Merge branch 'kvm-late-6.1' into HEAD
[sfrench/cifs-2.6.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include <asm/cpuid.h>
23 #include "cpuid.h"
24 #include "lapic.h"
25 #include "mmu.h"
26 #include "trace.h"
27 #include "pmu.h"
28
29 /*
30  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
31  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
32  */
33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
34 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
35
36 u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 {
38         int feature_bit = 0;
39         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
40
41         xstate_bv &= XFEATURE_MASK_EXTEND;
42         while (xstate_bv) {
43                 if (xstate_bv & 0x1) {
44                         u32 eax, ebx, ecx, edx, offset;
45                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
46                         /* ECX[1]: 64B alignment in compacted form */
47                         if (compacted)
48                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
49                         else
50                                 offset = ebx;
51                         ret = max(ret, offset + eax);
52                 }
53
54                 xstate_bv >>= 1;
55                 feature_bit++;
56         }
57
58         return ret;
59 }
60
61 /*
62  * This one is tied to SSB in the user API, and not
63  * visible in /proc/cpuinfo.
64  */
65 #define KVM_X86_FEATURE_AMD_PSFD        (13*32+28) /* Predictive Store Forwarding Disable */
66
67 #define F feature_bit
68
69 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
70 #define SF(name)                                                \
71 ({                                                              \
72         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
73         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
74 })
75
76 /*
77  * Magic value used by KVM when querying userspace-provided CPUID entries and
78  * doesn't care about the CPIUD index because the index of the function in
79  * question is not significant.  Note, this magic value must have at least one
80  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
81  * to avoid false positives when processing guest CPUID input.
82  */
83 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
84
85 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
86         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
87 {
88         struct kvm_cpuid_entry2 *e;
89         int i;
90
91         for (i = 0; i < nent; i++) {
92                 e = &entries[i];
93
94                 if (e->function != function)
95                         continue;
96
97                 /*
98                  * If the index isn't significant, use the first entry with a
99                  * matching function.  It's userspace's responsibilty to not
100                  * provide "duplicate" entries in all cases.
101                  */
102                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
103                         return e;
104
105
106                 /*
107                  * Similarly, use the first matching entry if KVM is doing a
108                  * lookup (as opposed to emulating CPUID) for a function that's
109                  * architecturally defined as not having a significant index.
110                  */
111                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
112                         /*
113                          * Direct lookups from KVM should not diverge from what
114                          * KVM defines internally (the architectural behavior).
115                          */
116                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
117                         return e;
118                 }
119         }
120
121         return NULL;
122 }
123
124 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
125                            struct kvm_cpuid_entry2 *entries,
126                            int nent)
127 {
128         struct kvm_cpuid_entry2 *best;
129         u64 xfeatures;
130
131         /*
132          * The existing code assumes virtual address is 48-bit or 57-bit in the
133          * canonical address checks; exit if it is ever changed.
134          */
135         best = cpuid_entry2_find(entries, nent, 0x80000008,
136                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
137         if (best) {
138                 int vaddr_bits = (best->eax & 0xff00) >> 8;
139
140                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
141                         return -EINVAL;
142         }
143
144         /*
145          * Exposing dynamic xfeatures to the guest requires additional
146          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
147          */
148         best = cpuid_entry2_find(entries, nent, 0xd, 0);
149         if (!best)
150                 return 0;
151
152         xfeatures = best->eax | ((u64)best->edx << 32);
153         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
154         if (!xfeatures)
155                 return 0;
156
157         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
158 }
159
160 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
161 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
162                                  int nent)
163 {
164         struct kvm_cpuid_entry2 *orig;
165         int i;
166
167         if (nent != vcpu->arch.cpuid_nent)
168                 return -EINVAL;
169
170         for (i = 0; i < nent; i++) {
171                 orig = &vcpu->arch.cpuid_entries[i];
172                 if (e2[i].function != orig->function ||
173                     e2[i].index != orig->index ||
174                     e2[i].flags != orig->flags ||
175                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
176                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
177                         return -EINVAL;
178         }
179
180         return 0;
181 }
182
183 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
184 {
185         u32 function;
186         struct kvm_cpuid_entry2 *entry;
187
188         vcpu->arch.kvm_cpuid_base = 0;
189
190         for_each_possible_hypervisor_cpuid_base(function) {
191                 entry = kvm_find_cpuid_entry(vcpu, function);
192
193                 if (entry) {
194                         u32 signature[3];
195
196                         signature[0] = entry->ebx;
197                         signature[1] = entry->ecx;
198                         signature[2] = entry->edx;
199
200                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
201                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
202                                 vcpu->arch.kvm_cpuid_base = function;
203                                 break;
204                         }
205                 }
206         }
207 }
208
209 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
210                                               struct kvm_cpuid_entry2 *entries, int nent)
211 {
212         u32 base = vcpu->arch.kvm_cpuid_base;
213
214         if (!base)
215                 return NULL;
216
217         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
218                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
219 }
220
221 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
222 {
223         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
224                                              vcpu->arch.cpuid_nent);
225 }
226
227 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
228 {
229         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
230
231         /*
232          * save the feature bitmap to avoid cpuid lookup for every PV
233          * operation
234          */
235         if (best)
236                 vcpu->arch.pv_cpuid.features = best->eax;
237 }
238
239 /*
240  * Calculate guest's supported XCR0 taking into account guest CPUID data and
241  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
242  */
243 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
244 {
245         struct kvm_cpuid_entry2 *best;
246
247         best = cpuid_entry2_find(entries, nent, 0xd, 0);
248         if (!best)
249                 return 0;
250
251         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
252 }
253
254 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
255                                        int nent)
256 {
257         struct kvm_cpuid_entry2 *best;
258         u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
259
260         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
261         if (best) {
262                 /* Update OSXSAVE bit */
263                 if (boot_cpu_has(X86_FEATURE_XSAVE))
264                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
265                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
266
267                 cpuid_entry_change(best, X86_FEATURE_APIC,
268                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
269         }
270
271         best = cpuid_entry2_find(entries, nent, 7, 0);
272         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
273                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
274                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
275
276         best = cpuid_entry2_find(entries, nent, 0xD, 0);
277         if (best)
278                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
279
280         best = cpuid_entry2_find(entries, nent, 0xD, 1);
281         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
282                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
283                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
284
285         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
286         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
287                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
288                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
289
290         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
291                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
292                 if (best)
293                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
294                                            vcpu->arch.ia32_misc_enable_msr &
295                                            MSR_IA32_MISC_ENABLE_MWAIT);
296         }
297
298         /*
299          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
300          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
301          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
302          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
303          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
304          * '1' even on CPUs that don't support XSAVE.
305          */
306         best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
307         if (best) {
308                 best->ecx &= guest_supported_xcr0 & 0xffffffff;
309                 best->edx &= guest_supported_xcr0 >> 32;
310                 best->ecx |= XFEATURE_MASK_FPSSE;
311         }
312 }
313
314 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
315 {
316         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
317 }
318 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
319
320 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
321 {
322         struct kvm_cpuid_entry2 *entry;
323
324         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
325                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
326         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
327 }
328
329 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
330 {
331         struct kvm_lapic *apic = vcpu->arch.apic;
332         struct kvm_cpuid_entry2 *best;
333
334         best = kvm_find_cpuid_entry(vcpu, 1);
335         if (best && apic) {
336                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
337                         apic->lapic_timer.timer_mode_mask = 3 << 17;
338                 else
339                         apic->lapic_timer.timer_mode_mask = 1 << 17;
340
341                 kvm_apic_set_version(vcpu);
342         }
343
344         vcpu->arch.guest_supported_xcr0 =
345                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
346
347         /*
348          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
349          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
350          * supported by the host.
351          */
352         vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
353                                                        XFEATURE_MASK_FPSSE;
354
355         kvm_update_pv_runtime(vcpu);
356
357         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
358         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
359
360         kvm_pmu_refresh(vcpu);
361         vcpu->arch.cr4_guest_rsvd_bits =
362             __cr4_reserved_bits(guest_cpuid_has, vcpu);
363
364         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
365                                                     vcpu->arch.cpuid_nent));
366
367         /* Invoke the vendor callback only after the above state is updated. */
368         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
369
370         /*
371          * Except for the MMU, which needs to do its thing any vendor specific
372          * adjustments to the reserved GPA bits.
373          */
374         kvm_mmu_after_set_cpuid(vcpu);
375 }
376
377 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
378 {
379         struct kvm_cpuid_entry2 *best;
380
381         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
382         if (!best || best->eax < 0x80000008)
383                 goto not_found;
384         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
385         if (best)
386                 return best->eax & 0xff;
387 not_found:
388         return 36;
389 }
390
391 /*
392  * This "raw" version returns the reserved GPA bits without any adjustments for
393  * encryption technologies that usurp bits.  The raw mask should be used if and
394  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
395  */
396 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
397 {
398         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
399 }
400
401 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
402                         int nent)
403 {
404         int r;
405
406         __kvm_update_cpuid_runtime(vcpu, e2, nent);
407
408         /*
409          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
410          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
411          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
412          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
413          * the core vCPU model on the fly. It would've been better to forbid any
414          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
415          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
416          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
417          * whether the supplied CPUID data is equal to what's already set.
418          */
419         if (vcpu->arch.last_vmentry_cpu != -1) {
420                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
421                 if (r)
422                         return r;
423
424                 kvfree(e2);
425                 return 0;
426         }
427
428         if (kvm_cpuid_has_hyperv(e2, nent)) {
429                 r = kvm_hv_vcpu_init(vcpu);
430                 if (r)
431                         return r;
432         }
433
434         r = kvm_check_cpuid(vcpu, e2, nent);
435         if (r)
436                 return r;
437
438         kvfree(vcpu->arch.cpuid_entries);
439         vcpu->arch.cpuid_entries = e2;
440         vcpu->arch.cpuid_nent = nent;
441
442         kvm_update_kvm_cpuid_base(vcpu);
443         kvm_vcpu_after_set_cpuid(vcpu);
444
445         return 0;
446 }
447
448 /* when an old userspace process fills a new kernel module */
449 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
450                              struct kvm_cpuid *cpuid,
451                              struct kvm_cpuid_entry __user *entries)
452 {
453         int r, i;
454         struct kvm_cpuid_entry *e = NULL;
455         struct kvm_cpuid_entry2 *e2 = NULL;
456
457         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
458                 return -E2BIG;
459
460         if (cpuid->nent) {
461                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
462                 if (IS_ERR(e))
463                         return PTR_ERR(e);
464
465                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
466                 if (!e2) {
467                         r = -ENOMEM;
468                         goto out_free_cpuid;
469                 }
470         }
471         for (i = 0; i < cpuid->nent; i++) {
472                 e2[i].function = e[i].function;
473                 e2[i].eax = e[i].eax;
474                 e2[i].ebx = e[i].ebx;
475                 e2[i].ecx = e[i].ecx;
476                 e2[i].edx = e[i].edx;
477                 e2[i].index = 0;
478                 e2[i].flags = 0;
479                 e2[i].padding[0] = 0;
480                 e2[i].padding[1] = 0;
481                 e2[i].padding[2] = 0;
482         }
483
484         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
485         if (r)
486                 kvfree(e2);
487
488 out_free_cpuid:
489         kvfree(e);
490
491         return r;
492 }
493
494 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
495                               struct kvm_cpuid2 *cpuid,
496                               struct kvm_cpuid_entry2 __user *entries)
497 {
498         struct kvm_cpuid_entry2 *e2 = NULL;
499         int r;
500
501         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
502                 return -E2BIG;
503
504         if (cpuid->nent) {
505                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
506                 if (IS_ERR(e2))
507                         return PTR_ERR(e2);
508         }
509
510         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
511         if (r)
512                 kvfree(e2);
513
514         return r;
515 }
516
517 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
518                               struct kvm_cpuid2 *cpuid,
519                               struct kvm_cpuid_entry2 __user *entries)
520 {
521         int r;
522
523         r = -E2BIG;
524         if (cpuid->nent < vcpu->arch.cpuid_nent)
525                 goto out;
526         r = -EFAULT;
527         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
528                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
529                 goto out;
530         return 0;
531
532 out:
533         cpuid->nent = vcpu->arch.cpuid_nent;
534         return r;
535 }
536
537 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
538 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
539 {
540         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
541         struct kvm_cpuid_entry2 entry;
542
543         reverse_cpuid_check(leaf);
544
545         cpuid_count(cpuid.function, cpuid.index,
546                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
547
548         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
549 }
550
551 static __always_inline
552 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
553 {
554         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
555         BUILD_BUG_ON(leaf < NCAPINTS);
556
557         kvm_cpu_caps[leaf] = mask;
558
559         __kvm_cpu_cap_mask(leaf);
560 }
561
562 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
563 {
564         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
565         BUILD_BUG_ON(leaf >= NCAPINTS);
566
567         kvm_cpu_caps[leaf] &= mask;
568
569         __kvm_cpu_cap_mask(leaf);
570 }
571
572 void kvm_set_cpu_caps(void)
573 {
574 #ifdef CONFIG_X86_64
575         unsigned int f_gbpages = F(GBPAGES);
576         unsigned int f_lm = F(LM);
577         unsigned int f_xfd = F(XFD);
578 #else
579         unsigned int f_gbpages = 0;
580         unsigned int f_lm = 0;
581         unsigned int f_xfd = 0;
582 #endif
583         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
584
585         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
586                      sizeof(boot_cpu_data.x86_capability));
587
588         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
589                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
590
591         kvm_cpu_cap_mask(CPUID_1_ECX,
592                 /*
593                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
594                  * advertised to guests via CPUID!
595                  */
596                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
597                 0 /* DS-CPL, VMX, SMX, EST */ |
598                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
599                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
600                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
601                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
602                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
603                 F(F16C) | F(RDRAND)
604         );
605         /* KVM emulates x2apic in software irrespective of host support. */
606         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
607
608         kvm_cpu_cap_mask(CPUID_1_EDX,
609                 F(FPU) | F(VME) | F(DE) | F(PSE) |
610                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
611                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
612                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
613                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
614                 0 /* Reserved, DS, ACPI */ | F(MMX) |
615                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
616                 0 /* HTT, TM, Reserved, PBE */
617         );
618
619         kvm_cpu_cap_mask(CPUID_7_0_EBX,
620                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
621                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
622                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
623                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
624                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
625                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
626                 F(AVX512VL));
627
628         kvm_cpu_cap_mask(CPUID_7_ECX,
629                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
630                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
631                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
632                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
633                 F(SGX_LC) | F(BUS_LOCK_DETECT)
634         );
635         /* Set LA57 based on hardware capability. */
636         if (cpuid_ecx(7) & F(LA57))
637                 kvm_cpu_cap_set(X86_FEATURE_LA57);
638
639         /*
640          * PKU not yet implemented for shadow paging and requires OSPKE
641          * to be set on the host. Clear it if that is not the case
642          */
643         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
644                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
645
646         kvm_cpu_cap_mask(CPUID_7_EDX,
647                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
648                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
649                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
650                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
651                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
652         );
653
654         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
655         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
656         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
657
658         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
659                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
660         if (boot_cpu_has(X86_FEATURE_STIBP))
661                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
662         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
663                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
664
665         kvm_cpu_cap_mask(CPUID_7_1_EAX,
666                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | F(AMX_FP16) |
667                 F(AVX_IFMA)
668         );
669
670         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
671                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI)
672         );
673
674         kvm_cpu_cap_mask(CPUID_D_1_EAX,
675                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
676         );
677
678         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
679                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
680         );
681
682         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
683                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
684                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
685                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
686                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
687                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
688         );
689
690         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
691                 F(FPU) | F(VME) | F(DE) | F(PSE) |
692                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
693                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
694                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
695                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
696                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
697                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
698                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
699         );
700
701         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
702                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
703
704         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
705                 SF(CONSTANT_TSC)
706         );
707
708         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
709                 F(CLZERO) | F(XSAVEERPTR) |
710                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
711                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
712                 __feature_bit(KVM_X86_FEATURE_AMD_PSFD)
713         );
714
715         /*
716          * AMD has separate bits for each SPEC_CTRL bit.
717          * arch/x86/kernel/cpu/bugs.c is kind enough to
718          * record that in cpufeatures so use them.
719          */
720         if (boot_cpu_has(X86_FEATURE_IBPB))
721                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
722         if (boot_cpu_has(X86_FEATURE_IBRS))
723                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
724         if (boot_cpu_has(X86_FEATURE_STIBP))
725                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
726         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
727                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
728         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
729                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
730         /*
731          * The preference is to use SPEC CTRL MSR instead of the
732          * VIRT_SPEC MSR.
733          */
734         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
735             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
736                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
737
738         /*
739          * Hide all SVM features by default, SVM will set the cap bits for
740          * features it emulates and/or exposes for L1.
741          */
742         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
743
744         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
745                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
746                 F(SME_COHERENT));
747
748         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
749                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
750                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
751                 F(PMM) | F(PMM_EN)
752         );
753
754         /*
755          * Hide RDTSCP and RDPID if either feature is reported as supported but
756          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
757          * should never happen, but the guest will likely crash if RDTSCP or
758          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
759          * the past.  For example, the sanity check may fire if this instance of
760          * KVM is running as L1 on top of an older, broken KVM.
761          */
762         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
763                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
764                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
765                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
766                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
767         }
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
770
771 struct kvm_cpuid_array {
772         struct kvm_cpuid_entry2 *entries;
773         int maxnent;
774         int nent;
775 };
776
777 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
778                                               u32 function, u32 index)
779 {
780         struct kvm_cpuid_entry2 *entry;
781
782         if (array->nent >= array->maxnent)
783                 return NULL;
784
785         entry = &array->entries[array->nent++];
786
787         memset(entry, 0, sizeof(*entry));
788         entry->function = function;
789         entry->index = index;
790         switch (function & 0xC0000000) {
791         case 0x40000000:
792                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
793                 return entry;
794
795         case 0x80000000:
796                 /*
797                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
798                  * would result in out-of-bounds calls to do_host_cpuid.
799                  */
800                 {
801                         static int max_cpuid_80000000;
802                         if (!READ_ONCE(max_cpuid_80000000))
803                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
804                         if (function > READ_ONCE(max_cpuid_80000000))
805                                 return entry;
806                 }
807                 break;
808
809         default:
810                 break;
811         }
812
813         cpuid_count(entry->function, entry->index,
814                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
815
816         if (cpuid_function_is_indexed(function))
817                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
818
819         return entry;
820 }
821
822 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
823 {
824         struct kvm_cpuid_entry2 *entry;
825
826         if (array->nent >= array->maxnent)
827                 return -E2BIG;
828
829         entry = &array->entries[array->nent];
830         entry->function = func;
831         entry->index = 0;
832         entry->flags = 0;
833
834         switch (func) {
835         case 0:
836                 entry->eax = 7;
837                 ++array->nent;
838                 break;
839         case 1:
840                 entry->ecx = F(MOVBE);
841                 ++array->nent;
842                 break;
843         case 7:
844                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
845                 entry->eax = 0;
846                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
847                         entry->ecx = F(RDPID);
848                 ++array->nent;
849                 break;
850         default:
851                 break;
852         }
853
854         return 0;
855 }
856
857 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
858 {
859         struct kvm_cpuid_entry2 *entry;
860         int r, i, max_idx;
861
862         /* all calls to cpuid_count() should be made on the same cpu */
863         get_cpu();
864
865         r = -E2BIG;
866
867         entry = do_host_cpuid(array, function, 0);
868         if (!entry)
869                 goto out;
870
871         switch (function) {
872         case 0:
873                 /* Limited to the highest leaf implemented in KVM. */
874                 entry->eax = min(entry->eax, 0x1fU);
875                 break;
876         case 1:
877                 cpuid_entry_override(entry, CPUID_1_EDX);
878                 cpuid_entry_override(entry, CPUID_1_ECX);
879                 break;
880         case 2:
881                 /*
882                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
883                  * CPUID(function=2, index=0) may return different results each
884                  * time, with the least-significant byte in EAX enumerating the
885                  * number of times software should do CPUID(2, 0).
886                  *
887                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
888                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
889                  * return 01H. Software should ignore this value and not
890                  * interpret it as an informational descriptor", while AMD's
891                  * APM states that CPUID(2) is reserved.
892                  *
893                  * WARN if a frankenstein CPU that supports virtualization and
894                  * a stateful CPUID.0x2 is encountered.
895                  */
896                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
897                 break;
898         /* functions 4 and 0x8000001d have additional index. */
899         case 4:
900         case 0x8000001d:
901                 /*
902                  * Read entries until the cache type in the previous entry is
903                  * zero, i.e. indicates an invalid entry.
904                  */
905                 for (i = 1; entry->eax & 0x1f; ++i) {
906                         entry = do_host_cpuid(array, function, i);
907                         if (!entry)
908                                 goto out;
909                 }
910                 break;
911         case 6: /* Thermal management */
912                 entry->eax = 0x4; /* allow ARAT */
913                 entry->ebx = 0;
914                 entry->ecx = 0;
915                 entry->edx = 0;
916                 break;
917         /* function 7 has additional index. */
918         case 7:
919                 entry->eax = min(entry->eax, 1u);
920                 cpuid_entry_override(entry, CPUID_7_0_EBX);
921                 cpuid_entry_override(entry, CPUID_7_ECX);
922                 cpuid_entry_override(entry, CPUID_7_EDX);
923
924                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
925                 if (entry->eax == 1) {
926                         entry = do_host_cpuid(array, function, 1);
927                         if (!entry)
928                                 goto out;
929
930                         cpuid_entry_override(entry, CPUID_7_1_EAX);
931                         cpuid_entry_override(entry, CPUID_7_1_EDX);
932                         entry->ebx = 0;
933                         entry->ecx = 0;
934                 }
935                 break;
936         case 0xa: { /* Architectural Performance Monitoring */
937                 union cpuid10_eax eax;
938                 union cpuid10_edx edx;
939
940                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
941                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
942                         break;
943                 }
944
945                 eax.split.version_id = kvm_pmu_cap.version;
946                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
947                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
948                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
949                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
950                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
951
952                 if (kvm_pmu_cap.version)
953                         edx.split.anythread_deprecated = 1;
954                 edx.split.reserved1 = 0;
955                 edx.split.reserved2 = 0;
956
957                 entry->eax = eax.full;
958                 entry->ebx = kvm_pmu_cap.events_mask;
959                 entry->ecx = 0;
960                 entry->edx = edx.full;
961                 break;
962         }
963         /*
964          * Per Intel's SDM, the 0x1f is a superset of 0xb,
965          * thus they can be handled by common code.
966          */
967         case 0x1f:
968         case 0xb:
969                 /*
970                  * Populate entries until the level type (ECX[15:8]) of the
971                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
972                  * the starting entry, filled by the primary do_host_cpuid().
973                  */
974                 for (i = 1; entry->ecx & 0xff00; ++i) {
975                         entry = do_host_cpuid(array, function, i);
976                         if (!entry)
977                                 goto out;
978                 }
979                 break;
980         case 0xd: {
981                 u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
982                 u64 permitted_xss = kvm_caps.supported_xss;
983
984                 entry->eax &= permitted_xcr0;
985                 entry->ebx = xstate_required_size(permitted_xcr0, false);
986                 entry->ecx = entry->ebx;
987                 entry->edx &= permitted_xcr0 >> 32;
988                 if (!permitted_xcr0)
989                         break;
990
991                 entry = do_host_cpuid(array, function, 1);
992                 if (!entry)
993                         goto out;
994
995                 cpuid_entry_override(entry, CPUID_D_1_EAX);
996                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
997                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
998                                                           true);
999                 else {
1000                         WARN_ON_ONCE(permitted_xss != 0);
1001                         entry->ebx = 0;
1002                 }
1003                 entry->ecx &= permitted_xss;
1004                 entry->edx &= permitted_xss >> 32;
1005
1006                 for (i = 2; i < 64; ++i) {
1007                         bool s_state;
1008                         if (permitted_xcr0 & BIT_ULL(i))
1009                                 s_state = false;
1010                         else if (permitted_xss & BIT_ULL(i))
1011                                 s_state = true;
1012                         else
1013                                 continue;
1014
1015                         entry = do_host_cpuid(array, function, i);
1016                         if (!entry)
1017                                 goto out;
1018
1019                         /*
1020                          * The supported check above should have filtered out
1021                          * invalid sub-leafs.  Only valid sub-leafs should
1022                          * reach this point, and they should have a non-zero
1023                          * save state size.  Furthermore, check whether the
1024                          * processor agrees with permitted_xcr0/permitted_xss
1025                          * on whether this is an XCR0- or IA32_XSS-managed area.
1026                          */
1027                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1028                                 --array->nent;
1029                                 continue;
1030                         }
1031
1032                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1033                                 entry->ecx &= ~BIT_ULL(2);
1034                         entry->edx = 0;
1035                 }
1036                 break;
1037         }
1038         case 0x12:
1039                 /* Intel SGX */
1040                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1041                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1042                         break;
1043                 }
1044
1045                 /*
1046                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1047                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1048                  * are restricted by kernel and KVM capabilities (like most
1049                  * feature flags), while enclave size is unrestricted.
1050                  */
1051                 cpuid_entry_override(entry, CPUID_12_EAX);
1052                 entry->ebx &= SGX_MISC_EXINFO;
1053
1054                 entry = do_host_cpuid(array, function, 1);
1055                 if (!entry)
1056                         goto out;
1057
1058                 /*
1059                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1060                  * feature flags.  Advertise all supported flags, including
1061                  * privileged attributes that require explicit opt-in from
1062                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1063                  * expected to derive it from supported XCR0.
1064                  */
1065                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1066                 entry->ebx &= 0;
1067                 break;
1068         /* Intel PT */
1069         case 0x14:
1070                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1071                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1072                         break;
1073                 }
1074
1075                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1076                         if (!do_host_cpuid(array, function, i))
1077                                 goto out;
1078                 }
1079                 break;
1080         /* Intel AMX TILE */
1081         case 0x1d:
1082                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1083                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1084                         break;
1085                 }
1086
1087                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1088                         if (!do_host_cpuid(array, function, i))
1089                                 goto out;
1090                 }
1091                 break;
1092         case 0x1e: /* TMUL information */
1093                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1094                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1095                         break;
1096                 }
1097                 break;
1098         case KVM_CPUID_SIGNATURE: {
1099                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1100                 entry->eax = KVM_CPUID_FEATURES;
1101                 entry->ebx = sigptr[0];
1102                 entry->ecx = sigptr[1];
1103                 entry->edx = sigptr[2];
1104                 break;
1105         }
1106         case KVM_CPUID_FEATURES:
1107                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1108                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1109                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1110                              (1 << KVM_FEATURE_ASYNC_PF) |
1111                              (1 << KVM_FEATURE_PV_EOI) |
1112                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1113                              (1 << KVM_FEATURE_PV_UNHALT) |
1114                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1115                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1116                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1117                              (1 << KVM_FEATURE_POLL_CONTROL) |
1118                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1119                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1120
1121                 if (sched_info_on())
1122                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1123
1124                 entry->ebx = 0;
1125                 entry->ecx = 0;
1126                 entry->edx = 0;
1127                 break;
1128         case 0x80000000:
1129                 entry->eax = min(entry->eax, 0x80000021);
1130                 /*
1131                  * Serializing LFENCE is reported in a multitude of ways, and
1132                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1133                  * userspace by providing the CPUID leaf ourselves.
1134                  *
1135                  * However, only do it if the host has CPUID leaf 0x8000001d.
1136                  * QEMU thinks that it can query the host blindly for that
1137                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1138                  * above.  The processor merrily returns values from the
1139                  * highest Intel leaf which QEMU tries to use as the guest's
1140                  * 0x8000001d.  Even worse, this can result in an infinite
1141                  * loop if said highest leaf has no subleaves indexed by ECX.
1142                  */
1143                 if (entry->eax >= 0x8000001d &&
1144                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1145                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1146                         entry->eax = max(entry->eax, 0x80000021);
1147                 break;
1148         case 0x80000001:
1149                 entry->ebx &= ~GENMASK(27, 16);
1150                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1151                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1152                 break;
1153         case 0x80000006:
1154                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1155                 entry->edx &= ~GENMASK(17, 16);
1156                 break;
1157         case 0x80000007: /* Advanced power management */
1158                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1159
1160                 /* mask against host */
1161                 entry->edx &= boot_cpu_data.x86_power;
1162                 entry->eax = entry->ebx = entry->ecx = 0;
1163                 break;
1164         case 0x80000008: {
1165                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1166                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1167                 unsigned phys_as = entry->eax & 0xff;
1168
1169                 /*
1170                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1171                  * the guest operates in the same PA space as the host, i.e.
1172                  * reductions in MAXPHYADDR for memory encryption affect shadow
1173                  * paging, too.
1174                  *
1175                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1176                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1177                  * the HPAs do not affect GPAs.
1178                  */
1179                 if (!tdp_enabled)
1180                         g_phys_as = boot_cpu_data.x86_phys_bits;
1181                 else if (!g_phys_as)
1182                         g_phys_as = phys_as;
1183
1184                 entry->eax = g_phys_as | (virt_as << 8);
1185                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1186                 entry->edx = 0;
1187                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1188                 break;
1189         }
1190         case 0x8000000A:
1191                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1192                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1193                         break;
1194                 }
1195                 entry->eax = 1; /* SVM revision 1 */
1196                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1197                                    ASID emulation to nested SVM */
1198                 entry->ecx = 0; /* Reserved */
1199                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1200                 break;
1201         case 0x80000019:
1202                 entry->ecx = entry->edx = 0;
1203                 break;
1204         case 0x8000001a:
1205                 entry->eax &= GENMASK(2, 0);
1206                 entry->ebx = entry->ecx = entry->edx = 0;
1207                 break;
1208         case 0x8000001e:
1209                 break;
1210         case 0x8000001F:
1211                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1212                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213                 } else {
1214                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1215                         /* Clear NumVMPL since KVM does not support VMPL.  */
1216                         entry->ebx &= ~GENMASK(31, 12);
1217                         /*
1218                          * Enumerate '0' for "PA bits reduction", the adjusted
1219                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1220                          */
1221                         entry->ebx &= ~GENMASK(11, 6);
1222                 }
1223                 break;
1224         case 0x80000020:
1225                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1226                 break;
1227         case 0x80000021:
1228                 entry->ebx = entry->ecx = entry->edx = 0;
1229                 /*
1230                  * Pass down these bits:
1231                  *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1232                  *    EAX      2      LAS, LFENCE always serializing
1233                  *    EAX      6      NSCB, Null selector clear base
1234                  *
1235                  * Other defined bits are for MSRs that KVM does not expose:
1236                  *   EAX      3      SPCL, SMM page configuration lock
1237                  *   EAX      13     PCMSR, Prefetch control MSR
1238                  *
1239                  * KVM doesn't support SMM_CTL.
1240                  *   EAX       9     SMM_CTL MSR is not supported
1241                  */
1242                 entry->eax &= BIT(0) | BIT(2) | BIT(6);
1243                 entry->eax |= BIT(9);
1244                 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1245                         entry->eax |= BIT(2);
1246                 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1247                         entry->eax |= BIT(6);
1248                 break;
1249         /*Add support for Centaur's CPUID instruction*/
1250         case 0xC0000000:
1251                 /*Just support up to 0xC0000004 now*/
1252                 entry->eax = min(entry->eax, 0xC0000004);
1253                 break;
1254         case 0xC0000001:
1255                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1256                 break;
1257         case 3: /* Processor serial number */
1258         case 5: /* MONITOR/MWAIT */
1259         case 0xC0000002:
1260         case 0xC0000003:
1261         case 0xC0000004:
1262         default:
1263                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1264                 break;
1265         }
1266
1267         r = 0;
1268
1269 out:
1270         put_cpu();
1271
1272         return r;
1273 }
1274
1275 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1276                          unsigned int type)
1277 {
1278         if (type == KVM_GET_EMULATED_CPUID)
1279                 return __do_cpuid_func_emulated(array, func);
1280
1281         return __do_cpuid_func(array, func);
1282 }
1283
1284 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1285
1286 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1287                           unsigned int type)
1288 {
1289         u32 limit;
1290         int r;
1291
1292         if (func == CENTAUR_CPUID_SIGNATURE &&
1293             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1294                 return 0;
1295
1296         r = do_cpuid_func(array, func, type);
1297         if (r)
1298                 return r;
1299
1300         limit = array->entries[array->nent - 1].eax;
1301         for (func = func + 1; func <= limit; ++func) {
1302                 r = do_cpuid_func(array, func, type);
1303                 if (r)
1304                         break;
1305         }
1306
1307         return r;
1308 }
1309
1310 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1311                                  __u32 num_entries, unsigned int ioctl_type)
1312 {
1313         int i;
1314         __u32 pad[3];
1315
1316         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1317                 return false;
1318
1319         /*
1320          * We want to make sure that ->padding is being passed clean from
1321          * userspace in case we want to use it for something in the future.
1322          *
1323          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1324          * have to give ourselves satisfied only with the emulated side. /me
1325          * sheds a tear.
1326          */
1327         for (i = 0; i < num_entries; i++) {
1328                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1329                         return true;
1330
1331                 if (pad[0] || pad[1] || pad[2])
1332                         return true;
1333         }
1334         return false;
1335 }
1336
1337 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1338                             struct kvm_cpuid_entry2 __user *entries,
1339                             unsigned int type)
1340 {
1341         static const u32 funcs[] = {
1342                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1343         };
1344
1345         struct kvm_cpuid_array array = {
1346                 .nent = 0,
1347         };
1348         int r, i;
1349
1350         if (cpuid->nent < 1)
1351                 return -E2BIG;
1352         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1353                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1354
1355         if (sanity_check_entries(entries, cpuid->nent, type))
1356                 return -EINVAL;
1357
1358         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1359         if (!array.entries)
1360                 return -ENOMEM;
1361
1362         array.maxnent = cpuid->nent;
1363
1364         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1365                 r = get_cpuid_func(&array, funcs[i], type);
1366                 if (r)
1367                         goto out_free;
1368         }
1369         cpuid->nent = array.nent;
1370
1371         if (copy_to_user(entries, array.entries,
1372                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1373                 r = -EFAULT;
1374
1375 out_free:
1376         kvfree(array.entries);
1377         return r;
1378 }
1379
1380 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1381                                                     u32 function, u32 index)
1382 {
1383         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1384                                  function, index);
1385 }
1386 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1387
1388 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1389                                               u32 function)
1390 {
1391         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1392                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1395
1396 /*
1397  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1398  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1399  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1400  * range.  Centaur/VIA follows Intel semantics.
1401  *
1402  * A leaf is considered out-of-range if its function is higher than the maximum
1403  * supported leaf of its associated class or if its associated class does not
1404  * exist.
1405  *
1406  * There are three primary classes to be considered, with their respective
1407  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1408  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1409  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1410  *
1411  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1412  *  - Hypervisor: 0x40000000 - 0x4fffffff
1413  *  - Extended:   0x80000000 - 0xbfffffff
1414  *  - Centaur:    0xc0000000 - 0xcfffffff
1415  *
1416  * The Hypervisor class is further subdivided into sub-classes that each act as
1417  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1418  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1419  * CPUID sub-classes are:
1420  *
1421  *  - HyperV:     0x40000000 - 0x400000ff
1422  *  - KVM:        0x40000100 - 0x400001ff
1423  */
1424 static struct kvm_cpuid_entry2 *
1425 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1426 {
1427         struct kvm_cpuid_entry2 *basic, *class;
1428         u32 function = *fn_ptr;
1429
1430         basic = kvm_find_cpuid_entry(vcpu, 0);
1431         if (!basic)
1432                 return NULL;
1433
1434         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1435             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1436                 return NULL;
1437
1438         if (function >= 0x40000000 && function <= 0x4fffffff)
1439                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1440         else if (function >= 0xc0000000)
1441                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1442         else
1443                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1444
1445         if (class && function <= class->eax)
1446                 return NULL;
1447
1448         /*
1449          * Leaf specific adjustments are also applied when redirecting to the
1450          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1451          * entry for CPUID.0xb.index (see below), then the output value for EDX
1452          * needs to be pulled from CPUID.0xb.1.
1453          */
1454         *fn_ptr = basic->eax;
1455
1456         /*
1457          * The class does not exist or the requested function is out of range;
1458          * the effective CPUID entry is the max basic leaf.  Note, the index of
1459          * the original requested leaf is observed!
1460          */
1461         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1462 }
1463
1464 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1465                u32 *ecx, u32 *edx, bool exact_only)
1466 {
1467         u32 orig_function = *eax, function = *eax, index = *ecx;
1468         struct kvm_cpuid_entry2 *entry;
1469         bool exact, used_max_basic = false;
1470
1471         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1472         exact = !!entry;
1473
1474         if (!entry && !exact_only) {
1475                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1476                 used_max_basic = !!entry;
1477         }
1478
1479         if (entry) {
1480                 *eax = entry->eax;
1481                 *ebx = entry->ebx;
1482                 *ecx = entry->ecx;
1483                 *edx = entry->edx;
1484                 if (function == 7 && index == 0) {
1485                         u64 data;
1486                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1487                             (data & TSX_CTRL_CPUID_CLEAR))
1488                                 *ebx &= ~(F(RTM) | F(HLE));
1489                 } else if (function == 0x80000007) {
1490                         if (kvm_hv_invtsc_suppressed(vcpu))
1491                                 *edx &= ~SF(CONSTANT_TSC);
1492                 }
1493         } else {
1494                 *eax = *ebx = *ecx = *edx = 0;
1495                 /*
1496                  * When leaf 0BH or 1FH is defined, CL is pass-through
1497                  * and EDX is always the x2APIC ID, even for undefined
1498                  * subleaves. Index 1 will exist iff the leaf is
1499                  * implemented, so we pass through CL iff leaf 1
1500                  * exists. EDX can be copied from any existing index.
1501                  */
1502                 if (function == 0xb || function == 0x1f) {
1503                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1504                         if (entry) {
1505                                 *ecx = index & 0xff;
1506                                 *edx = entry->edx;
1507                         }
1508                 }
1509         }
1510         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1511                         used_max_basic);
1512         return exact;
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_cpuid);
1515
1516 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1517 {
1518         u32 eax, ebx, ecx, edx;
1519
1520         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1521                 return 1;
1522
1523         eax = kvm_rax_read(vcpu);
1524         ecx = kvm_rcx_read(vcpu);
1525         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1526         kvm_rax_write(vcpu, eax);
1527         kvm_rbx_write(vcpu, ebx);
1528         kvm_rcx_write(vcpu, ecx);
1529         kvm_rdx_write(vcpu, edx);
1530         return kvm_skip_emulated_instruction(vcpu);
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);