->arch.tsc_catchup = 1;
4604                 }
4605
4606                 if (kvm_lapic_hv_timer_in_use(vcpu))
4607                         kvm_lapic_restart_hv_timer(vcpu);
4608
4609                 /*
4610                  * On a host with synchronized TSC, there is no need to update
4611                  * kvmclock on vcpu->cpu migration
4612                  */
4613                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4614                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4615                 if (vcpu->cpu != cpu)
4616                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4617                 vcpu->cpu = cpu;
4618         }
4619
4620         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4621 }
4622
4623 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4624 {
4625         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4626         struct kvm_steal_time __user *st;
4627         struct kvm_memslots *slots;
4628         static const u8 preempted = KVM_VCPU_PREEMPTED;
4629
4630         /*
4631          * The vCPU can be marked preempted if and only if the VM-Exit was on
4632          * an instruction boundary and will not trigger guest emulation of any
4633          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4634          * when this is true, for example allowing the vCPU to be marked
4635          * preempted if and only if the VM-Exit was due to a host interrupt.
4636          */
4637         if (!vcpu->arch.at_instruction_boundary) {
4638                 vcpu->stat.preemption_other++;
4639                 return;
4640         }
4641
4642         vcpu->stat.preemption_reported++;
4643         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4644                 return;
4645
4646         if (vcpu->arch.st.preempted)
4647                 return;
4648
4649         /* This happens on process exit */
4650         if (unlikely(current->mm != vcpu->kvm->mm))
4651                 return;
4652
4653         slots = kvm_memslots(vcpu->kvm);
4654
4655         if (unlikely(slots->generation != ghc->generation ||
4656                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4657                 return;
4658
4659         st = (struct kvm_steal_time __user *)ghc->hva;
4660         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4661
4662         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4663                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4664
4665         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4666 }
4667
4668 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4669 {
4670         int idx;
4671
4672         if (vcpu->preempted) {
4673                 if (!vcpu->arch.guest_state_protected)
4674                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4675
4676                 /*
4677                  * Take the srcu lock as memslots will be accessed to check the gfn
4678                  * cache generation against the memslots generation.
4679                  */
4680                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4681                 if (kvm_xen_msr_enabled(vcpu->kvm))
4682                         kvm_xen_runstate_set_preempted(vcpu);
4683                 else
4684                         kvm_steal_time_set_preempted(vcpu);
4685                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4686         }
4687
4688         static_call(kvm_x86_vcpu_put)(vcpu);
4689         vcpu->arch.last_host_tsc = rdtsc();
4690 }
4691
4692 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4693                                     struct kvm_lapic_state *s)
4694 {
4695         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4696
4697         return kvm_apic_get_state(vcpu, s);
4698 }
4699
4700 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4701                                     struct kvm_lapic_state *s)
4702 {
4703         int r;
4704
4705         r = kvm_apic_set_state(vcpu, s);
4706         if (r)
4707                 return r;
4708         update_cr8_intercept(vcpu);
4709
4710         return 0;
4711 }
4712
4713 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4714 {
4715         /*
4716          * We can accept userspace's request for interrupt injection
4717          * as long as we have a place to store the interrupt number.
4718          * The actual injection will happen when the CPU is able to
4719          * deliver the interrupt.
4720          */
4721         if (kvm_cpu_has_extint(vcpu))
4722                 return false;
4723
4724         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4725         return (!lapic_in_kernel(vcpu) ||
4726                 kvm_apic_accept_pic_intr(vcpu));
4727 }
4728
4729 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4730 {
4731         /*
4732          * Do not cause an interrupt window exit if an exception
4733          * is pending or an event needs reinjection; userspace
4734          * might want to inject the interrupt manually using KVM_SET_REGS
4735          * or KVM_SET_SREGS.  For that to work, we must be at an
4736          * instruction boundary and with no events half-injected.
4737          */
4738         return (kvm_arch_interrupt_allowed(vcpu) &&
4739                 kvm_cpu_accept_dm_intr(vcpu) &&
4740                 !kvm_event_needs_reinjection(vcpu) &&
4741                 !vcpu->arch.exception.pending);
4742 }
4743
4744 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4745                                     struct kvm_interrupt *irq)
4746 {
4747         if (irq->irq >= KVM_NR_INTERRUPTS)
4748                 return -EINVAL;
4749
4750         if (!irqchip_in_kernel(vcpu->kvm)) {
4751                 kvm_queue_interrupt(vcpu, irq->irq, false);
4752                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4753                 return 0;
4754         }
4755
4756         /*
4757          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4758          * fail for in-kernel 8259.
4759          */
4760         if (pic_in_kernel(vcpu->kvm))
4761                 return -ENXIO;
4762
4763         if (vcpu->arch.pending_external_vector != -1)
4764                 return -EEXIST;
4765
4766         vcpu->arch.pending_external_vector = irq->irq;
4767         kvm_make_request(KVM_REQ_EVENT, vcpu);
4768         return 0;
4769 }
4770
4771 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4772 {
4773         kvm_inject_nmi(vcpu);
4774
4775         return 0;
4776 }
4777
4778 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4779 {
4780         kvm_make_request(KVM_REQ_SMI, vcpu);
4781
4782         return 0;
4783 }
4784
4785 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4786                                            struct kvm_tpr_access_ctl *tac)
4787 {
4788         if (tac->flags)
4789                 return -EINVAL;
4790         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4791         return 0;
4792 }
4793
4794 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4795                                         u64 mcg_cap)
4796 {
4797         int r;
4798         unsigned bank_num = mcg_cap & 0xff, bank;
4799
4800         r = -EINVAL;
4801         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4802                 goto out;
4803         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4804                 goto out;
4805         r = 0;
4806         vcpu->arch.mcg_cap = mcg_cap;
4807         /* Init IA32_MCG_CTL to all 1s */
4808         if (mcg_cap & MCG_CTL_P)
4809                 vcpu->arch.mcg_ctl = ~(u64)0;
4810         /* Init IA32_MCi_CTL to all 1s */
4811         for (bank = 0; bank < bank_num; bank++)
4812                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4813
4814         static_call(kvm_x86_setup_mce)(vcpu);
4815 out:
4816         return r;
4817 }
4818
4819 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4820                                       struct kvm_x86_mce *mce)
4821 {
4822         u64 mcg_cap = vcpu->arch.mcg_cap;
4823         unsigned bank_num = mcg_cap & 0xff;
4824         u64 *banks = vcpu->arch.mce_banks;
4825
4826         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4827                 return -EINVAL;
4828         /*
4829          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4830          * reporting is disabled
4831          */
4832         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4833             vcpu->arch.mcg_ctl != ~(u64)0)
4834                 return 0;
4835         banks += 4 * mce->bank;
4836         /*
4837          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4838          * reporting is disabled for the bank
4839          */
4840         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4841                 return 0;
4842         if (mce->status & MCI_STATUS_UC) {
4843                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4844                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4845                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4846                         return 0;
4847                 }
4848                 if (banks[1] & MCI_STATUS_VAL)
4849                         mce->status |= MCI_STATUS_OVER;
4850                 banks[2] = mce->addr;
4851                 banks[3] = mce->misc;
4852                 vcpu->arch.mcg_status = mce->mcg_status;
4853                 banks[1] = mce->status;
4854                 kvm_queue_exception(vcpu, MC_VECTOR);
4855         } else if (!(banks[1] & MCI_STATUS_VAL)
4856                    || !(banks[1] & MCI_STATUS_UC)) {
4857                 if (banks[1] & MCI_STATUS_VAL)
4858                         mce->status |= MCI_STATUS_OVER;
4859                 banks[2] = mce->addr;
4860                 banks[3] = mce->misc;
4861                 banks[1] = mce->status;
4862         } else
4863                 banks[1] |= MCI_STATUS_OVER;
4864         return 0;
4865 }
4866
4867 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4868                                                struct kvm_vcpu_events *events)
4869 {
4870         process_nmi(vcpu);
4871
4872         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4873                 process_smi(vcpu);
4874
4875         /*
4876          * In guest mode, payload delivery should be deferred,
4877          * so that the L1 hypervisor can intercept #PF before
4878          * CR2 is modified (or intercept #DB before DR6 is
4879          * modified under nVMX). Unless the per-VM capability,
4880          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4881          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4882          * opportunistically defer the exception payload, deliver it if the
4883          * capability hasn't been requested before processing a
4884          * KVM_GET_VCPU_EVENTS.
4885          */
4886         if (!vcpu->kvm->arch.exception_payload_enabled &&
4887             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4888                 kvm_deliver_exception_payload(vcpu);
4889
4890         /*
4891          * The API doesn't provide the instruction length for software
4892          * exceptions, so don't report them. As long as the guest RIP
4893          * isn't advanced, we should expect to encounter the exception
4894          * again.
4895          */
4896         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4897                 events->exception.injected = 0;
4898                 events->exception.pending = 0;
4899         } else {
4900                 events->exception.injected = vcpu->arch.exception.injected;
4901                 events->exception.pending = vcpu->arch.exception.pending;
4902                 /*
4903                  * For ABI compatibility, deliberately conflate
4904                  * pending and injected exceptions when
4905                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4906                  */
4907                 if (!vcpu->kvm->arch.exception_payload_enabled)
4908                         events->exception.injected |=
4909                                 vcpu->arch.exception.pending;
4910         }
4911         events->exception.nr = vcpu->arch.exception.nr;
4912         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4913         events->exception.error_code = vcpu->arch.exception.error_code;
4914         events->exception_has_payload = vcpu->arch.exception.has_payload;
4915         events->exception_payload = vcpu->arch.exception.payload;
4916
4917         events->interrupt.injected =
4918                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4919         events->interrupt.nr = vcpu->arch.interrupt.nr;
4920         events->interrupt.soft = 0;
4921         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4922
4923         events->nmi.injected = vcpu->arch.nmi_injected;
4924         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4925         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4926         events->nmi.pad = 0;
4927
4928         events->sipi_vector = 0; /* never valid when reporting to user space */
4929
4930         events->smi.smm = is_smm(vcpu);
4931         events->smi.pending = vcpu->arch.smi_pending;
4932         events->smi.smm_inside_nmi =
4933                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4934         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4935
4936         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4937                          | KVM_VCPUEVENT_VALID_SHADOW
4938                          | KVM_VCPUEVENT_VALID_SMM);
4939         if (vcpu->kvm->arch.exception_payload_enabled)
4940                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4941
4942         memset(&events->reserved, 0, sizeof(events->reserved));
4943 }
4944
4945 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4946
4947 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4948                                               struct kvm_vcpu_events *events)
4949 {
4950         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4951                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4952                               | KVM_VCPUEVENT_VALID_SHADOW
4953                               | KVM_VCPUEVENT_VALID_SMM
4954                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4955                 return -EINVAL;
4956
4957         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4958                 if (!vcpu->kvm->arch.exception_payload_enabled)
4959                         return -EINVAL;
4960                 if (events->exception.pending)
4961                         events->exception.injected = 0;
4962                 else
4963                         events->exception_has_payload = 0;
4964         } else {
4965                 events->exception.pending = 0;
4966                 events->exception_has_payload = 0;
4967         }
4968
4969         if ((events->exception.injected || events->exception.pending) &&
4970             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4971                 return -EINVAL;
4972
4973         /* INITs are latched while in SMM */
4974         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4975             (events->smi.smm || events->smi.pending) &&
4976             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4977                 return -EINVAL;
4978
4979         process_nmi(vcpu);
4980         vcpu->arch.exception.injected = events->exception.injected;
4981         vcpu->arch.exception.pending = events->exception.pending;
4982         vcpu->arch.exception.nr = events->exception.nr;
4983         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4984         vcpu->arch.exception.error_code = events->exception.error_code;
4985         vcpu->arch.exception.has_payload = events->exception_has_payload;
4986         vcpu->arch.exception.payload = events->exception_payload;
4987
4988         vcpu->arch.interrupt.injected = events->interrupt.injected;
4989         vcpu->arch.interrupt.nr = events->interrupt.nr;
4990         vcpu->arch.interrupt.soft = events->interrupt.soft;
4991         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4992                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4993                                                 events->interrupt.shadow);
4994
4995         vcpu->arch.nmi_injected = events->nmi.injected;
4996         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4997                 vcpu->arch.nmi_pending = events->nmi.pending;
4998         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4999
5000         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5001             lapic_in_kernel(vcpu))
5002                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5003
5004         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5005                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5006                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
5007                         kvm_smm_changed(vcpu, events->smi.smm);
5008                 }
5009
5010                 vcpu->arch.smi_pending = events->smi.pending;
5011
5012                 if (events->smi.smm) {
5013                         if (events->smi.smm_inside_nmi)
5014                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5015                         else
5016                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5017                 }
5018
5019                 if (lapic_in_kernel(vcpu)) {
5020                         if (events->smi.latched_init)
5021                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5022                         else
5023                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5024                 }
5025         }
5026
5027         kvm_make_request(KVM_REQ_EVENT, vcpu);
5028
5029         return 0;
5030 }
5031
5032 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5033                                              struct kvm_debugregs *dbgregs)
5034 {
5035         unsigned long val;
5036
5037         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5038         kvm_get_dr(vcpu, 6, &val);
5039         dbgregs->dr6 = val;
5040         dbgregs->dr7 = vcpu->arch.dr7;
5041         dbgregs->flags = 0;
5042         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5043 }
5044
5045 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5046                                             struct kvm_debugregs *dbgregs)
5047 {
5048         if (dbgregs->flags)
5049                 return -EINVAL;
5050
5051         if (!kvm_dr6_valid(dbgregs->dr6))
5052                 return -EINVAL;
5053         if (!kvm_dr7_valid(dbgregs->dr7))
5054                 return -EINVAL;
5055
5056         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5057         kvm_update_dr0123(vcpu);
5058         vcpu->arch.dr6 = dbgregs->dr6;
5059         vcpu->arch.dr7 = dbgregs->dr7;
5060         kvm_update_dr7(vcpu);
5061
5062         return 0;
5063 }
5064
5065 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5066                                          struct kvm_xsave *guest_xsave)
5067 {
5068         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5069                 return;
5070
5071         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5072                                        guest_xsave->region,
5073                                        sizeof(guest_xsave->region),
5074                                        vcpu->arch.pkru);
5075 }
5076
5077 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5078                                           u8 *state, unsigned int size)
5079 {
5080         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5081                 return;
5082
5083         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5084                                        state, size, vcpu->arch.pkru);
5085 }
5086
5087 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5088                                         struct kvm_xsave *guest_xsave)
5089 {
5090         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5091                 return 0;
5092
5093         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5094                                               guest_xsave->region,
5095                                               supported_xcr0, &vcpu->arch.pkru);
5096 }
5097
5098 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5099                                         struct kvm_xcrs *guest_xcrs)
5100 {
5101         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5102                 guest_xcrs->nr_xcrs = 0;
5103                 return;
5104         }
5105
5106         guest_xcrs->nr_xcrs = 1;
5107         guest_xcrs->flags = 0;
5108         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5109         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5110 }
5111
5112 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5113                                        struct kvm_xcrs *guest_xcrs)
5114 {
5115         int i, r = 0;
5116
5117         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5118                 return -EINVAL;
5119
5120         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5121                 return -EINVAL;
5122
5123         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5124                 /* Only support XCR0 currently */
5125                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5126                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5127                                 guest_xcrs->xcrs[i].value);
5128                         break;
5129                 }
5130         if (r)
5131                 r = -EINVAL;
5132         return r;
5133 }
5134
5135 /*
5136  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5137  * stopped by the hypervisor.  This function will be called from the host only.
5138  * EINVAL is returned when the host attempts to set the flag for a guest that
5139  * does not support pv clocks.
5140  */
5141 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5142 {
5143         if (!vcpu->arch.pv_time.active)
5144                 return -EINVAL;
5145         vcpu->arch.pvclock_set_guest_stopped_request = true;
5146         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5147         return 0;
5148 }
5149
5150 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5151                                  struct kvm_device_attr *attr)
5152 {
5153         int r;
5154
5155         switch (attr->attr) {
5156         case KVM_VCPU_TSC_OFFSET:
5157                 r = 0;
5158                 break;
5159         default:
5160                 r = -ENXIO;
5161         }
5162
5163         return r;
5164 }
5165
5166 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5167                                  struct kvm_device_attr *attr)
5168 {
5169         u64 __user *uaddr = kvm_get_attr_addr(attr);
5170         int r;
5171
5172         if (IS_ERR(uaddr))
5173                 return PTR_ERR(uaddr);
5174
5175         switch (attr->attr) {
5176         case KVM_VCPU_TSC_OFFSET:
5177                 r = -EFAULT;
5178                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5179                         break;
5180                 r = 0;
5181                 break;
5182         default:
5183                 r = -ENXIO;
5184         }
5185
5186         return r;
5187 }
5188
5189 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5190                                  struct kvm_device_attr *attr)
5191 {
5192         u64 __user *uaddr = kvm_get_attr_addr(attr);
5193         struct kvm *kvm = vcpu->kvm;
5194         int r;
5195
5196         if (IS_ERR(uaddr))
5197                 return PTR_ERR(uaddr);
5198
5199         switch (attr->attr) {
5200         case KVM_VCPU_TSC_OFFSET: {
5201                 u64 offset, tsc, ns;
5202                 unsigned long flags;
5203                 bool matched;
5204
5205                 r = -EFAULT;
5206                 if (get_user(offset, uaddr))
5207                         break;
5208
5209                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5210
5211                 matched = (vcpu->arch.virtual_tsc_khz &&
5212                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5213                            kvm->arch.last_tsc_offset == offset);
5214
5215                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5216                 ns = get_kvmclock_base_ns();
5217
5218                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5219                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5220
5221                 r = 0;
5222                 break;
5223         }
5224         default:
5225                 r = -ENXIO;
5226         }
5227
5228         return r;
5229 }
5230
5231 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5232                                       unsigned int ioctl,
5233                                       void __user *argp)
5234 {
5235         struct kvm_device_attr attr;
5236         int r;
5237
5238         if (copy_from_user(&attr, argp, sizeof(attr)))
5239                 return -EFAULT;
5240
5241         if (attr.group != KVM_VCPU_TSC_CTRL)
5242                 return -ENXIO;
5243
5244         switch (ioctl) {
5245         case KVM_HAS_DEVICE_ATTR:
5246                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5247                 break;
5248         case KVM_GET_DEVICE_ATTR:
5249                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5250                 break;
5251         case KVM_SET_DEVICE_ATTR:
5252                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5253                 break;
5254         }
5255
5256         return r;
5257 }
5258
5259 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5260                                      struct kvm_enable_cap *cap)
5261 {
5262         int r;
5263         uint16_t vmcs_version;
5264         void __user *user_ptr;
5265
5266         if (cap->flags)
5267                 return -EINVAL;
5268
5269         switch (cap->cap) {
5270         case KVM_CAP_HYPERV_SYNIC2:
5271                 if (cap->args[0])
5272                         return -EINVAL;
5273                 fallthrough;
5274
5275         case KVM_CAP_HYPERV_SYNIC:
5276                 if (!irqchip_in_kernel(vcpu->kvm))
5277                         return -EINVAL;
5278                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5279                                              KVM_CAP_HYPERV_SYNIC2);
5280         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5281                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5282                         return -ENOTTY;
5283                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5284                 if (!r) {
5285                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5286                         if (copy_to_user(user_ptr, &vmcs_version,
5287                                          sizeof(vmcs_version)))
5288                                 r = -EFAULT;
5289                 }
5290                 return r;
5291         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5292                 if (!kvm_x86_ops.enable_direct_tlbflush)
5293                         return -ENOTTY;
5294
5295                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5296
5297         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5298                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5299
5300         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5301                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5302                 if (vcpu->arch.pv_cpuid.enforce)
5303                         kvm_update_pv_runtime(vcpu);
5304
5305                 return 0;
5306         default:
5307                 return -EINVAL;
5308         }
5309 }
5310
5311 long kvm_arch_vcpu_ioctl(struct file *filp,
5312                          unsigned int ioctl, unsigned long arg)
5313 {
5314         struct kvm_vcpu *vcpu = filp->private_data;
5315         void __user *argp = (void __user *)arg;
5316         int r;
5317         union {
5318                 struct kvm_sregs2 *sregs2;
5319                 struct kvm_lapic_state *lapic;
5320                 struct kvm_xsave *xsave;
5321                 struct kvm_xcrs *xcrs;
5322                 void *buffer;
5323         } u;
5324
5325         vcpu_load(vcpu);
5326
5327         u.buffer = NULL;
5328         switch (ioctl) {
5329         case KVM_GET_LAPIC: {
5330                 r = -EINVAL;
5331                 if (!lapic_in_kernel(vcpu))
5332                         goto out;
5333                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5334                                 GFP_KERNEL_ACCOUNT);
5335
5336                 r = -ENOMEM;
5337                 if (!u.lapic)
5338                         goto out;
5339                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5340                 if (r)
5341                         goto out;
5342                 r = -EFAULT;
5343                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5344                         goto out;
5345                 r = 0;
5346                 break;
5347         }
5348         case KVM_SET_LAPIC: {
5349                 r = -EINVAL;
5350                 if (!lapic_in_kernel(vcpu))
5351                         goto out;
5352                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5353                 if (IS_ERR(u.lapic)) {
5354                         r = PTR_ERR(u.lapic);
5355                         goto out_nofree;
5356                 }
5357
5358                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5359                 break;
5360         }
5361         case KVM_INTERRUPT: {
5362                 struct kvm_interrupt irq;
5363
5364                 r = -EFAULT;
5365                 if (copy_from_user(&irq, argp, sizeof(irq)))
5366                         goto out;
5367                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5368                 break;
5369         }
5370         case KVM_NMI: {
5371                 r = kvm_vcpu_ioctl_nmi(vcpu);
5372                 break;
5373         }
5374         case KVM_SMI: {
5375                 r = kvm_vcpu_ioctl_smi(vcpu);
5376                 break;
5377         }
5378         case KVM_SET_CPUID: {
5379                 struct kvm_cpuid __user *cpuid_arg = argp;
5380                 struct kvm_cpuid cpuid;
5381
5382                 r = -EFAULT;
5383                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5384                         goto out;
5385                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5386                 break;
5387         }
5388         case KVM_SET_CPUID2: {
5389                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5390                 struct kvm_cpuid2 cpuid;
5391
5392                 r = -EFAULT;
5393                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5394                         goto out;
5395                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5396                                               cpuid_arg->entries);
5397                 break;
5398         }
5399         case KVM_GET_CPUID2: {
5400                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5401                 struct kvm_cpuid2 cpuid;
5402
5403                 r = -EFAULT;
5404                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5405                         goto out;
5406                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5407                                               cpuid_arg->entries);
5408                 if (r)
5409                         goto out;
5410                 r = -EFAULT;
5411                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5412                         goto out;
5413                 r = 0;
5414                 break;
5415         }
5416         case KVM_GET_MSRS: {
5417                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5418                 r = msr_io(vcpu, argp, do_get_msr, 1);
5419                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5420                 break;
5421         }
5422         case KVM_SET_MSRS: {
5423                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5424                 r = msr_io(vcpu, argp, do_set_msr, 0);
5425                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5426                 break;
5427         }
5428         case KVM_TPR_ACCESS_REPORTING: {
5429                 struct kvm_tpr_access_ctl tac;
5430
5431                 r = -EFAULT;
5432                 if (copy_from_user(&tac, argp, sizeof(tac)))
5433                         goto out;
5434                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5435                 if (r)
5436                         goto out;
5437                 r = -EFAULT;
5438                 if (copy_to_user(argp, &tac, sizeof(tac)))
5439                         goto out;
5440                 r = 0;
5441                 break;
5442         };
5443         case KVM_SET_VAPIC_ADDR: {
5444                 struct kvm_vapic_addr va;
5445                 int idx;
5446
5447                 r = -EINVAL;
5448                 if (!lapic_in_kernel(vcpu))
5449                         goto out;
5450                 r = -EFAULT;
5451                 if (copy_from_user(&va, argp, sizeof(va)))
5452                         goto out;
5453                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5454                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5455                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5456                 break;
5457         }
5458         case KVM_X86_SETUP_MCE: {
5459                 u64 mcg_cap;
5460
5461                 r = -EFAULT;
5462                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5463                         goto out;
5464                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5465                 break;
5466         }
5467         case KVM_X86_SET_MCE: {
5468                 struct kvm_x86_mce mce;
5469
5470                 r = -EFAULT;
5471                 if (copy_from_user(&mce, argp, sizeof(mce)))
5472                         goto out;
5473                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5474                 break;
5475         }
5476         case KVM_GET_VCPU_EVENTS: {
5477                 struct kvm_vcpu_events events;
5478
5479                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5480
5481                 r = -EFAULT;
5482                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5483                         break;
5484                 r = 0;
5485                 break;
5486         }
5487         case KVM_SET_VCPU_EVENTS: {
5488                 struct kvm_vcpu_events events;
5489
5490                 r = -EFAULT;
5491                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5492                         break;
5493
5494                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5495                 break;
5496         }
5497         case KVM_GET_DEBUGREGS: {
5498                 struct kvm_debugregs dbgregs;
5499
5500                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5501
5502                 r = -EFAULT;
5503                 if (copy_to_user(argp, &dbgregs,
5504                                  sizeof(struct kvm_debugregs)))
5505                         break;
5506                 r = 0;
5507                 break;
5508         }
5509         case KVM_SET_DEBUGREGS: {
5510                 struct kvm_debugregs dbgregs;
5511
5512                 r = -EFAULT;
5513                 if (copy_from_user(&dbgregs, argp,
5514                                    sizeof(struct kvm_debugregs)))
5515                         break;
5516
5517                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5518                 break;
5519         }
5520         case KVM_GET_XSAVE: {
5521                 r = -EINVAL;
5522                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5523                         break;
5524
5525                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5526                 r = -ENOMEM;
5527                 if (!u.xsave)
5528                         break;
5529
5530                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5531
5532                 r = -EFAULT;
5533                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5534                         break;
5535                 r = 0;
5536                 break;
5537         }
5538         case KVM_SET_XSAVE: {
5539                 int size = vcpu->arch.guest_fpu.uabi_size;
5540
5541                 u.xsave = memdup_user(argp, size);
5542                 if (IS_ERR(u.xsave)) {
5543                         r = PTR_ERR(u.xsave);
5544                         goto out_nofree;
5545                 }
5546
5547                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5548                 break;
5549         }
5550
5551         case KVM_GET_XSAVE2: {
5552                 int size = vcpu->arch.guest_fpu.uabi_size;
5553
5554                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5555                 r = -ENOMEM;
5556                 if (!u.xsave)
5557                         break;
5558
5559                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5560
5561                 r = -EFAULT;
5562                 if (copy_to_user(argp, u.xsave, size))
5563                         break;
5564
5565                 r = 0;
5566                 break;
5567         }
5568
5569         case KVM_GET_XCRS: {
5570                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5571                 r = -ENOMEM;
5572                 if (!u.xcrs)
5573                         break;
5574
5575                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5576
5577                 r = -EFAULT;
5578                 if (copy_to_user(argp, u.xcrs,
5579                                  sizeof(struct kvm_xcrs)))
5580                         break;
5581                 r = 0;
5582                 break;
5583         }
5584         case KVM_SET_XCRS: {
5585                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5586                 if (IS_ERR(u.xcrs)) {
5587                         r = PTR_ERR(u.xcrs);
5588                         goto out_nofree;
5589                 }
5590
5591                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5592                 break;
5593         }
5594         case KVM_SET_TSC_KHZ: {
5595                 u32 user_tsc_khz;
5596
5597                 r = -EINVAL;
5598                 user_tsc_khz = (u32)arg;
5599
5600                 if (kvm_has_tsc_control &&
5601                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5602                         goto out;
5603
5604                 if (user_tsc_khz == 0)
5605                         user_tsc_khz = tsc_khz;
5606
5607                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5608                         r = 0;
5609
5610                 goto out;
5611         }
5612         case KVM_GET_TSC_KHZ: {
5613                 r = vcpu->arch.virtual_tsc_khz;
5614                 goto out;
5615         }
5616         case KVM_KVMCLOCK_CTRL: {
5617                 r = kvm_set_guest_paused(vcpu);
5618                 goto out;
5619         }
5620         case KVM_ENABLE_CAP: {
5621                 struct kvm_enable_cap cap;
5622
5623                 r = -EFAULT;
5624                 if (copy_from_user(&cap, argp, sizeof(cap)))
5625                         goto out;
5626                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5627                 break;
5628         }
5629         case KVM_GET_NESTED_STATE: {
5630                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5631                 u32 user_data_size;
5632
5633                 r = -EINVAL;
5634                 if (!kvm_x86_ops.nested_ops->get_state)
5635                         break;
5636
5637                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5638                 r = -EFAULT;
5639                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5640                         break;
5641
5642                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5643                                                      user_data_size);
5644                 if (r < 0)
5645                         break;
5646
5647                 if (r > user_data_size) {
5648                         if (put_user(r, &user_kvm_nested_state->size))
5649                                 r = -EFAULT;
5650                         else
5651                                 r = -E2BIG;
5652                         break;
5653                 }
5654
5655                 r = 0;
5656                 break;
5657         }
5658         case KVM_SET_NESTED_STATE: {
5659                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5660                 struct kvm_nested_state kvm_state;
5661                 int idx;
5662
5663                 r = -EINVAL;
5664                 if (!kvm_x86_ops.nested_ops->set_state)
5665                         break;
5666
5667                 r = -EFAULT;
5668                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5669                         break;
5670
5671                 r = -EINVAL;
5672                 if (kvm_state.size < sizeof(kvm_state))
5673                         break;
5674
5675                 if (kvm_state.flags &
5676                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5677                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5678                       | KVM_STATE_NESTED_GIF_SET))
5679                         break;
5680
5681                 /* nested_run_pending implies guest_mode.  */
5682                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5683                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5684                         break;
5685
5686                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5687                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5688                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5689                 break;
5690         }
5691         case KVM_GET_SUPPORTED_HV_CPUID:
5692                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5693                 break;
5694 #ifdef CONFIG_KVM_XEN
5695         case KVM_XEN_VCPU_GET_ATTR: {
5696                 struct kvm_xen_vcpu_attr xva;
5697
5698                 r = -EFAULT;
5699                 if (copy_from_user(&xva, argp, sizeof(xva)))
5700                         goto out;
5701                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5702                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5703                         r = -EFAULT;
5704                 break;
5705         }
5706         case KVM_XEN_VCPU_SET_ATTR: {
5707                 struct kvm_xen_vcpu_attr xva;
5708
5709                 r = -EFAULT;
5710                 if (copy_from_user(&xva, argp, sizeof(xva)))
5711                         goto out;
5712                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5713                 break;
5714         }
5715 #endif
5716         case KVM_GET_SREGS2: {
5717                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5718                 r = -ENOMEM;
5719                 if (!u.sregs2)
5720                         goto out;
5721                 __get_sregs2(vcpu, u.sregs2);
5722                 r = -EFAULT;
5723                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5724                         goto out;
5725                 r = 0;
5726                 break;
5727         }
5728         case KVM_SET_SREGS2: {
5729                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5730                 if (IS_ERR(u.sregs2)) {
5731                         r = PTR_ERR(u.sregs2);
5732                         u.sregs2 = NULL;
5733                         goto out;
5734                 }
5735                 r = __set_sregs2(vcpu, u.sregs2);
5736                 break;
5737         }
5738         case KVM_HAS_DEVICE_ATTR:
5739         case KVM_GET_DEVICE_ATTR:
5740         case KVM_SET_DEVICE_ATTR:
5741                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5742                 break;
5743         default:
5744                 r = -EINVAL;
5745         }
5746 out:
5747         kfree(u.buffer);
5748 out_nofree:
5749         vcpu_put(vcpu);
5750         return r;
5751 }
5752
5753 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5754 {
5755         return VM_FAULT_SIGBUS;
5756 }
5757
5758 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5759 {
5760         int ret;
5761
5762         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5763                 return -EINVAL;
5764         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5765         return ret;
5766 }
5767
5768 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5769                                               u64 ident_addr)
5770 {
5771         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5772 }
5773
5774 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5775                                          unsigned long kvm_nr_mmu_pages)
5776 {
5777         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5778                 return -EINVAL;
5779
5780         mutex_lock(&kvm->slots_lock);
5781
5782         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5783         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5784
5785         mutex_unlock(&kvm->slots_lock);
5786         return 0;
5787 }
5788
5789 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5790 {
5791         return kvm->arch.n_max_mmu_pages;
5792 }
5793
5794 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5795 {
5796         struct kvm_pic *pic = kvm->arch.vpic;
5797         int r;
5798
5799         r = 0;
5800         switch (chip->chip_id) {
5801         case KVM_IRQCHIP_PIC_MASTER:
5802                 memcpy(&chip->chip.pic, &pic->pics[0],
5803                         sizeof(struct kvm_pic_state));
5804                 break;
5805         case KVM_IRQCHIP_PIC_SLAVE:
5806                 memcpy(&chip->chip.pic, &pic->pics[1],
5807                         sizeof(struct kvm_pic_state));
5808                 break;
5809         case KVM_IRQCHIP_IOAPIC:
5810                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5811                 break;
5812         default:
5813                 r = -EINVAL;
5814                 break;
5815         }
5816         return r;
5817 }
5818
5819 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5820 {
5821         struct kvm_pic *pic = kvm->arch.vpic;
5822         int r;
5823
5824         r = 0;
5825         switch (chip->chip_id) {
5826         case KVM_IRQCHIP_PIC_MASTER:
5827                 spin_lock(&pic->lock);
5828                 memcpy(&pic->pics[0], &chip->chip.pic,
5829                         sizeof(struct kvm_pic_state));
5830                 spin_unlock(&pic->lock);
5831                 break;
5832         case KVM_IRQCHIP_PIC_SLAVE:
5833                 spin_lock(&pic->lock);
5834                 memcpy(&pic->pics[1], &chip->chip.pic,
5835                         sizeof(struct kvm_pic_state));
5836                 spin_unlock(&pic->lock);
5837                 break;
5838         case KVM_IRQCHIP_IOAPIC:
5839                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5840                 break;
5841         default:
5842                 r = -EINVAL;
5843                 break;
5844         }
5845         kvm_pic_update_irq(pic);
5846         return r;
5847 }
5848
5849 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5850 {
5851         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5852
5853         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5854
5855         mutex_lock(&kps->lock);
5856         memcpy(ps, &kps->channels, sizeof(*ps));
5857         mutex_unlock(&kps->lock);
5858         return 0;
5859 }
5860
5861 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5862 {
5863         int i;
5864         struct kvm_pit *pit = kvm->arch.vpit;
5865
5866         mutex_lock(&pit->pit_state.lock);
5867         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5868         for (i = 0; i < 3; i++)
5869                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5870         mutex_unlock(&pit->pit_state.lock);
5871         return 0;
5872 }
5873
5874 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5875 {
5876         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5877         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5878                 sizeof(ps->channels));
5879         ps->flags = kvm->arch.vpit->pit_state.flags;
5880         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5881         memset(&ps->reserved, 0, sizeof(ps->reserved));
5882         return 0;
5883 }
5884
5885 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5886 {
5887         int start = 0;
5888         int i;
5889         u32 prev_legacy, cur_legacy;
5890         struct kvm_pit *pit = kvm->arch.vpit;
5891
5892         mutex_lock(&pit->pit_state.lock);
5893         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5894         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5895         if (!prev_legacy && cur_legacy)
5896                 start = 1;
5897         memcpy(&pit->pit_state.channels, &ps->channels,
5898                sizeof(pit->pit_state.channels));
5899         pit->pit_state.flags = ps->flags;
5900         for (i = 0; i < 3; i++)
5901                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5902                                    start && i == 0);
5903         mutex_unlock(&pit->pit_state.lock);
5904         return 0;
5905 }
5906
5907 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5908                                  struct kvm_reinject_control *control)
5909 {
5910         struct kvm_pit *pit = kvm->arch.vpit;
5911
5912         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5913          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5914          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5915          */
5916         mutex_lock(&pit->pit_state.lock);
5917         kvm_pit_set_reinject(pit, control->pit_reinject);
5918         mutex_unlock(&pit->pit_state.lock);
5919
5920         return 0;
5921 }
5922
5923 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5924 {
5925
5926         /*
5927          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5928          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5929          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5930          * VM-Exit.
5931          */
5932         struct kvm_vcpu *vcpu;
5933         unsigned long i;
5934
5935         kvm_for_each_vcpu(i, vcpu, kvm)
5936                 kvm_vcpu_kick(vcpu);
5937 }
5938
5939 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5940                         bool line_status)
5941 {
5942         if (!irqchip_in_kernel(kvm))
5943                 return -ENXIO;
5944
5945         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5946                                         irq_event->irq, irq_event->level,
5947                                         line_status);
5948         return 0;
5949 }
5950
5951 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5952                             struct kvm_enable_cap *cap)
5953 {
5954         int r;
5955
5956         if (cap->flags)
5957                 return -EINVAL;
5958
5959         switch (cap->cap) {
5960         case KVM_CAP_DISABLE_QUIRKS2:
5961                 r = -EINVAL;
5962                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5963                         break;
5964                 fallthrough;
5965         case KVM_CAP_DISABLE_QUIRKS:
5966                 kvm->arch.disabled_quirks = cap->args[0];
5967                 r = 0;
5968                 break;
5969         case KVM_CAP_SPLIT_IRQCHIP: {
5970                 mutex_lock(&kvm->lock);
5971                 r = -EINVAL;
5972                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5973                         goto split_irqchip_unlock;
5974                 r = -EEXIST;
5975                 if (irqchip_in_kernel(kvm))
5976                         goto split_irqchip_unlock;
5977                 if (kvm->created_vcpus)
5978                         goto split_irqchip_unlock;
5979                 r = kvm_setup_empty_irq_routing(kvm);
5980                 if (r)
5981                         goto split_irqchip_unlock;
5982                 /* Pairs with irqchip_in_kernel. */
5983                 smp_wmb();
5984                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5985                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5986                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5987                 r = 0;
5988 split_irqchip_unlock:
5989                 mutex_unlock(&kvm->lock);
5990                 break;
5991         }
5992         case KVM_CAP_X2APIC_API:
5993                 r = -EINVAL;
5994                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5995                         break;
5996
5997                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5998                         kvm->arch.x2apic_format = true;
5999                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6000                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6001
6002                 r = 0;
6003                 break;
6004         case KVM_CAP_X86_DISABLE_EXITS:
6005                 r = -EINVAL;
6006                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6007                         break;
6008
6009                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6010                         kvm_can_mwait_in_guest())
6011                         kvm->arch.mwait_in_guest = true;
6012                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6013                         kvm->arch.hlt_in_guest = true;
6014                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6015                         kvm->arch.pause_in_guest = true;
6016                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6017                         kvm->arch.cstate_in_guest = true;
6018                 r = 0;
6019                 break;
6020         case KVM_CAP_MSR_PLATFORM_INFO:
6021                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6022                 r = 0;
6023                 break;
6024         case KVM_CAP_EXCEPTION_PAYLOAD:
6025                 kvm->arch.exception_payload_enabled = cap->args[0];
6026                 r = 0;
6027                 break;
6028         case KVM_CAP_X86_USER_SPACE_MSR:
6029                 kvm->arch.user_space_msr_mask = cap->args[0];
6030                 r = 0;
6031                 break;
6032         case KVM_CAP_X86_BUS_LOCK_EXIT:
6033                 r = -EINVAL;
6034                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6035                         break;
6036
6037                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6038                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6039                         break;
6040
6041                 if (kvm_has_bus_lock_exit &&
6042                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6043                         kvm->arch.bus_lock_detection_enabled = true;
6044                 r = 0;
6045                 break;
6046 #ifdef CONFIG_X86_SGX_KVM
6047         case KVM_CAP_SGX_ATTRIBUTE: {
6048                 unsigned long allowed_attributes = 0;
6049
6050                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6051                 if (r)
6052                         break;
6053
6054                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6055                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6056                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6057                         kvm->arch.sgx_provisioning_allowed = true;
6058                 else
6059                         r = -EINVAL;
6060                 break;
6061         }
6062 #endif
6063         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6064                 r = -EINVAL;
6065                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6066                         break;
6067
6068                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6069                 break;
6070         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6071                 r = -EINVAL;
6072                 if (!kvm_x86_ops.vm_move_enc_context_from)
6073                         break;
6074
6075                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6076                 break;
6077         case KVM_CAP_EXIT_HYPERCALL:
6078                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6079                         r = -EINVAL;
6080                         break;
6081                 }
6082                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6083                 r = 0;
6084                 break;
6085         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6086                 r = -EINVAL;
6087                 if (cap->args[0] & ~1)
6088                         break;
6089                 kvm->arch.exit_on_emulation_error = cap->args[0];
6090                 r = 0;
6091                 break;
6092         case KVM_CAP_PMU_CAPABILITY:
6093                 r = -EINVAL;
6094                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6095                         break;
6096
6097                 mutex_lock(&kvm->lock);
6098                 if (!kvm->created_vcpus) {
6099                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6100                         r = 0;
6101                 }
6102                 mutex_unlock(&kvm->lock);
6103                 break;
6104         default:
6105                 r = -EINVAL;
6106                 break;
6107         }
6108         return r;
6109 }
6110
6111 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6112 {
6113         struct kvm_x86_msr_filter *msr_filter;
6114
6115         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6116         if (!msr_filter)
6117                 return NULL;
6118
6119         msr_filter->default_allow = default_allow;
6120         return msr_filter;
6121 }
6122
6123 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6124 {
6125         u32 i;
6126
6127         if (!msr_filter)
6128                 return;
6129
6130         for (i = 0; i < msr_filter->count; i++)
6131                 kfree(msr_filter->ranges[i].bitmap);
6132
6133         kfree(msr_filter);
6134 }
6135
6136 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6137                               struct kvm_msr_filter_range *user_range)
6138 {
6139         unsigned long *bitmap = NULL;
6140         size_t bitmap_size;
6141
6142         if (!user_range->nmsrs)
6143                 return 0;
6144
6145         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6146                 return -EINVAL;
6147
6148         if (!user_range->flags)
6149                 return -EINVAL;
6150
6151         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6152         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6153                 return -EINVAL;
6154
6155         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6156         if (IS_ERR(bitmap))
6157                 return PTR_ERR(bitmap);
6158
6159         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6160                 .flags = user_range->flags,
6161                 .base = user_range->base,
6162                 .nmsrs = user_range->nmsrs,
6163                 .bitmap = bitmap,
6164         };
6165
6166         msr_filter->count++;
6167         return 0;
6168 }
6169
6170 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6171 {
6172         struct kvm_msr_filter __user *user_msr_filter = argp;
6173         struct kvm_x86_msr_filter *new_filter, *old_filter;
6174         struct kvm_msr_filter filter;
6175         bool default_allow;
6176         bool empty = true;
6177         int r = 0;
6178         u32 i;
6179
6180         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6181                 return -EFAULT;
6182
6183         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6184                 empty &= !filter.ranges[i].nmsrs;
6185
6186         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6187         if (empty && !default_allow)
6188                 return -EINVAL;
6189
6190         new_filter = kvm_alloc_msr_filter(default_allow);
6191         if (!new_filter)
6192                 return -ENOMEM;
6193
6194         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6195                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6196                 if (r) {
6197                         kvm_free_msr_filter(new_filter);
6198                         return r;
6199                 }
6200         }
6201
6202         mutex_lock(&kvm->lock);
6203
6204         /* The per-VM filter is protected by kvm->lock... */
6205         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6206
6207         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6208         synchronize_srcu(&kvm->srcu);
6209
6210         kvm_free_msr_filter(old_filter);
6211
6212         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6213         mutex_unlock(&kvm->lock);
6214
6215         return 0;
6216 }
6217
6218 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6219 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6220 {
6221         struct kvm_vcpu *vcpu;
6222         unsigned long i;
6223         int ret = 0;
6224
6225         mutex_lock(&kvm->lock);
6226         kvm_for_each_vcpu(i, vcpu, kvm) {
6227                 if (!vcpu->arch.pv_time.active)
6228                         continue;
6229
6230                 ret = kvm_set_guest_paused(vcpu);
6231                 if (ret) {
6232                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6233                                 vcpu->vcpu_id, ret);
6234                         break;
6235                 }
6236         }
6237         mutex_unlock(&kvm->lock);
6238
6239         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6240 }
6241
6242 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6243 {
6244         switch (state) {
6245         case PM_HIBERNATION_PREPARE:
6246         case PM_SUSPEND_PREPARE:
6247                 return kvm_arch_suspend_notifier(kvm);
6248         }
6249
6250         return NOTIFY_DONE;
6251 }
6252 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6253
6254 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6255 {
6256         struct kvm_clock_data data = { 0 };
6257
6258         get_kvmclock(kvm, &data);
6259         if (copy_to_user(argp, &data, sizeof(data)))
6260                 return -EFAULT;
6261
6262         return 0;
6263 }
6264
6265 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6266 {
6267         struct kvm_arch *ka = &kvm->arch;
6268         struct kvm_clock_data data;
6269         u64 now_raw_ns;
6270
6271         if (copy_from_user(&data, argp, sizeof(data)))
6272                 return -EFAULT;
6273
6274         /*
6275          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6276          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6277          */
6278         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6279                 return -EINVAL;
6280
6281         kvm_hv_request_tsc_page_update(kvm);
6282         kvm_start_pvclock_update(kvm);
6283         pvclock_update_vm_gtod_copy(kvm);
6284
6285         /*
6286          * This pairs with kvm_guest_time_update(): when masterclock is
6287          * in use, we use master_kernel_ns + kvmclock_offset to set
6288          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6289          * is slightly ahead) here we risk going negative on unsigned
6290          * 'system_time' when 'data.clock' is very small.
6291          */
6292         if (data.flags & KVM_CLOCK_REALTIME) {
6293                 u64 now_real_ns = ktime_get_real_ns();
6294
6295                 /*
6296                  * Avoid stepping the kvmclock backwards.
6297                  */
6298                 if (now_real_ns > data.realtime)
6299                         data.clock += now_real_ns - data.realtime;
6300         }
6301
6302         if (ka->use_master_clock)
6303                 now_raw_ns = ka->master_kernel_ns;
6304         else
6305                 now_raw_ns = get_kvmclock_base_ns();
6306         ka->kvmclock_offset = data.clock - now_raw_ns;
6307         kvm_end_pvclock_update(kvm);
6308         return 0;
6309 }
6310
6311 long kvm_arch_vm_ioctl(struct file *filp,
6312                        unsigned int ioctl, unsigned long arg)
6313 {
6314         struct kvm *kvm = filp->private_data;
6315         void __user *argp = (void __user *)arg;
6316         int r = -ENOTTY;
6317         /*
6318          * This union makes it completely explicit to gcc-3.x
6319          * that these two variables' stack usage should be
6320          * combined, not added together.
6321          */
6322         union {
6323                 struct kvm_pit_state ps;
6324                 struct kvm_pit_state2 ps2;
6325                 struct kvm_pit_config pit_config;
6326         } u;
6327
6328         switch (ioctl) {
6329         case KVM_SET_TSS_ADDR:
6330                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6331                 break;
6332         case KVM_SET_IDENTITY_MAP_ADDR: {
6333                 u64 ident_addr;
6334
6335                 mutex_lock(&kvm->lock);
6336                 r = -EINVAL;
6337                 if (kvm->created_vcpus)
6338                         goto set_identity_unlock;
6339                 r = -EFAULT;
6340                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6341                         goto set_identity_unlock;
6342                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6343 set_identity_unlock:
6344                 mutex_unlock(&kvm->lock);
6345                 break;
6346         }
6347         case KVM_SET_NR_MMU_PAGES:
6348                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6349                 break;
6350         case KVM_GET_NR_MMU_PAGES:
6351                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6352                 break;
6353         case KVM_CREATE_IRQCHIP: {
6354                 mutex_lock(&kvm->lock);
6355
6356                 r = -EEXIST;
6357                 if (irqchip_in_kernel(kvm))
6358                         goto create_irqchip_unlock;
6359
6360                 r = -EINVAL;
6361                 if (kvm->created_vcpus)
6362                         goto create_irqchip_unlock;
6363
6364                 r = kvm_pic_init(kvm);
6365                 if (r)
6366                         goto create_irqchip_unlock;
6367
6368                 r = kvm_ioapic_init(kvm);
6369                 if (r) {
6370                         kvm_pic_destroy(kvm);
6371                         goto create_irqchip_unlock;
6372                 }
6373
6374                 r = kvm_setup_default_irq_routing(kvm);
6375                 if (r) {
6376                         kvm_ioapic_destroy(kvm);
6377                         kvm_pic_destroy(kvm);
6378                         goto create_irqchip_unlock;
6379                 }
6380                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6381                 smp_wmb();
6382                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6383                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6384         create_irqchip_unlock:
6385                 mutex_unlock(&kvm->lock);
6386                 break;
6387         }
6388         case KVM_CREATE_PIT:
6389                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6390                 goto create_pit;
6391         case KVM_CREATE_PIT2:
6392                 r = -EFAULT;
6393                 if (copy_from_user(&u.pit_config, argp,
6394                                    sizeof(struct kvm_pit_config)))
6395                         goto out;
6396         create_pit:
6397                 mutex_lock(&kvm->lock);
6398                 r = -EEXIST;
6399                 if (kvm->arch.vpit)
6400                         goto create_pit_unlock;
6401                 r = -ENOMEM;
6402                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6403                 if (kvm->arch.vpit)
6404                         r = 0;
6405         create_pit_unlock:
6406                 mutex_unlock(&kvm->lock);
6407                 break;
6408         case KVM_GET_IRQCHIP: {
6409                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6410                 struct kvm_irqchip *chip;
6411
6412                 chip = memdup_user(argp, sizeof(*chip));
6413                 if (IS_ERR(chip)) {
6414                         r = PTR_ERR(chip);
6415                         goto out;
6416                 }
6417
6418                 r = -ENXIO;
6419                 if (!irqchip_kernel(kvm))
6420                         goto get_irqchip_out;
6421                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6422                 if (r)
6423                         goto get_irqchip_out;
6424                 r = -EFAULT;
6425                 if (copy_to_user(argp, chip, sizeof(*chip)))
6426                         goto get_irqchip_out;
6427                 r = 0;
6428         get_irqchip_out:
6429                 kfree(chip);
6430                 break;
6431         }
6432         case KVM_SET_IRQCHIP: {
6433                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6434                 struct kvm_irqchip *chip;
6435
6436                 chip = memdup_user(argp, sizeof(*chip));
6437                 if (IS_ERR(chip)) {
6438                         r = PTR_ERR(chip);
6439                         goto out;
6440                 }
6441
6442                 r = -ENXIO;
6443                 if (!irqchip_kernel(kvm))
6444                         goto set_irqchip_out;
6445                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6446         set_irqchip_out:
6447                 kfree(chip);
6448                 break;
6449         }
6450         case KVM_GET_PIT: {
6451                 r = -EFAULT;
6452                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6453                         goto out;
6454                 r = -ENXIO;
6455                 if (!kvm->arch.vpit)
6456                         goto out;
6457                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6458                 if (r)
6459                         goto out;
6460                 r = -EFAULT;
6461                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6462                         goto out;
6463                 r = 0;
6464                 break;
6465         }
6466         case KVM_SET_PIT: {
6467                 r = -EFAULT;
6468                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6469                         goto out;
6470                 mutex_lock(&kvm->lock);
6471                 r = -ENXIO;
6472                 if (!kvm->arch.vpit)
6473                         goto set_pit_out;
6474                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6475 set_pit_out:
6476                 mutex_unlock(&kvm->lock);
6477                 break;
6478         }
6479         case KVM_GET_PIT2: {
6480                 r = -ENXIO;
6481                 if (!kvm->arch.vpit)
6482                         goto out;
6483                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6484                 if (r)
6485                         goto out;
6486                 r = -EFAULT;
6487                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6488                         goto out;
6489                 r = 0;
6490                 break;
6491         }
6492         case KVM_SET_PIT2: {
6493                 r = -EFAULT;
6494                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6495                         goto out;
6496                 mutex_lock(&kvm->lock);
6497                 r = -ENXIO;
6498                 if (!kvm->arch.vpit)
6499                         goto set_pit2_out;
6500                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6501 set_pit2_out:
6502                 mutex_unlock(&kvm->lock);
6503                 break;
6504         }
6505         case KVM_REINJECT_CONTROL: {
6506                 struct kvm_reinject_control control;
6507                 r =  -EFAULT;
6508                 if (copy_from_user(&control, argp, sizeof(control)))
6509                         goto out;
6510                 r = -ENXIO;
6511                 if (!kvm->arch.vpit)
6512                         goto out;
6513                 r = kvm_vm_ioctl_reinject(kvm, &control);
6514                 break;
6515         }
6516         case KVM_SET_BOOT_CPU_ID:
6517                 r = 0;
6518                 mutex_lock(&kvm->lock);
6519                 if (kvm->created_vcpus)
6520                         r = -EBUSY;
6521                 else
6522                         kvm->arch.bsp_vcpu_id = arg;
6523                 mutex_unlock(&kvm->lock);
6524                 break;
6525 #ifdef CONFIG_KVM_XEN
6526         case KVM_XEN_HVM_CONFIG: {
6527                 struct kvm_xen_hvm_config xhc;
6528                 r = -EFAULT;
6529                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6530                         goto out;
6531                 r = kvm_xen_hvm_config(kvm, &xhc);
6532                 break;
6533         }
6534         case KVM_XEN_HVM_GET_ATTR: {
6535                 struct kvm_xen_hvm_attr xha;
6536
6537                 r = -EFAULT;
6538                 if (copy_from_user(&xha, argp, sizeof(xha)))
6539                         goto out;
6540                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6541                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6542                         r = -EFAULT;
6543                 break;
6544         }
6545         case KVM_XEN_HVM_SET_ATTR: {
6546                 struct kvm_xen_hvm_attr xha;
6547
6548                 r = -EFAULT;
6549                 if (copy_from_user(&xha, argp, sizeof(xha)))
6550                         goto out;
6551                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6552                 break;
6553         }
6554         case KVM_XEN_HVM_EVTCHN_SEND: {
6555                 struct kvm_irq_routing_xen_evtchn uxe;
6556
6557                 r = -EFAULT;
6558                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6559                         goto out;
6560                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6561                 break;
6562         }
6563 #endif
6564         case KVM_SET_CLOCK:
6565                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6566                 break;
6567         case KVM_GET_CLOCK:
6568                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6569                 break;
6570         case KVM_SET_TSC_KHZ: {
6571                 u32 user_tsc_khz;
6572
6573                 r = -EINVAL;
6574                 user_tsc_khz = (u32)arg;
6575
6576                 if (kvm_has_tsc_control &&
6577                     user_tsc_khz >= kvm_max_guest_tsc_khz)
6578                         goto out;
6579
6580                 if (user_tsc_khz == 0)
6581                         user_tsc_khz = tsc_khz;
6582
6583                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6584                 r = 0;
6585
6586                 goto out;
6587         }
6588         case KVM_GET_TSC_KHZ: {
6589                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6590                 goto out;
6591         }
6592         case KVM_MEMORY_ENCRYPT_OP: {
6593                 r = -ENOTTY;
6594                 if (!kvm_x86_ops.mem_enc_ioctl)
6595                         goto out;
6596
6597                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6598                 break;
6599         }
6600         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6601                 struct kvm_enc_region region;
6602
6603                 r = -EFAULT;
6604                 if (copy_from_user(&region, argp, sizeof(region)))
6605                         goto out;
6606
6607                 r = -ENOTTY;
6608                 if (!kvm_x86_ops.mem_enc_register_region)
6609                         goto out;
6610
6611                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6612                 break;
6613         }
6614         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6615                 struct kvm_enc_region region;
6616
6617                 r = -EFAULT;
6618                 if (copy_from_user(&region, argp, sizeof(region)))
6619                         goto out;
6620
6621                 r = -ENOTTY;
6622                 if (!kvm_x86_ops.mem_enc_unregister_region)
6623                         goto out;
6624
6625                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6626                 break;
6627         }
6628         case KVM_HYPERV_EVENTFD: {
6629                 struct kvm_hyperv_eventfd hvevfd;
6630
6631                 r = -EFAULT;
6632                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6633                         goto out;
6634                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6635                 break;
6636         }
6637         case KVM_SET_PMU_EVENT_FILTER:
6638                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6639                 break;
6640         case KVM_X86_SET_MSR_FILTER:
6641                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6642                 break;
6643         default:
6644                 r = -ENOTTY;
6645         }
6646 out:
6647         return r;
6648 }
6649
6650 static void kvm_init_msr_list(void)
6651 {
6652         struct x86_pmu_capability x86_pmu;
6653         u32 dummy[2];
6654         unsigned i;
6655
6656         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6657                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6658
6659         perf_get_x86_pmu_capability(&x86_pmu);
6660
6661         num_msrs_to_save = 0;
6662         num_emulated_msrs = 0;
6663         num_msr_based_features = 0;
6664
6665         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6666                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6667                         continue;
6668
6669                 /*
6670                  * Even MSRs that are valid in the host may not be exposed
6671                  * to the guests in some cases.
6672                  */
6673                 switch (msrs_to_save_all[i]) {
6674                 case MSR_IA32_BNDCFGS:
6675                         if (!kvm_mpx_supported())
6676                                 continue;
6677                         break;
6678                 case MSR_TSC_AUX:
6679                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6680                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6681                                 continue;
6682                         break;
6683                 case MSR_IA32_UMWAIT_CONTROL:
6684                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6685                                 continue;
6686                         break;
6687                 case MSR_IA32_RTIT_CTL:
6688                 case MSR_IA32_RTIT_STATUS:
6689                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6690                                 continue;
6691                         break;
6692                 case MSR_IA32_RTIT_CR3_MATCH:
6693                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6694                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6695                                 continue;
6696                         break;
6697                 case MSR_IA32_RTIT_OUTPUT_BASE:
6698                 case MSR_IA32_RTIT_OUTPUT_MASK:
6699                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6700                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6701                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6702                                 continue;
6703                         break;
6704                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6705                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6706                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6707                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6708                                 continue;
6709                         break;
6710                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6711                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6712                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6713                                 continue;
6714                         break;
6715                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6716                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6717                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6718                                 continue;
6719                         break;
6720                 case MSR_IA32_XFD:
6721                 case MSR_IA32_XFD_ERR:
6722                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6723                                 continue;
6724                         break;
6725                 default:
6726                         break;
6727                 }
6728
6729                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6730         }
6731
6732         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6733                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6734                         continue;
6735
6736                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6737         }
6738
6739         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6740                 struct kvm_msr_entry msr;
6741
6742                 msr.index = msr_based_features_all[i];
6743                 if (kvm_get_msr_feature(&msr))
6744                         continue;
6745
6746                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6747         }
6748 }
6749
6750 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6751                            const void *v)
6752 {
6753         int handled = 0;
6754         int n;
6755
6756         do {
6757                 n = min(len, 8);
6758                 if (!(lapic_in_kernel(vcpu) &&
6759                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6760                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6761                         break;
6762                 handled += n;
6763                 addr += n;
6764                 len -= n;
6765                 v += n;
6766         } while (len);
6767
6768         return handled;
6769 }
6770
6771 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6772 {
6773         int handled = 0;
6774         int n;
6775
6776         do {
6777                 n = min(len, 8);
6778                 if (!(lapic_in_kernel(vcpu) &&
6779                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6780                                          addr, n, v))
6781                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6782                         break;
6783                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6784                 handled += n;
6785                 addr += n;
6786                 len -= n;
6787                 v += n;
6788         } while (len);
6789
6790         return handled;
6791 }
6792
6793 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6794                         struct kvm_segment *var, int seg)
6795 {
6796         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6797 }
6798
6799 void kvm_get_segment(struct kvm_vcpu *vcpu,
6800                      struct kvm_segment *var, int seg)
6801 {
6802         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6803 }
6804
6805 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6806                            struct x86_exception *exception)
6807 {
6808         struct kvm_mmu *mmu = vcpu->arch.mmu;
6809         gpa_t t_gpa;
6810
6811         BUG_ON(!mmu_is_nested(vcpu));
6812
6813         /* NPT walks are always user-walks */
6814         access |= PFERR_USER_MASK;
6815         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6816
6817         return t_gpa;
6818 }
6819
6820 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6821                               struct x86_exception *exception)
6822 {
6823         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6824
6825         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6826         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6827 }
6828 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6829
6830  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6831                                 struct x86_exception *exception)
6832 {
6833         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6834
6835         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6836         access |= PFERR_FETCH_MASK;
6837         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6838 }
6839
6840 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6841                                struct x86_exception *exception)
6842 {
6843         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6844
6845         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6846         access |= PFERR_WRITE_MASK;
6847         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6848 }
6849 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6850
6851 /* uses this to access any guest's mapped memory without checking CPL */
6852 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6853                                 struct x86_exception *exception)
6854 {
6855         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6856
6857         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6858 }
6859
6860 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6861                                       struct kvm_vcpu *vcpu, u64 access,
6862                                       struct x86_exception *exception)
6863 {
6864         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6865         void *data = val;
6866         int r = X86EMUL_CONTINUE;
6867
6868         while (bytes) {
6869                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6870                 unsigned offset = addr & (PAGE_SIZE-1);
6871                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6872                 int ret;
6873
6874                 if (gpa == UNMAPPED_GVA)
6875                         return X86EMUL_PROPAGATE_FAULT;
6876                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6877                                                offset, toread);
6878                 if (ret < 0) {
6879                         r = X86EMUL_IO_NEEDED;
6880                         goto out;
6881                 }
6882
6883                 bytes -= toread;
6884                 data += toread;
6885                 addr += toread;
6886         }
6887 out:
6888         return r;
6889 }
6890
6891 /* used for instruction fetching */
6892 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6893                                 gva_t addr, void *val, unsigned int bytes,
6894                                 struct x86_exception *exception)
6895 {
6896         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6897         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6898         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6899         unsigned offset;
6900         int ret;
6901
6902         /* Inline kvm_read_guest_virt_helper for speed.  */
6903         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6904                                     exception);
6905         if (unlikely(gpa == UNMAPPED_GVA))
6906                 return X86EMUL_PROPAGATE_FAULT;
6907
6908         offset = addr & (PAGE_SIZE-1);
6909         if (WARN_ON(offset + bytes > PAGE_SIZE))
6910                 bytes = (unsigned)PAGE_SIZE - offset;
6911         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6912                                        offset, bytes);
6913         if (unlikely(ret < 0))
6914                 return X86EMUL_IO_NEEDED;
6915
6916         return X86EMUL_CONTINUE;
6917 }
6918
6919 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6920                                gva_t addr, void *val, unsigned int bytes,
6921                                struct x86_exception *exception)
6922 {
6923         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6924
6925         /*
6926          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6927          * is returned, but our callers are not ready for that and they blindly
6928          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6929          * uninitialized kernel stack memory into cr2 and error code.
6930          */
6931         memset(exception, 0, sizeof(*exception));
6932         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6933                                           exception);
6934 }
6935 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6936
6937 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6938                              gva_t addr, void *val, unsigned int bytes,
6939                              struct x86_exception *exception, bool system)
6940 {
6941         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6942         u64 access = 0;
6943
6944         if (system)
6945                 access |= PFERR_IMPLICIT_ACCESS;
6946         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6947                 access |= PFERR_USER_MASK;
6948
6949         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6950 }
6951
6952 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6953                 unsigned long addr, void *val, unsigned int bytes)
6954 {
6955         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6956         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6957
6958         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6959 }
6960
6961 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6962                                       struct kvm_vcpu *vcpu, u64 access,
6963                                       struct x86_exception *exception)
6964 {
6965         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6966         void *data = val;
6967         int r = X86EMUL_CONTINUE;
6968
6969         while (bytes) {
6970                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6971                 unsigned offset = addr & (PAGE_SIZE-1);
6972                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6973                 int ret;
6974
6975                 if (gpa == UNMAPPED_GVA)
6976                         return X86EMUL_PROPAGATE_FAULT;
6977                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6978                 if (ret < 0) {
6979                         r = X86EMUL_IO_NEEDED;
6980                         goto out;
6981                 }
6982
6983                 bytes -= towrite;
6984                 data += towrite;
6985                 addr += towrite;
6986         }
6987 out:
6988         return r;
6989 }
6990
6991 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6992                               unsigned int bytes, struct x86_exception *exception,
6993                               bool system)
6994 {
6995         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6996         u64 access = PFERR_WRITE_MASK;
6997
6998         if (system)
6999                 access |= PFERR_IMPLICIT_ACCESS;
7000         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7001                 access |= PFERR_USER_MASK;
7002
7003         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7004                                            access, exception);
7005 }
7006
7007 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7008                                 unsigned int bytes, struct x86_exception *exception)
7009 {
7010         /* kvm_write_guest_virt_system can pull in tons of pages. */
7011         vcpu->arch.l1tf_flush_l1d = true;
7012
7013         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7014                                            PFERR_WRITE_MASK, exception);
7015 }
7016 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7017
7018 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7019                                 void *insn, int insn_len)
7020 {
7021         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7022                                                             insn, insn_len);
7023 }
7024
7025 int handle_ud(struct kvm_vcpu *vcpu)
7026 {
7027         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7028         int emul_type = EMULTYPE_TRAP_UD;
7029         char sig[5]; /* ud2; .ascii "kvm" */
7030         struct x86_exception e;
7031
7032         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7033                 return 1;
7034
7035         if (force_emulation_prefix &&
7036             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7037                                 sig, sizeof(sig), &e) == 0 &&
7038             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7039                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7040                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7041         }
7042
7043         return kvm_emulate_instruction(vcpu, emul_type);
7044 }
7045 EXPORT_SYMBOL_GPL(handle_ud);
7046
7047 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7048                             gpa_t gpa, bool write)
7049 {
7050         /* For APIC access vmexit */
7051         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7052                 return 1;
7053
7054         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7055                 trace_vcpu_match_mmio(gva, gpa, write, true);
7056                 return 1;
7057         }
7058
7059         return 0;
7060 }
7061
7062 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7063                                 gpa_t *gpa, struct x86_exception *exception,
7064                                 bool write)
7065 {
7066         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7067         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7068                 | (write ? PFERR_WRITE_MASK : 0);
7069
7070         /*
7071          * currently PKRU is only applied to ept enabled guest so
7072          * there is no pkey in EPT page table for L1 guest or EPT
7073          * shadow page table for L2 guest.
7074          */
7075         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7076             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7077                               vcpu->arch.mmio_access, 0, access))) {
7078                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7079                                         (gva & (PAGE_SIZE - 1));
7080                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7081                 return 1;
7082         }
7083
7084         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7085
7086         if (*gpa == UNMAPPED_GVA)
7087                 return -1;
7088
7089         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7090 }
7091
7092 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7093                         const void *val, int bytes)
7094 {
7095         int ret;
7096
7097         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7098         if (ret < 0)
7099                 return 0;
7100         kvm_page_track_write(vcpu, gpa, val, bytes);
7101         return 1;
7102 }
7103
7104 struct read_write_emulator_ops {
7105         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7106                                   int bytes);
7107         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7108                                   void *val, int bytes);
7109         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7110                                int bytes, void *val);
7111         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7112                                     void *val, int bytes);
7113         bool write;
7114 };
7115
7116 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7117 {
7118         if (vcpu->mmio_read_completed) {
7119                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7120                                vcpu->mmio_fragments[0].gpa, val);
7121                 vcpu->mmio_read_completed = 0;
7122                 return 1;
7123         }
7124
7125         return 0;
7126 }
7127
7128 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7129                         void *val, int bytes)
7130 {
7131         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7132 }
7133
7134 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7135                          void *val, int bytes)
7136 {
7137         return emulator_write_phys(vcpu, gpa, val, bytes);
7138 }
7139
7140 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7141 {
7142         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7143         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7144 }
7145
7146 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7147                           void *val, int bytes)
7148 {
7149         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7150         return X86EMUL_IO_NEEDED;
7151 }
7152
7153 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7154                            void *val, int bytes)
7155 {
7156         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7157
7158         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7159         return X86EMUL_CONTINUE;
7160 }
7161
7162 static const struct read_write_emulator_ops read_emultor = {
7163         .read_write_prepare = read_prepare,
7164         .read_write_emulate = read_emulate,
7165         .read_write_mmio = vcpu_mmio_read,
7166         .read_write_exit_mmio = read_exit_mmio,
7167 };
7168
7169 static const struct read_write_emulator_ops write_emultor = {
7170         .read_write_emulate = write_emulate,
7171         .read_write_mmio = write_mmio,
7172         .read_write_exit_mmio = write_exit_mmio,
7173         .write = true,
7174 };
7175
7176 static int emulator_read_write_onepage(unsigned long addr, void *val,
7177                                        unsigned int bytes,
7178                                        struct x86_exception *exception,
7179                                        struct kvm_vcpu *vcpu,
7180                                        const struct read_write_emulator_ops *ops)
7181 {
7182         gpa_t gpa;
7183         int handled, ret;
7184         bool write = ops->write;
7185         struct kvm_mmio_fragment *frag;
7186         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7187
7188         /*
7189          * If the exit was due to a NPF we may already have a GPA.
7190          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7191          * Note, this cannot be used on string operations since string
7192          * operation using rep will only have the initial GPA from the NPF
7193          * occurred.
7194          */
7195         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7196             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7197                 gpa = ctxt->gpa_val;
7198                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7199         } else {
7200                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7201                 if (ret < 0)
7202                         return X86EMUL_PROPAGATE_FAULT;
7203         }
7204
7205         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7206                 return X86EMUL_CONTINUE;
7207
7208         /*
7209          * Is this MMIO handled locally?
7210          */
7211         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7212         if (handled == bytes)
7213                 return X86EMUL_CONTINUE;
7214
7215         gpa += handled;
7216         bytes -= handled;
7217         val += handled;
7218
7219         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7220         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7221         frag->gpa = gpa;
7222         frag->data = val;
7223         frag->len = bytes;
7224         return X86EMUL_CONTINUE;
7225 }
7226
7227 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7228                         unsigned long addr,
7229                         void *val, unsigned int bytes,
7230                         struct x86_exception *exception,
7231                         const struct read_write_emulator_ops *ops)
7232 {
7233         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7234         gpa_t gpa;
7235         int rc;
7236
7237         if (ops->read_write_prepare &&
7238                   ops->read_write_prepare(vcpu, val, bytes))
7239                 return X86EMUL_CONTINUE;
7240
7241         vcpu->mmio_nr_fragments = 0;
7242
7243         /* Crossing a page boundary? */
7244         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7245                 int now;
7246
7247                 now = -addr & ~PAGE_MASK;
7248                 rc = emulator_read_write_onepage(addr, val, now, exception,
7249                                                  vcpu, ops);
7250
7251                 if (rc != X86EMUL_CONTINUE)
7252                         return rc;
7253                 addr += now;
7254                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7255                         addr = (u32)addr;
7256                 val += now;
7257                 bytes -= now;
7258         }
7259
7260         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7261                                          vcpu, ops);
7262         if (rc != X86EMUL_CONTINUE)
7263                 return rc;
7264
7265         if (!vcpu->mmio_nr_fragments)
7266                 return rc;
7267
7268         gpa = vcpu->mmio_fragments[0].gpa;
7269
7270         vcpu->mmio_needed = 1;
7271         vcpu->mmio_cur_fragment = 0;
7272
7273         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7274         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7275         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7276         vcpu->run->mmio.phys_addr = gpa;
7277
7278         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7279 }
7280
7281 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7282                                   unsigned long addr,
7283                                   void *val,
7284                                   unsigned int bytes,
7285                                   struct x86_exception *exception)
7286 {
7287         return emulator_read_write(ctxt, addr, val, bytes,
7288                                    exception, &read_emultor);
7289 }
7290
7291 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7292                             unsigned long addr,
7293                             const void *val,
7294                             unsigned int bytes,
7295                             struct x86_exception *exception)
7296 {
7297         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7298                                    exception, &write_emultor);
7299 }
7300
7301 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7302         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7303
7304 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7305                                      unsigned long addr,
7306                                      const void *old,
7307                                      const void *new,
7308                                      unsigned int bytes,
7309                                      struct x86_exception *exception)
7310 {
7311         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7312         u64 page_line_mask;
7313         unsigned long hva;
7314         gpa_t gpa;
7315         int r;
7316
7317         /* guests cmpxchg8b have to be emulated atomically */
7318         if (bytes > 8 || (bytes & (bytes - 1)))
7319                 goto emul_write;
7320
7321         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7322
7323         if (gpa == UNMAPPED_GVA ||
7324             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7325                 goto emul_write;
7326
7327         /*
7328          * Emulate the atomic as a straight write to avoid #AC if SLD is
7329          * enabled in the host and the access splits a cache line.
7330          */
7331         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7332                 page_line_mask = ~(cache_line_size() - 1);
7333         else
7334                 page_line_mask = PAGE_MASK;
7335
7336         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7337                 goto emul_write;
7338
7339         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7340         if (kvm_is_error_hva(hva))
7341                 goto emul_write;
7342
7343         hva += offset_in_page(gpa);
7344
7345         switch (bytes) {
7346         case 1:
7347                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7348                 break;
7349         case 2:
7350                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7351                 break;
7352         case 4:
7353                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7354                 break;
7355         case 8:
7356                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7357                 break;
7358         default:
7359                 BUG();
7360         }
7361
7362         if (r < 0)
7363                 return X86EMUL_UNHANDLEABLE;
7364         if (r)
7365                 return X86EMUL_CMPXCHG_FAILED;
7366
7367         kvm_page_track_write(vcpu, gpa, new, bytes);
7368
7369         return X86EMUL_CONTINUE;
7370
7371 emul_write:
7372         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7373
7374         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7375 }
7376
7377 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7378 {
7379         int r = 0, i;
7380
7381         for (i = 0; i < vcpu->arch.pio.count; i++) {
7382                 if (vcpu->arch.pio.in)
7383                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7384                                             vcpu->arch.pio.size, pd);
7385                 else
7386                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7387                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7388                                              pd);
7389                 if (r)
7390                         break;
7391                 pd += vcpu->arch.pio.size;
7392         }
7393         return r;
7394 }
7395
7396 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7397                                unsigned short port,
7398                                unsigned int count, bool in)
7399 {
7400         vcpu->arch.pio.port = port;
7401         vcpu->arch.pio.in = in;
7402         vcpu->arch.pio.count  = count;
7403         vcpu->arch.pio.size = size;
7404
7405         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7406                 return 1;
7407
7408         vcpu->run->exit_reason = KVM_EXIT_IO;
7409         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7410         vcpu->run->io.size = size;
7411         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7412         vcpu->run->io.count = count;
7413         vcpu->run->io.port = port;
7414
7415         return 0;
7416 }
7417
7418 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7419                              unsigned short port, unsigned int count)
7420 {
7421         WARN_ON(vcpu->arch.pio.count);
7422         memset(vcpu->arch.pio_data, 0, size * count);
7423         return emulator_pio_in_out(vcpu, size, port, count, true);
7424 }
7425
7426 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7427 {
7428         int size = vcpu->arch.pio.size;
7429         unsigned count = vcpu->arch.pio.count;
7430         memcpy(val, vcpu->arch.pio_data, size * count);
7431         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7432         vcpu->arch.pio.count = 0;
7433 }
7434
7435 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7436                            unsigned short port, void *val, unsigned int count)
7437 {
7438         if (vcpu->arch.pio.count) {
7439                 /*
7440                  * Complete a previous iteration that required userspace I/O.
7441                  * Note, @count isn't guaranteed to match pio.count as userspace
7442                  * can modify ECX before rerunning the vCPU.  Ignore any such
7443                  * shenanigans as KVM doesn't support modifying the rep count,
7444                  * and the emulator ensures @count doesn't overflow the buffer.
7445                  */
7446         } else {
7447                 int r = __emulator_pio_in(vcpu, size, port, count);
7448                 if (!r)
7449                         return r;
7450
7451                 /* Results already available, fall through.  */
7452         }
7453
7454         complete_emulator_pio_in(vcpu, val);
7455         return 1;
7456 }
7457
7458 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7459                                     int size, unsigned short port, void *val,
7460                                     unsigned int count)
7461 {
7462         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7463
7464 }
7465
7466 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7467                             unsigned short port, const void *val,
7468                             unsigned int count)
7469 {
7470         int ret;
7471
7472         memcpy(vcpu->arch.pio_data, val, size * count);
7473         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7474         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7475         if (ret)
7476                 vcpu->arch.pio.count = 0;
7477
7478         return ret;
7479 }
7480
7481 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7482                                      int size, unsigned short port,
7483                                      const void *val, unsigned int count)
7484 {
7485         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7486 }
7487
7488 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7489 {
7490         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7491 }
7492
7493 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7494 {
7495         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7496 }
7497
7498 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7499 {
7500         if (!need_emulate_wbinvd(vcpu))
7501                 return X86EMUL_CONTINUE;
7502
7503         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7504                 int cpu = get_cpu();
7505
7506                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7507                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7508                                 wbinvd_ipi, NULL, 1);
7509                 put_cpu();
7510                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7511         } else
7512                 wbinvd();
7513         return X86EMUL_CONTINUE;
7514 }
7515
7516 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7517 {
7518         kvm_emulate_wbinvd_noskip(vcpu);
7519         return kvm_skip_emulated_instruction(vcpu);
7520 }
7521 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7522
7523
7524
7525 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7526 {
7527         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7528 }
7529
7530 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7531                             unsigned long *dest)
7532 {
7533         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7534 }
7535
7536 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7537                            unsigned long value)
7538 {
7539
7540         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7541 }
7542
7543 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7544 {
7545         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7546 }
7547
7548 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7549 {
7550         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7551         unsigned long value;
7552
7553         switch (cr) {
7554         case 0:
7555                 value = kvm_read_cr0(vcpu);
7556                 break;
7557         case 2:
7558                 value = vcpu->arch.cr2;
7559                 break;
7560         case 3:
7561                 value = kvm_read_cr3(vcpu);
7562                 break;
7563         case 4:
7564                 value = kvm_read_cr4(vcpu);
7565                 break;
7566         case 8:
7567                 value = kvm_get_cr8(vcpu);
7568                 break;
7569         default:
7570                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7571                 return 0;
7572         }
7573
7574         return value;
7575 }
7576
7577 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7578 {
7579         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7580         int res = 0;
7581
7582         switch (cr) {
7583         case 0:
7584                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7585                 break;
7586         case 2:
7587                 vcpu->arch.cr2 = val;
7588                 break;
7589         case 3:
7590                 res = kvm_set_cr3(vcpu, val);
7591                 break;
7592         case 4:
7593                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7594                 break;
7595         case 8:
7596                 res = kvm_set_cr8(vcpu, val);
7597                 break;
7598         default:
7599                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7600                 res = -1;
7601         }
7602
7603         return res;
7604 }
7605
7606 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7607 {
7608         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7609 }
7610
7611 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7612 {
7613         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7614 }
7615
7616 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7617 {
7618         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7619 }
7620
7621 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7622 {
7623         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7624 }
7625
7626 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7627 {
7628         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7629 }
7630
7631 static unsigned long emulator_get_cached_segment_base(
7632         struct x86_emulate_ctxt *ctxt, int seg)
7633 {
7634         return get_segment_base(emul_to_vcpu(ctxt), seg);
7635 }
7636
7637 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7638                                  struct desc_struct *desc, u32 *base3,
7639                                  int seg)
7640 {
7641         struct kvm_segment var;
7642
7643         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7644         *selector = var.selector;
7645
7646         if (var.unusable) {
7647                 memset(desc, 0, sizeof(*desc));
7648                 if (base3)
7649                         *base3 = 0;
7650                 return false;
7651         }
7652
7653         if (var.g)
7654                 var.limit >>= 12;
7655         set_desc_limit(desc, var.limit);
7656         set_desc_base(desc, (unsigned long)var.base);
7657 #ifdef CONFIG_X86_64
7658         if (base3)
7659                 *base3 = var.base >> 32;
7660 #endif
7661         desc->type = var.type;
7662         desc->s = var.s;
7663         desc->dpl = var.dpl;
7664         desc->p = var.present;
7665         desc->avl = var.avl;
7666         desc->l = var.l;
7667         desc->d = var.db;
7668         desc->g = var.g;
7669
7670         return true;
7671 }
7672
7673 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7674                                  struct desc_struct *desc, u32 base3,
7675                                  int seg)
7676 {
7677         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7678         struct kvm_segment var;
7679
7680         var.selector = selector;
7681         var.base = get_desc_base(desc);
7682 #ifdef CONFIG_X86_64
7683         var.base |= ((u64)base3) << 32;
7684 #endif
7685         var.limit = get_desc_limit(desc);
7686         if (desc->g)
7687                 var.limit = (var.limit << 12) | 0xfff;
7688         var.type = desc->type;
7689         var.dpl = desc->dpl;
7690         var.db = desc->d;
7691         var.s = desc->s;
7692         var.l = desc->l;
7693         var.g = desc->g;
7694         var.avl = desc->avl;
7695         var.present = desc->p;
7696         var.unusable = !var.present;
7697         var.padding = 0;
7698
7699         kvm_set_segment(vcpu, &var, seg);
7700         return;
7701 }
7702
7703 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7704                                         u32 msr_index, u64 *pdata)
7705 {
7706         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7707         int r;
7708
7709         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7710
7711         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7712                                     complete_emulated_rdmsr, r)) {
7713                 /* Bounce to user space */
7714                 return X86EMUL_IO_NEEDED;
7715         }
7716
7717         return r;
7718 }
7719
7720 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7721                                         u32 msr_index, u64 data)
7722 {
7723         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7724         int r;
7725
7726         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7727
7728         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7729                                     complete_emulated_msr_access, r)) {
7730                 /* Bounce to user space */
7731                 return X86EMUL_IO_NEEDED;
7732         }
7733
7734         return r;
7735 }
7736
7737 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7738                             u32 msr_index, u64 *pdata)
7739 {
7740         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7741 }
7742
7743 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7744                             u32 msr_index, u64 data)
7745 {
7746         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7747 }
7748
7749 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7750 {
7751         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7752
7753         return vcpu->arch.smbase;
7754 }
7755
7756 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7757 {
7758         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7759
7760         vcpu->arch.smbase = smbase;
7761 }
7762
7763 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7764                               u32 pmc)
7765 {
7766         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7767                 return 0;
7768         return -EINVAL;
7769 }
7770
7771 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7772                              u32 pmc, u64 *pdata)
7773 {
7774         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7775 }
7776
7777 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7778 {
7779         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7780 }
7781
7782 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7783                               struct x86_instruction_info *info,
7784                               enum x86_intercept_stage stage)
7785 {
7786         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7787                                             &ctxt->exception);
7788 }
7789
7790 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7791                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7792                               bool exact_only)
7793 {
7794         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7795 }
7796
7797 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7798 {
7799         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7800 }
7801
7802 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7803 {
7804         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7805 }
7806
7807 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7808 {
7809         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7810 }
7811
7812 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7813 {
7814         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7815 }
7816
7817 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7818 {
7819         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7820 }
7821
7822 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7823 {
7824         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7825 }
7826
7827 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7828 {
7829         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7830 }
7831
7832 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7833 {
7834         return emul_to_vcpu(ctxt)->arch.hflags;
7835 }
7836
7837 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7838 {
7839         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7840
7841         kvm_smm_changed(vcpu, false);
7842 }
7843
7844 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7845                                   const char *smstate)
7846 {
7847         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7848 }
7849
7850 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7851 {
7852         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7853 }
7854
7855 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7856 {
7857         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7858 }
7859
7860 static const struct x86_emulate_ops emulate_ops = {
7861         .read_gpr            = emulator_read_gpr,
7862         .write_gpr           = emulator_write_gpr,
7863         .read_std            = emulator_read_std,
7864         .write_std           = emulator_write_std,
7865         .read_phys           = kvm_read_guest_phys_system,
7866         .fetch               = kvm_fetch_guest_virt,
7867         .read_emulated       = emulator_read_emulated,
7868         .write_emulated      = emulator_write_emulated,
7869         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7870         .invlpg              = emulator_invlpg,
7871         .pio_in_emulated     = emulator_pio_in_emulated,
7872         .pio_out_emulated    = emulator_pio_out_emulated,
7873         .get_segment         = emulator_get_segment,
7874         .set_segment         = emulator_set_segment,
7875         .get_cached_segment_base = emulator_get_cached_segment_base,
7876         .get_gdt             = emulator_get_gdt,
7877         .get_idt             = emulator_get_idt,
7878         .set_gdt             = emulator_set_gdt,
7879         .set_idt             = emulator_set_idt,
7880         .get_cr              = emulator_get_cr,
7881         .set_cr              = emulator_set_cr,
7882         .cpl                 = emulator_get_cpl,
7883         .get_dr              = emulator_get_dr,
7884         .set_dr              = emulator_set_dr,
7885         .get_smbase          = emulator_get_smbase,
7886         .set_smbase          = emulator_set_smbase,
7887         .set_msr_with_filter = emulator_set_msr_with_filter,
7888         .get_msr_with_filter = emulator_get_msr_with_filter,
7889         .set_msr             = emulator_set_msr,
7890         .get_msr             = emulator_get_msr,
7891         .check_pmc           = emulator_check_pmc,
7892         .read_pmc            = emulator_read_pmc,
7893         .halt                = emulator_halt,
7894         .wbinvd              = emulator_wbinvd,
7895         .fix_hypercall       = emulator_fix_hypercall,
7896         .intercept           = emulator_intercept,
7897         .get_cpuid           = emulator_get_cpuid,
7898         .guest_has_long_mode = emulator_guest_has_long_mode,
7899         .guest_has_movbe     = emulator_guest_has_movbe,
7900         .guest_has_fxsr      = emulator_guest_has_fxsr,
7901         .guest_has_rdpid     = emulator_guest_has_rdpid,
7902         .set_nmi_mask        = emulator_set_nmi_mask,
7903         .get_hflags          = emulator_get_hflags,
7904         .exiting_smm         = emulator_exiting_smm,
7905         .leave_smm           = emulator_leave_smm,
7906         .triple_fault        = emulator_triple_fault,
7907         .set_xcr             = emulator_set_xcr,
7908 };
7909
7910 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7911 {
7912         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7913         /*
7914          * an sti; sti; sequence only disable interrupts for the first
7915          * instruction. So, if the last instruction, be it emulated or
7916          * not, left the system with the INT_STI flag enabled, it
7917          * means that the last instruction is an sti. We should not
7918          * leave the flag on in this case. The same goes for mov ss
7919          */
7920         if (int_shadow & mask)
7921                 mask = 0;
7922         if (unlikely(int_shadow || mask)) {
7923                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7924                 if (!mask)
7925                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7926         }
7927 }
7928
7929 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7930 {
7931         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7932         if (ctxt->exception.vector == PF_VECTOR)
7933                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7934
7935         if (ctxt->exception.error_code_valid)
7936                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7937                                       ctxt->exception.error_code);
7938         else
7939                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7940         return false;
7941 }
7942
7943 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7944 {
7945         struct x86_emulate_ctxt *ctxt;
7946
7947         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7948         if (!ctxt) {
7949                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7950                 return NULL;
7951         }
7952
7953         ctxt->vcpu = vcpu;
7954         ctxt->ops = &emulate_ops;
7955         vcpu->arch.emulate_ctxt = ctxt;
7956
7957         return ctxt;
7958 }
7959
7960 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7961 {
7962         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7963         int cs_db, cs_l;
7964
7965         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7966
7967         ctxt->gpa_available = false;
7968         ctxt->eflags = kvm_get_rflags(vcpu);
7969         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7970
7971         ctxt->eip = kvm_rip_read(vcpu);
7972         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7973                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7974                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7975                      cs_db                              ? X86EMUL_MODE_PROT32 :
7976                                                           X86EMUL_MODE_PROT16;
7977         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7978         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7979         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7980
7981         ctxt->interruptibility = 0;
7982         ctxt->have_exception = false;
7983         ctxt->exception.vector = -1;
7984         ctxt->perm_ok = false;
7985
7986         init_decode_cache(ctxt);
7987         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7988 }
7989
7990 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7991 {
7992         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7993         int ret;
7994
7995         init_emulate_ctxt(vcpu);
7996
7997         ctxt->op_bytes = 2;
7998         ctxt->ad_bytes = 2;
7999         ctxt->_eip = ctxt->eip + inc_eip;
8000         ret = emulate_int_real(ctxt, irq);
8001
8002         if (ret != X86EMUL_CONTINUE) {
8003                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8004         } else {
8005                 ctxt->eip = ctxt->_eip;
8006                 kvm_rip_write(vcpu, ctxt->eip);
8007                 kvm_set_rflags(vcpu, ctxt->eflags);
8008         }
8009 }
8010 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8011
8012 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8013                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8014 {
8015         struct kvm_run *run = vcpu->run;
8016         u64 info[5];
8017         u8 info_start;
8018
8019         /*
8020          * Zero the whole array used to retrieve the exit info, as casting to
8021          * u32 for select entries will leave some chunks uninitialized.
8022          */
8023         memset(&info, 0, sizeof(info));
8024
8025         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8026                                            &info[2], (u32 *)&info[3],
8027                                            (u32 *)&info[4]);
8028
8029         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8030         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8031
8032         /*
8033          * There's currently space for 13 entries, but 5 are used for the exit
8034          * reason and info.  Restrict to 4 to reduce the maintenance burden
8035          * when expanding kvm_run.emulation_failure in the future.
8036          */
8037         if (WARN_ON_ONCE(ndata > 4))
8038                 ndata = 4;
8039
8040         /* Always include the flags as a 'data' entry. */
8041         info_start = 1;
8042         run->emulation_failure.flags = 0;
8043
8044         if (insn_size) {
8045                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8046                               sizeof(run->emulation_failure.insn_bytes) != 16));
8047                 info_start += 2;
8048                 run->emulation_failure.flags |=
8049                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8050                 run->emulation_failure.insn_size = insn_size;
8051                 memset(run->emulation_failure.insn_bytes, 0x90,
8052                        sizeof(run->emulation_failure.insn_bytes));
8053                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8054         }
8055
8056         memcpy(&run->internal.data[info_start], info, sizeof(info));
8057         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8058                ndata * sizeof(data[0]));
8059
8060         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8061 }
8062
8063 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8064 {
8065         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8066
8067         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8068                                        ctxt->fetch.end - ctxt->fetch.data);
8069 }
8070
8071 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8072                                           u8 ndata)
8073 {
8074         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8075 }
8076 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8077
8078 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8079 {
8080         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8081 }
8082 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8083
8084 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8085 {
8086         struct kvm *kvm = vcpu->kvm;
8087
8088         ++vcpu->stat.insn_emulation_fail;
8089         trace_kvm_emulate_insn_failed(vcpu);
8090
8091         if (emulation_type & EMULTYPE_VMWARE_GP) {
8092                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8093                 return 1;
8094         }
8095
8096         if (kvm->arch.exit_on_emulation_error ||
8097             (emulation_type & EMULTYPE_SKIP)) {
8098                 prepare_emulation_ctxt_failure_exit(vcpu);
8099                 return 0;
8100         }
8101
8102         kvm_queue_exception(vcpu, UD_VECTOR);
8103
8104         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8105                 prepare_emulation_ctxt_failure_exit(vcpu);
8106                 return 0;
8107         }
8108
8109         return 1;
8110 }
8111
8112 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8113                                   bool write_fault_to_shadow_pgtable,
8114                                   int emulation_type)
8115 {
8116         gpa_t gpa = cr2_or_gpa;
8117         kvm_pfn_t pfn;
8118
8119         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8120                 return false;
8121
8122         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8123             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8124                 return false;
8125
8126         if (!vcpu->arch.mmu->root_role.direct) {
8127                 /*
8128                  * Write permission should be allowed since only
8129                  * write access need to be emulated.
8130                  */
8131                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8132
8133                 /*
8134                  * If the mapping is invalid in guest, let cpu retry
8135                  * it to generate fault.
8136                  */
8137                 if (gpa == UNMAPPED_GVA)
8138                         return true;
8139         }
8140
8141         /*
8142          * Do not retry the unhandleable instruction if it faults on the
8143          * readonly host memory, otherwise it will goto a infinite loop:
8144          * retry instruction -> write #PF -> emulation fail -> retry
8145          * instruction -> ...
8146          */
8147         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8148
8149         /*
8150          * If the instruction failed on the error pfn, it can not be fixed,
8151          * report the error to userspace.
8152          */
8153         if (is_error_noslot_pfn(pfn))
8154                 return false;
8155
8156         kvm_release_pfn_clean(pfn);
8157
8158         /* The instructions are well-emulated on direct mmu. */
8159         if (vcpu->arch.mmu->root_role.direct) {
8160                 unsigned int indirect_shadow_pages;
8161
8162                 write_lock(&vcpu->kvm->mmu_lock);
8163                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8164                 write_unlock(&vcpu->kvm->mmu_lock);
8165
8166                 if (indirect_shadow_pages)
8167                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8168
8169                 return true;
8170         }
8171
8172         /*
8173          * if emulation was due to access to shadowed page table
8174          * and it failed try to unshadow page and re-enter the
8175          * guest to let CPU execute the instruction.
8176          */
8177         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8178
8179         /*
8180          * If the access faults on its page table, it can not
8181          * be fixed by unprotecting shadow page and it should
8182          * be reported to userspace.
8183          */
8184         return !write_fault_to_shadow_pgtable;
8185 }
8186
8187 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8188                               gpa_t cr2_or_gpa,  int emulation_type)
8189 {
8190         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8191         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8192
8193         last_retry_eip = vcpu->arch.last_retry_eip;
8194         last_retry_addr = vcpu->arch.last_retry_addr;
8195
8196         /*
8197          * If the emulation is caused by #PF and it is non-page_table
8198          * writing instruction, it means the VM-EXIT is caused by shadow
8199          * page protected, we can zap the shadow page and retry this
8200          * instruction directly.
8201          *
8202          * Note: if the guest uses a non-page-table modifying instruction
8203          * on the PDE that points to the instruction, then we will unmap
8204          * the instruction and go to an infinite loop. So, we cache the
8205          * last retried eip and the last fault address, if we meet the eip
8206          * and the address again, we can break out of the potential infinite
8207          * loop.
8208          */
8209         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8210
8211         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8212                 return false;
8213
8214         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8215             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8216                 return false;
8217
8218         if (x86_page_table_writing_insn(ctxt))
8219                 return false;
8220
8221         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8222                 return false;
8223
8224         vcpu->arch.last_retry_eip = ctxt->eip;
8225         vcpu->arch.last_retry_addr = cr2_or_gpa;
8226
8227         if (!vcpu->arch.mmu->root_role.direct)
8228                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8229
8230         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8231
8232         return true;
8233 }
8234
8235 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8236 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8237
8238 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8239 {
8240         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8241
8242         if (entering_smm) {
8243                 vcpu->arch.hflags |= HF_SMM_MASK;
8244         } else {
8245                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8246
8247                 /* Process a latched INIT or SMI, if any.  */
8248                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8249
8250                 /*
8251                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8252                  * on SMM exit we still need to reload them from
8253                  * guest memory
8254                  */
8255                 vcpu->arch.pdptrs_from_userspace = false;
8256         }
8257
8258         kvm_mmu_reset_context(vcpu);
8259 }
8260
8261 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8262                                 unsigned long *db)
8263 {
8264         u32 dr6 = 0;
8265         int i;
8266         u32 enable, rwlen;
8267
8268         enable = dr7;
8269         rwlen = dr7 >> 16;
8270         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8271                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8272                         dr6 |= (1 << i);
8273         return dr6;
8274 }
8275
8276 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8277 {
8278         struct kvm_run *kvm_run = vcpu->run;
8279
8280         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8281                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8282                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8283                 kvm_run->debug.arch.exception = DB_VECTOR;
8284                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8285                 return 0;
8286         }
8287         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8288         return 1;
8289 }
8290
8291 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8292 {
8293         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8294         int r;
8295
8296         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8297         if (unlikely(!r))
8298                 return 0;
8299
8300         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8301
8302         /*
8303          * rflags is the old, "raw" value of the flags.  The new value has
8304          * not been saved yet.
8305          *
8306          * This is correct even for TF set by the guest, because "the
8307          * processor will not generate this exception after the instruction
8308          * that sets the TF flag".
8309          */
8310         if (unlikely(rflags & X86_EFLAGS_TF))
8311                 r = kvm_vcpu_do_singlestep(vcpu);
8312         return r;
8313 }
8314 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8315
8316 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8317 {
8318         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8319             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8320                 struct kvm_run *kvm_run = vcpu->run;
8321                 unsigned long eip = kvm_get_linear_rip(vcpu);
8322                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8323                                            vcpu->arch.guest_debug_dr7,
8324                                            vcpu->arch.eff_db);
8325
8326                 if (dr6 != 0) {
8327                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8328                         kvm_run->debug.arch.pc = eip;
8329                         kvm_run->debug.arch.exception = DB_VECTOR;
8330                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8331                         *r = 0;
8332                         return true;
8333                 }
8334         }
8335
8336         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8337             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8338                 unsigned long eip = kvm_get_linear_rip(vcpu);
8339                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8340                                            vcpu->arch.dr7,
8341                                            vcpu->arch.db);
8342
8343                 if (dr6 != 0) {
8344                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8345                         *r = 1;
8346                         return true;
8347                 }
8348         }
8349
8350         return false;
8351 }
8352
8353 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8354 {
8355         switch (ctxt->opcode_len) {
8356         case 1:
8357                 switch (ctxt->b) {
8358                 case 0xe4:      /* IN */
8359                 case 0xe5:
8360                 case 0xec:
8361                 case 0xed:
8362                 case 0xe6:      /* OUT */
8363                 case 0xe7:
8364                 case 0xee:
8365                 case 0xef:
8366                 case 0x6c:      /* INS */
8367                 case 0x6d:
8368                 case 0x6e:      /* OUTS */
8369                 case 0x6f:
8370                         return true;
8371                 }
8372                 break;
8373         case 2:
8374                 switch (ctxt->b) {
8375                 case 0x33:      /* RDPMC */
8376                         return true;
8377                 }
8378                 break;
8379         }
8380
8381         return false;
8382 }
8383
8384 /*
8385  * Decode an instruction for emulation.  The caller is responsible for handling
8386  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8387  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8388  * code breakpoints have higher priority and thus have already been done by
8389  * hardware.
8390  *
8391  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8392  *     response to a machine check.
8393  */
8394 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8395                                     void *insn, int insn_len)
8396 {
8397         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8398         int r;
8399
8400         init_emulate_ctxt(vcpu);
8401
8402         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8403
8404         trace_kvm_emulate_insn_start(vcpu);
8405         ++vcpu->stat.insn_emulation;
8406
8407         return r;
8408 }
8409 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8410
8411 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8412                             int emulation_type, void *insn, int insn_len)
8413 {
8414         int r;
8415         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8416         bool writeback = true;
8417         bool write_fault_to_spt;
8418
8419         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8420                 return 1;
8421
8422         vcpu->arch.l1tf_flush_l1d = true;
8423
8424         /*
8425          * Clear write_fault_to_shadow_pgtable here to ensure it is
8426          * never reused.
8427          */
8428         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8429         vcpu->arch.write_fault_to_shadow_pgtable = false;
8430
8431         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8432                 kvm_clear_exception_queue(vcpu);
8433
8434                 /*
8435                  * Return immediately if RIP hits a code breakpoint, such #DBs
8436                  * are fault-like and are higher priority than any faults on
8437                  * the code fetch itself.
8438                  */
8439                 if (!(emulation_type & EMULTYPE_SKIP) &&
8440                     kvm_vcpu_check_code_breakpoint(vcpu, &r))
8441                         return r;
8442
8443                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8444                                                     insn, insn_len);
8445                 if (r != EMULATION_OK)  {
8446                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8447                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8448                                 kvm_queue_exception(vcpu, UD_VECTOR);
8449                                 return 1;
8450                         }
8451                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8452                                                   write_fault_to_spt,
8453                                                   emulation_type))
8454                                 return 1;
8455                         if (ctxt->have_exception) {
8456                                 /*
8457                                  * #UD should result in just EMULATION_FAILED, and trap-like
8458                                  * exception should not be encountered during decode.
8459                                  */
8460                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8461                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8462                                 inject_emulated_exception(vcpu);
8463                                 return 1;
8464                         }
8465                         return handle_emulation_failure(vcpu, emulation_type);
8466                 }
8467         }
8468
8469         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8470             !is_vmware_backdoor_opcode(ctxt)) {
8471                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8472                 return 1;
8473         }
8474
8475         /*
8476          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8477          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8478          * The caller is responsible for updating interruptibility state and
8479          * injecting single-step #DBs.
8480          */
8481         if (emulation_type & EMULTYPE_SKIP) {
8482                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8483                         ctxt->eip = (u32)ctxt->_eip;
8484                 else
8485                         ctxt->eip = ctxt->_eip;
8486
8487                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8488                         r = 1;
8489                         goto writeback;
8490                 }
8491
8492                 kvm_rip_write(vcpu, ctxt->eip);
8493                 if (ctxt->eflags & X86_EFLAGS_RF)
8494                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8495                 return 1;
8496         }
8497
8498         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8499                 return 1;
8500
8501         /* this is needed for vmware backdoor interface to work since it
8502            changes registers values  during IO operation */
8503         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8504                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8505                 emulator_invalidate_register_cache(ctxt);
8506         }
8507
8508 restart:
8509         if (emulation_type & EMULTYPE_PF) {
8510                 /* Save the faulting GPA (cr2) in the address field */
8511                 ctxt->exception.address = cr2_or_gpa;
8512
8513                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8514                 if (vcpu->arch.mmu->root_role.direct) {
8515                         ctxt->gpa_available = true;
8516                         ctxt->gpa_val = cr2_or_gpa;
8517                 }
8518         } else {
8519                 /* Sanitize the address out of an abundance of paranoia. */
8520                 ctxt->exception.address = 0;
8521         }
8522
8523         r = x86_emulate_insn(ctxt);
8524
8525         if (r == EMULATION_INTERCEPTED)
8526                 return 1;
8527
8528         if (r == EMULATION_FAILED) {
8529                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8530                                         emulation_type))
8531                         return 1;
8532
8533                 return handle_emulation_failure(vcpu, emulation_type);
8534         }
8535
8536         if (ctxt->have_exception) {
8537                 r = 1;
8538                 if (inject_emulated_exception(vcpu))
8539                         return r;
8540         } else if (vcpu->arch.pio.count) {
8541                 if (!vcpu->arch.pio.in) {
8542                         /* FIXME: return into emulator if single-stepping.  */
8543                         vcpu->arch.pio.count = 0;
8544                 } else {
8545                         writeback = false;
8546                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8547                 }
8548                 r = 0;
8549         } else if (vcpu->mmio_needed) {
8550                 ++vcpu->stat.mmio_exits;
8551
8552                 if (!vcpu->mmio_is_write)
8553                         writeback = false;
8554                 r = 0;
8555                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8556         } else if (vcpu->arch.complete_userspace_io) {
8557                 writeback = false;
8558                 r = 0;
8559         } else if (r == EMULATION_RESTART)
8560                 goto restart;
8561         else
8562                 r = 1;
8563
8564 writeback:
8565         if (writeback) {
8566                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8567                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8568                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8569                 if (!ctxt->have_exception ||
8570                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8571                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8572                         if (ctxt->is_branch)
8573                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8574                         kvm_rip_write(vcpu, ctxt->eip);
8575                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8576                                 r = kvm_vcpu_do_singlestep(vcpu);
8577                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8578                         __kvm_set_rflags(vcpu, ctxt->eflags);
8579                 }
8580
8581                 /*
8582                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8583                  * do nothing, and it will be requested again as soon as
8584                  * the shadow expires.  But we still need to check here,
8585                  * because POPF has no interrupt shadow.
8586                  */
8587                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8588                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8589         } else
8590                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8591
8592         return r;
8593 }
8594
8595 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8596 {
8597         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8598 }
8599 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8600
8601 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8602                                         void *insn, int insn_len)
8603 {
8604         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8605 }
8606 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8607
8608 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8609 {
8610         vcpu->arch.pio.count = 0;
8611         return 1;
8612 }
8613
8614 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8615 {
8616         vcpu->arch.pio.count = 0;
8617
8618         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8619                 return 1;
8620
8621         return kvm_skip_emulated_instruction(vcpu);
8622 }
8623
8624 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8625                             unsigned short port)
8626 {
8627         unsigned long val = kvm_rax_read(vcpu);
8628         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8629
8630         if (ret)
8631                 return ret;
8632
8633         /*
8634          * Workaround userspace that relies on old KVM behavior of %rip being
8635          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8636          */
8637         if (port == 0x7e &&
8638             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8639                 vcpu->arch.complete_userspace_io =
8640                         complete_fast_pio_out_port_0x7e;
8641                 kvm_skip_emulated_instruction(vcpu);
8642         } else {
8643                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8644                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8645         }
8646         return 0;
8647 }
8648
8649 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8650 {
8651         unsigned long val;
8652
8653         /* We should only ever be called with arch.pio.count equal to 1 */
8654         BUG_ON(vcpu->arch.pio.count != 1);
8655
8656         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8657                 vcpu->arch.pio.count = 0;
8658                 return 1;
8659         }
8660
8661         /* For size less than 4 we merge, else we zero extend */
8662         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8663
8664         /*
8665          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8666          * the copy and tracing
8667          */
8668         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8669         kvm_rax_write(vcpu, val);
8670
8671         return kvm_skip_emulated_instruction(vcpu);
8672 }
8673
8674 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8675                            unsigned short port)
8676 {
8677         unsigned long val;
8678         int ret;
8679
8680         /* For size less than 4 we merge, else we zero extend */
8681         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8682
8683         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8684         if (ret) {
8685                 kvm_rax_write(vcpu, val);
8686                 return ret;
8687         }
8688
8689         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8690         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8691
8692         return 0;
8693 }
8694
8695 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8696 {
8697         int ret;
8698
8699         if (in)
8700                 ret = kvm_fast_pio_in(vcpu, size, port);
8701         else
8702                 ret = kvm_fast_pio_out(vcpu, size, port);
8703         return ret && kvm_skip_emulated_instruction(vcpu);
8704 }
8705 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8706
8707 static int kvmclock_cpu_down_prep(unsigned int cpu)
8708 {
8709         __this_cpu_write(cpu_tsc_khz, 0);
8710         return 0;
8711 }
8712
8713 static void tsc_khz_changed(void *data)
8714 {
8715         struct cpufreq_freqs *freq = data;
8716         unsigned long khz = 0;
8717
8718         if (data)
8719                 khz = freq->new;
8720         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8721                 khz = cpufreq_quick_get(raw_smp_processor_id());
8722         if (!khz)
8723                 khz = tsc_khz;
8724         __this_cpu_write(cpu_tsc_khz, khz);
8725 }
8726
8727 #ifdef CONFIG_X86_64
8728 static void kvm_hyperv_tsc_notifier(void)
8729 {
8730         struct kvm *kvm;
8731         int cpu;
8732
8733         mutex_lock(&kvm_lock);
8734         list_for_each_entry(kvm, &vm_list, vm_list)
8735                 kvm_make_mclock_inprogress_request(kvm);
8736
8737         /* no guest entries from this point */
8738         hyperv_stop_tsc_emulation();
8739
8740         /* TSC frequency always matches when on Hyper-V */
8741         for_each_present_cpu(cpu)
8742                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8743         kvm_max_guest_tsc_khz = tsc_khz;
8744
8745         list_for_each_entry(kvm, &vm_list, vm_list) {
8746                 __kvm_start_pvclock_update(kvm);
8747                 pvclock_update_vm_gtod_copy(kvm);
8748                 kvm_end_pvclock_update(kvm);
8749         }
8750
8751         mutex_unlock(&kvm_lock);
8752 }
8753 #endif
8754
8755 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8756 {
8757         struct kvm *kvm;
8758         struct kvm_vcpu *vcpu;
8759         int send_ipi = 0;
8760         unsigned long i;
8761
8762         /*
8763          * We allow guests to temporarily run on slowing clocks,
8764          * provided we notify them after, or to run on accelerating
8765          * clocks, provided we notify them before.  Thus time never
8766          * goes backwards.
8767          *
8768          * However, we have a problem.  We can't atomically update
8769          * the frequency of a given CPU from this function; it is
8770          * merely a notifier, which can be called from any CPU.
8771          * Changing the TSC frequency at arbitrary points in time
8772          * requires a recomputation of local variables related to
8773          * the TSC for each VCPU.  We must flag these local variables
8774          * to be updated and be sure the update takes place with the
8775          * new frequency before any guests proceed.
8776          *
8777          * Unfortunately, the combination of hotplug CPU and frequency
8778          * change creates an intractable locking scenario; the order
8779          * of when these callouts happen is undefined with respect to
8780          * CPU hotplug, and they can race with each other.  As such,
8781          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8782          * undefined; you can actually have a CPU frequency change take
8783          * place in between the computation of X and the setting of the
8784          * variable.  To protect against this problem, all updates of
8785          * the per_cpu tsc_khz variable are done in an interrupt
8786          * protected IPI, and all callers wishing to update the value
8787          * must wait for a synchronous IPI to complete (which is trivial
8788          * if the caller is on the CPU already).  This establishes the
8789          * necessary total order on variable updates.
8790          *
8791          * Note that because a guest time update may take place
8792          * anytime after the setting of the VCPU's request bit, the
8793          * correct TSC value must be set before the request.  However,
8794          * to ensure the update actually makes it to any guest which
8795          * starts running in hardware virtualization between the set
8796          * and the acquisition of the spinlock, we must also ping the
8797          * CPU after setting the request bit.
8798          *
8799          */
8800
8801         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8802
8803         mutex_lock(&kvm_lock);
8804         list_for_each_entry(kvm, &vm_list, vm_list) {
8805                 kvm_for_each_vcpu(i, vcpu, kvm) {
8806                         if (vcpu->cpu != cpu)
8807                                 continue;
8808                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8809                         if (vcpu->cpu != raw_smp_processor_id())
8810                                 send_ipi = 1;
8811                 }
8812         }
8813         mutex_unlock(&kvm_lock);
8814
8815         if (freq->old < freq->new && send_ipi) {
8816                 /*
8817                  * We upscale the frequency.  Must make the guest
8818                  * doesn't see old kvmclock values while running with
8819                  * the new frequency, otherwise we risk the guest sees
8820                  * time go backwards.
8821                  *
8822                  * In case we update the frequency for another cpu
8823                  * (which might be in guest context) send an interrupt
8824                  * to kick the cpu out of guest context.  Next time
8825                  * guest context is entered kvmclock will be updated,
8826                  * so the guest will not see stale values.
8827                  */
8828                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8829         }
8830 }
8831
8832 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8833                                      void *data)
8834 {
8835         struct cpufreq_freqs *freq = data;
8836         int cpu;
8837
8838         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8839                 return 0;
8840         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8841                 return 0;
8842
8843         for_each_cpu(cpu, freq->policy->cpus)
8844                 __kvmclock_cpufreq_notifier(freq, cpu);
8845
8846         return 0;
8847 }
8848
8849 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8850         .notifier_call  = kvmclock_cpufreq_notifier
8851 };
8852
8853 static int kvmclock_cpu_online(unsigned int cpu)
8854 {
8855         tsc_khz_changed(NULL);
8856         return 0;
8857 }
8858
8859 static void kvm_timer_init(void)
8860 {
8861         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8862                 max_tsc_khz = tsc_khz;
8863
8864                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8865                         struct cpufreq_policy *policy;
8866                         int cpu;
8867
8868                         cpu = get_cpu();
8869                         policy = cpufreq_cpu_get(cpu);
8870                         if (policy) {
8871                                 if (policy->cpuinfo.max_freq)
8872                                         max_tsc_khz = policy->cpuinfo.max_freq;
8873                                 cpufreq_cpu_put(policy);
8874                         }
8875                         put_cpu();
8876                 }
8877                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8878                                           CPUFREQ_TRANSITION_NOTIFIER);
8879         }
8880
8881         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8882                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8883 }
8884
8885 #ifdef CONFIG_X86_64
8886 static void pvclock_gtod_update_fn(struct work_struct *work)
8887 {
8888         struct kvm *kvm;
8889         struct kvm_vcpu *vcpu;
8890         unsigned long i;
8891
8892         mutex_lock(&kvm_lock);
8893         list_for_each_entry(kvm, &vm_list, vm_list)
8894                 kvm_for_each_vcpu(i, vcpu, kvm)
8895                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8896         atomic_set(&kvm_guest_has_master_clock, 0);
8897         mutex_unlock(&kvm_lock);
8898 }
8899
8900 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8901
8902 /*
8903  * Indirection to move queue_work() out of the tk_core.seq write held
8904  * region to prevent possible deadlocks against time accessors which
8905  * are invoked with work related locks held.
8906  */
8907 static void pvclock_irq_work_fn(struct irq_work *w)
8908 {
8909         queue_work(system_long_wq, &pvclock_gtod_work);
8910 }
8911
8912 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8913
8914 /*
8915  * Notification about pvclock gtod data update.
8916  */
8917 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8918                                void *priv)
8919 {
8920         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8921         struct timekeeper *tk = priv;
8922
8923         update_pvclock_gtod(tk);
8924
8925         /*
8926          * Disable master clock if host does not trust, or does not use,
8927          * TSC based clocksource. Delegate queue_work() to irq_work as
8928          * this is invoked with tk_core.seq write held.
8929          */
8930         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8931             atomic_read(&kvm_guest_has_master_clock) != 0)
8932                 irq_work_queue(&pvclock_irq_work);
8933         return 0;
8934 }
8935
8936 static struct notifier_block pvclock_gtod_notifier = {
8937         .notifier_call = pvclock_gtod_notify,
8938 };
8939 #endif
8940
8941 int kvm_arch_init(void *opaque)
8942 {
8943         struct kvm_x86_init_ops *ops = opaque;
8944         int r;
8945
8946         if (kvm_x86_ops.hardware_enable) {
8947                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8948                 r = -EEXIST;
8949                 goto out;
8950         }
8951
8952         if (!ops->cpu_has_kvm_support()) {
8953                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8954                                    ops->runtime_ops->name);
8955                 r = -EOPNOTSUPP;
8956                 goto out;
8957         }
8958         if (ops->disabled_by_bios()) {
8959                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8960                                    ops->runtime_ops->name);
8961                 r = -EOPNOTSUPP;
8962                 goto out;
8963         }
8964
8965         /*
8966          * KVM explicitly assumes that the guest has an FPU and
8967          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8968          * vCPU's FPU state as a fxregs_state struct.
8969          */
8970         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8971                 printk(KERN_ERR "kvm: inadequate fpu\n");
8972                 r = -EOPNOTSUPP;
8973                 goto out;
8974         }
8975
8976         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8977                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8978                 r = -EOPNOTSUPP;
8979                 goto out;
8980         }
8981
8982         r = -ENOMEM;
8983
8984         x86_emulator_cache = kvm_alloc_emulator_cache();
8985         if (!x86_emulator_cache) {
8986                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8987                 goto out;
8988         }
8989
8990         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8991         if (!user_return_msrs) {
8992                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8993                 goto out_free_x86_emulator_cache;
8994         }
8995         kvm_nr_uret_msrs = 0;
8996
8997         r = kvm_mmu_vendor_module_init();
8998         if (r)
8999                 goto out_free_percpu;
9000
9001         kvm_timer_init();
9002
9003         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9004                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9005                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9006         }
9007
9008         if (pi_inject_timer == -1)
9009                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9010 #ifdef CONFIG_X86_64
9011         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9012
9013         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9014                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9015 #endif
9016
9017         return 0;
9018
9019 out_free_percpu:
9020         free_percpu(user_return_msrs);
9021 out_free_x86_emulator_cache:
9022         kmem_cache_destroy(x86_emulator_cache);
9023 out:
9024         return r;
9025 }
9026
9027 void kvm_arch_exit(void)
9028 {
9029 #ifdef CONFIG_X86_64
9030         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9031                 clear_hv_tscchange_cb();
9032 #endif
9033         kvm_lapic_exit();
9034
9035         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9036                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9037                                             CPUFREQ_TRANSITION_NOTIFIER);
9038         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9039 #ifdef CONFIG_X86_64
9040         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9041         irq_work_sync(&pvclock_irq_work);
9042         cancel_work_sync(&pvclock_gtod_work);
9043 #endif
9044         kvm_x86_ops.hardware_enable = NULL;
9045         kvm_mmu_vendor_module_exit();
9046         free_percpu(user_return_msrs);
9047         kmem_cache_destroy(x86_emulator_cache);
9048 #ifdef CONFIG_KVM_XEN
9049         static_key_deferred_flush(&kvm_xen_enabled);
9050         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9051 #endif
9052 }
9053
9054 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9055 {
9056         /*
9057          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9058          * local APIC is in-kernel, the run loop will detect the non-runnable
9059          * state and halt the vCPU.  Exit to userspace if the local APIC is
9060          * managed by userspace, in which case userspace is responsible for
9061          * handling wake events.
9062          */
9063         ++vcpu->stat.halt_exits;
9064         if (lapic_in_kernel(vcpu)) {
9065                 vcpu->arch.mp_state = state;
9066                 return 1;
9067         } else {
9068                 vcpu->run->exit_reason = reason;
9069                 return 0;
9070         }
9071 }
9072
9073 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9074 {
9075         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9076 }
9077 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9078
9079 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9080 {
9081         int ret = kvm_skip_emulated_instruction(vcpu);
9082         /*
9083          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9084          * KVM_EXIT_DEBUG here.
9085          */
9086         return kvm_emulate_halt_noskip(vcpu) && ret;
9087 }
9088 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9089
9090 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9091 {
9092         int ret = kvm_skip_emulated_instruction(vcpu);
9093
9094         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9095                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9096 }
9097 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9098
9099 #ifdef CONFIG_X86_64
9100 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9101                                 unsigned long clock_type)
9102 {
9103         struct kvm_clock_pairing clock_pairing;
9104         struct timespec64 ts;
9105         u64 cycle;
9106         int ret;
9107
9108         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9109                 return -KVM_EOPNOTSUPP;
9110
9111         /*
9112          * When tsc is in permanent catchup mode guests won't be able to use
9113          * pvclock_read_retry loop to get consistent view of pvclock
9114          */
9115         if (vcpu->arch.tsc_always_catchup)
9116                 return -KVM_EOPNOTSUPP;
9117
9118         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9119                 return -KVM_EOPNOTSUPP;
9120
9121         clock_pairing.sec = ts.tv_sec;
9122         clock_pairing.nsec = ts.tv_nsec;
9123         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9124         clock_pairing.flags = 0;
9125         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9126
9127         ret = 0;
9128         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9129                             sizeof(struct kvm_clock_pairing)))
9130                 ret = -KVM_EFAULT;
9131
9132         return ret;
9133 }
9134 #endif
9135
9136 /*
9137  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9138  *
9139  * @apicid - apicid of vcpu to be kicked.
9140  */
9141 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9142 {
9143         struct kvm_lapic_irq lapic_irq;
9144
9145         lapic_irq.shorthand = APIC_DEST_NOSHORT;
9146         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9147         lapic_irq.level = 0;
9148         lapic_irq.dest_id = apicid;
9149         lapic_irq.msi_redir_hint = false;
9150
9151         lapic_irq.delivery_mode = APIC_DM_REMRD;
9152         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9153 }
9154
9155 bool kvm_apicv_activated(struct kvm *kvm)
9156 {
9157         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9158 }
9159 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9160
9161 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9162 {
9163         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9164         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9165
9166         return (vm_reasons | vcpu_reasons) == 0;
9167 }
9168 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9169
9170 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9171                                        enum kvm_apicv_inhibit reason, bool set)
9172 {
9173         if (set)
9174                 __set_bit(reason, inhibits);
9175         else
9176                 __clear_bit(reason, inhibits);
9177
9178         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9179 }
9180
9181 static void kvm_apicv_init(struct kvm *kvm)
9182 {
9183         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9184
9185         init_rwsem(&kvm->arch.apicv_update_lock);
9186
9187         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9188
9189         if (!enable_apicv)
9190                 set_or_clear_apicv_inhibit(inhibits,
9191                                            APICV_INHIBIT_REASON_DISABLE, true);
9192 }
9193
9194 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9195 {
9196         struct kvm_vcpu *target = NULL;
9197         struct kvm_apic_map *map;
9198
9199         vcpu->stat.directed_yield_attempted++;
9200
9201         if (single_task_running())
9202                 goto no_yield;
9203
9204         rcu_read_lock();
9205         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9206
9207         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9208                 target = map->phys_map[dest_id]->vcpu;
9209
9210         rcu_read_unlock();
9211
9212         if (!target || !READ_ONCE(target->ready))
9213                 goto no_yield;
9214
9215         /* Ignore requests to yield to self */
9216         if (vcpu == target)
9217                 goto no_yield;
9218
9219         if (kvm_vcpu_yield_to(target) <= 0)
9220                 goto no_yield;
9221
9222         vcpu->stat.directed_yield_successful++;
9223
9224 no_yield:
9225         return;
9226 }
9227
9228 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9229 {
9230         u64 ret = vcpu->run->hypercall.ret;
9231
9232         if (!is_64_bit_mode(vcpu))
9233                 ret = (u32)ret;
9234         kvm_rax_write(vcpu, ret);
9235         ++vcpu->stat.hypercalls;
9236         return kvm_skip_emulated_instruction(vcpu);
9237 }
9238
9239 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9240 {
9241         unsigned long nr, a0, a1, a2, a3, ret;
9242         int op_64_bit;
9243
9244         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9245                 return kvm_xen_hypercall(vcpu);
9246
9247         if (kvm_hv_hypercall_enabled(vcpu))
9248                 return kvm_hv_hypercall(vcpu);
9249
9250         nr = kvm_rax_read(vcpu);
9251         a0 = kvm_rbx_read(vcpu);
9252         a1 = kvm_rcx_read(vcpu);
9253         a2 = kvm_rdx_read(vcpu);
9254         a3 = kvm_rsi_read(vcpu);
9255
9256         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9257
9258         op_64_bit = is_64_bit_hypercall(vcpu);
9259         if (!op_64_bit) {
9260                 nr &= 0xFFFFFFFF;
9261                 a0 &= 0xFFFFFFFF;
9262                 a1 &= 0xFFFFFFFF;
9263                 a2 &= 0xFFFFFFFF;
9264                 a3 &= 0xFFFFFFFF;
9265         }
9266
9267         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9268                 ret = -KVM_EPERM;
9269                 goto out;
9270         }
9271
9272         ret = -KVM_ENOSYS;
9273
9274         switch (nr) {
9275         case KVM_HC_VAPIC_POLL_IRQ:
9276                 ret = 0;
9277                 break;
9278         case KVM_HC_KICK_CPU:
9279                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9280                         break;
9281
9282                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9283                 kvm_sched_yield(vcpu, a1);
9284                 ret = 0;
9285                 break;
9286 #ifdef CONFIG_X86_64
9287         case KVM_HC_CLOCK_PAIRING:
9288                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9289                 break;
9290 #endif
9291         case KVM_HC_SEND_IPI:
9292                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9293                         break;
9294
9295                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9296                 break;
9297         case KVM_HC_SCHED_YIELD:
9298                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9299                         break;
9300
9301                 kvm_sched_yield(vcpu, a0);
9302                 ret = 0;
9303                 break;
9304         case KVM_HC_MAP_GPA_RANGE: {
9305                 u64 gpa = a0, npages = a1, attrs = a2;
9306
9307                 ret = -KVM_ENOSYS;
9308                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9309                         break;
9310
9311                 if (!PAGE_ALIGNED(gpa) || !npages ||
9312                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9313                         ret = -KVM_EINVAL;
9314                         break;
9315                 }
9316
9317                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9318                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9319                 vcpu->run->hypercall.args[0]  = gpa;
9320                 vcpu->run->hypercall.args[1]  = npages;
9321                 vcpu->run->hypercall.args[2]  = attrs;
9322                 vcpu->run->hypercall.longmode = op_64_bit;
9323                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9324                 return 0;
9325         }
9326         default:
9327                 ret = -KVM_ENOSYS;
9328                 break;
9329         }
9330 out:
9331         if (!op_64_bit)
9332                 ret = (u32)ret;
9333         kvm_rax_write(vcpu, ret);
9334
9335         ++vcpu->stat.hypercalls;
9336         return kvm_skip_emulated_instruction(vcpu);
9337 }
9338 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9339
9340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9341 {
9342         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9343         char instruction[3];
9344         unsigned long rip = kvm_rip_read(vcpu);
9345
9346         /*
9347          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9348          * the pieces.
9349          */
9350         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9351                 ctxt->exception.error_code_valid = false;
9352                 ctxt->exception.vector = UD_VECTOR;
9353                 ctxt->have_exception = true;
9354                 return X86EMUL_PROPAGATE_FAULT;
9355         }
9356
9357         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9358
9359         return emulator_write_emulated(ctxt, rip, instruction, 3,
9360                 &ctxt->exception);
9361 }
9362
9363 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9364 {
9365         return vcpu->run->request_interrupt_window &&
9366                 likely(!pic_in_kernel(vcpu->kvm));
9367 }
9368
9369 /* Called within kvm->srcu read side.  */
9370 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9371 {
9372         struct kvm_run *kvm_run = vcpu->run;
9373
9374         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9375         kvm_run->cr8 = kvm_get_cr8(vcpu);
9376         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9377
9378         kvm_run->ready_for_interrupt_injection =
9379                 pic_in_kernel(vcpu->kvm) ||
9380                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9381
9382         if (is_smm(vcpu))
9383                 kvm_run->flags |= KVM_RUN_X86_SMM;
9384 }
9385
9386 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9387 {
9388         int max_irr, tpr;
9389
9390         if (!kvm_x86_ops.update_cr8_intercept)
9391                 return;
9392
9393         if (!lapic_in_kernel(vcpu))
9394                 return;
9395
9396         if (vcpu->arch.apicv_active)
9397                 return;
9398
9399         if (!vcpu->arch.apic->vapic_addr)
9400                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9401         else
9402                 max_irr = -1;
9403
9404         if (max_irr != -1)
9405                 max_irr >>= 4;
9406
9407         tpr = kvm_lapic_get_cr8(vcpu);
9408
9409         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9410 }
9411
9412
9413 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9414 {
9415         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9416                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9417                 return 1;
9418         }
9419
9420         return kvm_x86_ops.nested_ops->check_events(vcpu);
9421 }
9422
9423 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9424 {
9425         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9426                 vcpu->arch.exception.error_code = false;
9427         static_call(kvm_x86_queue_exception)(vcpu);
9428 }
9429
9430 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9431 {
9432         int r;
9433         bool can_inject = true;
9434
9435         /* try to reinject previous events if any */
9436
9437         if (vcpu->arch.exception.injected) {
9438                 kvm_inject_exception(vcpu);
9439                 can_inject = false;
9440         }
9441         /*
9442          * Do not inject an NMI or interrupt if there is a pending
9443          * exception.  Exceptions and interrupts are recognized at
9444          * instruction boundaries, i.e. the start of an instruction.
9445          * Trap-like exceptions, e.g. #DB, have higher priority than
9446          * NMIs and interrupts, i.e. traps are recognized before an
9447          * NMI/interrupt that's pending on the same instruction.
9448          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9449          * priority, but are only generated (pended) during instruction
9450          * execution, i.e. a pending fault-like exception means the
9451          * fault occurred on the *previous* instruction and must be
9452          * serviced prior to recognizing any new events in order to
9453          * fully complete the previous instruction.
9454          */
9455         else if (!vcpu->arch.exception.pending) {
9456                 if (vcpu->arch.nmi_injected) {
9457                         static_call(kvm_x86_inject_nmi)(vcpu);
9458                         can_inject = false;
9459                 } else if (vcpu->arch.interrupt.injected) {
9460                         static_call(kvm_x86_inject_irq)(vcpu);
9461                         can_inject = false;
9462                 }
9463         }
9464
9465         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9466                      vcpu->arch.exception.pending);
9467
9468         /*
9469          * Call check_nested_events() even if we reinjected a previous event
9470          * in order for caller to determine if it should require immediate-exit
9471          * from L2 to L1 due to pending L1 events which require exit
9472          * from L2 to L1.
9473          */
9474         if (is_guest_mode(vcpu)) {
9475                 r = kvm_check_nested_events(vcpu);
9476                 if (r < 0)
9477                         goto out;
9478         }
9479
9480         /* try to inject new event if pending */
9481         if (vcpu->arch.exception.pending) {
9482                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9483                                         vcpu->arch.exception.has_error_code,
9484                                         vcpu->arch.exception.error_code);
9485
9486                 vcpu->arch.exception.pending = false;
9487                 vcpu->arch.exception.injected = true;
9488
9489                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9490                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9491                                              X86_EFLAGS_RF);
9492
9493                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9494                         kvm_deliver_exception_payload(vcpu);
9495                         if (vcpu->arch.dr7 & DR7_GD) {
9496                                 vcpu->arch.dr7 &= ~DR7_GD;
9497                                 kvm_update_dr7(vcpu);
9498                         }
9499                 }
9500
9501                 kvm_inject_exception(vcpu);
9502                 can_inject = false;
9503         }
9504
9505         /* Don't inject interrupts if the user asked to avoid doing so */
9506         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9507                 return 0;
9508
9509         /*
9510          * Finally, inject interrupt events.  If an event cannot be injected
9511          * due to architectural conditions (e.g. IF=0) a window-open exit
9512          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9513          * and can architecturally be injected, but we cannot do it right now:
9514          * an interrupt could have arrived just now and we have to inject it
9515          * as a vmexit, or there could already an event in the queue, which is
9516          * indicated by can_inject.  In that case we request an immediate exit
9517          * in order to make progress and get back here for another iteration.
9518          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9519          */
9520         if (vcpu->arch.smi_pending) {
9521                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9522                 if (r < 0)
9523                         goto out;
9524                 if (r) {
9525                         vcpu->arch.smi_pending = false;
9526                         ++vcpu->arch.smi_count;
9527                         enter_smm(vcpu);
9528                         can_inject = false;
9529                 } else
9530                         static_call(kvm_x86_enable_smi_window)(vcpu);
9531         }
9532
9533         if (vcpu->arch.nmi_pending) {
9534                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9535                 if (r < 0)
9536                         goto out;
9537                 if (r) {
9538                         --vcpu->arch.nmi_pending;
9539                         vcpu->arch.nmi_injected = true;
9540                         static_call(kvm_x86_inject_nmi)(vcpu);
9541                         can_inject = false;
9542                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9543                 }
9544                 if (vcpu->arch.nmi_pending)
9545                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9546         }
9547
9548         if (kvm_cpu_has_injectable_intr(vcpu)) {
9549                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9550                 if (r < 0)
9551                         goto out;
9552                 if (r) {
9553                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9554                         static_call(kvm_x86_inject_irq)(vcpu);
9555                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9556                 }
9557                 if (kvm_cpu_has_injectable_intr(vcpu))
9558                         static_call(kvm_x86_enable_irq_window)(vcpu);
9559         }
9560
9561         if (is_guest_mode(vcpu) &&
9562             kvm_x86_ops.nested_ops->hv_timer_pending &&
9563             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9564                 *req_immediate_exit = true;
9565
9566         WARN_ON(vcpu->arch.exception.pending);
9567         return 0;
9568
9569 out:
9570         if (r == -EBUSY) {
9571                 *req_immediate_exit = true;
9572                 r = 0;
9573         }
9574         return r;
9575 }
9576
9577 static void process_nmi(struct kvm_vcpu *vcpu)
9578 {
9579         unsigned limit = 2;
9580
9581         /*
9582          * x86 is limited to one NMI running, and one NMI pending after it.
9583          * If an NMI is already in progress, limit further NMIs to just one.
9584          * Otherwise, allow two (and we'll inject the first one immediately).
9585          */
9586         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9587                 limit = 1;
9588
9589         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9590         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9591         kvm_make_request(KVM_REQ_EVENT, vcpu);
9592 }
9593
9594 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9595 {
9596         u32 flags = 0;
9597         flags |= seg->g       << 23;
9598         flags |= seg->db      << 22;
9599         flags |= seg->l       << 21;
9600         flags |= seg->avl     << 20;
9601         flags |= seg->present << 15;
9602         flags |= seg->dpl     << 13;
9603         flags |= seg->s       << 12;
9604         flags |= seg->type    << 8;
9605         return flags;
9606 }
9607
9608 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9609 {
9610         struct kvm_segment seg;
9611         int offset;
9612
9613         kvm_get_segment(vcpu, &seg, n);
9614         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9615
9616         if (n < 3)
9617                 offset = 0x7f84 + n * 12;
9618         else
9619                 offset = 0x7f2c + (n - 3) * 12;
9620
9621         put_smstate(u32, buf, offset + 8, seg.base);
9622         put_smstate(u32, buf, offset + 4, seg.limit);
9623         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9624 }
9625
9626 #ifdef CONFIG_X86_64
9627 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9628 {
9629         struct kvm_segment seg;
9630         int offset;
9631         u16 flags;
9632
9633         kvm_get_segment(vcpu, &seg, n);
9634         offset = 0x7e00 + n * 16;
9635
9636         flags = enter_smm_get_segment_flags(&seg) >> 8;
9637         put_smstate(u16, buf, offset, seg.selector);
9638         put_smstate(u16, buf, offset + 2, flags);
9639         put_smstate(u32, buf, offset + 4, seg.limit);
9640         put_smstate(u64, buf, offset + 8, seg.base);
9641 }
9642 #endif
9643
9644 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9645 {
9646         struct desc_ptr dt;
9647         struct kvm_segment seg;
9648         unsigned long val;
9649         int i;
9650
9651         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9652         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9653         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9654         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9655
9656         for (i = 0; i < 8; i++)
9657                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9658
9659         kvm_get_dr(vcpu, 6, &val);
9660         put_smstate(u32, buf, 0x7fcc, (u32)val);
9661         kvm_get_dr(vcpu, 7, &val);
9662         put_smstate(u32, buf, 0x7fc8, (u32)val);
9663
9664         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9665         put_smstate(u32, buf, 0x7fc4, seg.selector);
9666         put_smstate(u32, buf, 0x7f64, seg.base);
9667         put_smstate(u32, buf, 0x7f60, seg.limit);
9668         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9669
9670         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9671         put_smstate(u32, buf, 0x7fc0, seg.selector);
9672         put_smstate(u32, buf, 0x7f80, seg.base);
9673         put_smstate(u32, buf, 0x7f7c, seg.limit);
9674         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9675
9676         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9677         put_smstate(u32, buf, 0x7f74, dt.address);
9678         put_smstate(u32, buf, 0x7f70, dt.size);
9679
9680         static_call(kvm_x86_get_idt)(vcpu, &dt);
9681         put_smstate(u32, buf, 0x7f58, dt.address);
9682         put_smstate(u32, buf, 0x7f54, dt.size);
9683
9684         for (i = 0; i < 6; i++)
9685                 enter_smm_save_seg_32(vcpu, buf, i);
9686
9687         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9688
9689         /* revision id */
9690         put_smstate(u32, buf, 0x7efc, 0x00020000);
9691         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9692 }
9693
9694 #ifdef CONFIG_X86_64
9695 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9696 {
9697         struct desc_ptr dt;
9698         struct kvm_segment seg;
9699         unsigned long val;
9700         int i;
9701
9702         for (i = 0; i < 16; i++)
9703                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9704
9705         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9706         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9707
9708         kvm_get_dr(vcpu, 6, &val);
9709         put_smstate(u64, buf, 0x7f68, val);
9710         kvm_get_dr(vcpu, 7, &val);
9711         put_smstate(u64, buf, 0x7f60, val);
9712
9713         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9714         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9715         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9716
9717         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9718
9719         /* revision id */
9720         put_smstate(u32, buf, 0x7efc, 0x00020064);
9721
9722         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9723
9724         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9725         put_smstate(u16, buf, 0x7e90, seg.selector);
9726         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9727         put_smstate(u32, buf, 0x7e94, seg.limit);
9728         put_smstate(u64, buf, 0x7e98, seg.base);
9729
9730         static_call(kvm_x86_get_idt)(vcpu, &dt);
9731         put_smstate(u32, buf, 0x7e84, dt.size);
9732         put_smstate(u64, buf, 0x7e88, dt.address);
9733
9734         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9735         put_smstate(u16, buf, 0x7e70, seg.selector);
9736         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9737         put_smstate(u32, buf, 0x7e74, seg.limit);
9738         put_smstate(u64, buf, 0x7e78, seg.base);
9739
9740         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9741         put_smstate(u32, buf, 0x7e64, dt.size);
9742         put_smstate(u64, buf, 0x7e68, dt.address);
9743
9744         for (i = 0; i < 6; i++)
9745                 enter_smm_save_seg_64(vcpu, buf, i);
9746 }
9747 #endif
9748
9749 static void enter_smm(struct kvm_vcpu *vcpu)
9750 {
9751         struct kvm_segment cs, ds;
9752         struct desc_ptr dt;
9753         unsigned long cr0;
9754         char buf[512];
9755
9756         memset(buf, 0, 512);
9757 #ifdef CONFIG_X86_64
9758         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9759                 enter_smm_save_state_64(vcpu, buf);
9760         else
9761 #endif
9762                 enter_smm_save_state_32(vcpu, buf);
9763
9764         /*
9765          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9766          * state (e.g. leave guest mode) after we've saved the state into the
9767          * SMM state-save area.
9768          */
9769         static_call(kvm_x86_enter_smm)(vcpu, buf);
9770
9771         kvm_smm_changed(vcpu, true);
9772         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9773
9774         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9775                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9776         else
9777                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9778
9779         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9780         kvm_rip_write(vcpu, 0x8000);
9781
9782         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9783         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9784         vcpu->arch.cr0 = cr0;
9785
9786         static_call(kvm_x86_set_cr4)(vcpu, 0);
9787
9788         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9789         dt.address = dt.size = 0;
9790         static_call(kvm_x86_set_idt)(vcpu, &dt);
9791
9792         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9793
9794         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9795         cs.base = vcpu->arch.smbase;
9796
9797         ds.selector = 0;
9798         ds.base = 0;
9799
9800         cs.limit    = ds.limit = 0xffffffff;
9801         cs.type     = ds.type = 0x3;
9802         cs.dpl      = ds.dpl = 0;
9803         cs.db       = ds.db = 0;
9804         cs.s        = ds.s = 1;
9805         cs.l        = ds.l = 0;
9806         cs.g        = ds.g = 1;
9807         cs.avl      = ds.avl = 0;
9808         cs.present  = ds.present = 1;
9809         cs.unusable = ds.unusable = 0;
9810         cs.padding  = ds.padding = 0;
9811
9812         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9813         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9814         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9815         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9816         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9817         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9818
9819 #ifdef CONFIG_X86_64
9820         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9821                 static_call(kvm_x86_set_efer)(vcpu, 0);
9822 #endif
9823
9824         kvm_update_cpuid_runtime(vcpu);
9825         kvm_mmu_reset_context(vcpu);
9826 }
9827
9828 static void process_smi(struct kvm_vcpu *vcpu)
9829 {
9830         vcpu->arch.smi_pending = true;
9831         kvm_make_request(KVM_REQ_EVENT, vcpu);
9832 }
9833
9834 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9835                                        unsigned long *vcpu_bitmap)
9836 {
9837         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9838 }
9839
9840 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9841 {
9842         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9843 }
9844
9845 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9846 {
9847         bool activate;
9848
9849         if (!lapic_in_kernel(vcpu))
9850                 return;
9851
9852         down_read(&vcpu->kvm->arch.apicv_update_lock);
9853
9854         activate = kvm_vcpu_apicv_activated(vcpu);
9855
9856         if (vcpu->arch.apicv_active == activate)
9857                 goto out;
9858
9859         vcpu->arch.apicv_active = activate;
9860         kvm_apic_update_apicv(vcpu);
9861         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9862
9863         /*
9864          * When APICv gets disabled, we may still have injected interrupts
9865          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9866          * still active when the interrupt got accepted. Make sure
9867          * inject_pending_event() is called to check for that.
9868          */
9869         if (!vcpu->arch.apicv_active)
9870                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9871
9872 out:
9873         up_read(&vcpu->kvm->arch.apicv_update_lock);
9874 }
9875 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9876
9877 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9878                                       enum kvm_apicv_inhibit reason, bool set)
9879 {
9880         unsigned long old, new;
9881
9882         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9883
9884         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9885                 return;
9886
9887         old = new = kvm->arch.apicv_inhibit_reasons;
9888
9889         set_or_clear_apicv_inhibit(&new, reason, set);
9890
9891         if (!!old != !!new) {
9892                 /*
9893                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9894                  * false positives in the sanity check WARN in svm_vcpu_run().
9895                  * This task will wait for all vCPUs to ack the kick IRQ before
9896                  * updating apicv_inhibit_reasons, and all other vCPUs will
9897                  * block on acquiring apicv_update_lock so that vCPUs can't
9898                  * redo svm_vcpu_run() without seeing the new inhibit state.
9899                  *
9900                  * Note, holding apicv_update_lock and taking it in the read
9901                  * side (handling the request) also prevents other vCPUs from
9902                  * servicing the request with a stale apicv_inhibit_reasons.
9903                  */
9904                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9905                 kvm->arch.apicv_inhibit_reasons = new;
9906                 if (new) {
9907                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9908                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9909                 }
9910         } else {
9911                 kvm->arch.apicv_inhibit_reasons = new;
9912         }
9913 }
9914
9915 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9916                                     enum kvm_apicv_inhibit reason, bool set)
9917 {
9918         if (!enable_apicv)
9919                 return;
9920
9921         down_write(&kvm->arch.apicv_update_lock);
9922         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9923         up_write(&kvm->arch.apicv_update_lock);
9924 }
9925 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9926
9927 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9928 {
9929         if (!kvm_apic_present(vcpu))
9930                 return;
9931
9932         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9933
9934         if (irqchip_split(vcpu->kvm))
9935                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9936         else {
9937                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9938                 if (ioapic_in_kernel(vcpu->kvm))
9939                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9940         }
9941
9942         if (is_guest_mode(vcpu))
9943                 vcpu->arch.load_eoi_exitmap_pending = true;
9944         else
9945                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9946 }
9947
9948 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9949 {
9950         u64 eoi_exit_bitmap[4];
9951
9952         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9953                 return;
9954
9955         if (to_hv_vcpu(vcpu)) {
9956                 bitmap_or((ulong *)eoi_exit_bitmap,
9957                           vcpu->arch.ioapic_handled_vectors,
9958                           to_hv_synic(vcpu)->vec_bitmap, 256);
9959                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9960                 return;
9961         }
9962
9963         static_call_cond(kvm_x86_load_eoi_exitmap)(
9964                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9965 }
9966
9967 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9968                                             unsigned long start, unsigned long end)
9969 {
9970         unsigned long apic_address;
9971
9972         /*
9973          * The physical address of apic access page is stored in the VMCS.
9974          * Update it when it becomes invalid.
9975          */
9976         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9977         if (start <= apic_address && apic_address < end)
9978                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9979 }
9980
9981 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9982 {
9983         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9984 }
9985
9986 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9987 {
9988         if (!lapic_in_kernel(vcpu))
9989                 return;
9990
9991         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9992 }
9993
9994 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9995 {
9996         smp_send_reschedule(vcpu->cpu);
9997 }
9998 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9999
10000 /*
10001  * Called within kvm->srcu read side.
10002  * Returns 1 to let vcpu_run() continue the guest execution loop without
10003  * exiting to the userspace.  Otherwise, the value will be returned to the
10004  * userspace.
10005  */
10006 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10007 {
10008         int r;
10009         bool req_int_win =
10010                 dm_request_for_irq_injection(vcpu) &&
10011                 kvm_cpu_accept_dm_intr(vcpu);
10012         fastpath_t exit_fastpath;
10013
10014         bool req_immediate_exit = false;
10015
10016         /* Forbid vmenter if vcpu dirty ring is soft-full */
10017         if (unlikely(vcpu->kvm->dirty_ring_size &&
10018                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10019                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10020                 trace_kvm_dirty_ring_exit(vcpu);
10021                 r = 0;
10022                 goto out;
10023         }
10024
10025         if (kvm_request_pending(vcpu)) {
10026                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10027                         r = -EIO;
10028                         goto out;
10029                 }
10030                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10031                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10032                                 r = 0;
10033                                 goto out;
10034                         }
10035                 }
10036                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10037                         kvm_mmu_free_obsolete_roots(vcpu);
10038                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10039                         __kvm_migrate_timers(vcpu);
10040                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10041                         kvm_update_masterclock(vcpu->kvm);
10042                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10043                         kvm_gen_kvmclock_update(vcpu);
10044                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10045                         r = kvm_guest_time_update(vcpu);
10046                         if (unlikely(r))
10047                                 goto out;
10048                 }
10049                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10050                         kvm_mmu_sync_roots(vcpu);
10051                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10052                         kvm_mmu_load_pgd(vcpu);
10053                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10054                         kvm_vcpu_flush_tlb_all(vcpu);
10055
10056                         /* Flushing all ASIDs flushes the current ASID... */
10057                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10058                 }
10059                 kvm_service_local_tlb_flush_requests(vcpu);
10060
10061                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10062                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10063                         r = 0;
10064                         goto out;
10065                 }
10066                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10067                         if (is_guest_mode(vcpu)) {
10068                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10069                         } else {
10070                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10071                                 vcpu->mmio_needed = 0;
10072                                 r = 0;
10073                                 goto out;
10074                         }
10075                 }
10076                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10077                         /* Page is swapped out. Do synthetic halt */
10078                         vcpu->arch.apf.halted = true;
10079                         r = 1;
10080                         goto out;
10081                 }
10082                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10083                         record_steal_time(vcpu);
10084                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10085                         process_smi(vcpu);
10086                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10087                         process_nmi(vcpu);
10088                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10089                         kvm_pmu_handle_event(vcpu);
10090                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10091                         kvm_pmu_deliver_pmi(vcpu);
10092                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10093                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10094                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10095                                      vcpu->arch.ioapic_handled_vectors)) {
10096                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10097                                 vcpu->run->eoi.vector =
10098                                                 vcpu->arch.pending_ioapic_eoi;
10099                                 r = 0;
10100                                 goto out;
10101                         }
10102                 }
10103                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10104                         vcpu_scan_ioapic(vcpu);
10105                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10106                         vcpu_load_eoi_exitmap(vcpu);
10107                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10108                         kvm_vcpu_reload_apic_access_page(vcpu);
10109                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10110                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10111                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10112                         vcpu->run->system_event.ndata = 0;
10113                         r = 0;
10114                         goto out;
10115                 }
10116                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10117                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10118                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10119                         vcpu->run->system_event.ndata = 0;
10120                         r = 0;
10121                         goto out;
10122                 }
10123                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10124                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10125
10126                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10127                         vcpu->run->hyperv = hv_vcpu->exit;
10128                         r = 0;
10129                         goto out;
10130                 }
10131
10132                 /*
10133                  * KVM_REQ_HV_STIMER has to be processed after
10134                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10135                  * depend on the guest clock being up-to-date
10136                  */
10137                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10138                         kvm_hv_process_stimers(vcpu);
10139                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10140                         kvm_vcpu_update_apicv(vcpu);
10141                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10142                         kvm_check_async_pf_completion(vcpu);
10143                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10144                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10145
10146                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10147                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10148         }
10149
10150         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10151             kvm_xen_has_interrupt(vcpu)) {
10152                 ++vcpu->stat.req_event;
10153                 r = kvm_apic_accept_events(vcpu);
10154                 if (r < 0) {
10155                         r = 0;
10156                         goto out;
10157                 }
10158                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10159                         r = 1;
10160                         goto out;
10161                 }
10162
10163                 r = inject_pending_event(vcpu, &req_immediate_exit);
10164                 if (r < 0) {
10165                         r = 0;
10166                         goto out;
10167                 }
10168                 if (req_int_win)
10169                         static_call(kvm_x86_enable_irq_window)(vcpu);
10170
10171                 if (kvm_lapic_enabled(vcpu)) {
10172                         update_cr8_intercept(vcpu);
10173                         kvm_lapic_sync_to_vapic(vcpu);
10174                 }
10175         }
10176
10177         r = kvm_mmu_reload(vcpu);
10178         if (unlikely(r)) {
10179                 goto cancel_injection;
10180         }
10181
10182         preempt_disable();
10183
10184         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10185
10186         /*
10187          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10188          * IPI are then delayed after guest entry, which ensures that they
10189          * result in virtual interrupt delivery.
10190          */
10191         local_irq_disable();
10192
10193         /* Store vcpu->apicv_active before vcpu->mode.  */
10194         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10195
10196         kvm_vcpu_srcu_read_unlock(vcpu);
10197
10198         /*
10199          * 1) We should set ->mode before checking ->requests.  Please see
10200          * the comment in kvm_vcpu_exiting_guest_mode().
10201          *
10202          * 2) For APICv, we should set ->mode before checking PID.ON. This
10203          * pairs with the memory barrier implicit in pi_test_and_set_on
10204          * (see vmx_deliver_posted_interrupt).
10205          *
10206          * 3) This also orders the write to mode from any reads to the page
10207          * tables done while the VCPU is running.  Please see the comment
10208          * in kvm_flush_remote_tlbs.
10209          */
10210         smp_mb__after_srcu_read_unlock();
10211
10212         /*
10213          * Process pending posted interrupts to handle the case where the
10214          * notification IRQ arrived in the host, or was never sent (because the
10215          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10216          * status, KVM doesn't update assigned devices when APICv is inhibited,
10217          * i.e. they can post interrupts even if APICv is temporarily disabled.
10218          */
10219         if (kvm_lapic_enabled(vcpu))
10220                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10221
10222         if (kvm_vcpu_exit_request(vcpu)) {
10223                 vcpu->mode = OUTSIDE_GUEST_MODE;
10224                 smp_wmb();
10225                 local_irq_enable();
10226                 preempt_enable();
10227                 kvm_vcpu_srcu_read_lock(vcpu);
10228                 r = 1;
10229                 goto cancel_injection;
10230         }
10231
10232         if (req_immediate_exit) {
10233                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10234                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10235         }
10236
10237         fpregs_assert_state_consistent();
10238         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10239                 switch_fpu_return();
10240
10241         if (vcpu->arch.guest_fpu.xfd_err)
10242                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10243
10244         if (unlikely(vcpu->arch.switch_db_regs)) {
10245                 set_debugreg(0, 7);
10246                 set_debugreg(vcpu->arch.eff_db[0], 0);
10247                 set_debugreg(vcpu->arch.eff_db[1], 1);
10248                 set_debugreg(vcpu->arch.eff_db[2], 2);
10249                 set_debugreg(vcpu->arch.eff_db[3], 3);
10250         } else if (unlikely(hw_breakpoint_active())) {
10251                 set_debugreg(0, 7);
10252         }
10253
10254         guest_timing_enter_irqoff();
10255
10256         for (;;) {
10257                 /*
10258                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10259                  * update must kick and wait for all vCPUs before toggling the
10260                  * per-VM state, and responsing vCPUs must wait for the update
10261                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10262                  */
10263                 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10264
10265                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10266                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10267                         break;
10268
10269                 if (kvm_lapic_enabled(vcpu))
10270                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10271
10272                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10273                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10274                         break;
10275                 }
10276         }
10277
10278         /*
10279          * Do this here before restoring debug registers on the host.  And
10280          * since we do this before handling the vmexit, a DR access vmexit
10281          * can (a) read the correct value of the debug registers, (b) set
10282          * KVM_DEBUGREG_WONT_EXIT again.
10283          */
10284         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10285                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10286                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10287                 kvm_update_dr0123(vcpu);
10288                 kvm_update_dr7(vcpu);
10289         }
10290
10291         /*
10292          * If the guest has used debug registers, at least dr7
10293          * will be disabled while returning to the host.
10294          * If we don't have active breakpoints in the host, we don't
10295          * care about the messed up debug address registers. But if
10296          * we have some of them active, restore the old state.
10297          */
10298         if (hw_breakpoint_active())
10299                 hw_breakpoint_restore();
10300
10301         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10302         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10303
10304         vcpu->mode = OUTSIDE_GUEST_MODE;
10305         smp_wmb();
10306
10307         /*
10308          * Sync xfd before calling handle_exit_irqoff() which may
10309          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10310          * in #NM irqoff handler).
10311          */
10312         if (vcpu->arch.xfd_no_write_intercept)
10313                 fpu_sync_guest_vmexit_xfd_state();
10314
10315         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10316
10317         if (vcpu->arch.guest_fpu.xfd_err)
10318                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10319
10320         /*
10321          * Consume any pending interrupts, including the possible source of
10322          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10323          * An instruction is required after local_irq_enable() to fully unblock
10324          * interrupts on processors that implement an interrupt shadow, the
10325          * stat.exits increment will do nicely.
10326          */
10327         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10328         local_irq_enable();
10329         ++vcpu->stat.exits;
10330         local_irq_disable();
10331         kvm_after_interrupt(vcpu);
10332
10333         /*
10334          * Wait until after servicing IRQs to account guest time so that any
10335          * ticks that occurred while running the guest are properly accounted
10336          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10337          * of accounting via context tracking, but the loss of accuracy is
10338          * acceptable for all known use cases.
10339          */
10340         guest_timing_exit_irqoff();
10341
10342         local_irq_enable();
10343         preempt_enable();
10344
10345         kvm_vcpu_srcu_read_lock(vcpu);
10346
10347         /*
10348          * Profile KVM exit RIPs:
10349          */
10350         if (unlikely(prof_on == KVM_PROFILING)) {
10351                 unsigned long rip = kvm_rip_read(vcpu);
10352                 profile_hit(KVM_PROFILING, (void *)rip);
10353         }
10354
10355         if (unlikely(vcpu->arch.tsc_always_catchup))
10356                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10357
10358         if (vcpu->arch.apic_attention)
10359                 kvm_lapic_sync_from_vapic(vcpu);
10360
10361         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10362         return r;
10363
10364 cancel_injection:
10365         if (req_immediate_exit)
10366                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10367         static_call(kvm_x86_cancel_injection)(vcpu);
10368         if (unlikely(vcpu->arch.apic_attention))
10369                 kvm_lapic_sync_from_vapic(vcpu);
10370 out:
10371         return r;
10372 }
10373
10374 /* Called within kvm->srcu read side.  */
10375 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10376 {
10377         bool hv_timer;
10378
10379         if (!kvm_arch_vcpu_runnable(vcpu)) {
10380                 /*
10381                  * Switch to the software timer before halt-polling/blocking as
10382                  * the guest's timer may be a break event for the vCPU, and the
10383                  * hypervisor timer runs only when the CPU is in guest mode.
10384                  * Switch before halt-polling so that KVM recognizes an expired
10385                  * timer before blocking.
10386                  */
10387                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10388                 if (hv_timer)
10389                         kvm_lapic_switch_to_sw_timer(vcpu);
10390
10391                 kvm_vcpu_srcu_read_unlock(vcpu);
10392                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10393                         kvm_vcpu_halt(vcpu);
10394                 else
10395                         kvm_vcpu_block(vcpu);
10396                 kvm_vcpu_srcu_read_lock(vcpu);
10397
10398                 if (hv_timer)
10399                         kvm_lapic_switch_to_hv_timer(vcpu);
10400
10401                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10402                         return 1;
10403         }
10404
10405         if (kvm_apic_accept_events(vcpu) < 0)
10406                 return 0;
10407         switch(vcpu->arch.mp_state) {
10408         case KVM_MP_STATE_HALTED:
10409         case KVM_MP_STATE_AP_RESET_HOLD:
10410                 vcpu->arch.pv.pv_unhalted = false;
10411                 vcpu->arch.mp_state =
10412                         KVM_MP_STATE_RUNNABLE;
10413                 fallthrough;
10414         case KVM_MP_STATE_RUNNABLE:
10415                 vcpu->arch.apf.halted = false;
10416                 break;
10417         case KVM_MP_STATE_INIT_RECEIVED:
10418                 break;
10419         default:
10420                 return -EINTR;
10421         }
10422         return 1;
10423 }
10424
10425 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10426 {
10427         if (is_guest_mode(vcpu))
10428                 kvm_check_nested_events(vcpu);
10429
10430         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10431                 !vcpu->arch.apf.halted);
10432 }
10433
10434 /* Called within kvm->srcu read side.  */
10435 static int vcpu_run(struct kvm_vcpu *vcpu)
10436 {
10437         int r;
10438
10439         vcpu->arch.l1tf_flush_l1d = true;
10440
10441         for (;;) {
10442                 /*
10443                  * If another guest vCPU requests a PV TLB flush in the middle
10444                  * of instruction emulation, the rest of the emulation could
10445                  * use a stale page translation. Assume that any code after
10446                  * this point can start executing an instruction.
10447                  */
10448                 vcpu->arch.at_instruction_boundary = false;
10449                 if (kvm_vcpu_running(vcpu)) {
10450                         r = vcpu_enter_guest(vcpu);
10451                 } else {
10452                         r = vcpu_block(vcpu);
10453                 }
10454
10455                 if (r <= 0)
10456                         break;
10457
10458                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10459                 if (kvm_xen_has_pending_events(vcpu))
10460                         kvm_xen_inject_pending_events(vcpu);
10461
10462                 if (kvm_cpu_has_pending_timer(vcpu))
10463                         kvm_inject_pending_timer_irqs(vcpu);
10464
10465                 if (dm_request_for_irq_injection(vcpu) &&
10466                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10467                         r = 0;
10468                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10469                         ++vcpu->stat.request_irq_exits;
10470                         break;
10471                 }
10472
10473                 if (__xfer_to_guest_mode_work_pending()) {
10474                         kvm_vcpu_srcu_read_unlock(vcpu);
10475                         r = xfer_to_guest_mode_handle_work(vcpu);
10476                         kvm_vcpu_srcu_read_lock(vcpu);
10477                         if (r)
10478                                 return r;
10479                 }
10480         }
10481
10482         return r;
10483 }
10484
10485 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10486 {
10487         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10488 }
10489
10490 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10491 {
10492         BUG_ON(!vcpu->arch.pio.count);
10493
10494         return complete_emulated_io(vcpu);
10495 }
10496
10497 /*
10498  * Implements the following, as a state machine:
10499  *
10500  * read:
10501  *   for each fragment
10502  *     for each mmio piece in the fragment
10503  *       write gpa, len
10504  *       exit
10505  *       copy data
10506  *   execute insn
10507  *
10508  * write:
10509  *   for each fragment
10510  *     for each mmio piece in the fragment
10511  *       write gpa, len
10512  *       copy data
10513  *       exit
10514  */
10515 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10516 {
10517         struct kvm_run *run = vcpu->run;
10518         struct kvm_mmio_fragment *frag;
10519         unsigned len;
10520
10521         BUG_ON(!vcpu->mmio_needed);
10522
10523         /* Complete previous fragment */
10524         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10525         len = min(8u, frag->len);
10526         if (!vcpu->mmio_is_write)
10527                 memcpy(frag->data, run->mmio.data, len);
10528
10529         if (frag->len <= 8) {
10530                 /* Switch to the next fragment. */
10531                 frag++;
10532                 vcpu->mmio_cur_fragment++;
10533         } else {
10534                 /* Go forward to the next mmio piece. */
10535                 frag->data += len;
10536                 frag->gpa += len;
10537                 frag->len -= len;
10538         }
10539
10540         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10541                 vcpu->mmio_needed = 0;
10542
10543                 /* FIXME: return into emulator if single-stepping.  */
10544                 if (vcpu->mmio_is_write)
10545                         return 1;
10546                 vcpu->mmio_read_completed = 1;
10547                 return complete_emulated_io(vcpu);
10548         }
10549
10550         run->exit_reason = KVM_EXIT_MMIO;
10551         run->mmio.phys_addr = frag->gpa;
10552         if (vcpu->mmio_is_write)
10553                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10554         run->mmio.len = min(8u, frag->len);
10555         run->mmio.is_write = vcpu->mmio_is_write;
10556         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10557         return 0;
10558 }
10559
10560 /* Swap (qemu) user FPU context for the guest FPU context. */
10561 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10562 {
10563         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10564         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10565         trace_kvm_fpu(1);
10566 }
10567
10568 /* When vcpu_run ends, restore user space FPU context. */
10569 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10570 {
10571         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10572         ++vcpu->stat.fpu_reload;
10573         trace_kvm_fpu(0);
10574 }
10575
10576 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10577 {
10578         struct kvm_run *kvm_run = vcpu->run;
10579         int r;
10580
10581         vcpu_load(vcpu);
10582         kvm_sigset_activate(vcpu);
10583         kvm_run->flags = 0;
10584         kvm_load_guest_fpu(vcpu);
10585
10586         kvm_vcpu_srcu_read_lock(vcpu);
10587         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10588                 if (kvm_run->immediate_exit) {
10589                         r = -EINTR;
10590                         goto out;
10591                 }
10592                 /*
10593                  * It should be impossible for the hypervisor timer to be in
10594                  * use before KVM has ever run the vCPU.
10595                  */
10596                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10597
10598                 kvm_vcpu_srcu_read_unlock(vcpu);
10599                 kvm_vcpu_block(vcpu);
10600                 kvm_vcpu_srcu_read_lock(vcpu);
10601
10602                 if (kvm_apic_accept_events(vcpu) < 0) {
10603                         r = 0;
10604                         goto out;
10605                 }
10606                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10607                 r = -EAGAIN;
10608                 if (signal_pending(current)) {
10609                         r = -EINTR;
10610                         kvm_run->exit_reason = KVM_EXIT_INTR;
10611                         ++vcpu->stat.signal_exits;
10612                 }
10613                 goto out;
10614         }
10615
10616         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10617             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10618                 r = -EINVAL;
10619                 goto out;
10620         }
10621
10622         if (kvm_run->kvm_dirty_regs) {
10623                 r = sync_regs(vcpu);
10624                 if (r != 0)
10625                         goto out;
10626         }
10627
10628         /* re-sync apic's tpr */
10629         if (!lapic_in_kernel(vcpu)) {
10630                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10631                         r = -EINVAL;
10632                         goto out;
10633                 }
10634         }
10635
10636         if (unlikely(vcpu->arch.complete_userspace_io)) {
10637                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10638                 vcpu->arch.complete_userspace_io = NULL;
10639                 r = cui(vcpu);
10640                 if (r <= 0)
10641                         goto out;
10642         } else
10643                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10644
10645         if (kvm_run->immediate_exit) {
10646                 r = -EINTR;
10647                 goto out;
10648         }
10649
10650         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10651         if (r <= 0)
10652                 goto out;
10653
10654         r = vcpu_run(vcpu);
10655
10656 out:
10657         kvm_put_guest_fpu(vcpu);
10658         if (kvm_run->kvm_valid_regs)
10659                 store_regs(vcpu);
10660         post_kvm_run_save(vcpu);
10661         kvm_vcpu_srcu_read_unlock(vcpu);
10662
10663         kvm_sigset_deactivate(vcpu);
10664         vcpu_put(vcpu);
10665         return r;
10666 }
10667
10668 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10669 {
10670         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10671                 /*
10672                  * We are here if userspace calls get_regs() in the middle of
10673                  * instruction emulation. Registers state needs to be copied
10674                  * back from emulation context to vcpu. Userspace shouldn't do
10675                  * that usually, but some bad designed PV devices (vmware
10676                  * backdoor interface) need this to work
10677                  */
10678                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10679                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10680         }
10681         regs->rax = kvm_rax_read(vcpu);
10682         regs->rbx = kvm_rbx_read(vcpu);
10683         regs->rcx = kvm_rcx_read(vcpu);
10684         regs->rdx = kvm_rdx_read(vcpu);
10685         regs->rsi = kvm_rsi_read(vcpu);
10686         regs->rdi = kvm_rdi_read(vcpu);
10687         regs->rsp = kvm_rsp_read(vcpu);
10688         regs->rbp = kvm_rbp_read(vcpu);
10689 #ifdef CONFIG_X86_64
10690         regs->r8 = kvm_r8_read(vcpu);
10691         regs->r9 = kvm_r9_read(vcpu);
10692         regs->r10 = kvm_r10_read(vcpu);
10693         regs->r11 = kvm_r11_read(vcpu);
10694         regs->r12 = kvm_r12_read(vcpu);
10695         regs->r13 = kvm_r13_read(vcpu);
10696         regs->r14 = kvm_r14_read(vcpu);
10697         regs->r15 = kvm_r15_read(vcpu);
10698 #endif
10699
10700         regs->rip = kvm_rip_read(vcpu);
10701         regs->rflags = kvm_get_rflags(vcpu);
10702 }
10703
10704 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10705 {
10706         vcpu_load(vcpu);
10707         __get_regs(vcpu, regs);
10708         vcpu_put(vcpu);
10709         return 0;
10710 }
10711
10712 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10713 {
10714         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10715         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10716
10717         kvm_rax_write(vcpu, regs->rax);
10718         kvm_rbx_write(vcpu, regs->rbx);
10719         kvm_rcx_write(vcpu, regs->rcx);
10720         kvm_rdx_write(vcpu, regs->rdx);
10721         kvm_rsi_write(vcpu, regs->rsi);
10722         kvm_rdi_write(vcpu, regs->rdi);
10723         kvm_rsp_write(vcpu, regs->rsp);
10724         kvm_rbp_write(vcpu, regs->rbp);
10725 #ifdef CONFIG_X86_64
10726         kvm_r8_write(vcpu, regs->r8);
10727         kvm_r9_write(vcpu, regs->r9);
10728         kvm_r10_write(vcpu, regs->r10);
10729         kvm_r11_write(vcpu, regs->r11);
10730         kvm_r12_write(vcpu, regs->r12);
10731         kvm_r13_write(vcpu, regs->r13);
10732         kvm_r14_write(vcpu, regs->r14);
10733         kvm_r15_write(vcpu, regs->r15);
10734 #endif
10735
10736         kvm_rip_write(vcpu, regs->rip);
10737         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10738
10739         vcpu->arch.exception.pending = false;
10740
10741         kvm_make_request(KVM_REQ_EVENT, vcpu);
10742 }
10743
10744 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10745 {
10746         vcpu_load(vcpu);
10747         __set_regs(vcpu, regs);
10748         vcpu_put(vcpu);
10749         return 0;
10750 }
10751
10752 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10753 {
10754         struct desc_ptr dt;
10755
10756         if (vcpu->arch.guest_state_protected)
10757                 goto skip_protected_regs;
10758
10759         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10760         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10761         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10762         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10763         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10764         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10765
10766         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10767         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10768
10769         static_call(kvm_x86_get_idt)(vcpu, &dt);
10770         sregs->idt.limit = dt.size;
10771         sregs->idt.base = dt.address;
10772         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10773         sregs->gdt.limit = dt.size;
10774         sregs->gdt.base = dt.address;
10775
10776         sregs->cr2 = vcpu->arch.cr2;
10777         sregs->cr3 = kvm_read_cr3(vcpu);
10778
10779 skip_protected_regs:
10780         sregs->cr0 = kvm_read_cr0(vcpu);
10781         sregs->cr4 = kvm_read_cr4(vcpu);
10782         sregs->cr8 = kvm_get_cr8(vcpu);
10783         sregs->efer = vcpu->arch.efer;
10784         sregs->apic_base = kvm_get_apic_base(vcpu);
10785 }
10786
10787 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10788 {
10789         __get_sregs_common(vcpu, sregs);
10790
10791         if (vcpu->arch.guest_state_protected)
10792                 return;
10793
10794         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10795                 set_bit(vcpu->arch.interrupt.nr,
10796                         (unsigned long *)sregs->interrupt_bitmap);
10797 }
10798
10799 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10800 {
10801         int i;
10802
10803         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10804
10805         if (vcpu->arch.guest_state_protected)
10806                 return;
10807
10808         if (is_pae_paging(vcpu)) {
10809                 for (i = 0 ; i < 4 ; i++)
10810                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10811                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10812         }
10813 }
10814
10815 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10816                                   struct kvm_sregs *sregs)
10817 {
10818         vcpu_load(vcpu);
10819         __get_sregs(vcpu, sregs);
10820         vcpu_put(vcpu);
10821         return 0;
10822 }
10823
10824 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10825                                     struct kvm_mp_state *mp_state)
10826 {
10827         int r;
10828
10829         vcpu_load(vcpu);
10830         if (kvm_mpx_supported())
10831                 kvm_load_guest_fpu(vcpu);
10832
10833         r = kvm_apic_accept_events(vcpu);
10834         if (r < 0)
10835                 goto out;
10836         r = 0;
10837
10838         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10839              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10840             vcpu->arch.pv.pv_unhalted)
10841                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10842         else
10843                 mp_state->mp_state = vcpu->arch.mp_state;
10844
10845 out:
10846         if (kvm_mpx_supported())
10847                 kvm_put_guest_fpu(vcpu);
10848         vcpu_put(vcpu);
10849         return r;
10850 }
10851
10852 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10853                                     struct kvm_mp_state *mp_state)
10854 {
10855         int ret = -EINVAL;
10856
10857         vcpu_load(vcpu);
10858
10859         if (!lapic_in_kernel(vcpu) &&
10860             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10861                 goto out;
10862
10863         /*
10864          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10865          * INIT state; latched init should be reported using
10866          * KVM_SET_VCPU_EVENTS, so reject it here.
10867          */
10868         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10869             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10870              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10871                 goto out;
10872
10873         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10874                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10875                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10876         } else
10877                 vcpu->arch.mp_state = mp_state->mp_state;
10878         kvm_make_request(KVM_REQ_EVENT, vcpu);
10879
10880         ret = 0;
10881 out:
10882         vcpu_put(vcpu);
10883         return ret;
10884 }
10885
10886 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10887                     int reason, bool has_error_code, u32 error_code)
10888 {
10889         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10890         int ret;
10891
10892         init_emulate_ctxt(vcpu);
10893
10894         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10895                                    has_error_code, error_code);
10896         if (ret) {
10897                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10898                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10899                 vcpu->run->internal.ndata = 0;
10900                 return 0;
10901         }
10902
10903         kvm_rip_write(vcpu, ctxt->eip);
10904         kvm_set_rflags(vcpu, ctxt->eflags);
10905         return 1;
10906 }
10907 EXPORT_SYMBOL_GPL(kvm_task_switch);
10908
10909 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10910 {
10911         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10912                 /*
10913                  * When EFER.LME and CR0.PG are set, the processor is in
10914                  * 64-bit mode (though maybe in a 32-bit code segment).
10915                  * CR4.PAE and EFER.LMA must be set.
10916                  */
10917                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10918                         return false;
10919                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10920                         return false;
10921         } else {
10922                 /*
10923                  * Not in 64-bit mode: EFER.LMA is clear and the code
10924                  * segment cannot be 64-bit.
10925                  */
10926                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10927                         return false;
10928         }
10929
10930         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10931 }
10932
10933 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10934                 int *mmu_reset_needed, bool update_pdptrs)
10935 {
10936         struct msr_data apic_base_msr;
10937         int idx;
10938         struct desc_ptr dt;
10939
10940         if (!kvm_is_valid_sregs(vcpu, sregs))
10941                 return -EINVAL;
10942
10943         apic_base_msr.data = sregs->apic_base;
10944         apic_base_msr.host_initiated = true;
10945         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10946                 return -EINVAL;
10947
10948         if (vcpu->arch.guest_state_protected)
10949                 return 0;
10950
10951         dt.size = sregs->idt.limit;
10952         dt.address = sregs->idt.base;
10953         static_call(kvm_x86_set_idt)(vcpu, &dt);
10954         dt.size = sregs->gdt.limit;
10955         dt.address = sregs->gdt.base;
10956         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10957
10958         vcpu->arch.cr2 = sregs->cr2;
10959         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10960         vcpu->arch.cr3 = sregs->cr3;
10961         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10962         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10963
10964         kvm_set_cr8(vcpu, sregs->cr8);
10965
10966         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10967         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10968
10969         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10970         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10971         vcpu->arch.cr0 = sregs->cr0;
10972
10973         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10974         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10975
10976         if (update_pdptrs) {
10977                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10978                 if (is_pae_paging(vcpu)) {
10979                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10980                         *mmu_reset_needed = 1;
10981                 }
10982                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10983         }
10984
10985         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10986         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10987         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10988         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10989         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10990         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10991
10992         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10993         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10994
10995         update_cr8_intercept(vcpu);
10996
10997         /* Older userspace won't unhalt the vcpu on reset. */
10998         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10999             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11000             !is_protmode(vcpu))
11001                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11002
11003         return 0;
11004 }
11005
11006 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11007 {
11008         int pending_vec, max_bits;
11009         int mmu_reset_needed = 0;
11010         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11011
11012         if (ret)
11013                 return ret;
11014
11015         if (mmu_reset_needed)
11016                 kvm_mmu_reset_context(vcpu);
11017
11018         max_bits = KVM_NR_INTERRUPTS;
11019         pending_vec = find_first_bit(
11020                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11021
11022         if (pending_vec < max_bits) {
11023                 kvm_queue_interrupt(vcpu, pending_vec, false);
11024                 pr_debug("Set back pending irq %d\n", pending_vec);
11025                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11026         }
11027         return 0;
11028 }
11029
11030 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11031 {
11032         int mmu_reset_needed = 0;
11033         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11034         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11035                 !(sregs2->efer & EFER_LMA);
11036         int i, ret;
11037
11038         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11039                 return -EINVAL;
11040
11041         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11042                 return -EINVAL;
11043
11044         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11045                                  &mmu_reset_needed, !valid_pdptrs);
11046         if (ret)
11047                 return ret;
11048
11049         if (valid_pdptrs) {
11050                 for (i = 0; i < 4 ; i++)
11051                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11052
11053                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11054                 mmu_reset_needed = 1;
11055                 vcpu->arch.pdptrs_from_userspace = true;
11056         }
11057         if (mmu_reset_needed)
11058                 kvm_mmu_reset_context(vcpu);
11059         return 0;
11060 }
11061
11062 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11063                                   struct kvm_sregs *sregs)
11064 {
11065         int ret;
11066
11067         vcpu_load(vcpu);
11068         ret = __set_sregs(vcpu, sregs);
11069         vcpu_put(vcpu);
11070         return ret;
11071 }
11072
11073 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11074 {
11075         bool set = false;
11076         struct kvm_vcpu *vcpu;
11077         unsigned long i;
11078
11079         if (!enable_apicv)
11080                 return;
11081
11082         down_write(&kvm->arch.apicv_update_lock);
11083
11084         kvm_for_each_vcpu(i, vcpu, kvm) {
11085                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11086                         set = true;
11087                         break;
11088                 }
11089         }
11090         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11091         up_write(&kvm->arch.apicv_update_lock);
11092 }
11093
11094 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11095                                         struct kvm_guest_debug *dbg)
11096 {
11097         unsigned long rflags;
11098         int i, r;
11099
11100         if (vcpu->arch.guest_state_protected)
11101                 return -EINVAL;
11102
11103         vcpu_load(vcpu);
11104
11105         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11106                 r = -EBUSY;
11107                 if (vcpu->arch.exception.pending)
11108                         goto out;
11109                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11110                         kvm_queue_exception(vcpu, DB_VECTOR);
11111                 else
11112                         kvm_queue_exception(vcpu, BP_VECTOR);
11113         }
11114
11115         /*
11116          * Read rflags as long as potentially injected trace flags are still
11117          * filtered out.
11118          */
11119         rflags = kvm_get_rflags(vcpu);
11120
11121         vcpu->guest_debug = dbg->control;
11122         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11123                 vcpu->guest_debug = 0;
11124
11125         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11126                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11127                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11128                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11129         } else {
11130                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11131                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11132         }
11133         kvm_update_dr7(vcpu);
11134
11135         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11136                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11137
11138         /*
11139          * Trigger an rflags update that will inject or remove the trace
11140          * flags.
11141          */
11142         kvm_set_rflags(vcpu, rflags);
11143
11144         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11145
11146         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11147
11148         r = 0;
11149
11150 out:
11151         vcpu_put(vcpu);
11152         return r;
11153 }
11154
11155 /*
11156  * Translate a guest virtual address to a guest physical address.
11157  */
11158 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11159                                     struct kvm_translation *tr)
11160 {
11161         unsigned long vaddr = tr->linear_address;
11162         gpa_t gpa;
11163         int idx;
11164
11165         vcpu_load(vcpu);
11166
11167         idx = srcu_read_lock(&vcpu->kvm->srcu);
11168         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11169         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11170         tr->physical_address = gpa;
11171         tr->valid = gpa != UNMAPPED_GVA;
11172         tr->writeable = 1;
11173         tr->usermode = 0;
11174
11175         vcpu_put(vcpu);
11176         return 0;
11177 }
11178
11179 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11180 {
11181         struct fxregs_state *fxsave;
11182
11183         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11184                 return 0;
11185
11186         vcpu_load(vcpu);
11187
11188         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11189         memcpy(fpu->fpr, fxsave->st_space, 128);
11190         fpu->fcw = fxsave->cwd;
11191         fpu->fsw = fxsave->swd;
11192         fpu->ftwx = fxsave->twd;
11193         fpu->last_opcode = fxsave->fop;
11194         fpu->last_ip = fxsave->rip;
11195         fpu->last_dp = fxsave->rdp;
11196         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11197
11198         vcpu_put(vcpu);
11199         return 0;
11200 }
11201
11202 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11203 {
11204         struct fxregs_state *fxsave;
11205
11206         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11207                 return 0;
11208
11209         vcpu_load(vcpu);
11210
11211         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11212
11213         memcpy(fxsave->st_space, fpu->fpr, 128);
11214         fxsave->cwd = fpu->fcw;
11215         fxsave->swd = fpu->fsw;
11216         fxsave->twd = fpu->ftwx;
11217         fxsave->fop = fpu->last_opcode;
11218         fxsave->rip = fpu->last_ip;
11219         fxsave->rdp = fpu->last_dp;
11220         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11221
11222         vcpu_put(vcpu);
11223         return 0;
11224 }
11225
11226 static void store_regs(struct kvm_vcpu *vcpu)
11227 {
11228         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11229
11230         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11231                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11232
11233         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11234                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11235
11236         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11237                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11238                                 vcpu, &vcpu->run->s.regs.events);
11239 }
11240
11241 static int sync_regs(struct kvm_vcpu *vcpu)
11242 {
11243         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11244                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11245                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11246         }
11247         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11248                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11249                         return -EINVAL;
11250                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11251         }
11252         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11253                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11254                                 vcpu, &vcpu->run->s.regs.events))
11255                         return -EINVAL;
11256                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11257         }
11258
11259         return 0;
11260 }
11261
11262 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11263 {
11264         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11265                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11266                              "guest TSC will not be reliable\n");
11267
11268         return 0;
11269 }
11270
11271 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11272 {
11273         struct page *page;
11274         int r;
11275
11276         vcpu->arch.last_vmentry_cpu = -1;
11277         vcpu->arch.regs_avail = ~0;
11278         vcpu->arch.regs_dirty = ~0;
11279
11280         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11281                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11282         else
11283                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11284
11285         r = kvm_mmu_create(vcpu);
11286         if (r < 0)
11287                 return r;
11288
11289         if (irqchip_in_kernel(vcpu->kvm)) {
11290                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11291                 if (r < 0)
11292                         goto fail_mmu_destroy;
11293
11294                 /*
11295                  * Defer evaluating inhibits until the vCPU is first run, as
11296                  * this vCPU will not get notified of any changes until this
11297                  * vCPU is visible to other vCPUs (marked online and added to
11298                  * the set of vCPUs).  Opportunistically mark APICv active as
11299                  * VMX in particularly is highly unlikely to have inhibits.
11300                  * Ignore the current per-VM APICv state so that vCPU creation
11301                  * is guaranteed to run with a deterministic value, the request
11302                  * will ensure the vCPU gets the correct state before VM-Entry.
11303                  */
11304                 if (enable_apicv) {
11305                         vcpu->arch.apicv_active = true;
11306                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11307                 }
11308         } else
11309                 static_branch_inc(&kvm_has_noapic_vcpu);
11310
11311         r = -ENOMEM;
11312
11313         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11314         if (!page)
11315                 goto fail_free_lapic;
11316         vcpu->arch.pio_data = page_address(page);
11317
11318         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11319                                        GFP_KERNEL_ACCOUNT);
11320         if (!vcpu->arch.mce_banks)
11321                 goto fail_free_pio_data;
11322         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11323
11324         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11325                                 GFP_KERNEL_ACCOUNT))
11326                 goto fail_free_mce_banks;
11327
11328         if (!alloc_emulate_ctxt(vcpu))
11329                 goto free_wbinvd_dirty_mask;
11330
11331         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11332                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11333                 goto free_emulate_ctxt;
11334         }
11335
11336         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11337         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11338
11339         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11340
11341         kvm_async_pf_hash_reset(vcpu);
11342         kvm_pmu_init(vcpu);
11343
11344         vcpu->arch.pending_external_vector = -1;
11345         vcpu->arch.preempted_in_kernel = false;
11346
11347 #if IS_ENABLED(CONFIG_HYPERV)
11348         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11349 #endif
11350
11351         r = static_call(kvm_x86_vcpu_create)(vcpu);
11352         if (r)
11353                 goto free_guest_fpu;
11354
11355         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11356         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11357         kvm_xen_init_vcpu(vcpu);
11358         kvm_vcpu_mtrr_init(vcpu);
11359         vcpu_load(vcpu);
11360         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11361         kvm_vcpu_reset(vcpu, false);
11362         kvm_init_mmu(vcpu);
11363         vcpu_put(vcpu);
11364         return 0;
11365
11366 free_guest_fpu:
11367         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11368 free_emulate_ctxt:
11369         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11370 free_wbinvd_dirty_mask:
11371         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11372 fail_free_mce_banks:
11373         kfree(vcpu->arch.mce_banks);
11374 fail_free_pio_data:
11375         free_page((unsigned long)vcpu->arch.pio_data);
11376 fail_free_lapic:
11377         kvm_free_lapic(vcpu);
11378 fail_mmu_destroy:
11379         kvm_mmu_destroy(vcpu);
11380         return r;
11381 }
11382
11383 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11384 {
11385         struct kvm *kvm = vcpu->kvm;
11386
11387         if (mutex_lock_killable(&vcpu->mutex))
11388                 return;
11389         vcpu_load(vcpu);
11390         kvm_synchronize_tsc(vcpu, 0);
11391         vcpu_put(vcpu);
11392
11393         /* poll control enabled by default */
11394         vcpu->arch.msr_kvm_poll_control = 1;
11395
11396         mutex_unlock(&vcpu->mutex);
11397
11398         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11399                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11400                                                 KVMCLOCK_SYNC_PERIOD);
11401 }
11402
11403 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11404 {
11405         int idx;
11406
11407         kvmclock_reset(vcpu);
11408
11409         static_call(kvm_x86_vcpu_free)(vcpu);
11410
11411         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11412         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11413         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11414
11415         kvm_xen_destroy_vcpu(vcpu);
11416         kvm_hv_vcpu_uninit(vcpu);
11417         kvm_pmu_destroy(vcpu);
11418         kfree(vcpu->arch.mce_banks);
11419         kvm_free_lapic(vcpu);
11420         idx = srcu_read_lock(&vcpu->kvm->srcu);
11421         kvm_mmu_destroy(vcpu);
11422         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11423         free_page((unsigned long)vcpu->arch.pio_data);
11424         kvfree(vcpu->arch.cpuid_entries);
11425         if (!lapic_in_kernel(vcpu))
11426                 static_branch_dec(&kvm_has_noapic_vcpu);
11427 }
11428
11429 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11430 {
11431         struct kvm_cpuid_entry2 *cpuid_0x1;
11432         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11433         unsigned long new_cr0;
11434
11435         /*
11436          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11437          * to handle side effects.  RESET emulation hits those flows and relies
11438          * on emulated/virtualized registers, including those that are loaded
11439          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11440          * to detect improper or missing initialization.
11441          */
11442         WARN_ON_ONCE(!init_event &&
11443                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11444
11445         kvm_lapic_reset(vcpu, init_event);
11446
11447         vcpu->arch.hflags = 0;
11448
11449         vcpu->arch.smi_pending = 0;
11450         vcpu->arch.smi_count = 0;
11451         atomic_set(&vcpu->arch.nmi_queued, 0);
11452         vcpu->arch.nmi_pending = 0;
11453         vcpu->arch.nmi_injected = false;
11454         kvm_clear_interrupt_queue(vcpu);
11455         kvm_clear_exception_queue(vcpu);
11456
11457         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11458         kvm_update_dr0123(vcpu);
11459         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11460         vcpu->arch.dr7 = DR7_FIXED_1;
11461         kvm_update_dr7(vcpu);
11462
11463         vcpu->arch.cr2 = 0;
11464
11465         kvm_make_request(KVM_REQ_EVENT, vcpu);
11466         vcpu->arch.apf.msr_en_val = 0;
11467         vcpu->arch.apf.msr_int_val = 0;
11468         vcpu->arch.st.msr_val = 0;
11469
11470         kvmclock_reset(vcpu);
11471
11472         kvm_clear_async_pf_completion_queue(vcpu);
11473         kvm_async_pf_hash_reset(vcpu);
11474         vcpu->arch.apf.halted = false;
11475
11476         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11477                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11478
11479                 /*
11480                  * To avoid have the INIT path from kvm_apic_has_events() that be
11481                  * called with loaded FPU and does not let userspace fix the state.
11482                  */
11483                 if (init_event)
11484                         kvm_put_guest_fpu(vcpu);
11485
11486                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11487                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11488
11489                 if (init_event)
11490                         kvm_load_guest_fpu(vcpu);
11491         }
11492
11493         if (!init_event) {
11494                 kvm_pmu_reset(vcpu);
11495                 vcpu->arch.smbase = 0x30000;
11496
11497                 vcpu->arch.msr_misc_features_enables = 0;
11498
11499                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11500                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11501         }
11502
11503         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11504         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11505         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11506
11507         /*
11508          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11509          * if no CPUID match is found.  Note, it's impossible to get a match at
11510          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11511          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11512          * on RESET.  But, go through the motions in case that's ever remedied.
11513          */
11514         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11515         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11516
11517         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11518
11519         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11520         kvm_rip_write(vcpu, 0xfff0);
11521
11522         vcpu->arch.cr3 = 0;
11523         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11524
11525         /*
11526          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11527          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11528          * (or qualify) that with a footnote stating that CD/NW are preserved.
11529          */
11530         new_cr0 = X86_CR0_ET;
11531         if (init_event)
11532                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11533         else
11534                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11535
11536         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11537         static_call(kvm_x86_set_cr4)(vcpu, 0);
11538         static_call(kvm_x86_set_efer)(vcpu, 0);
11539         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11540
11541         /*
11542          * On the standard CR0/CR4/EFER modification paths, there are several
11543          * complex conditions determining whether the MMU has to be reset and/or
11544          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11545          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11546          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11547          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11548          */
11549         if (old_cr0 & X86_CR0_PG) {
11550                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11551                 kvm_mmu_reset_context(vcpu);
11552         }
11553
11554         /*
11555          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11556          * APM states the TLBs are untouched by INIT, but it also states that
11557          * the TLBs are flushed on "External initialization of the processor."
11558          * Flush the guest TLB regardless of vendor, there is no meaningful
11559          * benefit in relying on the guest to flush the TLB immediately after
11560          * INIT.  A spurious TLB flush is benign and likely negligible from a
11561          * performance perspective.
11562          */
11563         if (init_event)
11564                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11565 }
11566 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11567
11568 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11569 {
11570         struct kvm_segment cs;
11571
11572         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11573         cs.selector = vector << 8;
11574         cs.base = vector << 12;
11575         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11576         kvm_rip_write(vcpu, 0);
11577 }
11578 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11579
11580 int kvm_arch_hardware_enable(void)
11581 {
11582         struct kvm *kvm;
11583         struct kvm_vcpu *vcpu;
11584         unsigned long i;
11585         int ret;
11586         u64 local_tsc;
11587         u64 max_tsc = 0;
11588         bool stable, backwards_tsc = false;
11589
11590         kvm_user_return_msr_cpu_online();
11591         ret = static_call(kvm_x86_hardware_enable)();
11592         if (ret != 0)
11593                 return ret;
11594
11595         local_tsc = rdtsc();
11596         stable = !kvm_check_tsc_unstable();
11597         list_for_each_entry(kvm, &vm_list, vm_list) {
11598                 kvm_for_each_vcpu(i, vcpu, kvm) {
11599                         if (!stable && vcpu->cpu == smp_processor_id())
11600                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11601                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11602                                 backwards_tsc = true;
11603                                 if (vcpu->arch.last_host_tsc > max_tsc)
11604                                         max_tsc = vcpu->arch.last_host_tsc;
11605                         }
11606                 }
11607         }
11608
11609         /*
11610          * Sometimes, even reliable TSCs go backwards.  This happens on
11611          * platforms that reset TSC during suspend or hibernate actions, but
11612          * maintain synchronization.  We must compensate.  Fortunately, we can
11613          * detect that condition here, which happens early in CPU bringup,
11614          * before any KVM threads can be running.  Unfortunately, we can't
11615          * bring the TSCs fully up to date with real time, as we aren't yet far
11616          * enough into CPU bringup that we know how much real time has actually
11617          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11618          * variables that haven't been updated yet.
11619          *
11620          * So we simply find the maximum observed TSC above, then record the
11621          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11622          * the adjustment will be applied.  Note that we accumulate
11623          * adjustments, in case multiple suspend cycles happen before some VCPU
11624          * gets a chance to run again.  In the event that no KVM threads get a
11625          * chance to run, we will miss the entire elapsed period, as we'll have
11626          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11627          * loose cycle time.  This isn't too big a deal, since the loss will be
11628          * uniform across all VCPUs (not to mention the scenario is extremely
11629          * unlikely). It is possible that a second hibernate recovery happens
11630          * much faster than a first, causing the observed TSC here to be
11631          * smaller; this would require additional padding adjustment, which is
11632          * why we set last_host_tsc to the local tsc observed here.
11633          *
11634          * N.B. - this code below runs only on platforms with reliable TSC,
11635          * as that is the only way backwards_tsc is set above.  Also note
11636          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11637          * have the same delta_cyc adjustment applied if backwards_tsc
11638          * is detected.  Note further, this adjustment is only done once,
11639          * as we reset last_host_tsc on all VCPUs to stop this from being
11640          * called multiple times (one for each physical CPU bringup).
11641          *
11642          * Platforms with unreliable TSCs don't have to deal with this, they
11643          * will be compensated by the logic in vcpu_load, which sets the TSC to
11644          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11645          * guarantee that they stay in perfect synchronization.
11646          */
11647         if (backwards_tsc) {
11648                 u64 delta_cyc = max_tsc - local_tsc;
11649                 list_for_each_entry(kvm, &vm_list, vm_list) {
11650                         kvm->arch.backwards_tsc_observed = true;
11651                         kvm_for_each_vcpu(i, vcpu, kvm) {
11652                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11653                                 vcpu->arch.last_host_tsc = local_tsc;
11654                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11655                         }
11656
11657                         /*
11658                          * We have to disable TSC offset matching.. if you were
11659                          * booting a VM while issuing an S4 host suspend....
11660                          * you may have some problem.  Solving this issue is
11661                          * left as an exercise to the reader.
11662                          */
11663                         kvm->arch.last_tsc_nsec = 0;
11664                         kvm->arch.last_tsc_write = 0;
11665                 }
11666
11667         }
11668         return 0;
11669 }
11670
11671 void kvm_arch_hardware_disable(void)
11672 {
11673         static_call(kvm_x86_hardware_disable)();
11674         drop_user_return_notifiers();
11675 }
11676
11677 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11678 {
11679         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11680
11681 #define __KVM_X86_OP(func) \
11682         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11683 #define KVM_X86_OP(func) \
11684         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11685 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11686 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11687         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11688                                            (void *)__static_call_return0);
11689 #include <asm/kvm-x86-ops.h>
11690 #undef __KVM_X86_OP
11691
11692         kvm_pmu_ops_update(ops->pmu_ops);
11693 }
11694
11695 int kvm_arch_hardware_setup(void *opaque)
11696 {
11697         struct kvm_x86_init_ops *ops = opaque;
11698         int r;
11699
11700         rdmsrl_safe(MSR_EFER, &host_efer);
11701
11702         if (boot_cpu_has(X86_FEATURE_XSAVES))
11703                 rdmsrl(MSR_IA32_XSS, host_xss);
11704
11705         r = ops->hardware_setup();
11706         if (r != 0)
11707                 return r;
11708
11709         kvm_ops_update(ops);
11710
11711         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11712
11713         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11714                 supported_xss = 0;
11715
11716 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11717         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11718 #undef __kvm_cpu_cap_has
11719
11720         if (kvm_has_tsc_control) {
11721                 /*
11722                  * Make sure the user can only configure tsc_khz values that
11723                  * fit into a signed integer.
11724                  * A min value is not calculated because it will always
11725                  * be 1 on all machines.
11726                  */
11727                 u64 max = min(0x7fffffffULL,
11728                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11729                 kvm_max_guest_tsc_khz = max;
11730         }
11731         kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11732         kvm_init_msr_list();
11733         return 0;
11734 }
11735
11736 void kvm_arch_hardware_unsetup(void)
11737 {
11738         kvm_unregister_perf_callbacks();
11739
11740         static_call(kvm_x86_hardware_unsetup)();
11741 }
11742
11743 int kvm_arch_check_processor_compat(void *opaque)
11744 {
11745         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11746         struct kvm_x86_init_ops *ops = opaque;
11747
11748         WARN_ON(!irqs_disabled());
11749
11750         if (__cr4_reserved_bits(cpu_has, c) !=
11751             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11752                 return -EIO;
11753
11754         return ops->check_processor_compatibility();
11755 }
11756
11757 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11758 {
11759         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11760 }
11761 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11762
11763 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11764 {
11765         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11766 }
11767
11768 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11769 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11770
11771 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11772 {
11773         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11774
11775         vcpu->arch.l1tf_flush_l1d = true;
11776         if (pmu->version && unlikely(pmu->event_count)) {
11777                 pmu->need_cleanup = true;
11778                 kvm_make_request(KVM_REQ_PMU, vcpu);
11779         }
11780         static_call(kvm_x86_sched_in)(vcpu, cpu);
11781 }
11782
11783 void kvm_arch_free_vm(struct kvm *kvm)
11784 {
11785         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11786         __kvm_arch_free_vm(kvm);
11787 }
11788
11789
11790 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11791 {
11792         int ret;
11793         unsigned long flags;
11794
11795         if (type)
11796                 return -EINVAL;
11797
11798         ret = kvm_page_track_init(kvm);
11799         if (ret)
11800                 goto out;
11801
11802         ret = kvm_mmu_init_vm(kvm);
11803         if (ret)
11804                 goto out_page_track;
11805
11806         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11807         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11808         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11809
11810         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11811         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11812         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11813         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11814                 &kvm->arch.irq_sources_bitmap);
11815
11816         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11817         mutex_init(&kvm->arch.apic_map_lock);
11818         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11819         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11820
11821         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11822         pvclock_update_vm_gtod_copy(kvm);
11823         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11824
11825         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11826         kvm->arch.guest_can_read_msr_platform_info = true;
11827         kvm->arch.enable_pmu = enable_pmu;
11828
11829 #if IS_ENABLED(CONFIG_HYPERV)
11830         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11831         kvm->arch.hv_root_tdp = INVALID_PAGE;
11832 #endif
11833
11834         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11835         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11836
11837         kvm_apicv_init(kvm);
11838         kvm_hv_init_vm(kvm);
11839         kvm_xen_init_vm(kvm);
11840
11841         return static_call(kvm_x86_vm_init)(kvm);
11842
11843 out_page_track:
11844         kvm_page_track_cleanup(kvm);
11845 out:
11846         return ret;
11847 }
11848
11849 int kvm_arch_post_init_vm(struct kvm *kvm)
11850 {
11851         return kvm_mmu_post_init_vm(kvm);
11852 }
11853
11854 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11855 {
11856         vcpu_load(vcpu);
11857         kvm_mmu_unload(vcpu);
11858         vcpu_put(vcpu);
11859 }
11860
11861 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11862 {
11863         unsigned long i;
11864         struct kvm_vcpu *vcpu;
11865
11866         kvm_for_each_vcpu(i, vcpu, kvm) {
11867                 kvm_clear_async_pf_completion_queue(vcpu);
11868                 kvm_unload_vcpu_mmu(vcpu);
11869         }
11870 }
11871
11872 void kvm_arch_sync_events(struct kvm *kvm)
11873 {
11874         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11875         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11876         kvm_free_pit(kvm);
11877 }
11878
11879 /**
11880  * __x86_set_memory_region: Setup KVM internal memory slot
11881  *
11882  * @kvm: the kvm pointer to the VM.
11883  * @id: the slot ID to setup.
11884  * @gpa: the GPA to install the slot (unused when @size == 0).
11885  * @size: the size of the slot. Set to zero to uninstall a slot.
11886  *
11887  * This function helps to setup a KVM internal memory slot.  Specify
11888  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11889  * slot.  The return code can be one of the following:
11890  *
11891  *   HVA:           on success (uninstall will return a bogus HVA)
11892  *   -errno:        on error
11893  *
11894  * The caller should always use IS_ERR() to check the return value
11895  * before use.  Note, the KVM internal memory slots are guaranteed to
11896  * remain valid and unchanged until the VM is destroyed, i.e., the
11897  * GPA->HVA translation will not change.  However, the HVA is a user
11898  * address, i.e. its accessibility is not guaranteed, and must be
11899  * accessed via __copy_{to,from}_user().
11900  */
11901 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11902                                       u32 size)
11903 {
11904         int i, r;
11905         unsigned long hva, old_npages;
11906         struct kvm_memslots *slots = kvm_memslots(kvm);
11907         struct kvm_memory_slot *slot;
11908
11909         /* Called with kvm->slots_lock held.  */
11910         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11911                 return ERR_PTR_USR(-EINVAL);
11912
11913         slot = id_to_memslot(slots, id);
11914         if (size) {
11915                 if (slot && slot->npages)
11916                         return ERR_PTR_USR(-EEXIST);
11917
11918                 /*
11919                  * MAP_SHARED to prevent internal slot pages from being moved
11920                  * by fork()/COW.
11921                  */
11922                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11923                               MAP_SHARED | MAP_ANONYMOUS, 0);
11924                 if (IS_ERR((void *)hva))
11925                         return (void __user *)hva;
11926         } else {
11927                 if (!slot || !slot->npages)
11928                         return NULL;
11929
11930                 old_npages = slot->npages;
11931                 hva = slot->userspace_addr;
11932         }
11933
11934         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11935                 struct kvm_userspace_memory_region m;
11936
11937                 m.slot = id | (i << 16);
11938                 m.flags = 0;
11939                 m.guest_phys_addr = gpa;
11940                 m.userspace_addr = hva;
11941                 m.memory_size = size;
11942                 r = __kvm_set_memory_region(kvm, &m);
11943                 if (r < 0)
11944                         return ERR_PTR_USR(r);
11945         }
11946
11947         if (!size)
11948                 vm_munmap(hva, old_npages * PAGE_SIZE);
11949
11950         return (void __user *)hva;
11951 }
11952 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11953
11954 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11955 {
11956         kvm_mmu_pre_destroy_vm(kvm);
11957 }
11958
11959 void kvm_arch_destroy_vm(struct kvm *kvm)
11960 {
11961         if (current->mm == kvm->mm) {
11962                 /*
11963                  * Free memory regions allocated on behalf of userspace,
11964                  * unless the memory map has changed due to process exit
11965                  * or fd copying.
11966                  */
11967                 mutex_lock(&kvm->slots_lock);
11968                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11969                                         0, 0);
11970                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11971                                         0, 0);
11972                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11973                 mutex_unlock(&kvm->slots_lock);
11974         }
11975         kvm_unload_vcpu_mmus(kvm);
11976         static_call_cond(kvm_x86_vm_destroy)(kvm);
11977         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11978         kvm_pic_destroy(kvm);
11979         kvm_ioapic_destroy(kvm);
11980         kvm_destroy_vcpus(kvm);
11981         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11982         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11983         kvm_mmu_uninit_vm(kvm);
11984         kvm_page_track_cleanup(kvm);
11985         kvm_xen_destroy_vm(kvm);
11986         kvm_hv_destroy_vm(kvm);
11987 }
11988
11989 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11990 {
11991         int i;
11992
11993         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11994                 kvfree(slot->arch.rmap[i]);
11995                 slot->arch.rmap[i] = NULL;
11996         }
11997 }
11998
11999 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12000 {
12001         int i;
12002
12003         memslot_rmap_free(slot);
12004
12005         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12006                 kvfree(slot->arch.lpage_info[i - 1]);
12007                 slot->arch.lpage_info[i - 1] = NULL;
12008         }
12009
12010         kvm_page_track_free_memslot(slot);
12011 }
12012
12013 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12014 {
12015         const int sz = sizeof(*slot->arch.rmap[0]);
12016         int i;
12017
12018         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12019                 int level = i + 1;
12020                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12021
12022                 if (slot->arch.rmap[i])
12023                         continue;
12024
12025                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12026                 if (!slot->arch.rmap[i]) {
12027                         memslot_rmap_free(slot);
12028                         return -ENOMEM;
12029                 }
12030         }
12031
12032         return 0;
12033 }
12034
12035 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12036                                       struct kvm_memory_slot *slot)
12037 {
12038         unsigned long npages = slot->npages;
12039         int i, r;
12040
12041         /*
12042          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12043          * old arrays will be freed by __kvm_set_memory_region() if installing
12044          * the new memslot is successful.
12045          */
12046         memset(&slot->arch, 0, sizeof(slot->arch));
12047
12048         if (kvm_memslots_have_rmaps(kvm)) {
12049                 r = memslot_rmap_alloc(slot, npages);
12050                 if (r)
12051                         return r;
12052         }
12053
12054         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12055                 struct kvm_lpage_info *linfo;
12056                 unsigned long ugfn;
12057                 int lpages;
12058                 int level = i + 1;
12059
12060                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12061
12062                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12063                 if (!linfo)
12064                         goto out_free;
12065
12066                 slot->arch.lpage_info[i - 1] = linfo;
12067
12068                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12069                         linfo[0].disallow_lpage = 1;
12070                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12071                         linfo[lpages - 1].disallow_lpage = 1;
12072                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12073                 /*
12074                  * If the gfn and userspace address are not aligned wrt each
12075                  * other, disable large page support for this slot.
12076                  */
12077                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12078                         unsigned long j;
12079
12080                         for (j = 0; j < lpages; ++j)
12081                                 linfo[j].disallow_lpage = 1;
12082                 }
12083         }
12084
12085         if (kvm_page_track_create_memslot(kvm, slot, npages))
12086                 goto out_free;
12087
12088         return 0;
12089
12090 out_free:
12091         memslot_rmap_free(slot);
12092
12093         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12094                 kvfree(slot->arch.lpage_info[i - 1]);
12095                 slot->arch.lpage_info[i - 1] = NULL;
12096         }
12097         return -ENOMEM;
12098 }
12099
12100 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12101 {
12102         struct kvm_vcpu *vcpu;
12103         unsigned long i;
12104
12105         /*
12106          * memslots->generation has been incremented.
12107          * mmio generation may have reached its maximum value.
12108          */
12109         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12110
12111         /* Force re-initialization of steal_time cache */
12112         kvm_for_each_vcpu(i, vcpu, kvm)
12113                 kvm_vcpu_kick(vcpu);
12114 }
12115
12116 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12117                                    const struct kvm_memory_slot *old,
12118                                    struct kvm_memory_slot *new,
12119                                    enum kvm_mr_change change)
12120 {
12121         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12122                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12123                         return -EINVAL;
12124
12125                 return kvm_alloc_memslot_metadata(kvm, new);
12126         }
12127
12128         if (change == KVM_MR_FLAGS_ONLY)
12129                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12130         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12131                 return -EIO;
12132
12133         return 0;
12134 }
12135
12136
12137 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12138 {
12139         struct kvm_arch *ka = &kvm->arch;
12140
12141         if (!kvm_x86_ops.cpu_dirty_log_size)
12142                 return;
12143
12144         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12145             (!enable && --ka->cpu_dirty_logging_count == 0))
12146                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12147
12148         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12149 }
12150
12151 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12152                                      struct kvm_memory_slot *old,
12153                                      const struct kvm_memory_slot *new,
12154                                      enum kvm_mr_change change)
12155 {
12156         u32 old_flags = old ? old->flags : 0;
12157         u32 new_flags = new ? new->flags : 0;
12158         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12159
12160         /*
12161          * Update CPU dirty logging if dirty logging is being toggled.  This
12162          * applies to all operations.
12163          */
12164         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12165                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12166
12167         /*
12168          * Nothing more to do for RO slots (which can't be dirtied and can't be
12169          * made writable) or CREATE/MOVE/DELETE of a slot.
12170          *
12171          * For a memslot with dirty logging disabled:
12172          * CREATE:      No dirty mappings will already exist.
12173          * MOVE/DELETE: The old mappings will already have been cleaned up by
12174          *              kvm_arch_flush_shadow_memslot()
12175          *
12176          * For a memslot with dirty logging enabled:
12177          * CREATE:      No shadow pages exist, thus nothing to write-protect
12178          *              and no dirty bits to clear.
12179          * MOVE/DELETE: The old mappings will already have been cleaned up by
12180          *              kvm_arch_flush_shadow_memslot().
12181          */
12182         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12183                 return;
12184
12185         /*
12186          * READONLY and non-flags changes were filtered out above, and the only
12187          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12188          * logging isn't being toggled on or off.
12189          */
12190         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12191                 return;
12192
12193         if (!log_dirty_pages) {
12194                 /*
12195                  * Dirty logging tracks sptes in 4k granularity, meaning that
12196                  * large sptes have to be split.  If live migration succeeds,
12197                  * the guest in the source machine will be destroyed and large
12198                  * sptes will be created in the destination.  However, if the
12199                  * guest continues to run in the source machine (for example if
12200                  * live migration fails), small sptes will remain around and
12201                  * cause bad performance.
12202                  *
12203                  * Scan sptes if dirty logging has been stopped, dropping those
12204                  * which can be collapsed into a single large-page spte.  Later
12205                  * page faults will create the large-page sptes.
12206                  */
12207                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12208         } else {
12209                 /*
12210                  * Initially-all-set does not require write protecting any page,
12211                  * because they're all assumed to be dirty.
12212                  */
12213                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12214                         return;
12215
12216                 if (READ_ONCE(eager_page_split))
12217                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12218
12219                 if (kvm_x86_ops.cpu_dirty_log_size) {
12220                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12221                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12222                 } else {
12223                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12224                 }
12225         }
12226 }
12227
12228 void kvm_arch_commit_memory_region(struct kvm *kvm,
12229                                 struct kvm_memory_slot *old,
12230                                 const struct kvm_memory_slot *new,
12231                                 enum kvm_mr_change change)
12232 {
12233         if (!kvm->arch.n_requested_mmu_pages &&
12234             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12235                 unsigned long nr_mmu_pages;
12236
12237                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12238                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12239                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12240         }
12241
12242         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12243
12244         /* Free the arrays associated with the old memslot. */
12245         if (change == KVM_MR_MOVE)
12246                 kvm_arch_free_memslot(kvm, old);
12247 }
12248
12249 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12250 {
12251         kvm_mmu_zap_all(kvm);
12252 }
12253
12254 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12255                                    struct kvm_memory_slot *slot)
12256 {
12257         kvm_page_track_flush_slot(kvm, slot);
12258 }
12259
12260 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12261 {
12262         return (is_guest_mode(vcpu) &&
12263                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12264 }
12265
12266 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12267 {
12268         if (!list_empty_careful(&vcpu->async_pf.done))
12269                 return true;
12270
12271         if (kvm_apic_has_events(vcpu))
12272                 return true;
12273
12274         if (vcpu->arch.pv.pv_unhalted)
12275                 return true;
12276
12277         if (vcpu->arch.exception.pending)
12278                 return true;
12279
12280         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12281             (vcpu->arch.nmi_pending &&
12282              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12283                 return true;
12284
12285         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12286             (vcpu->arch.smi_pending &&
12287              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12288                 return true;
12289
12290         if (kvm_arch_interrupt_allowed(vcpu) &&
12291             (kvm_cpu_has_interrupt(vcpu) ||
12292             kvm_guest_apic_has_interrupt(vcpu)))
12293                 return true;
12294
12295         if (kvm_hv_has_stimer_pending(vcpu))
12296                 return true;
12297
12298         if (is_guest_mode(vcpu) &&
12299             kvm_x86_ops.nested_ops->hv_timer_pending &&
12300             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12301                 return true;
12302
12303         if (kvm_xen_has_pending_events(vcpu))
12304                 return true;
12305
12306         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12307                 return true;
12308
12309         return false;
12310 }
12311
12312 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12313 {
12314         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12315 }
12316
12317 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12318 {
12319         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12320                 return true;
12321
12322         return false;
12323 }
12324
12325 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12326 {
12327         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12328                 return true;
12329
12330         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12331                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12332                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12333                 return true;
12334
12335         return kvm_arch_dy_has_pending_interrupt(vcpu);
12336 }
12337
12338 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12339 {
12340         if (vcpu->arch.guest_state_protected)
12341                 return true;
12342
12343         return vcpu->arch.preempted_in_kernel;
12344 }
12345
12346 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12347 {
12348         return kvm_rip_read(vcpu);
12349 }
12350
12351 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12352 {
12353         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12354 }
12355
12356 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12357 {
12358         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12359 }
12360
12361 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12362 {
12363         /* Can't read the RIP when guest state is protected, just return 0 */
12364         if (vcpu->arch.guest_state_protected)
12365                 return 0;
12366
12367         if (is_64_bit_mode(vcpu))
12368                 return kvm_rip_read(vcpu);
12369         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12370                      kvm_rip_read(vcpu));
12371 }
12372 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12373
12374 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12375 {
12376         return kvm_get_linear_rip(vcpu) == linear_rip;
12377 }
12378 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12379
12380 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12381 {
12382         unsigned long rflags;
12383
12384         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12385         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12386                 rflags &= ~X86_EFLAGS_TF;
12387         return rflags;
12388 }
12389 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12390
12391 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12392 {
12393         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12394             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12395                 rflags |= X86_EFLAGS_TF;
12396         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12397 }
12398
12399 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12400 {
12401         __kvm_set_rflags(vcpu, rflags);
12402         kvm_make_request(KVM_REQ_EVENT, vcpu);
12403 }
12404 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12405
12406 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12407 {
12408         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12409
12410         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12411 }
12412
12413 static inline u32 kvm_async_pf_next_probe(u32 key)
12414 {
12415         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12416 }
12417
12418 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12419 {
12420         u32 key = kvm_async_pf_hash_fn(gfn);
12421
12422         while (vcpu->arch.apf.gfns[key] != ~0)
12423                 key = kvm_async_pf_next_probe(key);
12424
12425         vcpu->arch.apf.gfns[key] = gfn;
12426 }
12427
12428 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12429 {
12430         int i;
12431         u32 key = kvm_async_pf_hash_fn(gfn);
12432
12433         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12434                      (vcpu->arch.apf.gfns[key] != gfn &&
12435                       vcpu->arch.apf.gfns[key] != ~0); i++)
12436                 key = kvm_async_pf_next_probe(key);
12437
12438         return key;
12439 }
12440
12441 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12442 {
12443         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12444 }
12445
12446 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12447 {
12448         u32 i, j, k;
12449
12450         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12451
12452         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12453                 return;
12454
12455         while (true) {
12456                 vcpu->arch.apf.gfns[i] = ~0;
12457                 do {
12458                         j = kvm_async_pf_next_probe(j);
12459                         if (vcpu->arch.apf.gfns[j] == ~0)
12460                                 return;
12461                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12462                         /*
12463                          * k lies cyclically in ]i,j]
12464                          * |    i.k.j |
12465                          * |....j i.k.| or  |.k..j i...|
12466                          */
12467                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12468                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12469                 i = j;
12470         }
12471 }
12472
12473 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12474 {
12475         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12476
12477         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12478                                       sizeof(reason));
12479 }
12480
12481 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12482 {
12483         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12484
12485         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12486                                              &token, offset, sizeof(token));
12487 }
12488
12489 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12490 {
12491         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12492         u32 val;
12493
12494         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12495                                          &val, offset, sizeof(val)))
12496                 return false;
12497
12498         return !val;
12499 }
12500
12501 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12502 {
12503
12504         if (!kvm_pv_async_pf_enabled(vcpu))
12505                 return false;
12506
12507         if (vcpu->arch.apf.send_user_only &&
12508             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12509                 return false;
12510
12511         if (is_guest_mode(vcpu)) {
12512                 /*
12513                  * L1 needs to opt into the special #PF vmexits that are
12514                  * used to deliver async page faults.
12515                  */
12516                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12517         } else {
12518                 /*
12519                  * Play it safe in case the guest temporarily disables paging.
12520                  * The real mode IDT in particular is unlikely to have a #PF
12521                  * exception setup.
12522                  */
12523                 return is_paging(vcpu);
12524         }
12525 }
12526
12527 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12528 {
12529         if (unlikely(!lapic_in_kernel(vcpu) ||
12530                      kvm_event_needs_reinjection(vcpu) ||
12531                      vcpu->arch.exception.pending))
12532                 return false;
12533
12534         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12535                 return false;
12536
12537         /*
12538          * If interrupts are off we cannot even use an artificial
12539          * halt state.
12540          */
12541         return kvm_arch_interrupt_allowed(vcpu);
12542 }
12543
12544 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12545                                      struct kvm_async_pf *work)
12546 {
12547         struct x86_exception fault;
12548
12549         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12550         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12551
12552         if (kvm_can_deliver_async_pf(vcpu) &&
12553             !apf_put_user_notpresent(vcpu)) {
12554                 fault.vector = PF_VECTOR;
12555                 fault.error_code_valid = true;
12556                 fault.error_code = 0;
12557                 fault.nested_page_fault = false;
12558                 fault.address = work->arch.token;
12559                 fault.async_page_fault = true;
12560                 kvm_inject_page_fault(vcpu, &fault);
12561                 return true;
12562         } else {
12563                 /*
12564                  * It is not possible to deliver a paravirtualized asynchronous
12565                  * page fault, but putting the guest in an artificial halt state
12566                  * can be beneficial nevertheless: if an interrupt arrives, we
12567                  * can deliver it timely and perhaps the guest will schedule
12568                  * another process.  When the instruction that triggered a page
12569                  * fault is retried, hopefully the page will be ready in the host.
12570                  */
12571                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12572                 return false;
12573         }
12574 }
12575
12576 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12577                                  struct kvm_async_pf *work)
12578 {
12579         struct kvm_lapic_irq irq = {
12580                 .delivery_mode = APIC_DM_FIXED,
12581                 .vector = vcpu->arch.apf.vec
12582         };
12583
12584         if (work->wakeup_all)
12585                 work->arch.token = ~0; /* broadcast wakeup */
12586         else
12587                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12588         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12589
12590         if ((work->wakeup_all || work->notpresent_injected) &&
12591             kvm_pv_async_pf_enabled(vcpu) &&
12592             !apf_put_user_ready(vcpu, work->arch.token)) {
12593                 vcpu->arch.apf.pageready_pending = true;
12594                 kvm_apic_set_irq(vcpu, &irq, NULL);
12595         }
12596
12597         vcpu->arch.apf.halted = false;
12598         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12599 }
12600
12601 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12602 {
12603         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12604         if (!vcpu->arch.apf.pageready_pending)
12605                 kvm_vcpu_kick(vcpu);
12606 }
12607
12608 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12609 {
12610         if (!kvm_pv_async_pf_enabled(vcpu))
12611                 return true;
12612         else
12613                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12614 }
12615
12616 void kvm_arch_start_assignment(struct kvm *kvm)
12617 {
12618         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12619                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12620 }
12621 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12622
12623 void kvm_arch_end_assignment(struct kvm *kvm)
12624 {
12625         atomic_dec(&kvm->arch.assigned_device_count);
12626 }
12627 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12628
12629 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12630 {
12631         return atomic_read(&kvm->arch.assigned_device_count);
12632 }
12633 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12634
12635 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12636 {
12637         atomic_inc(&kvm->arch.noncoherent_dma_count);
12638 }
12639 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12640
12641 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12642 {
12643         atomic_dec(&kvm->arch.noncoherent_dma_count);
12644 }
12645 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12646
12647 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12648 {
12649         return atomic_read(&kvm->arch.noncoherent_dma_count);
12650 }
12651 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12652
12653 bool kvm_arch_has_irq_bypass(void)
12654 {
12655         return true;
12656 }
12657
12658 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12659                                       struct irq_bypass_producer *prod)
12660 {
12661         struct kvm_kernel_irqfd *irqfd =
12662                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12663         int ret;
12664
12665         irqfd->producer = prod;
12666         kvm_arch_start_assignment(irqfd->kvm);
12667         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12668                                          prod->irq, irqfd->gsi, 1);
12669
12670         if (ret)
12671                 kvm_arch_end_assignment(irqfd->kvm);
12672
12673         return ret;
12674 }
12675
12676 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12677                                       struct irq_bypass_producer *prod)
12678 {
12679         int ret;
12680         struct kvm_kernel_irqfd *irqfd =
12681                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12682
12683         WARN_ON(irqfd->producer != prod);
12684         irqfd->producer = NULL;
12685
12686         /*
12687          * When producer of consumer is unregistered, we change back to
12688          * remapped mode, so we can re-use the current implementation
12689          * when the irq is masked/disabled or the consumer side (KVM
12690          * int this case doesn't want to receive the interrupts.
12691         */
12692         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12693         if (ret)
12694                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12695                        " fails: %d\n", irqfd->consumer.token, ret);
12696
12697         kvm_arch_end_assignment(irqfd->kvm);
12698 }
12699
12700 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12701                                    uint32_t guest_irq, bool set)
12702 {
12703         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12704 }
12705
12706 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12707                                   struct kvm_kernel_irq_routing_entry *new)
12708 {
12709         if (new->type != KVM_IRQ_ROUTING_MSI)
12710                 return true;
12711
12712         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12713 }
12714
12715 bool kvm_vector_hashing_enabled(void)
12716 {
12717         return vector_hashing;
12718 }
12719
12720 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12721 {
12722         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12723 }
12724 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12725
12726
12727 int kvm_spec_ctrl_test_value(u64 value)
12728 {
12729         /*
12730          * test that setting IA32_SPEC_CTRL to given value
12731          * is allowed by the host processor
12732          */
12733
12734         u64 saved_value;
12735         unsigned long flags;
12736         int ret = 0;
12737
12738         local_irq_save(flags);
12739
12740         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12741                 ret = 1;
12742         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12743                 ret = 1;
12744         else
12745                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12746
12747         local_irq_restore(flags);
12748
12749         return ret;
12750 }
12751 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12752
12753 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12754 {
12755         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12756         struct x86_exception fault;
12757         u64 access = error_code &
12758                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12759
12760         if (!(error_code & PFERR_PRESENT_MASK) ||
12761             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12762                 /*
12763                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12764                  * tables probably do not match the TLB.  Just proceed
12765                  * with the error code that the processor gave.
12766                  */
12767                 fault.vector = PF_VECTOR;
12768                 fault.error_code_valid = true;
12769                 fault.error_code = error_code;
12770                 fault.nested_page_fault = false;
12771                 fault.address = gva;
12772         }
12773         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12774 }
12775 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12776
12777 /*
12778  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12779  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12780  * indicates whether exit to userspace is needed.
12781  */
12782 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12783                               struct x86_exception *e)
12784 {
12785         if (r == X86EMUL_PROPAGATE_FAULT) {
12786                 kvm_inject_emulated_page_fault(vcpu, e);
12787                 return 1;
12788         }
12789
12790         /*
12791          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12792          * while handling a VMX instruction KVM could've handled the request
12793          * correctly by exiting to userspace and performing I/O but there
12794          * doesn't seem to be a real use-case behind such requests, just return
12795          * KVM_EXIT_INTERNAL_ERROR for now.
12796          */
12797         kvm_prepare_emulation_failure_exit(vcpu);
12798
12799         return 0;
12800 }
12801 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12802
12803 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12804 {
12805         bool pcid_enabled;
12806         struct x86_exception e;
12807         struct {
12808                 u64 pcid;
12809                 u64 gla;
12810         } operand;
12811         int r;
12812
12813         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12814         if (r != X86EMUL_CONTINUE)
12815                 return kvm_handle_memory_failure(vcpu, r, &e);
12816
12817         if (operand.pcid >> 12 != 0) {
12818                 kvm_inject_gp(vcpu, 0);
12819                 return 1;
12820         }
12821
12822         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12823
12824         switch (type) {
12825         case INVPCID_TYPE_INDIV_ADDR:
12826                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12827                     is_noncanonical_address(operand.gla, vcpu)) {
12828                         kvm_inject_gp(vcpu, 0);
12829                         return 1;
12830                 }
12831                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12832                 return kvm_skip_emulated_instruction(vcpu);
12833
12834         case INVPCID_TYPE_SINGLE_CTXT:
12835                 if (!pcid_enabled && (operand.pcid != 0)) {
12836                         kvm_inject_gp(vcpu, 0);
12837                         return 1;
12838                 }
12839
12840                 kvm_invalidate_pcid(vcpu, operand.pcid);
12841                 return kvm_skip_emulated_instruction(vcpu);
12842
12843         case INVPCID_TYPE_ALL_NON_GLOBAL:
12844                 /*
12845                  * Currently, KVM doesn't mark global entries in the shadow
12846                  * page tables, so a non-global flush just degenerates to a
12847                  * global flush. If needed, we could optimize this later by
12848                  * keeping track of global entries in shadow page tables.
12849                  */
12850
12851                 fallthrough;
12852         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12853                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12854                 return kvm_skip_emulated_instruction(vcpu);
12855
12856         default:
12857                 kvm_inject_gp(vcpu, 0);
12858                 return 1;
12859         }
12860 }
12861 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12862
12863 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12864 {
12865         struct kvm_run *run = vcpu->run;
12866         struct kvm_mmio_fragment *frag;
12867         unsigned int len;
12868
12869         BUG_ON(!vcpu->mmio_needed);
12870
12871         /* Complete previous fragment */
12872         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12873         len = min(8u, frag->len);
12874         if (!vcpu->mmio_is_write)
12875                 memcpy(frag->data, run->mmio.data, len);
12876
12877         if (frag->len <= 8) {
12878                 /* Switch to the next fragment. */
12879                 frag++;
12880                 vcpu->mmio_cur_fragment++;
12881         } else {
12882                 /* Go forward to the next mmio piece. */
12883                 frag->data += len;
12884                 frag->gpa += len;
12885                 frag->len -= len;
12886         }
12887
12888         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12889                 vcpu->mmio_needed = 0;
12890
12891                 // VMG change, at this point, we're always done
12892                 // RIP has already been advanced
12893                 return 1;
12894         }
12895
12896         // More MMIO is needed
12897         run->mmio.phys_addr = frag->gpa;
12898         run->mmio.len = min(8u, frag->len);
12899         run->mmio.is_write = vcpu->mmio_is_write;
12900         if (run->mmio.is_write)
12901                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12902         run->exit_reason = KVM_EXIT_MMIO;
12903
12904         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12905
12906         return 0;
12907 }
12908
12909 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12910                           void *data)
12911 {
12912         int handled;
12913         struct kvm_mmio_fragment *frag;
12914
12915         if (!data)
12916                 return -EINVAL;
12917
12918         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12919         if (handled == bytes)
12920                 return 1;
12921
12922         bytes -= handled;
12923         gpa += handled;
12924         data += handled;
12925
12926         /*TODO: Check if need to increment number of frags */
12927         frag = vcpu->mmio_fragments;
12928         vcpu->mmio_nr_fragments = 1;
12929         frag->len = bytes;
12930         frag->gpa = gpa;
12931         frag->data = data;
12932
12933         vcpu->mmio_needed = 1;
12934         vcpu->mmio_cur_fragment = 0;
12935
12936         vcpu->run->mmio.phys_addr = gpa;
12937         vcpu->run->mmio.len = min(8u, frag->len);
12938         vcpu->run->mmio.is_write = 1;
12939         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12940         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12941
12942         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12943
12944         return 0;
12945 }
12946 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12947
12948 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12949                          void *data)
12950 {
12951         int handled;
12952         struct kvm_mmio_fragment *frag;
12953
12954         if (!data)
12955                 return -EINVAL;
12956
12957         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12958         if (handled == bytes)
12959                 return 1;
12960
12961         bytes -= handled;
12962         gpa += handled;
12963         data += handled;
12964
12965         /*TODO: Check if need to increment number of frags */
12966         frag = vcpu->mmio_fragments;
12967         vcpu->mmio_nr_fragments = 1;
12968         frag->len = bytes;
12969         frag->gpa = gpa;
12970         frag->data = data;
12971
12972         vcpu->mmio_needed = 1;
12973         vcpu->mmio_cur_fragment = 0;
12974
12975         vcpu->run->mmio.phys_addr = gpa;
12976         vcpu->run->mmio.len = min(8u, frag->len);
12977         vcpu->run->mmio.is_write = 0;
12978         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12979
12980         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12981
12982         return 0;
12983 }
12984 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12985
12986 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12987                            unsigned int port);
12988
12989 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12990 {
12991         int size = vcpu->arch.pio.size;
12992         int port = vcpu->arch.pio.port;
12993
12994         vcpu->arch.pio.count = 0;
12995         if (vcpu->arch.sev_pio_count)
12996                 return kvm_sev_es_outs(vcpu, size, port);
12997         return 1;
12998 }
12999
13000 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13001                            unsigned int port)
13002 {
13003         for (;;) {
13004                 unsigned int count =
13005                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13006                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13007
13008                 /* memcpy done already by emulator_pio_out.  */
13009                 vcpu->arch.sev_pio_count -= count;
13010                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13011                 if (!ret)
13012                         break;
13013
13014                 /* Emulation done by the kernel.  */
13015                 if (!vcpu->arch.sev_pio_count)
13016                         return 1;
13017         }
13018
13019         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13020         return 0;
13021 }
13022
13023 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13024                           unsigned int port);
13025
13026 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13027 {
13028         unsigned count = vcpu->arch.pio.count;
13029         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13030         vcpu->arch.sev_pio_count -= count;
13031         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13032 }
13033
13034 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13035 {
13036         int size = vcpu->arch.pio.size;
13037         int port = vcpu->arch.pio.port;
13038
13039         advance_sev_es_emulated_ins(vcpu);
13040         if (vcpu->arch.sev_pio_count)
13041                 return kvm_sev_es_ins(vcpu, size, port);
13042         return 1;
13043 }
13044
13045 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13046                           unsigned int port)
13047 {
13048         for (;;) {
13049                 unsigned int count =
13050                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13051                 if (!__emulator_pio_in(vcpu, size, port, count))
13052                         break;
13053
13054                 /* Emulation done by the kernel.  */
13055                 advance_sev_es_emulated_ins(vcpu);
13056                 if (!vcpu->arch.sev_pio_count)
13057                         return 1;
13058         }
13059
13060         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13061         return 0;
13062 }
13063
13064 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13065                          unsigned int port, void *data,  unsigned int count,
13066                          int in)
13067 {
13068         vcpu->arch.sev_pio_data = data;
13069         vcpu->arch.sev_pio_count = count;
13070         return in ? kvm_sev_es_ins(vcpu, size, port)
13071                   : kvm_sev_es_outs(vcpu, size, port);
13072 }
13073 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13074
13075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13103
13104 static int __init kvm_x86_init(void)
13105 {
13106         kvm_mmu_x86_module_init();
13107         return 0;
13108 }
13109 module_init(kvm_x86_init);
13110
13111 static void __exit kvm_x86_exit(void)
13112 {
13113         /*
13114          * If module_init() is implemented, module_exit() must also be
13115          * implemented to allow module unload.
13116          */
13117 }
13118 module_exit(kvm_x86_exit);