Merge branch 'x86/bugs' into x86/core, to pick up pending changes before dependent...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77         {}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, 0444);
87
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
90
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, 0444);
93
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96                         enable_unrestricted_guest, bool, 0444);
97
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
100
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, 0444);
103
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, 0444);
106
107 module_param(enable_apicv, bool, 0444);
108
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, 0444);
119
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, 0444);
122
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128
129 #define MSR_BITMAP_MODE_X2APIC          1
130 #define MSR_BITMAP_MODE_X2APIC_APICV    2
131
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON                            \
147         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158         RTIT_STATUS_BYTECNT))
159
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165         MSR_IA32_SPEC_CTRL,
166         MSR_IA32_PRED_CMD,
167         MSR_IA32_FLUSH_CMD,
168         MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170         MSR_FS_BASE,
171         MSR_GS_BASE,
172         MSR_KERNEL_GS_BASE,
173         MSR_IA32_XFD,
174         MSR_IA32_XFD_ERR,
175 #endif
176         MSR_IA32_SYSENTER_CS,
177         MSR_IA32_SYSENTER_ESP,
178         MSR_IA32_SYSENTER_EIP,
179         MSR_CORE_C1_RES,
180         MSR_CORE_C3_RESIDENCY,
181         MSR_CORE_C6_RESIDENCY,
182         MSR_CORE_C7_RESIDENCY,
183 };
184
185 /*
186  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187  * ple_gap:    upper bound on the amount of time between two successive
188  *             executions of PAUSE in a loop. Also indicate if ple enabled.
189  *             According to test, this time is usually smaller than 128 cycles.
190  * ple_window: upper bound on the amount of time a guest is allowed to execute
191  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
192  *             less than 2^12 cycles
193  * Time is measured based on a counter that runs at the same rate as the TSC,
194  * refer SDM volume 3b section 21.6.13 & 22.1.3.
195  */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224
225 static const struct {
226         const char *option;
227         bool for_parse;
228 } vmentry_l1d_param[] = {
229         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
230         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
231         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
232         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
233         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239
240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
241 {
242         struct page *page;
243         unsigned int i;
244
245         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
246                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247                 return 0;
248         }
249
250         if (!enable_ept) {
251                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
252                 return 0;
253         }
254
255         if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
256                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257                 return 0;
258         }
259
260         /* If set to auto use the default l1tf mitigation method */
261         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
262                 switch (l1tf_mitigation) {
263                 case L1TF_MITIGATION_OFF:
264                         l1tf = VMENTER_L1D_FLUSH_NEVER;
265                         break;
266                 case L1TF_MITIGATION_FLUSH_NOWARN:
267                 case L1TF_MITIGATION_FLUSH:
268                 case L1TF_MITIGATION_FLUSH_NOSMT:
269                         l1tf = VMENTER_L1D_FLUSH_COND;
270                         break;
271                 case L1TF_MITIGATION_FULL:
272                 case L1TF_MITIGATION_FULL_FORCE:
273                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274                         break;
275                 }
276         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
277                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
278         }
279
280         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
281             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
282                 /*
283                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
284                  * lifetime and so should not be charged to a memcg.
285                  */
286                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
287                 if (!page)
288                         return -ENOMEM;
289                 vmx_l1d_flush_pages = page_address(page);
290
291                 /*
292                  * Initialize each page with a different pattern in
293                  * order to protect against KSM in the nested
294                  * virtualization case.
295                  */
296                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
297                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
298                                PAGE_SIZE);
299                 }
300         }
301
302         l1tf_vmx_mitigation = l1tf;
303
304         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
305                 static_branch_enable(&vmx_l1d_should_flush);
306         else
307                 static_branch_disable(&vmx_l1d_should_flush);
308
309         if (l1tf == VMENTER_L1D_FLUSH_COND)
310                 static_branch_enable(&vmx_l1d_flush_cond);
311         else
312                 static_branch_disable(&vmx_l1d_flush_cond);
313         return 0;
314 }
315
316 static int vmentry_l1d_flush_parse(const char *s)
317 {
318         unsigned int i;
319
320         if (s) {
321                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
322                         if (vmentry_l1d_param[i].for_parse &&
323                             sysfs_streq(s, vmentry_l1d_param[i].option))
324                                 return i;
325                 }
326         }
327         return -EINVAL;
328 }
329
330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
331 {
332         int l1tf, ret;
333
334         l1tf = vmentry_l1d_flush_parse(s);
335         if (l1tf < 0)
336                 return l1tf;
337
338         if (!boot_cpu_has(X86_BUG_L1TF))
339                 return 0;
340
341         /*
342          * Has vmx_init() run already? If not then this is the pre init
343          * parameter parsing. In that case just store the value and let
344          * vmx_init() do the proper setup after enable_ept has been
345          * established.
346          */
347         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
348                 vmentry_l1d_flush_param = l1tf;
349                 return 0;
350         }
351
352         mutex_lock(&vmx_l1d_flush_mutex);
353         ret = vmx_setup_l1d_flush(l1tf);
354         mutex_unlock(&vmx_l1d_flush_mutex);
355         return ret;
356 }
357
358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
359 {
360         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
361                 return sysfs_emit(s, "???\n");
362
363         return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
364 }
365
366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
367 {
368         u64 msr;
369
370         if (!vmx->disable_fb_clear)
371                 return;
372
373         msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
374         msr |= FB_CLEAR_DIS;
375         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
376         /* Cache the MSR value to avoid reading it later */
377         vmx->msr_ia32_mcu_opt_ctrl = msr;
378 }
379
380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
381 {
382         if (!vmx->disable_fb_clear)
383                 return;
384
385         vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
386         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
387 }
388
389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
390 {
391         vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
392                                 !boot_cpu_has_bug(X86_BUG_MDS) &&
393                                 !boot_cpu_has_bug(X86_BUG_TAA);
394
395         /*
396          * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
397          * at VMEntry. Skip the MSR read/write when a guest has no use case to
398          * execute VERW.
399          */
400         if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
401            ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
402             (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
403             (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
404             (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
405             (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
406                 vmx->disable_fb_clear = false;
407 }
408
409 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
410         .set = vmentry_l1d_flush_set,
411         .get = vmentry_l1d_flush_get,
412 };
413 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
414
415 static u32 vmx_segment_access_rights(struct kvm_segment *var);
416
417 void vmx_vmexit(void);
418
419 #define vmx_insn_failed(fmt...)         \
420 do {                                    \
421         WARN_ONCE(1, fmt);              \
422         pr_warn_ratelimited(fmt);       \
423 } while (0)
424
425 noinline void vmread_error(unsigned long field)
426 {
427         vmx_insn_failed("vmread failed: field=%lx\n", field);
428 }
429
430 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
431 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
432 {
433         if (fault) {
434                 kvm_spurious_fault();
435         } else {
436                 instrumentation_begin();
437                 vmread_error(field);
438                 instrumentation_end();
439         }
440 }
441 #endif
442
443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445         vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
446                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448
449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451         vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
452                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
453 }
454
455 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
456 {
457         vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
458                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
459 }
460
461 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
462 {
463         vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
464                         ext, vpid, gva);
465 }
466
467 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
468 {
469         vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
470                         ext, eptp, gpa);
471 }
472
473 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
474 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
475 /*
476  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
477  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
478  */
479 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
480
481 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
482 static DEFINE_SPINLOCK(vmx_vpid_lock);
483
484 struct vmcs_config vmcs_config __ro_after_init;
485 struct vmx_capability vmx_capability __ro_after_init;
486
487 #define VMX_SEGMENT_FIELD(seg)                                  \
488         [VCPU_SREG_##seg] = {                                   \
489                 .selector = GUEST_##seg##_SELECTOR,             \
490                 .base = GUEST_##seg##_BASE,                     \
491                 .limit = GUEST_##seg##_LIMIT,                   \
492                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
493         }
494
495 static const struct kvm_vmx_segment_field {
496         unsigned selector;
497         unsigned base;
498         unsigned limit;
499         unsigned ar_bytes;
500 } kvm_vmx_segment_fields[] = {
501         VMX_SEGMENT_FIELD(CS),
502         VMX_SEGMENT_FIELD(DS),
503         VMX_SEGMENT_FIELD(ES),
504         VMX_SEGMENT_FIELD(FS),
505         VMX_SEGMENT_FIELD(GS),
506         VMX_SEGMENT_FIELD(SS),
507         VMX_SEGMENT_FIELD(TR),
508         VMX_SEGMENT_FIELD(LDTR),
509 };
510
511 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
512 {
513         vmx->segment_cache.bitmask = 0;
514 }
515
516 static unsigned long host_idt_base;
517
518 #if IS_ENABLED(CONFIG_HYPERV)
519 static struct kvm_x86_ops vmx_x86_ops __initdata;
520
521 static bool __read_mostly enlightened_vmcs = true;
522 module_param(enlightened_vmcs, bool, 0444);
523
524 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
525 {
526         struct hv_enlightened_vmcs *evmcs;
527         hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
528
529         if (partition_assist_page == INVALID_PAGE)
530                 return -ENOMEM;
531
532         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
533
534         evmcs->partition_assist_page = partition_assist_page;
535         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
536         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
537
538         return 0;
539 }
540
541 static __init void hv_init_evmcs(void)
542 {
543         int cpu;
544
545         if (!enlightened_vmcs)
546                 return;
547
548         /*
549          * Enlightened VMCS usage should be recommended and the host needs
550          * to support eVMCS v1 or above.
551          */
552         if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
553             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
554              KVM_EVMCS_VERSION) {
555
556                 /* Check that we have assist pages on all online CPUs */
557                 for_each_online_cpu(cpu) {
558                         if (!hv_get_vp_assist_page(cpu)) {
559                                 enlightened_vmcs = false;
560                                 break;
561                         }
562                 }
563
564                 if (enlightened_vmcs) {
565                         pr_info("Using Hyper-V Enlightened VMCS\n");
566                         static_branch_enable(&__kvm_is_using_evmcs);
567                 }
568
569                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
570                         vmx_x86_ops.enable_l2_tlb_flush
571                                 = hv_enable_l2_tlb_flush;
572
573         } else {
574                 enlightened_vmcs = false;
575         }
576 }
577
578 static void hv_reset_evmcs(void)
579 {
580         struct hv_vp_assist_page *vp_ap;
581
582         if (!kvm_is_using_evmcs())
583                 return;
584
585         /*
586          * KVM should enable eVMCS if and only if all CPUs have a VP assist
587          * page, and should reject CPU onlining if eVMCS is enabled the CPU
588          * doesn't have a VP assist page allocated.
589          */
590         vp_ap = hv_get_vp_assist_page(smp_processor_id());
591         if (WARN_ON_ONCE(!vp_ap))
592                 return;
593
594         /*
595          * Reset everything to support using non-enlightened VMCS access later
596          * (e.g. when we reload the module with enlightened_vmcs=0)
597          */
598         vp_ap->nested_control.features.directhypercall = 0;
599         vp_ap->current_nested_vmcs = 0;
600         vp_ap->enlighten_vmentry = 0;
601 }
602
603 #else /* IS_ENABLED(CONFIG_HYPERV) */
604 static void hv_init_evmcs(void) {}
605 static void hv_reset_evmcs(void) {}
606 #endif /* IS_ENABLED(CONFIG_HYPERV) */
607
608 /*
609  * Comment's format: document - errata name - stepping - processor name.
610  * Refer from
611  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
612  */
613 static u32 vmx_preemption_cpu_tfms[] = {
614 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
615 0x000206E6,
616 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
617 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
618 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
619 0x00020652,
620 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
621 0x00020655,
622 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
623 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
624 /*
625  * 320767.pdf - AAP86  - B1 -
626  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
627  */
628 0x000106E5,
629 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
630 0x000106A0,
631 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
632 0x000106A1,
633 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
634 0x000106A4,
635  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
636  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
637  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
638 0x000106A5,
639  /* Xeon E3-1220 V2 */
640 0x000306A8,
641 };
642
643 static inline bool cpu_has_broken_vmx_preemption_timer(void)
644 {
645         u32 eax = cpuid_eax(0x00000001), i;
646
647         /* Clear the reserved bits */
648         eax &= ~(0x3U << 14 | 0xfU << 28);
649         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
650                 if (eax == vmx_preemption_cpu_tfms[i])
651                         return true;
652
653         return false;
654 }
655
656 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
657 {
658         return flexpriority_enabled && lapic_in_kernel(vcpu);
659 }
660
661 static int possible_passthrough_msr_slot(u32 msr)
662 {
663         u32 i;
664
665         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
666                 if (vmx_possible_passthrough_msrs[i] == msr)
667                         return i;
668
669         return -ENOENT;
670 }
671
672 static bool is_valid_passthrough_msr(u32 msr)
673 {
674         bool r;
675
676         switch (msr) {
677         case 0x800 ... 0x8ff:
678                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
679                 return true;
680         case MSR_IA32_RTIT_STATUS:
681         case MSR_IA32_RTIT_OUTPUT_BASE:
682         case MSR_IA32_RTIT_OUTPUT_MASK:
683         case MSR_IA32_RTIT_CR3_MATCH:
684         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
685                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
686         case MSR_LBR_SELECT:
687         case MSR_LBR_TOS:
688         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
689         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
690         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
691         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
692         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
693                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
694                 return true;
695         }
696
697         r = possible_passthrough_msr_slot(msr) != -ENOENT;
698
699         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
700
701         return r;
702 }
703
704 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
705 {
706         int i;
707
708         i = kvm_find_user_return_msr(msr);
709         if (i >= 0)
710                 return &vmx->guest_uret_msrs[i];
711         return NULL;
712 }
713
714 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
715                                   struct vmx_uret_msr *msr, u64 data)
716 {
717         unsigned int slot = msr - vmx->guest_uret_msrs;
718         int ret = 0;
719
720         if (msr->load_into_hardware) {
721                 preempt_disable();
722                 ret = kvm_set_user_return_msr(slot, data, msr->mask);
723                 preempt_enable();
724         }
725         if (!ret)
726                 msr->data = data;
727         return ret;
728 }
729
730 /*
731  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
732  *
733  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
734  * atomically track post-VMXON state, e.g. this may be called in NMI context.
735  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
736  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
737  * magically in RM, VM86, compat mode, or at CPL>0.
738  */
739 static int kvm_cpu_vmxoff(void)
740 {
741         asm goto("1: vmxoff\n\t"
742                           _ASM_EXTABLE(1b, %l[fault])
743                           ::: "cc", "memory" : fault);
744
745         cr4_clear_bits(X86_CR4_VMXE);
746         return 0;
747
748 fault:
749         cr4_clear_bits(X86_CR4_VMXE);
750         return -EIO;
751 }
752
753 static void vmx_emergency_disable(void)
754 {
755         int cpu = raw_smp_processor_id();
756         struct loaded_vmcs *v;
757
758         kvm_rebooting = true;
759
760         /*
761          * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
762          * set in task context.  If this races with VMX is disabled by an NMI,
763          * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
764          * kvm_rebooting set.
765          */
766         if (!(__read_cr4() & X86_CR4_VMXE))
767                 return;
768
769         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
770                             loaded_vmcss_on_cpu_link)
771                 vmcs_clear(v->vmcs);
772
773         kvm_cpu_vmxoff();
774 }
775
776 static void __loaded_vmcs_clear(void *arg)
777 {
778         struct loaded_vmcs *loaded_vmcs = arg;
779         int cpu = raw_smp_processor_id();
780
781         if (loaded_vmcs->cpu != cpu)
782                 return; /* vcpu migration can race with cpu offline */
783         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
784                 per_cpu(current_vmcs, cpu) = NULL;
785
786         vmcs_clear(loaded_vmcs->vmcs);
787         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
788                 vmcs_clear(loaded_vmcs->shadow_vmcs);
789
790         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
791
792         /*
793          * Ensure all writes to loaded_vmcs, including deleting it from its
794          * current percpu list, complete before setting loaded_vmcs->cpu to
795          * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
796          * and add loaded_vmcs to its percpu list before it's deleted from this
797          * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
798          */
799         smp_wmb();
800
801         loaded_vmcs->cpu = -1;
802         loaded_vmcs->launched = 0;
803 }
804
805 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
806 {
807         int cpu = loaded_vmcs->cpu;
808
809         if (cpu != -1)
810                 smp_call_function_single(cpu,
811                          __loaded_vmcs_clear, loaded_vmcs, 1);
812 }
813
814 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
815                                        unsigned field)
816 {
817         bool ret;
818         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
819
820         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
821                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
822                 vmx->segment_cache.bitmask = 0;
823         }
824         ret = vmx->segment_cache.bitmask & mask;
825         vmx->segment_cache.bitmask |= mask;
826         return ret;
827 }
828
829 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
830 {
831         u16 *p = &vmx->segment_cache.seg[seg].selector;
832
833         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
834                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
835         return *p;
836 }
837
838 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
839 {
840         ulong *p = &vmx->segment_cache.seg[seg].base;
841
842         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
843                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
844         return *p;
845 }
846
847 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
848 {
849         u32 *p = &vmx->segment_cache.seg[seg].limit;
850
851         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
852                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
853         return *p;
854 }
855
856 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
857 {
858         u32 *p = &vmx->segment_cache.seg[seg].ar;
859
860         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
861                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
862         return *p;
863 }
864
865 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
866 {
867         u32 eb;
868
869         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
870              (1u << DB_VECTOR) | (1u << AC_VECTOR);
871         /*
872          * Guest access to VMware backdoor ports could legitimately
873          * trigger #GP because of TSS I/O permission bitmap.
874          * We intercept those #GP and allow access to them anyway
875          * as VMware does.
876          */
877         if (enable_vmware_backdoor)
878                 eb |= (1u << GP_VECTOR);
879         if ((vcpu->guest_debug &
880              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
881             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
882                 eb |= 1u << BP_VECTOR;
883         if (to_vmx(vcpu)->rmode.vm86_active)
884                 eb = ~0;
885         if (!vmx_need_pf_intercept(vcpu))
886                 eb &= ~(1u << PF_VECTOR);
887
888         /* When we are running a nested L2 guest and L1 specified for it a
889          * certain exception bitmap, we must trap the same exceptions and pass
890          * them to L1. When running L2, we will only handle the exceptions
891          * specified above if L1 did not want them.
892          */
893         if (is_guest_mode(vcpu))
894                 eb |= get_vmcs12(vcpu)->exception_bitmap;
895         else {
896                 int mask = 0, match = 0;
897
898                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
899                         /*
900                          * If EPT is enabled, #PF is currently only intercepted
901                          * if MAXPHYADDR is smaller on the guest than on the
902                          * host.  In that case we only care about present,
903                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
904                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
905                          */
906                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
907                         match = PFERR_PRESENT_MASK;
908                 }
909                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
911         }
912
913         /*
914          * Disabling xfd interception indicates that dynamic xfeatures
915          * might be used in the guest. Always trap #NM in this case
916          * to save guest xfd_err timely.
917          */
918         if (vcpu->arch.xfd_no_write_intercept)
919                 eb |= (1u << NM_VECTOR);
920
921         vmcs_write32(EXCEPTION_BITMAP, eb);
922 }
923
924 /*
925  * Check if MSR is intercepted for currently loaded MSR bitmap.
926  */
927 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
928 {
929         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
930                 return true;
931
932         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
933 }
934
935 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
936 {
937         unsigned int flags = 0;
938
939         if (vmx->loaded_vmcs->launched)
940                 flags |= VMX_RUN_VMRESUME;
941
942         /*
943          * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
944          * to change it directly without causing a vmexit.  In that case read
945          * it after vmexit and store it in vmx->spec_ctrl.
946          */
947         if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
948                 flags |= VMX_RUN_SAVE_SPEC_CTRL;
949
950         return flags;
951 }
952
953 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
954                 unsigned long entry, unsigned long exit)
955 {
956         vm_entry_controls_clearbit(vmx, entry);
957         vm_exit_controls_clearbit(vmx, exit);
958 }
959
960 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
961 {
962         unsigned int i;
963
964         for (i = 0; i < m->nr; ++i) {
965                 if (m->val[i].index == msr)
966                         return i;
967         }
968         return -ENOENT;
969 }
970
971 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
972 {
973         int i;
974         struct msr_autoload *m = &vmx->msr_autoload;
975
976         switch (msr) {
977         case MSR_EFER:
978                 if (cpu_has_load_ia32_efer()) {
979                         clear_atomic_switch_msr_special(vmx,
980                                         VM_ENTRY_LOAD_IA32_EFER,
981                                         VM_EXIT_LOAD_IA32_EFER);
982                         return;
983                 }
984                 break;
985         case MSR_CORE_PERF_GLOBAL_CTRL:
986                 if (cpu_has_load_perf_global_ctrl()) {
987                         clear_atomic_switch_msr_special(vmx,
988                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
989                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
990                         return;
991                 }
992                 break;
993         }
994         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
995         if (i < 0)
996                 goto skip_guest;
997         --m->guest.nr;
998         m->guest.val[i] = m->guest.val[m->guest.nr];
999         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1000
1001 skip_guest:
1002         i = vmx_find_loadstore_msr_slot(&m->host, msr);
1003         if (i < 0)
1004                 return;
1005
1006         --m->host.nr;
1007         m->host.val[i] = m->host.val[m->host.nr];
1008         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1009 }
1010
1011 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1012                 unsigned long entry, unsigned long exit,
1013                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1014                 u64 guest_val, u64 host_val)
1015 {
1016         vmcs_write64(guest_val_vmcs, guest_val);
1017         if (host_val_vmcs != HOST_IA32_EFER)
1018                 vmcs_write64(host_val_vmcs, host_val);
1019         vm_entry_controls_setbit(vmx, entry);
1020         vm_exit_controls_setbit(vmx, exit);
1021 }
1022
1023 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1024                                   u64 guest_val, u64 host_val, bool entry_only)
1025 {
1026         int i, j = 0;
1027         struct msr_autoload *m = &vmx->msr_autoload;
1028
1029         switch (msr) {
1030         case MSR_EFER:
1031                 if (cpu_has_load_ia32_efer()) {
1032                         add_atomic_switch_msr_special(vmx,
1033                                         VM_ENTRY_LOAD_IA32_EFER,
1034                                         VM_EXIT_LOAD_IA32_EFER,
1035                                         GUEST_IA32_EFER,
1036                                         HOST_IA32_EFER,
1037                                         guest_val, host_val);
1038                         return;
1039                 }
1040                 break;
1041         case MSR_CORE_PERF_GLOBAL_CTRL:
1042                 if (cpu_has_load_perf_global_ctrl()) {
1043                         add_atomic_switch_msr_special(vmx,
1044                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1045                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1046                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1047                                         HOST_IA32_PERF_GLOBAL_CTRL,
1048                                         guest_val, host_val);
1049                         return;
1050                 }
1051                 break;
1052         case MSR_IA32_PEBS_ENABLE:
1053                 /* PEBS needs a quiescent period after being disabled (to write
1054                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1055                  * provide that period, so a CPU could write host's record into
1056                  * guest's memory.
1057                  */
1058                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1059         }
1060
1061         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1062         if (!entry_only)
1063                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1064
1065         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1066             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1067                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1068                                 "Can't add msr %x\n", msr);
1069                 return;
1070         }
1071         if (i < 0) {
1072                 i = m->guest.nr++;
1073                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1074         }
1075         m->guest.val[i].index = msr;
1076         m->guest.val[i].value = guest_val;
1077
1078         if (entry_only)
1079                 return;
1080
1081         if (j < 0) {
1082                 j = m->host.nr++;
1083                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1084         }
1085         m->host.val[j].index = msr;
1086         m->host.val[j].value = host_val;
1087 }
1088
1089 static bool update_transition_efer(struct vcpu_vmx *vmx)
1090 {
1091         u64 guest_efer = vmx->vcpu.arch.efer;
1092         u64 ignore_bits = 0;
1093         int i;
1094
1095         /* Shadow paging assumes NX to be available.  */
1096         if (!enable_ept)
1097                 guest_efer |= EFER_NX;
1098
1099         /*
1100          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1101          */
1102         ignore_bits |= EFER_SCE;
1103 #ifdef CONFIG_X86_64
1104         ignore_bits |= EFER_LMA | EFER_LME;
1105         /* SCE is meaningful only in long mode on Intel */
1106         if (guest_efer & EFER_LMA)
1107                 ignore_bits &= ~(u64)EFER_SCE;
1108 #endif
1109
1110         /*
1111          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1112          * On CPUs that support "load IA32_EFER", always switch EFER
1113          * atomically, since it's faster than switching it manually.
1114          */
1115         if (cpu_has_load_ia32_efer() ||
1116             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1117                 if (!(guest_efer & EFER_LMA))
1118                         guest_efer &= ~EFER_LME;
1119                 if (guest_efer != host_efer)
1120                         add_atomic_switch_msr(vmx, MSR_EFER,
1121                                               guest_efer, host_efer, false);
1122                 else
1123                         clear_atomic_switch_msr(vmx, MSR_EFER);
1124                 return false;
1125         }
1126
1127         i = kvm_find_user_return_msr(MSR_EFER);
1128         if (i < 0)
1129                 return false;
1130
1131         clear_atomic_switch_msr(vmx, MSR_EFER);
1132
1133         guest_efer &= ~ignore_bits;
1134         guest_efer |= host_efer & ignore_bits;
1135
1136         vmx->guest_uret_msrs[i].data = guest_efer;
1137         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1138
1139         return true;
1140 }
1141
1142 #ifdef CONFIG_X86_32
1143 /*
1144  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1145  * VMCS rather than the segment table.  KVM uses this helper to figure
1146  * out the current bases to poke them into the VMCS before entry.
1147  */
1148 static unsigned long segment_base(u16 selector)
1149 {
1150         struct desc_struct *table;
1151         unsigned long v;
1152
1153         if (!(selector & ~SEGMENT_RPL_MASK))
1154                 return 0;
1155
1156         table = get_current_gdt_ro();
1157
1158         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1159                 u16 ldt_selector = kvm_read_ldt();
1160
1161                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1162                         return 0;
1163
1164                 table = (struct desc_struct *)segment_base(ldt_selector);
1165         }
1166         v = get_desc_base(&table[selector >> 3]);
1167         return v;
1168 }
1169 #endif
1170
1171 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1172 {
1173         return vmx_pt_mode_is_host_guest() &&
1174                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1175 }
1176
1177 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1178 {
1179         /* The base must be 128-byte aligned and a legal physical address. */
1180         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1181 }
1182
1183 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1184 {
1185         u32 i;
1186
1187         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1188         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1189         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1190         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1191         for (i = 0; i < addr_range; i++) {
1192                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1193                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1194         }
1195 }
1196
1197 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1198 {
1199         u32 i;
1200
1201         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1202         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1203         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1204         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1205         for (i = 0; i < addr_range; i++) {
1206                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1207                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1208         }
1209 }
1210
1211 static void pt_guest_enter(struct vcpu_vmx *vmx)
1212 {
1213         if (vmx_pt_mode_is_system())
1214                 return;
1215
1216         /*
1217          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1218          * Save host state before VM entry.
1219          */
1220         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1221         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1222                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1223                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1224                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1225         }
1226 }
1227
1228 static void pt_guest_exit(struct vcpu_vmx *vmx)
1229 {
1230         if (vmx_pt_mode_is_system())
1231                 return;
1232
1233         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1234                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1235                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1236         }
1237
1238         /*
1239          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1240          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1241          */
1242         if (vmx->pt_desc.host.ctl)
1243                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245
1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247                         unsigned long fs_base, unsigned long gs_base)
1248 {
1249         if (unlikely(fs_sel != host->fs_sel)) {
1250                 if (!(fs_sel & 7))
1251                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252                 else
1253                         vmcs_write16(HOST_FS_SELECTOR, 0);
1254                 host->fs_sel = fs_sel;
1255         }
1256         if (unlikely(gs_sel != host->gs_sel)) {
1257                 if (!(gs_sel & 7))
1258                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259                 else
1260                         vmcs_write16(HOST_GS_SELECTOR, 0);
1261                 host->gs_sel = gs_sel;
1262         }
1263         if (unlikely(fs_base != host->fs_base)) {
1264                 vmcs_writel(HOST_FS_BASE, fs_base);
1265                 host->fs_base = fs_base;
1266         }
1267         if (unlikely(gs_base != host->gs_base)) {
1268                 vmcs_writel(HOST_GS_BASE, gs_base);
1269                 host->gs_base = gs_base;
1270         }
1271 }
1272
1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275         struct vcpu_vmx *vmx = to_vmx(vcpu);
1276         struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278         int cpu = raw_smp_processor_id();
1279 #endif
1280         unsigned long fs_base, gs_base;
1281         u16 fs_sel, gs_sel;
1282         int i;
1283
1284         vmx->req_immediate_exit = false;
1285
1286         /*
1287          * Note that guest MSRs to be saved/restored can also be changed
1288          * when guest state is loaded. This happens when guest transitions
1289          * to/from long-mode by setting MSR_EFER.LMA.
1290          */
1291         if (!vmx->guest_uret_msrs_loaded) {
1292                 vmx->guest_uret_msrs_loaded = true;
1293                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1294                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1295                                 continue;
1296
1297                         kvm_set_user_return_msr(i,
1298                                                 vmx->guest_uret_msrs[i].data,
1299                                                 vmx->guest_uret_msrs[i].mask);
1300                 }
1301         }
1302
1303         if (vmx->nested.need_vmcs12_to_shadow_sync)
1304                 nested_sync_vmcs12_to_shadow(vcpu);
1305
1306         if (vmx->guest_state_loaded)
1307                 return;
1308
1309         host_state = &vmx->loaded_vmcs->host_state;
1310
1311         /*
1312          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1313          * allow segment selectors with cpl > 0 or ti == 1.
1314          */
1315         host_state->ldt_sel = kvm_read_ldt();
1316
1317 #ifdef CONFIG_X86_64
1318         savesegment(ds, host_state->ds_sel);
1319         savesegment(es, host_state->es_sel);
1320
1321         gs_base = cpu_kernelmode_gs_base(cpu);
1322         if (likely(is_64bit_mm(current->mm))) {
1323                 current_save_fsgs();
1324                 fs_sel = current->thread.fsindex;
1325                 gs_sel = current->thread.gsindex;
1326                 fs_base = current->thread.fsbase;
1327                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1328         } else {
1329                 savesegment(fs, fs_sel);
1330                 savesegment(gs, gs_sel);
1331                 fs_base = read_msr(MSR_FS_BASE);
1332                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1333         }
1334
1335         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1336 #else
1337         savesegment(fs, fs_sel);
1338         savesegment(gs, gs_sel);
1339         fs_base = segment_base(fs_sel);
1340         gs_base = segment_base(gs_sel);
1341 #endif
1342
1343         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1344         vmx->guest_state_loaded = true;
1345 }
1346
1347 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1348 {
1349         struct vmcs_host_state *host_state;
1350
1351         if (!vmx->guest_state_loaded)
1352                 return;
1353
1354         host_state = &vmx->loaded_vmcs->host_state;
1355
1356         ++vmx->vcpu.stat.host_state_reload;
1357
1358 #ifdef CONFIG_X86_64
1359         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1360 #endif
1361         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1362                 kvm_load_ldt(host_state->ldt_sel);
1363 #ifdef CONFIG_X86_64
1364                 load_gs_index(host_state->gs_sel);
1365 #else
1366                 loadsegment(gs, host_state->gs_sel);
1367 #endif
1368         }
1369         if (host_state->fs_sel & 7)
1370                 loadsegment(fs, host_state->fs_sel);
1371 #ifdef CONFIG_X86_64
1372         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1373                 loadsegment(ds, host_state->ds_sel);
1374                 loadsegment(es, host_state->es_sel);
1375         }
1376 #endif
1377         invalidate_tss_limit();
1378 #ifdef CONFIG_X86_64
1379         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1380 #endif
1381         load_fixmap_gdt(raw_smp_processor_id());
1382         vmx->guest_state_loaded = false;
1383         vmx->guest_uret_msrs_loaded = false;
1384 }
1385
1386 #ifdef CONFIG_X86_64
1387 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1388 {
1389         preempt_disable();
1390         if (vmx->guest_state_loaded)
1391                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1392         preempt_enable();
1393         return vmx->msr_guest_kernel_gs_base;
1394 }
1395
1396 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1397 {
1398         preempt_disable();
1399         if (vmx->guest_state_loaded)
1400                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1401         preempt_enable();
1402         vmx->msr_guest_kernel_gs_base = data;
1403 }
1404 #endif
1405
1406 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1407                         struct loaded_vmcs *buddy)
1408 {
1409         struct vcpu_vmx *vmx = to_vmx(vcpu);
1410         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1411         struct vmcs *prev;
1412
1413         if (!already_loaded) {
1414                 loaded_vmcs_clear(vmx->loaded_vmcs);
1415                 local_irq_disable();
1416
1417                 /*
1418                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1419                  * this cpu's percpu list, otherwise it may not yet be deleted
1420                  * from its previous cpu's percpu list.  Pairs with the
1421                  * smb_wmb() in __loaded_vmcs_clear().
1422                  */
1423                 smp_rmb();
1424
1425                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1426                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1427                 local_irq_enable();
1428         }
1429
1430         prev = per_cpu(current_vmcs, cpu);
1431         if (prev != vmx->loaded_vmcs->vmcs) {
1432                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1433                 vmcs_load(vmx->loaded_vmcs->vmcs);
1434
1435                 /*
1436                  * No indirect branch prediction barrier needed when switching
1437                  * the active VMCS within a vCPU, unless IBRS is advertised to
1438                  * the vCPU.  To minimize the number of IBPBs executed, KVM
1439                  * performs IBPB on nested VM-Exit (a single nested transition
1440                  * may switch the active VMCS multiple times).
1441                  */
1442                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1443                         indirect_branch_prediction_barrier();
1444         }
1445
1446         if (!already_loaded) {
1447                 void *gdt = get_current_gdt_ro();
1448
1449                 /*
1450                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1451                  * TLB entries from its previous association with the vCPU.
1452                  */
1453                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1454
1455                 /*
1456                  * Linux uses per-cpu TSS and GDT, so set these when switching
1457                  * processors.  See 22.2.4.
1458                  */
1459                 vmcs_writel(HOST_TR_BASE,
1460                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1461                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1462
1463                 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1464                         /* 22.2.3 */
1465                         vmcs_writel(HOST_IA32_SYSENTER_ESP,
1466                                     (unsigned long)(cpu_entry_stack(cpu) + 1));
1467                 }
1468
1469                 vmx->loaded_vmcs->cpu = cpu;
1470         }
1471 }
1472
1473 /*
1474  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475  * vcpu mutex is already taken.
1476  */
1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479         struct vcpu_vmx *vmx = to_vmx(vcpu);
1480
1481         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482
1483         vmx_vcpu_pi_load(vcpu, cpu);
1484
1485         vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487
1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490         vmx_vcpu_pi_put(vcpu);
1491
1492         vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494
1495 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499
1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502         struct vcpu_vmx *vmx = to_vmx(vcpu);
1503         unsigned long rflags, save_rflags;
1504
1505         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507                 rflags = vmcs_readl(GUEST_RFLAGS);
1508                 if (vmx->rmode.vm86_active) {
1509                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510                         save_rflags = vmx->rmode.save_rflags;
1511                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512                 }
1513                 vmx->rflags = rflags;
1514         }
1515         return vmx->rflags;
1516 }
1517
1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520         struct vcpu_vmx *vmx = to_vmx(vcpu);
1521         unsigned long old_rflags;
1522
1523         /*
1524          * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1525          * is an unrestricted guest in order to mark L2 as needing emulation
1526          * if L1 runs L2 as a restricted guest.
1527          */
1528         if (is_unrestricted_guest(vcpu)) {
1529                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1530                 vmx->rflags = rflags;
1531                 vmcs_writel(GUEST_RFLAGS, rflags);
1532                 return;
1533         }
1534
1535         old_rflags = vmx_get_rflags(vcpu);
1536         vmx->rflags = rflags;
1537         if (vmx->rmode.vm86_active) {
1538                 vmx->rmode.save_rflags = rflags;
1539                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1540         }
1541         vmcs_writel(GUEST_RFLAGS, rflags);
1542
1543         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1544                 vmx->emulation_required = vmx_emulation_required(vcpu);
1545 }
1546
1547 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1548 {
1549         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1550 }
1551
1552 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1553 {
1554         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1555         int ret = 0;
1556
1557         if (interruptibility & GUEST_INTR_STATE_STI)
1558                 ret |= KVM_X86_SHADOW_INT_STI;
1559         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1560                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1561
1562         return ret;
1563 }
1564
1565 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1566 {
1567         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1568         u32 interruptibility = interruptibility_old;
1569
1570         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1571
1572         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1573                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1574         else if (mask & KVM_X86_SHADOW_INT_STI)
1575                 interruptibility |= GUEST_INTR_STATE_STI;
1576
1577         if ((interruptibility != interruptibility_old))
1578                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1579 }
1580
1581 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1582 {
1583         struct vcpu_vmx *vmx = to_vmx(vcpu);
1584         unsigned long value;
1585
1586         /*
1587          * Any MSR write that attempts to change bits marked reserved will
1588          * case a #GP fault.
1589          */
1590         if (data & vmx->pt_desc.ctl_bitmask)
1591                 return 1;
1592
1593         /*
1594          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1595          * result in a #GP unless the same write also clears TraceEn.
1596          */
1597         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1598                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1599                 return 1;
1600
1601         /*
1602          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1603          * and FabricEn would cause #GP, if
1604          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1605          */
1606         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1607                 !(data & RTIT_CTL_FABRIC_EN) &&
1608                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1609                                         PT_CAP_single_range_output))
1610                 return 1;
1611
1612         /*
1613          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1614          * utilize encodings marked reserved will cause a #GP fault.
1615          */
1616         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1617         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1618                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1619                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1620                 return 1;
1621         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1622                                                 PT_CAP_cycle_thresholds);
1623         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1624                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1625                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1626                 return 1;
1627         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1628         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1629                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1630                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1631                 return 1;
1632
1633         /*
1634          * If ADDRx_CFG is reserved or the encodings is >2 will
1635          * cause a #GP fault.
1636          */
1637         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1638         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1639                 return 1;
1640         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1641         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1642                 return 1;
1643         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1644         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1645                 return 1;
1646         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1647         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1648                 return 1;
1649
1650         return 0;
1651 }
1652
1653 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1654                                          void *insn, int insn_len)
1655 {
1656         /*
1657          * Emulation of instructions in SGX enclaves is impossible as RIP does
1658          * not point at the failing instruction, and even if it did, the code
1659          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1660          * so that guest userspace can't DoS the guest simply by triggering
1661          * emulation (enclaves are CPL3 only).
1662          */
1663         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1664                 kvm_queue_exception(vcpu, UD_VECTOR);
1665                 return X86EMUL_PROPAGATE_FAULT;
1666         }
1667         return X86EMUL_CONTINUE;
1668 }
1669
1670 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1671 {
1672         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1673         unsigned long rip, orig_rip;
1674         u32 instr_len;
1675
1676         /*
1677          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1678          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1679          * set when EPT misconfig occurs.  In practice, real hardware updates
1680          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1681          * (namely Hyper-V) don't set it due to it being undefined behavior,
1682          * i.e. we end up advancing IP with some random value.
1683          */
1684         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1685             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1686                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1687
1688                 /*
1689                  * Emulating an enclave's instructions isn't supported as KVM
1690                  * cannot access the enclave's memory or its true RIP, e.g. the
1691                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1692                  * the RIP that actually triggered the VM-Exit.  But, because
1693                  * most instructions that cause VM-Exit will #UD in an enclave,
1694                  * most instruction-based VM-Exits simply do not occur.
1695                  *
1696                  * There are a few exceptions, notably the debug instructions
1697                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1698                  * and generate #DB/#BP as expected, which KVM might intercept.
1699                  * But again, the CPU does the dirty work and saves an instr
1700                  * length of zero so VMMs don't shoot themselves in the foot.
1701                  * WARN if KVM tries to skip a non-zero length instruction on
1702                  * a VM-Exit from an enclave.
1703                  */
1704                 if (!instr_len)
1705                         goto rip_updated;
1706
1707                 WARN_ONCE(exit_reason.enclave_mode,
1708                           "skipping instruction after SGX enclave VM-Exit");
1709
1710                 orig_rip = kvm_rip_read(vcpu);
1711                 rip = orig_rip + instr_len;
1712 #ifdef CONFIG_X86_64
1713                 /*
1714                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1715                  * mode, but just finding out that we are in 64-bit mode is
1716                  * quite expensive.  Only do it if there was a carry.
1717                  */
1718                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1719                         rip = (u32)rip;
1720 #endif
1721                 kvm_rip_write(vcpu, rip);
1722         } else {
1723                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1724                         return 0;
1725         }
1726
1727 rip_updated:
1728         /* skipping an emulated instruction also counts */
1729         vmx_set_interrupt_shadow(vcpu, 0);
1730
1731         return 1;
1732 }
1733
1734 /*
1735  * Recognizes a pending MTF VM-exit and records the nested state for later
1736  * delivery.
1737  */
1738 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1739 {
1740         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1741         struct vcpu_vmx *vmx = to_vmx(vcpu);
1742
1743         if (!is_guest_mode(vcpu))
1744                 return;
1745
1746         /*
1747          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1748          * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1749          * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1750          * intercepted #DB deliberately avoids single-step #DB and MTF updates
1751          * as ICEBP is higher priority than both.  As instruction emulation is
1752          * completed at this point (i.e. KVM is at the instruction boundary),
1753          * any #DB exception pending delivery must be a debug-trap of lower
1754          * priority than MTF.  Record the pending MTF state to be delivered in
1755          * vmx_check_nested_events().
1756          */
1757         if (nested_cpu_has_mtf(vmcs12) &&
1758             (!vcpu->arch.exception.pending ||
1759              vcpu->arch.exception.vector == DB_VECTOR) &&
1760             (!vcpu->arch.exception_vmexit.pending ||
1761              vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1762                 vmx->nested.mtf_pending = true;
1763                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1764         } else {
1765                 vmx->nested.mtf_pending = false;
1766         }
1767 }
1768
1769 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1770 {
1771         vmx_update_emulated_instruction(vcpu);
1772         return skip_emulated_instruction(vcpu);
1773 }
1774
1775 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1776 {
1777         /*
1778          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1779          * explicitly skip the instruction because if the HLT state is set,
1780          * then the instruction is already executing and RIP has already been
1781          * advanced.
1782          */
1783         if (kvm_hlt_in_guest(vcpu->kvm) &&
1784                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1785                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1786 }
1787
1788 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1789 {
1790         struct kvm_queued_exception *ex = &vcpu->arch.exception;
1791         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1792         struct vcpu_vmx *vmx = to_vmx(vcpu);
1793
1794         kvm_deliver_exception_payload(vcpu, ex);
1795
1796         if (ex->has_error_code) {
1797                 /*
1798                  * Despite the error code being architecturally defined as 32
1799                  * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1800                  * VMX don't actually supporting setting bits 31:16.  Hardware
1801                  * will (should) never provide a bogus error code, but AMD CPUs
1802                  * do generate error codes with bits 31:16 set, and so KVM's
1803                  * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1804                  * the upper bits to avoid VM-Fail, losing information that
1805                  * doesn't really exist is preferable to killing the VM.
1806                  */
1807                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1808                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1809         }
1810
1811         if (vmx->rmode.vm86_active) {
1812                 int inc_eip = 0;
1813                 if (kvm_exception_is_soft(ex->vector))
1814                         inc_eip = vcpu->arch.event_exit_inst_len;
1815                 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1816                 return;
1817         }
1818
1819         WARN_ON_ONCE(vmx->emulation_required);
1820
1821         if (kvm_exception_is_soft(ex->vector)) {
1822                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1823                              vmx->vcpu.arch.event_exit_inst_len);
1824                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1825         } else
1826                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1827
1828         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1829
1830         vmx_clear_hlt(vcpu);
1831 }
1832
1833 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1834                                bool load_into_hardware)
1835 {
1836         struct vmx_uret_msr *uret_msr;
1837
1838         uret_msr = vmx_find_uret_msr(vmx, msr);
1839         if (!uret_msr)
1840                 return;
1841
1842         uret_msr->load_into_hardware = load_into_hardware;
1843 }
1844
1845 /*
1846  * Configuring user return MSRs to automatically save, load, and restore MSRs
1847  * that need to be shoved into hardware when running the guest.  Note, omitting
1848  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1849  * loaded into hardware when running the guest.
1850  */
1851 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1852 {
1853 #ifdef CONFIG_X86_64
1854         bool load_syscall_msrs;
1855
1856         /*
1857          * The SYSCALL MSRs are only needed on long mode guests, and only
1858          * when EFER.SCE is set.
1859          */
1860         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1861                             (vmx->vcpu.arch.efer & EFER_SCE);
1862
1863         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1864         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1865         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1866 #endif
1867         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1868
1869         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1870                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1871                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1872
1873         /*
1874          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1875          * kernel and old userspace.  If those guests run on a tsx=off host, do
1876          * allow guests to use TSX_CTRL, but don't change the value in hardware
1877          * so that TSX remains always disabled.
1878          */
1879         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1880
1881         /*
1882          * The set of MSRs to load may have changed, reload MSRs before the
1883          * next VM-Enter.
1884          */
1885         vmx->guest_uret_msrs_loaded = false;
1886 }
1887
1888 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1889 {
1890         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1891
1892         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1893                 return vmcs12->tsc_offset;
1894
1895         return 0;
1896 }
1897
1898 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1899 {
1900         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1901
1902         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1903             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1904                 return vmcs12->tsc_multiplier;
1905
1906         return kvm_caps.default_tsc_scaling_ratio;
1907 }
1908
1909 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1910 {
1911         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1912 }
1913
1914 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1915 {
1916         vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1917 }
1918
1919 /*
1920  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1921  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1922  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1923  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1924  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1925  */
1926 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED                  | \
1927                                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX  | \
1928                                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1929                                         FEAT_CTL_SGX_LC_ENABLED          | \
1930                                         FEAT_CTL_SGX_ENABLED             | \
1931                                         FEAT_CTL_LMCE_ENABLED)
1932
1933 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1934                                                     struct msr_data *msr)
1935 {
1936         uint64_t valid_bits;
1937
1938         /*
1939          * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1940          * exposed to the guest.
1941          */
1942         WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1943                      ~KVM_SUPPORTED_FEATURE_CONTROL);
1944
1945         if (!msr->host_initiated &&
1946             (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1947                 return false;
1948
1949         if (msr->host_initiated)
1950                 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1951         else
1952                 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1953
1954         return !(msr->data & ~valid_bits);
1955 }
1956
1957 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1958 {
1959         switch (msr->index) {
1960         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1961                 if (!nested)
1962                         return 1;
1963                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1964         default:
1965                 return KVM_MSR_RET_INVALID;
1966         }
1967 }
1968
1969 /*
1970  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1971  * Returns 0 on success, non-0 otherwise.
1972  * Assumes vcpu_load() was already called.
1973  */
1974 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1975 {
1976         struct vcpu_vmx *vmx = to_vmx(vcpu);
1977         struct vmx_uret_msr *msr;
1978         u32 index;
1979
1980         switch (msr_info->index) {
1981 #ifdef CONFIG_X86_64
1982         case MSR_FS_BASE:
1983                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1984                 break;
1985         case MSR_GS_BASE:
1986                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1987                 break;
1988         case MSR_KERNEL_GS_BASE:
1989                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1990                 break;
1991 #endif
1992         case MSR_EFER:
1993                 return kvm_get_msr_common(vcpu, msr_info);
1994         case MSR_IA32_TSX_CTRL:
1995                 if (!msr_info->host_initiated &&
1996                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1997                         return 1;
1998                 goto find_uret_msr;
1999         case MSR_IA32_UMWAIT_CONTROL:
2000                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2001                         return 1;
2002
2003                 msr_info->data = vmx->msr_ia32_umwait_control;
2004                 break;
2005         case MSR_IA32_SPEC_CTRL:
2006                 if (!msr_info->host_initiated &&
2007                     !guest_has_spec_ctrl_msr(vcpu))
2008                         return 1;
2009
2010                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2011                 break;
2012         case MSR_IA32_SYSENTER_CS:
2013                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2014                 break;
2015         case MSR_IA32_SYSENTER_EIP:
2016                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2017                 break;
2018         case MSR_IA32_SYSENTER_ESP:
2019                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2020                 break;
2021         case MSR_IA32_BNDCFGS:
2022                 if (!kvm_mpx_supported() ||
2023                     (!msr_info->host_initiated &&
2024                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2025                         return 1;
2026                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2027                 break;
2028         case MSR_IA32_MCG_EXT_CTL:
2029                 if (!msr_info->host_initiated &&
2030                     !(vmx->msr_ia32_feature_control &
2031                       FEAT_CTL_LMCE_ENABLED))
2032                         return 1;
2033                 msr_info->data = vcpu->arch.mcg_ext_ctl;
2034                 break;
2035         case MSR_IA32_FEAT_CTL:
2036                 msr_info->data = vmx->msr_ia32_feature_control;
2037                 break;
2038         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2039                 if (!msr_info->host_initiated &&
2040                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2041                         return 1;
2042                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2043                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2044                 break;
2045         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2046                 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2047                         return 1;
2048                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2049                                     &msr_info->data))
2050                         return 1;
2051 #ifdef CONFIG_KVM_HYPERV
2052                 /*
2053                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
2054                  * instead of just ignoring the features, different Hyper-V
2055                  * versions are either trying to use them and fail or do some
2056                  * sanity checking and refuse to boot. Filter all unsupported
2057                  * features out.
2058                  */
2059                 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2060                         nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2061                                                         &msr_info->data);
2062 #endif
2063                 break;
2064         case MSR_IA32_RTIT_CTL:
2065                 if (!vmx_pt_mode_is_host_guest())
2066                         return 1;
2067                 msr_info->data = vmx->pt_desc.guest.ctl;
2068                 break;
2069         case MSR_IA32_RTIT_STATUS:
2070                 if (!vmx_pt_mode_is_host_guest())
2071                         return 1;
2072                 msr_info->data = vmx->pt_desc.guest.status;
2073                 break;
2074         case MSR_IA32_RTIT_CR3_MATCH:
2075                 if (!vmx_pt_mode_is_host_guest() ||
2076                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2077                                                 PT_CAP_cr3_filtering))
2078                         return 1;
2079                 msr_info->data = vmx->pt_desc.guest.cr3_match;
2080                 break;
2081         case MSR_IA32_RTIT_OUTPUT_BASE:
2082                 if (!vmx_pt_mode_is_host_guest() ||
2083                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2084                                         PT_CAP_topa_output) &&
2085                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2086                                         PT_CAP_single_range_output)))
2087                         return 1;
2088                 msr_info->data = vmx->pt_desc.guest.output_base;
2089                 break;
2090         case MSR_IA32_RTIT_OUTPUT_MASK:
2091                 if (!vmx_pt_mode_is_host_guest() ||
2092                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2093                                         PT_CAP_topa_output) &&
2094                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2095                                         PT_CAP_single_range_output)))
2096                         return 1;
2097                 msr_info->data = vmx->pt_desc.guest.output_mask;
2098                 break;
2099         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2100                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2101                 if (!vmx_pt_mode_is_host_guest() ||
2102                     (index >= 2 * vmx->pt_desc.num_address_ranges))
2103                         return 1;
2104                 if (index % 2)
2105                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2106                 else
2107                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2108                 break;
2109         case MSR_IA32_DEBUGCTLMSR:
2110                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2111                 break;
2112         default:
2113         find_uret_msr:
2114                 msr = vmx_find_uret_msr(vmx, msr_info->index);
2115                 if (msr) {
2116                         msr_info->data = msr->data;
2117                         break;
2118                 }
2119                 return kvm_get_msr_common(vcpu, msr_info);
2120         }
2121
2122         return 0;
2123 }
2124
2125 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2126                                                     u64 data)
2127 {
2128 #ifdef CONFIG_X86_64
2129         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2130                 return (u32)data;
2131 #endif
2132         return (unsigned long)data;
2133 }
2134
2135 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2136 {
2137         u64 debugctl = 0;
2138
2139         if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2140             (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2141                 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2142
2143         if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2144             (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2145                 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2146
2147         return debugctl;
2148 }
2149
2150 /*
2151  * Writes msr value into the appropriate "register".
2152  * Returns 0 on success, non-0 otherwise.
2153  * Assumes vcpu_load() was already called.
2154  */
2155 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2156 {
2157         struct vcpu_vmx *vmx = to_vmx(vcpu);
2158         struct vmx_uret_msr *msr;
2159         int ret = 0;
2160         u32 msr_index = msr_info->index;
2161         u64 data = msr_info->data;
2162         u32 index;
2163
2164         switch (msr_index) {
2165         case MSR_EFER:
2166                 ret = kvm_set_msr_common(vcpu, msr_info);
2167                 break;
2168 #ifdef CONFIG_X86_64
2169         case MSR_FS_BASE:
2170                 vmx_segment_cache_clear(vmx);
2171                 vmcs_writel(GUEST_FS_BASE, data);
2172                 break;
2173         case MSR_GS_BASE:
2174                 vmx_segment_cache_clear(vmx);
2175                 vmcs_writel(GUEST_GS_BASE, data);
2176                 break;
2177         case MSR_KERNEL_GS_BASE:
2178                 vmx_write_guest_kernel_gs_base(vmx, data);
2179                 break;
2180         case MSR_IA32_XFD:
2181                 ret = kvm_set_msr_common(vcpu, msr_info);
2182                 /*
2183                  * Always intercepting WRMSR could incur non-negligible
2184                  * overhead given xfd might be changed frequently in
2185                  * guest context switch. Disable write interception
2186                  * upon the first write with a non-zero value (indicating
2187                  * potential usage on dynamic xfeatures). Also update
2188                  * exception bitmap to trap #NM for proper virtualization
2189                  * of guest xfd_err.
2190                  */
2191                 if (!ret && data) {
2192                         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2193                                                       MSR_TYPE_RW);
2194                         vcpu->arch.xfd_no_write_intercept = true;
2195                         vmx_update_exception_bitmap(vcpu);
2196                 }
2197                 break;
2198 #endif
2199         case MSR_IA32_SYSENTER_CS:
2200                 if (is_guest_mode(vcpu))
2201                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2202                 vmcs_write32(GUEST_SYSENTER_CS, data);
2203                 break;
2204         case MSR_IA32_SYSENTER_EIP:
2205                 if (is_guest_mode(vcpu)) {
2206                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2207                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2208                 }
2209                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2210                 break;
2211         case MSR_IA32_SYSENTER_ESP:
2212                 if (is_guest_mode(vcpu)) {
2213                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2214                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2215                 }
2216                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2217                 break;
2218         case MSR_IA32_DEBUGCTLMSR: {
2219                 u64 invalid;
2220
2221                 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2222                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2223                         kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2224                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2225                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2226                 }
2227
2228                 if (invalid)
2229                         return 1;
2230
2231                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2232                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2233                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2234
2235                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2236                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2237                     (data & DEBUGCTLMSR_LBR))
2238                         intel_pmu_create_guest_lbr_event(vcpu);
2239                 return 0;
2240         }
2241         case MSR_IA32_BNDCFGS:
2242                 if (!kvm_mpx_supported() ||
2243                     (!msr_info->host_initiated &&
2244                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2245                         return 1;
2246                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2247                     (data & MSR_IA32_BNDCFGS_RSVD))
2248                         return 1;
2249
2250                 if (is_guest_mode(vcpu) &&
2251                     ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2252                      (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2253                         get_vmcs12(vcpu)->guest_bndcfgs = data;
2254
2255                 vmcs_write64(GUEST_BNDCFGS, data);
2256                 break;
2257         case MSR_IA32_UMWAIT_CONTROL:
2258                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2259                         return 1;
2260
2261                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2262                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2263                         return 1;
2264
2265                 vmx->msr_ia32_umwait_control = data;
2266                 break;
2267         case MSR_IA32_SPEC_CTRL:
2268                 if (!msr_info->host_initiated &&
2269                     !guest_has_spec_ctrl_msr(vcpu))
2270                         return 1;
2271
2272                 if (kvm_spec_ctrl_test_value(data))
2273                         return 1;
2274
2275                 vmx->spec_ctrl = data;
2276                 if (!data)
2277                         break;
2278
2279                 /*
2280                  * For non-nested:
2281                  * When it's written (to non-zero) for the first time, pass
2282                  * it through.
2283                  *
2284                  * For nested:
2285                  * The handling of the MSR bitmap for L2 guests is done in
2286                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2287                  * vmcs02.msr_bitmap here since it gets completely overwritten
2288                  * in the merging. We update the vmcs01 here for L1 as well
2289                  * since it will end up touching the MSR anyway now.
2290                  */
2291                 vmx_disable_intercept_for_msr(vcpu,
2292                                               MSR_IA32_SPEC_CTRL,
2293                                               MSR_TYPE_RW);
2294                 break;
2295         case MSR_IA32_TSX_CTRL:
2296                 if (!msr_info->host_initiated &&
2297                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2298                         return 1;
2299                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2300                         return 1;
2301                 goto find_uret_msr;
2302         case MSR_IA32_CR_PAT:
2303                 ret = kvm_set_msr_common(vcpu, msr_info);
2304                 if (ret)
2305                         break;
2306
2307                 if (is_guest_mode(vcpu) &&
2308                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2309                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2310
2311                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2312                         vmcs_write64(GUEST_IA32_PAT, data);
2313                 break;
2314         case MSR_IA32_MCG_EXT_CTL:
2315                 if ((!msr_info->host_initiated &&
2316                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2317                        FEAT_CTL_LMCE_ENABLED)) ||
2318                     (data & ~MCG_EXT_CTL_LMCE_EN))
2319                         return 1;
2320                 vcpu->arch.mcg_ext_ctl = data;
2321                 break;
2322         case MSR_IA32_FEAT_CTL:
2323                 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2324                         return 1;
2325
2326                 vmx->msr_ia32_feature_control = data;
2327                 if (msr_info->host_initiated && data == 0)
2328                         vmx_leave_nested(vcpu);
2329
2330                 /* SGX may be enabled/disabled by guest's firmware */
2331                 vmx_write_encls_bitmap(vcpu, NULL);
2332                 break;
2333         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2334                 /*
2335                  * On real hardware, the LE hash MSRs are writable before
2336                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2337                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2338                  * become writable.
2339                  *
2340                  * KVM does not emulate SGX activation for simplicity, so
2341                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2342                  * is unlocked.  This is technically not architectural
2343                  * behavior, but it's close enough.
2344                  */
2345                 if (!msr_info->host_initiated &&
2346                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2347                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2348                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2349                         return 1;
2350                 vmx->msr_ia32_sgxlepubkeyhash
2351                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2352                 break;
2353         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2354                 if (!msr_info->host_initiated)
2355                         return 1; /* they are read-only */
2356                 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2357                         return 1;
2358                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2359         case MSR_IA32_RTIT_CTL:
2360                 if (!vmx_pt_mode_is_host_guest() ||
2361                         vmx_rtit_ctl_check(vcpu, data) ||
2362                         vmx->nested.vmxon)
2363                         return 1;
2364                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2365                 vmx->pt_desc.guest.ctl = data;
2366                 pt_update_intercept_for_msr(vcpu);
2367                 break;
2368         case MSR_IA32_RTIT_STATUS:
2369                 if (!pt_can_write_msr(vmx))
2370                         return 1;
2371                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2372                         return 1;
2373                 vmx->pt_desc.guest.status = data;
2374                 break;
2375         case MSR_IA32_RTIT_CR3_MATCH:
2376                 if (!pt_can_write_msr(vmx))
2377                         return 1;
2378                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2379                                            PT_CAP_cr3_filtering))
2380                         return 1;
2381                 vmx->pt_desc.guest.cr3_match = data;
2382                 break;
2383         case MSR_IA32_RTIT_OUTPUT_BASE:
2384                 if (!pt_can_write_msr(vmx))
2385                         return 1;
2386                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2387                                            PT_CAP_topa_output) &&
2388                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2389                                            PT_CAP_single_range_output))
2390                         return 1;
2391                 if (!pt_output_base_valid(vcpu, data))
2392                         return 1;
2393                 vmx->pt_desc.guest.output_base = data;
2394                 break;
2395         case MSR_IA32_RTIT_OUTPUT_MASK:
2396                 if (!pt_can_write_msr(vmx))
2397                         return 1;
2398                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2399                                            PT_CAP_topa_output) &&
2400                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2401                                            PT_CAP_single_range_output))
2402                         return 1;
2403                 vmx->pt_desc.guest.output_mask = data;
2404                 break;
2405         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2406                 if (!pt_can_write_msr(vmx))
2407                         return 1;
2408                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2409                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2410                         return 1;
2411                 if (is_noncanonical_address(data, vcpu))
2412                         return 1;
2413                 if (index % 2)
2414                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2415                 else
2416                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2417                 break;
2418         case MSR_IA32_PERF_CAPABILITIES:
2419                 if (data && !vcpu_to_pmu(vcpu)->version)
2420                         return 1;
2421                 if (data & PMU_CAP_LBR_FMT) {
2422                         if ((data & PMU_CAP_LBR_FMT) !=
2423                             (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2424                                 return 1;
2425                         if (!cpuid_model_is_consistent(vcpu))
2426                                 return 1;
2427                 }
2428                 if (data & PERF_CAP_PEBS_FORMAT) {
2429                         if ((data & PERF_CAP_PEBS_MASK) !=
2430                             (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2431                                 return 1;
2432                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2433                                 return 1;
2434                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2435                                 return 1;
2436                         if (!cpuid_model_is_consistent(vcpu))
2437                                 return 1;
2438                 }
2439                 ret = kvm_set_msr_common(vcpu, msr_info);
2440                 break;
2441
2442         default:
2443         find_uret_msr:
2444                 msr = vmx_find_uret_msr(vmx, msr_index);
2445                 if (msr)
2446                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2447                 else
2448                         ret = kvm_set_msr_common(vcpu, msr_info);
2449         }
2450
2451         /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2452         if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2453                 vmx_update_fb_clear_dis(vcpu, vmx);
2454
2455         return ret;
2456 }
2457
2458 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2459 {
2460         unsigned long guest_owned_bits;
2461
2462         kvm_register_mark_available(vcpu, reg);
2463
2464         switch (reg) {
2465         case VCPU_REGS_RSP:
2466                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2467                 break;
2468         case VCPU_REGS_RIP:
2469                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2470                 break;
2471         case VCPU_EXREG_PDPTR:
2472                 if (enable_ept)
2473                         ept_save_pdptrs(vcpu);
2474                 break;
2475         case VCPU_EXREG_CR0:
2476                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2477
2478                 vcpu->arch.cr0 &= ~guest_owned_bits;
2479                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2480                 break;
2481         case VCPU_EXREG_CR3:
2482                 /*
2483                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2484                  * CR3 is loaded into hardware, not the guest's CR3.
2485                  */
2486                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2487                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2488                 break;
2489         case VCPU_EXREG_CR4:
2490                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2491
2492                 vcpu->arch.cr4 &= ~guest_owned_bits;
2493                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2494                 break;
2495         default:
2496                 KVM_BUG_ON(1, vcpu->kvm);
2497                 break;
2498         }
2499 }
2500
2501 /*
2502  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2503  * directly instead of going through cpu_has(), to ensure KVM is trapping
2504  * ENCLS whenever it's supported in hardware.  It does not matter whether
2505  * the host OS supports or has enabled SGX.
2506  */
2507 static bool cpu_has_sgx(void)
2508 {
2509         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2510 }
2511
2512 /*
2513  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2514  * can't be used due to errata where VM Exit may incorrectly clear
2515  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2516  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2517  */
2518 static bool cpu_has_perf_global_ctrl_bug(void)
2519 {
2520         if (boot_cpu_data.x86 == 0x6) {
2521                 switch (boot_cpu_data.x86_model) {
2522                 case INTEL_FAM6_NEHALEM_EP:     /* AAK155 */
2523                 case INTEL_FAM6_NEHALEM:        /* AAP115 */
2524                 case INTEL_FAM6_WESTMERE:       /* AAT100 */
2525                 case INTEL_FAM6_WESTMERE_EP:    /* BC86,AAY89,BD102 */
2526                 case INTEL_FAM6_NEHALEM_EX:     /* BA97 */
2527                         return true;
2528                 default:
2529                         break;
2530                 }
2531         }
2532
2533         return false;
2534 }
2535
2536 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2537 {
2538         u32 vmx_msr_low, vmx_msr_high;
2539         u32 ctl = ctl_min | ctl_opt;
2540
2541         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2542
2543         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2544         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2545
2546         /* Ensure minimum (required) set of control bits are supported. */
2547         if (ctl_min & ~ctl)
2548                 return -EIO;
2549
2550         *result = ctl;
2551         return 0;
2552 }
2553
2554 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2555 {
2556         u64 allowed;
2557
2558         rdmsrl(msr, allowed);
2559
2560         return  ctl_opt & allowed;
2561 }
2562
2563 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2564                              struct vmx_capability *vmx_cap)
2565 {
2566         u32 vmx_msr_low, vmx_msr_high;
2567         u32 _pin_based_exec_control = 0;
2568         u32 _cpu_based_exec_control = 0;
2569         u32 _cpu_based_2nd_exec_control = 0;
2570         u64 _cpu_based_3rd_exec_control = 0;
2571         u32 _vmexit_control = 0;
2572         u32 _vmentry_control = 0;
2573         u64 misc_msr;
2574         int i;
2575
2576         /*
2577          * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2578          * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2579          * intercepts writes to PAT and EFER, i.e. never enables those controls.
2580          */
2581         struct {
2582                 u32 entry_control;
2583                 u32 exit_control;
2584         } const vmcs_entry_exit_pairs[] = {
2585                 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,  VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2586                 { VM_ENTRY_LOAD_IA32_PAT,               VM_EXIT_LOAD_IA32_PAT },
2587                 { VM_ENTRY_LOAD_IA32_EFER,              VM_EXIT_LOAD_IA32_EFER },
2588                 { VM_ENTRY_LOAD_BNDCFGS,                VM_EXIT_CLEAR_BNDCFGS },
2589                 { VM_ENTRY_LOAD_IA32_RTIT_CTL,          VM_EXIT_CLEAR_IA32_RTIT_CTL },
2590         };
2591
2592         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2593
2594         if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2595                                 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2596                                 MSR_IA32_VMX_PROCBASED_CTLS,
2597                                 &_cpu_based_exec_control))
2598                 return -EIO;
2599         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2600                 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2601                                         KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2602                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2603                                         &_cpu_based_2nd_exec_control))
2604                         return -EIO;
2605         }
2606 #ifndef CONFIG_X86_64
2607         if (!(_cpu_based_2nd_exec_control &
2608                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2609                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2610 #endif
2611
2612         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2613                 _cpu_based_2nd_exec_control &= ~(
2614                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2615                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2617
2618         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2619                 &vmx_cap->ept, &vmx_cap->vpid);
2620
2621         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2622             vmx_cap->ept) {
2623                 pr_warn_once("EPT CAP should not exist if not support "
2624                                 "1-setting enable EPT VM-execution control\n");
2625
2626                 if (error_on_inconsistent_vmcs_config)
2627                         return -EIO;
2628
2629                 vmx_cap->ept = 0;
2630         }
2631         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2632             vmx_cap->vpid) {
2633                 pr_warn_once("VPID CAP should not exist if not support "
2634                                 "1-setting enable VPID VM-execution control\n");
2635
2636                 if (error_on_inconsistent_vmcs_config)
2637                         return -EIO;
2638
2639                 vmx_cap->vpid = 0;
2640         }
2641
2642         if (!cpu_has_sgx())
2643                 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2644
2645         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2646                 _cpu_based_3rd_exec_control =
2647                         adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2648                                               MSR_IA32_VMX_PROCBASED_CTLS3);
2649
2650         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2651                                 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2652                                 MSR_IA32_VMX_EXIT_CTLS,
2653                                 &_vmexit_control))
2654                 return -EIO;
2655
2656         if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2657                                 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658                                 MSR_IA32_VMX_PINBASED_CTLS,
2659                                 &_pin_based_exec_control))
2660                 return -EIO;
2661
2662         if (cpu_has_broken_vmx_preemption_timer())
2663                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2664         if (!(_cpu_based_2nd_exec_control &
2665                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2666                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2667
2668         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2669                                 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2670                                 MSR_IA32_VMX_ENTRY_CTLS,
2671                                 &_vmentry_control))
2672                 return -EIO;
2673
2674         for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2675                 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2676                 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2677
2678                 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2679                         continue;
2680
2681                 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2682                              _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2683
2684                 if (error_on_inconsistent_vmcs_config)
2685                         return -EIO;
2686
2687                 _vmentry_control &= ~n_ctrl;
2688                 _vmexit_control &= ~x_ctrl;
2689         }
2690
2691         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2692
2693         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2694         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2695                 return -EIO;
2696
2697 #ifdef CONFIG_X86_64
2698         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2699         if (vmx_msr_high & (1u<<16))
2700                 return -EIO;
2701 #endif
2702
2703         /* Require Write-Back (WB) memory type for VMCS accesses. */
2704         if (((vmx_msr_high >> 18) & 15) != 6)
2705                 return -EIO;
2706
2707         rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2708
2709         vmcs_conf->size = vmx_msr_high & 0x1fff;
2710         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2711
2712         vmcs_conf->revision_id = vmx_msr_low;
2713
2714         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2715         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2716         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2717         vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2718         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2719         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2720         vmcs_conf->misc = misc_msr;
2721
2722 #if IS_ENABLED(CONFIG_HYPERV)
2723         if (enlightened_vmcs)
2724                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2725 #endif
2726
2727         return 0;
2728 }
2729
2730 static bool __kvm_is_vmx_supported(void)
2731 {
2732         int cpu = smp_processor_id();
2733
2734         if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2735                 pr_err("VMX not supported by CPU %d\n", cpu);
2736                 return false;
2737         }
2738
2739         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2740             !this_cpu_has(X86_FEATURE_VMX)) {
2741                 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2742                 return false;
2743         }
2744
2745         return true;
2746 }
2747
2748 static bool kvm_is_vmx_supported(void)
2749 {
2750         bool supported;
2751
2752         migrate_disable();
2753         supported = __kvm_is_vmx_supported();
2754         migrate_enable();
2755
2756         return supported;
2757 }
2758
2759 static int vmx_check_processor_compat(void)
2760 {
2761         int cpu = raw_smp_processor_id();
2762         struct vmcs_config vmcs_conf;
2763         struct vmx_capability vmx_cap;
2764
2765         if (!__kvm_is_vmx_supported())
2766                 return -EIO;
2767
2768         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2769                 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2770                 return -EIO;
2771         }
2772         if (nested)
2773                 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2774         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2775                 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2776                 return -EIO;
2777         }
2778         return 0;
2779 }
2780
2781 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2782 {
2783         u64 msr;
2784
2785         cr4_set_bits(X86_CR4_VMXE);
2786
2787         asm goto("1: vmxon %[vmxon_pointer]\n\t"
2788                           _ASM_EXTABLE(1b, %l[fault])
2789                           : : [vmxon_pointer] "m"(vmxon_pointer)
2790                           : : fault);
2791         return 0;
2792
2793 fault:
2794         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2795                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2796         cr4_clear_bits(X86_CR4_VMXE);
2797
2798         return -EFAULT;
2799 }
2800
2801 static int vmx_hardware_enable(void)
2802 {
2803         int cpu = raw_smp_processor_id();
2804         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2805         int r;
2806
2807         if (cr4_read_shadow() & X86_CR4_VMXE)
2808                 return -EBUSY;
2809
2810         /*
2811          * This can happen if we hot-added a CPU but failed to allocate
2812          * VP assist page for it.
2813          */
2814         if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2815                 return -EFAULT;
2816
2817         intel_pt_handle_vmx(1);
2818
2819         r = kvm_cpu_vmxon(phys_addr);
2820         if (r) {
2821                 intel_pt_handle_vmx(0);
2822                 return r;
2823         }
2824
2825         if (enable_ept)
2826                 ept_sync_global();
2827
2828         return 0;
2829 }
2830
2831 static void vmclear_local_loaded_vmcss(void)
2832 {
2833         int cpu = raw_smp_processor_id();
2834         struct loaded_vmcs *v, *n;
2835
2836         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2837                                  loaded_vmcss_on_cpu_link)
2838                 __loaded_vmcs_clear(v);
2839 }
2840
2841 static void vmx_hardware_disable(void)
2842 {
2843         vmclear_local_loaded_vmcss();
2844
2845         if (kvm_cpu_vmxoff())
2846                 kvm_spurious_fault();
2847
2848         hv_reset_evmcs();
2849
2850         intel_pt_handle_vmx(0);
2851 }
2852
2853 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2854 {
2855         int node = cpu_to_node(cpu);
2856         struct page *pages;
2857         struct vmcs *vmcs;
2858
2859         pages = __alloc_pages_node(node, flags, 0);
2860         if (!pages)
2861                 return NULL;
2862         vmcs = page_address(pages);
2863         memset(vmcs, 0, vmcs_config.size);
2864
2865         /* KVM supports Enlightened VMCS v1 only */
2866         if (kvm_is_using_evmcs())
2867                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2868         else
2869                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2870
2871         if (shadow)
2872                 vmcs->hdr.shadow_vmcs = 1;
2873         return vmcs;
2874 }
2875
2876 void free_vmcs(struct vmcs *vmcs)
2877 {
2878         free_page((unsigned long)vmcs);
2879 }
2880
2881 /*
2882  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2883  */
2884 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2885 {
2886         if (!loaded_vmcs->vmcs)
2887                 return;
2888         loaded_vmcs_clear(loaded_vmcs);
2889         free_vmcs(loaded_vmcs->vmcs);
2890         loaded_vmcs->vmcs = NULL;
2891         if (loaded_vmcs->msr_bitmap)
2892                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2893         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2894 }
2895
2896 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2897 {
2898         loaded_vmcs->vmcs = alloc_vmcs(false);
2899         if (!loaded_vmcs->vmcs)
2900                 return -ENOMEM;
2901
2902         vmcs_clear(loaded_vmcs->vmcs);
2903
2904         loaded_vmcs->shadow_vmcs = NULL;
2905         loaded_vmcs->hv_timer_soft_disabled = false;
2906         loaded_vmcs->cpu = -1;
2907         loaded_vmcs->launched = 0;
2908
2909         if (cpu_has_vmx_msr_bitmap()) {
2910                 loaded_vmcs->msr_bitmap = (unsigned long *)
2911                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2912                 if (!loaded_vmcs->msr_bitmap)
2913                         goto out_vmcs;
2914                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2915         }
2916
2917         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2918         memset(&loaded_vmcs->controls_shadow, 0,
2919                 sizeof(struct vmcs_controls_shadow));
2920
2921         return 0;
2922
2923 out_vmcs:
2924         free_loaded_vmcs(loaded_vmcs);
2925         return -ENOMEM;
2926 }
2927
2928 static void free_kvm_area(void)
2929 {
2930         int cpu;
2931
2932         for_each_possible_cpu(cpu) {
2933                 free_vmcs(per_cpu(vmxarea, cpu));
2934                 per_cpu(vmxarea, cpu) = NULL;
2935         }
2936 }
2937
2938 static __init int alloc_kvm_area(void)
2939 {
2940         int cpu;
2941
2942         for_each_possible_cpu(cpu) {
2943                 struct vmcs *vmcs;
2944
2945                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2946                 if (!vmcs) {
2947                         free_kvm_area();
2948                         return -ENOMEM;
2949                 }
2950
2951                 /*
2952                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2953                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2954                  * revision_id reported by MSR_IA32_VMX_BASIC.
2955                  *
2956                  * However, even though not explicitly documented by
2957                  * TLFS, VMXArea passed as VMXON argument should
2958                  * still be marked with revision_id reported by
2959                  * physical CPU.
2960                  */
2961                 if (kvm_is_using_evmcs())
2962                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2963
2964                 per_cpu(vmxarea, cpu) = vmcs;
2965         }
2966         return 0;
2967 }
2968
2969 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2970                 struct kvm_segment *save)
2971 {
2972         if (!emulate_invalid_guest_state) {
2973                 /*
2974                  * CS and SS RPL should be equal during guest entry according
2975                  * to VMX spec, but in reality it is not always so. Since vcpu
2976                  * is in the middle of the transition from real mode to
2977                  * protected mode it is safe to assume that RPL 0 is a good
2978                  * default value.
2979                  */
2980                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2981                         save->selector &= ~SEGMENT_RPL_MASK;
2982                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2983                 save->s = 1;
2984         }
2985         __vmx_set_segment(vcpu, save, seg);
2986 }
2987
2988 static void enter_pmode(struct kvm_vcpu *vcpu)
2989 {
2990         unsigned long flags;
2991         struct vcpu_vmx *vmx = to_vmx(vcpu);
2992
2993         /*
2994          * Update real mode segment cache. It may be not up-to-date if segment
2995          * register was written while vcpu was in a guest mode.
2996          */
2997         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2998         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2999         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3000         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3001         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3002         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3003
3004         vmx->rmode.vm86_active = 0;
3005
3006         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3007
3008         flags = vmcs_readl(GUEST_RFLAGS);
3009         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3010         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3011         vmcs_writel(GUEST_RFLAGS, flags);
3012
3013         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3014                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3015
3016         vmx_update_exception_bitmap(vcpu);
3017
3018         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3019         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3020         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3021         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3022         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3023         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3024 }
3025
3026 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3027 {
3028         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3029         struct kvm_segment var = *save;
3030
3031         var.dpl = 0x3;
3032         if (seg == VCPU_SREG_CS)
3033                 var.type = 0x3;
3034
3035         if (!emulate_invalid_guest_state) {
3036                 var.selector = var.base >> 4;
3037                 var.base = var.base & 0xffff0;
3038                 var.limit = 0xffff;
3039                 var.g = 0;
3040                 var.db = 0;
3041                 var.present = 1;
3042                 var.s = 1;
3043                 var.l = 0;
3044                 var.unusable = 0;
3045                 var.type = 0x3;
3046                 var.avl = 0;
3047                 if (save->base & 0xf)
3048                         pr_warn_once("segment base is not paragraph aligned "
3049                                      "when entering protected mode (seg=%d)", seg);
3050         }
3051
3052         vmcs_write16(sf->selector, var.selector);
3053         vmcs_writel(sf->base, var.base);
3054         vmcs_write32(sf->limit, var.limit);
3055         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3056 }
3057
3058 static void enter_rmode(struct kvm_vcpu *vcpu)
3059 {
3060         unsigned long flags;
3061         struct vcpu_vmx *vmx = to_vmx(vcpu);
3062         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3063
3064         /*
3065          * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3066          * as using VM86 is unnecessary if unrestricted guest is enabled, and
3067          * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3068          * should VM-Fail and KVM should reject userspace attempts to stuff
3069          * CR0.PG=0 when L2 is active.
3070          */
3071         WARN_ON_ONCE(is_guest_mode(vcpu));
3072
3073         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3074         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3075         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3076         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3077         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3078         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3079         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3080
3081         vmx->rmode.vm86_active = 1;
3082
3083         vmx_segment_cache_clear(vmx);
3084
3085         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3086         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3087         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3088
3089         flags = vmcs_readl(GUEST_RFLAGS);
3090         vmx->rmode.save_rflags = flags;
3091
3092         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3093
3094         vmcs_writel(GUEST_RFLAGS, flags);
3095         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3096         vmx_update_exception_bitmap(vcpu);
3097
3098         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3099         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3100         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3101         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3102         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3103         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3104 }
3105
3106 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3107 {
3108         struct vcpu_vmx *vmx = to_vmx(vcpu);
3109
3110         /* Nothing to do if hardware doesn't support EFER. */
3111         if (!vmx_find_uret_msr(vmx, MSR_EFER))
3112                 return 0;
3113
3114         vcpu->arch.efer = efer;
3115 #ifdef CONFIG_X86_64
3116         if (efer & EFER_LMA)
3117                 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3118         else
3119                 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3120 #else
3121         if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3122                 return 1;
3123 #endif
3124
3125         vmx_setup_uret_msrs(vmx);
3126         return 0;
3127 }
3128
3129 #ifdef CONFIG_X86_64
3130
3131 static void enter_lmode(struct kvm_vcpu *vcpu)
3132 {
3133         u32 guest_tr_ar;
3134
3135         vmx_segment_cache_clear(to_vmx(vcpu));
3136
3137         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3138         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3139                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3140                                      __func__);
3141                 vmcs_write32(GUEST_TR_AR_BYTES,
3142                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3143                              | VMX_AR_TYPE_BUSY_64_TSS);
3144         }
3145         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3146 }
3147
3148 static void exit_lmode(struct kvm_vcpu *vcpu)
3149 {
3150         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3151 }
3152
3153 #endif
3154
3155 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3156 {
3157         struct vcpu_vmx *vmx = to_vmx(vcpu);
3158
3159         /*
3160          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3161          * the CPU is not required to invalidate guest-physical mappings on
3162          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3163          * associated with the root EPT structure and not any particular VPID
3164          * (INVVPID also isn't required to invalidate guest-physical mappings).
3165          */
3166         if (enable_ept) {
3167                 ept_sync_global();
3168         } else if (enable_vpid) {
3169                 if (cpu_has_vmx_invvpid_global()) {
3170                         vpid_sync_vcpu_global();
3171                 } else {
3172                         vpid_sync_vcpu_single(vmx->vpid);
3173                         vpid_sync_vcpu_single(vmx->nested.vpid02);
3174                 }
3175         }
3176 }
3177
3178 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3179 {
3180         if (is_guest_mode(vcpu))
3181                 return nested_get_vpid02(vcpu);
3182         return to_vmx(vcpu)->vpid;
3183 }
3184
3185 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3186 {
3187         struct kvm_mmu *mmu = vcpu->arch.mmu;
3188         u64 root_hpa = mmu->root.hpa;
3189
3190         /* No flush required if the current context is invalid. */
3191         if (!VALID_PAGE(root_hpa))
3192                 return;
3193
3194         if (enable_ept)
3195                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3196                                                 mmu->root_role.level));
3197         else
3198                 vpid_sync_context(vmx_get_current_vpid(vcpu));
3199 }
3200
3201 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3202 {
3203         /*
3204          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3205          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3206          */
3207         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3208 }
3209
3210 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3211 {
3212         /*
3213          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3214          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3215          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3216          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3217          * i.e. no explicit INVVPID is necessary.
3218          */
3219         vpid_sync_context(vmx_get_current_vpid(vcpu));
3220 }
3221
3222 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3223 {
3224         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3225
3226         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3227                 return;
3228
3229         if (is_pae_paging(vcpu)) {
3230                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3231                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3232                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3233                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3234         }
3235 }
3236
3237 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3238 {
3239         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3240
3241         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3242                 return;
3243
3244         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3245         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3246         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3247         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3248
3249         kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3250 }
3251
3252 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3253                           CPU_BASED_CR3_STORE_EXITING)
3254
3255 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3256 {
3257         if (is_guest_mode(vcpu))
3258                 return nested_guest_cr0_valid(vcpu, cr0);
3259
3260         if (to_vmx(vcpu)->nested.vmxon)
3261                 return nested_host_cr0_valid(vcpu, cr0);
3262
3263         return true;
3264 }
3265
3266 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3267 {
3268         struct vcpu_vmx *vmx = to_vmx(vcpu);
3269         unsigned long hw_cr0, old_cr0_pg;
3270         u32 tmp;
3271
3272         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3273
3274         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3275         if (enable_unrestricted_guest)
3276                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3277         else {
3278                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3279                 if (!enable_ept)
3280                         hw_cr0 |= X86_CR0_WP;
3281
3282                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3283                         enter_pmode(vcpu);
3284
3285                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3286                         enter_rmode(vcpu);
3287         }
3288
3289         vmcs_writel(CR0_READ_SHADOW, cr0);
3290         vmcs_writel(GUEST_CR0, hw_cr0);
3291         vcpu->arch.cr0 = cr0;
3292         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3293
3294 #ifdef CONFIG_X86_64
3295         if (vcpu->arch.efer & EFER_LME) {
3296                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3297                         enter_lmode(vcpu);
3298                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3299                         exit_lmode(vcpu);
3300         }
3301 #endif
3302
3303         if (enable_ept && !enable_unrestricted_guest) {
3304                 /*
3305                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3306                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3307                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3308                  * KVM's CR3 is installed.
3309                  */
3310                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3311                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3312
3313                 /*
3314                  * When running with EPT but not unrestricted guest, KVM must
3315                  * intercept CR3 accesses when paging is _disabled_.  This is
3316                  * necessary because restricted guests can't actually run with
3317                  * paging disabled, and so KVM stuffs its own CR3 in order to
3318                  * run the guest when identity mapped page tables.
3319                  *
3320                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3321                  * update, it may be stale with respect to CR3 interception,
3322                  * e.g. after nested VM-Enter.
3323                  *
3324                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3325                  * stores to forward them to L1, even if KVM does not need to
3326                  * intercept them to preserve its identity mapped page tables.
3327                  */
3328                 if (!(cr0 & X86_CR0_PG)) {
3329                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3330                 } else if (!is_guest_mode(vcpu)) {
3331                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3332                 } else {
3333                         tmp = exec_controls_get(vmx);
3334                         tmp &= ~CR3_EXITING_BITS;
3335                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3336                         exec_controls_set(vmx, tmp);
3337                 }
3338
3339                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3340                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3341                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3342
3343                 /*
3344                  * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3345                  * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3346                  */
3347                 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3348                         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3349         }
3350
3351         /* depends on vcpu->arch.cr0 to be set to a new value */
3352         vmx->emulation_required = vmx_emulation_required(vcpu);
3353 }
3354
3355 static int vmx_get_max_ept_level(void)
3356 {
3357         if (cpu_has_vmx_ept_5levels())
3358                 return 5;
3359         return 4;
3360 }
3361
3362 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3363 {
3364         u64 eptp = VMX_EPTP_MT_WB;
3365
3366         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3367
3368         if (enable_ept_ad_bits &&
3369             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3370                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3371         eptp |= root_hpa;
3372
3373         return eptp;
3374 }
3375
3376 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3377                              int root_level)
3378 {
3379         struct kvm *kvm = vcpu->kvm;
3380         bool update_guest_cr3 = true;
3381         unsigned long guest_cr3;
3382         u64 eptp;
3383
3384         if (enable_ept) {
3385                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3386                 vmcs_write64(EPT_POINTER, eptp);
3387
3388                 hv_track_root_tdp(vcpu, root_hpa);
3389
3390                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3391                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3392                 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3393                         guest_cr3 = vcpu->arch.cr3;
3394                 else /* vmcs.GUEST_CR3 is already up-to-date. */
3395                         update_guest_cr3 = false;
3396                 vmx_ept_load_pdptrs(vcpu);
3397         } else {
3398                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3399                             kvm_get_active_cr3_lam_bits(vcpu);
3400         }
3401
3402         if (update_guest_cr3)
3403                 vmcs_writel(GUEST_CR3, guest_cr3);
3404 }
3405
3406
3407 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3408 {
3409         /*
3410          * We operate under the default treatment of SMM, so VMX cannot be
3411          * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3412          * i.e. is a reserved bit, is handled by common x86 code.
3413          */
3414         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3415                 return false;
3416
3417         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3418                 return false;
3419
3420         return true;
3421 }
3422
3423 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3424 {
3425         unsigned long old_cr4 = kvm_read_cr4(vcpu);
3426         struct vcpu_vmx *vmx = to_vmx(vcpu);
3427         unsigned long hw_cr4;
3428
3429         /*
3430          * Pass through host's Machine Check Enable value to hw_cr4, which
3431          * is in force while we are in guest mode.  Do not let guests control
3432          * this bit, even if host CR4.MCE == 0.
3433          */
3434         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3435         if (enable_unrestricted_guest)
3436                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3437         else if (vmx->rmode.vm86_active)
3438                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3439         else
3440                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3441
3442         if (vmx_umip_emulated()) {
3443                 if (cr4 & X86_CR4_UMIP) {
3444                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3445                         hw_cr4 &= ~X86_CR4_UMIP;
3446                 } else if (!is_guest_mode(vcpu) ||
3447                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3448                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3449                 }
3450         }
3451
3452         vcpu->arch.cr4 = cr4;
3453         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3454
3455         if (!enable_unrestricted_guest) {
3456                 if (enable_ept) {
3457                         if (!is_paging(vcpu)) {
3458                                 hw_cr4 &= ~X86_CR4_PAE;
3459                                 hw_cr4 |= X86_CR4_PSE;
3460                         } else if (!(cr4 & X86_CR4_PAE)) {
3461                                 hw_cr4 &= ~X86_CR4_PAE;
3462                         }
3463                 }
3464
3465                 /*
3466                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3467                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3468                  * to be manually disabled when guest switches to non-paging
3469                  * mode.
3470                  *
3471                  * If !enable_unrestricted_guest, the CPU is always running
3472                  * with CR0.PG=1 and CR4 needs to be modified.
3473                  * If enable_unrestricted_guest, the CPU automatically
3474                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3475                  */
3476                 if (!is_paging(vcpu))
3477                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3478         }
3479
3480         vmcs_writel(CR4_READ_SHADOW, cr4);
3481         vmcs_writel(GUEST_CR4, hw_cr4);
3482
3483         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3484                 kvm_update_cpuid_runtime(vcpu);
3485 }
3486
3487 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3488 {
3489         struct vcpu_vmx *vmx = to_vmx(vcpu);
3490         u32 ar;
3491
3492         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3493                 *var = vmx->rmode.segs[seg];
3494                 if (seg == VCPU_SREG_TR
3495                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3496                         return;
3497                 var->base = vmx_read_guest_seg_base(vmx, seg);
3498                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3499                 return;
3500         }
3501         var->base = vmx_read_guest_seg_base(vmx, seg);
3502         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3503         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3504         ar = vmx_read_guest_seg_ar(vmx, seg);
3505         var->unusable = (ar >> 16) & 1;
3506         var->type = ar & 15;
3507         var->s = (ar >> 4) & 1;
3508         var->dpl = (ar >> 5) & 3;
3509         /*
3510          * Some userspaces do not preserve unusable property. Since usable
3511          * segment has to be present according to VMX spec we can use present
3512          * property to amend userspace bug by making unusable segment always
3513          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3514          * segment as unusable.
3515          */
3516         var->present = !var->unusable;
3517         var->avl = (ar >> 12) & 1;
3518         var->l = (ar >> 13) & 1;
3519         var->db = (ar >> 14) & 1;
3520         var->g = (ar >> 15) & 1;
3521 }
3522
3523 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3524 {
3525         struct kvm_segment s;
3526
3527         if (to_vmx(vcpu)->rmode.vm86_active) {
3528                 vmx_get_segment(vcpu, &s, seg);
3529                 return s.base;
3530         }
3531         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3532 }
3533
3534 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3535 {
3536         struct vcpu_vmx *vmx = to_vmx(vcpu);
3537
3538         if (unlikely(vmx->rmode.vm86_active))
3539                 return 0;
3540         else {
3541                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3542                 return VMX_AR_DPL(ar);
3543         }
3544 }
3545
3546 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3547 {
3548         u32 ar;
3549
3550         ar = var->type & 15;
3551         ar |= (var->s & 1) << 4;
3552         ar |= (var->dpl & 3) << 5;
3553         ar |= (var->present & 1) << 7;
3554         ar |= (var->avl & 1) << 12;
3555         ar |= (var->l & 1) << 13;
3556         ar |= (var->db & 1) << 14;
3557         ar |= (var->g & 1) << 15;
3558         ar |= (var->unusable || !var->present) << 16;
3559
3560         return ar;
3561 }
3562
3563 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3564 {
3565         struct vcpu_vmx *vmx = to_vmx(vcpu);
3566         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3567
3568         vmx_segment_cache_clear(vmx);
3569
3570         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3571                 vmx->rmode.segs[seg] = *var;
3572                 if (seg == VCPU_SREG_TR)
3573                         vmcs_write16(sf->selector, var->selector);
3574                 else if (var->s)
3575                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3576                 return;
3577         }
3578
3579         vmcs_writel(sf->base, var->base);
3580         vmcs_write32(sf->limit, var->limit);
3581         vmcs_write16(sf->selector, var->selector);
3582
3583         /*
3584          *   Fix the "Accessed" bit in AR field of segment registers for older
3585          * qemu binaries.
3586          *   IA32 arch specifies that at the time of processor reset the
3587          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3588          * is setting it to 0 in the userland code. This causes invalid guest
3589          * state vmexit when "unrestricted guest" mode is turned on.
3590          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3591          * tree. Newer qemu binaries with that qemu fix would not need this
3592          * kvm hack.
3593          */
3594         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3595                 var->type |= 0x1; /* Accessed */
3596
3597         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3598 }
3599
3600 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3601 {
3602         __vmx_set_segment(vcpu, var, seg);
3603
3604         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3605 }
3606
3607 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3608 {
3609         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3610
3611         *db = (ar >> 14) & 1;
3612         *l = (ar >> 13) & 1;
3613 }
3614
3615 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3616 {
3617         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3618         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3619 }
3620
3621 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3622 {
3623         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3624         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3625 }
3626
3627 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3628 {
3629         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3630         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3631 }
3632
3633 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3634 {
3635         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3636         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3637 }
3638
3639 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3640 {
3641         struct kvm_segment var;
3642         u32 ar;
3643
3644         vmx_get_segment(vcpu, &var, seg);
3645         var.dpl = 0x3;
3646         if (seg == VCPU_SREG_CS)
3647                 var.type = 0x3;
3648         ar = vmx_segment_access_rights(&var);
3649
3650         if (var.base != (var.selector << 4))
3651                 return false;
3652         if (var.limit != 0xffff)
3653                 return false;
3654         if (ar != 0xf3)
3655                 return false;
3656
3657         return true;
3658 }
3659
3660 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3661 {
3662         struct kvm_segment cs;
3663         unsigned int cs_rpl;
3664
3665         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3666         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3667
3668         if (cs.unusable)
3669                 return false;
3670         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3671                 return false;
3672         if (!cs.s)
3673                 return false;
3674         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3675                 if (cs.dpl > cs_rpl)
3676                         return false;
3677         } else {
3678                 if (cs.dpl != cs_rpl)
3679                         return false;
3680         }
3681         if (!cs.present)
3682                 return false;
3683
3684         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3685         return true;
3686 }
3687
3688 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3689 {
3690         struct kvm_segment ss;
3691         unsigned int ss_rpl;
3692
3693         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3694         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3695
3696         if (ss.unusable)
3697                 return true;
3698         if (ss.type != 3 && ss.type != 7)
3699                 return false;
3700         if (!ss.s)
3701                 return false;
3702         if (ss.dpl != ss_rpl) /* DPL != RPL */
3703                 return false;
3704         if (!ss.present)
3705                 return false;
3706
3707         return true;
3708 }
3709
3710 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3711 {
3712         struct kvm_segment var;
3713         unsigned int rpl;
3714
3715         vmx_get_segment(vcpu, &var, seg);
3716         rpl = var.selector & SEGMENT_RPL_MASK;
3717
3718         if (var.unusable)
3719                 return true;
3720         if (!var.s)
3721                 return false;
3722         if (!var.present)
3723                 return false;
3724         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3725                 if (var.dpl < rpl) /* DPL < RPL */
3726                         return false;
3727         }
3728
3729         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3730          * rights flags
3731          */
3732         return true;
3733 }
3734
3735 static bool tr_valid(struct kvm_vcpu *vcpu)
3736 {
3737         struct kvm_segment tr;
3738
3739         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3740
3741         if (tr.unusable)
3742                 return false;
3743         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3744                 return false;
3745         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3746                 return false;
3747         if (!tr.present)
3748                 return false;
3749
3750         return true;
3751 }
3752
3753 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3754 {
3755         struct kvm_segment ldtr;
3756
3757         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3758
3759         if (ldtr.unusable)
3760                 return true;
3761         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3762                 return false;
3763         if (ldtr.type != 2)
3764                 return false;
3765         if (!ldtr.present)
3766                 return false;
3767
3768         return true;
3769 }
3770
3771 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3772 {
3773         struct kvm_segment cs, ss;
3774
3775         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3776         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3777
3778         return ((cs.selector & SEGMENT_RPL_MASK) ==
3779                  (ss.selector & SEGMENT_RPL_MASK));
3780 }
3781
3782 /*
3783  * Check if guest state is valid. Returns true if valid, false if
3784  * not.
3785  * We assume that registers are always usable
3786  */
3787 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3788 {
3789         /* real mode guest state checks */
3790         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3791                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3792                         return false;
3793                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3794                         return false;
3795                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3796                         return false;
3797                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3798                         return false;
3799                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3800                         return false;
3801                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3802                         return false;
3803         } else {
3804         /* protected mode guest state checks */
3805                 if (!cs_ss_rpl_check(vcpu))
3806                         return false;
3807                 if (!code_segment_valid(vcpu))
3808                         return false;
3809                 if (!stack_segment_valid(vcpu))
3810                         return false;
3811                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3812                         return false;
3813                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3814                         return false;
3815                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3816                         return false;
3817                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3818                         return false;
3819                 if (!tr_valid(vcpu))
3820                         return false;
3821                 if (!ldtr_valid(vcpu))
3822                         return false;
3823         }
3824         /* TODO:
3825          * - Add checks on RIP
3826          * - Add checks on RFLAGS
3827          */
3828
3829         return true;
3830 }
3831
3832 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3833 {
3834         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3835         u16 data;
3836         int i;
3837
3838         for (i = 0; i < 3; i++) {
3839                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3840                         return -EFAULT;
3841         }
3842
3843         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3844         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3845                 return -EFAULT;
3846
3847         data = ~0;
3848         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3849                 return -EFAULT;
3850
3851         return 0;
3852 }
3853
3854 static int init_rmode_identity_map(struct kvm *kvm)
3855 {
3856         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3857         int i, r = 0;
3858         void __user *uaddr;
3859         u32 tmp;
3860
3861         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3862         mutex_lock(&kvm->slots_lock);
3863
3864         if (likely(kvm_vmx->ept_identity_pagetable_done))
3865                 goto out;
3866
3867         if (!kvm_vmx->ept_identity_map_addr)
3868                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3869
3870         uaddr = __x86_set_memory_region(kvm,
3871                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3872                                         kvm_vmx->ept_identity_map_addr,
3873                                         PAGE_SIZE);
3874         if (IS_ERR(uaddr)) {
3875                 r = PTR_ERR(uaddr);
3876                 goto out;
3877         }
3878
3879         /* Set up identity-mapping pagetable for EPT in real mode */
3880         for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3881                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3882                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3883                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3884                         r = -EFAULT;
3885                         goto out;
3886                 }
3887         }
3888         kvm_vmx->ept_identity_pagetable_done = true;
3889
3890 out:
3891         mutex_unlock(&kvm->slots_lock);
3892         return r;
3893 }
3894
3895 static void seg_setup(int seg)
3896 {
3897         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3898         unsigned int ar;
3899
3900         vmcs_write16(sf->selector, 0);
3901         vmcs_writel(sf->base, 0);
3902         vmcs_write32(sf->limit, 0xffff);
3903         ar = 0x93;
3904         if (seg == VCPU_SREG_CS)
3905                 ar |= 0x08; /* code segment */
3906
3907         vmcs_write32(sf->ar_bytes, ar);
3908 }
3909
3910 int allocate_vpid(void)
3911 {
3912         int vpid;
3913
3914         if (!enable_vpid)
3915                 return 0;
3916         spin_lock(&vmx_vpid_lock);
3917         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3918         if (vpid < VMX_NR_VPIDS)
3919                 __set_bit(vpid, vmx_vpid_bitmap);
3920         else
3921                 vpid = 0;
3922         spin_unlock(&vmx_vpid_lock);
3923         return vpid;
3924 }
3925
3926 void free_vpid(int vpid)
3927 {
3928         if (!enable_vpid || vpid == 0)
3929                 return;
3930         spin_lock(&vmx_vpid_lock);
3931         __clear_bit(vpid, vmx_vpid_bitmap);
3932         spin_unlock(&vmx_vpid_lock);
3933 }
3934
3935 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3936 {
3937         /*
3938          * When KVM is a nested hypervisor on top of Hyper-V and uses
3939          * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3940          * bitmap has changed.
3941          */
3942         if (kvm_is_using_evmcs()) {
3943                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3944
3945                 if (evmcs->hv_enlightenments_control.msr_bitmap)
3946                         evmcs->hv_clean_fields &=
3947                                 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3948         }
3949
3950         vmx->nested.force_msr_bitmap_recalc = true;
3951 }
3952
3953 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3954 {
3955         struct vcpu_vmx *vmx = to_vmx(vcpu);
3956         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3957
3958         if (!cpu_has_vmx_msr_bitmap())
3959                 return;
3960
3961         vmx_msr_bitmap_l01_changed(vmx);
3962
3963         /*
3964          * Mark the desired intercept state in shadow bitmap, this is needed
3965          * for resync when the MSR filters change.
3966         */
3967         if (is_valid_passthrough_msr(msr)) {
3968                 int idx = possible_passthrough_msr_slot(msr);
3969
3970                 if (idx != -ENOENT) {
3971                         if (type & MSR_TYPE_R)
3972                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3973                         if (type & MSR_TYPE_W)
3974                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3975                 }
3976         }
3977
3978         if ((type & MSR_TYPE_R) &&
3979             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3980                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3981                 type &= ~MSR_TYPE_R;
3982         }
3983
3984         if ((type & MSR_TYPE_W) &&
3985             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3986                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3987                 type &= ~MSR_TYPE_W;
3988         }
3989
3990         if (type & MSR_TYPE_R)
3991                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3992
3993         if (type & MSR_TYPE_W)
3994                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3995 }
3996
3997 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3998 {
3999         struct vcpu_vmx *vmx = to_vmx(vcpu);
4000         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4001
4002         if (!cpu_has_vmx_msr_bitmap())
4003                 return;
4004
4005         vmx_msr_bitmap_l01_changed(vmx);
4006
4007         /*
4008          * Mark the desired intercept state in shadow bitmap, this is needed
4009          * for resync when the MSR filter changes.
4010         */
4011         if (is_valid_passthrough_msr(msr)) {
4012                 int idx = possible_passthrough_msr_slot(msr);
4013
4014                 if (idx != -ENOENT) {
4015                         if (type & MSR_TYPE_R)
4016                                 set_bit(idx, vmx->shadow_msr_intercept.read);
4017                         if (type & MSR_TYPE_W)
4018                                 set_bit(idx, vmx->shadow_msr_intercept.write);
4019                 }
4020         }
4021
4022         if (type & MSR_TYPE_R)
4023                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4024
4025         if (type & MSR_TYPE_W)
4026                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4027 }
4028
4029 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4030 {
4031         /*
4032          * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4033          * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4034          * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4035          */
4036         const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4037         const int write_idx = read_idx + (0x800 / sizeof(u64));
4038         struct vcpu_vmx *vmx = to_vmx(vcpu);
4039         u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4040         u8 mode;
4041
4042         if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4043                 return;
4044
4045         if (cpu_has_secondary_exec_ctrls() &&
4046             (secondary_exec_controls_get(vmx) &
4047              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4048                 mode = MSR_BITMAP_MODE_X2APIC;
4049                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4050                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4051         } else {
4052                 mode = 0;
4053         }
4054
4055         if (mode == vmx->x2apic_msr_bitmap_mode)
4056                 return;
4057
4058         vmx->x2apic_msr_bitmap_mode = mode;
4059
4060         /*
4061          * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4062          * registers (0x840 and above) intercepted, KVM doesn't support them.
4063          * Intercept all writes by default and poke holes as needed.  Pass
4064          * through reads for all valid registers by default in x2APIC+APICv
4065          * mode, only the current timer count needs on-demand emulation by KVM.
4066          */
4067         if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4068                 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4069         else
4070                 msr_bitmap[read_idx] = ~0ull;
4071         msr_bitmap[write_idx] = ~0ull;
4072
4073         /*
4074          * TPR reads and writes can be virtualized even if virtual interrupt
4075          * delivery is not in use.
4076          */
4077         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4078                                   !(mode & MSR_BITMAP_MODE_X2APIC));
4079
4080         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4081                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4082                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4083                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4084                 if (enable_ipiv)
4085                         vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4086         }
4087 }
4088
4089 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4090 {
4091         struct vcpu_vmx *vmx = to_vmx(vcpu);
4092         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4093         u32 i;
4094
4095         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4096         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4097         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4098         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4099         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4100                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4101                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4102         }
4103 }
4104
4105 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4106 {
4107         struct vcpu_vmx *vmx = to_vmx(vcpu);
4108         void *vapic_page;
4109         u32 vppr;
4110         int rvi;
4111
4112         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4113                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4114                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4115                 return false;
4116
4117         rvi = vmx_get_rvi();
4118
4119         vapic_page = vmx->nested.virtual_apic_map.hva;
4120         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4121
4122         return ((rvi & 0xf0) > (vppr & 0xf0));
4123 }
4124
4125 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4126 {
4127         struct vcpu_vmx *vmx = to_vmx(vcpu);
4128         u32 i;
4129
4130         /*
4131          * Redo intercept permissions for MSRs that KVM is passing through to
4132          * the guest.  Disabling interception will check the new MSR filter and
4133          * ensure that KVM enables interception if usersepace wants to filter
4134          * the MSR.  MSRs that KVM is already intercepting don't need to be
4135          * refreshed since KVM is going to intercept them regardless of what
4136          * userspace wants.
4137          */
4138         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4139                 u32 msr = vmx_possible_passthrough_msrs[i];
4140
4141                 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4142                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4143
4144                 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4145                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4146         }
4147
4148         /* PT MSRs can be passed through iff PT is exposed to the guest. */
4149         if (vmx_pt_mode_is_host_guest())
4150                 pt_update_intercept_for_msr(vcpu);
4151 }
4152
4153 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4154                                                      int pi_vec)
4155 {
4156 #ifdef CONFIG_SMP
4157         if (vcpu->mode == IN_GUEST_MODE) {
4158                 /*
4159                  * The vector of the virtual has already been set in the PIR.
4160                  * Send a notification event to deliver the virtual interrupt
4161                  * unless the vCPU is the currently running vCPU, i.e. the
4162                  * event is being sent from a fastpath VM-Exit handler, in
4163                  * which case the PIR will be synced to the vIRR before
4164                  * re-entering the guest.
4165                  *
4166                  * When the target is not the running vCPU, the following
4167                  * possibilities emerge:
4168                  *
4169                  * Case 1: vCPU stays in non-root mode. Sending a notification
4170                  * event posts the interrupt to the vCPU.
4171                  *
4172                  * Case 2: vCPU exits to root mode and is still runnable. The
4173                  * PIR will be synced to the vIRR before re-entering the guest.
4174                  * Sending a notification event is ok as the host IRQ handler
4175                  * will ignore the spurious event.
4176                  *
4177                  * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4178                  * has already synced PIR to vIRR and never blocks the vCPU if
4179                  * the vIRR is not empty. Therefore, a blocked vCPU here does
4180                  * not wait for any requested interrupts in PIR, and sending a
4181                  * notification event also results in a benign, spurious event.
4182                  */
4183
4184                 if (vcpu != kvm_get_running_vcpu())
4185                         __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4186                 return;
4187         }
4188 #endif
4189         /*
4190          * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4191          * otherwise do nothing as KVM will grab the highest priority pending
4192          * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4193          */
4194         kvm_vcpu_wake_up(vcpu);
4195 }
4196
4197 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4198                                                 int vector)
4199 {
4200         struct vcpu_vmx *vmx = to_vmx(vcpu);
4201
4202         if (is_guest_mode(vcpu) &&
4203             vector == vmx->nested.posted_intr_nv) {
4204                 /*
4205                  * If a posted intr is not recognized by hardware,
4206                  * we will accomplish it in the next vmentry.
4207                  */
4208                 vmx->nested.pi_pending = true;
4209                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4210
4211                 /*
4212                  * This pairs with the smp_mb_*() after setting vcpu->mode in
4213                  * vcpu_enter_guest() to guarantee the vCPU sees the event
4214                  * request if triggering a posted interrupt "fails" because
4215                  * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4216                  * the smb_wmb() in kvm_make_request() only ensures everything
4217                  * done before making the request is visible when the request
4218                  * is visible, it doesn't ensure ordering between the store to
4219                  * vcpu->requests and the load from vcpu->mode.
4220                  */
4221                 smp_mb__after_atomic();
4222
4223                 /* the PIR and ON have been set by L1. */
4224                 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4225                 return 0;
4226         }
4227         return -1;
4228 }
4229 /*
4230  * Send interrupt to vcpu via posted interrupt way.
4231  * 1. If target vcpu is running(non-root mode), send posted interrupt
4232  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4233  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4234  * interrupt from PIR in next vmentry.
4235  */
4236 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4237 {
4238         struct vcpu_vmx *vmx = to_vmx(vcpu);
4239         int r;
4240
4241         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4242         if (!r)
4243                 return 0;
4244
4245         /* Note, this is called iff the local APIC is in-kernel. */
4246         if (!vcpu->arch.apic->apicv_active)
4247                 return -1;
4248
4249         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4250                 return 0;
4251
4252         /* If a previous notification has sent the IPI, nothing to do.  */
4253         if (pi_test_and_set_on(&vmx->pi_desc))
4254                 return 0;
4255
4256         /*
4257          * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4258          * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4259          * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4260          * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4261          */
4262         kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4263         return 0;
4264 }
4265
4266 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4267                                   int trig_mode, int vector)
4268 {
4269         struct kvm_vcpu *vcpu = apic->vcpu;
4270
4271         if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4272                 kvm_lapic_set_irr(vector, apic);
4273                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4274                 kvm_vcpu_kick(vcpu);
4275         } else {
4276                 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4277                                            trig_mode, vector);
4278         }
4279 }
4280
4281 /*
4282  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4283  * will not change in the lifetime of the guest.
4284  * Note that host-state that does change is set elsewhere. E.g., host-state
4285  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4286  */
4287 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4288 {
4289         u32 low32, high32;
4290         unsigned long tmpl;
4291         unsigned long cr0, cr3, cr4;
4292
4293         cr0 = read_cr0();
4294         WARN_ON(cr0 & X86_CR0_TS);
4295         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4296
4297         /*
4298          * Save the most likely value for this task's CR3 in the VMCS.
4299          * We can't use __get_current_cr3_fast() because we're not atomic.
4300          */
4301         cr3 = __read_cr3();
4302         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4303         vmx->loaded_vmcs->host_state.cr3 = cr3;
4304
4305         /* Save the most likely value for this task's CR4 in the VMCS. */
4306         cr4 = cr4_read_shadow();
4307         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4308         vmx->loaded_vmcs->host_state.cr4 = cr4;
4309
4310         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4311 #ifdef CONFIG_X86_64
4312         /*
4313          * Load null selectors, so we can avoid reloading them in
4314          * vmx_prepare_switch_to_host(), in case userspace uses
4315          * the null selectors too (the expected case).
4316          */
4317         vmcs_write16(HOST_DS_SELECTOR, 0);
4318         vmcs_write16(HOST_ES_SELECTOR, 0);
4319 #else
4320         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4321         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4322 #endif
4323         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4324         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4325
4326         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4327
4328         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4329
4330         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4331         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4332
4333         /*
4334          * SYSENTER is used for 32-bit system calls on either 32-bit or
4335          * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4336          * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4337          * have already done so!).
4338          */
4339         if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4340                 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4341
4342         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4343         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4344
4345         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4346                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4347                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4348         }
4349
4350         if (cpu_has_load_ia32_efer())
4351                 vmcs_write64(HOST_IA32_EFER, host_efer);
4352 }
4353
4354 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4355 {
4356         struct kvm_vcpu *vcpu = &vmx->vcpu;
4357
4358         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4359                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4360         if (!enable_ept) {
4361                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4362                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4363         }
4364         if (is_guest_mode(&vmx->vcpu))
4365                 vcpu->arch.cr4_guest_owned_bits &=
4366                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4367         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4368 }
4369
4370 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4371 {
4372         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4373
4374         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4375                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4376
4377         if (!enable_vnmi)
4378                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4379
4380         if (!enable_preemption_timer)
4381                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4382
4383         return pin_based_exec_ctrl;
4384 }
4385
4386 static u32 vmx_vmentry_ctrl(void)
4387 {
4388         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4389
4390         if (vmx_pt_mode_is_system())
4391                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4392                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4393         /*
4394          * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4395          */
4396         vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4397                           VM_ENTRY_LOAD_IA32_EFER |
4398                           VM_ENTRY_IA32E_MODE);
4399
4400         if (cpu_has_perf_global_ctrl_bug())
4401                 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4402
4403         return vmentry_ctrl;
4404 }
4405
4406 static u32 vmx_vmexit_ctrl(void)
4407 {
4408         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4409
4410         /*
4411          * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4412          * nested virtualization and thus allowed to be set in vmcs12.
4413          */
4414         vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4415                          VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4416
4417         if (vmx_pt_mode_is_system())
4418                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4419                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4420
4421         if (cpu_has_perf_global_ctrl_bug())
4422                 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4423
4424         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4425         return vmexit_ctrl &
4426                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4427 }
4428
4429 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4430 {
4431         struct vcpu_vmx *vmx = to_vmx(vcpu);
4432
4433         if (is_guest_mode(vcpu)) {
4434                 vmx->nested.update_vmcs01_apicv_status = true;
4435                 return;
4436         }
4437
4438         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4439
4440         if (kvm_vcpu_apicv_active(vcpu)) {
4441                 secondary_exec_controls_setbit(vmx,
4442                                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
4443                                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4444                 if (enable_ipiv)
4445                         tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4446         } else {
4447                 secondary_exec_controls_clearbit(vmx,
4448                                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
4449                                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4450                 if (enable_ipiv)
4451                         tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4452         }
4453
4454         vmx_update_msr_bitmap_x2apic(vcpu);
4455 }
4456
4457 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4458 {
4459         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4460
4461         /*
4462          * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4463          * vmcs12 and propagated to vmcs02 when set in vmcs12.
4464          */
4465         exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4466                           CPU_BASED_USE_IO_BITMAPS |
4467                           CPU_BASED_MONITOR_TRAP_FLAG |
4468                           CPU_BASED_PAUSE_EXITING);
4469
4470         /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4471         exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4472                           CPU_BASED_NMI_WINDOW_EXITING);
4473
4474         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4475                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4476
4477         if (!cpu_need_tpr_shadow(&vmx->vcpu))
4478                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4479
4480 #ifdef CONFIG_X86_64
4481         if (exec_control & CPU_BASED_TPR_SHADOW)
4482                 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4483                                   CPU_BASED_CR8_STORE_EXITING);
4484         else
4485                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4486                                 CPU_BASED_CR8_LOAD_EXITING;
4487 #endif
4488         /* No need to intercept CR3 access or INVPLG when using EPT. */
4489         if (enable_ept)
4490                 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4491                                   CPU_BASED_CR3_STORE_EXITING |
4492                                   CPU_BASED_INVLPG_EXITING);
4493         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4494                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4495                                 CPU_BASED_MONITOR_EXITING);
4496         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4497                 exec_control &= ~CPU_BASED_HLT_EXITING;
4498         return exec_control;
4499 }
4500
4501 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4502 {
4503         u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4504
4505         /*
4506          * IPI virtualization relies on APICv. Disable IPI virtualization if
4507          * APICv is inhibited.
4508          */
4509         if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4510                 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4511
4512         return exec_control;
4513 }
4514
4515 /*
4516  * Adjust a single secondary execution control bit to intercept/allow an
4517  * instruction in the guest.  This is usually done based on whether or not a
4518  * feature has been exposed to the guest in order to correctly emulate faults.
4519  */
4520 static inline void
4521 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4522                                   u32 control, bool enabled, bool exiting)
4523 {
4524         /*
4525          * If the control is for an opt-in feature, clear the control if the
4526          * feature is not exposed to the guest, i.e. not enabled.  If the
4527          * control is opt-out, i.e. an exiting control, clear the control if
4528          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4529          * disabled for the associated instruction.  Note, the caller is
4530          * responsible presetting exec_control to set all supported bits.
4531          */
4532         if (enabled == exiting)
4533                 *exec_control &= ~control;
4534
4535         /*
4536          * Update the nested MSR settings so that a nested VMM can/can't set
4537          * controls for features that are/aren't exposed to the guest.
4538          */
4539         if (nested) {
4540                 /*
4541                  * All features that can be added or removed to VMX MSRs must
4542                  * be supported in the first place for nested virtualization.
4543                  */
4544                 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4545                         enabled = false;
4546
4547                 if (enabled)
4548                         vmx->nested.msrs.secondary_ctls_high |= control;
4549                 else
4550                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4551         }
4552 }
4553
4554 /*
4555  * Wrapper macro for the common case of adjusting a secondary execution control
4556  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4557  * verifies that the control is actually supported by KVM and hardware.
4558  */
4559 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)     \
4560 ({                                                                                              \
4561         struct kvm_vcpu *__vcpu = &(vmx)->vcpu;                                                 \
4562         bool __enabled;                                                                         \
4563                                                                                                 \
4564         if (cpu_has_vmx_##name()) {                                                             \
4565                 if (kvm_is_governed_feature(X86_FEATURE_##feat_name))                           \
4566                         __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);             \
4567                 else                                                                            \
4568                         __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);           \
4569                 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4570                                                   __enabled, exiting);                          \
4571         }                                                                                       \
4572 })
4573
4574 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4575 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4576         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4577
4578 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4579         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4580
4581 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4582 {
4583         struct kvm_vcpu *vcpu = &vmx->vcpu;
4584
4585         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4586
4587         if (vmx_pt_mode_is_system())
4588                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4589         if (!cpu_need_virtualize_apic_accesses(vcpu))
4590                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4591         if (vmx->vpid == 0)
4592                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4593         if (!enable_ept) {
4594                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4595                 enable_unrestricted_guest = 0;
4596         }
4597         if (!enable_unrestricted_guest)
4598                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4599         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4600                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4601         if (!kvm_vcpu_apicv_active(vcpu))
4602                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4603                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4604         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4605
4606         /*
4607          * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4608          * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4609          */
4610         exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4611
4612         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4613          * in vmx_set_cr4.  */
4614         exec_control &= ~SECONDARY_EXEC_DESC;
4615
4616         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4617            (handle_vmptrld).
4618            We can NOT enable shadow_vmcs here because we don't have yet
4619            a current VMCS12
4620         */
4621         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4622
4623         /*
4624          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4625          * it needs to be set here when dirty logging is already active, e.g.
4626          * if this vCPU was created after dirty logging was enabled.
4627          */
4628         if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4629                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4630
4631         vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4632
4633         /*
4634          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4635          * feature is exposed to the guest.  This creates a virtualization hole
4636          * if both are supported in hardware but only one is exposed to the
4637          * guest, but letting the guest execute RDTSCP or RDPID when either one
4638          * is advertised is preferable to emulating the advertised instruction
4639          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4640          */
4641         if (cpu_has_vmx_rdtscp()) {
4642                 bool rdpid_or_rdtscp_enabled =
4643                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4644                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4645
4646                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4647                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4648                                                   rdpid_or_rdtscp_enabled, false);
4649         }
4650
4651         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4652
4653         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4654         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4655
4656         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4657                                     ENABLE_USR_WAIT_PAUSE, false);
4658
4659         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4660                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4661
4662         if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4663                 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4664
4665         return exec_control;
4666 }
4667
4668 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4669 {
4670         return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4671 }
4672
4673 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4674 {
4675         struct page *pages;
4676         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4677
4678         if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4679                 return 0;
4680
4681         if (kvm_vmx->pid_table)
4682                 return 0;
4683
4684         pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4685                             vmx_get_pid_table_order(kvm));
4686         if (!pages)
4687                 return -ENOMEM;
4688
4689         kvm_vmx->pid_table = (void *)page_address(pages);
4690         return 0;
4691 }
4692
4693 static int vmx_vcpu_precreate(struct kvm *kvm)
4694 {
4695         return vmx_alloc_ipiv_pid_table(kvm);
4696 }
4697
4698 #define VMX_XSS_EXIT_BITMAP 0
4699
4700 static void init_vmcs(struct vcpu_vmx *vmx)
4701 {
4702         struct kvm *kvm = vmx->vcpu.kvm;
4703         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4704
4705         if (nested)
4706                 nested_vmx_set_vmcs_shadowing_bitmap();
4707
4708         if (cpu_has_vmx_msr_bitmap())
4709                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4710
4711         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4712
4713         /* Control */
4714         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4715
4716         exec_controls_set(vmx, vmx_exec_control(vmx));
4717
4718         if (cpu_has_secondary_exec_ctrls())
4719                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4720
4721         if (cpu_has_tertiary_exec_ctrls())
4722                 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4723
4724         if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4725                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4726                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4727                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4728                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4729
4730                 vmcs_write16(GUEST_INTR_STATUS, 0);
4731
4732                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4733                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4734         }
4735
4736         if (vmx_can_use_ipiv(&vmx->vcpu)) {
4737                 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4738                 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4739         }
4740
4741         if (!kvm_pause_in_guest(kvm)) {
4742                 vmcs_write32(PLE_GAP, ple_gap);
4743                 vmx->ple_window = ple_window;
4744                 vmx->ple_window_dirty = true;
4745         }
4746
4747         if (kvm_notify_vmexit_enabled(kvm))
4748                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4749
4750         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4751         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4752         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4753
4754         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4755         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4756         vmx_set_constant_host_state(vmx);
4757         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4758         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4759
4760         if (cpu_has_vmx_vmfunc())
4761                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4762
4763         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4764         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4765         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4766         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4767         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4768
4769         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4770                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4771
4772         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4773
4774         /* 22.2.1, 20.8.1 */
4775         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4776
4777         vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4778         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4779
4780         set_cr4_guest_host_mask(vmx);
4781
4782         if (vmx->vpid != 0)
4783                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784
4785         if (cpu_has_vmx_xsaves())
4786                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4787
4788         if (enable_pml) {
4789                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4790                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4791         }
4792
4793         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4794
4795         if (vmx_pt_mode_is_host_guest()) {
4796                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4797                 /* Bit[6~0] are forced to 1, writes are ignored. */
4798                 vmx->pt_desc.guest.output_mask = 0x7F;
4799                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4800         }
4801
4802         vmcs_write32(GUEST_SYSENTER_CS, 0);
4803         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4804         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4805         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4806
4807         if (cpu_has_vmx_tpr_shadow()) {
4808                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4809                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4810                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4811                                      __pa(vmx->vcpu.arch.apic->regs));
4812                 vmcs_write32(TPR_THRESHOLD, 0);
4813         }
4814
4815         vmx_setup_uret_msrs(vmx);
4816 }
4817
4818 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4819 {
4820         struct vcpu_vmx *vmx = to_vmx(vcpu);
4821
4822         init_vmcs(vmx);
4823
4824         if (nested)
4825                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4826
4827         vcpu_setup_sgx_lepubkeyhash(vcpu);
4828
4829         vmx->nested.posted_intr_nv = -1;
4830         vmx->nested.vmxon_ptr = INVALID_GPA;
4831         vmx->nested.current_vmptr = INVALID_GPA;
4832
4833 #ifdef CONFIG_KVM_HYPERV
4834         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4835 #endif
4836
4837         vcpu->arch.microcode_version = 0x100000000ULL;
4838         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4839
4840         /*
4841          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4842          * or POSTED_INTR_WAKEUP_VECTOR.
4843          */
4844         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4845         vmx->pi_desc.sn = 1;
4846 }
4847
4848 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4849 {
4850         struct vcpu_vmx *vmx = to_vmx(vcpu);
4851
4852         if (!init_event)
4853                 __vmx_vcpu_reset(vcpu);
4854
4855         vmx->rmode.vm86_active = 0;
4856         vmx->spec_ctrl = 0;
4857
4858         vmx->msr_ia32_umwait_control = 0;
4859
4860         vmx->hv_deadline_tsc = -1;
4861         kvm_set_cr8(vcpu, 0);
4862
4863         vmx_segment_cache_clear(vmx);
4864         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4865
4866         seg_setup(VCPU_SREG_CS);
4867         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4868         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4869
4870         seg_setup(VCPU_SREG_DS);
4871         seg_setup(VCPU_SREG_ES);
4872         seg_setup(VCPU_SREG_FS);
4873         seg_setup(VCPU_SREG_GS);
4874         seg_setup(VCPU_SREG_SS);
4875
4876         vmcs_write16(GUEST_TR_SELECTOR, 0);
4877         vmcs_writel(GUEST_TR_BASE, 0);
4878         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4879         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4880
4881         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4882         vmcs_writel(GUEST_LDTR_BASE, 0);
4883         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4884         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4885
4886         vmcs_writel(GUEST_GDTR_BASE, 0);
4887         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4888
4889         vmcs_writel(GUEST_IDTR_BASE, 0);
4890         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4891
4892         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4893         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4894         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4895         if (kvm_mpx_supported())
4896                 vmcs_write64(GUEST_BNDCFGS, 0);
4897
4898         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4899
4900         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4901
4902         vpid_sync_context(vmx->vpid);
4903
4904         vmx_update_fb_clear_dis(vcpu, vmx);
4905 }
4906
4907 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4908 {
4909         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4910 }
4911
4912 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4913 {
4914         if (!enable_vnmi ||
4915             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4916                 vmx_enable_irq_window(vcpu);
4917                 return;
4918         }
4919
4920         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4921 }
4922
4923 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4924 {
4925         struct vcpu_vmx *vmx = to_vmx(vcpu);
4926         uint32_t intr;
4927         int irq = vcpu->arch.interrupt.nr;
4928
4929         trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4930
4931         ++vcpu->stat.irq_injections;
4932         if (vmx->rmode.vm86_active) {
4933                 int inc_eip = 0;
4934                 if (vcpu->arch.interrupt.soft)
4935                         inc_eip = vcpu->arch.event_exit_inst_len;
4936                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4937                 return;
4938         }
4939         intr = irq | INTR_INFO_VALID_MASK;
4940         if (vcpu->arch.interrupt.soft) {
4941                 intr |= INTR_TYPE_SOFT_INTR;
4942                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4943                              vmx->vcpu.arch.event_exit_inst_len);
4944         } else
4945                 intr |= INTR_TYPE_EXT_INTR;
4946         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4947
4948         vmx_clear_hlt(vcpu);
4949 }
4950
4951 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4952 {
4953         struct vcpu_vmx *vmx = to_vmx(vcpu);
4954
4955         if (!enable_vnmi) {
4956                 /*
4957                  * Tracking the NMI-blocked state in software is built upon
4958                  * finding the next open IRQ window. This, in turn, depends on
4959                  * well-behaving guests: They have to keep IRQs disabled at
4960                  * least as long as the NMI handler runs. Otherwise we may
4961                  * cause NMI nesting, maybe breaking the guest. But as this is
4962                  * highly unlikely, we can live with the residual risk.
4963                  */
4964                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4965                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4966         }
4967
4968         ++vcpu->stat.nmi_injections;
4969         vmx->loaded_vmcs->nmi_known_unmasked = false;
4970
4971         if (vmx->rmode.vm86_active) {
4972                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4973                 return;
4974         }
4975
4976         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4977                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4978
4979         vmx_clear_hlt(vcpu);
4980 }
4981
4982 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4983 {
4984         struct vcpu_vmx *vmx = to_vmx(vcpu);
4985         bool masked;
4986
4987         if (!enable_vnmi)
4988                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4989         if (vmx->loaded_vmcs->nmi_known_unmasked)
4990                 return false;
4991         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4992         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4993         return masked;
4994 }
4995
4996 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4997 {
4998         struct vcpu_vmx *vmx = to_vmx(vcpu);
4999
5000         if (!enable_vnmi) {
5001                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5002                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5003                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
5004                 }
5005         } else {
5006                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5007                 if (masked)
5008                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5009                                       GUEST_INTR_STATE_NMI);
5010                 else
5011                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5012                                         GUEST_INTR_STATE_NMI);
5013         }
5014 }
5015
5016 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5017 {
5018         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5019                 return false;
5020
5021         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5022                 return true;
5023
5024         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5025                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5026                  GUEST_INTR_STATE_NMI));
5027 }
5028
5029 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5030 {
5031         if (to_vmx(vcpu)->nested.nested_run_pending)
5032                 return -EBUSY;
5033
5034         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5035         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5036                 return -EBUSY;
5037
5038         return !vmx_nmi_blocked(vcpu);
5039 }
5040
5041 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5042 {
5043         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5044                 return false;
5045
5046         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5047                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5048                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5049 }
5050
5051 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5052 {
5053         if (to_vmx(vcpu)->nested.nested_run_pending)
5054                 return -EBUSY;
5055
5056         /*
5057          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5058          * e.g. if the IRQ arrived asynchronously after checking nested events.
5059          */
5060         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5061                 return -EBUSY;
5062
5063         return !vmx_interrupt_blocked(vcpu);
5064 }
5065
5066 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5067 {
5068         void __user *ret;
5069
5070         if (enable_unrestricted_guest)
5071                 return 0;
5072
5073         mutex_lock(&kvm->slots_lock);
5074         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5075                                       PAGE_SIZE * 3);
5076         mutex_unlock(&kvm->slots_lock);
5077
5078         if (IS_ERR(ret))
5079                 return PTR_ERR(ret);
5080
5081         to_kvm_vmx(kvm)->tss_addr = addr;
5082
5083         return init_rmode_tss(kvm, ret);
5084 }
5085
5086 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5087 {
5088         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5089         return 0;
5090 }
5091
5092 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5093 {
5094         switch (vec) {
5095         case BP_VECTOR:
5096                 /*
5097                  * Update instruction length as we may reinject the exception
5098                  * from user space while in guest debugging mode.
5099                  */
5100                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5101                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5102                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5103                         return false;
5104                 fallthrough;
5105         case DB_VECTOR:
5106                 return !(vcpu->guest_debug &
5107                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5108         case DE_VECTOR:
5109         case OF_VECTOR:
5110         case BR_VECTOR:
5111         case UD_VECTOR:
5112         case DF_VECTOR:
5113         case SS_VECTOR:
5114         case GP_VECTOR:
5115         case MF_VECTOR:
5116                 return true;
5117         }
5118         return false;
5119 }
5120
5121 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5122                                   int vec, u32 err_code)
5123 {
5124         /*
5125          * Instruction with address size override prefix opcode 0x67
5126          * Cause the #SS fault with 0 error code in VM86 mode.
5127          */
5128         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5129                 if (kvm_emulate_instruction(vcpu, 0)) {
5130                         if (vcpu->arch.halt_request) {
5131                                 vcpu->arch.halt_request = 0;
5132                                 return kvm_emulate_halt_noskip(vcpu);
5133                         }
5134                         return 1;
5135                 }
5136                 return 0;
5137         }
5138
5139         /*
5140          * Forward all other exceptions that are valid in real mode.
5141          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5142          *        the required debugging infrastructure rework.
5143          */
5144         kvm_queue_exception(vcpu, vec);
5145         return 1;
5146 }
5147
5148 static int handle_machine_check(struct kvm_vcpu *vcpu)
5149 {
5150         /* handled by vmx_vcpu_run() */
5151         return 1;
5152 }
5153
5154 /*
5155  * If the host has split lock detection disabled, then #AC is
5156  * unconditionally injected into the guest, which is the pre split lock
5157  * detection behaviour.
5158  *
5159  * If the host has split lock detection enabled then #AC is
5160  * only injected into the guest when:
5161  *  - Guest CPL == 3 (user mode)
5162  *  - Guest has #AC detection enabled in CR0
5163  *  - Guest EFLAGS has AC bit set
5164  */
5165 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5166 {
5167         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5168                 return true;
5169
5170         return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5171                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5172 }
5173
5174 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5175 {
5176         struct vcpu_vmx *vmx = to_vmx(vcpu);
5177         struct kvm_run *kvm_run = vcpu->run;
5178         u32 intr_info, ex_no, error_code;
5179         unsigned long cr2, dr6;
5180         u32 vect_info;
5181
5182         vect_info = vmx->idt_vectoring_info;
5183         intr_info = vmx_get_intr_info(vcpu);
5184
5185         /*
5186          * Machine checks are handled by handle_exception_irqoff(), or by
5187          * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5188          * vmx_vcpu_enter_exit().
5189          */
5190         if (is_machine_check(intr_info) || is_nmi(intr_info))
5191                 return 1;
5192
5193         /*
5194          * Queue the exception here instead of in handle_nm_fault_irqoff().
5195          * This ensures the nested_vmx check is not skipped so vmexit can
5196          * be reflected to L1 (when it intercepts #NM) before reaching this
5197          * point.
5198          */
5199         if (is_nm_fault(intr_info)) {
5200                 kvm_queue_exception(vcpu, NM_VECTOR);
5201                 return 1;
5202         }
5203
5204         if (is_invalid_opcode(intr_info))
5205                 return handle_ud(vcpu);
5206
5207         error_code = 0;
5208         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5209                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5210
5211         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5212                 WARN_ON_ONCE(!enable_vmware_backdoor);
5213
5214                 /*
5215                  * VMware backdoor emulation on #GP interception only handles
5216                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5217                  * error code on #GP.
5218                  */
5219                 if (error_code) {
5220                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5221                         return 1;
5222                 }
5223                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5224         }
5225
5226         /*
5227          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5228          * MMIO, it is better to report an internal error.
5229          * See the comments in vmx_handle_exit.
5230          */
5231         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5232             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5233                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5234                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5235                 vcpu->run->internal.ndata = 4;
5236                 vcpu->run->internal.data[0] = vect_info;
5237                 vcpu->run->internal.data[1] = intr_info;
5238                 vcpu->run->internal.data[2] = error_code;
5239                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5240                 return 0;
5241         }
5242
5243         if (is_page_fault(intr_info)) {
5244                 cr2 = vmx_get_exit_qual(vcpu);
5245                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5246                         /*
5247                          * EPT will cause page fault only if we need to
5248                          * detect illegal GPAs.
5249                          */
5250                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5251                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5252                         return 1;
5253                 } else
5254                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5255         }
5256
5257         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5258
5259         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5260                 return handle_rmode_exception(vcpu, ex_no, error_code);
5261
5262         switch (ex_no) {
5263         case DB_VECTOR:
5264                 dr6 = vmx_get_exit_qual(vcpu);
5265                 if (!(vcpu->guest_debug &
5266                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5267                         /*
5268                          * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5269                          * instruction.  ICEBP generates a trap-like #DB, but
5270                          * despite its interception control being tied to #DB,
5271                          * is an instruction intercept, i.e. the VM-Exit occurs
5272                          * on the ICEBP itself.  Use the inner "skip" helper to
5273                          * avoid single-step #DB and MTF updates, as ICEBP is
5274                          * higher priority.  Note, skipping ICEBP still clears
5275                          * STI and MOVSS blocking.
5276                          *
5277                          * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5278                          * if single-step is enabled in RFLAGS and STI or MOVSS
5279                          * blocking is active, as the CPU doesn't set the bit
5280                          * on VM-Exit due to #DB interception.  VM-Entry has a
5281                          * consistency check that a single-step #DB is pending
5282                          * in this scenario as the previous instruction cannot
5283                          * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5284                          * don't modify RFLAGS), therefore the one instruction
5285                          * delay when activating single-step breakpoints must
5286                          * have already expired.  Note, the CPU sets/clears BS
5287                          * as appropriate for all other VM-Exits types.
5288                          */
5289                         if (is_icebp(intr_info))
5290                                 WARN_ON(!skip_emulated_instruction(vcpu));
5291                         else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5292                                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5293                                   (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5294                                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5295                                             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5296
5297                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5298                         return 1;
5299                 }
5300                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5301                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5302                 fallthrough;
5303         case BP_VECTOR:
5304                 /*
5305                  * Update instruction length as we may reinject #BP from
5306                  * user space while in guest debugging mode. Reading it for
5307                  * #DB as well causes no harm, it is not used in that case.
5308                  */
5309                 vmx->vcpu.arch.event_exit_inst_len =
5310                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5311                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5312                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5313                 kvm_run->debug.arch.exception = ex_no;
5314                 break;
5315         case AC_VECTOR:
5316                 if (vmx_guest_inject_ac(vcpu)) {
5317                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5318                         return 1;
5319                 }
5320
5321                 /*
5322                  * Handle split lock. Depending on detection mode this will
5323                  * either warn and disable split lock detection for this
5324                  * task or force SIGBUS on it.
5325                  */
5326                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5327                         return 1;
5328                 fallthrough;
5329         default:
5330                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5331                 kvm_run->ex.exception = ex_no;
5332                 kvm_run->ex.error_code = error_code;
5333                 break;
5334         }
5335         return 0;
5336 }
5337
5338 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5339 {
5340         ++vcpu->stat.irq_exits;
5341         return 1;
5342 }
5343
5344 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5345 {
5346         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5347         vcpu->mmio_needed = 0;
5348         return 0;
5349 }
5350
5351 static int handle_io(struct kvm_vcpu *vcpu)
5352 {
5353         unsigned long exit_qualification;
5354         int size, in, string;
5355         unsigned port;
5356
5357         exit_qualification = vmx_get_exit_qual(vcpu);
5358         string = (exit_qualification & 16) != 0;
5359
5360         ++vcpu->stat.io_exits;
5361
5362         if (string)
5363                 return kvm_emulate_instruction(vcpu, 0);
5364
5365         port = exit_qualification >> 16;
5366         size = (exit_qualification & 7) + 1;
5367         in = (exit_qualification & 8) != 0;
5368
5369         return kvm_fast_pio(vcpu, size, port, in);
5370 }
5371
5372 static void
5373 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5374 {
5375         /*
5376          * Patch in the VMCALL instruction:
5377          */
5378         hypercall[0] = 0x0f;
5379         hypercall[1] = 0x01;
5380         hypercall[2] = 0xc1;
5381 }
5382
5383 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5384 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5385 {
5386         if (is_guest_mode(vcpu)) {
5387                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5388                 unsigned long orig_val = val;
5389
5390                 /*
5391                  * We get here when L2 changed cr0 in a way that did not change
5392                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5393                  * but did change L0 shadowed bits. So we first calculate the
5394                  * effective cr0 value that L1 would like to write into the
5395                  * hardware. It consists of the L2-owned bits from the new
5396                  * value combined with the L1-owned bits from L1's guest_cr0.
5397                  */
5398                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5399                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5400
5401                 if (kvm_set_cr0(vcpu, val))
5402                         return 1;
5403                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5404                 return 0;
5405         } else {
5406                 return kvm_set_cr0(vcpu, val);
5407         }
5408 }
5409
5410 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5411 {
5412         if (is_guest_mode(vcpu)) {
5413                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5414                 unsigned long orig_val = val;
5415
5416                 /* analogously to handle_set_cr0 */
5417                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5418                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5419                 if (kvm_set_cr4(vcpu, val))
5420                         return 1;
5421                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5422                 return 0;
5423         } else
5424                 return kvm_set_cr4(vcpu, val);
5425 }
5426
5427 static int handle_desc(struct kvm_vcpu *vcpu)
5428 {
5429         /*
5430          * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5431          * and other code needs to be updated if UMIP can be guest owned.
5432          */
5433         BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5434
5435         WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5436         return kvm_emulate_instruction(vcpu, 0);
5437 }
5438
5439 static int handle_cr(struct kvm_vcpu *vcpu)
5440 {
5441         unsigned long exit_qualification, val;
5442         int cr;
5443         int reg;
5444         int err;
5445         int ret;
5446
5447         exit_qualification = vmx_get_exit_qual(vcpu);
5448         cr = exit_qualification & 15;
5449         reg = (exit_qualification >> 8) & 15;
5450         switch ((exit_qualification >> 4) & 3) {
5451         case 0: /* mov to cr */
5452                 val = kvm_register_read(vcpu, reg);
5453                 trace_kvm_cr_write(cr, val);
5454                 switch (cr) {
5455                 case 0:
5456                         err = handle_set_cr0(vcpu, val);
5457                         return kvm_complete_insn_gp(vcpu, err);
5458                 case 3:
5459                         WARN_ON_ONCE(enable_unrestricted_guest);
5460
5461                         err = kvm_set_cr3(vcpu, val);
5462                         return kvm_complete_insn_gp(vcpu, err);
5463                 case 4:
5464                         err = handle_set_cr4(vcpu, val);
5465                         return kvm_complete_insn_gp(vcpu, err);
5466                 case 8: {
5467                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5468                                 u8 cr8 = (u8)val;
5469                                 err = kvm_set_cr8(vcpu, cr8);
5470                                 ret = kvm_complete_insn_gp(vcpu, err);
5471                                 if (lapic_in_kernel(vcpu))
5472                                         return ret;
5473                                 if (cr8_prev <= cr8)
5474                                         return ret;
5475                                 /*
5476                                  * TODO: we might be squashing a
5477                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5478                                  * KVM_EXIT_DEBUG here.
5479                                  */
5480                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5481                                 return 0;
5482                         }
5483                 }
5484                 break;
5485         case 2: /* clts */
5486                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5487                 return -EIO;
5488         case 1: /*mov from cr*/
5489                 switch (cr) {
5490                 case 3:
5491                         WARN_ON_ONCE(enable_unrestricted_guest);
5492
5493                         val = kvm_read_cr3(vcpu);
5494                         kvm_register_write(vcpu, reg, val);
5495                         trace_kvm_cr_read(cr, val);
5496                         return kvm_skip_emulated_instruction(vcpu);
5497                 case 8:
5498                         val = kvm_get_cr8(vcpu);
5499                         kvm_register_write(vcpu, reg, val);
5500                         trace_kvm_cr_read(cr, val);
5501                         return kvm_skip_emulated_instruction(vcpu);
5502                 }
5503                 break;
5504         case 3: /* lmsw */
5505                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5506                 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5507                 kvm_lmsw(vcpu, val);
5508
5509                 return kvm_skip_emulated_instruction(vcpu);
5510         default:
5511                 break;
5512         }
5513         vcpu->run->exit_reason = 0;
5514         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5515                (int)(exit_qualification >> 4) & 3, cr);
5516         return 0;
5517 }
5518
5519 static int handle_dr(struct kvm_vcpu *vcpu)
5520 {
5521         unsigned long exit_qualification;
5522         int dr, dr7, reg;
5523         int err = 1;
5524
5525         exit_qualification = vmx_get_exit_qual(vcpu);
5526         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5527
5528         /* First, if DR does not exist, trigger UD */
5529         if (!kvm_require_dr(vcpu, dr))
5530                 return 1;
5531
5532         if (vmx_get_cpl(vcpu) > 0)
5533                 goto out;
5534
5535         dr7 = vmcs_readl(GUEST_DR7);
5536         if (dr7 & DR7_GD) {
5537                 /*
5538                  * As the vm-exit takes precedence over the debug trap, we
5539                  * need to emulate the latter, either for the host or the
5540                  * guest debugging itself.
5541                  */
5542                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5543                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5544                         vcpu->run->debug.arch.dr7 = dr7;
5545                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5546                         vcpu->run->debug.arch.exception = DB_VECTOR;
5547                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5548                         return 0;
5549                 } else {
5550                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5551                         return 1;
5552                 }
5553         }
5554
5555         if (vcpu->guest_debug == 0) {
5556                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5557
5558                 /*
5559                  * No more DR vmexits; force a reload of the debug registers
5560                  * and reenter on this instruction.  The next vmexit will
5561                  * retrieve the full state of the debug registers.
5562                  */
5563                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5564                 return 1;
5565         }
5566
5567         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5568         if (exit_qualification & TYPE_MOV_FROM_DR) {
5569                 unsigned long val;
5570
5571                 kvm_get_dr(vcpu, dr, &val);
5572                 kvm_register_write(vcpu, reg, val);
5573                 err = 0;
5574         } else {
5575                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5576         }
5577
5578 out:
5579         return kvm_complete_insn_gp(vcpu, err);
5580 }
5581
5582 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5583 {
5584         get_debugreg(vcpu->arch.db[0], 0);
5585         get_debugreg(vcpu->arch.db[1], 1);
5586         get_debugreg(vcpu->arch.db[2], 2);
5587         get_debugreg(vcpu->arch.db[3], 3);
5588         get_debugreg(vcpu->arch.dr6, 6);
5589         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5590
5591         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5592         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5593
5594         /*
5595          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5596          * a stale dr6 from the guest.
5597          */
5598         set_debugreg(DR6_RESERVED, 6);
5599 }
5600
5601 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5602 {
5603         vmcs_writel(GUEST_DR7, val);
5604 }
5605
5606 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5607 {
5608         kvm_apic_update_ppr(vcpu);
5609         return 1;
5610 }
5611
5612 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5613 {
5614         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5615
5616         kvm_make_request(KVM_REQ_EVENT, vcpu);
5617
5618         ++vcpu->stat.irq_window_exits;
5619         return 1;
5620 }
5621
5622 static int handle_invlpg(struct kvm_vcpu *vcpu)
5623 {
5624         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5625
5626         kvm_mmu_invlpg(vcpu, exit_qualification);
5627         return kvm_skip_emulated_instruction(vcpu);
5628 }
5629
5630 static int handle_apic_access(struct kvm_vcpu *vcpu)
5631 {
5632         if (likely(fasteoi)) {
5633                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5634                 int access_type, offset;
5635
5636                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5637                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5638                 /*
5639                  * Sane guest uses MOV to write EOI, with written value
5640                  * not cared. So make a short-circuit here by avoiding
5641                  * heavy instruction emulation.
5642                  */
5643                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5644                     (offset == APIC_EOI)) {
5645                         kvm_lapic_set_eoi(vcpu);
5646                         return kvm_skip_emulated_instruction(vcpu);
5647                 }
5648         }
5649         return kvm_emulate_instruction(vcpu, 0);
5650 }
5651
5652 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5653 {
5654         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5655         int vector = exit_qualification & 0xff;
5656
5657         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5658         kvm_apic_set_eoi_accelerated(vcpu, vector);
5659         return 1;
5660 }
5661
5662 static int handle_apic_write(struct kvm_vcpu *vcpu)
5663 {
5664         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5665
5666         /*
5667          * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5668          * hardware has done any necessary aliasing, offset adjustments, etc...
5669          * for the access.  I.e. the correct value has already been  written to
5670          * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5671          * retrieve the register value and emulate the access.
5672          */
5673         u32 offset = exit_qualification & 0xff0;
5674
5675         kvm_apic_write_nodecode(vcpu, offset);
5676         return 1;
5677 }
5678
5679 static int handle_task_switch(struct kvm_vcpu *vcpu)
5680 {
5681         struct vcpu_vmx *vmx = to_vmx(vcpu);
5682         unsigned long exit_qualification;
5683         bool has_error_code = false;
5684         u32 error_code = 0;
5685         u16 tss_selector;
5686         int reason, type, idt_v, idt_index;
5687
5688         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5689         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5690         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5691
5692         exit_qualification = vmx_get_exit_qual(vcpu);
5693
5694         reason = (u32)exit_qualification >> 30;
5695         if (reason == TASK_SWITCH_GATE && idt_v) {
5696                 switch (type) {
5697                 case INTR_TYPE_NMI_INTR:
5698                         vcpu->arch.nmi_injected = false;
5699                         vmx_set_nmi_mask(vcpu, true);
5700                         break;
5701                 case INTR_TYPE_EXT_INTR:
5702                 case INTR_TYPE_SOFT_INTR:
5703                         kvm_clear_interrupt_queue(vcpu);
5704                         break;
5705                 case INTR_TYPE_HARD_EXCEPTION:
5706                         if (vmx->idt_vectoring_info &
5707                             VECTORING_INFO_DELIVER_CODE_MASK) {
5708                                 has_error_code = true;
5709                                 error_code =
5710                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5711                         }
5712                         fallthrough;
5713                 case INTR_TYPE_SOFT_EXCEPTION:
5714                         kvm_clear_exception_queue(vcpu);
5715                         break;
5716                 default:
5717                         break;
5718                 }
5719         }
5720         tss_selector = exit_qualification;
5721
5722         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5723                        type != INTR_TYPE_EXT_INTR &&
5724                        type != INTR_TYPE_NMI_INTR))
5725                 WARN_ON(!skip_emulated_instruction(vcpu));
5726
5727         /*
5728          * TODO: What about debug traps on tss switch?
5729          *       Are we supposed to inject them and update dr6?
5730          */
5731         return kvm_task_switch(vcpu, tss_selector,
5732                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5733                                reason, has_error_code, error_code);
5734 }
5735
5736 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5737 {
5738         unsigned long exit_qualification;
5739         gpa_t gpa;
5740         u64 error_code;
5741
5742         exit_qualification = vmx_get_exit_qual(vcpu);
5743
5744         /*
5745          * EPT violation happened while executing iret from NMI,
5746          * "blocked by NMI" bit has to be set before next VM entry.
5747          * There are errata that may cause this bit to not be set:
5748          * AAK134, BY25.
5749          */
5750         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5751                         enable_vnmi &&
5752                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5753                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5754
5755         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5756         trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5757
5758         /* Is it a read fault? */
5759         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5760                      ? PFERR_USER_MASK : 0;
5761         /* Is it a write fault? */
5762         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5763                       ? PFERR_WRITE_MASK : 0;
5764         /* Is it a fetch fault? */
5765         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5766                       ? PFERR_FETCH_MASK : 0;
5767         /* ept page table entry is present? */
5768         error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5769                       ? PFERR_PRESENT_MASK : 0;
5770
5771         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5772                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5773
5774         vcpu->arch.exit_qualification = exit_qualification;
5775
5776         /*
5777          * Check that the GPA doesn't exceed physical memory limits, as that is
5778          * a guest page fault.  We have to emulate the instruction here, because
5779          * if the illegal address is that of a paging structure, then
5780          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5781          * would also use advanced VM-exit information for EPT violations to
5782          * reconstruct the page fault error code.
5783          */
5784         if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5785                 return kvm_emulate_instruction(vcpu, 0);
5786
5787         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5788 }
5789
5790 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5791 {
5792         gpa_t gpa;
5793
5794         if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5795                 return 1;
5796
5797         /*
5798          * A nested guest cannot optimize MMIO vmexits, because we have an
5799          * nGPA here instead of the required GPA.
5800          */
5801         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5802         if (!is_guest_mode(vcpu) &&
5803             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5804                 trace_kvm_fast_mmio(gpa);
5805                 return kvm_skip_emulated_instruction(vcpu);
5806         }
5807
5808         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5809 }
5810
5811 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5812 {
5813         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5814                 return -EIO;
5815
5816         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5817         ++vcpu->stat.nmi_window_exits;
5818         kvm_make_request(KVM_REQ_EVENT, vcpu);
5819
5820         return 1;
5821 }
5822
5823 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5824 {
5825         struct vcpu_vmx *vmx = to_vmx(vcpu);
5826
5827         return vmx->emulation_required && !vmx->rmode.vm86_active &&
5828                (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5829 }
5830
5831 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5832 {
5833         struct vcpu_vmx *vmx = to_vmx(vcpu);
5834         bool intr_window_requested;
5835         unsigned count = 130;
5836
5837         intr_window_requested = exec_controls_get(vmx) &
5838                                 CPU_BASED_INTR_WINDOW_EXITING;
5839
5840         while (vmx->emulation_required && count-- != 0) {
5841                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5842                         return handle_interrupt_window(&vmx->vcpu);
5843
5844                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5845                         return 1;
5846
5847                 if (!kvm_emulate_instruction(vcpu, 0))
5848                         return 0;
5849
5850                 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5851                         kvm_prepare_emulation_failure_exit(vcpu);
5852                         return 0;
5853                 }
5854
5855                 if (vcpu->arch.halt_request) {
5856                         vcpu->arch.halt_request = 0;
5857                         return kvm_emulate_halt_noskip(vcpu);
5858                 }
5859
5860                 /*
5861                  * Note, return 1 and not 0, vcpu_run() will invoke
5862                  * xfer_to_guest_mode() which will create a proper return
5863                  * code.
5864                  */
5865                 if (__xfer_to_guest_mode_work_pending())
5866                         return 1;
5867         }
5868
5869         return 1;
5870 }
5871
5872 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5873 {
5874         if (vmx_emulation_required_with_pending_exception(vcpu)) {
5875                 kvm_prepare_emulation_failure_exit(vcpu);
5876                 return 0;
5877         }
5878
5879         return 1;
5880 }
5881
5882 static void grow_ple_window(struct kvm_vcpu *vcpu)
5883 {
5884         struct vcpu_vmx *vmx = to_vmx(vcpu);
5885         unsigned int old = vmx->ple_window;
5886
5887         vmx->ple_window = __grow_ple_window(old, ple_window,
5888                                             ple_window_grow,
5889                                             ple_window_max);
5890
5891         if (vmx->ple_window != old) {
5892                 vmx->ple_window_dirty = true;
5893                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5894                                             vmx->ple_window, old);
5895         }
5896 }
5897
5898 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5899 {
5900         struct vcpu_vmx *vmx = to_vmx(vcpu);
5901         unsigned int old = vmx->ple_window;
5902
5903         vmx->ple_window = __shrink_ple_window(old, ple_window,
5904                                               ple_window_shrink,
5905                                               ple_window);
5906
5907         if (vmx->ple_window != old) {
5908                 vmx->ple_window_dirty = true;
5909                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5910                                             vmx->ple_window, old);
5911         }
5912 }
5913
5914 /*
5915  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5916  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5917  */
5918 static int handle_pause(struct kvm_vcpu *vcpu)
5919 {
5920         if (!kvm_pause_in_guest(vcpu->kvm))
5921                 grow_ple_window(vcpu);
5922
5923         /*
5924          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5925          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5926          * never set PAUSE_EXITING and just set PLE if supported,
5927          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5928          */
5929         kvm_vcpu_on_spin(vcpu, true);
5930         return kvm_skip_emulated_instruction(vcpu);
5931 }
5932
5933 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5934 {
5935         return 1;
5936 }
5937
5938 static int handle_invpcid(struct kvm_vcpu *vcpu)
5939 {
5940         u32 vmx_instruction_info;
5941         unsigned long type;
5942         gva_t gva;
5943         struct {
5944                 u64 pcid;
5945                 u64 gla;
5946         } operand;
5947         int gpr_index;
5948
5949         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5950                 kvm_queue_exception(vcpu, UD_VECTOR);
5951                 return 1;
5952         }
5953
5954         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5955         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5956         type = kvm_register_read(vcpu, gpr_index);
5957
5958         /* According to the Intel instruction reference, the memory operand
5959          * is read even if it isn't needed (e.g., for type==all)
5960          */
5961         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5962                                 vmx_instruction_info, false,
5963                                 sizeof(operand), &gva))
5964                 return 1;
5965
5966         return kvm_handle_invpcid(vcpu, type, gva);
5967 }
5968
5969 static int handle_pml_full(struct kvm_vcpu *vcpu)
5970 {
5971         unsigned long exit_qualification;
5972
5973         trace_kvm_pml_full(vcpu->vcpu_id);
5974
5975         exit_qualification = vmx_get_exit_qual(vcpu);
5976
5977         /*
5978          * PML buffer FULL happened while executing iret from NMI,
5979          * "blocked by NMI" bit has to be set before next VM entry.
5980          */
5981         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5982                         enable_vnmi &&
5983                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5984                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5985                                 GUEST_INTR_STATE_NMI);
5986
5987         /*
5988          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5989          * here.., and there's no userspace involvement needed for PML.
5990          */
5991         return 1;
5992 }
5993
5994 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5995 {
5996         struct vcpu_vmx *vmx = to_vmx(vcpu);
5997
5998         if (!vmx->req_immediate_exit &&
5999             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6000                 kvm_lapic_expired_hv_timer(vcpu);
6001                 return EXIT_FASTPATH_REENTER_GUEST;
6002         }
6003
6004         return EXIT_FASTPATH_NONE;
6005 }
6006
6007 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6008 {
6009         handle_fastpath_preemption_timer(vcpu);
6010         return 1;
6011 }
6012
6013 /*
6014  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6015  * are overwritten by nested_vmx_setup() when nested=1.
6016  */
6017 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6018 {
6019         kvm_queue_exception(vcpu, UD_VECTOR);
6020         return 1;
6021 }
6022
6023 #ifndef CONFIG_X86_SGX_KVM
6024 static int handle_encls(struct kvm_vcpu *vcpu)
6025 {
6026         /*
6027          * SGX virtualization is disabled.  There is no software enable bit for
6028          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6029          * the guest from executing ENCLS (when SGX is supported by hardware).
6030          */
6031         kvm_queue_exception(vcpu, UD_VECTOR);
6032         return 1;
6033 }
6034 #endif /* CONFIG_X86_SGX_KVM */
6035
6036 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6037 {
6038         /*
6039          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6040          * VM-Exits. Unconditionally set the flag here and leave the handling to
6041          * vmx_handle_exit().
6042          */
6043         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6044         return 1;
6045 }
6046
6047 static int handle_notify(struct kvm_vcpu *vcpu)
6048 {
6049         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6050         bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6051
6052         ++vcpu->stat.notify_window_exits;
6053
6054         /*
6055          * Notify VM exit happened while executing iret from NMI,
6056          * "blocked by NMI" bit has to be set before next VM entry.
6057          */
6058         if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6059                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6060                               GUEST_INTR_STATE_NMI);
6061
6062         if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6063             context_invalid) {
6064                 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6065                 vcpu->run->notify.flags = context_invalid ?
6066                                           KVM_NOTIFY_CONTEXT_INVALID : 0;
6067                 return 0;
6068         }
6069
6070         return 1;
6071 }
6072
6073 /*
6074  * The exit handlers return 1 if the exit was handled fully and guest execution
6075  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6076  * to be done to userspace and return 0.
6077  */
6078 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6079         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6080         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6081         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6082         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6083         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6084         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6085         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6086         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6087         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6088         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6089         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6090         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
6091         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
6092         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6093         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6094         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6095         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
6096         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
6097         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
6098         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
6099         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
6100         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
6101         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
6102         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
6103         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
6104         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6105         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6106         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6107         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6108         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6109         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6110         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6111         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6112         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
6113         [EXIT_REASON_LDTR_TR]                 = handle_desc,
6114         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6115         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6116         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6117         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
6118         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6119         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6120         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6121         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6122         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6123         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6124         [EXIT_REASON_PML_FULL]                = handle_pml_full,
6125         [EXIT_REASON_INVPCID]                 = handle_invpcid,
6126         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
6127         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
6128         [EXIT_REASON_ENCLS]                   = handle_encls,
6129         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6130         [EXIT_REASON_NOTIFY]                  = handle_notify,
6131 };
6132
6133 static const int kvm_vmx_max_exit_handlers =
6134         ARRAY_SIZE(kvm_vmx_exit_handlers);
6135
6136 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6137                               u64 *info1, u64 *info2,
6138                               u32 *intr_info, u32 *error_code)
6139 {
6140         struct vcpu_vmx *vmx = to_vmx(vcpu);
6141
6142         *reason = vmx->exit_reason.full;
6143         *info1 = vmx_get_exit_qual(vcpu);
6144         if (!(vmx->exit_reason.failed_vmentry)) {
6145                 *info2 = vmx->idt_vectoring_info;
6146                 *intr_info = vmx_get_intr_info(vcpu);
6147                 if (is_exception_with_error_code(*intr_info))
6148                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6149                 else
6150                         *error_code = 0;
6151         } else {
6152                 *info2 = 0;
6153                 *intr_info = 0;
6154                 *error_code = 0;
6155         }
6156 }
6157
6158 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6159 {
6160         if (vmx->pml_pg) {
6161                 __free_page(vmx->pml_pg);
6162                 vmx->pml_pg = NULL;
6163         }
6164 }
6165
6166 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6167 {
6168         struct vcpu_vmx *vmx = to_vmx(vcpu);
6169         u64 *pml_buf;
6170         u16 pml_idx;
6171
6172         pml_idx = vmcs_read16(GUEST_PML_INDEX);
6173
6174         /* Do nothing if PML buffer is empty */
6175         if (pml_idx == (PML_ENTITY_NUM - 1))
6176                 return;
6177
6178         /* PML index always points to next available PML buffer entity */
6179         if (pml_idx >= PML_ENTITY_NUM)
6180                 pml_idx = 0;
6181         else
6182                 pml_idx++;
6183
6184         pml_buf = page_address(vmx->pml_pg);
6185         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6186                 u64 gpa;
6187
6188                 gpa = pml_buf[pml_idx];
6189                 WARN_ON(gpa & (PAGE_SIZE - 1));
6190                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6191         }
6192
6193         /* reset PML index */
6194         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6195 }
6196
6197 static void vmx_dump_sel(char *name, uint32_t sel)
6198 {
6199         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6200                name, vmcs_read16(sel),
6201                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6202                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6203                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6204 }
6205
6206 static void vmx_dump_dtsel(char *name, uint32_t limit)
6207 {
6208         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6209                name, vmcs_read32(limit),
6210                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6211 }
6212
6213 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6214 {
6215         unsigned int i;
6216         struct vmx_msr_entry *e;
6217
6218         pr_err("MSR %s:\n", name);
6219         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6220                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6221 }
6222
6223 void dump_vmcs(struct kvm_vcpu *vcpu)
6224 {
6225         struct vcpu_vmx *vmx = to_vmx(vcpu);
6226         u32 vmentry_ctl, vmexit_ctl;
6227         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6228         u64 tertiary_exec_control;
6229         unsigned long cr4;
6230         int efer_slot;
6231
6232         if (!dump_invalid_vmcs) {
6233                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6234                 return;
6235         }
6236
6237         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6238         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6239         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6240         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6241         cr4 = vmcs_readl(GUEST_CR4);
6242
6243         if (cpu_has_secondary_exec_ctrls())
6244                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6245         else
6246                 secondary_exec_control = 0;
6247
6248         if (cpu_has_tertiary_exec_ctrls())
6249                 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6250         else
6251                 tertiary_exec_control = 0;
6252
6253         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6254                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6255         pr_err("*** Guest State ***\n");
6256         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6257                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6258                vmcs_readl(CR0_GUEST_HOST_MASK));
6259         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6260                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6261         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6262         if (cpu_has_vmx_ept()) {
6263                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6264                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6265                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6266                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6267         }
6268         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6269                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6270         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6271                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6272         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6273                vmcs_readl(GUEST_SYSENTER_ESP),
6274                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6275         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6276         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6277         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6278         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6279         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6280         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6281         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6282         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6283         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6284         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6285         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6286         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6287                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6288         else if (efer_slot >= 0)
6289                 pr_err("EFER= 0x%016llx (autoload)\n",
6290                        vmx->msr_autoload.guest.val[efer_slot].value);
6291         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6292                 pr_err("EFER= 0x%016llx (effective)\n",
6293                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
6294         else
6295                 pr_err("EFER= 0x%016llx (effective)\n",
6296                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6297         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6298                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6299         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6300                vmcs_read64(GUEST_IA32_DEBUGCTL),
6301                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6302         if (cpu_has_load_perf_global_ctrl() &&
6303             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6304                 pr_err("PerfGlobCtl = 0x%016llx\n",
6305                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6306         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6307                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6308         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6309                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6310                vmcs_read32(GUEST_ACTIVITY_STATE));
6311         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6312                 pr_err("InterruptStatus = %04x\n",
6313                        vmcs_read16(GUEST_INTR_STATUS));
6314         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6315                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6316         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6317                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6318
6319         pr_err("*** Host State ***\n");
6320         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6321                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6322         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6323                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6324                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6325                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6326                vmcs_read16(HOST_TR_SELECTOR));
6327         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6328                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6329                vmcs_readl(HOST_TR_BASE));
6330         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6331                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6332         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6333                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6334                vmcs_readl(HOST_CR4));
6335         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6336                vmcs_readl(HOST_IA32_SYSENTER_ESP),
6337                vmcs_read32(HOST_IA32_SYSENTER_CS),
6338                vmcs_readl(HOST_IA32_SYSENTER_EIP));
6339         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6340                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6341         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6342                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6343         if (cpu_has_load_perf_global_ctrl() &&
6344             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6345                 pr_err("PerfGlobCtl = 0x%016llx\n",
6346                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6347         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6348                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6349
6350         pr_err("*** Control State ***\n");
6351         pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6352                cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6353         pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6354                pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6355         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6356                vmcs_read32(EXCEPTION_BITMAP),
6357                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6358                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6359         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6360                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6361                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6362                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6363         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6364                vmcs_read32(VM_EXIT_INTR_INFO),
6365                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6366                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6367         pr_err("        reason=%08x qualification=%016lx\n",
6368                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6369         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6370                vmcs_read32(IDT_VECTORING_INFO_FIELD),
6371                vmcs_read32(IDT_VECTORING_ERROR_CODE));
6372         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6373         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6374                 pr_err("TSC Multiplier = 0x%016llx\n",
6375                        vmcs_read64(TSC_MULTIPLIER));
6376         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6377                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6378                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
6379                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6380                 }
6381                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6382                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6383                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6384                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6385         }
6386         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6387                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6388         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6389                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6390         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6391                 pr_err("PLE Gap=%08x Window=%08x\n",
6392                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6393         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6394                 pr_err("Virtual processor ID = 0x%04x\n",
6395                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
6396 }
6397
6398 /*
6399  * The guest has exited.  See if we can fix it or if we need userspace
6400  * assistance.
6401  */
6402 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6403 {
6404         struct vcpu_vmx *vmx = to_vmx(vcpu);
6405         union vmx_exit_reason exit_reason = vmx->exit_reason;
6406         u32 vectoring_info = vmx->idt_vectoring_info;
6407         u16 exit_handler_index;
6408
6409         /*
6410          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6411          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6412          * querying dirty_bitmap, we only need to kick all vcpus out of guest
6413          * mode as if vcpus is in root mode, the PML buffer must has been
6414          * flushed already.  Note, PML is never enabled in hardware while
6415          * running L2.
6416          */
6417         if (enable_pml && !is_guest_mode(vcpu))
6418                 vmx_flush_pml_buffer(vcpu);
6419
6420         /*
6421          * KVM should never reach this point with a pending nested VM-Enter.
6422          * More specifically, short-circuiting VM-Entry to emulate L2 due to
6423          * invalid guest state should never happen as that means KVM knowingly
6424          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6425          */
6426         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6427                 return -EIO;
6428
6429         if (is_guest_mode(vcpu)) {
6430                 /*
6431                  * PML is never enabled when running L2, bail immediately if a
6432                  * PML full exit occurs as something is horribly wrong.
6433                  */
6434                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6435                         goto unexpected_vmexit;
6436
6437                 /*
6438                  * The host physical addresses of some pages of guest memory
6439                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6440                  * Page). The CPU may write to these pages via their host
6441                  * physical address while L2 is running, bypassing any
6442                  * address-translation-based dirty tracking (e.g. EPT write
6443                  * protection).
6444                  *
6445                  * Mark them dirty on every exit from L2 to prevent them from
6446                  * getting out of sync with dirty tracking.
6447                  */
6448                 nested_mark_vmcs12_pages_dirty(vcpu);
6449
6450                 /*
6451                  * Synthesize a triple fault if L2 state is invalid.  In normal
6452                  * operation, nested VM-Enter rejects any attempt to enter L2
6453                  * with invalid state.  However, those checks are skipped if
6454                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6455                  * L2 state is invalid, it means either L1 modified SMRAM state
6456                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6457                  * doing so is architecturally allowed in the RSM case, and is
6458                  * the least awful solution for the userspace case without
6459                  * risking false positives.
6460                  */
6461                 if (vmx->emulation_required) {
6462                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6463                         return 1;
6464                 }
6465
6466                 if (nested_vmx_reflect_vmexit(vcpu))
6467                         return 1;
6468         }
6469
6470         /* If guest state is invalid, start emulating.  L2 is handled above. */
6471         if (vmx->emulation_required)
6472                 return handle_invalid_guest_state(vcpu);
6473
6474         if (exit_reason.failed_vmentry) {
6475                 dump_vmcs(vcpu);
6476                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6477                 vcpu->run->fail_entry.hardware_entry_failure_reason
6478                         = exit_reason.full;
6479                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6480                 return 0;
6481         }
6482
6483         if (unlikely(vmx->fail)) {
6484                 dump_vmcs(vcpu);
6485                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6486                 vcpu->run->fail_entry.hardware_entry_failure_reason
6487                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6488                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6489                 return 0;
6490         }
6491
6492         /*
6493          * Note:
6494          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6495          * delivery event since it indicates guest is accessing MMIO.
6496          * The vm-exit can be triggered again after return to guest that
6497          * will cause infinite loop.
6498          */
6499         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6500             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6501              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6502              exit_reason.basic != EXIT_REASON_PML_FULL &&
6503              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6504              exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6505              exit_reason.basic != EXIT_REASON_NOTIFY)) {
6506                 int ndata = 3;
6507
6508                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6509                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6510                 vcpu->run->internal.data[0] = vectoring_info;
6511                 vcpu->run->internal.data[1] = exit_reason.full;
6512                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6513                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6514                         vcpu->run->internal.data[ndata++] =
6515                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6516                 }
6517                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6518                 vcpu->run->internal.ndata = ndata;
6519                 return 0;
6520         }
6521
6522         if (unlikely(!enable_vnmi &&
6523                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6524                 if (!vmx_interrupt_blocked(vcpu)) {
6525                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6526                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6527                            vcpu->arch.nmi_pending) {
6528                         /*
6529                          * This CPU don't support us in finding the end of an
6530                          * NMI-blocked window if the guest runs with IRQs
6531                          * disabled. So we pull the trigger after 1 s of
6532                          * futile waiting, but inform the user about this.
6533                          */
6534                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6535                                "state on VCPU %d after 1 s timeout\n",
6536                                __func__, vcpu->vcpu_id);
6537                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6538                 }
6539         }
6540
6541         if (exit_fastpath != EXIT_FASTPATH_NONE)
6542                 return 1;
6543
6544         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6545                 goto unexpected_vmexit;
6546 #ifdef CONFIG_MITIGATION_RETPOLINE
6547         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6548                 return kvm_emulate_wrmsr(vcpu);
6549         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6550                 return handle_preemption_timer(vcpu);
6551         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6552                 return handle_interrupt_window(vcpu);
6553         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6554                 return handle_external_interrupt(vcpu);
6555         else if (exit_reason.basic == EXIT_REASON_HLT)
6556                 return kvm_emulate_halt(vcpu);
6557         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6558                 return handle_ept_misconfig(vcpu);
6559 #endif
6560
6561         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6562                                                 kvm_vmx_max_exit_handlers);
6563         if (!kvm_vmx_exit_handlers[exit_handler_index])
6564                 goto unexpected_vmexit;
6565
6566         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6567
6568 unexpected_vmexit:
6569         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6570                     exit_reason.full);
6571         dump_vmcs(vcpu);
6572         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6573         vcpu->run->internal.suberror =
6574                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6575         vcpu->run->internal.ndata = 2;
6576         vcpu->run->internal.data[0] = exit_reason.full;
6577         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6578         return 0;
6579 }
6580
6581 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6582 {
6583         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6584
6585         /*
6586          * Exit to user space when bus lock detected to inform that there is
6587          * a bus lock in guest.
6588          */
6589         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6590                 if (ret > 0)
6591                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6592
6593                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6594                 return 0;
6595         }
6596         return ret;
6597 }
6598
6599 /*
6600  * Software based L1D cache flush which is used when microcode providing
6601  * the cache control MSR is not loaded.
6602  *
6603  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6604  * flush it is required to read in 64 KiB because the replacement algorithm
6605  * is not exactly LRU. This could be sized at runtime via topology
6606  * information but as all relevant affected CPUs have 32KiB L1D cache size
6607  * there is no point in doing so.
6608  */
6609 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6610 {
6611         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6612
6613         /*
6614          * This code is only executed when the flush mode is 'cond' or
6615          * 'always'
6616          */
6617         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6618                 bool flush_l1d;
6619
6620                 /*
6621                  * Clear the per-vcpu flush bit, it gets set again
6622                  * either from vcpu_run() or from one of the unsafe
6623                  * VMEXIT handlers.
6624                  */
6625                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6626                 vcpu->arch.l1tf_flush_l1d = false;
6627
6628                 /*
6629                  * Clear the per-cpu flush bit, it gets set again from
6630                  * the interrupt handlers.
6631                  */
6632                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6633                 kvm_clear_cpu_l1tf_flush_l1d();
6634
6635                 if (!flush_l1d)
6636                         return;
6637         }
6638
6639         vcpu->stat.l1d_flush++;
6640
6641         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6642                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6643                 return;
6644         }
6645
6646         asm volatile(
6647                 /* First ensure the pages are in the TLB */
6648                 "xorl   %%eax, %%eax\n"
6649                 ".Lpopulate_tlb:\n\t"
6650                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6651                 "addl   $4096, %%eax\n\t"
6652                 "cmpl   %%eax, %[size]\n\t"
6653                 "jne    .Lpopulate_tlb\n\t"
6654                 "xorl   %%eax, %%eax\n\t"
6655                 "cpuid\n\t"
6656                 /* Now fill the cache */
6657                 "xorl   %%eax, %%eax\n"
6658                 ".Lfill_cache:\n"
6659                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6660                 "addl   $64, %%eax\n\t"
6661                 "cmpl   %%eax, %[size]\n\t"
6662                 "jne    .Lfill_cache\n\t"
6663                 "lfence\n"
6664                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6665                     [size] "r" (size)
6666                 : "eax", "ebx", "ecx", "edx");
6667 }
6668
6669 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6670 {
6671         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6672         int tpr_threshold;
6673
6674         if (is_guest_mode(vcpu) &&
6675                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6676                 return;
6677
6678         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6679         if (is_guest_mode(vcpu))
6680                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6681         else
6682                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6683 }
6684
6685 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6686 {
6687         struct vcpu_vmx *vmx = to_vmx(vcpu);
6688         u32 sec_exec_control;
6689
6690         if (!lapic_in_kernel(vcpu))
6691                 return;
6692
6693         if (!flexpriority_enabled &&
6694             !cpu_has_vmx_virtualize_x2apic_mode())
6695                 return;
6696
6697         /* Postpone execution until vmcs01 is the current VMCS. */
6698         if (is_guest_mode(vcpu)) {
6699                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6700                 return;
6701         }
6702
6703         sec_exec_control = secondary_exec_controls_get(vmx);
6704         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6705                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6706
6707         switch (kvm_get_apic_mode(vcpu)) {
6708         case LAPIC_MODE_INVALID:
6709                 WARN_ONCE(true, "Invalid local APIC state");
6710                 break;
6711         case LAPIC_MODE_DISABLED:
6712                 break;
6713         case LAPIC_MODE_XAPIC:
6714                 if (flexpriority_enabled) {
6715                         sec_exec_control |=
6716                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6717                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6718
6719                         /*
6720                          * Flush the TLB, reloading the APIC access page will
6721                          * only do so if its physical address has changed, but
6722                          * the guest may have inserted a non-APIC mapping into
6723                          * the TLB while the APIC access page was disabled.
6724                          */
6725                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6726                 }
6727                 break;
6728         case LAPIC_MODE_X2APIC:
6729                 if (cpu_has_vmx_virtualize_x2apic_mode())
6730                         sec_exec_control |=
6731                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6732                 break;
6733         }
6734         secondary_exec_controls_set(vmx, sec_exec_control);
6735
6736         vmx_update_msr_bitmap_x2apic(vcpu);
6737 }
6738
6739 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6740 {
6741         const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6742         struct kvm *kvm = vcpu->kvm;
6743         struct kvm_memslots *slots = kvm_memslots(kvm);
6744         struct kvm_memory_slot *slot;
6745         unsigned long mmu_seq;
6746         kvm_pfn_t pfn;
6747
6748         /* Defer reload until vmcs01 is the current VMCS. */
6749         if (is_guest_mode(vcpu)) {
6750                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6751                 return;
6752         }
6753
6754         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6755             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6756                 return;
6757
6758         /*
6759          * Explicitly grab the memslot using KVM's internal slot ID to ensure
6760          * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6761          * be impossible for userspace to create a memslot for the APIC when
6762          * APICv is enabled, but paranoia won't hurt in this case.
6763          */
6764         slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6765         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6766                 return;
6767
6768         /*
6769          * Ensure that the mmu_notifier sequence count is read before KVM
6770          * retrieves the pfn from the primary MMU.  Note, the memslot is
6771          * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6772          * in kvm_mmu_invalidate_end().
6773          */
6774         mmu_seq = kvm->mmu_invalidate_seq;
6775         smp_rmb();
6776
6777         /*
6778          * No need to retry if the memslot does not exist or is invalid.  KVM
6779          * controls the APIC-access page memslot, and only deletes the memslot
6780          * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6781          */
6782         pfn = gfn_to_pfn_memslot(slot, gfn);
6783         if (is_error_noslot_pfn(pfn))
6784                 return;
6785
6786         read_lock(&vcpu->kvm->mmu_lock);
6787         if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6788                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6789                 read_unlock(&vcpu->kvm->mmu_lock);
6790                 goto out;
6791         }
6792
6793         vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6794         read_unlock(&vcpu->kvm->mmu_lock);
6795
6796         /*
6797          * No need for a manual TLB flush at this point, KVM has already done a
6798          * flush if there were SPTEs pointing at the previous page.
6799          */
6800 out:
6801         /*
6802          * Do not pin apic access page in memory, the MMU notifier
6803          * will call us again if it is migrated or swapped out.
6804          */
6805         kvm_release_pfn_clean(pfn);
6806 }
6807
6808 static void vmx_hwapic_isr_update(int max_isr)
6809 {
6810         u16 status;
6811         u8 old;
6812
6813         if (max_isr == -1)
6814                 max_isr = 0;
6815
6816         status = vmcs_read16(GUEST_INTR_STATUS);
6817         old = status >> 8;
6818         if (max_isr != old) {
6819                 status &= 0xff;
6820                 status |= max_isr << 8;
6821                 vmcs_write16(GUEST_INTR_STATUS, status);
6822         }
6823 }
6824
6825 static void vmx_set_rvi(int vector)
6826 {
6827         u16 status;
6828         u8 old;
6829
6830         if (vector == -1)
6831                 vector = 0;
6832
6833         status = vmcs_read16(GUEST_INTR_STATUS);
6834         old = (u8)status & 0xff;
6835         if ((u8)vector != old) {
6836                 status &= ~0xff;
6837                 status |= (u8)vector;
6838                 vmcs_write16(GUEST_INTR_STATUS, status);
6839         }
6840 }
6841
6842 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6843 {
6844         /*
6845          * When running L2, updating RVI is only relevant when
6846          * vmcs12 virtual-interrupt-delivery enabled.
6847          * However, it can be enabled only when L1 also
6848          * intercepts external-interrupts and in that case
6849          * we should not update vmcs02 RVI but instead intercept
6850          * interrupt. Therefore, do nothing when running L2.
6851          */
6852         if (!is_guest_mode(vcpu))
6853                 vmx_set_rvi(max_irr);
6854 }
6855
6856 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6857 {
6858         struct vcpu_vmx *vmx = to_vmx(vcpu);
6859         int max_irr;
6860         bool got_posted_interrupt;
6861
6862         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6863                 return -EIO;
6864
6865         if (pi_test_on(&vmx->pi_desc)) {
6866                 pi_clear_on(&vmx->pi_desc);
6867                 /*
6868                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6869                  * But on x86 this is just a compiler barrier anyway.
6870                  */
6871                 smp_mb__after_atomic();
6872                 got_posted_interrupt =
6873                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6874         } else {
6875                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6876                 got_posted_interrupt = false;
6877         }
6878
6879         /*
6880          * Newly recognized interrupts are injected via either virtual interrupt
6881          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6882          * disabled in two cases:
6883          *
6884          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6885          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6886          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6887          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6888          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6889          *
6890          * 2) If APICv is disabled for this vCPU, assigned devices may still
6891          * attempt to post interrupts.  The posted interrupt vector will cause
6892          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6893          */
6894         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6895                 vmx_set_rvi(max_irr);
6896         else if (got_posted_interrupt)
6897                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6898
6899         return max_irr;
6900 }
6901
6902 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6903 {
6904         if (!kvm_vcpu_apicv_active(vcpu))
6905                 return;
6906
6907         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6908         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6909         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6910         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6911 }
6912
6913 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6914 {
6915         struct vcpu_vmx *vmx = to_vmx(vcpu);
6916
6917         pi_clear_on(&vmx->pi_desc);
6918         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6919 }
6920
6921 void vmx_do_interrupt_irqoff(unsigned long entry);
6922 void vmx_do_nmi_irqoff(void);
6923
6924 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6925 {
6926         /*
6927          * Save xfd_err to guest_fpu before interrupt is enabled, so the
6928          * MSR value is not clobbered by the host activity before the guest
6929          * has chance to consume it.
6930          *
6931          * Do not blindly read xfd_err here, since this exception might
6932          * be caused by L1 interception on a platform which doesn't
6933          * support xfd at all.
6934          *
6935          * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6936          * only when xfd contains a non-zero value.
6937          *
6938          * Queuing exception is done in vmx_handle_exit. See comment there.
6939          */
6940         if (vcpu->arch.guest_fpu.fpstate->xfd)
6941                 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6942 }
6943
6944 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6945 {
6946         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6947
6948         /* if exit due to PF check for async PF */
6949         if (is_page_fault(intr_info))
6950                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6951         /* if exit due to NM, handle before interrupts are enabled */
6952         else if (is_nm_fault(intr_info))
6953                 handle_nm_fault_irqoff(&vmx->vcpu);
6954         /* Handle machine checks before interrupts are enabled */
6955         else if (is_machine_check(intr_info))
6956                 kvm_machine_check();
6957 }
6958
6959 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6960 {
6961         u32 intr_info = vmx_get_intr_info(vcpu);
6962         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6963         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6964
6965         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6966             "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6967                 return;
6968
6969         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6970         vmx_do_interrupt_irqoff(gate_offset(desc));
6971         kvm_after_interrupt(vcpu);
6972
6973         vcpu->arch.at_instruction_boundary = true;
6974 }
6975
6976 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6977 {
6978         struct vcpu_vmx *vmx = to_vmx(vcpu);
6979
6980         if (vmx->emulation_required)
6981                 return;
6982
6983         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6984                 handle_external_interrupt_irqoff(vcpu);
6985         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6986                 handle_exception_irqoff(vmx);
6987 }
6988
6989 /*
6990  * The kvm parameter can be NULL (module initialization, or invocation before
6991  * VM creation). Be sure to check the kvm parameter before using it.
6992  */
6993 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6994 {
6995         switch (index) {
6996         case MSR_IA32_SMBASE:
6997                 if (!IS_ENABLED(CONFIG_KVM_SMM))
6998                         return false;
6999                 /*
7000                  * We cannot do SMM unless we can run the guest in big
7001                  * real mode.
7002                  */
7003                 return enable_unrestricted_guest || emulate_invalid_guest_state;
7004         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7005                 return nested;
7006         case MSR_AMD64_VIRT_SPEC_CTRL:
7007         case MSR_AMD64_TSC_RATIO:
7008                 /* This is AMD only.  */
7009                 return false;
7010         default:
7011                 return true;
7012         }
7013 }
7014
7015 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7016 {
7017         u32 exit_intr_info;
7018         bool unblock_nmi;
7019         u8 vector;
7020         bool idtv_info_valid;
7021
7022         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7023
7024         if (enable_vnmi) {
7025                 if (vmx->loaded_vmcs->nmi_known_unmasked)
7026                         return;
7027
7028                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7029                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7030                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7031                 /*
7032                  * SDM 3: 27.7.1.2 (September 2008)
7033                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7034                  * a guest IRET fault.
7035                  * SDM 3: 23.2.2 (September 2008)
7036                  * Bit 12 is undefined in any of the following cases:
7037                  *  If the VM exit sets the valid bit in the IDT-vectoring
7038                  *   information field.
7039                  *  If the VM exit is due to a double fault.
7040                  */
7041                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7042                     vector != DF_VECTOR && !idtv_info_valid)
7043                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7044                                       GUEST_INTR_STATE_NMI);
7045                 else
7046                         vmx->loaded_vmcs->nmi_known_unmasked =
7047                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7048                                   & GUEST_INTR_STATE_NMI);
7049         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7050                 vmx->loaded_vmcs->vnmi_blocked_time +=
7051                         ktime_to_ns(ktime_sub(ktime_get(),
7052                                               vmx->loaded_vmcs->entry_time));
7053 }
7054
7055 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7056                                       u32 idt_vectoring_info,
7057                                       int instr_len_field,
7058                                       int error_code_field)
7059 {
7060         u8 vector;
7061         int type;
7062         bool idtv_info_valid;
7063
7064         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7065
7066         vcpu->arch.nmi_injected = false;
7067         kvm_clear_exception_queue(vcpu);
7068         kvm_clear_interrupt_queue(vcpu);
7069
7070         if (!idtv_info_valid)
7071                 return;
7072
7073         kvm_make_request(KVM_REQ_EVENT, vcpu);
7074
7075         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7076         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7077
7078         switch (type) {
7079         case INTR_TYPE_NMI_INTR:
7080                 vcpu->arch.nmi_injected = true;
7081                 /*
7082                  * SDM 3: 27.7.1.2 (September 2008)
7083                  * Clear bit "block by NMI" before VM entry if a NMI
7084                  * delivery faulted.
7085                  */
7086                 vmx_set_nmi_mask(vcpu, false);
7087                 break;
7088         case INTR_TYPE_SOFT_EXCEPTION:
7089                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7090                 fallthrough;
7091         case INTR_TYPE_HARD_EXCEPTION:
7092                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7093                         u32 err = vmcs_read32(error_code_field);
7094                         kvm_requeue_exception_e(vcpu, vector, err);
7095                 } else
7096                         kvm_requeue_exception(vcpu, vector);
7097                 break;
7098         case INTR_TYPE_SOFT_INTR:
7099                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7100                 fallthrough;
7101         case INTR_TYPE_EXT_INTR:
7102                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7103                 break;
7104         default:
7105                 break;
7106         }
7107 }
7108
7109 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7110 {
7111         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7112                                   VM_EXIT_INSTRUCTION_LEN,
7113                                   IDT_VECTORING_ERROR_CODE);
7114 }
7115
7116 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7117 {
7118         __vmx_complete_interrupts(vcpu,
7119                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7120                                   VM_ENTRY_INSTRUCTION_LEN,
7121                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7122
7123         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7124 }
7125
7126 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7127 {
7128         int i, nr_msrs;
7129         struct perf_guest_switch_msr *msrs;
7130         struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7131
7132         pmu->host_cross_mapped_mask = 0;
7133         if (pmu->pebs_enable & pmu->global_ctrl)
7134                 intel_pmu_cross_mapped_check(pmu);
7135
7136         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7137         msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7138         if (!msrs)
7139                 return;
7140
7141         for (i = 0; i < nr_msrs; i++)
7142                 if (msrs[i].host == msrs[i].guest)
7143                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7144                 else
7145                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7146                                         msrs[i].host, false);
7147 }
7148
7149 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7150 {
7151         struct vcpu_vmx *vmx = to_vmx(vcpu);
7152         u64 tscl;
7153         u32 delta_tsc;
7154
7155         if (vmx->req_immediate_exit) {
7156                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7157                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7158         } else if (vmx->hv_deadline_tsc != -1) {
7159                 tscl = rdtsc();
7160                 if (vmx->hv_deadline_tsc > tscl)
7161                         /* set_hv_timer ensures the delta fits in 32-bits */
7162                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7163                                 cpu_preemption_timer_multi);
7164                 else
7165                         delta_tsc = 0;
7166
7167                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7168                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7169         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7170                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7171                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7172         }
7173 }
7174
7175 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7176 {
7177         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7178                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7179                 vmcs_writel(HOST_RSP, host_rsp);
7180         }
7181 }
7182
7183 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7184                                         unsigned int flags)
7185 {
7186         u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7187
7188         if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7189                 return;
7190
7191         if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7192                 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7193
7194         /*
7195          * If the guest/host SPEC_CTRL values differ, restore the host value.
7196          *
7197          * For legacy IBRS, the IBRS bit always needs to be written after
7198          * transitioning from a less privileged predictor mode, regardless of
7199          * whether the guest/host values differ.
7200          */
7201         if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7202             vmx->spec_ctrl != hostval)
7203                 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7204
7205         barrier_nospec();
7206 }
7207
7208 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7209 {
7210         switch (to_vmx(vcpu)->exit_reason.basic) {
7211         case EXIT_REASON_MSR_WRITE:
7212                 return handle_fastpath_set_msr_irqoff(vcpu);
7213         case EXIT_REASON_PREEMPTION_TIMER:
7214                 return handle_fastpath_preemption_timer(vcpu);
7215         default:
7216                 return EXIT_FASTPATH_NONE;
7217         }
7218 }
7219
7220 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7221                                         unsigned int flags)
7222 {
7223         struct vcpu_vmx *vmx = to_vmx(vcpu);
7224
7225         guest_state_enter_irqoff();
7226
7227         /* L1D Flush includes CPU buffer clear to mitigate MDS */
7228         if (static_branch_unlikely(&vmx_l1d_should_flush))
7229                 vmx_l1d_flush(vcpu);
7230         else if (static_branch_unlikely(&mds_user_clear))
7231                 mds_clear_cpu_buffers();
7232         else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7233                  kvm_arch_has_assigned_device(vcpu->kvm))
7234                 mds_clear_cpu_buffers();
7235
7236         vmx_disable_fb_clear(vmx);
7237
7238         if (vcpu->arch.cr2 != native_read_cr2())
7239                 native_write_cr2(vcpu->arch.cr2);
7240
7241         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7242                                    flags);
7243
7244         vcpu->arch.cr2 = native_read_cr2();
7245         vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7246
7247         vmx->idt_vectoring_info = 0;
7248
7249         vmx_enable_fb_clear(vmx);
7250
7251         if (unlikely(vmx->fail)) {
7252                 vmx->exit_reason.full = 0xdead;
7253                 goto out;
7254         }
7255
7256         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7257         if (likely(!vmx->exit_reason.failed_vmentry))
7258                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7259
7260         if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7261             is_nmi(vmx_get_intr_info(vcpu))) {
7262                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7263                 vmx_do_nmi_irqoff();
7264                 kvm_after_interrupt(vcpu);
7265         }
7266
7267 out:
7268         guest_state_exit_irqoff();
7269 }
7270
7271 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7272 {
7273         struct vcpu_vmx *vmx = to_vmx(vcpu);
7274         unsigned long cr3, cr4;
7275
7276         /* Record the guest's net vcpu time for enforced NMI injections. */
7277         if (unlikely(!enable_vnmi &&
7278                      vmx->loaded_vmcs->soft_vnmi_blocked))
7279                 vmx->loaded_vmcs->entry_time = ktime_get();
7280
7281         /*
7282          * Don't enter VMX if guest state is invalid, let the exit handler
7283          * start emulation until we arrive back to a valid state.  Synthesize a
7284          * consistency check VM-Exit due to invalid guest state and bail.
7285          */
7286         if (unlikely(vmx->emulation_required)) {
7287                 vmx->fail = 0;
7288
7289                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7290                 vmx->exit_reason.failed_vmentry = 1;
7291                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7292                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7293                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7294                 vmx->exit_intr_info = 0;
7295                 return EXIT_FASTPATH_NONE;
7296         }
7297
7298         trace_kvm_entry(vcpu);
7299
7300         if (vmx->ple_window_dirty) {
7301                 vmx->ple_window_dirty = false;
7302                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7303         }
7304
7305         /*
7306          * We did this in prepare_switch_to_guest, because it needs to
7307          * be within srcu_read_lock.
7308          */
7309         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7310
7311         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7312                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7313         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7314                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7315         vcpu->arch.regs_dirty = 0;
7316
7317         /*
7318          * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7319          * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7320          * it switches back to the current->mm, which can occur in KVM context
7321          * when switching to a temporary mm to patch kernel code, e.g. if KVM
7322          * toggles a static key while handling a VM-Exit.
7323          */
7324         cr3 = __get_current_cr3_fast();
7325         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7326                 vmcs_writel(HOST_CR3, cr3);
7327                 vmx->loaded_vmcs->host_state.cr3 = cr3;
7328         }
7329
7330         cr4 = cr4_read_shadow();
7331         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7332                 vmcs_writel(HOST_CR4, cr4);
7333                 vmx->loaded_vmcs->host_state.cr4 = cr4;
7334         }
7335
7336         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7337         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7338                 set_debugreg(vcpu->arch.dr6, 6);
7339
7340         /* When single-stepping over STI and MOV SS, we must clear the
7341          * corresponding interruptibility bits in the guest state. Otherwise
7342          * vmentry fails as it then expects bit 14 (BS) in pending debug
7343          * exceptions being set, but that's not correct for the guest debugging
7344          * case. */
7345         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7346                 vmx_set_interrupt_shadow(vcpu, 0);
7347
7348         kvm_load_guest_xsave_state(vcpu);
7349
7350         pt_guest_enter(vmx);
7351
7352         atomic_switch_perf_msrs(vmx);
7353         if (intel_pmu_lbr_is_enabled(vcpu))
7354                 vmx_passthrough_lbr_msrs(vcpu);
7355
7356         if (enable_preemption_timer)
7357                 vmx_update_hv_timer(vcpu);
7358
7359         kvm_wait_lapic_expire(vcpu);
7360
7361         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7362         vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7363
7364         /* All fields are clean at this point */
7365         if (kvm_is_using_evmcs()) {
7366                 current_evmcs->hv_clean_fields |=
7367                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7368
7369                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7370         }
7371
7372         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7373         if (vmx->host_debugctlmsr)
7374                 update_debugctlmsr(vmx->host_debugctlmsr);
7375
7376 #ifndef CONFIG_X86_64
7377         /*
7378          * The sysexit path does not restore ds/es, so we must set them to
7379          * a reasonable value ourselves.
7380          *
7381          * We can't defer this to vmx_prepare_switch_to_host() since that
7382          * function may be executed in interrupt context, which saves and
7383          * restore segments around it, nullifying its effect.
7384          */
7385         loadsegment(ds, __USER_DS);
7386         loadsegment(es, __USER_DS);
7387 #endif
7388
7389         pt_guest_exit(vmx);
7390
7391         kvm_load_host_xsave_state(vcpu);
7392
7393         if (is_guest_mode(vcpu)) {
7394                 /*
7395                  * Track VMLAUNCH/VMRESUME that have made past guest state
7396                  * checking.
7397                  */
7398                 if (vmx->nested.nested_run_pending &&
7399                     !vmx->exit_reason.failed_vmentry)
7400                         ++vcpu->stat.nested_run;
7401
7402                 vmx->nested.nested_run_pending = 0;
7403         }
7404
7405         if (unlikely(vmx->fail))
7406                 return EXIT_FASTPATH_NONE;
7407
7408         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7409                 kvm_machine_check();
7410
7411         trace_kvm_exit(vcpu, KVM_ISA_VMX);
7412
7413         if (unlikely(vmx->exit_reason.failed_vmentry))
7414                 return EXIT_FASTPATH_NONE;
7415
7416         vmx->loaded_vmcs->launched = 1;
7417
7418         vmx_recover_nmi_blocking(vmx);
7419         vmx_complete_interrupts(vmx);
7420
7421         if (is_guest_mode(vcpu))
7422                 return EXIT_FASTPATH_NONE;
7423
7424         return vmx_exit_handlers_fastpath(vcpu);
7425 }
7426
7427 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7428 {
7429         struct vcpu_vmx *vmx = to_vmx(vcpu);
7430
7431         if (enable_pml)
7432                 vmx_destroy_pml_buffer(vmx);
7433         free_vpid(vmx->vpid);
7434         nested_vmx_free_vcpu(vcpu);
7435         free_loaded_vmcs(vmx->loaded_vmcs);
7436 }
7437
7438 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7439 {
7440         struct vmx_uret_msr *tsx_ctrl;
7441         struct vcpu_vmx *vmx;
7442         int i, err;
7443
7444         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7445         vmx = to_vmx(vcpu);
7446
7447         INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7448
7449         err = -ENOMEM;
7450
7451         vmx->vpid = allocate_vpid();
7452
7453         /*
7454          * If PML is turned on, failure on enabling PML just results in failure
7455          * of creating the vcpu, therefore we can simplify PML logic (by
7456          * avoiding dealing with cases, such as enabling PML partially on vcpus
7457          * for the guest), etc.
7458          */
7459         if (enable_pml) {
7460                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7461                 if (!vmx->pml_pg)
7462                         goto free_vpid;
7463         }
7464
7465         for (i = 0; i < kvm_nr_uret_msrs; ++i)
7466                 vmx->guest_uret_msrs[i].mask = -1ull;
7467         if (boot_cpu_has(X86_FEATURE_RTM)) {
7468                 /*
7469                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7470                  * Keep the host value unchanged to avoid changing CPUID bits
7471                  * under the host kernel's feet.
7472                  */
7473                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7474                 if (tsx_ctrl)
7475                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7476         }
7477
7478         err = alloc_loaded_vmcs(&vmx->vmcs01);
7479         if (err < 0)
7480                 goto free_pml;
7481
7482         /*
7483          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7484          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7485          * feature only for vmcs01, KVM currently isn't equipped to realize any
7486          * performance benefits from enabling it for vmcs02.
7487          */
7488         if (kvm_is_using_evmcs() &&
7489             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7490                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7491
7492                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7493         }
7494
7495         /* The MSR bitmap starts with all ones */
7496         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7497         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7498
7499         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7500 #ifdef CONFIG_X86_64
7501         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7502         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7503         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7504 #endif
7505         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7506         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7507         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7508         if (kvm_cstate_in_guest(vcpu->kvm)) {
7509                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7510                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7511                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7512                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7513         }
7514
7515         vmx->loaded_vmcs = &vmx->vmcs01;
7516
7517         if (cpu_need_virtualize_apic_accesses(vcpu)) {
7518                 err = kvm_alloc_apic_access_page(vcpu->kvm);
7519                 if (err)
7520                         goto free_vmcs;
7521         }
7522
7523         if (enable_ept && !enable_unrestricted_guest) {
7524                 err = init_rmode_identity_map(vcpu->kvm);
7525                 if (err)
7526                         goto free_vmcs;
7527         }
7528
7529         if (vmx_can_use_ipiv(vcpu))
7530                 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7531                            __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7532
7533         return 0;
7534
7535 free_vmcs:
7536         free_loaded_vmcs(vmx->loaded_vmcs);
7537 free_pml:
7538         vmx_destroy_pml_buffer(vmx);
7539 free_vpid:
7540         free_vpid(vmx->vpid);
7541         return err;
7542 }
7543
7544 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7545 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7546
7547 static int vmx_vm_init(struct kvm *kvm)
7548 {
7549         if (!ple_gap)
7550                 kvm->arch.pause_in_guest = true;
7551
7552         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7553                 switch (l1tf_mitigation) {
7554                 case L1TF_MITIGATION_OFF:
7555                 case L1TF_MITIGATION_FLUSH_NOWARN:
7556                         /* 'I explicitly don't care' is set */
7557                         break;
7558                 case L1TF_MITIGATION_FLUSH:
7559                 case L1TF_MITIGATION_FLUSH_NOSMT:
7560                 case L1TF_MITIGATION_FULL:
7561                         /*
7562                          * Warn upon starting the first VM in a potentially
7563                          * insecure environment.
7564                          */
7565                         if (sched_smt_active())
7566                                 pr_warn_once(L1TF_MSG_SMT);
7567                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7568                                 pr_warn_once(L1TF_MSG_L1D);
7569                         break;
7570                 case L1TF_MITIGATION_FULL_FORCE:
7571                         /* Flush is enforced */
7572                         break;
7573                 }
7574         }
7575         return 0;
7576 }
7577
7578 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7579 {
7580         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7581          * memory aliases with conflicting memory types and sometimes MCEs.
7582          * We have to be careful as to what are honored and when.
7583          *
7584          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7585          * UC.  The effective memory type is UC or WC depending on guest PAT.
7586          * This was historically the source of MCEs and we want to be
7587          * conservative.
7588          *
7589          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7590          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7591          * EPT memory type is set to WB.  The effective memory type is forced
7592          * WB.
7593          *
7594          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7595          * EPT memory type is used to emulate guest CD/MTRR.
7596          */
7597
7598         if (is_mmio)
7599                 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7600
7601         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7602                 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7603
7604         if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7605                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7606                         return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7607                 else
7608                         return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7609                                 VMX_EPT_IPAT_BIT;
7610         }
7611
7612         return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7613 }
7614
7615 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7616 {
7617         /*
7618          * These bits in the secondary execution controls field
7619          * are dynamic, the others are mostly based on the hypervisor
7620          * architecture and the guest's CPUID.  Do not touch the
7621          * dynamic bits.
7622          */
7623         u32 mask =
7624                 SECONDARY_EXEC_SHADOW_VMCS |
7625                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7626                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7627                 SECONDARY_EXEC_DESC;
7628
7629         u32 cur_ctl = secondary_exec_controls_get(vmx);
7630
7631         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7632 }
7633
7634 /*
7635  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7636  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7637  */
7638 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7639 {
7640         struct vcpu_vmx *vmx = to_vmx(vcpu);
7641         struct kvm_cpuid_entry2 *entry;
7642
7643         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7644         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7645
7646 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7647         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7648                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7649 } while (0)
7650
7651         entry = kvm_find_cpuid_entry(vcpu, 0x1);
7652         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7653         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7654         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7655         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7656         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7657         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7658         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7659         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7660         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7661         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7662         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7663         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7664         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7665         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7666
7667         entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7668         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7669         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7670         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7671         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7672         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7673         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7674
7675         entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7676         cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7677
7678 #undef cr4_fixed1_update
7679 }
7680
7681 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7682 {
7683         struct vcpu_vmx *vmx = to_vmx(vcpu);
7684         struct kvm_cpuid_entry2 *best = NULL;
7685         int i;
7686
7687         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7688                 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7689                 if (!best)
7690                         return;
7691                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7692                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7693                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7694                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7695         }
7696
7697         /* Get the number of configurable Address Ranges for filtering */
7698         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7699                                                 PT_CAP_num_address_ranges);
7700
7701         /* Initialize and clear the no dependency bits */
7702         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7703                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7704                         RTIT_CTL_BRANCH_EN);
7705
7706         /*
7707          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7708          * will inject an #GP
7709          */
7710         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7711                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7712
7713         /*
7714          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7715          * PSBFreq can be set
7716          */
7717         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7718                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7719                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7720
7721         /*
7722          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7723          */
7724         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7725                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7726                                               RTIT_CTL_MTC_RANGE);
7727
7728         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7729         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7730                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7731                                                         RTIT_CTL_PTW_EN);
7732
7733         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7734         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7735                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7736
7737         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7738         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7739                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7740
7741         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7742         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7743                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7744
7745         /* unmask address range configure area */
7746         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7747                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7748 }
7749
7750 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7751 {
7752         struct vcpu_vmx *vmx = to_vmx(vcpu);
7753
7754         /*
7755          * XSAVES is effectively enabled if and only if XSAVE is also exposed
7756          * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7757          * set if and only if XSAVE is supported.
7758          */
7759         if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7760             guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7761                 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7762
7763         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7764         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7765
7766         vmx_setup_uret_msrs(vmx);
7767
7768         if (cpu_has_secondary_exec_ctrls())
7769                 vmcs_set_secondary_exec_control(vmx,
7770                                                 vmx_secondary_exec_control(vmx));
7771
7772         if (guest_can_use(vcpu, X86_FEATURE_VMX))
7773                 vmx->msr_ia32_feature_control_valid_bits |=
7774                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7775                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7776         else
7777                 vmx->msr_ia32_feature_control_valid_bits &=
7778                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7779                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7780
7781         if (guest_can_use(vcpu, X86_FEATURE_VMX))
7782                 nested_vmx_cr_fixed1_bits_update(vcpu);
7783
7784         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7785                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7786                 update_intel_pt_cfg(vcpu);
7787
7788         if (boot_cpu_has(X86_FEATURE_RTM)) {
7789                 struct vmx_uret_msr *msr;
7790                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7791                 if (msr) {
7792                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7793                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7794                 }
7795         }
7796
7797         if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7798                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7799                                           !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7800
7801         if (boot_cpu_has(X86_FEATURE_IBPB))
7802                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7803                                           !guest_has_pred_cmd_msr(vcpu));
7804
7805         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7806                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7807                                           !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7808
7809         set_cr4_guest_host_mask(vmx);
7810
7811         vmx_write_encls_bitmap(vcpu, NULL);
7812         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7813                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7814         else
7815                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7816
7817         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7818                 vmx->msr_ia32_feature_control_valid_bits |=
7819                         FEAT_CTL_SGX_LC_ENABLED;
7820         else
7821                 vmx->msr_ia32_feature_control_valid_bits &=
7822                         ~FEAT_CTL_SGX_LC_ENABLED;
7823
7824         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7825         vmx_update_exception_bitmap(vcpu);
7826 }
7827
7828 static u64 vmx_get_perf_capabilities(void)
7829 {
7830         u64 perf_cap = PMU_CAP_FW_WRITES;
7831         struct x86_pmu_lbr lbr;
7832         u64 host_perf_cap = 0;
7833
7834         if (!enable_pmu)
7835                 return 0;
7836
7837         if (boot_cpu_has(X86_FEATURE_PDCM))
7838                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7839
7840         if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7841                 x86_perf_get_lbr(&lbr);
7842                 if (lbr.nr)
7843                         perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7844         }
7845
7846         if (vmx_pebs_supported()) {
7847                 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7848                 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7849                         perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7850         }
7851
7852         return perf_cap;
7853 }
7854
7855 static __init void vmx_set_cpu_caps(void)
7856 {
7857         kvm_set_cpu_caps();
7858
7859         /* CPUID 0x1 */
7860         if (nested)
7861                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7862
7863         /* CPUID 0x7 */
7864         if (kvm_mpx_supported())
7865                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7866         if (!cpu_has_vmx_invpcid())
7867                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7868         if (vmx_pt_mode_is_host_guest())
7869                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7870         if (vmx_pebs_supported()) {
7871                 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7872                 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7873         }
7874
7875         if (!enable_pmu)
7876                 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7877         kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7878
7879         if (!enable_sgx) {
7880                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7881                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7882                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7883                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7884         }
7885
7886         if (vmx_umip_emulated())
7887                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7888
7889         /* CPUID 0xD.1 */
7890         kvm_caps.supported_xss = 0;
7891         if (!cpu_has_vmx_xsaves())
7892                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7893
7894         /* CPUID 0x80000001 and 0x7 (RDPID) */
7895         if (!cpu_has_vmx_rdtscp()) {
7896                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7897                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7898         }
7899
7900         if (cpu_has_vmx_waitpkg())
7901                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7902 }
7903
7904 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7905 {
7906         to_vmx(vcpu)->req_immediate_exit = true;
7907 }
7908
7909 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7910                                   struct x86_instruction_info *info)
7911 {
7912         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7913         unsigned short port;
7914         bool intercept;
7915         int size;
7916
7917         if (info->intercept == x86_intercept_in ||
7918             info->intercept == x86_intercept_ins) {
7919                 port = info->src_val;
7920                 size = info->dst_bytes;
7921         } else {
7922                 port = info->dst_val;
7923                 size = info->src_bytes;
7924         }
7925
7926         /*
7927          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7928          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7929          * control.
7930          *
7931          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7932          */
7933         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7934                 intercept = nested_cpu_has(vmcs12,
7935                                            CPU_BASED_UNCOND_IO_EXITING);
7936         else
7937                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7938
7939         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7940         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7941 }
7942
7943 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7944                                struct x86_instruction_info *info,
7945                                enum x86_intercept_stage stage,
7946                                struct x86_exception *exception)
7947 {
7948         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7949
7950         switch (info->intercept) {
7951         /*
7952          * RDPID causes #UD if disabled through secondary execution controls.
7953          * Because it is marked as EmulateOnUD, we need to intercept it here.
7954          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7955          */
7956         case x86_intercept_rdpid:
7957                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7958                         exception->vector = UD_VECTOR;
7959                         exception->error_code_valid = false;
7960                         return X86EMUL_PROPAGATE_FAULT;
7961                 }
7962                 break;
7963
7964         case x86_intercept_in:
7965         case x86_intercept_ins:
7966         case x86_intercept_out:
7967         case x86_intercept_outs:
7968                 return vmx_check_intercept_io(vcpu, info);
7969
7970         case x86_intercept_lgdt:
7971         case x86_intercept_lidt:
7972         case x86_intercept_lldt:
7973         case x86_intercept_ltr:
7974         case x86_intercept_sgdt:
7975         case x86_intercept_sidt:
7976         case x86_intercept_sldt:
7977         case x86_intercept_str:
7978                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7979                         return X86EMUL_CONTINUE;
7980
7981                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7982                 break;
7983
7984         case x86_intercept_pause:
7985                 /*
7986                  * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7987                  * with vanilla NOPs in the emulator.  Apply the interception
7988                  * check only to actual PAUSE instructions.  Don't check
7989                  * PAUSE-loop-exiting, software can't expect a given PAUSE to
7990                  * exit, i.e. KVM is within its rights to allow L2 to execute
7991                  * the PAUSE.
7992                  */
7993                 if ((info->rep_prefix != REPE_PREFIX) ||
7994                     !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7995                         return X86EMUL_CONTINUE;
7996
7997                 break;
7998
7999         /* TODO: check more intercepts... */
8000         default:
8001                 break;
8002         }
8003
8004         return X86EMUL_UNHANDLEABLE;
8005 }
8006
8007 #ifdef CONFIG_X86_64
8008 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8009 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8010                                   u64 divisor, u64 *result)
8011 {
8012         u64 low = a << shift, high = a >> (64 - shift);
8013
8014         /* To avoid the overflow on divq */
8015         if (high >= divisor)
8016                 return 1;
8017
8018         /* Low hold the result, high hold rem which is discarded */
8019         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8020             "rm" (divisor), "0" (low), "1" (high));
8021         *result = low;
8022
8023         return 0;
8024 }
8025
8026 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8027                             bool *expired)
8028 {
8029         struct vcpu_vmx *vmx;
8030         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8031         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8032
8033         vmx = to_vmx(vcpu);
8034         tscl = rdtsc();
8035         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8036         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8037         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8038                                                     ktimer->timer_advance_ns);
8039
8040         if (delta_tsc > lapic_timer_advance_cycles)
8041                 delta_tsc -= lapic_timer_advance_cycles;
8042         else
8043                 delta_tsc = 0;
8044
8045         /* Convert to host delta tsc if tsc scaling is enabled */
8046         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8047             delta_tsc && u64_shl_div_u64(delta_tsc,
8048                                 kvm_caps.tsc_scaling_ratio_frac_bits,
8049                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8050                 return -ERANGE;
8051
8052         /*
8053          * If the delta tsc can't fit in the 32 bit after the multi shift,
8054          * we can't use the preemption timer.
8055          * It's possible that it fits on later vmentries, but checking
8056          * on every vmentry is costly so we just use an hrtimer.
8057          */
8058         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8059                 return -ERANGE;
8060
8061         vmx->hv_deadline_tsc = tscl + delta_tsc;
8062         *expired = !delta_tsc;
8063         return 0;
8064 }
8065
8066 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8067 {
8068         to_vmx(vcpu)->hv_deadline_tsc = -1;
8069 }
8070 #endif
8071
8072 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8073 {
8074         if (!kvm_pause_in_guest(vcpu->kvm))
8075                 shrink_ple_window(vcpu);
8076 }
8077
8078 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8079 {
8080         struct vcpu_vmx *vmx = to_vmx(vcpu);
8081
8082         if (WARN_ON_ONCE(!enable_pml))
8083                 return;
8084
8085         if (is_guest_mode(vcpu)) {
8086                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8087                 return;
8088         }
8089
8090         /*
8091          * Note, nr_memslots_dirty_logging can be changed concurrent with this
8092          * code, but in that case another update request will be made and so
8093          * the guest will never run with a stale PML value.
8094          */
8095         if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8096                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8097         else
8098                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8099 }
8100
8101 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8102 {
8103         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8104                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8105                         FEAT_CTL_LMCE_ENABLED;
8106         else
8107                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8108                         ~FEAT_CTL_LMCE_ENABLED;
8109 }
8110
8111 #ifdef CONFIG_KVM_SMM
8112 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8113 {
8114         /* we need a nested vmexit to enter SMM, postpone if run is pending */
8115         if (to_vmx(vcpu)->nested.nested_run_pending)
8116                 return -EBUSY;
8117         return !is_smm(vcpu);
8118 }
8119
8120 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8121 {
8122         struct vcpu_vmx *vmx = to_vmx(vcpu);
8123
8124         /*
8125          * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8126          * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8127          * SMI and RSM only modify state that is saved and restored via SMRAM.
8128          * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8129          * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8130          */
8131         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8132         if (vmx->nested.smm.guest_mode)
8133                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8134
8135         vmx->nested.smm.vmxon = vmx->nested.vmxon;
8136         vmx->nested.vmxon = false;
8137         vmx_clear_hlt(vcpu);
8138         return 0;
8139 }
8140
8141 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8142 {
8143         struct vcpu_vmx *vmx = to_vmx(vcpu);
8144         int ret;
8145
8146         if (vmx->nested.smm.vmxon) {
8147                 vmx->nested.vmxon = true;
8148                 vmx->nested.smm.vmxon = false;
8149         }
8150
8151         if (vmx->nested.smm.guest_mode) {
8152                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8153                 if (ret)
8154                         return ret;
8155
8156                 vmx->nested.nested_run_pending = 1;
8157                 vmx->nested.smm.guest_mode = false;
8158         }
8159         return 0;
8160 }
8161
8162 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8163 {
8164         /* RSM will cause a vmexit anyway.  */
8165 }
8166 #endif
8167
8168 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8169 {
8170         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8171 }
8172
8173 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8174 {
8175         if (is_guest_mode(vcpu)) {
8176                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8177
8178                 if (hrtimer_try_to_cancel(timer) == 1)
8179                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8180         }
8181 }
8182
8183 static void vmx_hardware_unsetup(void)
8184 {
8185         kvm_set_posted_intr_wakeup_handler(NULL);
8186
8187         if (nested)
8188                 nested_vmx_hardware_unsetup();
8189
8190         free_kvm_area();
8191 }
8192
8193 #define VMX_REQUIRED_APICV_INHIBITS                     \
8194 (                                                       \
8195         BIT(APICV_INHIBIT_REASON_DISABLE)|              \
8196         BIT(APICV_INHIBIT_REASON_ABSENT) |              \
8197         BIT(APICV_INHIBIT_REASON_HYPERV) |              \
8198         BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |            \
8199         BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8200         BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |    \
8201         BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)    \
8202 )
8203
8204 static void vmx_vm_destroy(struct kvm *kvm)
8205 {
8206         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8207
8208         free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8209 }
8210
8211 /*
8212  * Note, the SDM states that the linear address is masked *after* the modified
8213  * canonicality check, whereas KVM masks (untags) the address and then performs
8214  * a "normal" canonicality check.  Functionally, the two methods are identical,
8215  * and when the masking occurs relative to the canonicality check isn't visible
8216  * to software, i.e. KVM's behavior doesn't violate the SDM.
8217  */
8218 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8219 {
8220         int lam_bit;
8221         unsigned long cr3_bits;
8222
8223         if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8224                 return gva;
8225
8226         if (!is_64_bit_mode(vcpu))
8227                 return gva;
8228
8229         /*
8230          * Bit 63 determines if the address should be treated as user address
8231          * or a supervisor address.
8232          */
8233         if (!(gva & BIT_ULL(63))) {
8234                 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8235                 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8236                         return gva;
8237
8238                 /* LAM_U48 is ignored if LAM_U57 is set. */
8239                 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8240         } else {
8241                 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8242                         return gva;
8243
8244                 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8245         }
8246
8247         /*
8248          * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8249          * Bit 63 is retained from the raw virtual address so that untagging
8250          * doesn't change a user access to a supervisor access, and vice versa.
8251          */
8252         return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8253 }
8254
8255 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8256         .name = KBUILD_MODNAME,
8257
8258         .check_processor_compatibility = vmx_check_processor_compat,
8259
8260         .hardware_unsetup = vmx_hardware_unsetup,
8261
8262         .hardware_enable = vmx_hardware_enable,
8263         .hardware_disable = vmx_hardware_disable,
8264         .has_emulated_msr = vmx_has_emulated_msr,
8265
8266         .vm_size = sizeof(struct kvm_vmx),
8267         .vm_init = vmx_vm_init,
8268         .vm_destroy = vmx_vm_destroy,
8269
8270         .vcpu_precreate = vmx_vcpu_precreate,
8271         .vcpu_create = vmx_vcpu_create,
8272         .vcpu_free = vmx_vcpu_free,
8273         .vcpu_reset = vmx_vcpu_reset,
8274
8275         .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8276         .vcpu_load = vmx_vcpu_load,
8277         .vcpu_put = vmx_vcpu_put,
8278
8279         .update_exception_bitmap = vmx_update_exception_bitmap,
8280         .get_msr_feature = vmx_get_msr_feature,
8281         .get_msr = vmx_get_msr,
8282         .set_msr = vmx_set_msr,
8283         .get_segment_base = vmx_get_segment_base,
8284         .get_segment = vmx_get_segment,
8285         .set_segment = vmx_set_segment,
8286         .get_cpl = vmx_get_cpl,
8287         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8288         .is_valid_cr0 = vmx_is_valid_cr0,
8289         .set_cr0 = vmx_set_cr0,
8290         .is_valid_cr4 = vmx_is_valid_cr4,
8291         .set_cr4 = vmx_set_cr4,
8292         .set_efer = vmx_set_efer,
8293         .get_idt = vmx_get_idt,
8294         .set_idt = vmx_set_idt,
8295         .get_gdt = vmx_get_gdt,
8296         .set_gdt = vmx_set_gdt,
8297         .set_dr7 = vmx_set_dr7,
8298         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8299         .cache_reg = vmx_cache_reg,
8300         .get_rflags = vmx_get_rflags,
8301         .set_rflags = vmx_set_rflags,
8302         .get_if_flag = vmx_get_if_flag,
8303
8304         .flush_tlb_all = vmx_flush_tlb_all,
8305         .flush_tlb_current = vmx_flush_tlb_current,
8306         .flush_tlb_gva = vmx_flush_tlb_gva,
8307         .flush_tlb_guest = vmx_flush_tlb_guest,
8308
8309         .vcpu_pre_run = vmx_vcpu_pre_run,
8310         .vcpu_run = vmx_vcpu_run,
8311         .handle_exit = vmx_handle_exit,
8312         .skip_emulated_instruction = vmx_skip_emulated_instruction,
8313         .update_emulated_instruction = vmx_update_emulated_instruction,
8314         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8315         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8316         .patch_hypercall = vmx_patch_hypercall,
8317         .inject_irq = vmx_inject_irq,
8318         .inject_nmi = vmx_inject_nmi,
8319         .inject_exception = vmx_inject_exception,
8320         .cancel_injection = vmx_cancel_injection,
8321         .interrupt_allowed = vmx_interrupt_allowed,
8322         .nmi_allowed = vmx_nmi_allowed,
8323         .get_nmi_mask = vmx_get_nmi_mask,
8324         .set_nmi_mask = vmx_set_nmi_mask,
8325         .enable_nmi_window = vmx_enable_nmi_window,
8326         .enable_irq_window = vmx_enable_irq_window,
8327         .update_cr8_intercept = vmx_update_cr8_intercept,
8328         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8329         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8330         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8331         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8332         .apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8333         .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8334         .hwapic_irr_update = vmx_hwapic_irr_update,
8335         .hwapic_isr_update = vmx_hwapic_isr_update,
8336         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8337         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8338         .deliver_interrupt = vmx_deliver_interrupt,
8339         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8340
8341         .set_tss_addr = vmx_set_tss_addr,
8342         .set_identity_map_addr = vmx_set_identity_map_addr,
8343         .get_mt_mask = vmx_get_mt_mask,
8344
8345         .get_exit_info = vmx_get_exit_info,
8346
8347         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8348
8349         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8350
8351         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8352         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8353         .write_tsc_offset = vmx_write_tsc_offset,
8354         .write_tsc_multiplier = vmx_write_tsc_multiplier,
8355
8356         .load_mmu_pgd = vmx_load_mmu_pgd,
8357
8358         .check_intercept = vmx_check_intercept,
8359         .handle_exit_irqoff = vmx_handle_exit_irqoff,
8360
8361         .request_immediate_exit = vmx_request_immediate_exit,
8362
8363         .sched_in = vmx_sched_in,
8364
8365         .cpu_dirty_log_size = PML_ENTITY_NUM,
8366         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8367
8368         .nested_ops = &vmx_nested_ops,
8369
8370         .pi_update_irte = vmx_pi_update_irte,
8371         .pi_start_assignment = vmx_pi_start_assignment,
8372
8373 #ifdef CONFIG_X86_64
8374         .set_hv_timer = vmx_set_hv_timer,
8375         .cancel_hv_timer = vmx_cancel_hv_timer,
8376 #endif
8377
8378         .setup_mce = vmx_setup_mce,
8379
8380 #ifdef CONFIG_KVM_SMM
8381         .smi_allowed = vmx_smi_allowed,
8382         .enter_smm = vmx_enter_smm,
8383         .leave_smm = vmx_leave_smm,
8384         .enable_smi_window = vmx_enable_smi_window,
8385 #endif
8386
8387         .check_emulate_instruction = vmx_check_emulate_instruction,
8388         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8389         .migrate_timers = vmx_migrate_timers,
8390
8391         .msr_filter_changed = vmx_msr_filter_changed,
8392         .complete_emulated_msr = kvm_complete_insn_gp,
8393
8394         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8395
8396         .get_untagged_addr = vmx_get_untagged_addr,
8397 };
8398
8399 static unsigned int vmx_handle_intel_pt_intr(void)
8400 {
8401         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8402
8403         /* '0' on failure so that the !PT case can use a RET0 static call. */
8404         if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8405                 return 0;
8406
8407         kvm_make_request(KVM_REQ_PMI, vcpu);
8408         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8409                   (unsigned long *)&vcpu->arch.pmu.global_status);
8410         return 1;
8411 }
8412
8413 static __init void vmx_setup_user_return_msrs(void)
8414 {
8415
8416         /*
8417          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8418          * will emulate SYSCALL in legacy mode if the vendor string in guest
8419          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8420          * support this emulation, MSR_STAR is included in the list for i386,
8421          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8422          * into hardware and is here purely for emulation purposes.
8423          */
8424         const u32 vmx_uret_msrs_list[] = {
8425         #ifdef CONFIG_X86_64
8426                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8427         #endif
8428                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8429                 MSR_IA32_TSX_CTRL,
8430         };
8431         int i;
8432
8433         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8434
8435         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8436                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8437 }
8438
8439 static void __init vmx_setup_me_spte_mask(void)
8440 {
8441         u64 me_mask = 0;
8442
8443         /*
8444          * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8445          * the former to avoid exposing shadow_phys_bits.
8446          *
8447          * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8448          * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8449          * boot_cpu_data.x86_phys_bits holds the actual physical address
8450          * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8451          * reported by CPUID.  Those bits between are KeyID bits.
8452          */
8453         if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8454                 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8455                         kvm_get_shadow_phys_bits() - 1);
8456         /*
8457          * Unlike SME, host kernel doesn't support setting up any
8458          * MKTME KeyID on Intel platforms.  No memory encryption
8459          * bits should be included into the SPTE.
8460          */
8461         kvm_mmu_set_me_spte_mask(0, me_mask);
8462 }
8463
8464 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8465
8466 static __init int hardware_setup(void)
8467 {
8468         unsigned long host_bndcfgs;
8469         struct desc_ptr dt;
8470         int r;
8471
8472         store_idt(&dt);
8473         host_idt_base = dt.address;
8474
8475         vmx_setup_user_return_msrs();
8476
8477         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8478                 return -EIO;
8479
8480         if (cpu_has_perf_global_ctrl_bug())
8481                 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8482                              "does not work properly. Using workaround\n");
8483
8484         if (boot_cpu_has(X86_FEATURE_NX))
8485                 kvm_enable_efer_bits(EFER_NX);
8486
8487         if (boot_cpu_has(X86_FEATURE_MPX)) {
8488                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8489                 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8490         }
8491
8492         if (!cpu_has_vmx_mpx())
8493                 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8494                                              XFEATURE_MASK_BNDCSR);
8495
8496         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8497             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8498                 enable_vpid = 0;
8499
8500         if (!cpu_has_vmx_ept() ||
8501             !cpu_has_vmx_ept_4levels() ||
8502             !cpu_has_vmx_ept_mt_wb() ||
8503             !cpu_has_vmx_invept_global())
8504                 enable_ept = 0;
8505
8506         /* NX support is required for shadow paging. */
8507         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8508                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8509                 return -EOPNOTSUPP;
8510         }
8511
8512         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8513                 enable_ept_ad_bits = 0;
8514
8515         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8516                 enable_unrestricted_guest = 0;
8517
8518         if (!cpu_has_vmx_flexpriority())
8519                 flexpriority_enabled = 0;
8520
8521         if (!cpu_has_virtual_nmis())
8522                 enable_vnmi = 0;
8523
8524 #ifdef CONFIG_X86_SGX_KVM
8525         if (!cpu_has_vmx_encls_vmexit())
8526                 enable_sgx = false;
8527 #endif
8528
8529         /*
8530          * set_apic_access_page_addr() is used to reload apic access
8531          * page upon invalidation.  No need to do anything if not
8532          * using the APIC_ACCESS_ADDR VMCS field.
8533          */
8534         if (!flexpriority_enabled)
8535                 vmx_x86_ops.set_apic_access_page_addr = NULL;
8536
8537         if (!cpu_has_vmx_tpr_shadow())
8538                 vmx_x86_ops.update_cr8_intercept = NULL;
8539
8540 #if IS_ENABLED(CONFIG_HYPERV)
8541         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8542             && enable_ept) {
8543                 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8544                 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8545         }
8546 #endif
8547
8548         if (!cpu_has_vmx_ple()) {
8549                 ple_gap = 0;
8550                 ple_window = 0;
8551                 ple_window_grow = 0;
8552                 ple_window_max = 0;
8553                 ple_window_shrink = 0;
8554         }
8555
8556         if (!cpu_has_vmx_apicv())
8557                 enable_apicv = 0;
8558         if (!enable_apicv)
8559                 vmx_x86_ops.sync_pir_to_irr = NULL;
8560
8561         if (!enable_apicv || !cpu_has_vmx_ipiv())
8562                 enable_ipiv = false;
8563
8564         if (cpu_has_vmx_tsc_scaling())
8565                 kvm_caps.has_tsc_control = true;
8566
8567         kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8568         kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8569         kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8570         kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8571
8572         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8573
8574         if (enable_ept)
8575                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8576                                       cpu_has_vmx_ept_execute_only());
8577
8578         /*
8579          * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8580          * bits to shadow_zero_check.
8581          */
8582         vmx_setup_me_spte_mask();
8583
8584         kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8585                           ept_caps_to_lpage_level(vmx_capability.ept));
8586
8587         /*
8588          * Only enable PML when hardware supports PML feature, and both EPT
8589          * and EPT A/D bit features are enabled -- PML depends on them to work.
8590          */
8591         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8592                 enable_pml = 0;
8593
8594         if (!enable_pml)
8595                 vmx_x86_ops.cpu_dirty_log_size = 0;
8596
8597         if (!cpu_has_vmx_preemption_timer())
8598                 enable_preemption_timer = false;
8599
8600         if (enable_preemption_timer) {
8601                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8602
8603                 cpu_preemption_timer_multi =
8604                         vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8605
8606                 if (tsc_khz)
8607                         use_timer_freq = (u64)tsc_khz * 1000;
8608                 use_timer_freq >>= cpu_preemption_timer_multi;
8609
8610                 /*
8611                  * KVM "disables" the preemption timer by setting it to its max
8612                  * value.  Don't use the timer if it might cause spurious exits
8613                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8614                  */
8615                 if (use_timer_freq > 0xffffffffu / 10)
8616                         enable_preemption_timer = false;
8617         }
8618
8619         if (!enable_preemption_timer) {
8620                 vmx_x86_ops.set_hv_timer = NULL;
8621                 vmx_x86_ops.cancel_hv_timer = NULL;
8622                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8623         }
8624
8625         kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8626         kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8627
8628         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8629                 return -EINVAL;
8630         if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8631                 pt_mode = PT_MODE_SYSTEM;
8632         if (pt_mode == PT_MODE_HOST_GUEST)
8633                 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8634         else
8635                 vmx_init_ops.handle_intel_pt_intr = NULL;
8636
8637         setup_default_sgx_lepubkeyhash();
8638
8639         if (nested) {
8640                 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8641
8642                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8643                 if (r)
8644                         return r;
8645         }
8646
8647         vmx_set_cpu_caps();
8648
8649         r = alloc_kvm_area();
8650         if (r && nested)
8651                 nested_vmx_hardware_unsetup();
8652
8653         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8654
8655         return r;
8656 }
8657
8658 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8659         .hardware_setup = hardware_setup,
8660         .handle_intel_pt_intr = NULL,
8661
8662         .runtime_ops = &vmx_x86_ops,
8663         .pmu_ops = &intel_pmu_ops,
8664 };
8665
8666 static void vmx_cleanup_l1d_flush(void)
8667 {
8668         if (vmx_l1d_flush_pages) {
8669                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8670                 vmx_l1d_flush_pages = NULL;
8671         }
8672         /* Restore state so sysfs ignores VMX */
8673         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8674 }
8675
8676 static void __vmx_exit(void)
8677 {
8678         allow_smaller_maxphyaddr = false;
8679
8680         cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8681
8682         vmx_cleanup_l1d_flush();
8683 }
8684
8685 static void vmx_exit(void)
8686 {
8687         kvm_exit();
8688         kvm_x86_vendor_exit();
8689
8690         __vmx_exit();
8691 }
8692 module_exit(vmx_exit);
8693
8694 static int __init vmx_init(void)
8695 {
8696         int r, cpu;
8697
8698         if (!kvm_is_vmx_supported())
8699                 return -EOPNOTSUPP;
8700
8701         /*
8702          * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8703          * to unwind if a later step fails.
8704          */
8705         hv_init_evmcs();
8706
8707         r = kvm_x86_vendor_init(&vmx_init_ops);
8708         if (r)
8709                 return r;
8710
8711         /*
8712          * Must be called after common x86 init so enable_ept is properly set
8713          * up. Hand the parameter mitigation value in which was stored in
8714          * the pre module init parser. If no parameter was given, it will
8715          * contain 'auto' which will be turned into the default 'cond'
8716          * mitigation mode.
8717          */
8718         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8719         if (r)
8720                 goto err_l1d_flush;
8721
8722         for_each_possible_cpu(cpu) {
8723                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8724
8725                 pi_init_cpu(cpu);
8726         }
8727
8728         cpu_emergency_register_virt_callback(vmx_emergency_disable);
8729
8730         vmx_check_vmcs12_offsets();
8731
8732         /*
8733          * Shadow paging doesn't have a (further) performance penalty
8734          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8735          * by default
8736          */
8737         if (!enable_ept)
8738                 allow_smaller_maxphyaddr = true;
8739
8740         /*
8741          * Common KVM initialization _must_ come last, after this, /dev/kvm is
8742          * exposed to userspace!
8743          */
8744         r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8745                      THIS_MODULE);
8746         if (r)
8747                 goto err_kvm_init;
8748
8749         return 0;
8750
8751 err_kvm_init:
8752         __vmx_exit();
8753 err_l1d_flush:
8754         kvm_x86_vendor_exit();
8755         return r;
8756 }
8757 module_init(vmx_init);