5bc887e9a9860ea73ed6bd798d93e855f2c45be8
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21
22 #include <asm/trapnr.h>
23
24 #include "x86.h"
25 #include "svm.h"
26 #include "svm_ops.h"
27 #include "cpuid.h"
28 #include "trace.h"
29
30 #define __ex(x) __kvm_handle_fault_on_reboot(x)
31
32 #ifndef CONFIG_KVM_AMD_SEV
33 /*
34  * When this config is not defined, SEV feature is not supported and APIs in
35  * this file are not used but this file still gets compiled into the KVM AMD
36  * module.
37  *
38  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
39  * misc_res_type {} defined in linux/misc_cgroup.h.
40  *
41  * Below macros allow compilation to succeed.
42  */
43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
45 #endif
46
47 #ifdef CONFIG_KVM_AMD_SEV
48 /* enable/disable SEV support */
49 static bool sev_enabled = true;
50 module_param_named(sev, sev_enabled, bool, 0444);
51
52 /* enable/disable SEV-ES support */
53 static bool sev_es_enabled = true;
54 module_param_named(sev_es, sev_es_enabled, bool, 0444);
55 #else
56 #define sev_enabled false
57 #define sev_es_enabled false
58 #endif /* CONFIG_KVM_AMD_SEV */
59
60 static u8 sev_enc_bit;
61 static DECLARE_RWSEM(sev_deactivate_lock);
62 static DEFINE_MUTEX(sev_bitmap_lock);
63 unsigned int max_sev_asid;
64 static unsigned int min_sev_asid;
65 static unsigned long sev_me_mask;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68
69 struct enc_region {
70         struct list_head list;
71         unsigned long npages;
72         struct page **pages;
73         unsigned long uaddr;
74         unsigned long size;
75 };
76
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80         int ret, pos, error = 0;
81
82         /* Check if there are any ASIDs to reclaim before performing a flush */
83         pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid);
84         if (pos >= max_asid)
85                 return -EBUSY;
86
87         /*
88          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89          * so it must be guarded.
90          */
91         down_write(&sev_deactivate_lock);
92
93         wbinvd_on_all_cpus();
94         ret = sev_guest_df_flush(&error);
95
96         up_write(&sev_deactivate_lock);
97
98         if (ret)
99                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100
101         return ret;
102 }
103
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112         if (sev_flush_asids(min_asid, max_asid))
113                 return false;
114
115         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117                    max_sev_asid);
118         bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
119
120         return true;
121 }
122
123 static int sev_asid_new(struct kvm_sev_info *sev)
124 {
125         int pos, min_asid, max_asid, ret;
126         bool retry = true;
127         enum misc_res_type type;
128
129         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
130         WARN_ON(sev->misc_cg);
131         sev->misc_cg = get_current_misc_cg();
132         ret = misc_cg_try_charge(type, sev->misc_cg, 1);
133         if (ret) {
134                 put_misc_cg(sev->misc_cg);
135                 sev->misc_cg = NULL;
136                 return ret;
137         }
138
139         mutex_lock(&sev_bitmap_lock);
140
141         /*
142          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
143          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
144          */
145         min_asid = sev->es_active ? 0 : min_sev_asid - 1;
146         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
147 again:
148         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
149         if (pos >= max_asid) {
150                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
151                         retry = false;
152                         goto again;
153                 }
154                 mutex_unlock(&sev_bitmap_lock);
155                 ret = -EBUSY;
156                 goto e_uncharge;
157         }
158
159         __set_bit(pos, sev_asid_bitmap);
160
161         mutex_unlock(&sev_bitmap_lock);
162
163         return pos + 1;
164 e_uncharge:
165         misc_cg_uncharge(type, sev->misc_cg, 1);
166         put_misc_cg(sev->misc_cg);
167         sev->misc_cg = NULL;
168         return ret;
169 }
170
171 static int sev_get_asid(struct kvm *kvm)
172 {
173         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
174
175         return sev->asid;
176 }
177
178 static void sev_asid_free(struct kvm_sev_info *sev)
179 {
180         struct svm_cpu_data *sd;
181         int cpu, pos;
182         enum misc_res_type type;
183
184         mutex_lock(&sev_bitmap_lock);
185
186         pos = sev->asid - 1;
187         __set_bit(pos, sev_reclaim_asid_bitmap);
188
189         for_each_possible_cpu(cpu) {
190                 sd = per_cpu(svm_data, cpu);
191                 sd->sev_vmcbs[pos] = NULL;
192         }
193
194         mutex_unlock(&sev_bitmap_lock);
195
196         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
197         misc_cg_uncharge(type, sev->misc_cg, 1);
198         put_misc_cg(sev->misc_cg);
199         sev->misc_cg = NULL;
200 }
201
202 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
203 {
204         struct sev_data_decommission decommission;
205         struct sev_data_deactivate deactivate;
206
207         if (!handle)
208                 return;
209
210         deactivate.handle = handle;
211
212         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
213         down_read(&sev_deactivate_lock);
214         sev_guest_deactivate(&deactivate, NULL);
215         up_read(&sev_deactivate_lock);
216
217         /* decommission handle */
218         decommission.handle = handle;
219         sev_guest_decommission(&decommission, NULL);
220 }
221
222 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
223 {
224         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
225         bool es_active = argp->id == KVM_SEV_ES_INIT;
226         int asid, ret;
227
228         if (kvm->created_vcpus)
229                 return -EINVAL;
230
231         ret = -EBUSY;
232         if (unlikely(sev->active))
233                 return ret;
234
235         sev->es_active = es_active;
236         asid = sev_asid_new(sev);
237         if (asid < 0)
238                 goto e_no_asid;
239         sev->asid = asid;
240
241         ret = sev_platform_init(&argp->error);
242         if (ret)
243                 goto e_free;
244
245         sev->active = true;
246         sev->asid = asid;
247         INIT_LIST_HEAD(&sev->regions_list);
248
249         return 0;
250
251 e_free:
252         sev_asid_free(sev);
253         sev->asid = 0;
254 e_no_asid:
255         sev->es_active = false;
256         return ret;
257 }
258
259 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
260 {
261         struct sev_data_activate activate;
262         int asid = sev_get_asid(kvm);
263         int ret;
264
265         /* activate ASID on the given handle */
266         activate.handle = handle;
267         activate.asid   = asid;
268         ret = sev_guest_activate(&activate, error);
269
270         return ret;
271 }
272
273 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
274 {
275         struct fd f;
276         int ret;
277
278         f = fdget(fd);
279         if (!f.file)
280                 return -EBADF;
281
282         ret = sev_issue_cmd_external_user(f.file, id, data, error);
283
284         fdput(f);
285         return ret;
286 }
287
288 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
289 {
290         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
291
292         return __sev_issue_cmd(sev->fd, id, data, error);
293 }
294
295 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
296 {
297         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
298         struct sev_data_launch_start start;
299         struct kvm_sev_launch_start params;
300         void *dh_blob, *session_blob;
301         int *error = &argp->error;
302         int ret;
303
304         if (!sev_guest(kvm))
305                 return -ENOTTY;
306
307         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
308                 return -EFAULT;
309
310         memset(&start, 0, sizeof(start));
311
312         dh_blob = NULL;
313         if (params.dh_uaddr) {
314                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
315                 if (IS_ERR(dh_blob))
316                         return PTR_ERR(dh_blob);
317
318                 start.dh_cert_address = __sme_set(__pa(dh_blob));
319                 start.dh_cert_len = params.dh_len;
320         }
321
322         session_blob = NULL;
323         if (params.session_uaddr) {
324                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
325                 if (IS_ERR(session_blob)) {
326                         ret = PTR_ERR(session_blob);
327                         goto e_free_dh;
328                 }
329
330                 start.session_address = __sme_set(__pa(session_blob));
331                 start.session_len = params.session_len;
332         }
333
334         start.handle = params.handle;
335         start.policy = params.policy;
336
337         /* create memory encryption context */
338         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
339         if (ret)
340                 goto e_free_session;
341
342         /* Bind ASID to this guest */
343         ret = sev_bind_asid(kvm, start.handle, error);
344         if (ret)
345                 goto e_free_session;
346
347         /* return handle to userspace */
348         params.handle = start.handle;
349         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
350                 sev_unbind_asid(kvm, start.handle);
351                 ret = -EFAULT;
352                 goto e_free_session;
353         }
354
355         sev->handle = start.handle;
356         sev->fd = argp->sev_fd;
357
358 e_free_session:
359         kfree(session_blob);
360 e_free_dh:
361         kfree(dh_blob);
362         return ret;
363 }
364
365 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
366                                     unsigned long ulen, unsigned long *n,
367                                     int write)
368 {
369         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
370         unsigned long npages, size;
371         int npinned;
372         unsigned long locked, lock_limit;
373         struct page **pages;
374         unsigned long first, last;
375         int ret;
376
377         lockdep_assert_held(&kvm->lock);
378
379         if (ulen == 0 || uaddr + ulen < uaddr)
380                 return ERR_PTR(-EINVAL);
381
382         /* Calculate number of pages. */
383         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
384         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
385         npages = (last - first + 1);
386
387         locked = sev->pages_locked + npages;
388         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
389         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
390                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
391                 return ERR_PTR(-ENOMEM);
392         }
393
394         if (WARN_ON_ONCE(npages > INT_MAX))
395                 return ERR_PTR(-EINVAL);
396
397         /* Avoid using vmalloc for smaller buffers. */
398         size = npages * sizeof(struct page *);
399         if (size > PAGE_SIZE)
400                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
401         else
402                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
403
404         if (!pages)
405                 return ERR_PTR(-ENOMEM);
406
407         /* Pin the user virtual address. */
408         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
409         if (npinned != npages) {
410                 pr_err("SEV: Failure locking %lu pages.\n", npages);
411                 ret = -ENOMEM;
412                 goto err;
413         }
414
415         *n = npages;
416         sev->pages_locked = locked;
417
418         return pages;
419
420 err:
421         if (npinned > 0)
422                 unpin_user_pages(pages, npinned);
423
424         kvfree(pages);
425         return ERR_PTR(ret);
426 }
427
428 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
429                              unsigned long npages)
430 {
431         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
432
433         unpin_user_pages(pages, npages);
434         kvfree(pages);
435         sev->pages_locked -= npages;
436 }
437
438 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
439 {
440         uint8_t *page_virtual;
441         unsigned long i;
442
443         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
444             pages == NULL)
445                 return;
446
447         for (i = 0; i < npages; i++) {
448                 page_virtual = kmap_atomic(pages[i]);
449                 clflush_cache_range(page_virtual, PAGE_SIZE);
450                 kunmap_atomic(page_virtual);
451         }
452 }
453
454 static unsigned long get_num_contig_pages(unsigned long idx,
455                                 struct page **inpages, unsigned long npages)
456 {
457         unsigned long paddr, next_paddr;
458         unsigned long i = idx + 1, pages = 1;
459
460         /* find the number of contiguous pages starting from idx */
461         paddr = __sme_page_pa(inpages[idx]);
462         while (i < npages) {
463                 next_paddr = __sme_page_pa(inpages[i++]);
464                 if ((paddr + PAGE_SIZE) == next_paddr) {
465                         pages++;
466                         paddr = next_paddr;
467                         continue;
468                 }
469                 break;
470         }
471
472         return pages;
473 }
474
475 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
476 {
477         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
478         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
479         struct kvm_sev_launch_update_data params;
480         struct sev_data_launch_update_data data;
481         struct page **inpages;
482         int ret;
483
484         if (!sev_guest(kvm))
485                 return -ENOTTY;
486
487         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
488                 return -EFAULT;
489
490         vaddr = params.uaddr;
491         size = params.len;
492         vaddr_end = vaddr + size;
493
494         /* Lock the user memory. */
495         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
496         if (IS_ERR(inpages))
497                 return PTR_ERR(inpages);
498
499         /*
500          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
501          * place; the cache may contain the data that was written unencrypted.
502          */
503         sev_clflush_pages(inpages, npages);
504
505         data.reserved = 0;
506         data.handle = sev->handle;
507
508         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
509                 int offset, len;
510
511                 /*
512                  * If the user buffer is not page-aligned, calculate the offset
513                  * within the page.
514                  */
515                 offset = vaddr & (PAGE_SIZE - 1);
516
517                 /* Calculate the number of pages that can be encrypted in one go. */
518                 pages = get_num_contig_pages(i, inpages, npages);
519
520                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
521
522                 data.len = len;
523                 data.address = __sme_page_pa(inpages[i]) + offset;
524                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
525                 if (ret)
526                         goto e_unpin;
527
528                 size -= len;
529                 next_vaddr = vaddr + len;
530         }
531
532 e_unpin:
533         /* content of memory is updated, mark pages dirty */
534         for (i = 0; i < npages; i++) {
535                 set_page_dirty_lock(inpages[i]);
536                 mark_page_accessed(inpages[i]);
537         }
538         /* unlock the user pages */
539         sev_unpin_memory(kvm, inpages, npages);
540         return ret;
541 }
542
543 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
544 {
545         struct vmcb_save_area *save = &svm->vmcb->save;
546
547         /* Check some debug related fields before encrypting the VMSA */
548         if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
549                 return -EINVAL;
550
551         /* Sync registgers */
552         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
553         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
554         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
555         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
556         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
557         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
558         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
559         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
560 #ifdef CONFIG_X86_64
561         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
562         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
563         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
564         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
565         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
566         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
567         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
568         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
569 #endif
570         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
571
572         /* Sync some non-GPR registers before encrypting */
573         save->xcr0 = svm->vcpu.arch.xcr0;
574         save->pkru = svm->vcpu.arch.pkru;
575         save->xss  = svm->vcpu.arch.ia32_xss;
576
577         /*
578          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
579          * the traditional VMSA that is part of the VMCB. Copy the
580          * traditional VMSA as it has been built so far (in prep
581          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
582          */
583         memcpy(svm->vmsa, save, sizeof(*save));
584
585         return 0;
586 }
587
588 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
589 {
590         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
591         struct sev_data_launch_update_vmsa vmsa;
592         struct kvm_vcpu *vcpu;
593         int i, ret;
594
595         if (!sev_es_guest(kvm))
596                 return -ENOTTY;
597
598         vmsa.reserved = 0;
599
600         kvm_for_each_vcpu(i, vcpu, kvm) {
601                 struct vcpu_svm *svm = to_svm(vcpu);
602
603                 /* Perform some pre-encryption checks against the VMSA */
604                 ret = sev_es_sync_vmsa(svm);
605                 if (ret)
606                         return ret;
607
608                 /*
609                  * The LAUNCH_UPDATE_VMSA command will perform in-place
610                  * encryption of the VMSA memory content (i.e it will write
611                  * the same memory region with the guest's key), so invalidate
612                  * it first.
613                  */
614                 clflush_cache_range(svm->vmsa, PAGE_SIZE);
615
616                 vmsa.handle = sev->handle;
617                 vmsa.address = __sme_pa(svm->vmsa);
618                 vmsa.len = PAGE_SIZE;
619                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa,
620                                     &argp->error);
621                 if (ret)
622                         return ret;
623
624                 svm->vcpu.arch.guest_state_protected = true;
625         }
626
627         return 0;
628 }
629
630 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
631 {
632         void __user *measure = (void __user *)(uintptr_t)argp->data;
633         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
634         struct sev_data_launch_measure data;
635         struct kvm_sev_launch_measure params;
636         void __user *p = NULL;
637         void *blob = NULL;
638         int ret;
639
640         if (!sev_guest(kvm))
641                 return -ENOTTY;
642
643         if (copy_from_user(&params, measure, sizeof(params)))
644                 return -EFAULT;
645
646         memset(&data, 0, sizeof(data));
647
648         /* User wants to query the blob length */
649         if (!params.len)
650                 goto cmd;
651
652         p = (void __user *)(uintptr_t)params.uaddr;
653         if (p) {
654                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
655                         return -EINVAL;
656
657                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
658                 if (!blob)
659                         return -ENOMEM;
660
661                 data.address = __psp_pa(blob);
662                 data.len = params.len;
663         }
664
665 cmd:
666         data.handle = sev->handle;
667         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
668
669         /*
670          * If we query the session length, FW responded with expected data.
671          */
672         if (!params.len)
673                 goto done;
674
675         if (ret)
676                 goto e_free_blob;
677
678         if (blob) {
679                 if (copy_to_user(p, blob, params.len))
680                         ret = -EFAULT;
681         }
682
683 done:
684         params.len = data.len;
685         if (copy_to_user(measure, &params, sizeof(params)))
686                 ret = -EFAULT;
687 e_free_blob:
688         kfree(blob);
689         return ret;
690 }
691
692 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
693 {
694         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
695         struct sev_data_launch_finish data;
696
697         if (!sev_guest(kvm))
698                 return -ENOTTY;
699
700         data.handle = sev->handle;
701         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
702 }
703
704 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
705 {
706         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
707         struct kvm_sev_guest_status params;
708         struct sev_data_guest_status data;
709         int ret;
710
711         if (!sev_guest(kvm))
712                 return -ENOTTY;
713
714         memset(&data, 0, sizeof(data));
715
716         data.handle = sev->handle;
717         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
718         if (ret)
719                 return ret;
720
721         params.policy = data.policy;
722         params.state = data.state;
723         params.handle = data.handle;
724
725         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
726                 ret = -EFAULT;
727
728         return ret;
729 }
730
731 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
732                                unsigned long dst, int size,
733                                int *error, bool enc)
734 {
735         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
736         struct sev_data_dbg data;
737
738         data.reserved = 0;
739         data.handle = sev->handle;
740         data.dst_addr = dst;
741         data.src_addr = src;
742         data.len = size;
743
744         return sev_issue_cmd(kvm,
745                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
746                              &data, error);
747 }
748
749 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
750                              unsigned long dst_paddr, int sz, int *err)
751 {
752         int offset;
753
754         /*
755          * Its safe to read more than we are asked, caller should ensure that
756          * destination has enough space.
757          */
758         offset = src_paddr & 15;
759         src_paddr = round_down(src_paddr, 16);
760         sz = round_up(sz + offset, 16);
761
762         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
763 }
764
765 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
766                                   void __user *dst_uaddr,
767                                   unsigned long dst_paddr,
768                                   int size, int *err)
769 {
770         struct page *tpage = NULL;
771         int ret, offset;
772
773         /* if inputs are not 16-byte then use intermediate buffer */
774         if (!IS_ALIGNED(dst_paddr, 16) ||
775             !IS_ALIGNED(paddr,     16) ||
776             !IS_ALIGNED(size,      16)) {
777                 tpage = (void *)alloc_page(GFP_KERNEL);
778                 if (!tpage)
779                         return -ENOMEM;
780
781                 dst_paddr = __sme_page_pa(tpage);
782         }
783
784         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
785         if (ret)
786                 goto e_free;
787
788         if (tpage) {
789                 offset = paddr & 15;
790                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
791                         ret = -EFAULT;
792         }
793
794 e_free:
795         if (tpage)
796                 __free_page(tpage);
797
798         return ret;
799 }
800
801 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
802                                   void __user *vaddr,
803                                   unsigned long dst_paddr,
804                                   void __user *dst_vaddr,
805                                   int size, int *error)
806 {
807         struct page *src_tpage = NULL;
808         struct page *dst_tpage = NULL;
809         int ret, len = size;
810
811         /* If source buffer is not aligned then use an intermediate buffer */
812         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
813                 src_tpage = alloc_page(GFP_KERNEL);
814                 if (!src_tpage)
815                         return -ENOMEM;
816
817                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
818                         __free_page(src_tpage);
819                         return -EFAULT;
820                 }
821
822                 paddr = __sme_page_pa(src_tpage);
823         }
824
825         /*
826          *  If destination buffer or length is not aligned then do read-modify-write:
827          *   - decrypt destination in an intermediate buffer
828          *   - copy the source buffer in an intermediate buffer
829          *   - use the intermediate buffer as source buffer
830          */
831         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
832                 int dst_offset;
833
834                 dst_tpage = alloc_page(GFP_KERNEL);
835                 if (!dst_tpage) {
836                         ret = -ENOMEM;
837                         goto e_free;
838                 }
839
840                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
841                                         __sme_page_pa(dst_tpage), size, error);
842                 if (ret)
843                         goto e_free;
844
845                 /*
846                  *  If source is kernel buffer then use memcpy() otherwise
847                  *  copy_from_user().
848                  */
849                 dst_offset = dst_paddr & 15;
850
851                 if (src_tpage)
852                         memcpy(page_address(dst_tpage) + dst_offset,
853                                page_address(src_tpage), size);
854                 else {
855                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
856                                            vaddr, size)) {
857                                 ret = -EFAULT;
858                                 goto e_free;
859                         }
860                 }
861
862                 paddr = __sme_page_pa(dst_tpage);
863                 dst_paddr = round_down(dst_paddr, 16);
864                 len = round_up(size, 16);
865         }
866
867         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
868
869 e_free:
870         if (src_tpage)
871                 __free_page(src_tpage);
872         if (dst_tpage)
873                 __free_page(dst_tpage);
874         return ret;
875 }
876
877 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
878 {
879         unsigned long vaddr, vaddr_end, next_vaddr;
880         unsigned long dst_vaddr;
881         struct page **src_p, **dst_p;
882         struct kvm_sev_dbg debug;
883         unsigned long n;
884         unsigned int size;
885         int ret;
886
887         if (!sev_guest(kvm))
888                 return -ENOTTY;
889
890         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
891                 return -EFAULT;
892
893         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
894                 return -EINVAL;
895         if (!debug.dst_uaddr)
896                 return -EINVAL;
897
898         vaddr = debug.src_uaddr;
899         size = debug.len;
900         vaddr_end = vaddr + size;
901         dst_vaddr = debug.dst_uaddr;
902
903         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
904                 int len, s_off, d_off;
905
906                 /* lock userspace source and destination page */
907                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
908                 if (IS_ERR(src_p))
909                         return PTR_ERR(src_p);
910
911                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
912                 if (IS_ERR(dst_p)) {
913                         sev_unpin_memory(kvm, src_p, n);
914                         return PTR_ERR(dst_p);
915                 }
916
917                 /*
918                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
919                  * the pages; flush the destination too so that future accesses do not
920                  * see stale data.
921                  */
922                 sev_clflush_pages(src_p, 1);
923                 sev_clflush_pages(dst_p, 1);
924
925                 /*
926                  * Since user buffer may not be page aligned, calculate the
927                  * offset within the page.
928                  */
929                 s_off = vaddr & ~PAGE_MASK;
930                 d_off = dst_vaddr & ~PAGE_MASK;
931                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
932
933                 if (dec)
934                         ret = __sev_dbg_decrypt_user(kvm,
935                                                      __sme_page_pa(src_p[0]) + s_off,
936                                                      (void __user *)dst_vaddr,
937                                                      __sme_page_pa(dst_p[0]) + d_off,
938                                                      len, &argp->error);
939                 else
940                         ret = __sev_dbg_encrypt_user(kvm,
941                                                      __sme_page_pa(src_p[0]) + s_off,
942                                                      (void __user *)vaddr,
943                                                      __sme_page_pa(dst_p[0]) + d_off,
944                                                      (void __user *)dst_vaddr,
945                                                      len, &argp->error);
946
947                 sev_unpin_memory(kvm, src_p, n);
948                 sev_unpin_memory(kvm, dst_p, n);
949
950                 if (ret)
951                         goto err;
952
953                 next_vaddr = vaddr + len;
954                 dst_vaddr = dst_vaddr + len;
955                 size -= len;
956         }
957 err:
958         return ret;
959 }
960
961 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
962 {
963         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
964         struct sev_data_launch_secret data;
965         struct kvm_sev_launch_secret params;
966         struct page **pages;
967         void *blob, *hdr;
968         unsigned long n, i;
969         int ret, offset;
970
971         if (!sev_guest(kvm))
972                 return -ENOTTY;
973
974         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
975                 return -EFAULT;
976
977         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
978         if (IS_ERR(pages))
979                 return PTR_ERR(pages);
980
981         /*
982          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
983          * place; the cache may contain the data that was written unencrypted.
984          */
985         sev_clflush_pages(pages, n);
986
987         /*
988          * The secret must be copied into contiguous memory region, lets verify
989          * that userspace memory pages are contiguous before we issue command.
990          */
991         if (get_num_contig_pages(0, pages, n) != n) {
992                 ret = -EINVAL;
993                 goto e_unpin_memory;
994         }
995
996         memset(&data, 0, sizeof(data));
997
998         offset = params.guest_uaddr & (PAGE_SIZE - 1);
999         data.guest_address = __sme_page_pa(pages[0]) + offset;
1000         data.guest_len = params.guest_len;
1001
1002         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1003         if (IS_ERR(blob)) {
1004                 ret = PTR_ERR(blob);
1005                 goto e_unpin_memory;
1006         }
1007
1008         data.trans_address = __psp_pa(blob);
1009         data.trans_len = params.trans_len;
1010
1011         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1012         if (IS_ERR(hdr)) {
1013                 ret = PTR_ERR(hdr);
1014                 goto e_free_blob;
1015         }
1016         data.hdr_address = __psp_pa(hdr);
1017         data.hdr_len = params.hdr_len;
1018
1019         data.handle = sev->handle;
1020         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1021
1022         kfree(hdr);
1023
1024 e_free_blob:
1025         kfree(blob);
1026 e_unpin_memory:
1027         /* content of memory is updated, mark pages dirty */
1028         for (i = 0; i < n; i++) {
1029                 set_page_dirty_lock(pages[i]);
1030                 mark_page_accessed(pages[i]);
1031         }
1032         sev_unpin_memory(kvm, pages, n);
1033         return ret;
1034 }
1035
1036 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1037 {
1038         void __user *report = (void __user *)(uintptr_t)argp->data;
1039         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1040         struct sev_data_attestation_report data;
1041         struct kvm_sev_attestation_report params;
1042         void __user *p;
1043         void *blob = NULL;
1044         int ret;
1045
1046         if (!sev_guest(kvm))
1047                 return -ENOTTY;
1048
1049         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1050                 return -EFAULT;
1051
1052         memset(&data, 0, sizeof(data));
1053
1054         /* User wants to query the blob length */
1055         if (!params.len)
1056                 goto cmd;
1057
1058         p = (void __user *)(uintptr_t)params.uaddr;
1059         if (p) {
1060                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1061                         return -EINVAL;
1062
1063                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1064                 if (!blob)
1065                         return -ENOMEM;
1066
1067                 data.address = __psp_pa(blob);
1068                 data.len = params.len;
1069                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1070         }
1071 cmd:
1072         data.handle = sev->handle;
1073         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1074         /*
1075          * If we query the session length, FW responded with expected data.
1076          */
1077         if (!params.len)
1078                 goto done;
1079
1080         if (ret)
1081                 goto e_free_blob;
1082
1083         if (blob) {
1084                 if (copy_to_user(p, blob, params.len))
1085                         ret = -EFAULT;
1086         }
1087
1088 done:
1089         params.len = data.len;
1090         if (copy_to_user(report, &params, sizeof(params)))
1091                 ret = -EFAULT;
1092 e_free_blob:
1093         kfree(blob);
1094         return ret;
1095 }
1096
1097 /* Userspace wants to query session length. */
1098 static int
1099 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1100                                       struct kvm_sev_send_start *params)
1101 {
1102         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1103         struct sev_data_send_start data;
1104         int ret;
1105
1106         data.handle = sev->handle;
1107         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1108         if (ret < 0)
1109                 return ret;
1110
1111         params->session_len = data.session_len;
1112         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1113                                 sizeof(struct kvm_sev_send_start)))
1114                 ret = -EFAULT;
1115
1116         return ret;
1117 }
1118
1119 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1120 {
1121         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1122         struct sev_data_send_start data;
1123         struct kvm_sev_send_start params;
1124         void *amd_certs, *session_data;
1125         void *pdh_cert, *plat_certs;
1126         int ret;
1127
1128         if (!sev_guest(kvm))
1129                 return -ENOTTY;
1130
1131         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1132                                 sizeof(struct kvm_sev_send_start)))
1133                 return -EFAULT;
1134
1135         /* if session_len is zero, userspace wants to query the session length */
1136         if (!params.session_len)
1137                 return __sev_send_start_query_session_length(kvm, argp,
1138                                 &params);
1139
1140         /* some sanity checks */
1141         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1142             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1143                 return -EINVAL;
1144
1145         /* allocate the memory to hold the session data blob */
1146         session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1147         if (!session_data)
1148                 return -ENOMEM;
1149
1150         /* copy the certificate blobs from userspace */
1151         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1152                                 params.pdh_cert_len);
1153         if (IS_ERR(pdh_cert)) {
1154                 ret = PTR_ERR(pdh_cert);
1155                 goto e_free_session;
1156         }
1157
1158         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1159                                 params.plat_certs_len);
1160         if (IS_ERR(plat_certs)) {
1161                 ret = PTR_ERR(plat_certs);
1162                 goto e_free_pdh;
1163         }
1164
1165         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1166                                 params.amd_certs_len);
1167         if (IS_ERR(amd_certs)) {
1168                 ret = PTR_ERR(amd_certs);
1169                 goto e_free_plat_cert;
1170         }
1171
1172         /* populate the FW SEND_START field with system physical address */
1173         memset(&data, 0, sizeof(data));
1174         data.pdh_cert_address = __psp_pa(pdh_cert);
1175         data.pdh_cert_len = params.pdh_cert_len;
1176         data.plat_certs_address = __psp_pa(plat_certs);
1177         data.plat_certs_len = params.plat_certs_len;
1178         data.amd_certs_address = __psp_pa(amd_certs);
1179         data.amd_certs_len = params.amd_certs_len;
1180         data.session_address = __psp_pa(session_data);
1181         data.session_len = params.session_len;
1182         data.handle = sev->handle;
1183
1184         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1185
1186         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1187                         session_data, params.session_len)) {
1188                 ret = -EFAULT;
1189                 goto e_free_amd_cert;
1190         }
1191
1192         params.policy = data.policy;
1193         params.session_len = data.session_len;
1194         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1195                                 sizeof(struct kvm_sev_send_start)))
1196                 ret = -EFAULT;
1197
1198 e_free_amd_cert:
1199         kfree(amd_certs);
1200 e_free_plat_cert:
1201         kfree(plat_certs);
1202 e_free_pdh:
1203         kfree(pdh_cert);
1204 e_free_session:
1205         kfree(session_data);
1206         return ret;
1207 }
1208
1209 /* Userspace wants to query either header or trans length. */
1210 static int
1211 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1212                                      struct kvm_sev_send_update_data *params)
1213 {
1214         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1215         struct sev_data_send_update_data data;
1216         int ret;
1217
1218         data.handle = sev->handle;
1219         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1220         if (ret < 0)
1221                 return ret;
1222
1223         params->hdr_len = data.hdr_len;
1224         params->trans_len = data.trans_len;
1225
1226         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1227                          sizeof(struct kvm_sev_send_update_data)))
1228                 ret = -EFAULT;
1229
1230         return ret;
1231 }
1232
1233 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1234 {
1235         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1236         struct sev_data_send_update_data data;
1237         struct kvm_sev_send_update_data params;
1238         void *hdr, *trans_data;
1239         struct page **guest_page;
1240         unsigned long n;
1241         int ret, offset;
1242
1243         if (!sev_guest(kvm))
1244                 return -ENOTTY;
1245
1246         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1247                         sizeof(struct kvm_sev_send_update_data)))
1248                 return -EFAULT;
1249
1250         /* userspace wants to query either header or trans length */
1251         if (!params.trans_len || !params.hdr_len)
1252                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1253
1254         if (!params.trans_uaddr || !params.guest_uaddr ||
1255             !params.guest_len || !params.hdr_uaddr)
1256                 return -EINVAL;
1257
1258         /* Check if we are crossing the page boundary */
1259         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1260         if ((params.guest_len + offset > PAGE_SIZE))
1261                 return -EINVAL;
1262
1263         /* Pin guest memory */
1264         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1265                                     PAGE_SIZE, &n, 0);
1266         if (!guest_page)
1267                 return -EFAULT;
1268
1269         /* allocate memory for header and transport buffer */
1270         ret = -ENOMEM;
1271         hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1272         if (!hdr)
1273                 goto e_unpin;
1274
1275         trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1276         if (!trans_data)
1277                 goto e_free_hdr;
1278
1279         memset(&data, 0, sizeof(data));
1280         data.hdr_address = __psp_pa(hdr);
1281         data.hdr_len = params.hdr_len;
1282         data.trans_address = __psp_pa(trans_data);
1283         data.trans_len = params.trans_len;
1284
1285         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1286         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1287         data.guest_address |= sev_me_mask;
1288         data.guest_len = params.guest_len;
1289         data.handle = sev->handle;
1290
1291         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1292
1293         if (ret)
1294                 goto e_free_trans_data;
1295
1296         /* copy transport buffer to user space */
1297         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1298                          trans_data, params.trans_len)) {
1299                 ret = -EFAULT;
1300                 goto e_free_trans_data;
1301         }
1302
1303         /* Copy packet header to userspace. */
1304         ret = copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1305                                 params.hdr_len);
1306
1307 e_free_trans_data:
1308         kfree(trans_data);
1309 e_free_hdr:
1310         kfree(hdr);
1311 e_unpin:
1312         sev_unpin_memory(kvm, guest_page, n);
1313
1314         return ret;
1315 }
1316
1317 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1318 {
1319         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1320         struct sev_data_send_finish data;
1321
1322         if (!sev_guest(kvm))
1323                 return -ENOTTY;
1324
1325         data.handle = sev->handle;
1326         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1327 }
1328
1329 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1330 {
1331         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1332         struct sev_data_send_cancel data;
1333
1334         if (!sev_guest(kvm))
1335                 return -ENOTTY;
1336
1337         data.handle = sev->handle;
1338         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1339 }
1340
1341 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1342 {
1343         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1344         struct sev_data_receive_start start;
1345         struct kvm_sev_receive_start params;
1346         int *error = &argp->error;
1347         void *session_data;
1348         void *pdh_data;
1349         int ret;
1350
1351         if (!sev_guest(kvm))
1352                 return -ENOTTY;
1353
1354         /* Get parameter from the userspace */
1355         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1356                         sizeof(struct kvm_sev_receive_start)))
1357                 return -EFAULT;
1358
1359         /* some sanity checks */
1360         if (!params.pdh_uaddr || !params.pdh_len ||
1361             !params.session_uaddr || !params.session_len)
1362                 return -EINVAL;
1363
1364         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1365         if (IS_ERR(pdh_data))
1366                 return PTR_ERR(pdh_data);
1367
1368         session_data = psp_copy_user_blob(params.session_uaddr,
1369                         params.session_len);
1370         if (IS_ERR(session_data)) {
1371                 ret = PTR_ERR(session_data);
1372                 goto e_free_pdh;
1373         }
1374
1375         memset(&start, 0, sizeof(start));
1376         start.handle = params.handle;
1377         start.policy = params.policy;
1378         start.pdh_cert_address = __psp_pa(pdh_data);
1379         start.pdh_cert_len = params.pdh_len;
1380         start.session_address = __psp_pa(session_data);
1381         start.session_len = params.session_len;
1382
1383         /* create memory encryption context */
1384         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1385                                 error);
1386         if (ret)
1387                 goto e_free_session;
1388
1389         /* Bind ASID to this guest */
1390         ret = sev_bind_asid(kvm, start.handle, error);
1391         if (ret)
1392                 goto e_free_session;
1393
1394         params.handle = start.handle;
1395         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1396                          &params, sizeof(struct kvm_sev_receive_start))) {
1397                 ret = -EFAULT;
1398                 sev_unbind_asid(kvm, start.handle);
1399                 goto e_free_session;
1400         }
1401
1402         sev->handle = start.handle;
1403         sev->fd = argp->sev_fd;
1404
1405 e_free_session:
1406         kfree(session_data);
1407 e_free_pdh:
1408         kfree(pdh_data);
1409
1410         return ret;
1411 }
1412
1413 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1414 {
1415         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1416         struct kvm_sev_receive_update_data params;
1417         struct sev_data_receive_update_data data;
1418         void *hdr = NULL, *trans = NULL;
1419         struct page **guest_page;
1420         unsigned long n;
1421         int ret, offset;
1422
1423         if (!sev_guest(kvm))
1424                 return -EINVAL;
1425
1426         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1427                         sizeof(struct kvm_sev_receive_update_data)))
1428                 return -EFAULT;
1429
1430         if (!params.hdr_uaddr || !params.hdr_len ||
1431             !params.guest_uaddr || !params.guest_len ||
1432             !params.trans_uaddr || !params.trans_len)
1433                 return -EINVAL;
1434
1435         /* Check if we are crossing the page boundary */
1436         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1437         if ((params.guest_len + offset > PAGE_SIZE))
1438                 return -EINVAL;
1439
1440         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1441         if (IS_ERR(hdr))
1442                 return PTR_ERR(hdr);
1443
1444         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1445         if (IS_ERR(trans)) {
1446                 ret = PTR_ERR(trans);
1447                 goto e_free_hdr;
1448         }
1449
1450         memset(&data, 0, sizeof(data));
1451         data.hdr_address = __psp_pa(hdr);
1452         data.hdr_len = params.hdr_len;
1453         data.trans_address = __psp_pa(trans);
1454         data.trans_len = params.trans_len;
1455
1456         /* Pin guest memory */
1457         ret = -EFAULT;
1458         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1459                                     PAGE_SIZE, &n, 0);
1460         if (!guest_page)
1461                 goto e_free_trans;
1462
1463         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1464         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1465         data.guest_address |= sev_me_mask;
1466         data.guest_len = params.guest_len;
1467         data.handle = sev->handle;
1468
1469         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1470                                 &argp->error);
1471
1472         sev_unpin_memory(kvm, guest_page, n);
1473
1474 e_free_trans:
1475         kfree(trans);
1476 e_free_hdr:
1477         kfree(hdr);
1478
1479         return ret;
1480 }
1481
1482 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1483 {
1484         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1485         struct sev_data_receive_finish data;
1486
1487         if (!sev_guest(kvm))
1488                 return -ENOTTY;
1489
1490         data.handle = sev->handle;
1491         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1492 }
1493
1494 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1495 {
1496         struct kvm_sev_cmd sev_cmd;
1497         int r;
1498
1499         if (!sev_enabled)
1500                 return -ENOTTY;
1501
1502         if (!argp)
1503                 return 0;
1504
1505         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1506                 return -EFAULT;
1507
1508         mutex_lock(&kvm->lock);
1509
1510         /* enc_context_owner handles all memory enc operations */
1511         if (is_mirroring_enc_context(kvm)) {
1512                 r = -EINVAL;
1513                 goto out;
1514         }
1515
1516         switch (sev_cmd.id) {
1517         case KVM_SEV_ES_INIT:
1518                 if (!sev_es_enabled) {
1519                         r = -ENOTTY;
1520                         goto out;
1521                 }
1522                 fallthrough;
1523         case KVM_SEV_INIT:
1524                 r = sev_guest_init(kvm, &sev_cmd);
1525                 break;
1526         case KVM_SEV_LAUNCH_START:
1527                 r = sev_launch_start(kvm, &sev_cmd);
1528                 break;
1529         case KVM_SEV_LAUNCH_UPDATE_DATA:
1530                 r = sev_launch_update_data(kvm, &sev_cmd);
1531                 break;
1532         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1533                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1534                 break;
1535         case KVM_SEV_LAUNCH_MEASURE:
1536                 r = sev_launch_measure(kvm, &sev_cmd);
1537                 break;
1538         case KVM_SEV_LAUNCH_FINISH:
1539                 r = sev_launch_finish(kvm, &sev_cmd);
1540                 break;
1541         case KVM_SEV_GUEST_STATUS:
1542                 r = sev_guest_status(kvm, &sev_cmd);
1543                 break;
1544         case KVM_SEV_DBG_DECRYPT:
1545                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1546                 break;
1547         case KVM_SEV_DBG_ENCRYPT:
1548                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1549                 break;
1550         case KVM_SEV_LAUNCH_SECRET:
1551                 r = sev_launch_secret(kvm, &sev_cmd);
1552                 break;
1553         case KVM_SEV_GET_ATTESTATION_REPORT:
1554                 r = sev_get_attestation_report(kvm, &sev_cmd);
1555                 break;
1556         case KVM_SEV_SEND_START:
1557                 r = sev_send_start(kvm, &sev_cmd);
1558                 break;
1559         case KVM_SEV_SEND_UPDATE_DATA:
1560                 r = sev_send_update_data(kvm, &sev_cmd);
1561                 break;
1562         case KVM_SEV_SEND_FINISH:
1563                 r = sev_send_finish(kvm, &sev_cmd);
1564                 break;
1565         case KVM_SEV_SEND_CANCEL:
1566                 r = sev_send_cancel(kvm, &sev_cmd);
1567                 break;
1568         case KVM_SEV_RECEIVE_START:
1569                 r = sev_receive_start(kvm, &sev_cmd);
1570                 break;
1571         case KVM_SEV_RECEIVE_UPDATE_DATA:
1572                 r = sev_receive_update_data(kvm, &sev_cmd);
1573                 break;
1574         case KVM_SEV_RECEIVE_FINISH:
1575                 r = sev_receive_finish(kvm, &sev_cmd);
1576                 break;
1577         default:
1578                 r = -EINVAL;
1579                 goto out;
1580         }
1581
1582         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1583                 r = -EFAULT;
1584
1585 out:
1586         mutex_unlock(&kvm->lock);
1587         return r;
1588 }
1589
1590 int svm_register_enc_region(struct kvm *kvm,
1591                             struct kvm_enc_region *range)
1592 {
1593         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1594         struct enc_region *region;
1595         int ret = 0;
1596
1597         if (!sev_guest(kvm))
1598                 return -ENOTTY;
1599
1600         /* If kvm is mirroring encryption context it isn't responsible for it */
1601         if (is_mirroring_enc_context(kvm))
1602                 return -EINVAL;
1603
1604         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1605                 return -EINVAL;
1606
1607         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1608         if (!region)
1609                 return -ENOMEM;
1610
1611         mutex_lock(&kvm->lock);
1612         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1613         if (IS_ERR(region->pages)) {
1614                 ret = PTR_ERR(region->pages);
1615                 mutex_unlock(&kvm->lock);
1616                 goto e_free;
1617         }
1618
1619         region->uaddr = range->addr;
1620         region->size = range->size;
1621
1622         list_add_tail(&region->list, &sev->regions_list);
1623         mutex_unlock(&kvm->lock);
1624
1625         /*
1626          * The guest may change the memory encryption attribute from C=0 -> C=1
1627          * or vice versa for this memory range. Lets make sure caches are
1628          * flushed to ensure that guest data gets written into memory with
1629          * correct C-bit.
1630          */
1631         sev_clflush_pages(region->pages, region->npages);
1632
1633         return ret;
1634
1635 e_free:
1636         kfree(region);
1637         return ret;
1638 }
1639
1640 static struct enc_region *
1641 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1642 {
1643         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1644         struct list_head *head = &sev->regions_list;
1645         struct enc_region *i;
1646
1647         list_for_each_entry(i, head, list) {
1648                 if (i->uaddr == range->addr &&
1649                     i->size == range->size)
1650                         return i;
1651         }
1652
1653         return NULL;
1654 }
1655
1656 static void __unregister_enc_region_locked(struct kvm *kvm,
1657                                            struct enc_region *region)
1658 {
1659         sev_unpin_memory(kvm, region->pages, region->npages);
1660         list_del(&region->list);
1661         kfree(region);
1662 }
1663
1664 int svm_unregister_enc_region(struct kvm *kvm,
1665                               struct kvm_enc_region *range)
1666 {
1667         struct enc_region *region;
1668         int ret;
1669
1670         /* If kvm is mirroring encryption context it isn't responsible for it */
1671         if (is_mirroring_enc_context(kvm))
1672                 return -EINVAL;
1673
1674         mutex_lock(&kvm->lock);
1675
1676         if (!sev_guest(kvm)) {
1677                 ret = -ENOTTY;
1678                 goto failed;
1679         }
1680
1681         region = find_enc_region(kvm, range);
1682         if (!region) {
1683                 ret = -EINVAL;
1684                 goto failed;
1685         }
1686
1687         /*
1688          * Ensure that all guest tagged cache entries are flushed before
1689          * releasing the pages back to the system for use. CLFLUSH will
1690          * not do this, so issue a WBINVD.
1691          */
1692         wbinvd_on_all_cpus();
1693
1694         __unregister_enc_region_locked(kvm, region);
1695
1696         mutex_unlock(&kvm->lock);
1697         return 0;
1698
1699 failed:
1700         mutex_unlock(&kvm->lock);
1701         return ret;
1702 }
1703
1704 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1705 {
1706         struct file *source_kvm_file;
1707         struct kvm *source_kvm;
1708         struct kvm_sev_info *mirror_sev;
1709         unsigned int asid;
1710         int ret;
1711
1712         source_kvm_file = fget(source_fd);
1713         if (!file_is_kvm(source_kvm_file)) {
1714                 ret = -EBADF;
1715                 goto e_source_put;
1716         }
1717
1718         source_kvm = source_kvm_file->private_data;
1719         mutex_lock(&source_kvm->lock);
1720
1721         if (!sev_guest(source_kvm)) {
1722                 ret = -EINVAL;
1723                 goto e_source_unlock;
1724         }
1725
1726         /* Mirrors of mirrors should work, but let's not get silly */
1727         if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1728                 ret = -EINVAL;
1729                 goto e_source_unlock;
1730         }
1731
1732         asid = to_kvm_svm(source_kvm)->sev_info.asid;
1733
1734         /*
1735          * The mirror kvm holds an enc_context_owner ref so its asid can't
1736          * disappear until we're done with it
1737          */
1738         kvm_get_kvm(source_kvm);
1739
1740         fput(source_kvm_file);
1741         mutex_unlock(&source_kvm->lock);
1742         mutex_lock(&kvm->lock);
1743
1744         if (sev_guest(kvm)) {
1745                 ret = -EINVAL;
1746                 goto e_mirror_unlock;
1747         }
1748
1749         /* Set enc_context_owner and copy its encryption context over */
1750         mirror_sev = &to_kvm_svm(kvm)->sev_info;
1751         mirror_sev->enc_context_owner = source_kvm;
1752         mirror_sev->asid = asid;
1753         mirror_sev->active = true;
1754
1755         mutex_unlock(&kvm->lock);
1756         return 0;
1757
1758 e_mirror_unlock:
1759         mutex_unlock(&kvm->lock);
1760         kvm_put_kvm(source_kvm);
1761         return ret;
1762 e_source_unlock:
1763         mutex_unlock(&source_kvm->lock);
1764 e_source_put:
1765         if (source_kvm_file)
1766                 fput(source_kvm_file);
1767         return ret;
1768 }
1769
1770 void sev_vm_destroy(struct kvm *kvm)
1771 {
1772         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1773         struct list_head *head = &sev->regions_list;
1774         struct list_head *pos, *q;
1775
1776         if (!sev_guest(kvm))
1777                 return;
1778
1779         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1780         if (is_mirroring_enc_context(kvm)) {
1781                 kvm_put_kvm(sev->enc_context_owner);
1782                 return;
1783         }
1784
1785         mutex_lock(&kvm->lock);
1786
1787         /*
1788          * Ensure that all guest tagged cache entries are flushed before
1789          * releasing the pages back to the system for use. CLFLUSH will
1790          * not do this, so issue a WBINVD.
1791          */
1792         wbinvd_on_all_cpus();
1793
1794         /*
1795          * if userspace was terminated before unregistering the memory regions
1796          * then lets unpin all the registered memory.
1797          */
1798         if (!list_empty(head)) {
1799                 list_for_each_safe(pos, q, head) {
1800                         __unregister_enc_region_locked(kvm,
1801                                 list_entry(pos, struct enc_region, list));
1802                         cond_resched();
1803                 }
1804         }
1805
1806         mutex_unlock(&kvm->lock);
1807
1808         sev_unbind_asid(kvm, sev->handle);
1809         sev_asid_free(sev);
1810 }
1811
1812 void __init sev_set_cpu_caps(void)
1813 {
1814         if (!sev_enabled)
1815                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
1816         if (!sev_es_enabled)
1817                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1818 }
1819
1820 void __init sev_hardware_setup(void)
1821 {
1822 #ifdef CONFIG_KVM_AMD_SEV
1823         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1824         bool sev_es_supported = false;
1825         bool sev_supported = false;
1826
1827         if (!sev_enabled || !npt_enabled)
1828                 goto out;
1829
1830         /* Does the CPU support SEV? */
1831         if (!boot_cpu_has(X86_FEATURE_SEV))
1832                 goto out;
1833
1834         /* Retrieve SEV CPUID information */
1835         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1836
1837         /* Set encryption bit location for SEV-ES guests */
1838         sev_enc_bit = ebx & 0x3f;
1839
1840         /* Maximum number of encrypted guests supported simultaneously */
1841         max_sev_asid = ecx;
1842         if (!max_sev_asid)
1843                 goto out;
1844
1845         /* Minimum ASID value that should be used for SEV guest */
1846         min_sev_asid = edx;
1847         sev_me_mask = 1UL << (ebx & 0x3f);
1848
1849         /* Initialize SEV ASID bitmaps */
1850         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1851         if (!sev_asid_bitmap)
1852                 goto out;
1853
1854         sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1855         if (!sev_reclaim_asid_bitmap) {
1856                 bitmap_free(sev_asid_bitmap);
1857                 sev_asid_bitmap = NULL;
1858                 goto out;
1859         }
1860
1861         sev_asid_count = max_sev_asid - min_sev_asid + 1;
1862         if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1863                 goto out;
1864
1865         pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1866         sev_supported = true;
1867
1868         /* SEV-ES support requested? */
1869         if (!sev_es_enabled)
1870                 goto out;
1871
1872         /* Does the CPU support SEV-ES? */
1873         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1874                 goto out;
1875
1876         /* Has the system been allocated ASIDs for SEV-ES? */
1877         if (min_sev_asid == 1)
1878                 goto out;
1879
1880         sev_es_asid_count = min_sev_asid - 1;
1881         if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1882                 goto out;
1883
1884         pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1885         sev_es_supported = true;
1886
1887 out:
1888         sev_enabled = sev_supported;
1889         sev_es_enabled = sev_es_supported;
1890 #endif
1891 }
1892
1893 void sev_hardware_teardown(void)
1894 {
1895         if (!sev_enabled)
1896                 return;
1897
1898         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1899         sev_flush_asids(0, max_sev_asid);
1900
1901         bitmap_free(sev_asid_bitmap);
1902         bitmap_free(sev_reclaim_asid_bitmap);
1903
1904         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1905         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1906 }
1907
1908 int sev_cpu_init(struct svm_cpu_data *sd)
1909 {
1910         if (!sev_enabled)
1911                 return 0;
1912
1913         sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL);
1914         if (!sd->sev_vmcbs)
1915                 return -ENOMEM;
1916
1917         return 0;
1918 }
1919
1920 /*
1921  * Pages used by hardware to hold guest encrypted state must be flushed before
1922  * returning them to the system.
1923  */
1924 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1925                                    unsigned long len)
1926 {
1927         /*
1928          * If hardware enforced cache coherency for encrypted mappings of the
1929          * same physical page is supported, nothing to do.
1930          */
1931         if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1932                 return;
1933
1934         /*
1935          * If the VM Page Flush MSR is supported, use it to flush the page
1936          * (using the page virtual address and the guest ASID).
1937          */
1938         if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1939                 struct kvm_sev_info *sev;
1940                 unsigned long va_start;
1941                 u64 start, stop;
1942
1943                 /* Align start and stop to page boundaries. */
1944                 va_start = (unsigned long)va;
1945                 start = (u64)va_start & PAGE_MASK;
1946                 stop = PAGE_ALIGN((u64)va_start + len);
1947
1948                 if (start < stop) {
1949                         sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1950
1951                         while (start < stop) {
1952                                 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1953                                        start | sev->asid);
1954
1955                                 start += PAGE_SIZE;
1956                         }
1957
1958                         return;
1959                 }
1960
1961                 WARN(1, "Address overflow, using WBINVD\n");
1962         }
1963
1964         /*
1965          * Hardware should always have one of the above features,
1966          * but if not, use WBINVD and issue a warning.
1967          */
1968         WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1969         wbinvd_on_all_cpus();
1970 }
1971
1972 void sev_free_vcpu(struct kvm_vcpu *vcpu)
1973 {
1974         struct vcpu_svm *svm;
1975
1976         if (!sev_es_guest(vcpu->kvm))
1977                 return;
1978
1979         svm = to_svm(vcpu);
1980
1981         if (vcpu->arch.guest_state_protected)
1982                 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1983         __free_page(virt_to_page(svm->vmsa));
1984
1985         if (svm->ghcb_sa_free)
1986                 kfree(svm->ghcb_sa);
1987 }
1988
1989 static void dump_ghcb(struct vcpu_svm *svm)
1990 {
1991         struct ghcb *ghcb = svm->ghcb;
1992         unsigned int nbits;
1993
1994         /* Re-use the dump_invalid_vmcb module parameter */
1995         if (!dump_invalid_vmcb) {
1996                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
1997                 return;
1998         }
1999
2000         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2001
2002         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2003         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2004                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2005         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2006                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2007         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2008                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2009         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2010                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2011         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2012 }
2013
2014 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2015 {
2016         struct kvm_vcpu *vcpu = &svm->vcpu;
2017         struct ghcb *ghcb = svm->ghcb;
2018
2019         /*
2020          * The GHCB protocol so far allows for the following data
2021          * to be returned:
2022          *   GPRs RAX, RBX, RCX, RDX
2023          *
2024          * Copy their values, even if they may not have been written during the
2025          * VM-Exit.  It's the guest's responsibility to not consume random data.
2026          */
2027         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2028         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2029         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2030         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2031 }
2032
2033 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2034 {
2035         struct vmcb_control_area *control = &svm->vmcb->control;
2036         struct kvm_vcpu *vcpu = &svm->vcpu;
2037         struct ghcb *ghcb = svm->ghcb;
2038         u64 exit_code;
2039
2040         /*
2041          * The GHCB protocol so far allows for the following data
2042          * to be supplied:
2043          *   GPRs RAX, RBX, RCX, RDX
2044          *   XCR0
2045          *   CPL
2046          *
2047          * VMMCALL allows the guest to provide extra registers. KVM also
2048          * expects RSI for hypercalls, so include that, too.
2049          *
2050          * Copy their values to the appropriate location if supplied.
2051          */
2052         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2053
2054         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2055         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2056         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2057         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2058         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2059
2060         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2061
2062         if (ghcb_xcr0_is_valid(ghcb)) {
2063                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2064                 kvm_update_cpuid_runtime(vcpu);
2065         }
2066
2067         /* Copy the GHCB exit information into the VMCB fields */
2068         exit_code = ghcb_get_sw_exit_code(ghcb);
2069         control->exit_code = lower_32_bits(exit_code);
2070         control->exit_code_hi = upper_32_bits(exit_code);
2071         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2072         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2073
2074         /* Clear the valid entries fields */
2075         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2076 }
2077
2078 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2079 {
2080         struct kvm_vcpu *vcpu;
2081         struct ghcb *ghcb;
2082         u64 exit_code = 0;
2083
2084         ghcb = svm->ghcb;
2085
2086         /* Only GHCB Usage code 0 is supported */
2087         if (ghcb->ghcb_usage)
2088                 goto vmgexit_err;
2089
2090         /*
2091          * Retrieve the exit code now even though is may not be marked valid
2092          * as it could help with debugging.
2093          */
2094         exit_code = ghcb_get_sw_exit_code(ghcb);
2095
2096         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2097             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2098             !ghcb_sw_exit_info_2_is_valid(ghcb))
2099                 goto vmgexit_err;
2100
2101         switch (ghcb_get_sw_exit_code(ghcb)) {
2102         case SVM_EXIT_READ_DR7:
2103                 break;
2104         case SVM_EXIT_WRITE_DR7:
2105                 if (!ghcb_rax_is_valid(ghcb))
2106                         goto vmgexit_err;
2107                 break;
2108         case SVM_EXIT_RDTSC:
2109                 break;
2110         case SVM_EXIT_RDPMC:
2111                 if (!ghcb_rcx_is_valid(ghcb))
2112                         goto vmgexit_err;
2113                 break;
2114         case SVM_EXIT_CPUID:
2115                 if (!ghcb_rax_is_valid(ghcb) ||
2116                     !ghcb_rcx_is_valid(ghcb))
2117                         goto vmgexit_err;
2118                 if (ghcb_get_rax(ghcb) == 0xd)
2119                         if (!ghcb_xcr0_is_valid(ghcb))
2120                                 goto vmgexit_err;
2121                 break;
2122         case SVM_EXIT_INVD:
2123                 break;
2124         case SVM_EXIT_IOIO:
2125                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2126                         if (!ghcb_sw_scratch_is_valid(ghcb))
2127                                 goto vmgexit_err;
2128                 } else {
2129                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2130                                 if (!ghcb_rax_is_valid(ghcb))
2131                                         goto vmgexit_err;
2132                 }
2133                 break;
2134         case SVM_EXIT_MSR:
2135                 if (!ghcb_rcx_is_valid(ghcb))
2136                         goto vmgexit_err;
2137                 if (ghcb_get_sw_exit_info_1(ghcb)) {
2138                         if (!ghcb_rax_is_valid(ghcb) ||
2139                             !ghcb_rdx_is_valid(ghcb))
2140                                 goto vmgexit_err;
2141                 }
2142                 break;
2143         case SVM_EXIT_VMMCALL:
2144                 if (!ghcb_rax_is_valid(ghcb) ||
2145                     !ghcb_cpl_is_valid(ghcb))
2146                         goto vmgexit_err;
2147                 break;
2148         case SVM_EXIT_RDTSCP:
2149                 break;
2150         case SVM_EXIT_WBINVD:
2151                 break;
2152         case SVM_EXIT_MONITOR:
2153                 if (!ghcb_rax_is_valid(ghcb) ||
2154                     !ghcb_rcx_is_valid(ghcb) ||
2155                     !ghcb_rdx_is_valid(ghcb))
2156                         goto vmgexit_err;
2157                 break;
2158         case SVM_EXIT_MWAIT:
2159                 if (!ghcb_rax_is_valid(ghcb) ||
2160                     !ghcb_rcx_is_valid(ghcb))
2161                         goto vmgexit_err;
2162                 break;
2163         case SVM_VMGEXIT_MMIO_READ:
2164         case SVM_VMGEXIT_MMIO_WRITE:
2165                 if (!ghcb_sw_scratch_is_valid(ghcb))
2166                         goto vmgexit_err;
2167                 break;
2168         case SVM_VMGEXIT_NMI_COMPLETE:
2169         case SVM_VMGEXIT_AP_HLT_LOOP:
2170         case SVM_VMGEXIT_AP_JUMP_TABLE:
2171         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2172                 break;
2173         default:
2174                 goto vmgexit_err;
2175         }
2176
2177         return 0;
2178
2179 vmgexit_err:
2180         vcpu = &svm->vcpu;
2181
2182         if (ghcb->ghcb_usage) {
2183                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2184                             ghcb->ghcb_usage);
2185         } else {
2186                 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2187                             exit_code);
2188                 dump_ghcb(svm);
2189         }
2190
2191         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2192         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2193         vcpu->run->internal.ndata = 2;
2194         vcpu->run->internal.data[0] = exit_code;
2195         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2196
2197         return -EINVAL;
2198 }
2199
2200 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2201 {
2202         if (!svm->ghcb)
2203                 return;
2204
2205         if (svm->ghcb_sa_free) {
2206                 /*
2207                  * The scratch area lives outside the GHCB, so there is a
2208                  * buffer that, depending on the operation performed, may
2209                  * need to be synced, then freed.
2210                  */
2211                 if (svm->ghcb_sa_sync) {
2212                         kvm_write_guest(svm->vcpu.kvm,
2213                                         ghcb_get_sw_scratch(svm->ghcb),
2214                                         svm->ghcb_sa, svm->ghcb_sa_len);
2215                         svm->ghcb_sa_sync = false;
2216                 }
2217
2218                 kfree(svm->ghcb_sa);
2219                 svm->ghcb_sa = NULL;
2220                 svm->ghcb_sa_free = false;
2221         }
2222
2223         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2224
2225         sev_es_sync_to_ghcb(svm);
2226
2227         kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2228         svm->ghcb = NULL;
2229 }
2230
2231 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2232 {
2233         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2234         int asid = sev_get_asid(svm->vcpu.kvm);
2235
2236         /* Assign the asid allocated with this SEV guest */
2237         svm->asid = asid;
2238
2239         /*
2240          * Flush guest TLB:
2241          *
2242          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2243          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2244          */
2245         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2246             svm->vcpu.arch.last_vmentry_cpu == cpu)
2247                 return;
2248
2249         sd->sev_vmcbs[asid] = svm->vmcb;
2250         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2251         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2252 }
2253
2254 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2255 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2256 {
2257         struct vmcb_control_area *control = &svm->vmcb->control;
2258         struct ghcb *ghcb = svm->ghcb;
2259         u64 ghcb_scratch_beg, ghcb_scratch_end;
2260         u64 scratch_gpa_beg, scratch_gpa_end;
2261         void *scratch_va;
2262
2263         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2264         if (!scratch_gpa_beg) {
2265                 pr_err("vmgexit: scratch gpa not provided\n");
2266                 return false;
2267         }
2268
2269         scratch_gpa_end = scratch_gpa_beg + len;
2270         if (scratch_gpa_end < scratch_gpa_beg) {
2271                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2272                        len, scratch_gpa_beg);
2273                 return false;
2274         }
2275
2276         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2277                 /* Scratch area begins within GHCB */
2278                 ghcb_scratch_beg = control->ghcb_gpa +
2279                                    offsetof(struct ghcb, shared_buffer);
2280                 ghcb_scratch_end = control->ghcb_gpa +
2281                                    offsetof(struct ghcb, reserved_1);
2282
2283                 /*
2284                  * If the scratch area begins within the GHCB, it must be
2285                  * completely contained in the GHCB shared buffer area.
2286                  */
2287                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2288                     scratch_gpa_end > ghcb_scratch_end) {
2289                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2290                                scratch_gpa_beg, scratch_gpa_end);
2291                         return false;
2292                 }
2293
2294                 scratch_va = (void *)svm->ghcb;
2295                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2296         } else {
2297                 /*
2298                  * The guest memory must be read into a kernel buffer, so
2299                  * limit the size
2300                  */
2301                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2302                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2303                                len, GHCB_SCRATCH_AREA_LIMIT);
2304                         return false;
2305                 }
2306                 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2307                 if (!scratch_va)
2308                         return false;
2309
2310                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2311                         /* Unable to copy scratch area from guest */
2312                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2313
2314                         kfree(scratch_va);
2315                         return false;
2316                 }
2317
2318                 /*
2319                  * The scratch area is outside the GHCB. The operation will
2320                  * dictate whether the buffer needs to be synced before running
2321                  * the vCPU next time (i.e. a read was requested so the data
2322                  * must be written back to the guest memory).
2323                  */
2324                 svm->ghcb_sa_sync = sync;
2325                 svm->ghcb_sa_free = true;
2326         }
2327
2328         svm->ghcb_sa = scratch_va;
2329         svm->ghcb_sa_len = len;
2330
2331         return true;
2332 }
2333
2334 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2335                               unsigned int pos)
2336 {
2337         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2338         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2339 }
2340
2341 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2342 {
2343         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2344 }
2345
2346 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2347 {
2348         svm->vmcb->control.ghcb_gpa = value;
2349 }
2350
2351 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2352 {
2353         struct vmcb_control_area *control = &svm->vmcb->control;
2354         struct kvm_vcpu *vcpu = &svm->vcpu;
2355         u64 ghcb_info;
2356         int ret = 1;
2357
2358         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2359
2360         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2361                                              control->ghcb_gpa);
2362
2363         switch (ghcb_info) {
2364         case GHCB_MSR_SEV_INFO_REQ:
2365                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2366                                                     GHCB_VERSION_MIN,
2367                                                     sev_enc_bit));
2368                 break;
2369         case GHCB_MSR_CPUID_REQ: {
2370                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2371
2372                 cpuid_fn = get_ghcb_msr_bits(svm,
2373                                              GHCB_MSR_CPUID_FUNC_MASK,
2374                                              GHCB_MSR_CPUID_FUNC_POS);
2375
2376                 /* Initialize the registers needed by the CPUID intercept */
2377                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2378                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2379
2380                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2381                 if (!ret) {
2382                         ret = -EINVAL;
2383                         break;
2384                 }
2385
2386                 cpuid_reg = get_ghcb_msr_bits(svm,
2387                                               GHCB_MSR_CPUID_REG_MASK,
2388                                               GHCB_MSR_CPUID_REG_POS);
2389                 if (cpuid_reg == 0)
2390                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2391                 else if (cpuid_reg == 1)
2392                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2393                 else if (cpuid_reg == 2)
2394                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2395                 else
2396                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2397
2398                 set_ghcb_msr_bits(svm, cpuid_value,
2399                                   GHCB_MSR_CPUID_VALUE_MASK,
2400                                   GHCB_MSR_CPUID_VALUE_POS);
2401
2402                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2403                                   GHCB_MSR_INFO_MASK,
2404                                   GHCB_MSR_INFO_POS);
2405                 break;
2406         }
2407         case GHCB_MSR_TERM_REQ: {
2408                 u64 reason_set, reason_code;
2409
2410                 reason_set = get_ghcb_msr_bits(svm,
2411                                                GHCB_MSR_TERM_REASON_SET_MASK,
2412                                                GHCB_MSR_TERM_REASON_SET_POS);
2413                 reason_code = get_ghcb_msr_bits(svm,
2414                                                 GHCB_MSR_TERM_REASON_MASK,
2415                                                 GHCB_MSR_TERM_REASON_POS);
2416                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2417                         reason_set, reason_code);
2418                 fallthrough;
2419         }
2420         default:
2421                 ret = -EINVAL;
2422         }
2423
2424         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2425                                             control->ghcb_gpa, ret);
2426
2427         return ret;
2428 }
2429
2430 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2431 {
2432         struct vcpu_svm *svm = to_svm(vcpu);
2433         struct vmcb_control_area *control = &svm->vmcb->control;
2434         u64 ghcb_gpa, exit_code;
2435         struct ghcb *ghcb;
2436         int ret;
2437
2438         /* Validate the GHCB */
2439         ghcb_gpa = control->ghcb_gpa;
2440         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2441                 return sev_handle_vmgexit_msr_protocol(svm);
2442
2443         if (!ghcb_gpa) {
2444                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2445                 return -EINVAL;
2446         }
2447
2448         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2449                 /* Unable to map GHCB from guest */
2450                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2451                             ghcb_gpa);
2452                 return -EINVAL;
2453         }
2454
2455         svm->ghcb = svm->ghcb_map.hva;
2456         ghcb = svm->ghcb_map.hva;
2457
2458         trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2459
2460         exit_code = ghcb_get_sw_exit_code(ghcb);
2461
2462         ret = sev_es_validate_vmgexit(svm);
2463         if (ret)
2464                 return ret;
2465
2466         sev_es_sync_from_ghcb(svm);
2467         ghcb_set_sw_exit_info_1(ghcb, 0);
2468         ghcb_set_sw_exit_info_2(ghcb, 0);
2469
2470         ret = -EINVAL;
2471         switch (exit_code) {
2472         case SVM_VMGEXIT_MMIO_READ:
2473                 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2474                         break;
2475
2476                 ret = kvm_sev_es_mmio_read(vcpu,
2477                                            control->exit_info_1,
2478                                            control->exit_info_2,
2479                                            svm->ghcb_sa);
2480                 break;
2481         case SVM_VMGEXIT_MMIO_WRITE:
2482                 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2483                         break;
2484
2485                 ret = kvm_sev_es_mmio_write(vcpu,
2486                                             control->exit_info_1,
2487                                             control->exit_info_2,
2488                                             svm->ghcb_sa);
2489                 break;
2490         case SVM_VMGEXIT_NMI_COMPLETE:
2491                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2492                 break;
2493         case SVM_VMGEXIT_AP_HLT_LOOP:
2494                 ret = kvm_emulate_ap_reset_hold(vcpu);
2495                 break;
2496         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2497                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2498
2499                 switch (control->exit_info_1) {
2500                 case 0:
2501                         /* Set AP jump table address */
2502                         sev->ap_jump_table = control->exit_info_2;
2503                         break;
2504                 case 1:
2505                         /* Get AP jump table address */
2506                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2507                         break;
2508                 default:
2509                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2510                                control->exit_info_1);
2511                         ghcb_set_sw_exit_info_1(ghcb, 1);
2512                         ghcb_set_sw_exit_info_2(ghcb,
2513                                                 X86_TRAP_UD |
2514                                                 SVM_EVTINJ_TYPE_EXEPT |
2515                                                 SVM_EVTINJ_VALID);
2516                 }
2517
2518                 ret = 1;
2519                 break;
2520         }
2521         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2522                 vcpu_unimpl(vcpu,
2523                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2524                             control->exit_info_1, control->exit_info_2);
2525                 break;
2526         default:
2527                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2528         }
2529
2530         return ret;
2531 }
2532
2533 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2534 {
2535         if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2536                 return -EINVAL;
2537
2538         return kvm_sev_es_string_io(&svm->vcpu, size, port,
2539                                     svm->ghcb_sa, svm->ghcb_sa_len, in);
2540 }
2541
2542 void sev_es_init_vmcb(struct vcpu_svm *svm)
2543 {
2544         struct kvm_vcpu *vcpu = &svm->vcpu;
2545
2546         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2547         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2548
2549         /*
2550          * An SEV-ES guest requires a VMSA area that is a separate from the
2551          * VMCB page. Do not include the encryption mask on the VMSA physical
2552          * address since hardware will access it using the guest key.
2553          */
2554         svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2555
2556         /* Can't intercept CR register access, HV can't modify CR registers */
2557         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2558         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2559         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2560         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2561         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2562         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2563
2564         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2565
2566         /* Track EFER/CR register changes */
2567         svm_set_intercept(svm, TRAP_EFER_WRITE);
2568         svm_set_intercept(svm, TRAP_CR0_WRITE);
2569         svm_set_intercept(svm, TRAP_CR4_WRITE);
2570         svm_set_intercept(svm, TRAP_CR8_WRITE);
2571
2572         /* No support for enable_vmware_backdoor */
2573         clr_exception_intercept(svm, GP_VECTOR);
2574
2575         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2576         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2577
2578         /* Clear intercepts on selected MSRs */
2579         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2580         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2581         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2582         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2583         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2584         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2585 }
2586
2587 void sev_es_create_vcpu(struct vcpu_svm *svm)
2588 {
2589         /*
2590          * Set the GHCB MSR value as per the GHCB specification when creating
2591          * a vCPU for an SEV-ES guest.
2592          */
2593         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2594                                             GHCB_VERSION_MIN,
2595                                             sev_enc_bit));
2596 }
2597
2598 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2599 {
2600         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2601         struct vmcb_save_area *hostsa;
2602
2603         /*
2604          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2605          * of which one step is to perform a VMLOAD. Since hardware does not
2606          * perform a VMSAVE on VMRUN, the host savearea must be updated.
2607          */
2608         vmsave(__sme_page_pa(sd->save_area));
2609
2610         /* XCR0 is restored on VMEXIT, save the current host value */
2611         hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2612         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2613
2614         /* PKRU is restored on VMEXIT, save the current host value */
2615         hostsa->pkru = read_pkru();
2616
2617         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2618         hostsa->xss = host_xss;
2619 }
2620
2621 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2622 {
2623         struct vcpu_svm *svm = to_svm(vcpu);
2624
2625         /* First SIPI: Use the values as initially set by the VMM */
2626         if (!svm->received_first_sipi) {
2627                 svm->received_first_sipi = true;
2628                 return;
2629         }
2630
2631         /*
2632          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2633          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2634          * non-zero value.
2635          */
2636         if (!svm->ghcb)
2637                 return;
2638
2639         ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2640 }